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Abstract 
 
We present a novel gene-level regulatory model called SCARlink that predicts single-cell gene 
expression from single-cell chromatin accessibility within and flanking (+/- 250kb) the genic loci 
by training on multiome (scRNA-seq and scATAC-seq co-assay) sequencing data. The 
approach uses regularized Poisson regression on tile-level accessibility data to jointly model all 
regulatory effects at a gene locus, avoiding the limitations of pairwise gene-peak correlations 
and dependence on a peak atlas. SCARlink significantly outperformed existing gene scoring 
methods for imputing gene expression from chromatin accessibility across across high-
coverage multiome data sets while giving comparable to improved performance on low-
coverage data sets. Shapley value analysis on trained models identified cell-type-specific gene 
enhancers that are validated by promoter capture Hi-C and are 8x-35x enriched in fine-mapped 
eQTLs and 22x-35x enriched in fine-mapped GWAS variants across 83 UK Biobank traits. We 
further show that SCARlink-predicted and observed gene expression vectors provide a robust 
way to compute a chromatin potential vector field to enable developmental trajectory analysis.  
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Main 
 
Multiome single-cell sequencing of chromatin accessibility and gene expression – where both 
scATAC-seq and scRNA-seq are read out from the same individual cells – has paved the way 
for novel computational methods that attempt to link enhancers to genes1,2, infer gene 
regulatory networks3-5, and resolve developmental trajectories based on the concept of 
chromatin potential, which proposes that accessibility at a locus precedes gene expression 
during differentiation1. At the most elementary level, several approaches exploit joint 
measurements of ATAC and RNA in single cells to identify pairwise correlations between 
individual accessible regions – defined as peaks or domains of open chromatin (DORCs) – and 
gene expression levels for enhancer-gene linking1,6. For example, a recent approach uses 
Poisson regression to test for pairwise correlation between peak accessibility and gene 
expression while also modeling batch or cell-specific covariates, with the goal of linking non-
coding genetic variants that reside in such peaks to target genes2. Meanwhile, standard 
scATAC-seq analysis methods use simple scoring schemes to transform the data into a scRNA-
like readout, based on aggregating chromatin accessibility near a gene promoter or across a 
genic locus to obtain an imputed gene expression value, to enable joint embedding of 
independently collected scATAC-seq and scRNA-seq data or transfer of clusters between the 
two7. 
 
Motivated by these ideas, we propose SCARlink (Single-cell ATAC+RNA linking), a new gene-
level predictive model for single-cell multiome data that predicts the expression of a gene from 
the accessibility of its genomic context in single cells (Fig. 1a). Unlike pairwise correlation 
approaches, our model captures the fact that elements both within the genic locus (e.g. intronic 
enhancers) and distal elements in flanking regions (+/- 250kb by default) jointly regulate 
expression of the gene. We train the model using regularized Poisson regression on tile-level 
data to facilitate integration with standard preprocessing pipelines like ArchR6 and to avoid 
summarizing data as a peak atlas, which may miss events in rarer cell types. The regression 
coefficients across the genomic context can then be interpreted as identifying locations of 
functional enhancers across the single-cell data set. Moreover, we can use Shapley values, a 
well-known feature attribution method, to identify cell-type-specific enhancers, i.e. genomic tiles 
that are important for predicting expression across cells from a given cluster or annotation. 
Below, we show that our model outperforms existing methods for predicting single-cell gene 
expression from accessibility and correctly identifies cell-type-specific enhancers as validated by 
promoter-capture Hi-C. We further show that the regulatory regions determined using Shapley 
values from our modeling enrich for fine-mapped non-coding GWAS and eQTL variants. Finally, 
we demonstrate that using gene-level models for a set of developmentally regulated genes yield 
a robust implementation of the chromatin potential trajectory inference method.  
 
