

Faulty Metabolism: A Potential Instigator of an Aggressive Phenotype in Cdk5-dependent Medullary Thyroid Carcinoma

Priyanka Gupta^{1†}, Brendon Herring², Nilesh Kumar³, Rahul Telange⁴, Sandra S. Garcia-Buntley⁵, Tessa W. Caceres⁵, Simona Colantonio⁵, Ford Williams², Pradeep Kurup², Angela M. Carter², Diana Lin⁶, Herbert Chen², Bart Rose², Renata Jaskula-Sztul², Shahid Mukhtar³, Sushanth Reddy^{2§}, James A. Bibb^{1§}

¹Department of Translational Neuroscience, University of Arizona School of Medicine in Phoenix, Phoenix, AZ 85004-2230, USA

²Department of Surgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA

³Department of Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA

⁴Department of Hematology, St Jude Children's Research Hospital, Memphis, TN 38105, USA

⁵Cancer Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA

⁶Department of Pathology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35233, USA

¹Department of Translational Neuroscience, University of Arizona School of Medicine in Phoenix, Phoenix, AZ 85004-2230, USA

[†]Correspondence

Priyanka Gupta PhD, Department of Translational Neuroscience

University of Arizona School of Medicine in Phoenix

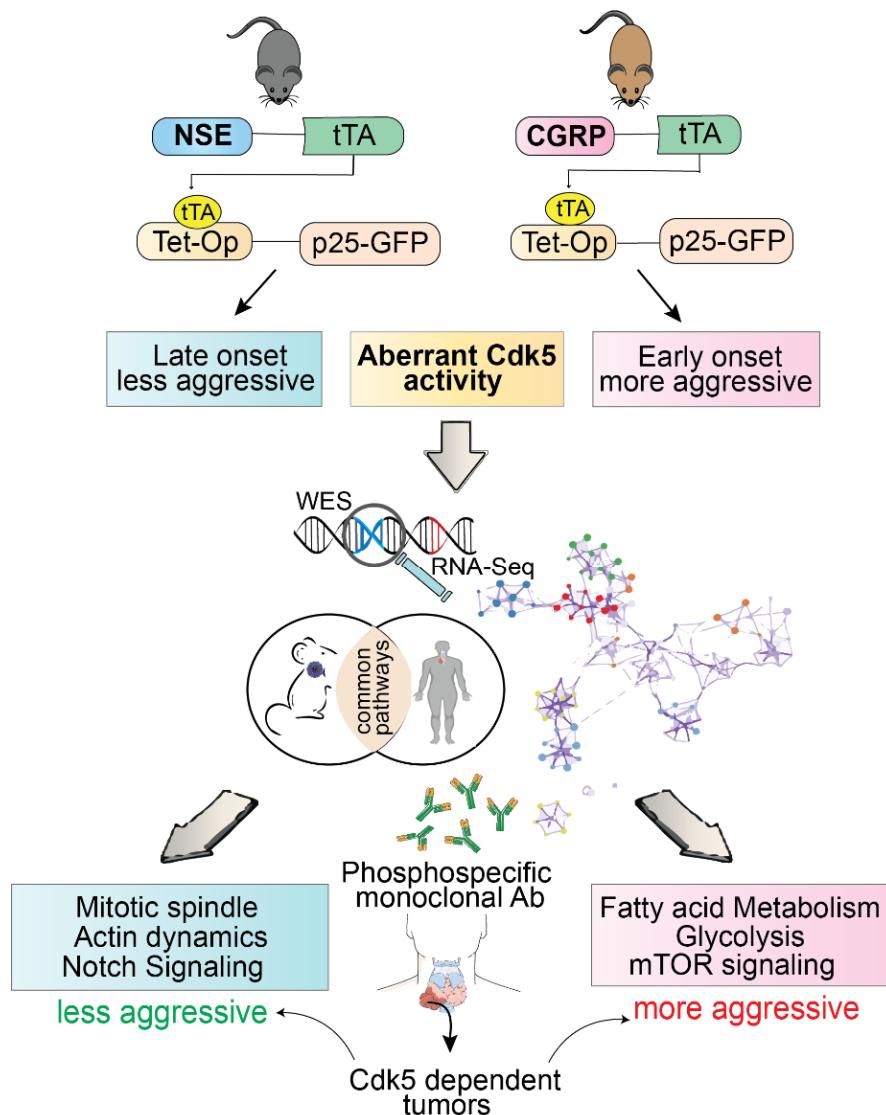
Phoenix, AZ 85004-2230, USA

Phone: +16028272073

Email: priyankagupta@arizona.edu

[§]Equal contributors

Key Words: neuroendocrine tumor, medullary thyroid carcinoma, mouse models, Cdk5, Exome-Seq, RNA-Seq, mitotic cell cycle, fatty acid metabolism


