

1 **Single-cell transcriptional landscapes of bovine peri-implantation development**

2
3 Giovanna Nascimento Scatolin ^{1*}, Hao Ming ^{1*}, Yinjuan Wang ², Linkai Zhu ¹, Emilio
4 Gutierrez Castillo ², Kenneth Bondioli ², Zongliang Jiang ^{1#}

5
6 ¹Department of Animal Sciences, Genetics Institute, University of Florida, Gainesville, FL,
7 32610, USA.

8 ² School of Animal Sciences, AgCenter, Louisiana State University, Baton Rouge, LA
9 70803, USA.

10 * These authors contributed equally

11 # To whom correspondence will be addressed: z.jiang1@ufl.edu

12
13
14 **Author contributions:** Z.J designed and supervised research. G.S. performed most of
15 the experiments. H.M. analyzed all genomic data. Y.W. performed single cell suspension.
16 L.Z., E.C. and K.B. helped with embryo collection. G.S., H.M., and Z.J. interpreted data
17 and assembled the results. G.S., H.M., and Z.J. wrote the manuscripts with inputs from all
18 authors.

19
20 **Competing interest statement:** The authors declare no competing or financial interests.

21
22 **Acknowledgements:** We thank Dr. Joel Carter for his assistance with embryo flushing.
23 This work was supported by the NIH Eunice Kennedy Shriver National Institute of Child
24 Health and Human Development (R01HD102533) and USDA National Institute of Food
25 and Agriculture (2019-67016-29863, W4171).

26
27 **Keywords:** single cell RNA-seq, bovine peri-implantation, trophoblast, hypoblast,
28 embryonic disc

30 **Abstract**

31 Supporting healthy pregnancy outcomes requires a comprehensive understanding
32 of the cellular hierarchy and underlying molecular mechanisms during peri-implantation
33 development. Here, we present a single-cell transcriptome-wide view of the bovine peri-
34 implantation embryo development at day 12, 14, 16 and 18, when most of the pregnancy
35 failure occurs in cattle. We defined the development and dynamic progression of cellular
36 composition and gene expression of embryonic disc, hypoblast, and trophoblast lineages
37 during bovine peri-implantation development. Notably, the comprehensive transcriptomic
38 mapping of trophoblast development revealed a previously unrecognized primitive
39 trophoblast cell lineage that is responsible for pregnancy maintenance in bovine prior to
40 the time when binucleate cells emerge. We analyzed novel markers for the cell lineage
41 development during bovine early development. We also identified cell-cell communication
42 signaling underling embryonic and extraembryonic cell interaction to ensure proper early
43 development. Collectively, our work provides foundational information to discover
44 essential biological pathways underpinning bovine peri-implantation development and the
45 molecular causes of the early pregnancy failure during this critical period.

46

47

48 **Significance Statement**

49 Peri-implantation development is essential for successful reproduction in
50 mammalian species, and cattle have a unique process of elongation that proceeds for two
51 weeks prior to implantation and represents a period when many pregnancies fail. Although
52 the bovine embryo elongation has been studied histologically, the essential cellular and
53 molecular factors governing lineage differentiation remain unexplored. This study profiled
54 the transcriptome of single cells in the bovine peri-implantation development throughout
55 day 12, 14, 16, and 18, and identified peri-implantation stage-related features of cell
56 lineages. The candidate regulatory genes, factors, pathways and embryonic and
57 extraembryonic cell interactions were also prioritized to ensure proper embryo elongation
58 in cattle.

59

60 **Introduction**

61 Peri-implantation embryo development of ruminant species such as cattle is poorly
62 understood and not closely paralleled in model organisms, such as the mouse. It is
63 estimated that up to 50% of bovine conceptus loss occurs during the second and third
64 week of pregnancy (1, 2), a period when a viable blastocyst undergoes extensive cellular
65 proliferation and changes from a spherical shape to an elongated, filamentous form in
66 preparation for implantation (3). During this period, three cellular lineages form in the
67 hatched bovine blastocyst, epiblast, hypoblast, and trophectoderm. As seen in all
68 mammalian species, these lineages will give rise to the embryonic disc developing into
69 three germ layers, yolk sac after implantation, and the placenta upon differentiation,
70 respectively. At the molecular level, this critical stage of development has only been
71 characterized in the mouse model (4, 5), and more recently in non-human primates (6),
72 and human embryo extended culture models (7, 8).

73 Peri-implantation development exhibits wide variation between species in relation
74 to the duration of peri-attachment periods, the development and orientation of the
75 extraembryonic tissues, and the implantation strategies (9). In the mouse, implantation
76 occurs soon after blastocyst hatching from the zona pellucida. Within only a few embryonic
77 days it extends from implantation to placentation, where several dramatic and concurrent
78 events occur, making it difficult to study the molecular and cellular changes during this
79 time period in rodents. Studying peri-implantation development in humans is also
80 problematic as embryos embed into maternal tissues after the blastocyst stage, and
81 ethical issues limit the scope of possible research. However, in ruminants, like cattle,
82 implantation of blastocysts is preceded by a period of rapid growth and elongation. This
83 peri-implantation period is prolonged compared to rodents, and is similar to that seen with
84 human embryos. In this regard, the bovine is recognized as a highly informative model for
85 human embryo development (10-13).

86 However, the cell types in the developing peri-implantation embryo and molecular
87 mechanisms governing the embryo elongation in ruminants remain unexplored. To fill this
88 knowledge gap, we collected bovine embryos at day 12, 14, 16, and 18, and established
89 a comprehensive single-cell transcriptomic landscapes of peri-implantation development.
90 Using bioinformatics analyses, we define the development of three major cell lineages
91 (trophoblast, hypoblast, and embryonic disc) and their gene expression dynamics
92 throughout peri-implantation development. Together with a comparative analysis of bovine
93 peri-implantation trophoblasts and mature day 195 placental trophoblasts (14), we define

94 and present a previously undefined trophoblast lineage. We also analyze cell-cell
95 interaction signaling underling embryonic and extraembryonic cells interaction to ensure
96 proper early development. This foundational information is useful to advance future efforts
97 to understanding peri-implantation biology and causes of early pregnancy failure in the
98 cattle.

99

100

101 **Results**

102 **Construction of a single-cell transcriptomic census during bovine peri-implantation 103 embryo development**

104 To identify cell types and trajectories that lay the foundation for understanding
105 bovine peri-implantation development, we performed single cell RNA sequencing (scRNA-
106 seq) using the 10X Genomics Chromium platform (**Figure 1A**). We sequenced RNA of
107 individual cells from bovine peri-implantation embryos at day 12 (pooled ten embryos to
108 increase the cell populations), 14, 16, and 18 with biological replicates (**Supplementary
109 figure 1A-D**). A total of 139,174 single cells from all peri-implantation stages were
110 analyzed. Joint uniform manifold and projection (UMAPs) and clustering analysis revealed
111 10 distinct cell clusters for all cells from each of individual developmental stages (**Figure
112 1B-E, supplementary figure 1E-H**). To annotate the identities of cell clusters, we
113 analyzed the database of known cell lineage markers in bovine (15-19), humans and
114 mouse (20-22) and selected the markers that were detected in our single cell
115 transcriptomes of bovine peri-implantation embryos (**Supplementary Dataset 1**). We
116 identified *VIM*, *NANOG*, *MLY4*, *SLIT2*, *ACTA2*, *COL1A2*, and *BMP4* as marker genes of
117 embryonic disc (ED), *SOX17*, *GATA4*, *FST*, *FN1*, *CDH2* and *CLU* as marker genes of
118 hypoblast (HB), and *FURIN*, *IFNT*, *SFN*, *DAB2*, *PAG2* and *PTGS2* as trophoblast cell
119 markers (**Figure 1G**). Using these markers, we captured three apparent major cell types
120 in all four developmental stages, with 609 cells as ED, 21,283 cells as HB, and 117,282
121 cells as TB cell lineages (**Figure 1B-E**). Clustering analysis further revealed three
122 subtypes of hypoblast cells and six subtypes of trophoblast cells (**Figure 1B-F**). As
123 expected, the majority of cells analyzed were trophoblast cells due to the dramatic
124 trophectoderm (TE) elongation during bovine peri-implantation development. We found a
125 clearly developmental progression of cell lineage transition as evidenced by alternations
126 of cell clusters between early (day 12 and 14) and later (day 16 and 18) peri-implantation
127 stages, particularly trophoblast cell development (**Figure 1B-E**).

128

129 **Development of embryonic disc during bovine peri-implantation development**

130 ED development is one of the major events during bovine embryo elongation (23).
131 After epiblast and hypoblast segregation in the inner cell mass (ICM) at day 9 post
132 fertilization, the epiblast lineage further differentiates and forms the embryonic disc, which
133 will contribute to the fetus after implantation (24). In the merged cell populations from day
134 12 to day 18, ED cells were clustered into two sub-clusters that were clearly separated in
135 UMAP (**Figure 2A, top on the right panel**). Intriguingly, group of cells in the cluster
136 marked as blue were exclusively from day 16 and day 18 embryos (ED late), while cells
137 in the other cluster (red) were from day 12 and day 14 embryos (ED early) (**Figure 2A, bottom on the right panel**). By further investigating the expression patterns of three germ
138 layer markers (endoderm: *AFP*, *SOX17*, *HHEX*, *FOXA2* (16, 25), mesoderm: *VIM*, *BMP4*,
139 *ROR2*, *SOX6*, *FOXF1* and *MSX1* (16, 26), and ectoderm: *NES*, *PARD6DB*, *MEIS* (27,
140 28), only cells in the ED late cluster showed the anticipated increase of those marker
141 genes except for common endoderm markers, indicating mesoderm and ectoderm form
142 by embryonic day 16 in bovine (**Figure 2A, left panel**). To explore the initiation of germ
143 layer development, we performed clustering analysis only on the cells belonging to the
144 embryonic germ layers (ED late, **Figure 2B, left panel**). These cells were divided into two
145 new sub-clusters (ED late_1 and ED late_2), which highly expressed mesoderm and
146 ectoderm markers, respectively (**Figure 2B, right panel**). Together, these results indicate
147 that germ layer development starts from day 16 after fertilization in bovine, where the
148 formation and segregation of mesoderm and ectoderm lineages emerge, followed by the
149 endoderm layer arising after day 18.

