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Abstract

We present a novel gene-level regulatory model called SCARIink that predicts single-cell gene
expression from single-cell chromatin accessibility within and flanking (+/- 250kb) the genic loci
by training on multiome (scRNA-seq and scATAC-seq co-assay) sequencing data. The
approach uses regularized Poisson regression on tile-level accessibility data to jointly model all
regulatory effects at a gene locus, avoiding the limitations of pairwise gene-peak correlations
and dependence on a peak atlas. SCARIink significantly outperformed existing gene scoring
methods for imputing gene expression from chromatin accessibility across across high-
coverage multiome data sets while giving comparable to improved performance on low-
coverage data sets. Shapley value analysis on trained models identified cell-type-specific gene
enhancers that are validated by promoter capture Hi-C and are 8x-35x enriched in fine-mapped
eQTLs and 22x-35x enriched in fine-mapped GWAS variants across 83 UK Biobank traits. We
further show that SCARIink-predicted and observed gene expression vectors provide a robust
way to compute a chromatin potential vector field to enable developmental trajectory analysis.
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Main

Multiome single-cell sequencing of chromatin accessibility and gene expression — where both
SCATAC-seq and scRNA-seq are read out from the same individual cells — has paved the way
for novel computational methods that attempt to link enhancers to genes"? infer gene
regulatory networks®®, and resolve developmental trajectories based on the concept of
chromatin potential, which proposes that accessibility at a locus precedes gene expression
during differentiation’. At the most elementary level, several approaches exploit joint
measurements of ATAC and RNA in single cells to identify pairwise correlations between
individual accessible regions — defined as peaks or domains of open chromatin (DORCs) — and
gene expression levels for enhancer-gene linking'®. For example, a recent approach uses
Poisson regression to test for pairwise correlation between peak accessibility and gene
expression while also modeling batch or cell-specific covariates, with the goal of linking non-
coding genetic variants that reside in such peaks to target genes®’. Meanwhile, standard
SCATAC-seq analysis methods use simple scoring schemes to transform the data into a SCRNA-
like readout, based on aggregating chromatin accessibility near a gene promoter or across a
genic locus to obtain an imputed gene expression value, to enable joint embedding of
indgpendently collected scATAC-seq and scRNA-seq data or transfer of clusters between the
two".

Motivated by these ideas, we propose SCARIink (Single-cell ATAC+RNA linking), a new gene-
level predictive model for single-cell multiome data that predicts the expression of a gene from
the accessibility of its genomic context in single cells (Fig. 1a). Unlike pairwise correlation
approaches, our model captures the fact that elements both within the genic locus (e.g. intronic
enhancers) and distal elements in flanking regions (+/- 250kb by default) jointly regulate
expression of the gene. We train the model using regularized Poisson regression on tile-level
data to facilitate integration with standard preprocessing pipelines like ArchR® and to avoid
summarizing data as a peak atlas, which may miss events in rarer cell types. The regression
coefficients across the genomic context can then be interpreted as identifying locations of
functional enhancers across the single-cell data set. Moreover, we can use Shapley values, a
well-known feature attribution method, to identify cell-type-specific enhancers, i.e. genomic tiles
that are important for predicting expression across cells from a given cluster or annotation.
Below, we show that our model outperforms existing methods for predicting single-cell gene
expression from accessibility and correctly identifies cell-type-specific enhancers as validated by
promoter-capture Hi-C. We further show that the regulatory regions determined using Shapley
values from our modeling enrich for fine-mapped non-coding GWAS and eQTL variants. Finally,
we demonstrate that using gene-level models for a set of developmentally regulated genes yield
a robust implementation of the chromatin potential trajectory inference method.