SCARlink uses a regularized Poisson regression model on single cells to predict gene 
expression from chromatin accessibility. The chromatin accessibility is used as input in the form 
of 500bp tiles spanning a region from 250kb upstream to 250kb downstream of the gene body 
by default (Fig 1a). This genomic context is large enough to capture distal intergenic as well as 
intronic enhancers for most genes but can be extended or shortened as preferred. Since 
SCARlink is a gene-level model and genes are of variable length, the number of input tiles is 
different for every gene. We also constrain the model to learn positive regulatory elements by 
forcing the regression coefficients to be non-negative. While this is a limitation for identifying 
repressors, we found the regression coefficients to be more interpretable when we focused on 
enhancers.  
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We applied SCARlink to multiomic data sets of peripheral blood mononuclear cells (PBMC) from 
10x Genomics, bone marrow mononuclear cells (BMMC)8, mouse skin1, developing human 
cortex9, pancreas10,11, and pituitary gland12. We ran the model on a subset of the top 5,000 most 
variable genes for each data set, filtered based on the sparsity of the gene expression vector 
(Methods). After filtering, we obtained 1,758 genes for PBMC, 786 genes for BMMC, 1,040 
genes for mouse skin, 1,202 genes for developing human cortex, 792 genes for pancreas, and 
1,222 genes for pituitary (Supplementary Table 1). For each gene-level model, we used 
Spearman correlation to compare the predicted gene expression to observed gene expression 
on held-out cells. We compared SCARlink against other available methods to predict single-cell 
gene expression from chromatin accessibility. One such method is the ArchR gene score, which 
aggregates accessibility across the gene body and flanking regions using an exponentially 
decaying function to downweight accessibility farther away from the gene. SCARlink 
significantly outperformed the ArchR gene score across all high-coverage data sets based on 
correlation with ground truth on held-out cells (one-sided signed-rank test over genes, p < 5.1e-
96 on PBMC, p < 3.3e-90 on BMMC, and p < 1.3e-58 on developing human cortex). We also 
found SCARlink produced significantly higher correlations for a large fraction of individual genes 
in higher coverage data sets (44.4% of genes in PBMC, 56.8% of genes in BMMC, and 22.6% 
of genes in the developing cortex, at FDR < 0.05) as assessed by pairwise significance of 
correlation (Methods) (Fig. 1b-d). For lower coverage data sets, SCARlink performed 
comparably to the ArchR gene score on mouse skin multiome and pituitary (one-sided signed-
rank test not significant in either direction) while outperforming it on pancreas (p < 1.8e-18, one-
sided signed-rank test), albeit with fewer genes showing significantly better correlation 
(Supplementary Fig. 1a-c, Supplementary Table 1). In the human cortex multiome data, 
SCARlink outperformed another method of gene score prediction called ChrAccR that 
aggregates the accessibility in peaks near the TSS (p < 1.3e-93, one-sided signed-rank test; 
Supplementary Fig. 1d). Domain of open chromatin (DORC) scores are computed by 
aggregating accessibility in peaks lying within 50kb and 500kb of the TSS that individually 
correlate with gene expression1. We found that our model yields predictions that are more 
correlated with expression than DORC scores in mouse skin (p < 8.9e-61, signed-rank test; 
significantly better performance on 36.6% of genes) (Fig. 1e), potentially because SCARlink is 
modeling the impact of chromatin accessibility across all tiles at once.  
 
As an example to study the linkage between chromatin accessibility and gene expression, we 
used SCARlink to model regulation of ZEB2 in the PBMC data set (Fig. 1f). The learned 
regression coefficients across all the tiles (Fig. 1f, bottom) describe the regulatory importance of 
chromatin accessibility over the whole genomic context for ZEB2. Note that while SCARlink 
does not use cell type or cluster annotations as input, knowledge of clusters can be used to 
generate pseudobulk visualizations and thus interpret the regression coefficients. We also 
analyzed Lef1 from mouse skin multiomic SHARE-seq data and found distal regions where high 
regression coefficients indicate that accessibility is correlated with transcription but which are 
not annotated as DORCs (near chr3:130,900,000; Fig. 1g). This highlights the advantage of 
SCARlink in using accessibility across all tiles for prediction of gene expression. 
 
The regression coefficients generated using SCARlink indicate the overall importance of the 
accessibility in each tile for predicting gene expression across the data set. To quantify the 
contribution of each tile in the window for every cell type, we computed standardized average 
Shapley values per cell type on training cells (see Methods for computation of approximate 
Shapley scores under the SCARlink model). This allowed us to identify tiles as putative 
regulatory regions for the modeled gene in a particular cell type. We observed that predicted 
regulatory elements are most enriched within or in close proximity to the gene body (~25kb) and 
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decrease in prevalence in distal regions (Supplementary Fig. 1e). Because active enhancers 
are known to physically interact with promoters to enable transcription13, we hypothesized that 
SCARlink-predicted regulatory regions would be enriched for 3D interactions with the promoter 
of the modeled gene. Promoter capture Hi-C (PCHi-C) is a chromosome conformation capture 
assay that identifies promoter-interacting genomic regions using a genome-wide promoter bait 
library. We therefore sought to validate SCARlink-predicted regulatory regions across a subset 
of PBMC cell types using available hematopoietic PCHi-C14. We identified PCHi-C interactions 
in relevant cell types using a generalized additive model (Methods) and compared them to 
SCARlink-identified regions in T cell subpopulations, monocytes, and B cells in the PBMC 
multiomic data. As one example, we compared our Shapley values to PCHi-C interactions for 
the gene HLA-DQB1 (Fig. 2a). We found that PCHi-C interactions in distal tiles display higher 
Shapley values than non-interacting tiles, particularly for B cells, a cell type in which HLA-DQB1 
is highly expressed (Fig. 2a). We then compared the Shapley values of tiles with and without 
PCHi-C interactions for highly expressed genes in each cell type (Methods) and confirmed that 
Shapley values for interacting tiles are significantly higher than for non-interacting tiles (Fig. 2b).  
 