151

152 **Development of hypoblast during bovine peri-implantation development**

153 Primitive endoderm (PE) or hypoblast (HB), which gives rise to yolk sac after
154 implantation, is critical to support early conceptus development (29). We next
155 characterized hypoblast development during bovine peri-implantation development. Three
156 subtypes of hypoblasts were identified and showed distinct characteristics, 1) the majority
157 of HB cells were of the HB_1 subtype in embryos at day 12 and 14 (**blue, Figure 1B-E**),
158 HB_2 cells were present across all stages with increased cell populations during
159 development from day 12 to 18 (**light green, Figure 1B-E**), on the contrary, HB_3 cells
160 had decreased populations from day 12 to day 18 and clustered more closely to HB_2
161 cells as development progressed (**dark green, Figure 1B-E**); 2) functional gene ontology

162 (GO) analysis of the highly expressed genes in each of the hypoblast cell subtypes
163 revealed a significant enrichment in expression of genes related to response to
164 endoplasmic reticulum stress, protein localization to membrane, regulation of protein
165 stability in HB_1 cells, actin cytoskeleton organization, cell adhesion, ras protein signal
166 transduction in HB_2 cells, and finally translation, biosynthetic process, and metabolic
167 process in HB_3 cells (**Figure 2C**); 3) well known hypoblast lineage markers showed
168 unique patterns between the subtypes, i.e., HB_1 cells were marked by *PDGFRA* and
169 *GATA4*, HB_1 and 3 were positive for *GATA6* and *SOX17*, and *LAMA1* and *CDH2* were
170 enriched in HB_1 and 2 cells (**Figure 2D**). This is consistent with the notion that these
171 lineage markers contribute to conserved hypoblast lineage segregation in different
172 mammalian species (17, 30). 4) we characterized the developmental progression of the
173 three hypoblast subtypes by trajectory analysis and found they are originated as HB_1,
174 progressed towards HB_3 and finally to HB_2 (**Supplementary Figure 3B**). The presence
175 of HB_1 and 3 during early stages following by HB_2 present at later stages, suggesting
176 a coordinated development of hypoblast lineages during bovine embryo development.
177

178 **Dynamics of trophoblast lineage development during bovine peri-implantation 179 development**

180 Trophectoderm elongation is an unique process in ruminants, where
181 undifferentiated trophectoderm cells, or trophoblast progenitor cells will differentiate to
182 mononucleated or uninucleate trophoblast cells (UNC) to drive embryo elongation and
183 secrete *IFNT*, a signal for maternal fetal recognition (31, 32), and a subset will
184 subsequently differentiate into binucleate cells (BNC) (33, 34), in preparation for
185 attachment with maternal endometrium (3, 34). Most studies provide abundant data
186 concerning the trophectoderm of blastocysts (17, 18) or trophoblasts after placentation
187 (34), however, the trophoblast cell fate during the bovine peri-implantation period remain
188 poorly understood. Using 14 widely accepted marker genes for bovine trophoblast cell
189 lineages (16, 35), we were able to classify six trophoblast subtypes into two major
190 lineages, the first with proliferative potential highly expressing *ASCL2*, *CDX2* and *RAB25*,
191 thus were defined as UNC (TB_1, 2, and 3), and a second subtype with increased
192 expression of trophoblast markers including *IFNT*, *PTGS2* and *SSLP1* but not binucleate
193 cell markers, and were therefore deemed as pre-BNC (TB_4, 5, and 6) (**Figure 1B-G**,
194 **Figure 3A-B**). Our immunostaining analysis further confirmed the presence of trophoblast
195 marker *PTGS2* and the absence of mature BNCs in peri-implantation embryos from day

12 to 18 (**Supplementary Figure 4C-D**), which is consistent with previous observation
that BNC begins to appear by day 20 of pregnancy (33, 34). During trophoblast
development, Day 12 and 14 TB were similar but they were very distinct from those at day
16 and 18, demonstrating a dramatic change of trophoblast dynamics from UNC in day
12 and 14 to more emphasis on the pre-BNCs in day 16 and 18 (**Figure 1B-E**). This was
further confirmed by the pseudotime trajectory analysis showing trophoblast development
starts with TB_1, 2, 3 (UNC that are towards to the right edge of tree) and progresses
towards TB_4, 5, 6 (pre-BNCs that enrich on the left edge of tree) (**Figure 3C**).

To understand the biological function of trophoblast sub-lineages during bovine
elongation, we first analyzed the trophoblast stage specific genes that corresponded to
different peri-implantation stages (**Figure 3D**). Interestingly, analysis of the functions of
these stage specific genes revealed a sequential progression of trophoblast stage-specific
core gene networks. It migrated from peptide metabolic processes, translation, and
biosynthetic processes in day 12, to regulation of translation, metabolic processes and
mitochondrial function in day 14, to actin cytoskeleton organization, cell adhesion, and
fatty acid metabolism processes in day 16, and finally to regulation of embryonic
development, epithelium, tube, tissue, blood vessel and vasculature development in day
18 (**Figure 3D**). Such coordinated changes of functional pathways further confirmed
trophoblast cell development transitions from UNC to pre-BNC cells and are reflective of
the general lack of knowledge concerning trophoblast lineage identities and gene
expression patterns during this critical period of development in cattle. Second, we
explored the specific genes with enriched expression in the transition of the two major
trophoblast lineages. It was found that several trophoblast marker genes and genes
related to ribosome activity were highly expressed in UNC including *KRT8*, *KRT18*,
PLAC8A, *H2AZ*, and *RPL* (Ribosomal Protein Large) subunit gene family (**Figure 3E**).
However, genes highly expressed in pre-BNC were closely related to tumorigenesis, such
as *BCAR3* (36), *FGD4* (37), and *PLEKHA5* (38), suggesting pre-BNC might be necessary
for embryo elongation, attachment and implantation (9, 34). Third, we analyzed cell cycle
composition of separate trophoblast clusters and found a higher proliferative status in pre-
BNC cells. (**Figure 3F**). Finally, a list of highly expressed genes were identified in a
trophoblast cell subtype-specific manner (**Supplementary Figure 4A**). The genes with
most dynamic changes during trophoblast development included *ADAMTS1*, *AHSG*,
ATP5PO, *CSTB*, *FETUB*, *LPP*, *PTTG1IP* and *TP63* (**Supplementary figure 4B**).

230 **Comparative analysis of bovine peri-implantation trophoblasts and mature day 195**
231 **placental trophoblasts**

232 With the publicly available single cell transcriptomes of mature trophoblasts from
233 bovine day 195 placenta (14), we sought to construct a transcriptomic road map of bovine
234 trophoblast differentiation. The peri-implantation trophoblasts and mature placenta
235 trophoblasts were grouped together (distinct from ED and HP, data not shown) and formed
236 10 different clusters (**Figure 4A left**), clearly separated by their developmental stages
237 (**Figure 4A right**). The marker gene analysis further confirmed the absence of binuclear
238 cells in the bovine peri-implantation embryos till day 18 (**Figure 4B**), suggesting that the
239 newly identified primitive trophoblast cells (pre-BNCs) are responsible for pregnancy
240 maintenance in bovine prior to the time when binucleate cells emerges. Trajectory analysis
241 was performed showing peri-implantation trophoblast cells develop into mature placenta
242 trophoblasts as expected but were separated by the uncharacterized trophoblast cell
243 lineages (**Figure 4C**). In addition, we identified the genes with most dynamic changes in
244 the transition between trophoblasts from peri-implantation embryos and mature placentas
245 included 1) *PDXK*, *FETUB*, *LPP* and *AHSG* have high expression specifically in peri-
246 implantation trophoblasts although they are very dynamic between UNC and pre-BNC
247 cells (**Figure 4D**), indicating their essential functions in the respective trophoblast
248 lineages; and 2) *EIF4A2* and *TMEM50B* that have increased levels in mature placenta
249 trophoblast compared to UNC and pre-BNCs (**Figure 4D right**). Interestingly, all of these
250 genes have their known functions in cell proliferation and tumorigenesis (39-42),
251 suggesting that, similar to human trophoblast development (8), the proliferation and
252 migration/invasion activity are two important functional indicators to classify bovine
253 trophoblast cell lineages.

254

255 **Identification of the transcriptional factors and novel lineage markers during bovine**
256 **peri-implantation development**

257 Given that most known transcriptional factors (TFs) that are essential
258 developmental regulators, are limited to pre-implantation embryos (43, 44), here we
259 identified transcriptional factors (TFs) during bovine peri-implantation embryos and
260 explored the key regulators directing the development of specific cell lineages
261 (**Supplementary Figure 2A**). For example, important mediators for trophoblast stem cell
262 self-renewal (*CDX2*, *ESRRB*, *GATA2*, *GATA3*, *TFAP2A*, and *TFAP2C*) (45), epiblast
263 development (*TEAD2*) (46), and primitive endoderm (*GATA4*, *GATA6*, *SOX17*, and *TBX3*)

264 (47) were prioritized in the bovine peri-implantation development (**Supplementary Figure**
265 **2A**). We also identified little known regulators for lineage specification including *PRDM6*,
266 *TGIF1* and *HNF1B* (**Supplementary Figure 2A**).

267 Since most of the early cell lineages markers have been studied in mouse early
268 development, we next sought to identify the novel markers for the bovine early cell
269 lineages. First, we identified novel markers associated with identified ED (**Supplementary**
270 **Figure 5A**). These highly expressed genes specific in the bovine ED lineages included
271 *CDC42EP5*, a regulator of cytoskeleton organization and migration (48), *PRTG*, that is
272 essential for mesoderm and nervous tissue development (49) and *PLTP*, a mediator of
273 lipoprotein metabolism and transport (50) (**Supplementary Figure 2B**). Next, we
274 analyzed the genes that are significantly upregulated in a cell type-specific manner in
275 hypoblast lineages and prioritized the top 10 novel markers of three hypoblast cell
276 subtypes (**Supplementary Figure 3A, 5A**) including *CTSV* and *RASGRF2*
277 (**Supplementary figure 2C**). Finally, we examined novel markers for trophoblast cell
278 lineages and found that *CFAP54* and *TMEM86A* had a significant high expression in UNC
279 cells, while *PLEKHA5*, *SATB2* and *RAPGEF2* marked pre-BNC cells. (**Supplementary**
280 **Figure 2D, 5A**). A deeper investigation of these novel markers could lead to elucidate new
281 insights into mechanisms that facilitate bovine implantation.

282
283 **Embryonic and extraembryonic cell-cell interactions during bovine peri-**
284 **implantation development**

285 Faithful embryogenesis and success of pregnancy establishment require a precise
286 coordination between embryonic and extraembryonic lineages (51). Here we sought to
287 identify the cell-cell interaction signaling between lineages contributing to embryonic and
288 extraembryonic tissues in bovine. We explored the signaling interactions (**Figure 5A**) and
289 identified ligand and receptor pairs (**Figure 5B**) among lineages using Cell Chat analysis.
290 Based on the number of signaling interactions from each lineages, we found that TB_1, 3
291 and hypo_3 lineages work independently from other cells with less outgoing and incoming
292 signaling (**Figure 5B**). Conversely, Hypo_1 was shown to be an interactive lineage, with
293 the most sender and receiver signaling. Additionally, HB_1 received massive signals from
294 TB_2 (UNCs) and sent most of the signals to TB_6 (pre-BNCs) (**Figure 5B**), suggesting
295 that hypo_1 could be an important mediator for trophoblast differentiation and thus
296 promotes embryo elongation.

297 Of note, two well-known signaling pathways, WNT and IGF, were found to be
298 outgoing signaling in UNC (**Figure 5C**), and an outgoing signaling in ED (**Figure 5D**),
299 respectively. It is noteworthy that IGF is essential for fetus development and growth (52),
300 while WNT signaling is a crucial factor affecting both embryonic and extraembryonic stem
301 cell maintenance (53, 54). Additionally, we found ED was an important sender of MK and
302 PTN signaling that have important function in cell proliferation, migration and self-renew
303 (55). Interestingly, both of them shared the same receptors (PTPRZ1 and SDC2/4) in both
304 hypoblast and trophoblast lineages (**Figure 5E, F**), suggesting hypoblast and ED mediate
305 the development of extraembryonic lineage development.

306 Together, the identification of these cell-cell interaction molecules provides
307 candidate regulators for further mechanistic studies underly how embryonic and
308 extraembryonic cells interact to ensure proper early development in bovine.