Word count: ~ 4600

Number of Tables: None; Number of Figures: 7 (main) + 6 (supplementary) + 6 (Tables)

Abstract

Mechanistic modeling of cancers such as Medullary Thyroid Carcinoma (MTC) to emulate patient-specific phenotypes is challenging. The discovery of potential diagnostic markers and druggable targets in MTC urgently requires clinically relevant animal models. Here we established orthotopic mouse models of MTC driven by aberrantly active Cdk5 using cell-specific promoters. Each of the two models elicits distinct growth differences that recapitulate the less or more aggressive forms of human tumors. The comparative mutational and transcriptomic landscape of tumors revealed significant alterations in mitotic cell cycle processes coupled with the slow-growing tumor phenotype. Conversely, perturbation in metabolic pathways emerged as critical for aggressive tumor growth. Moreover, an overlapping mutational profile was identified between mouse and human tumors. Gene prioritization revealed putative downstream effectors of Cdk5 which may contribute to the slow and aggressive growth in the mouse MTC models. In addition, Cdk5/p25 phosphorylation sites identified as biomarkers for Cdk5-driven neuroendocrine tumors (NETs) were detected in both slow and rapid onset models and were also histologically present in human MTC. Thus, this study directly relates mouse and human MTC models and uncovers vulnerable pathways potentially responsible for differential tumor growth rates. Functional validation of our findings may lead to better prediction of patient-specific personalized combinational therapies.

Graphical abstract

Highlights

- CGRP driven aberrant Cdk5 activation develops early onset aggressive MTC
- Genetic alterations in mouse and human tumors disrupt common pathways
- Aggressive tumor model characterized by alterations in metabolic pathways
- Slow growing tumor model elicits disruption of mitotic spindle assembly

1 **Introduction**

2 Medullary thyroid carcinoma (MTC) is derived from calcitonin-secreting parafollicular
3 neuroendocrine (NE) cells. These tumors occur as sporadic or hereditary forms with an
4 incidence rate of approximately 75% and 25%, respectively. MTC patients present
5 clinically heterogeneous disease courses ranging from indolent to highly aggressive.
6 The survival rate of 10-years varies from 100% (stage I) to 21% (stage IV) [1]. MTC
7 accounts for 5-10% of all thyroid malignancies and is frequently associated with
8 germline mutations in the *RET* proto-oncogene. Patients may also harbor somatic
9 mutations in *HRAS*, *KRAS*, or *NRAS* [2]. The 5-year survival rate is ~40% in patients
10 with metastatic disease where tumors can spread to the cervical lymph nodes, or distant
11 sites such as bones, lungs, liver, and brain [3-5]. Surgery is the only curative therapy for
12 MTC, but resection of isolated metastases or other newer treatments have shown
13 promise [6, 7]. However, a proper therapeutic regimen for aggressive, recurrent, and
14 metastatic disease is still in abeyance.

15 RET mutations, serum calcitonin, and carcinoembryonic antigen (CEA) are
16 known prognostic markers for MTCs. However, risk stratification based on serum
17 biomarkers, namely calcitonin, CEA, carbohydrate antigen 19.9, or Ki67 expression has
18 proven inefficient in identifying aggressive phenotypes, patients requiring immediate
19 treatment, or resistance to existing therapeutic modalities [8]. The continuous global
20 increase in MTC incidence corresponds with spiking mortality rates. Furthermore,
21 epidemiological evidence from the past three decades has not indicated improvement in
22 MTC diagnosis or overall patient survival. Lack of adequate predictive biomarkers,
23 inconsistent long-term prognostic factors, and poor identification of aggressive
24 phenotype attributed to the indolent course of the disease. Likewise, the unpredictable

25 clinical behavior of patients triggers the overarching need for reliable biomarkers to
26 detect aggressive forms of tumors.