SCARIlink uses a regularized Poisson regression model on single cells to predict gene
expression from chromatin accessibility. The chromatin accessibility is used as input in the form
of 500bp tiles spanning a region from 250kb upstream to 250kb downstream of the gene body
by default (Fig 1a). This genomic context is large enough to capture distal intergenic as well as
intronic enhancers for most genes but can be extended or shortened as preferred. Since
SCARIink is a gene-level model and genes are of variable length, the number of input tiles is
different for every gene. We also constrain the model to learn positive regulatory elements by
forcing the regression coefficients to be non-negative. While this is a limitation for identifying
repressors, we found the regression coefficients to be more interpretable when we focused on
enhancers.
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We applied SCARIink to multiomic data sets of peripheral blood mononuclear cells (PBMC) from
10x Genomics, bone marrow mononuclear cells (BMMC)®, mouse skin®, developing human
cortex®, pancreas’®!*, and pituitary gland*®>. We ran the model on a subset of the top 5,000 most
variable genes for each data set, filtered based on the sparsity of the gene expression vector
(Methods). After filtering, we obtained 1,758 genes for PBMC, 786 genes for BMMC, 1,040
genes for mouse skin, 1,202 genes for developing human cortex, 792 genes for pancreas, and
1,222 genes for pituitary (Supplementary Table 1). For each gene-level model, we used
Spearman correlation to compare the predicted gene expression to observed gene expression
on held-out cells. We compared SCARIink against other available methods to predict single-cell
gene expression from chromatin accessibility. One such method is the ArchR gene score, which
aggregates accessibility across the gene body and flanking regions using an exponentially
decaying function to downweight accessibility farther away from the gene. SCARIink
significantly outperformed the ArchR gene score across all high-coverage data sets based on
correlation with ground truth on held-out cells (one-sided signed-rank test over genes, p < 5.1e-
96 on PBMC, p < 3.3e-90 on BMMC, and p < 1.3e-58 on developing human cortex). We also
found SCARIink produced significantly higher correlations for a large fraction of individual genes
in higher coverage data sets (44.4% of genes in PBMC, 56.8% of genes in BMMC, and 22.6%
of genes in the developing cortex, at FDR < 0.05) as assessed by pairwise significance of
correlation (Methods) (Fig. 1b-d). For lower coverage data sets, SCARIink performed
comparably to the ArchR gene score on mouse skin multiome and pituitary (one-sided signed-
rank test not significant in either direction) while outperforming it on pancreas (p < 1.8e-18, one-
sided signed-rank test), albeit with fewer genes showing significantly better correlation
(Supplementary Fig. l1a-c, Supplementary Table 1). In the human cortex multiome data,
SCARIlink outperformed another method of gene score prediction called ChrAccR that
aggregates the accessibility in peaks near the TSS (p < 1.3e-93, one-sided signed-rank test;
Supplementary Fig. 1d). Domain of open chromatin (DORC) scores are computed by
aggregating accessibility in peaks lying within 50kb and 500kb of the TSS that individually
correlate with gene expression®. We found that our model yields predictions that are more
correlated with expression than DORC scores in mouse skin (p < 8.9e-61, signed-rank test;
significantly better performance on 36.6% of genes) (Fig. 1e), potentially because SCARIink is
modeling the impact of chromatin accessibility across all tiles at once.

As an example to study the linkage between chromatin accessibility and gene expression, we
used SCARIink to model regulation of ZEB2 in the PBMC data set (Fig. 1f). The learned
regression coefficients across all the tiles (Fig. 1f, bottom) describe the regulatory importance of
chromatin accessibility over the whole genomic context for ZEB2. Note that while SCARIink
does not use cell type or cluster annotations as input, knowledge of clusters can be used to
generate pseudobulk visualizations and thus interpret the regression coefficients. We also
analyzed Lefl from mouse skin multiomic SHARE-seq data and found distal regions where high
regression coefficients indicate that accessibility is correlated with transcription but which are
not annotated as DORCs (near chr3:130,900,000; Fig. 1g). This highlights the advantage of
SCARIink in using accessibility across all tiles for prediction of gene expression.

The regression coefficients generated using SCARIink indicate the overall importance of the
accessibility in each tile for predicting gene expression across the data set. To quantify the
contribution of each tile in the window for every cell type, we computed standardized average
Shapley values per cell type on training cells (see Methods for computation of approximate
Shapley scores under the SCARIink model). This allowed us to identify tiles as putative
regulatory regions for the modeled gene in a particular cell type. We observed that predicted
regulatory elements are most enriched within or in close proximity to the gene body (~25kb) and
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decrease in prevalence in distal regions (Supplementary Fig. 1e). Because active enhancers
are known to physically interact with promoters to enable transcription'®, we hypothesized that
SCARIink-predicted regulatory regions would be enriched for 3D interactions with the promoter
of the modeled gene. Promoter capture Hi-C (PCHi-C) is a chromosome conformation capture
assay that identifies promoter-interacting genomic regions using a genome-wide promoter bait
library. We therefore sought to validate SCARIink-predicted regulatory regions across a subset
of PBMC cell types using available hematopoietic PCHi-C*. We identified PCHi-C interactions
in relevant cell types using a generalized additive model (Methods) and compared them to
SCARIink-identified regions in T cell subpopulations, monocytes, and B cells in the PBMC
multiomic data. As one example, we compared our Shapley values to PCHIi-C interactions for
the gene HLA-DQB1 (Fig. 2a). We found that PCHi-C interactions in distal tiles display higher
Shapley values than non-interacting tiles, particularly for B cells, a cell type in which HLA-DQB1
is highly expressed (Fig. 2a). We then compared the Shapley values of tiles with and without
PCHiI-C interactions for highly expressed genes in each cell type (Methods) and confirmed that
Shapley values for interacting tiles are significantly higher than for non-interacting tiles (Fig. 2b).