309

310

311

312 **Discussion**

313 Peri-implantation development is a critical period when most pregnancies fail, yet
314 is the least studied process during mammalian development. In the bovine, peri-
315 implantation is defined by embryo elongation. During this process, the blastocyst cells
316 proliferate massively, the initially un-limited potential of the epiblast is restricted and
317 shaped by a combination of changes in cell lineage composition. Additionally, gene
318 expression, cell-cell interactions, and physical forces - toward defined germ layers and
319 cell types, as well as the trophoblast progenitors differentiating to form primitive placenta
320 and initiate maternal fetal recognition (31, 32) all work to establish the successfully
321 pregnancy. Here, we have provided a single cell transcriptomic wide characterization of
322 these cellular and molecular events accompanying the bovine embryo elongation. The
323 datasets, particularly when mined further and integrated with epigenome information, are
324 expected to greatly expand our understanding of the gene regulation mechanisms
325 governing bovine peri-implantation embryo development, which will provide some insight
326 into what can potentially go wrong in the pregnancies that fail during this period.

327 Our study revealed the timing and cell types emerging in a coordinate fashion
328 during bovine early development and observed some surprises. First, epiblast, later
329 embryonic disc developed into mesoderm and ectoderm in embryo day 16 and 18 while
330 the endoderm emerged much later. This is quite interesting as it is in contrast with the

331 mouse, where the declining of epiblast cells is followed by mesoderm and endoderm
332 lineage development and ectoderm development one day later (56). Second, our analysis
333 identified a previously unrecognized primitive trophoblast cell lineage, termed as pre-
334 BNCs and confirmed the absence of the binuclear cells in a peri-implantation stage
335 embryo. Third, trophoblast cell development is very dynamic, trophoblast cells at day 12
336 and 14 represent UNC, while a major shift occurs at day 16, when pre-BNC cells become
337 dominant. This dramatic change is also coordinate with the embryo's dramatic elongation
338 in size from an elongated form at day 14 to a filamentous form at day 16. Interestingly, the
339 embryo changes from a spherical shape at day 12 to elongated form at day 14, however,
340 day 12 and day 14 embryos have very similar cell composition and transcriptomes,
341 suggesting the bovine embryo elongation may not be driven by embryo internal genetic
342 factors.

343 As expected, most of the cells analyzed in the bovine peri-implantation embryo are
344 trophoblast cell lineages. Our analysis identified 6 different sub-lineages of trophoblast
345 cells, classified into two categories as UNC and pre-BNC cells. Three sub-types of pre-
346 BNC cells exhibited very interesting transcriptomic features. First, genes highly expressed
347 in TB_4 were related with epithelium, endothelial development and establishment of
348 endothelial barrier. Second, Genes in TB_5 showed advanced functions with tube, blood
349 vessel and vasculature development supporting the development and formation of the
350 placenta vasculature. TB_5 gene clusters also exclusively expressed placenta
351 developmental markers including *RXRA* and *CITED2*, which have been identified in
352 mouse and human as syncytiotrophoblast and invasive extra villous respectively (22, 57).
353 Third, TB_6 was associated with cytoskeleton organization, cell periphery and ras protein
354 signal transduction. TB_6 cells also expressed exclusive important markers such as
355 *AMOT*, *PPARG*, and *WWTR1*. *AMOT* plays an important role in TB segregation and
356 function (58), *PPARG* is essential for trophoblast differentiation and binuclear cell
357 development (59), and *WWTR1* is related with TB self-renew and EVT differentiation in
358 human (60). In addition, many signaling pathways essential for mature trophoblast cells
359 were enriched in our identified pre-BNC cells such as *MAKP* and *VEGF* important for
360 placenta development and vascularization (61, 62), Hippo signaling is related with cell
361 differentiation, fetal growth, and establishment of a connection between fetal and maternal
362 circulation (63), *mTOR* in regulating placental growth (64), and *Rap1* in cell polarity, cell
363 interactions, cell adhesion and proliferation in early embryonic development (65). Many
364 identified gene functions of pre-BNC cells have also been reported to be required for

365 trophoblast differentiation such as cytoskeleton organization, cell differentiation, adhesion,
366 periphery, migration and tight junction formation (34). Collectively, while binuclear cells
367 are not present in the peri-implantation embryos, this newly identified pre-BNC cells have
368 up-regulated machinery for the binuclear cells, and represent an important stage of
369 trophoblast cell fate that are responsible for pregnancy maintenance in bovine prior to the
370 time when the binucleate cells emerge. The identification of these progressive functions
371 is also the first step to reveal the importance of pre-BNC cells in the formation of the
372 functional placenta and maintenance of the pregnancy.

373 Perhaps most importantly, we identified novel markers of cell lineages emerging
374 in the bovine peri-implantation development and the cell-cell interactions that mediate this
375 unique embryo elongation process. While they are largely unexplored, a deeper
376 understanding of their functional operation during these stages might facilitate our
377 understanding of little-known bovine peri-implantation development.

378 In summary, our work has filled a significant knowledge gap in the study of lineage
379 development over a period of rapid change of embryo elongation and provide foundational
380 information to understanding peri-implantation biology and causes of early pregnancy
381 failure in the cattle.

382

383

384 **Materials and Methods**

385

386 **Animal care and use**

387 Bovine peri-implantation embryos were collected from non-lactating, 3-year-old
388 crossbreed (*Bos taurus* x *Bos indicus*) cows housed at the Reproductive Biological Center
389 (RBC) at the School of Animal Sciences, Louisiana State University Agriculture Center
390 (LSU AgCenter). The experiments were conducted under an animal use protocol (A2021-
391 21) approved by the Louisiana State University Agricultural Center Institutional Animal
392 Care and Use Committee.

393

394 **Cow synchronization**

395 Cows were synchronized starting on day 0 with dominant follicle removal (DFR)
396 followed by insertion of standard 7-day vaginal controlled internal drug release of
397 progesterone (CIDR, Zoetis). On day 2 ovulation-inducing gonadotropin-release hormone
398 (GnRH, Fertagyl, Merk Animal Health) was administered intramuscular (IM) injection.

399 From day 4-7, follicle stimulating hormone (FSH, Folltropin, Vetoquinol) was administered
400 twice a day in a decreasing dose. Upon CIDR removal on day 7, one dose of prostaglandin
401 (Lutalyse, Zoetis) was administered in the morning and afternoon. 48 hours after CIDR
402 removal another dose of GnRH was administered via IM injection and artificial
403 insemination was procedure twice in a 12-hour interval.

404

405 **Embryos collection**

406 Bovine peri-implantation embryos were collected at day 12, 14, 16 18 days after
407 artificial insemination. Embryos were recovered by standard non-surgical flush with
408 lactated ringer solution supplemented with 1% fetal bovine serum and washed with PBS
409 before processing for single cell isolation. All cows were treated with prostaglandin
410 (Lutalyse, Zoetis) after flushing.

411

412 **Single cell isolation**

413 After embryo collection, fresh embryos were washed with PBS and placed in a 3%
414 FBS in ice cold PBS. Embryos were centrifuged for 5 minutes at 400xg at 4°C. After
415 supernatant aspiration, embryos were resuspended in 200µL of TrypLE and minced by
416 scissors. 500µL of TrypLE were added and then embryos were incubated at 37°C in a
417 shaker at 150rpm for 4-7 minutes depending on size of embryos. Samples were pipetted
418 every 2 minutes to avoid large clumps. Dissociation was stopped with same volume of 3%
419 FBS (700µL), and the suspensions were pass through 70µm cell strainer and centrifuged
420 for 5 min at 400xg at 4°C. The cell pellet was resuspended with 0.04% BSA (volume
421 depended on the size of cell pellet). Cell suspensions were filtered through 40µm cell
422 strainer into a new 1.5mL Eppendorf tube. Cell viability and concentration were measured
423 using a Countess Automated Cell Counter. The cells with viability at least 80% were
424 proceeded with the 10x Genomics® Single Cell Protocol with a target of 10,000 cells per
425 sample. Single cell libraries were prepared using 10x Chromium Next GEM Single Cel 3'
426 Reagent Kit v3.1 Dual Index followed manufacturer's instructions. Libraries were
427 sequenced with an Illumina Novaseq 6000 System (Novogene).

428

429

430 **Single-cell data pre-processing and clustering**

431 To analyze 10X Genomics single-cell data, the base call files (BCL) were
432 transferred to FASTQ files by using CellRanger (v.7.1.0) mkfastq with default parameters,

433 followed by aligning to the most recent bovine reference genome downloaded from
434 Ensembl database (UCD1.2.109), then the doublets were detected and removed from
435 single cells by using Scrublet (0.2.3) with default parameters. The generated count
436 matrices from all the samples were integrated by R package Seurat (4.3.0) utilizing
437 canonical correlation analysis (CCA) with default parameters
438 (https://satijalab.org/seurat/articles/get_started.html) (66). The data was scaled for linear
439 dimension reduction and non-linear reduction using principal component analysis (PCA)
440 and UMAP, respectively. The following clustering and visualization were performed by
441 using the Seurat standard workflow with the parameters “dim=1:30” in “FindNeighbors”
442 function and “resolution=0.2” in “FindClusters” function. The function “FindAllMarkers” in
443 Seurat was used to identify differentially expressed genes in each defined cluster. The
444 cutoff value to define the differentially expressed genes was p.adjust value < 0.05, and
445 fold change > 0.25. The UMAP plots and bubble plots with marker genes were generated
446 using “CellDimPlot” and “GroupHeatmap” functions in R package SCP (0.4.0)
447 (<https://github.com/zhanghao-njmu/SCP>), respectively. Gene ontology (GO) and pathway
448 analysis was performed using R package clusterProfiler (4.6.1), and the GO terms were
449 presented by “dotplot” function in Seurat.

450 The raw FASTQ files and normalized read accounts per gene are available at
451 Gene Expression Omnibus (GEO) (<https://www.ncbi.nlm.nih.gov/geo/>) under the
452 accession number GSE234335.

453

454 **Constructing trajectory**

455 Cell differentiation was inferred for trophoblast subtypes from peri-implantation
456 embryos and from cotyledon part in Day195 of gestation using the Monocle 2 method
457 (2.26.0) with default parameters (67). Because of the large amount of cell numbers, 1000
458 cells were randomly selected from each cluster and used for the following analysis.
459 Integrated gene expression matrices with the smaller sample size from each subtype were
460 exported into Monocle by constructing a CellDataSet. Genes detected less than 20 cells
461 were removed and then the variable genes were defined by “differentialGeneTest” function,
462 the top 1000 genes were used for cell ordering with the “setOrderingFilter” function.
463 Dimensionality reduction was performed using the “DDRTree” reduction method in the
464 reduceDimension step. The root of the pseudotime trajectory was assigned based on the
465 time point of the development (clusters enriched at D12 was considered as root).
466 Pseudotime related genes were defined by using “differentialGeneTest” function. Monocle

467 3 (1.3.1) was also used to construct the pseudotime trajectory from elongation embryos
468 to D195 cotyledon cells with the default workflow steps (<https://cole-trapnell-lab.github.io/monocle3/>) (68).

470

471 **Single-cell regulatory network inference and clustering (SCENIC) analysis**

472 We explored the transcription factor network inference by using the SCENIC R
473 package (version 1.3.1, with the dependent packages RcisTarget 1.17.0, AUCell 1.20.1,
474 and GENIE3 1.20.0) (69). Activity of the regulatory networks was evaluated by the
475 standard workflow by using “runSCENIC_1_coexNetwork2modules”,
476 “runSCENIC_2_createRegulons”, “runSCENIC_3_scoreCells”, and
477 “runSCENIC_4_aucell_binarize” in a row. Then potential direct-binding targets (regulons)
478 were explored based on motif analysis. Followed by that, based on the AUCell algorithm,
479 SCENIC calculates each regulator’s activity and builds gene-expression rankings for each
480 cell. To find the main transcription factors regulating bovine peri-implantation embryo
481 development, the regulon activity was averaged. A regulon-group heat map was
482 generated with pheatmap package in R.