27 Cyclin-dependent kinase 5 (Cdk5), and its co-activators p35/25 have emerged as
28 critical molecular players in the tumorigenesis [9]. We have shown that aberrant
29 activation of Cdk5 under the control of NE cell-specific promoter develops clinically
30 accurate neuroendocrine tumors (NETs) [10-12]. In this study, we established a new
31 Cdk5-driven model that exhibits early tumor onset and increased tumor volume doubling
32 time compared to the previously established model. Our model replicates the
33 aggressive phenotype observed in humans. A comprehensive approach deploying
34 animal models, human tumors, and multi-omic analysis may lead to the identification of
35 critical molecular candidates that can be utilized as biomarkers for diagnostics or
36 potential targets for therapeutic intervention.

37 **Material and methods**

38 **Generation of transgenic MTC models**

39 The NSE-p25 bitransgenic mice were generated as described previously [13]. PiggyBac
40 technology (Cyagen Biosciences) was used to generate single-copy CGRP transgenic
41 mice in C57BL/6 background. Bitransgenic mice were then generated by crossing the
42 TetOp-p25GFP mouse with that of CGRP-tTA or NSE-tTA. p25OE was controlled by
43 doxycycline administration (Dox, 0.1 g/L) dissolved in drinking water. Doxycycline was
44 removed at three weeks of age inducing tumors to grow for ~10 weeks. Tumors were
45 arrested by re-administration of doxycycline. At the end of the experiments, bilateral
46 tumors were harvested and snap-frozen for sequencing experiments, immunoblotting,
47 and fixed for immunohistological staining. All mice were group-housed on a 12 h
48 light/dark cycle with access to food and water *ad libitum*. All animal procedures were

49 performed under protocols approved by the UAB Institutional Animal Care and Use
50 Committee.

51 **Polymerase Chain Reaction**

52 Positive pups carrying CGRP-tTA transgene confirmed by genotyping using primers-
53 forward (F): ATCAAGAGTCACCGCCTCGC; Reverse (R):
54 TTTGAGCGAGTTTCCTTGTGTCGTC. Transgene product size 215 bp. All positive pups
55 were confirmed by PCR to not contain any integration of the helper plasmid. The pups
56 carrying the NSE-tTA transgene were confirmed using the following primers – tTA
57 1080R: TTT CTG TAG GCC GTG TAC CTA; tTA 906F: GAT GTT AGA TAG GCG CCC
58 TAC TCA C; Gdf5-D1: GGA GCA CTT CCA CTA TGG GAC & Gdf5-D2: AAA GAG
59 TGA GGA GTT TGG GGA G. Transgene product size 243 bp. The Tet-op p25 gene
60 was evaluated by the following primers – HS 18: CCA TCG ATC TAG TAC AGC TCG
61 TCC ATG C; HS 28: AAG GAC GAC GGC AAC TAC; Gdf5-D1: GGA GCA CTT CCA
62 CTA TGG GAC & Gdf5-D2: AAA GAG TGA GGA GTT TGG GGA G. Transgene
63 product size 400 bp. Bitransgenic mice were positive for both the NSE or CGRP and
64 p25-GFP alleles while control littermates were positive only for one of the two alleles. All
65 reactions were carried out using the 2X master mix from Promega.

66 **Magnetic Resonance Imaging**

67 MRI was performed with a Bruker Biospec 9.4 Tesla instrument using Paravision 5.1
68 software (Bruker Biospin, Billerica, MA). A Bruker 72 mm ID volume coil was used for
69 excitation and a custom 24 mm surface coil for signal reception (Doty Scientific Inc.,
70 Columbia, SC). Mice were anesthetized with isoflurane gas and respiration observed
71 with a MRI-compatible physiological monitoring system (SA Instruments Inc., Stony

72 Brook, NY). Animals were imaged in supine position on a Bruker animal bed system
73 with circulating heated water to maintain body temperature. A 2D T2-weighted RARE
74 sequence was used for imaging of the abdomen. The following imaging parameters
75 were used: TR/TE = 2000/25ms, echo spacing = 12.5ms, ETL = 4, 2 averages, 29
76 contiguous axial slices with 1 mm thickness, FOV = 30x30 mm and matrix = 300x300
77 for an in-plane resolution of 100 μ m. Prospective respiratory gating was used to
78 minimize motion artifacts. Tumor volumes were quantitated using ImageJ software.