Next we assessed if the enhancer tiles predicted by SCARIink can be used to prioritize genetic
variants causally associated with gene regulation and disease etiology. To this end, we first
filtered a set of gene-linked tiles for each gene and cell type based on the significance of an
approximate Shapley score (Fig 3a, Methods). We then performed an enrichment analysis of
the resulting set of gene-linked tiles with respect to statistically fine-mapped eQTLs (PIP > 0.5)
for the corresponding genes in the closest matched GTEX tissues™, and with respect to 10,164
statistically fine-mapped GWAS variants (PIP > 0.2) across 83 UK Biobank traits'® (average
N=334,803) (Supplementary Table 3) in PBMC, pancreas, and pituitary gland (Methods).
SCARIink gene-linked tiles in the three multiome datasets show 22x-35x enrichment of fine-
mapped GWAS variants in the top 50,000 predicted gene-linked tiles (Supplementary Table 4)
and outperformed a standard pairwise peak-gene linking implemented by ArchR. The
enrichment increases with higher PIP thresholds (Fig. 3b). Moreover, the enrichment of the
GWAS variants is individually higher for 64% of the 83 traits in SCARIlink gene-linked tiles
(Supplementary Fig. 2a). For the fine-mapped eQTL traits from matched GTEXx tissues, we
observed 15x-59x enrichment in PBMC for the first 15,000 gene-linked tiles (Fig. 3c, left) and 8x
enrichment across predicted gene-linked tiles at FDR < 0.01 (Fig. 3c, right). We also observed
35x enrichment in pancreas multiome. Both PBMC and pancreas multiome gene-linked tiles
have significantly higher enrichment than the enrichment using ArchR gene-linked peaks (Fig.
3c). To assess tissue-specific eQTL enrichment, we calculated the enrichment in PBMC and
pituitary multiome of eQTLs from non-matching tissues from the GTEx database. We observed
lower enrichment of eQTLs from other GTEX tissues (Fig. 3d and Supplementary Fig. 2b),
suggesting that SCARIink is able to identify variants in regulatory regions that are tissue-specific
and cell-type-specific.

We then assessed the enrichment of SCARIink gene-linked tiles in conditionally independent
eQTL signals from GTEX. SCARIink showed 8x-21x enrichment of primary eQTLs (defined by
the eQTL with the most significant association for the gene) in pancreas for the top 15,000
predicted gene-linked tiles and significantly higher enrichment in PBMC compared to ArchR
peaks (Fig. 3e). We additionally performed enrichment analysis of SCARIink gene-linked tiles
with different categories of variants from RegulomeDB'"*®, SCARIink showed higher enrichment
for the top 25,000 gene-linked tiles in PBMC over ArchR peak-gene links for 17,164
RegulomeDB variants with a rank of 1a, corresponding to the most stringent cutoff based on
motif accessibility at eQTL/caQTLs (Fig. 3f). SCARIink tiles also show higher enrichment for the
top 10,000 gene-linked tiles in pituitary and top 5,000 tiles in pancreas (Supplementary Fig.
2d-e, Supplementary Table 5).
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We also examined variants identified by statistical fine-mapping of eQTL and GWAS signals for
which SCARIlink provides evidence that the variant-containing tile is linked to the gene in
specific cell types. This is to explore whether SCARIink can be used to identify putatively causal
cell types for the variant action. One such variant, rs112401631 (chr17:40608272:T:A), is a fine-
mapped variant for asthma (PIP = 0.27) and is located in a tile that is significantly linked to the
gene CCR7 by SCARIink in various T cell subtypes (CD8 effector, CD4 memory, CD8 naive,
and CD4 naive) (Fig. 4a). The CCR7 gene is well known for its role in the homing of T cell
populations to lymphoid organs'®?°, and CCR7+ memory CD4+ T cells have previously been
associated with severity of asthma®?. A second example is the fine-mapped variant
rs12454712 (chr18:63178651:T:C) for insulin-like growth factor 1 (IGF1) and type 2 diabetes
(adjusted by BMI) and lies in an intronic enhancer of BCL2%. IGF-1 is known to prevent
apoptosis through the activity of BCL2, which encodes an anti-apoptotic transcription factor®*.
Furthermore, somatotropes secrete growth hormone that affects the production of IGF-1, and
IGF-1 in turn negatively regulates growth hormone production®. Interestingly, we found this
variant to be in a regulatory region of pituitary stem cells and somatotropes (Fig. 4b), possibly
suggesting a role in pituitary stem cell differentiation. Additionally, both high and low IGF-1
levels have been associated with insulin resistance and a higher risk of type 2 diabetes®. While
we found this variant within the regulatory region of cells from the pituitary gland, it is not
accessible in the PBMC multiome (Supplementary Fig. 3), and SCARIink appropriately assigns
the tile low significance in these cell types.