483

484 **Cell-cell communication analysis**

485 Potential cell-cell interactions based on the expression of known ligand-receptor
486 pairs between different clusters were identified using CellChat (1.6.1) (70). Integrated
487 gene expression matrices from all subtypes were exported from Seurat into CellChat by
488 using “createCellChat” function, followed by preprocessing workflow steps including
489 “identifyOverExpressedGenes”, “identifyOverExpressedInteractions”, and “projectData”
490 functions with default parameters. The cell-cell communication was then calculated by
491 functions “computeCommunProb”, “filterCommunication”,
492 “computeCommunProbPathway”, and “aggregateNet” in a row with default parameters.
493 The significant intercellular signaling interactions for particular pathway families of
494 molecules were performed with “netVisual” function. To determine the senders and
495 receivers for specific pathways, the function netAnalysis_computeCentrality was applied
496 on the netP data slot. The contribution of each cell subtype to enriched interaction
497 pathways including both outgoing pattern and incoming pattern were visualized by using
498 netAnalysis_signalingRole_heatmap function.

499

500

501 **References**

502

503 1. E. K. Inskeep, R. A. Dailey, Embryonic death in cattle. *Vet Clin North Am Food Anim Pract* **21**, 437-461 (2005).

504 2. L. D. Dunne, M. G. Diskin, J. M. Sreenan, Embryo and foetal loss in beef heifers between day 14 of gestation and full term. *Anim Reprod Sci* **58**, 39-44 (2000).

505 3. T. E. Spencer, N. Forde, P. Lonergan, Insights into conceptus elongation and establishment of pregnancy in ruminants. *Reprod Fertil Dev* **29**, 84-100 (2016).

506 4. J. Wen *et al.*, Single-cell analysis reveals lineage segregation in early post-implantation mouse embryos. *J Biol Chem* **292**, 9840-9854 (2017).

507 5. R. Argelaguet *et al.*, Multi-omics profiling of mouse gastrulation at single-cell resolution. *Nature* **576**, 487-491 (2019).

508 6. J. Zhai *et al.*, Primate gastrulation and early organogenesis at single-cell resolution. *Nature* **612**, 732-738 (2022).

509 7. F. Zhou *et al.*, Reconstituting the transcriptome and DNA methylome landscapes of human implantation. *Nature* **572**, 660-664 (2019).

510 8. R. C. West *et al.*, Dynamics of trophoblast differentiation in peri-implantation-stage human embryos. *Proc Natl Acad Sci U S A* **116**, 22635-22644 (2019).

511 9. F. W. Bazer, T. E. Spencer, G. A. Johnson, R. C. Burghardt, G. Wu, Comparative aspects of implantation. *Reproduction* **138**, 195-209 (2009).

512 10. J. Rossant, Developmental biology: A mouse is not a cow. *Nature* **471**, 457-458 (2011).

513 11. Z. Jiang *et al.*, Transcriptional profiles of bovine *in vivo* pre-implantation development. *BMC Genomics* **15**, 756 (2014).

514 12. B. W. Daigneault, S. Rajput, G. W. Smith, P. J. Ross, Embryonic POU5F1 is Required for Expanded Bovine Blastocyst Formation. *Sci Rep* **8**, 7753 (2018).

515 13. M. M. Halstead, X. Ma, C. Zhou, R. M. Schultz, P. J. Ross, Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. *Nat Commun* **11**, 4654 (2020).

516 14. K. M. Davenport *et al.*, Single-nuclei RNA sequencing (snRNA-seq) uncovers trophoblast cell types and lineages in the mature bovine placenta. *Proc Natl Acad Sci U S A* **120**, e2221526120 (2023).

517 15. A. C. Galdos-Riveros, P. O. Favaron, S. E. Will, M. A. Migliino, D. A. Maria, Bovine yolk sac: from morphology to metabolomic and proteomic profiles. *Genet Mol Res* **14**, 6223-6238 (2015).

518 16. I. Hue, Determinant molecular markers for peri-gastrulating bovine embryo development. *Reprod Fertil Dev* **28**, 51-65 (2016).

519 17. V. M. Negron-Perez, Y. Zhang, P. J. Hansen, Single-cell gene expression of the bovine blastocyst. *Reproduction* **154**, 627-644 (2017).

520 18. Q. Wei *et al.*, Bovine lineage specification revealed by single-cell gene expression analysis from zygote to blastocyst. *Biol Reprod* **97**, 5-17 (2017).

521 19. J. Artus, I. Hue, H. Acloque, Preimplantation development in ungulates: a 'menage a quatre' scenario. *Reproduction* **159**, R151-R172 (2020).

522 20. P. Blakeley *et al.*, Defining the three cell lineages of the human blastocyst by single-cell RNA-seq. *Development* **142**, 3151-3165 (2015).

523 21. T. Liu *et al.*, Cross-species single-cell transcriptomic analysis reveals pre-gastrulation developmental differences among pigs, monkeys, and humans. *Cell Discov* **7**, 8 (2021).

547 22. D. Liu *et al.*, Primary specification of blastocyst trophectoderm by scRNA-seq: New
548 insights into embryo implantation. *Sci Adv* **8**, eabj3725 (2022).

549 23. J. van Leeuwen, D. K. Berg, P. L. Pfeffer, Morphological and Gene Expression Changes in
550 Cattle Embryos from Hatched Blastocyst to Early Gastrulation Stages after Transfer of In
551 Vitro Produced Embryos. *PLoS One* **10**, e0129787 (2015).

552 24. P. Maddox-Hyttel *et al.*, Immunohistochemical and ultrastructural characterization of
553 the initial post-hatching development of bovine embryos. *Reproduction* **125**, 607-623
554 (2003).

555 25. J. Hou *et al.*, A systematic screen for genes expressed in definitive endoderm by Serial
556 Analysis of Gene Expression (SAGE). *BMC Dev Biol* **7**, 92 (2007).

557 26. M. Drukker *et al.*, Isolation of primitive endoderm, mesoderm, vascular endothelial and
558 trophoblast progenitors from human pluripotent stem cells. *Nat Biotechnol* **30**, 531-542
559 (2012).

560 27. N. C. Dubois, D. Hofmann, K. Kaloulis, J. M. Bishop, A. Trumpp, Nestin-Cre transgenic
561 mouse line Nes-Cre1 mediates highly efficient Cre/loxP mediated recombination in the
562 nervous system, kidney, and somite-derived tissues. *Genesis* **44**, 355-360 (2006).

563 28. N. T. Harvey *et al.*, Response to BMP4 signalling during ES cell differentiation defines
564 intermediates of the ectoderm lineage. *J Cell Sci* **123**, 1796-1804 (2010).

565 29. E. Wolf *et al.*, Embryo-maternal communication in bovine - strategies for deciphering a
566 complex cross-talk. *Reprod Domest Anim* **38**, 276-289 (2003).

567 30. T. Boroviak *et al.*, Single cell transcriptome analysis of human, marmoset and mouse
568 embryos reveals common and divergent features of preimplantation development.
Development **145** (2018).

569 31. R. M. Roberts, Interferon-tau, a Type 1 interferon involved in maternal recognition of
570 pregnancy. *Cytokine Growth Factor Rev* **18**, 403-408 (2007).

571 32. T. E. Spencer, R. C. Burghardt, G. A. Johnson, F. W. Bazer, Conceptus signals for
572 establishment and maintenance of pregnancy. *Anim Reprod Sci* **82-83**, 537-550 (2004).

573 33. T. E. Spencer, T. R. Hansen, Implantation and Establishment of Pregnancy in Ruminants.
Adv Anat Embryol Cell Biol **216**, 105-135 (2015).

574 34. F. B. P. Wooding, The ruminant placental trophoblast binucleate cell: an evolutionary
575 breakthrough. *Biol Reprod* **107**, 705-716 (2022).

576 35. C. Gerri *et al.*, Initiation of a conserved trophectoderm program in human, cow and
577 mouse embryos. *Nature* **587**, 443-447 (2020).

578 36. Z. Zhang *et al.*, BCAR3 promotes head and neck cancer growth and is associated with
579 poor prognosis. *Cell Death Discov* **7**, 316 (2021).

580 37. A. Bossan *et al.*, Expression of FGD4 positively correlates with the aggressive phenotype
581 of prostate cancer. *BMC Cancer* **18**, 1257 (2018).

582 38. H. Zhang *et al.*, PLEKHA5 regulates tumor growth in metastatic melanoma. *Cancer* **126**,
583 1016-1030 (2020).

584 39. W. Tan, B. Liu, H. Ling, [Pyridoxal kinase (PDXK) promotes the proliferation of serous
585 ovarian cancer cells and is associated with poor prognosis]. *Xi Bao Yu Fen Zi Mian Yi Xue
586 Za Zhi* **36**, 542-548 (2020).

587 40. E. Ngan, A. Kiepas, C. M. Brown, P. M. Siegel, Emerging roles for LPP in metastatic cancer
588 progression. *J Cell Commun Signal* **12**, 143-156 (2018).

589 41. Y. Dong, D. Ding, J. Gu, M. Chen, S. Li, Alpha-2 Heremans Schmid Glycoprotein (AHSG)
590 promotes the proliferation of bladder cancer cells by regulating the TGF-beta signalling
591 pathway. *Bioengineered* **13**, 14282-14298 (2022).

592

593

594 42. C. Xue, X. Gu, G. Li, Z. Bao, L. Li, Expression and Functional Roles of Eukaryotic Initiation
595 Factor 4A Family Proteins in Human Cancers. *Front Cell Dev Biol* **9**, 711965 (2021).

596 43. C. Vigneault, S. McGraw, L. Massicotte, M. A. Sirard, Transcription factor expression
597 patterns in bovine in vitro-derived embryos prior to maternal-zygotic transition. *Biol
598 Reprod* **70**, 1701-1709 (2004).

599 44. Y. S. Bogliotti *et al.*, Transcript profiling of bovine embryos implicates specific
600 transcription factors in the maternal-to-embryo transition. *Biol Reprod* **102**, 671-679
601 (2020).

602 45. S. Paul, P. Home, B. Bhattacharya, S. Ray, GATA factors: Master regulators of gene
603 expression in trophoblast progenitors. *Placenta* **60 Suppl 1**, S61-S66 (2017).

604 46. M. Hashimoto, H. Sasaki, Epiblast Formation by TEAD-YAP-Dependent Expression of
605 Pluripotency Factors and Competitive Elimination of Unspecified Cells. *Dev Cell* **50**, 139-
606 154 e135 (2019).

607 47. J. Artus, A. Piliszek, A. K. Hadjantonakis, The primitive endoderm lineage of the mouse
608 blastocyst: sequential transcription factor activation and regulation of differentiation by
609 Sox17. *Dev Biol* **350**, 393-404 (2011).

610 48. A. J. Farrugia *et al.*, CDC42EP5/BORG3 modulates SEPT9 to promote actomyosin
611 function, migration, and invasion. *J Cell Biol* **219** (2020).

612 49. C. Vesque, I. Anselme, E. Couve, P. Charnay, S. Schneider-Maunoury, Cloning of
613 vertebrate Protogenin (Prtg) and comparative expression analysis during axis
614 elongation. *Dev Dyn* **235**, 2836-2844 (2006).