Next we assessed if the enhancer tiles predicted by SCARlink can be used to prioritize genetic 
variants causally associated with gene regulation and disease etiology. To this end, we first 
filtered a set of gene-linked tiles for each gene and cell type based on the significance of an 
approximate Shapley score (Fig 3a, Methods). We then performed an enrichment analysis of 
the resulting set of gene-linked tiles with respect to statistically fine-mapped eQTLs (PIP > 0.5) 
for the corresponding genes in the closest matched GTEx tissues15, and with respect to 10,164 
statistically fine-mapped GWAS variants (PIP > 0.2) across 83 UK Biobank traits16 (average 
N=334,803) (Supplementary Table 3) in PBMC, pancreas, and pituitary gland (Methods). 
SCARlink gene-linked tiles in the three multiome datasets show 22x-35x enrichment of fine-
mapped GWAS variants in the top 50,000 predicted gene-linked tiles (Supplementary Table 4) 
and outperformed a standard pairwise peak-gene linking implemented by ArchR. The 
enrichment increases with higher PIP thresholds (Fig. 3b). Moreover, the enrichment of the 
GWAS variants is individually higher for 64% of the 83 traits in SCARlink gene-linked tiles 
(Supplementary Fig. 2a). For the fine-mapped eQTL traits from matched GTEx tissues, we 
observed 15x-59x enrichment in PBMC for the first 15,000 gene-linked tiles (Fig. 3c, left) and 8x 
enrichment across predicted gene-linked tiles at FDR < 0.01 (Fig. 3c, right). We also observed 
35x enrichment in pancreas multiome. Both PBMC and pancreas multiome gene-linked tiles 
have significantly higher enrichment than the enrichment using ArchR gene-linked peaks (Fig. 
3c). To assess tissue-specific eQTL enrichment, we calculated the enrichment in PBMC and 
pituitary multiome of eQTLs from non-matching tissues from the GTEx database. We observed 
lower enrichment of eQTLs from other GTEx tissues (Fig. 3d and Supplementary Fig. 2b), 
suggesting that SCARlink is able to identify variants in regulatory regions that are tissue-specific 
and cell-type-specific.  
 
We then assessed the enrichment of SCARlink gene-linked tiles in conditionally independent 
eQTL signals from GTEx. SCARlink showed 8x-21x enrichment of primary eQTLs (defined by 
the eQTL with the most significant association for the gene) in pancreas for the top 15,000 
predicted gene-linked tiles and significantly higher enrichment in PBMC compared to ArchR 
peaks (Fig. 3e). We additionally performed enrichment analysis of SCARlink gene-linked tiles 
with different categories of variants from RegulomeDB17,18. SCARlink showed higher enrichment 
for the top 25,000 gene-linked tiles in PBMC over ArchR peak-gene links for 17,164 
RegulomeDB variants with a rank of 1a, corresponding to the most stringent cutoff based on 
motif accessibility at eQTL/caQTLs (Fig. 3f). SCARlink tiles also show higher enrichment for the 
top 10,000 gene-linked tiles in pituitary and top 5,000 tiles in pancreas (Supplementary Fig. 
2d-e, Supplementary Table 5).  
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We also examined variants identified by statistical fine-mapping of eQTL and GWAS signals for 
which SCARlink provides evidence that the variant-containing tile is linked to the gene in 
specific cell types. This is to explore whether SCARlink can be used to identify putatively causal 
cell types for the variant action. One such variant, rs112401631 (chr17:40608272:T:A), is a fine-
mapped variant for asthma (PIP = 0.27) and is located in a tile that is significantly linked to the 
gene CCR7 by SCARlink in various T cell subtypes (CD8 effector, CD4 memory, CD8 naïve, 
and CD4 naïve) (Fig. 4a). The CCR7 gene is well known for its role in the homing of T cell 
populations to lymphoid organs19,20, and CCR7+ memory CD4+ T cells have previously been 
associated with severity of asthma21,22. A second example is the fine-mapped variant 
rs12454712 (chr18:63178651:T:C) for insulin-like growth factor 1 (IGF1) and type 2 diabetes 
(adjusted by BMI) and lies in an intronic enhancer of BCL223. IGF-1 is known to prevent 
apoptosis through the activity of BCL2, which encodes an anti-apoptotic transcription factor24. 
Furthermore, somatotropes secrete growth hormone that affects the production of IGF-1, and 
IGF-1 in turn negatively regulates growth hormone production25. Interestingly, we found this 
variant to be in a regulatory region of pituitary stem cells and somatotropes (Fig. 4b), possibly 
suggesting a role in pituitary stem cell differentiation. Additionally, both high and low IGF-1 
levels have been associated with insulin resistance and a higher risk of type 2 diabetes26. While 
we found this variant within the regulatory region of cells from the pituitary gland, it is not 
accessible in the PBMC multiome (Supplementary Fig. 3), and SCARlink appropriately assigns 
the tile low significance in these cell types.  
 