79 **Immunoblotting and immunohistological staining**

80 Cells and tumor tissues were lysed in 1% SDS plus 50 mM NaF. Samples were
81 sonicated briefly, spun at 20,000 g for 5 min, and supernatant combined with Laemmli
82 buffer for analysis by SDS-PAGE followed by transfer to nitrocellulose membrane and
83 subsequent detection of target proteins using a Li-Cor Odyssey imaging system.
84 Immunoblotting was performed using antibodies for Cdk5 (Rockland 200-301-163;
85 RRID:AB_11182476; 1:1000), GFP (Cell Signaling Technology 2956;
86 RRID:AB_1196615; 1:2000), P-T202 LARP6 (Bibb Lab; 1:1000), LARP6 (Invitrogen
87 PA5-41881; RRID:AB_2605747; 1:1000), P-S17 H1.5 (Bibb Lab; 1:1000), H1.5 (Santa
88 Cruz sc-247158; RRID:AB_10847577; 1:1000), P-S988 RBL1 (Bibb Lab; 1:1000),
89 RBL1 (Santa Cruz sc-318; RRID:AB_2175428; 1:500), P-S391 SUV39H1 (Bibb Lab;
90 1:1000), SUV39H1 (sc-377112; RRID N/A; 1:1000), P-T143 FAM53C (Bibb Lab;
91 1:1000), FAM53C (Invitrogen PA5-114093; RRID:AB_2884608; 1:1000) and β -actin
92 (Invitrogen AM4302; RRID:AB_437394; 1:5000).

93 For immunostaining, tissues were fixed in formalin, embedded in paraffin, and
94 sliced into 5 μ m sections for placement on glass slides. Samples were deparaffinized

95 and subjected to high temperature antigen retrieval in citrate buffer (pH 6.0). For IHC,
96 samples were permeabilized in 0.3% Triton X-100, blocked with 5% normal goat serum,
97 and then incubated overnight at 4°C in primary antibodies to GFP (Cell Signaling 2956;
98 1:200), ChrA (Abcam ab15160; 1:1000), P-T202 LARP6 (Bibb Lab; 1:200), P-S17 H1.5
99 (Bibb Lab; 1:50), and P-S988 RBL1 (Bibb Lab; 1:100) diluted in 5% normal goat serum
100 and 0.3% Tween 20. Sections were then incubated in 0.3% hydrogen peroxide and
101 biotinylated secondary antibodies (Pierce 31820 or 31800; 1:500) applied to slides for 1
102 h at room temperature followed by 30 min of streptavidin-HRP. Slides were then
103 incubated with DAB Chromogen (Dako Liquid DAB+ substrate K3468) and counter-
104 stained with hematoxylin. Standard procedures were used for H&E staining (Feldman
105 and Wolfe, 2014). Archival human tissues and tissue microarrays were obtained in
106 accordance with UAB IRB protocol IRB-300002147. Stains of human tissues were
107 reviewed for quality by a board-certified pathologist with expertise in thyroid pathology.

108 **Whole exome sequencing (WES) and RNA sequencing (RNA-Seq)**

109 Total DNA was extracted from the frozen tumors using DNeasy Blood and tissue kit
110 (Qiagen) according to the manufacturer's instructions, and RNA was purified using
111 RNEasy Plus Mini Kit (Qiagen). For WES, exome capture was performed using the
112 Agilent SureSelect Mouse All Exome QXT capture kit (Agilent). Briefly, the genomic
113 DNA was subjected to tagmentation reactions inserting adaptor sequences randomly
114 throughout the genome. The DNA was PCR amplified and then incubated with biotin
115 labeled RNA capture probes complementary to every exon. Following purification of the
116 exome sequences through streptavidin-magnetic bead separation, the DNA was
117 amplified with primers that introduced 8-nucleotide index so that separate samples can
118 run in the same lane for sequence analysis. The exomic libraries were run on the

119 NextSeq500 next generation sequencer from Illumina (Illumina, San Diego, CA) with
120 paired end 75 bp reads using standard techniques. RNA-seq was performed on the
121 same instrument. Briefly, RNA quality was assessed using the Agilent 2100
122 Bioanalyzer. RNA Integrity Number (RIN) of ≥ 7.0 was used for sequencing library
123 preparation. Quality controlled RNA was converted to a sequencing ready library using
124 the NEBNext Ultra II Directional RNA library kit with polyA selection as per the
125 manufacturer's instructions (New England Biolabs). The cDNA libraries were
126 quantitated using qPCR in a Roche LightCycler 480 with the Kapa Biosystems kit for
127 Illumina library quantitation (Kapa Biosystems, Woburn, MA) before cluster generation.