615 50. M. Scholler *et al.*, Phospholipid transfer protein is differentially expressed in human
616 arterial and venous placental endothelial cells and enhances cholesterol efflux to fetal
617 HDL. *J Clin Endocrinol Metab* **97**, 2466-2474 (2012).

618 51. M. Zhu, M. Zernicka-Goetz, Principles of Self-Organization of the Mammalian Embryo.
619 *Cell* **183**, 1467-1478 (2020).

620 52. G. D. Agrogiannis, S. Sifakis, E. S. Patsouris, A. E. Konstantinidou, Insulin-like growth
621 factors in embryonic and fetal growth and skeletal development (Review). *Mol Med Rep*
622 **10**, 579-584 (2014).

623 53. L. Yu *et al.*, Blastocyst-like structures generated from human pluripotent stem cells.
624 *Nature* **591**, 620-626 (2021).

625 54. N. R. Gough, Focus issue: Wnt and beta-catenin signaling in development and disease.
626 *Sci Signal* **5**, eg2 (2012).

627 55. C. Xu, S. Zhu, M. Wu, W. Han, Y. Yu, Functional receptors and intracellular signal
628 pathways of midkine (MK) and pleiotrophin (PTN). *Biol Pharm Bull* **37**, 511-520 (2014).

629 56. B. Pijuan-Sala *et al.*, A single-cell molecular map of mouse gastrulation and early
630 organogenesis. *Nature* **566**, 490-495 (2019).

631 57. M. Kuna *et al.*, CITED2 is a conserved regulator of the uterine-placental interface. *Proc
632 Natl Acad Sci U S A* **120**, e2213622120 (2023).

633 58. V. M. Negron-Perez, P. J. Hansen, Role of yes-associated protein 1, angiomotin, and
634 mitogen-activated kinase kinase 1/2 in development of the bovine blastocyst. *Biol
635 Reprod* **98**, 170-183 (2018).

636 59. S. A. Degrelle, P. Murthi, D. Evain-Brion, T. Fournier, I. Hue, Expression and localization
637 of DLX3, PPARG and SP1 in bovine trophoblast during binucleated cell differentiation.
638 *Placenta* **32**, 917-920 (2011).

639 60. S. Ray *et al.*, Hippo signaling cofactor, WWTR1, at the crossroads of human trophoblast
640 progenitor self-renewal and differentiation. *Proc Natl Acad Sci U S A* **119**, e2204069119
641 (2022).

642 61. X. Fan *et al.*, VEGF Maintains Maternal Vascular Space Homeostasis in the Mouse
643 Placenta through Modulation of Trophoblast Giant Cell Functions. *Biomolecules* **11**
644 (2021).

645 62. J. S. Mudgett *et al.*, Essential role for p38alpha mitogen-activated protein kinase in
646 placental angiogenesis. *Proc Natl Acad Sci U S A* **97**, 10454-10459 (2000).

647 63. G. T. K. Boopathy, W. Hong, Role of Hippo Pathway-YAP/TAZ Signaling in Angiogenesis.
Front Cell Dev Biol **7**, 49 (2019).

649 64. M. D. Martin-Bermudo, N. H. Brown, Uncoupling integrin adhesion and signaling: the
650 betaPS cytoplasmic domain is sufficient to regulate gene expression in the Drosophila
651 embryo. *Genes Dev* **13**, 729-739 (1999).

652 65. M. Chrzanowska-Wodnicka, Distinct functions for Rap1 signaling in vascular
653 morphogenesis and dysfunction. *Exp Cell Res* **319**, 2350-2359 (2013).

654 66. R. Satija, J. A. Farrell, D. Gennert, A. F. Schier, A. Regev, Spatial reconstruction of single-
655 cell gene expression data. *Nat Biotechnol* **33**, 495-502 (2015).

656 67. X. Qiu *et al.*, Reversed graph embedding resolves complex single-cell trajectories. *Nat
657 Methods* **14**, 979-982 (2017).

658 68. C. Trapnell *et al.*, The dynamics and regulators of cell fate decisions are revealed by
659 pseudotemporal ordering of single cells. *Nat Biotechnol* **32**, 381-386 (2014).

660 69. S. Aibar *et al.*, SCENIC: single-cell regulatory network inference and clustering. *Nat
661 Methods* **14**, 1083-1086 (2017).

662 70. S. Jin *et al.*, Inference and analysis of cell-cell communication using CellChat. *Nat
663 Commun* **12**, 1088 (2021).

664

665

666 **Figures Legends**

667

668 **Figure 1. Single cell RNA-seq (scRNA-seq) analysis of bovine peri-implantation**
669 **embryo development. (A).** Diagram of cow synchronization protocol, embryo collection
670 and single-cell isolation and scRNA-seq procedures with 10x genomics approaches. **(B-**
671 **E).** Joint uniform manifold and projection (UMAP) analysis of transcriptomes of cell
672 lineages from bovine peri-implantation embryos at day 12 **(B)**, 14 **(C)**, 16 **(D)** and 18 **(E)**.
673 dynamic lineage developmental progress is observed from day 12 through day 18. **(F).**
674 UMAP clustering analysis of all cells captured from different developmental stages of
675 bovine peri-implantation embryos. UMAP of integrated samples revealing 10 distinct cell
676 types identified as embryonic disc (ED), hypoblast (HB) and different types of trophoblast
677 cells (TB) cells. **(G).** Dot plot representing the expression of gene markers for ED, HB and
678 TB development. Dot sizes represent the percentage of cells in the cluster expressing the
679 gene marker, color gradient represents the level of expression from high (red) to low
680 (yellow) and pie chart represent the stage present in the cluster.

681

682 **Figure 2. Identification of embryonic disc, germ layers and hypoblast lineages**
683 **during embryo elongation. (A).** Dotplot (left panel) and clustering (right panel) analysis
684 of embryonic disc (ED) cell lineages. Two sub-clusters of ED were revealed (ED early and
685 ED late). Highlighted area in blue were cells exclusively from day 16 and 18 (ED late) and
686 red area with cells from day 12 and 14 (ED early). ED late highly expressed mesoderm
687 and ectoderm markers (red dots). **(B).** Re-clustering analysis of ED late cell lineages. Two
688 additional sub cell types were revealed (ED late_1 and 2). Dotplot analysis of expression
689 of markers for ectoderm, mesoderm and endoderm in the ED late_1 and 2 cells. Dot sizes
690 represent the percentage of cells in the cluster expressing the gene, color gradient
691 represents the level of expression from high (red) to low (yellow) and pie chart represent
692 the stage present in the cluster. **(C).** Dotplot showing the top represented GOs of genes
693 specifically expressed in each of the hypoblast sub-lineages. **(D).** UMAPs showing the
694 expression levels of common trophoblast markers (PDGFRA, GATA4, GATA6, SOX17,
695 LAMA1 and CDH2) among hypoblast clusters. The color gradient from gray to green at
696 the right refers to the gene expression level (high expression = green).

697

698 **Figure 3. Dynamics of trophoblast lineage development during bovine peri-**
699 **implantation development. (A).** Dotplot (left panel) presenting common trophoblast

700 markers in trophoblast clusters and classification of UNC and pre-BNC cells. Dot sizes
701 represent the percentage of cells in the cluster expressing the gene, color gradient
702 represents the level of expression from high (red) to low (yellow) and pie chart represent
703 the stage present in the cluster. In the right panel, UMAP of trophoblast cell lineages
704 divided in UNC in blue circle (formed by TB_1, 2, and 3) and pre-BNC in brown (formed
705 by TB_4, 5 and 6) **(B)**. UMAPs showing the expression levels of *ASCL2*, *CDX2*, *RAB25*,
706 *IFNT*, *PTGS2* and *SSLP1* (common trophoblast markers). Diverse expression level
707 among trophoblast clusters (*ASCL2*, *CDX2* and *RAB25*) expressed in UNC; (*IFNT*,
708 *PTGS2* and *SSLP1*) more expressed in pre-BNC cells. **(C)**. Pseudotime colored in
709 gradient from dark to light blue. Two start points of development was identified in the right
710 edge by dark blue (top panel). In the bottom panel, the distribution of clusters
711 demonstrated the development of TB_1, 2 and 3 (UNC) into TB_4, 5, and 6 (pre-BNC).
712 **(D)**. Heat map showing top enriched pathways from genes specifically expressed in each
713 developmental stage of trophoblasts. **(E)**. Heatmap showing scaled expression of dynamic
714 genes along Pseudotime of trophoblast development. The color bar represents the z-score
715 distribution from -3 (blue) to 3 (red). **(F)**. Cell cycle composition of TB clusters confirming
716 higher proliferative status of pre-mature BNC.
717

718 **Figure 4. Comparative analysis of bovine peri-implantation trophoblasts and mature**
719 **day 195 placental trophoblasts. (A)**. UMAPs of integrated single cell trophoblast
720 lineages from peri-implantation and mature placenta. All identified trophoblast clusters
721 from both datasets were presented on the left panel, trophoblast clusters were presented
722 by developmental stages on the right panel. **(B)**. Dotplots representing the expression
723 levels of common trophoblast markers from mature placenta trophoblasts. Clusters that
724 are exclusively from peri-implantation stages were marked by “*” and had lower or no
725 expression of BNC markers. Dot sizes represents the percentage of cells in the cluster
726 expressing the gene, color gradient from red to yellow represents the level of expression
727 from high to low and pie chart represent the stage present in the cluster. **(C)**. Pseudotime
728 trajectory analysis of trophoblast development of TB peri-implantation stages and TB
729 mature placenta colored in gradient from dark to light blue. Two start points of
730 development was identified in the left edge by dark blue (left panel). On the right panel,
731 the distribution of clusters confirmed the development of peri-implantation trophoblast into
732 trophoblast from mature placenta trophoblast. **(D)**. Top six differentially expressed genes
733 (*FETUB*, *PDXK*, *LPP*, *AHSG*, *EIF4A2* and *TMEM50B*) that had most dynamic expression

734 changes between peri-implantation trophoblasts and mature placenta trophoblasts. The
735 black line is the mean fitted expression level across the sample.

736

737 **Figure 5. Embryonic and extraembryonic cell-cell interactions during bovine peri-**
738 **implantation development. (A).** Circle plot analysis showing the significant cell-cell
739 interaction among different cell lineages. Arrows and edge color indicate direction (ligand:
740 receptor), the circle size represents the number of cells and edge thickness indicates the
741 communication probability. **(B).** Heatmap showing the identified pairs of ligand and
742 receptor signaling in the embryonic and extra-embryonic cell lineages of bovine peri-
743 implantation embryo. Outgoing signaling were presented on the left panel, incoming
744 signaling were presented on the right panel. The color gradient on the left represents the
745 relative signaling strength of the signaling pathway across clusters. **(C, D and E).** On the
746 left panel, circle plot showing the intercellular communication network for WNT, IGF, MK
747 and PTN signaling and heatmap showing the relative importance and contribution of each
748 cell lineage to the overall communication network. On the right panel, Circle plot showing
749 the identified ligands and respective receptors in each signaling.

750

751

752

753 **Supplementary Figures and Datasets**

754

755 **Supplementary Figure 1.** Represented bright field images of bovine peri-implantation
756 embryos at day 12 (**A**, spherical shape), day 14, (**B**, ovoid shape), day 16 (**C**, filamentous
757 shape), and day 18 (**D**, filamentous shape). **(E, F, G and H).** UMAP analysis of
758 transcriptomes of cell lineages from bovine peri-implantation embryos at day 12 (**B**), 14
759 (**C**), 16 (**D**) and 18 (**E**) with duplicates. Each color represents different lineage identified
760 among the stages.