We next asked whether SCARlink-identified regulatory regions become accessible before 
transcription of the modeled genes in developmental settings and thus can be used to 
determine the developmental trajectory through chromatin potential1,9. Analogous to the original 
definition of chromatin potential-based correlation between DORCs and genes, we computed a 
smoothed SCARlink-predicted gene expression vector for each given ‘source’ cell, identified a 
set of ‘target’ cells whose smoothed observed gene expression vectors are most correlated with 
the predicted source cell expression vector, and determined the corresponding chromatin 
potential vector from the source cell towards the average position of the target cells, and 
visualized in an FDL or UMAP embedding (Methods). We applied SCARlink in this fashion to 
derive chromatin potential vector fields for mouse skin, BMMC, pituitary gland, and developing 
human cortex. When computing chromatin potential, by default we chose all genes for which 
SCARlink-predicted gene expression was positively correlated with observed gene expression. 
This filtered out less than 5% of genes for mouse skin, BMMC, and pituitary, and 15% of genes 
from developing human cortex.  
 
We found that the SCARlink chromatin potential vector fields recapitulate known differentiation 
trajectories in mouse skin, BMMC, and pituitary gland (Fig. 5a-c). However, in developing 
human cortex cells, chromatin potential failed to identify that the radial glia cell population is the 
root cell type9 (Fig. 5d). Upon comparing the difference between predicted and observed gene 
expression averaged over all genes, we found that this difference is the highest in the middle of 
the known developmental trajectory (nIPC/GluN1) and decreases afterwards (Fig. 5d-g). 
Examining further, we identified two clusters of genes based on hierarchical clustering of single-
cell expression patterns (Supplementary Fig. 4a, Supplementary Table 6), with one cluster 
enriched for gene ontology terms related to glial cell differentiation (Supplementary Fig. 4b-c). 
Performing SCARlink chromatin potential analysis on this subset of 470 genes recovered the 
correct developmental trajectory (Fig. 5h). For this subset of genes, we also found that the 
difference between average predicted and observed gene expression increases over the course 
of the trajectory, consistent with the opening of chromatin at these loci preceding target gene 
expression (Fig. 5i-k). While our analysis demonstrates the utility of chromatin potential as a 
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strategy to identify a differentiation trajectory in multiome data sets, we also caution that prior 
selection of a subset of genes may be required to obtain results consistent with known biology.  
 
We have shown that SCARlink provides an effective and robust method for identifying cell-type-
specific enhancers of genes without prior computation of a peak set. SCARlink also efficiently 
resolves the cell type specificity of tissue-relevant eQTLs and GWAS traits using Shapley value 
analysis and computes chromatin potential vector fields tracking development or differentiation. 
We note that SCARlink is designed to be a simple gene-level model, namely a (regularized) 
generalized linear model with a log link function and constrained to have non-negative 
regression coefficients. This simplicity enables fast training and model selection as well as very 
efficient computation of approximate Shapley values to identify significant tiles in a cell-type-
specific manner. Additionally, by modeling additive positive effects, we obtain a highly 
interpretable model where significant tiles from Shapley analysis are validated by chromosome 
conformation capture data and enrich for fine-mapped eQTLs and GWAS variants. We also 
expect that SCARlink’s cell-type-specific enhancers and enhancer-gene links could be 
incorporated into functionally driven TWAS methods for predicting gene expression from 
genotype27-30. Despite the effectiveness of SCARlink’s generalized linear modeling, we can 
anticipate settings where more complex gene-level models might be suitable; for example, one 
could include interaction terms between tiles in the regression model or even employ non-linear 
neural network architectures for the same single-cell gene expression prediction task. Our 
implementation of SCARlink in TensorFlow should facilitate implementation of and comparison 
to these more complex models. Finally, there has been extensive work on DNA sequence 
models for bulk epigenomic and scATAC-seq data31,32, including in the context of prediction of 
bulk gene expression33,34. In future work, we plan to integrate DNA sequence information into 
SCARlink, sharing the sequence model associated with each cell across gene models, with the 
goal of modeling the regulatory grammar in enhancers as well as their regulatory impact on 
target gene expression. 
 