128 **Bioinformatics analysis**

129 Exome Seq— MoCaSeq pipeline was used to analyze raw WES data (source code:
130 <https://github.com/roland-rad-lab/MoCaSeq>)[14]. Using Docker and Ubuntu Linux, the
131 pipeline was set up. With Trimmomatic (v0.38) [15] and BWA-MEM (v0.7.17)[16], the
132 raw reads were aligned to the mouse reference genome GRCm38.p6. For further post-
133 processing, Picard 2.20.0 and GATK (v4.1.0.0) were used [17]. The cutoff of the variant
134 allele frequency was set at $\geq 10\%$ as recommended [14]. For the loss of heterozygosity
135 (LOH) analyses from WES data, somatic SNP calling was performed using Mutect2[18].
136 LOH analyses were limited to reads with a mapping quality of 60 to avoid ambiguous
137 SNP positions caused by mis-mapping. CopywriteR (v2.6.1.216) [19], which extracts
138 DNA copy number information from off-target reads, was used to call CNVs. Custom
139 Python (v.3.10) and Shell scripts were used for downstream analysis and visualization.
140 RNA Seq— To remove low-quality reads from raw sequences, fastp (v0.21.0) was used
141 [20]. Sequence alignment was performed using STAR v2.7.3a-GCC-6.4.0-2.28
142 aligner[21] and GRCm39 assembly. Using the accepted alignment hits, gene counts

143 were obtained using HTSeq (HTSeq v0.12.3-foss-2018b-Python-3.6.6)[22]. The
144 differentially expressed genes ($1.5 \leq \text{Fold change} \leq 0.05 \Rightarrow \text{FDR}$) were identified
145 using DESeq2 (DESeq2_1.36.0) [23] and R (v4.2.0). The enriched gene sets and
146 pathways were analyzed using GSEAp (0.13.0), Enrichr, Shiny GO, and Metascape.

147 **Cell proliferation**

148 Cell proliferation assay was performed on mouse MTC cells[10] in the presence or
149 absence of doxycycline using CyQUANT™ Direct Cell Proliferation Assay following the
150 manufacturer's protocol (Thermo Fisher Scientific)[24].

151 **Generation and purification of monoclonal antibodies**

152 The rabbit monoclonal antibodies were developed directly from isolated B cells of
153 immunized animals without the use of hybridomas. Briefly, an antigen peptide
154 containing the phosphorylated site of interest is synthesized with an N-terminal cysteine
155 and conjugated via the thiol- group to carrier proteins. At least two rabbits are
156 immunized with the peptide. After immunization and subsequent boosts, peripheral
157 blood is drawn and the titer of the antiserum against the antigen is determined via
158 indirect ELISA assays against the phosphorylated peptide. The rabbit with the highest
159 titer and desired activities was used for the isolation of peripheral blood mononuclear
160 cells (PBMCs). Antigen-specific B cells are cultured *in vitro* in multi-well plates and
161 supernatant samples are screened to identify desired antibodies. The cDNAs encoding
162 the heavy (H) and light (L) chains of the antibodies were obtained by reverse
163 transcription-polymerase chain reaction (RT-PCR) of RNA samples isolated from
164 positive B cell clones. H and L cDNAs cloned into mammalian expression vectors and
165 were transiently transfected into Chinese hamster ovary (CHO) cells. Recombinant

166 monoclonal antibodies were generated from the expressed heavy and light chains.
167 Before purification, recombinant antibodies were screened by ELISA and additional
168 application assays. For antibodies that are specific for phosphorylated sites on proteins,
169 the non-phosphorylated antigens were used for counter-screening assays (monoclonal
170 rabbit antibodies by Excel BioPharm LLC). The antibody clones have been submitted to
171 CPTAC Antibody Portal (National Cancer Institute Clinical Proteomic Tumor Analysis
172 Consortium) designated as #CPTC-FAM53C-1, #CPTC-SUV39H1-1, #CPTC-H1-5-1,
173 #CPTC-LARP6-1, and #CPTC-RBL1-1.