761

762 **Supplementary Figure 2. (A).** Heatmap of top 10 transcription factors identified in bovine
763 peri-implantation embryos. Each column represents a different lineage. The expression
764 level is represented by the gradient color from blue to red. UMAPs showing the expression
765 levels of identified novel makers in ED (**B, orange**), HB (**C, green**), and UNC (**D, blue**)
766 and pre-BNC cells (**D, purple**).

767

768 **Supplementary Figure 3. (A).** Heatmap showing the top 10 gene markers identified in
769 hypoblast clusters. **(B).** Pseudotime trajectory analysis of hypoblast clusters, colored in
770 gradient from dark to light blue. The right edge (dark blue) represents the start point of
771 development, followed by the distribution of hypoblast cells in each cluster confirming the
772 development from hypo_1.

773

774 **Supplementary Figure 4. (A).** Heatmap showing the top 10 genes markers identified in
775 each trophoblast sub-lineages. **(B).** Dot plot showing the dynamic expression of
776 trophoblast markers during TB development. **(C).** Immunostaining analysis of trophoblast
777 cells in embryo at day 16. DAPI (blue), *PTGS2* (common trophoblast marker – green). **(D).**
778 Immunostaining analysis of trophoblast cells in embryo at day 18. DAPI (blue), f-actin
779 (green) and merged confirming absence of binuclear TB cells.

780

781 **Supplementary Figure 5. (A).** List of identified novel gene markers for ED, HB, and TB.

782

783 **Supplementary Dataset 1.** Differentially expressed genes among all 10 identified
784 clusters.

785

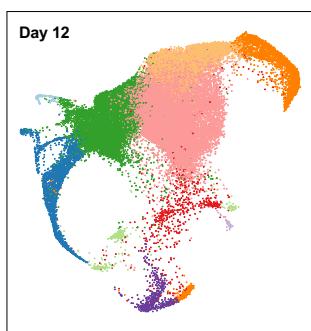
A

Cow synchronization – 9 days

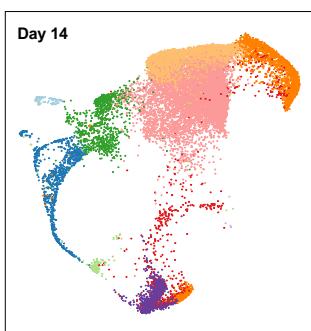
- Superovulation (FSH)
- TAI protocol

AI: day 0

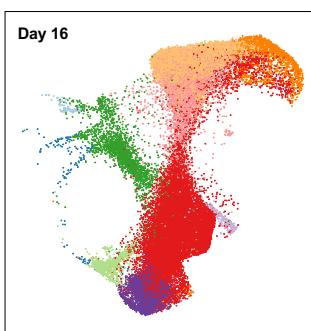
Embryo collection
d12 - d18
(Single cell isolation)

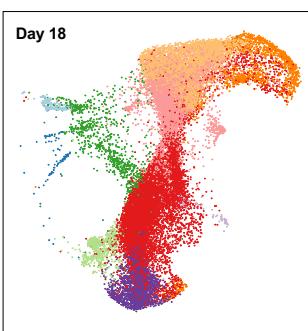

Cells
Captured:
10x Chromium
Controller

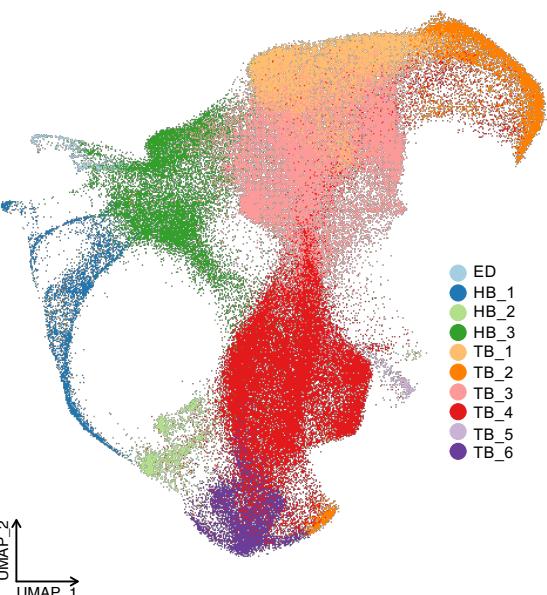
10X GENOMICS

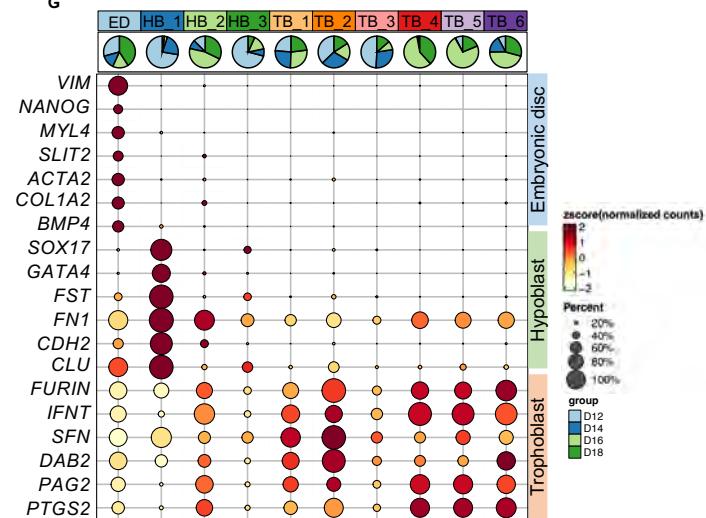

cDNA Library
10x Chromium
Next GEM Single
Cel 3'

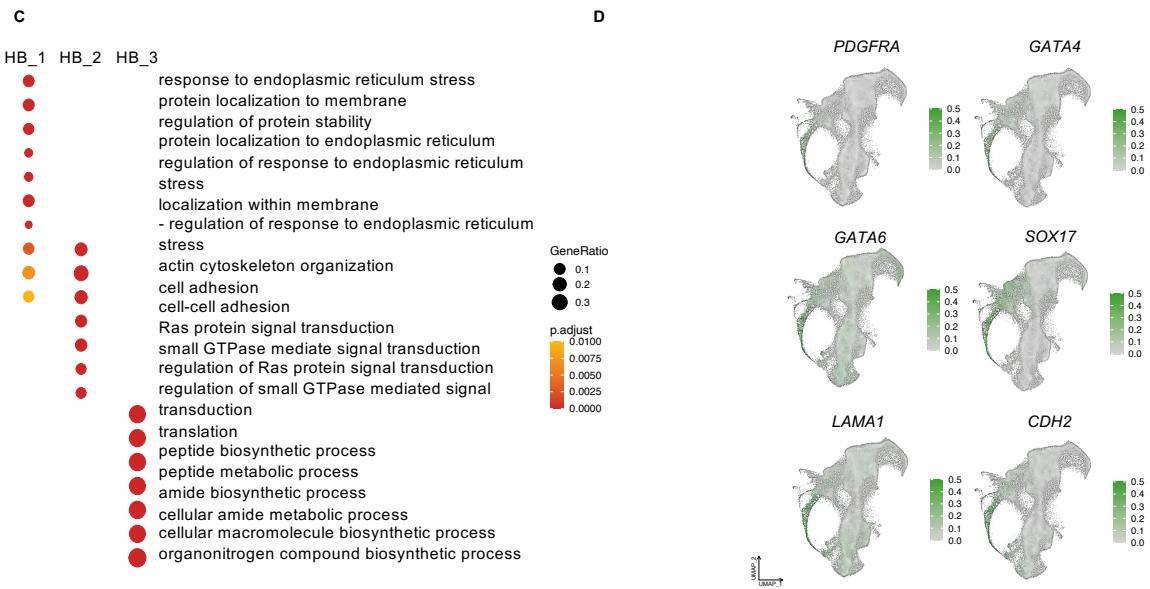
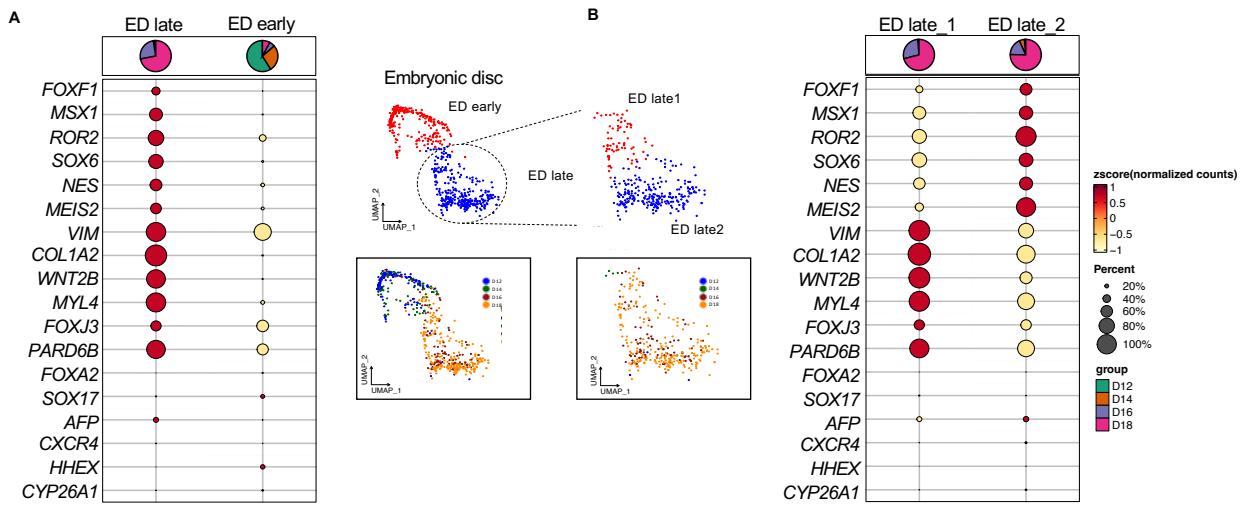
Sequencing:
Illumina
NovaSeq
6000 System