We next asked whether SCARIink-identified regulatory regions become accessible before
transcription of the modeled genes in developmental settings and thus can be used to
determine the developmental trajectory through chromatin potential>®. Analogous to the original
definition of chromatin potential-based correlation between DORCs and genes, we computed a
smoothed SCARIink-predicted gene expression vector for each given ‘source’ cell, identified a
set of ‘target’ cells whose smoothed observed gene expression vectors are most correlated with
the predicted source cell expression vector, and determined the corresponding chromatin
potential vector from the source cell towards the average position of the target cells, and
visualized in an FDL or UMAP embedding (Methods). We applied SCARIink in this fashion to
derive chromatin potential vector fields for mouse skin, BMMC, pituitary gland, and developing
human cortex. When computing chromatin potential, by default we chose all genes for which
SCARIink-predicted gene expression was positively correlated with observed gene expression.
This filtered out less than 5% of genes for mouse skin, BMMC, and pituitary, and 15% of genes
from developing human cortex.

We found that the SCARIlink chromatin potential vector fields recapitulate known differentiation
trajectories in mouse skin, BMMC, and pituitary gland (Fig. 5a-c). However, in developing
human cortex cells, chromatin potential failed to identify that the radial glia cell population is the
root cell type® (Fig. 5d). Upon comparing the difference between predicted and observed gene
expression averaged over all genes, we found that this difference is the highest in the middle of
the known developmental trajectory (nIPC/GIuN1) and decreases afterwards (Fig. 5d-g).
Examining further, we identified two clusters of genes based on hierarchical clustering of single-
cell expression patterns (Supplementary Fig. 4a, Supplementary Table 6), with one cluster
enriched for gene ontology terms related to glial cell differentiation (Supplementary Fig. 4b-c).
Performing SCARIink chromatin potential analysis on this subset of 470 genes recovered the
correct developmental trajectory (Fig. 5h). For this subset of genes, we also found that the
difference between average predicted and observed gene expression increases over the course
of the trajectory, consistent with the opening of chromatin at these loci preceding target gene
expression (Fig. 5i-k). While our analysis demonstrates the utility of chromatin potential as a
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strategy to identify a differentiation trajectory in multiome data sets, we also caution that prior
selection of a subset of genes may be required to obtain results consistent with known biology.

We have shown that SCARIink provides an effective and robust method for identifying cell-type-
specific enhancers of genes without prior computation of a peak set. SCARIink also efficiently
resolves the cell type specificity of tissue-relevant eQTLs and GWAS traits using Shapley value
analysis and computes chromatin potential vector fields tracking development or differentiation.
We note that SCARIink is designed to be a simple gene-level model, namely a (regularized)
generalized linear model with a log link function and constrained to have non-negative
regression coefficients. This simplicity enables fast training and model selection as well as very
efficient computation of approximate Shapley values to identify significant tiles in a cell-type-
specific manner. Additionally, by modeling additive positive effects, we obtain a highly
interpretable model where significant tiles from Shapley analysis are validated by chromosome
conformation capture data and enrich for fine-mapped eQTLs and GWAS variants. We also
expect that SCARIink's cell-type-specific enhancers and enhancer-gene links could be
incorporated into functionally driven TWAS methods for predicting gene expression from
genotype®”3°. Despite the effectiveness of SCARIink's generalized linear modeling, we can
anticipate settings where more complex gene-level models might be suitable; for example, one
could include interaction terms between tiles in the regression model or even employ non-linear
neural network architectures for the same single-cell gene expression prediction task. Our
implementation of SCARIlink in TensorFlow should facilitate implementation of and comparison
to these more complex models. Finally, there has been extensive work on DNA sequence
models for bulk epigenomic and scATAC-seq data® *, including in the context of prediction of
bulk gene expression®3*. In future work, we plan to integrate DNA sequence information into
SCARIink, sharing the sequence model associated with each cell across gene models, with the
goal of modeling the regulatory grammar in enhancers as well as their regulatory impact on
target gene expression.