 
Methods 
 
Data preprocessing 
 
Single-cell multiomic data was processed using Seurat35 (scRNA-seq) and ArchR6 (scATAC-
seq). We performed quality control separately for scRNA-seq and scATAC-seq. We filtered out 
cells with mitochondrial reads > 20% for scRNA-seq with unannotated cell types (10x PBMC 
and pancreas). For scATAC-seq, we filtered for cells with at least 1,000 fragments and 
performed doublet detection on unannotated datasets. We performed CPM normalization of the 
scRNA-seq data. Then we ordered the cells in the same manner for both scRNA-seq and 
scATAC-seq. We selected the top 5,000 highly variable genes, using Seurat, and used this 
gene set as input to SCARlink. 
 
Cell type annotation 
 
Cell type annotation was provided by the original studies for BMMC, developing human cortex, 
mouse skin, and pituitary gland. We performed cell type annotation of PBMC and pancreas 
using marker genes35-37. 
 
Gene regression model 
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SCARlink uses regularized Poisson regression to predict single-cell gene expression from 
single-cell chromatin accessibility. 
  
We used ArchR to split the genome into 500bp tiles and computed tile-level scATAC-seq 
feature accessibility. We selected tiles that span 250kb up/downstream of and across the gene 
body. The accessibility within the tiles was normalized by the ReadsInTSS parameter, which is 
also the default normalization in ArchR, to control for sequencing depth and sample quality6. 
Gene expression values were normalized by counts per million (CPM). For each gene, the 
chromatin accessibility input to SCARlink was ReadsInTSS-normalized then min-max scaled on 
a per-tile basis across all cells. We ran the model separately on the 5,000 most variable genes 
determined using Seurat. Additionally, we filtered out genes for which the expression was too 
sparse with a threshold of 0.9, or 90% zeros. 
 
We used L2 regularization with Poisson regression; i.e. for every gene, we optimized the 
following loss function: 
 

                         �
�

∑ ����� �  �	 
 �� log���� � �	� � �||�||��
�

���   
 
Here � corresponds to the number of cells, � corresponds to the min-max scaled accessibility 
matrix, Y corresponds to the gene expression vector, � is the learned regression coefficient 
vector, and � is the regularization parameter. We left out one-fifth of the data for testing. The 
regularization parameter was selected using 5-fold cross-validation on the remaining four-fifths 
of the cells. Spearman correlation was computed on the held-out test-cells. We used 
TensorFlow in Python to develop the model and the Adam optimizer for training. We 
constrained the regression coefficients to be non-negative, thereby learning only positive 
regulators for genes. 
 
Significance test for model predictions on individual genes 
 
To compare overall performance of SCARlink predictions on test cells with other methods based 
on Spearman correlation with ground truth, we used a Wilcoxon signed-rank test over genes.  
 
We also estimated whether the Spearman correlations of SCARlink predictions are significantly 
different from the correlations using other methods for individual genes. The correlations from 
the two methods are not independent because they are calculated on the same observed gene 
expression values. We calculated the following test statistic for each gene and performed a t-
test to estimate significance38: 
 

� �  �	�� 
 	���� �
 
 1��1 � 	���2 �
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 |�| �  1 
  �	��

� � 	��
� �  	��

� � � 2	��	��	�� 
 ρ12:  Spearman correlation between SCARlink prediction and observed gene expression 
 ρ13: Spearman correlation between ArchR gene score/DORC score prediction and 
observed gene expression 
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 ρ23: Spearman correlation between SCARlink prediction and ArchR gene score/DORC 
score prediction 
 n: number of cells in held-out test set 
 
We performed FDR-correction of the p-values using the Benjamini-Hochberg method39. The 
scatter plots in Fig. 1b-e and Supplementary Fig. 1a-c are colored using these FDR-corrected 
p-values. 
 

  
Shapley scores and tile significance 
 
After training the model, we used the SHAP Python package40 to compute Shapley values for a 
linear model, which closely approximate the Shapley values of our Poisson regression model: 

   shap� � W� �X�,� 
 mean"X�,�#� 

 
Here shap� corresponds to the Shapley value of a particular tile �.  
 
We computed these approximate Shapley values in a cell-type-specific manner. For each cell 
type, we iteratively sampled 50 training cells from the cell type to form a pseudobulk sample and 
computed Shapley values for each tile of the pseudobulk profile. We iterated 500 times and then 
averaged the Shapley values for each tile over iterations. This gave an averaged Shapley score 
for each tile and cell type. Finally, we standardized the scores using z-score transformation. We 
scaled features this way separately for each gene model in order to identify gene-linked tiles. 
Note that we estimate Shapley values only for cell types having at least 100 cells. 
 