174 **Statistics**

175 Statistical analysis was performed using Prism 8.4.2 (GraphPad Software). Student's *t*-
176 test was used to determine the significant difference between the two groups.
177 Experimental replicates or sample sizes presented as n are provided in the figure
178 legends. Differences between the groups were considered significant at *p* < 0.05. The
179 degrees of significance were reported as **p* < 0.05, ***p* < 0.01, ****p* < 0.001.

180 **Results**

181 **CGRP promoter driven aberrant Cdk5 develops aggressive tumors**

182 While Cdk5 is widely implicated in brain disorders, its tumorigenic function is still
183 nascent. To gain insights into the functional role of Cdk5 in tumor progression at the
184 genomic and transcriptomic level, we engineered bi-transgenic mouse tumor models
185 where tumorigenesis is induced by aberrant Cdk5 activation. A doxycycline-regulated
186 system was deployed where NE cell-specific promoter-driven tetracycline transactivator
187 (tTA) induces p25 overexpression (p25OE) resulting in tumor development at the
188 orthotopic site. Eventually, p25OE triggers reciprocity of Cdk5 with p25 over p35

189 rendering aberrant kinase activity. The resultant Cdk5/p25 interaction facilitates pro-
190 neoplastic signaling compared to its physiological counterpart, *i.e.* Cdk5/p35 (Figure
191 1A).

192 We previously showed that p25OE in calcitonin-secreting C cells controlled by
193 the neuron-specific enolase (NSE) promoter developed bilateral MTCs in mice [10]
194 (Figure 1B). Calcitonin gene-related peptide (CGRP) is a splice variant of the calcitonin
195 gene which translates into a neuropeptide localized in neuronal and neuroendocrine
196 cells. Studies have shown that CGRP promoters are more efficient in restricting the
197 transgene expression in calcitonin-secreting C cells in comparison to neuronal cells [25,
198 26]. Hence, we exploited the CGRP promoter in our transgenic system to induce
199 stringent p25OE in thyroid C cells while preventing leaky expression in off-target tissues
200 (Figure 1C). Indeed, both NSE and CGRP promoter-driven p25OE developed MTC
201 tumors (Figure 1D). However, the tumor onset and growth rate of CGRP-p25OE model
202 was significantly higher than that of NSE-p25OE. The tumor size in CGRP was
203 ~100mm³ vs. 25mm³ in NSE at 10 weeks after doxycycline removal, showing a ~4-fold
204 tumor growth rate increase in CGRP-p25OE mice (Figure 1E). Both murine models
205 overexpressed p25GFP and chromogranin A (Chr A) in growing tumors signify typical
206 NETs features (Figure 1F-G). Of note, p25GFP expression was drastically decreased in
207 arrested conditions confirming the dependency of tumor growth on Cdk5 (Figure 1F-G).
208 The comparable p25GFP expression between NSE and CGRP growing tumors
209 suggests the involvement of other factors causing rapid tumor growth in CGRP over the
210 NSE model. Our data show that CGRP-p25OE develops early-onset aggressive forms
211 of MTCs compared to the previously reported NSE-p25OE mice. These results

212 prompted us to examine the downstream nodes of Cdk5 signaling in these models to
213 identify plausible effectors associated with rapid tumor growth.