Methods
Data preprocessing

Single-cell multiomic data was processed using Seurat® (scRNA-seq) and ArchR® (SCATAC-
seq). We performed quality control separately for sScRNA-seq and scATAC-seq. We filtered out
cells with mitochondrial reads > 20% for scRNA-seq with unannotated cell types (10x PBMC
and pancreas). For scATAC-seq, we filtered for cells with at least 1,000 fragments and
performed doublet detection on unannotated datasets. We performed CPM normalization of the
SCRNA-seq data. Then we ordered the cells in the same manner for both scRNA-seq and
SCATAC-seq. We selected the top 5,000 highly variable genes, using Seurat, and used this
gene set as input to SCARIink.

Cell type annotation
Cell type annotation was provided by the original studies for BMMC, developing human cortex,
mouse skin, and pituitary gland. We performed cell type annotation of PBMC and pancreas

using marker genes®>?’,

Gene regression model
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SCARIink uses regularized Poisson regression to predict single-cell gene expression from
single-cell chromatin accessibility.

We used ArchR to split the genome into 500bp tiles and computed tile-level scATAC-seq
feature accessibility. We selected tiles that span 250kb up/downstream of and across the gene
body. The accessibility within the tiles was normalized by the ReadsInTSS parameter, which is
also the default normalization in ArchR, to control for sequencing depth and sample quality®.
Gene expression values were normalized by counts per million (CPM). For each gene, the
chromatin accessibility input to SCARIink was ReadsInTSS-normalized then min-max scaled on
a per-tile basis across all cells. We ran the model separately on the 5,000 most variable genes
determined using Seurat. Additionally, we filtered out genes for which the expression was too
sparse with a threshold of 0.9, or 90% zeros.

We used L2 regularization with Poisson regression; i.e. for every gene, we optimized the
following loss function:

=~ ((XW + €) = Vi log(X;W + €)) + | [W] |3

Here N corresponds to the number of cells, X corresponds to the min-max scaled accessibility
matrix, Y corresponds to the gene expression vector, W is the learned regression coefficient

vector, and « is the regularization parameter. We left out one-fifth of the data for testing. The
regularization parameter was selected using 5-fold cross-validation on the remaining four-fifths
of the cells. Spearman correlation was computed on the held-out test-cells. We used
TensorFlow in Python to develop the model and the Adam optimizer for training. We
constrained the regression coefficients to be non-negative, thereby learning only positive
regulators for genes.

Significance test for model predictions on individual genes

To compare overall performance of SCARIink predictions on test cells with other methods based
on Spearman correlation with ground truth, we used a Wilcoxon signed-rank test over genes.

We also estimated whether the Spearman correlations of SCARIink predictions are significantly
different from the correlations using other methods for individual genes. The correlations from
the two methods are not independent because they are calculated on the same observed gene
expression values. We calculated the following test statistic for each gene and performed a t-
test to estimate significance®®:

(n—1)(1+ p23)

n—1 + p13)?
z(n_3)|5| + (plz 4:013) (1_p23)3

t = (p12 — p13) ~T(n—3)

where
ISI =1 — (pi + pis + P33) + 2p12P13P23
p12: Spearman correlation between SCARIink prediction and observed gene expression
p13. Spearman correlation between ArchR gene score/DORC score prediction and
observed gene expression
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po3: Spearman correlation between SCARIink prediction and ArchR gene score/DORC
score prediction
n: number of cells in held-out test set

We performed FDR-correction of the p-values using the Benjamini-Hochberg method®. The
scatter plots in Fig. 1b-e and Supplementary Fig. la-c are colored using these FDR-corrected
p-values.

Shapley scores and tile significance

After training the model, we used the SHAP Python package®® to compute Shapley values for a
linear model, which closely approximate the Shapley values of our Poisson regression model:

shap, = W, (X*'t — mean(X*’t))
Here shap, corresponds to the Shapley value of a particular tile t.

We computed these approximate Shapley values in a cell-type-specific manner. For each cell
type, we iteratively sampled 50 training cells from the cell type to form a pseudobulk sample and
computed Shapley values for each tile of the pseudobulk profile. We iterated 500 times and then
averaged the Shapley values for each tile over iterations. This gave an averaged Shapley score
for each tile and cell type. Finally, we standardized the scores using z-score transformation. We
scaled features this way separately for each gene model in order to identify gene-linked tiles.
Note that we estimate Shapley values only for cell types having at least 100 cells.