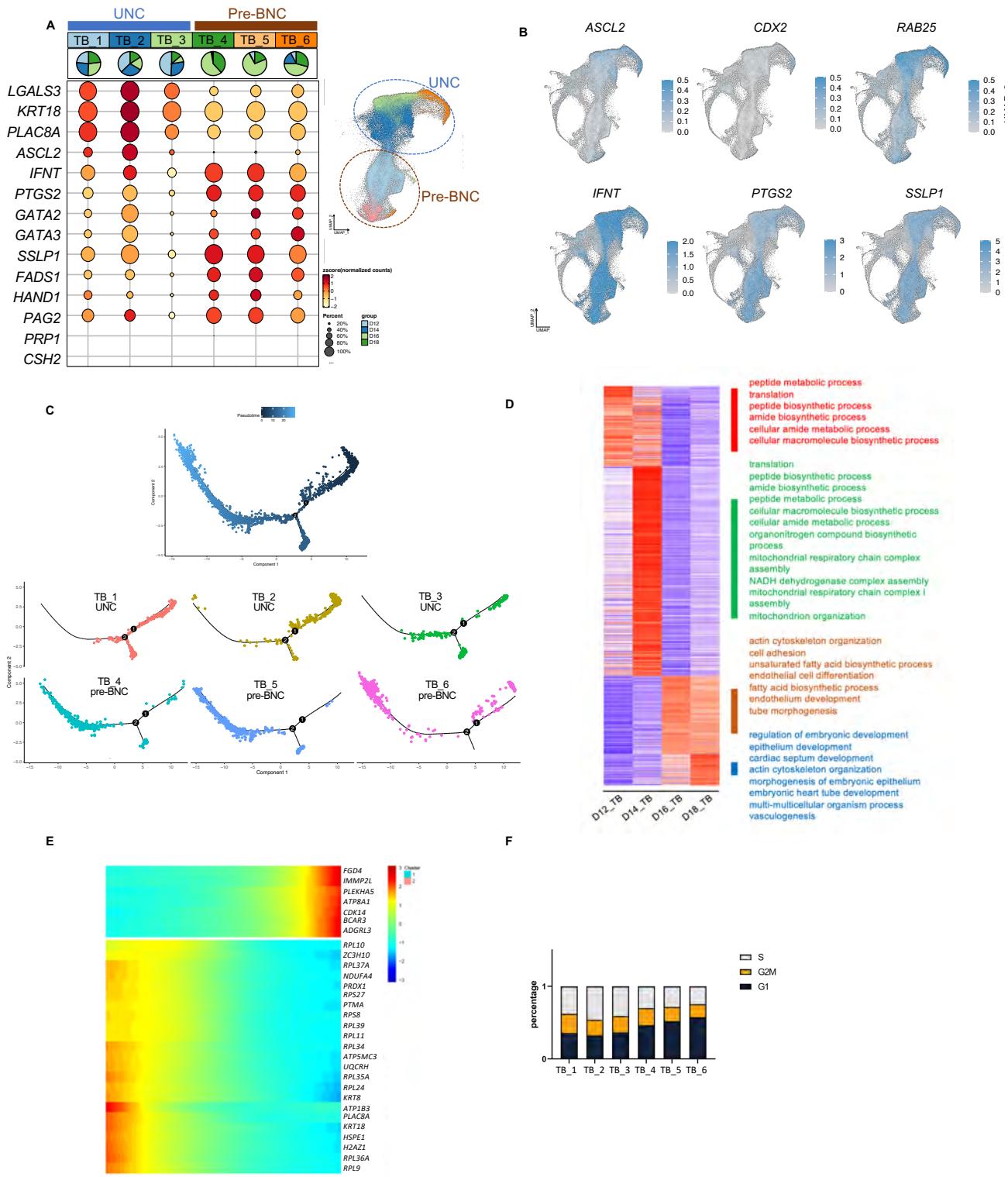

B

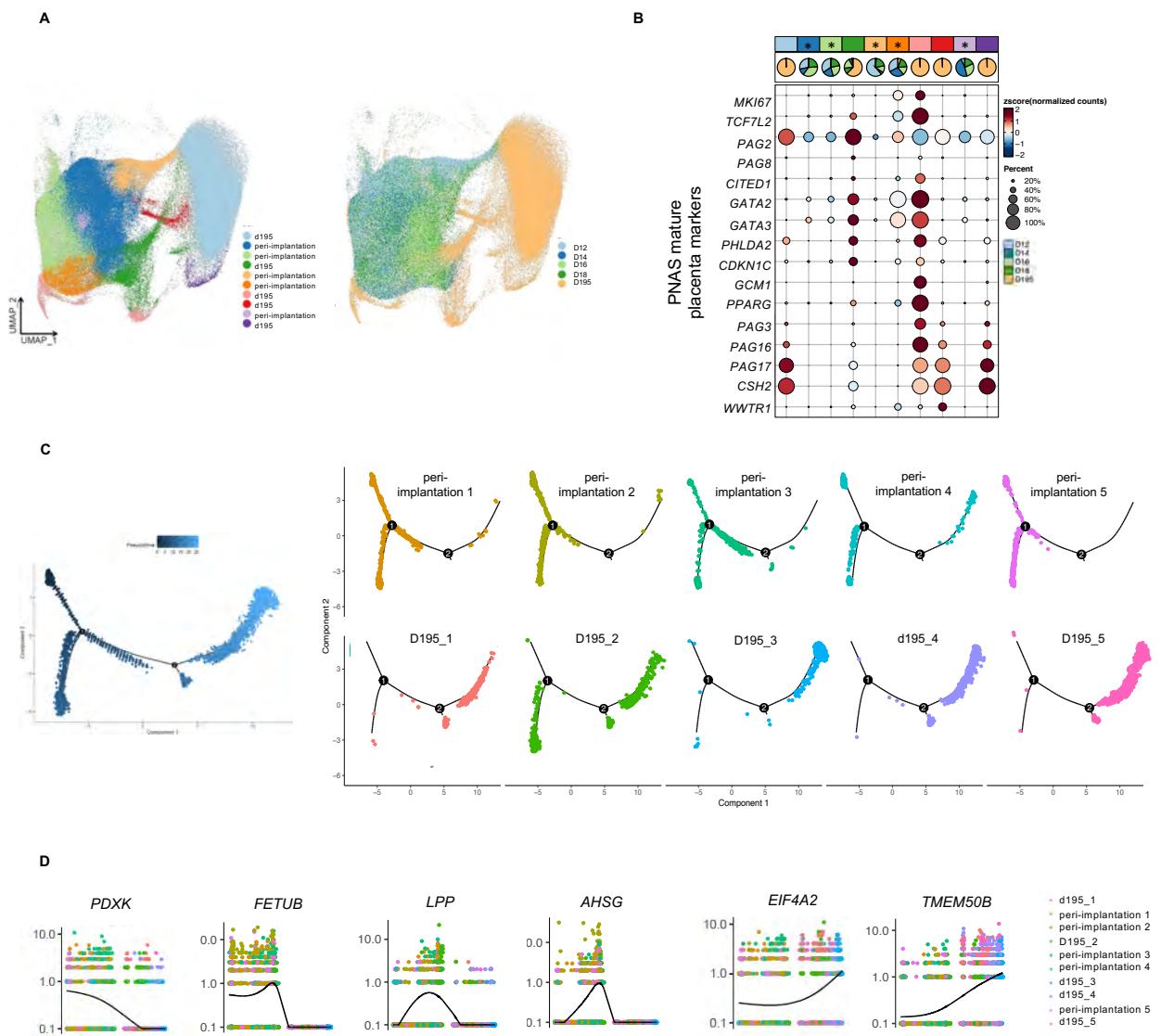

C


D

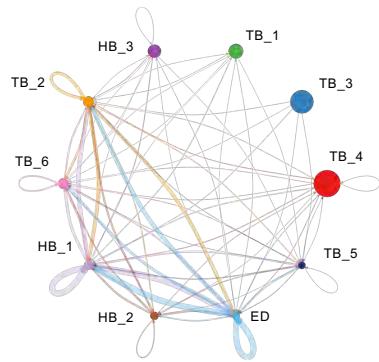

E

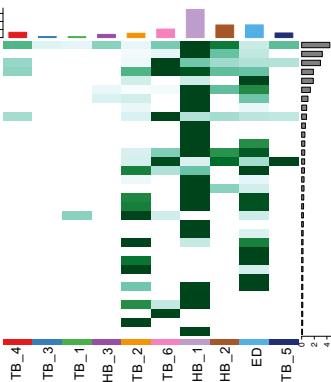




F

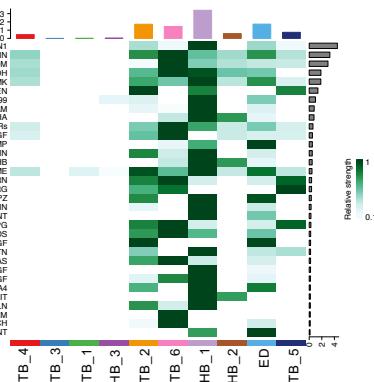


G

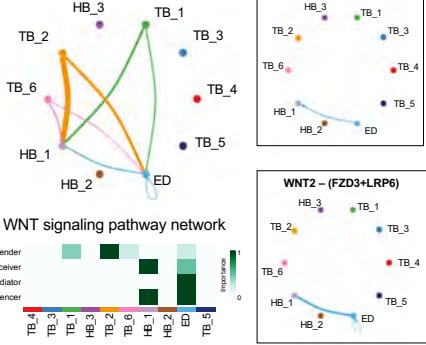


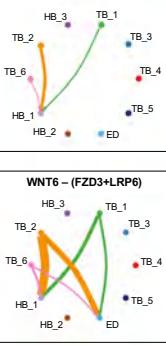


A

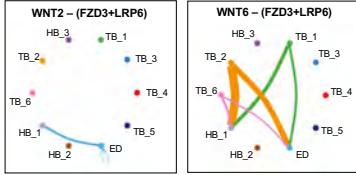

Number of Interactions

B

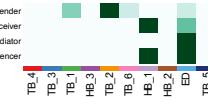

Outgoing signaling patterns


Incoming signaling patterns

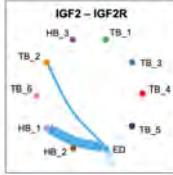
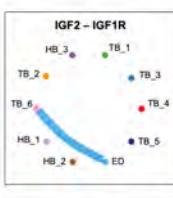
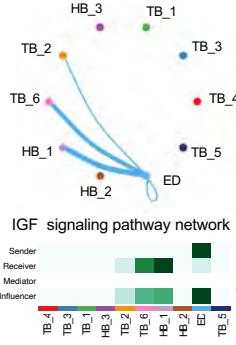
C


WNT signaling pathway network

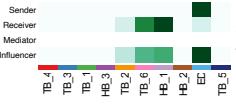
WNT2B – (FZD3+LRP5)



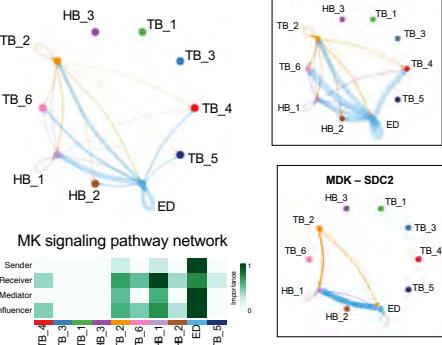
WNT6 – (FZD3+LRP5)

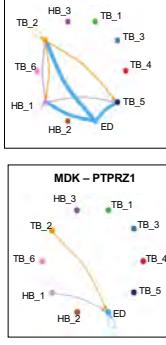




WNT6 – (FZD3+LRP6)

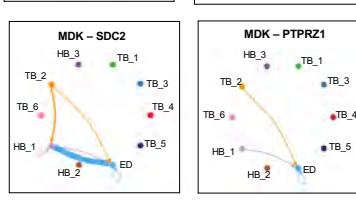

WNT signaling pathway network

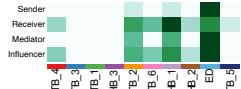
D

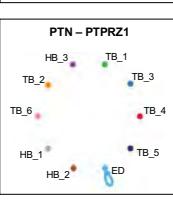
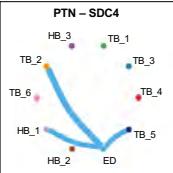
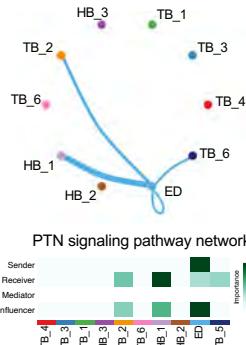