PCHi-C analysis 
 
We used publicly available PCHi-C data for hematopoietic cells14. We transformed the 
coordinates from hg19 to hg38 with liftOver41. Promoter Capture Hi-C loops at each promoter 
bait were identified by fitting a negative binomial generalized additive model42 to the observed 
counts as a function of GC content, mappability, and length of the restriction fragments 
alongside a smooth distance function parametrized using a reduced rank thin plate spline basis 
using the GAMLSS R package. If replicates were present, a replicate covariate was added to 
the model to control for library size. After this base model was fit, interactions were flagged by 
using the fitted distributions to compute a p-value. This overall strategy is akin to the GLM-
based strategy of HiC-DC+ to identify significant interactions43. After p-values were computed 
for each restriction fragment in the vicinity of a promoter bait, p-values across replicates were 
pooled using Fisher’s method and corrected using Benjamini-Hochberg for each promoter bait. 
To further improve our ability to detect interactions, we employed locally adaptive weighting and 
screening to smooth the p-values and simultaneously control for the false discovery rate44.  
 

For the Shapley value comparison, we used the AverageExpression function from Seurat35 to 
calculate average scaled gene expression and selected highly expressed genes per cell type. 
For every cell type, we restricted to genes with an average scaled gene expression of more than 
0. Then we chose the top 50 genes if there were more than 50 highly expressed genes per cell 
type. Next we extracted all tiles that contain significant PCHi-C interactions for CD4 naïve T, 
CD8 naïve T, CD8 memory T, and B cells for these genes. If there were multiple tiles spanning 
one PCHi-C interaction, we selected the maximum Shapley value across the tiles. The 
background Shapley values are from tiles that do not contain any significant PCHi-C interactions 
for the same genes. 
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Tile significance for variant analysis 
 
We found the scaled Shapley scores were not comparable across gene models. Therefore, we 
used an additional metric to order the gene-linked tiles when computing enrichment-recall 
curves; specifically, we estimated the significance of difference in prediction of gene expression 
with and without a specific tile on held-out test cells using a paired Wilcoxon (signed-rank) test. 
We performed this significance test in a cell-type-specific manner across all genes in each 
multiome data set. The resulting p-values were then FDR-corrected using the Benjamini-
Hochberg method39. 
 
ArchR peak2gene 
 
We used ArchR6 to first perform peak calling using MACS245 grouped by the cell type 
annotations. We then used the ArchR pipeline to link peaks to genes, which performs pairwise 
correlation of accessibility and gene expression on aggregated meta-cells. We used the same 
genomic window as SCARlink to predict the peak-gene links.  
 
GWAS enrichment analysis 
 
We used fine-mapped GWAS variants from UK Biobank and first filtered out variants that lie 
within coding regions or are splicing eQTLs. UK Biobank originally has 94 traits. We retained the 
top 90% of the traits based on the number of fine-mapped variants lying within 250kb of all 
genes SCARlink was trained on. This resulted in 83 traits. We considered a variant to be a 
causal variant if it is associated with at least one trait with PIP > 0.2. This resulted in 10,164 
variants that are present in tiles spanning 250kb upstream/downstream of all the genes from 
PBMC, pancreas, and pituitary. For each trait, we calculated precision as the ratio of the 
number of causal variants in predicted gene-linked tiles/peaks to the number of common 
variants in predicted gene-linked tiles/peaks. Then we calculated enrichment as previously 
described2, by dividing precision by the probability of encountering a causal variant of the given 
trait across all the tiles. We finally computed the average enrichment across all the traits:  
  
  ���������������

	
#�����	 �������� 
� ������ �� ���� 	����� ��	��/�����

#�
��
� �������� �� ���� 	����� ��	��/�����
 

  
  ���
�
���
�������� ������
 �� 
���
�� 	  

#�����	 �������� 
� ������  ���
�� �		 ��	�� 
� ����	��� �����

#�
��
� �������� ���
�� �		 ��	�� 
� ����	��� �����
 

 

  $
%&'()$
���	
�

�  ���

�
��������

����	�
�
���
	��	� �	�
	�� �� ��	
���
 

 
  $
%&'()$
� �  *+$%*,$�$
%&'()$
���	
� 


� 
 
In the case of SCARlink gene-linked tiles, we restricted to genes having SCARlink-predicted 
gene expression correlation > 0.1 and to gene-linked tiles with p-value < 0.01. For ArchR gene-
linked peaks, we restricted to peaks having correlation > 0.1 and FDR < 0.01. 
 