PCHi-C analysis

We used publicly available PCHi-C data for hematopoietic cells'. We transformed the
coordinates from hg19 to hg38 with liftOver**. Promoter Capture Hi-C loops at each promoter
bait were identified by fitting a negative binomial generalized additive model* to the observed
counts as a function of GC content, mappability, and length of the restriction fragments
alongside a smooth distance function parametrized using a reduced rank thin plate spline basis
using the GAMLSS R package. If replicates were present, a replicate covariate was added to
the model to control for library size. After this base model was fit, interactions were flagged by
using the fitted distributions to compute a p-value. This overall strategy is akin to the GLM-
based strategy of HiC-DC+ to identify significant interactions*. After p-values were computed
for each restriction fragment in the vicinity of a promoter bait, p-values across replicates were
pooled using Fisher's method and corrected using Benjamini-Hochberg for each promoter bait.
To further improve our ability to detect interactions, we employed locally adaptive weighting and
screening to smooth the p-values and simultaneously control for the false discovery rate®.

For the Shapley value comparison, we used the AverageExpression function from Seurat® to
calculate average scaled gene expression and selected highly expressed genes per cell type.
For every cell type, we restricted to genes with an average scaled gene expression of more than
0. Then we chose the top 50 genes if there were more than 50 highly expressed genes per cell
type. Next we extracted all tiles that contain significant PCHi-C interactions for CD4 naive T,
CD8 naive T, CD8 memory T, and B cells for these genes. If there were multiple tiles spanning
one PCHiI-C interaction, we selected the maximum Shapley value across the tiles. The
background Shapley values are from tiles that do not contain any significant PCHi-C interactions
for the same genes.
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Tile significance for variant analysis

We found the scaled Shapley scores were not comparable across gene models. Therefore, we
used an additional metric to order the gene-linked tiles when computing enrichment-recall
curves; specifically, we estimated the significance of difference in prediction of gene expression
with and without a specific tile on held-out test cells using a paired Wilcoxon (signed-rank) test.
We performed this significance test in a cell-type-specific manner across all genes in each
multiome data set. The resulting p-values were then FDR-corrected using the Benjamini-
Hochberg method*°.

ArchR peak2gene

We used ArchR® to first perform peak calling using MACS2* grouped by the cell type
annotations. We then used the ArchR pipeline to link peaks to genes, which performs pairwise
correlation of accessibility and gene expression on aggregated meta-cells. We used the same
genomic window as SCARIink to predict the peak-gene links.

GWAS enrichment analysis

We used fine-mapped GWAS variants from UK Biobank and first filtered out variants that lie
within coding regions or are splicing eQTLs. UK Biobank originally has 94 traits. We retained the
top 90% of the traits based on the number of fine-mapped variants lying within 250kb of all
genes SCARIink was trained on. This resulted in 83 traits. We considered a variant to be a
causal variant if it is associated with at least one trait with PIP > 0.2. This resulted in 10,164
variants that are present in tiles spanning 250kb upstream/downstream of all the genes from
PBMC, pancreas, and pituitary. For each trait, we calculated precision as the ratio of the
number of causal variants in predicted gene-linked tiles/peaks to the number of common
variants in predicted gene-linked tiles/peaks. Then we calculated enrichment as previously
described?, by dividing precision by the probability of encountering a causal variant of the given
trait across all the tiles. We finally computed the average enrichment across all the traits:

.. #causal variants of trait; in gene linked tiles/peaks
preaswntmiti =

#common variants in gene linked tiles/peaks

#causal variants of trait; across all tiles of SCARlink genes

probability(causal variant of trait;) = _ . -
#common variants across all tiles of SCARlink genes

precisiongrqit;

enrichmenty, g, =
trait; probability(causal variant of trait;)

enrichment = average(enrichment.q;;;)

In the case of SCARIink gene-linked tiles, we restricted to genes having SCARIink-predicted
gene expression correlation > 0.1 and to gene-linked tiles with p-value < 0.01. For ArchR gene-
linked peaks, we restricted to peaks having correlation > 0.1 and FDR < 0.01.

eQTL enrichment analysis

We used fine-mapped eQTLs from GTEXx for whole blood, pancreas, and pituitary for computing
enrichment in gene-linked tiles/peaks. We defined causal variants as having PIP > 0.5. Then
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separately for each gene and tissue, we computed precision, enrichment, and recall. We further
computed the average enrichment and recall over genes per multiome data set:

#causal variants of gene; in gene linked tiles/peaks

Precision ene. = - — - - -
g i #common variants in tiles around gene; in gene linked tiles/peaks

#causal variants of gene; in tiles around gene;

probability(causal variant of gene;) = e
#common variants in tiles around gene;

recision ]
14 gene;

enrichment =
gene; probability (causal variant of gene;)

enrichment = average(enrichmentgenei)