IGF signaling pathway network

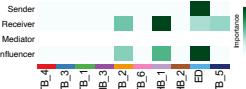

IGF signaling pathway network

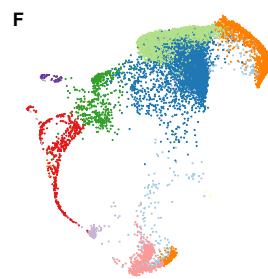
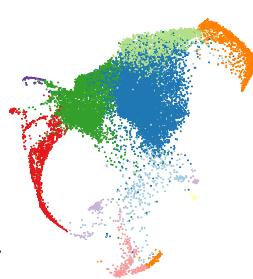
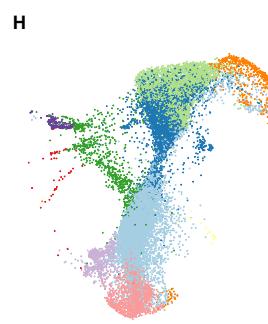
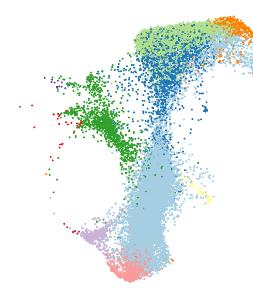
E

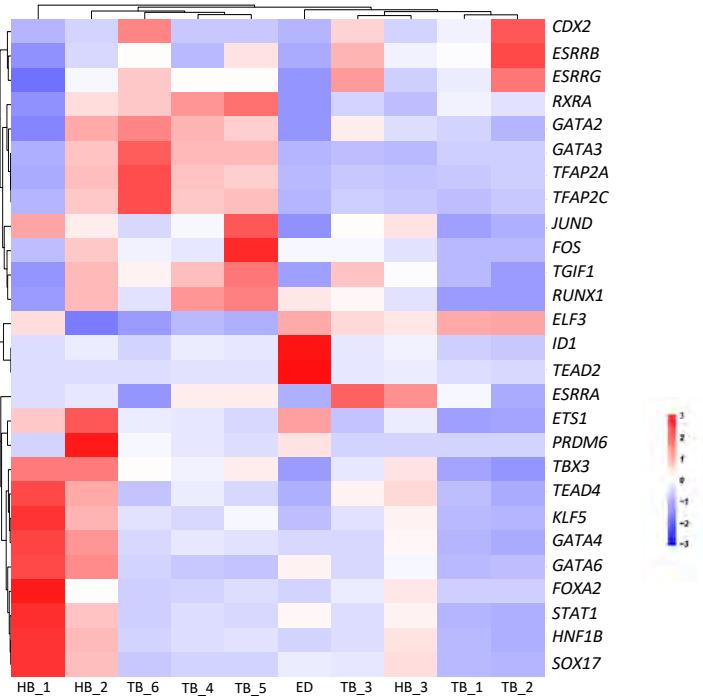
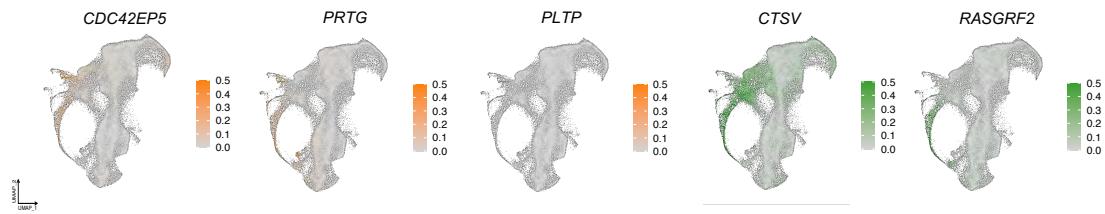
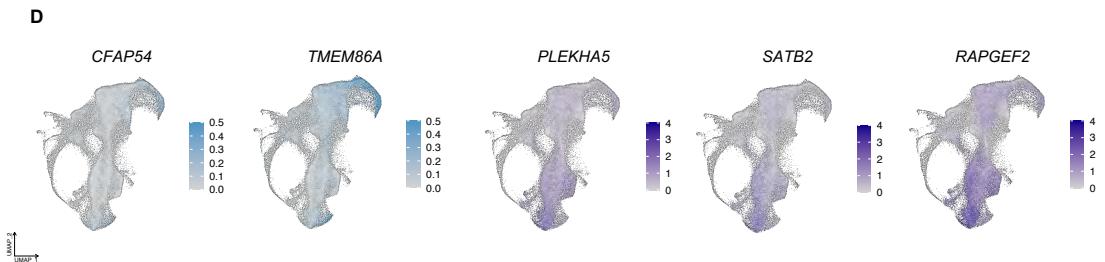

MK signaling pathway network

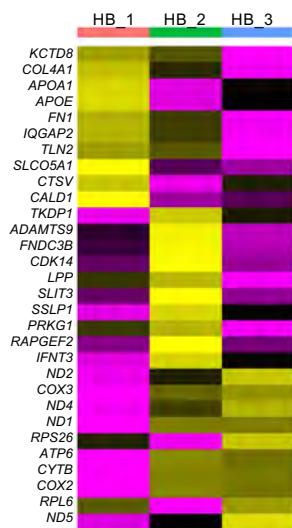
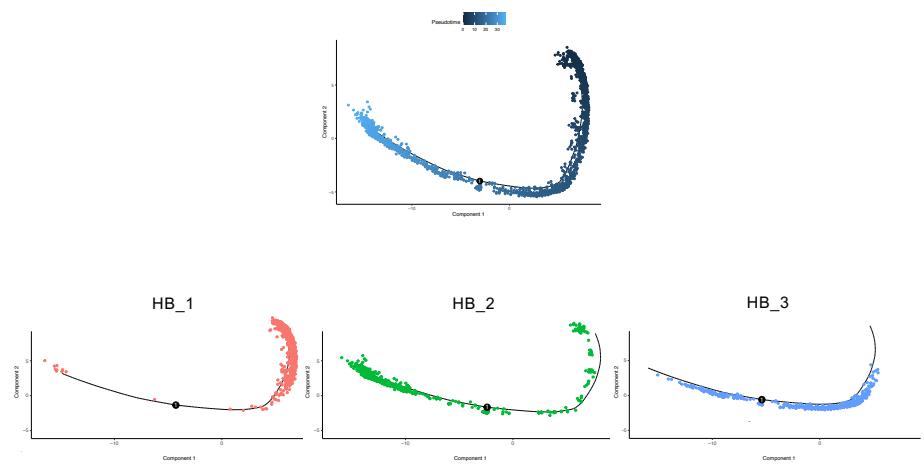

MDK – (ITGA6 + ITGB1)

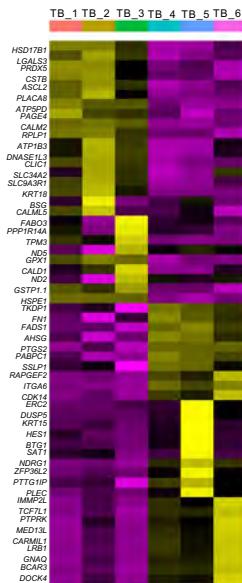
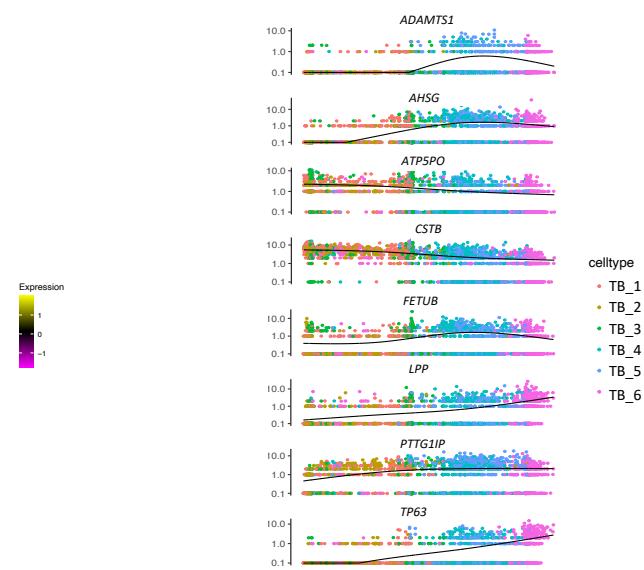
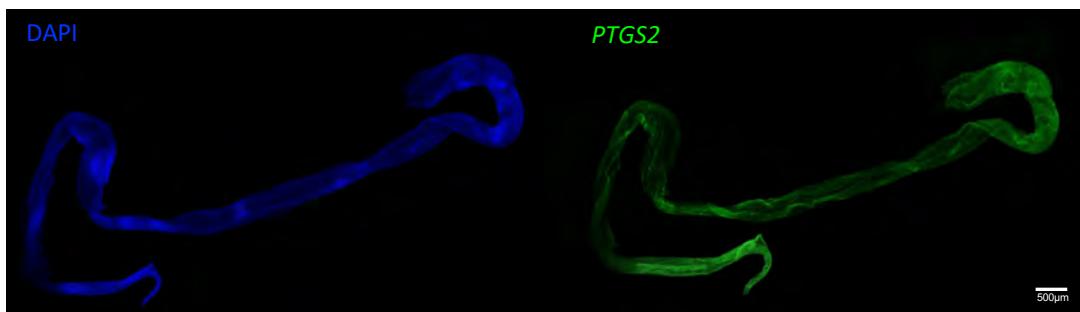
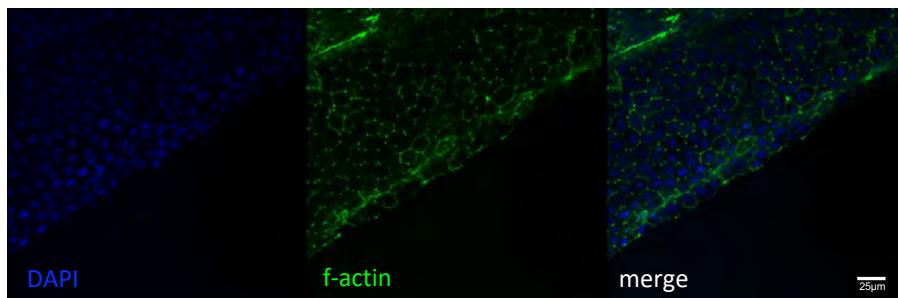



MDK – SDC4


MK signaling pathway network




PTN signaling pathway network





PTN signaling pathway network

A**B****C****D****E****G****H**

A**B****C****D**

A**B**

A**B****C****D**

Novel Markers

UNC	Pre-BNC	Hypoblast	Embryonic disc
<i>PINLYP</i>	<i>ERC2</i>	<i>CTSV</i>	<i>PLTP</i>
<i>CFAP54</i>	<i>RBM47</i>	<i>ADAMTS9</i>	<i>PTMA</i>
<i>FXYD4</i>	<i>PLEKHA5</i>	<i>RASGRF2</i>	<i>MS4A8</i>
<i>TMEM86A</i>	<i>ADGRL3</i>	<i>RCN1</i>	<i>PSIP1</i>
<i>SEC61G</i>	<i>RAPGEF2</i>	<i>SKAP1</i>	<i>CDC42EP5</i>
<i>TOMM5</i>	<i>RABPC1</i>	<i>SPINT2</i>	<i>PRTG</i>
<i>NDUFB1</i>	<i>PTTG1LP</i>	<i>CASK</i>	<i>RORA</i>
<i>AMDHD2</i>	<i>SATB2</i>	<i>FOXP1</i>	
<i>C1QBP</i>	<i>ASAP1</i>	<i>FHOD3</i>	
<i>MANF</i>	<i>KIF13B</i>	<i>RBFOX2</i>	
<i>FAU</i>	<i>CADM1</i>	<i>WWOX</i>	