eQTL enrichment analysis 
 
We used fine-mapped eQTLs from GTEx for whole blood, pancreas, and pituitary for computing 
enrichment in gene-linked tiles/peaks. We defined causal variants as having PIP > 0.5. Then 
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separately for each gene and tissue, we computed precision, enrichment, and recall. We further 
computed the average enrichment and recall over genes per multiome data set:  
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Additionally, we performed similar eQTL enrichment analysis on GTEx independent eQTLs for 
whole blood, pancreas, and pituitary. The primary independent eQTL is the most significantly 
associated variant46 and has a rank of 1. An eQTL with any other rank is an independent eQTL 
less important than the eQTLs with better ranks. There are at most 13 independent eQTLs, and 
the whole blood sample has more non-primary independent eQTLs than other tissues. We fixed 
a correlation cutoff of 0.1 for both SCARlink genes and ArchR peak2gene links and FDR < 0.01. 
 
RegulomeDB enrichment analysis  
 
The variants in RegulomeDB17,18 are assigned ranks based on their associated regulatory 
features. Each variant is also assigned a probability score based on a random forest model, 
where probability scores are correlated with the ranks. We chose the most stringent set of 
variants with a rank of 1a, corresponding to variants associated with eQTL/caQTL and TF 
binding with matched motif, footprint, and accessible chromatin. We further restricted to variants 
with a probability score > 0.9. We considered these variants to be the putative regulatory 
variants.  
 
We computed enrichment as follows: 
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Chromatin potential using SCARlink 
 
We ran chromatin potential on smoothed SCARlink-predicted and observed gene expression 
values. Smoothing was performed over a k-nearest neighbor (kNN) graph (k=50) built using a 
lower dimensional representation of the scATAC-seq data based on latent sematic indexing 
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(LSI) from ArchR. We retained the genes for which the predicted and observed gene expression 
are positively correlated. We then scaled the smoothed predicted and observed gene 
expression using min-max scaling. Following this, as in the published chromatin potential 
approach1, for each cell i in the predicted space, we identified the nearest neighbors (k=10) in 
the observed space:  
     4���


� 5���6����

� 

 
Here, 4���


 is the scaled and smoothed observed expression matrix of the 10 cells with the 
highest correlation with the scaled and smoothed predicted expression vector of cell i, 6����


. 

We then plotted chromatin potential arrows on the force directed layout (FDL) or UMAP from 
each cell i, to the average position of the cells corresponding to 4���


. These arrows are further 
smoothed over a grid layout on the FDL/UMAP embedding. 
 
We used FDL visualizations for all data sets except mouse skin, where we used the previously 
published UMAP 1. Additionally, for the mouse skin data, we ran the analysis on a subset of cell 
types to compare to reported results1. 
 
By default, we do not filter out any genes except the ones with negative correlation between 
predicted and observed expression. We found that by using all genes, we could not always 
obtain the known differentiation trajectory, as in the case of developing human cortex. In this 
data set, we performed hierarchical clustering of genes based on cosine distance of observed 
gene expression vectors across all cell types, identified two clusters, and repeated chromatin 
potential analysis with genes in one of the clusters. 
 
Data availability 
 
We downloaded the PBMC multiome from 10X Genomics. BMMC data was part of the NeurIPS 
2021 open problem, and the data set was downloaded from GEO (GSE194122). We used 
BMMC samples labeled as site1_donor1, site1_donor2, site1_donor3, site2_donor1, 
site2_donor4, site2_donor5, site3_donor10, site3_donor6, site3_donor7, and site4_donor9. 
These samples showed the least batch effect. Mouse skin SHARE-seq data and DORC 
annotations were downloaded from GEO (GSE104203). The UMAP used for mouse skin was 
shared by the authors1. Pituitary multiome data was downloaded from GEO (GSE178454). The 
developing human cortex scRNA-seq was downloaded from GEO (GSE162170) and the 
corresponding multiomic scATAC-seq was downloaded from links listed in 
https://github.com/GreenleafLab/brainchromatin/blob/main/links.txt. We used samples labeled 
hft_ctx_w21_dc2r2_r1 and hft_ctx_w21_dc2r2_r2 with the least batch effect. We downloaded 
the pancreas multiome data set from the ENCODE portal (multiomic series ENCR316WAS). 
 
We used common variants from the 1000 Genomes Project, phase 347. The fine-mapped eQTLs 
for whole blood, pancreas, and pituitary were downloaded from GTEx v815. The fine-mapping 
was performed using CAVIAR 48. We also downloaded the conditionally independent eQTL from 
GTEx v8. UK Biobank GWAS data with fine-mapping using SuSIE49 and FINEMAP50 was 
downloaded from the Finucane lab (https://www.finucanelab.org/data). 
 