#causal variants of gene; in gene linked tiles/peaks
recallyene. = :
i

#causal variants of gene; in tiles around gene;

recall = average(recallyep, i)

Additionally, we performed similar eQTL enrichment analysis on GTEx independent eQTLs for
whole blood, pancreas, and pituitary. The primary independent eQTL is the most significantly
associated variant*® and has a rank of 1. An eQTL with any other rank is an independent eQTL
less important than the eQTLs with better ranks. There are at most 13 independent eQTLs, and
the whole blood sample has more non-primary independent eQTLs than other tissues. We fixed
a correlation cutoff of 0.1 for both SCARIlink genes and ArchR peak2gene links and FDR < 0.01.

RegulomeDB enrichment analysis
The variants in RegulomeDB!"*® are assigned ranks based on their associated regulatory
features. Each variant is also assigned a probability score based on a random forest model,
where probability scores are correlated with the ranks. We chose the most stringent set of
variants with a rank of 1a, corresponding to variants associated with eQTL/caQTL and TF
binding with matched motif, footprint, and accessible chromatin. We further restricted to variants
with a probability score > 0.9. We considered these variants to be the putative regulatory
variants.

We computed enrichment as follows:

#regulatory variants in gene linked tiles/peaks

recision =
p #common variants in gene linked tiles/peaks

#regulatory variants

probability(regulatory variant) = P ———

precision

enrichment = — -
probability (regulatory variant)

Chromatin potential using SCARIink

We ran chromatin potential on smoothed SCARIink-predicted and observed gene expression
values. Smoothing was performed over a k-nearest neighbor (KNN) graph (k=50) built using a
lower dimensional representation of the scATAC-seq data based on latent sematic indexing


https://doi.org/10.1101/2023.06.13.544851
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.13.544851; this version posted June 14, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

(LSI) from ArchR. We retained the genes for which the predicted and observed gene expression
are positively correlated. We then scaled the smoothed predicted and observed gene
expression using min-max scaling. Following this, as in the published chromatin potential
approach?, for each cell i in the predicted space, we identified the nearest neighbors (k=10) in
the observed space:

Yobsi = kNN(Ypredi)

Here, Y, is the scaled and smoothed observed expression matrix of the 10 cells with the
highest correlation with the scaled and smoothed predicted expression vector of cell i, Ypredi.

We then plotted chromatin potential arrows on the force directed layout (FDL) or UMAP from
each cell i, to the average position of the cells corresponding to Y ;. These arrows are further

smoothed over a grid layout on the FDL/UMAP embedding.

We used FDL visualizations for all data sets except mouse skin, where we used the previously
published UMAP *. Additionally, for the mouse skin data, we ran the analysis on a subset of cell
types to compare to reported results®.

By default, we do not filter out any genes except the ones with negative correlation between
predicted and observed expression. We found that by using all genes, we could not always
obtain the known differentiation trajectory, as in the case of developing human cortex. In this
data set, we performed hierarchical clustering of genes based on cosine distance of observed
gene expression vectors across all cell types, identified two clusters, and repeated chromatin
potential analysis with genes in one of the clusters.

Data availability

We downloaded the PBMC multiome from 10X Genomics. BMMC data was part of the NeurlPS
2021 open problem, and the data set was downloaded from GEO (GSE194122). We used
BMMC samples labeled as sitel donorl, sitel donor2, sitel donor3, site2 donorl,
site2_donor4, site2_donor5, site3_donorl0, site3 donor6, site3 donor7, and site4_donor9.
These samples showed the least batch effect. Mouse skin SHARE-seq data and DORC
annotations were downloaded from GEO (GSE104203). The UMAP used for mouse skin was
shared by the authors®. Pituitary multiome data was downloaded from GEO (GSE178454). The
developing human cortex scRNA-seq was downloaded from GEO (GSE162170) and the
corresponding  multiomic  scATAC-seq was downloaded from links listed in
https://github.com/GreenleafLab/brainchromatin/blob/main/links.txt. We used samples labeled
hft ctx w21 dc2r2 rl and hft_ctx w21 dc2r2 r2 with the least batch effect. We downloaded
the pancreas multiome data set from the ENCODE portal (multiomic series ENCR316WAS).

We used common variants from the 1000 Genomes Project, phase 3*’. The fine-mapped eQTLs
for whole blood, pancreas, and pituitary were downloaded from GTEx v8™. The fine-mapping
was performed using CAVIAR “®. We also downloaded the conditionally independent eQTL from
GTEx v8. UK Biobank GWAS data with fine-mapping using SuSIE** and FINEMAP* was
downloaded from the Finucane lab (https://www.finucanelab.org/data).

Code availability

SCARIink is available on GitHub at: https://github.com/snehamitra/SCARIink/.
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Figure 1. SCARIink accurately predicts single-cell gene expression from chromatin accessibility.
a. The model takes as input single-cell ATAC-seq counts at a genic locus, aggregated over 500bp tiles
spanning 250kb up/downstream and including the gene body, and uses regularized Poisson regression to
predict the gene’s single-cell expression; both the scATAC-seq and scRNA-seq readouts are obtained
from multiomic sequencing. The learned regression coefficients indicate the importance of each tile for
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predicting gene expression. b-e. Scatterplots showing Spearman correlation of predicted and observed
gene expression for each gene using SCARIink vs. Spearman correlations using existing methods.
Comparisons are performed against ArchR gene score predictions (b-d) on 10x PBMC, BMMC?, and
developing human cortex’; and against DORC gene score predictions (e) on the mouse skin® data set. f.
Example model output for ZEB2 from PBMC multiome data, showing regression coefficients at bottom
and aggregated scATAC and scRNA by cell type. g. Example model output and comparison with
annotated DORCs (shown using blue arcs below the coefficient panel) for Lefl from mouse skin SHARE-
seq data.
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Figure 2. SCARIink coefficients enrich for promoter-linked chromatin interactions. a. SCARIink
output of HLA-DQBL1 in PBMC multiome. Cell-type-specific standardized approximate Shapley scores (z-
scores) of the tiles are plotted as blue dots under the accessibility panel of every cell type. Arc plots of
significant PCHi-C interactions™ for HLA-DQB1 of CD4 naive T, CD8 naive T, CD14+ monocytes, and B
cells are shown below the model output. b. Boxplots comparing feature scores of tiles with or without
PCHIi-C interactions for highly expressed genes per cell type.
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Figure 3. SCARIlink-predicted gene-linked tiles enrich for causal variants. a. Schematic depicting the
filtering of gene-linked tiles per cell type from SCARIink output of genes from PBMC, pancreas, and
pituitary multiome. These filtered gene-linked tiles are then checked for enrichment of causal variants
from GWAS, eQTLs, and other variant databases. b. Enrichment of 10,164 fine-mapped GWAS variants
from UK Biobank in the gene-linked SCARIink tiles and ArchR peak2gene peaks as a function of the
number of gene-linked tiles/peaks for PIP threshold of 0.2 (left). Comparison of enrichment at different
PIP thresholds (right). The bars depicting 95% confidence interval were obtained by bootstrapping traits.
c. Enrichment of 426 fine-mapped eQTLs from whole blood GTEx in PBMC multiome (left). Comparison
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of enrichment in the matched GTEX tissue as the multiome datasets (right). The humber of fine-mapped
variants per tissue is mentioned in brackets. d. Comparison of enrichment of eQTLs from GTEX tissues
(pituitary, pancreas, and whole blood) in PBMC multiome. e. Enrichment of 261 primary independent
eQTLs from pancreas as a function of number of gene-linked tiles/peaks (left). Enrichment of primary
eQTLs in matched tissues in PBMC, pancreas, and pituitary (right). The bars depicting 95% confidence
interval in c-e were obtained by bootstrapping genes. f. Enrichment of 17,164 variants from RegulomeDB
of rank=1a in PBMC multiome.
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Figure 4. SCARIlink-derived gene-linked tiles can reveal -cell-type-specific disease-gene

associations across tissues. a. SCARIink output of CCR7 in PBMC. The red dot denotes a variant
associated with asthma. The same position is highlighted in red under the cell types for which SCARIink
predicted the variant-containing tile to be important. b. SCARIink output of BCL2 in pituitary. The red dot
at the bottom denotes variant associated with IGF1 and T2D_BMI. The tile containing the variant is
highlighted in red for cell types for which SCARIink predicted the tile to be important.
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Figure 5. SCARIink provides a robust implementation of chromatin potential. a-c. SCARIink-
computed chromatin potential applied to BMMC®, mouse skin®, and pituitary gland®* recapitulates known
differentiation trajectory in each system. d. Chromatin potential does not capture the known differentiation
trajectory of developing human cortex’ when using all genes with correlated predicted and observed gene
expression. For the genes used in (d), e-g show the mean predicted expression, the mean observed
expression, and the difference between the mean predicted and observed expression respectively. h. The
known trajectory of the developing human cortex is better represented when only using a subset of the
genes. For the genes used in (h), i-k show the mean predicted expression, the mean observed
expression, and the difference between the mean predicted and observed expression respectively.
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