Code availability 
 
SCARlink is available on GitHub at: https://github.com/snehamitra/SCARlink/. 
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Figures 
 

 

Figure 1. SCARlink accurately predicts single-cell gene expression from chromatin accessibility. 
a. The model takes as input single-cell ATAC-seq counts at a genic locus, aggregated over 500bp tiles 
spanning 250kb up/downstream and including the gene body, and uses regularized Poisson regression to 
predict the gene’s single-cell expression; both the scATAC-seq and scRNA-seq readouts are obtained 
from multiomic sequencing. The learned regression coefficients indicate the importance of each tile for 
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predicting gene expression. b-e. Scatterplots showing Spearman correlation of predicted and observed 
gene expression for each gene using SCARlink vs. Spearman correlations using existing methods. 
Comparisons are performed against ArchR gene score predictions (b-d) on 10x PBMC, BMMC8, and 
developing human cortex9; and against DORC gene score predictions (e) on the mouse skin1 data set. f. 
Example model output for ZEB2 from PBMC multiome data, showing regression coefficients at bottom 
and aggregated scATAC and scRNA by cell type. g. Example model output and comparison with 
annotated DORCs (shown using blue arcs below the coefficient panel) for Lef1 from mouse skin SHARE-
seq data.  
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Figure 2. SCARlink coefficients enrich for promoter-linked chromatin interactions. a. SCARlink 
output of HLA-DQB1 in PBMC multiome. Cell-type-specific standardized approximate Shapley scores (z-
scores) of the tiles are plotted as blue dots under the accessibility panel of every cell type. Arc plots of 
significant PCHi-C interactions14 for HLA-DQB1 of CD4 naïve T, CD8 naïve T, CD14+ monocytes, and B 
cells are shown below the model output. b. Boxplots comparing feature scores of tiles with or without 
PCHi-C interactions for highly expressed genes per cell type. 

 
 

 

 

 

Figure 3. SCARlink-predicted gene-linked tiles enrich for causal variants. a. Schematic depicting the 
filtering of gene-linked tiles per cell type from SCARlink output of genes from PBMC, pancreas, and 
pituitary multiome. These filtered gene-linked tiles are then checked for enrichment of causal variants 
from GWAS, eQTLs, and other variant databases. b. Enrichment of 10,164 fine-mapped GWAS variants 
from UK Biobank in the gene-linked SCARlink tiles and ArchR peak2gene peaks as a function of the 
number of gene-linked tiles/peaks for PIP threshold of 0.2 (left). Comparison of enrichment at different 
PIP thresholds (right). The bars depicting 95% confidence interval were obtained by bootstrapping traits. 
c. Enrichment of 426 fine-mapped eQTLs from whole blood GTEx in PBMC multiome (left). Comparison 
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of enrichment in the matched GTEx tissue as the multiome datasets (right). The number of fine-mapped 
variants per tissue is mentioned in brackets. d. Comparison of enrichment of eQTLs from GTEx tissues 
(pituitary, pancreas, and whole blood) in PBMC multiome. e. Enrichment of 261 primary independent 
eQTLs from pancreas as a function of number of gene-linked tiles/peaks (left). Enrichment of primary 
eQTLs in matched tissues in PBMC, pancreas, and pituitary (right). The bars depicting 95% confidence 
interval in c-e were obtained by bootstrapping genes. f. Enrichment of 17,164 variants from RegulomeDB 
of rank=1a in PBMC multiome.  

 

 

 

Figure 4: SCARlink-derived gene-linked tiles can reveal cell-type-specific disease-gene 
associations across tissues. a. SCARlink output of CCR7 in PBMC. The red dot denotes a variant 
associated with asthma. The same position is highlighted in red under the cell types for which SCARlink 
predicted the variant-containing tile to be important. b. SCARlink output of BCL2 in pituitary. The red dot 
at the bottom denotes variant associated with IGF1 and T2D_BMI. The tile containing the variant is 
highlighted in red for cell types for which SCARlink predicted the tile to be important. 
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Figure 5. SCARlink provides a robust implementation of chromatin potential. a-c. SCARlink-
computed chromatin potential applied to BMMC8, mouse skin1, and pituitary gland51 recapitulates known 
differentiation trajectory in each system. d. Chromatin potential does not capture the known differentiation 
trajectory of developing human cortex9 when using all genes with correlated predicted and observed gene 
expression. For the genes used in (d), e-g show the mean predicted expression, the mean observed 
expression, and the difference between the mean predicted and observed expression respectively. h. The 
known trajectory of the developing human cortex is better represented when only using a subset of the 
genes. For the genes used in (h), i-k show the mean predicted expression, the mean observed 
expression, and the difference between the mean predicted and observed expression respectively.  
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