214 **Genomic alteration landscape in mouse and human tumors**

215 We performed whole-exome sequencing (WES) to determine the mutational profile of
216 NSE and CGRP MTC models. Both models displayed highly heterogeneous mutational
217 profiles across the chromosomes (Figure 2A and Table S1) where NSE-p25OE
218 harbored ~876 somatic mutations compared to ~50 in CGRP-p25OE (Figure 2B). Of
219 these, the majority include 154 missense, 176 silent, and 66 5'UTR mutations in NSE-
220 p25OE. In contrast, CGRP-p25OE accumulated 12 missense, 9 silent, and 6 5'UTR
221 (Figure 2B). Furthermore, exome data displayed drastic differences in the number of
222 SNPs, insertions, and deletions between NSE and CGRP tumors, likely causing
223 frameshifts (Figure 2C). The number of mutated genes unique to NSE tumors were
224 1707, while CGRP tumors harbored mutations in 107 unique genes. Also, 17 mutated
225 genes were common between the two models (Figure 2D). It is known that not all SNPs
226 are associated with cancer progression and that their impact may vary depending on
227 the location of the SNPs within the genome. Accordingly, the high frequency of genetic
228 variation including silent SNPs may not have a direct effect on tumor progression of
229 NSE-p25OE but can still indicate crucial information about the genetic landscape of
230 tumors. The direct impact of genetic variations identified in NSE/CGRP tumors is not yet
231 fully understood and requires further investigation.

232 To understand the molecular processes underlying tumorigenesis of NSE/CGRP
233 models, pathway enrichment analyses of altered genes were performed. The most
234 highly enriched mutated gene set in NSE-p25OE tumors was involved in 'actin filament-

235 based process' (Figure 2E). Other altered cancer-related GO pathways included mitotic
236 cell cycle, Rho-GTPases, cytokine signaling, cell adhesion, and extracellular matrix
237 organization (Figure 2E). In addition, KEGG database indicated enrichment of
238 phosphatidylinositol, GnRH (gonadotrophin receptor hormone), and oxytocin signaling
239 including actin/cytoskeletal-based processes (Figure S1A). Dysregulation in the GnRH
240 and oxytocin signaling pathways have been implicated in several cancers [27, 28], but
241 unexplored in MTC, suggesting an important avenue for further investigation. In
242 contrast, KEGG enrichment of mutated genes in CGRP-p25OE tumors displayed 'Fatty
243 acid metabolism' as the most significantly altered pathway besides glutamate receptor
244 clustering (Figure 2F and S1B). Of note, glutamate signaling is actively involved in
245 bioenergetics and metabolic pathways in cancer [29]. In agreement, glutamate receptor
246 antagonists are known to suppress MTC and carcinoid NET growth and metabolic
247 activity [30]. Likewise, the activation of SREBP, a master transcription factor, and
248 regulator of lipid metabolism [31] was altered in CGRP mice (Figure 2F). These data
249 provide evidence of metabolic derangement in CGRP-p25OE mice. The overlapping
250 mutated genes between NSE and CGRP were prominently enriched in the 'regulation of
251 hormone', a characteristic of MTC patients showing high biosynthetic and hormone
252 secretory activity [32]. In addition, 'cellular response to DNA damage' processes were
253 identified in both NSE/CGRP models (Figure 2G). Based on previous reports, activation
254 of DNA damage response genes is common in MTC whereby modification of chromatin
255 machinery favors a drug-resistant phenotype [33, 34].

256 Heretofore, we showed that activation of aberrant Cdk5 develops human-like
257 MTC that accumulates mutations altering cell cycle and metabolic profiles in respective
258 models. However, it is critical to understand if the mutational landscapes of mouse

259 tumors emulate their human counterparts. To evaluate the application of these tumor
260 models as prototypes for human disease, we compared mutated genes in mouse and
261 human tumors. Out of 1693 altered genes, 42 orthologs were common between NSE-
262 p25OE and human MTC [35] (Figure 3A, S2A, and Table S2). The prominent genes
263 intersecting between human and mouse MTC, such as *RB1*, *AKT1*, and *NDGR2*, are
264 integral to processes including cell proliferation, cell cycle, and immune system function
265 [36-38]. Several other common mutated genes including *SMARCA2*, *Cdk6*, *BTG3*,
266 *ROCK1*, *PLD1*, and *DEFB1* play important roles in cancer progression but are
267 unexplored in MTC and represent interesting targets for future investigation (Figure 3A).
268 The top significantly enriched biological processes common between NSE-p25OE and
269 human tumors include ‘G1/S transition of mitotic cycle’, and ‘mitotic cell cycle phase
270 transition’ (Figure 3B and S2B-C). Moreover, pathways linked to mutated genes were
271 highly clustered across FOXO3A signaling, NOTCH-NFkB signaling, and G1/S phase
272 transition, consistent with those previously reported in MTC patients (Figure 3B) [39-41].

273 Conversely, CGRP-p25OE mouse vs. human tumor comparison revealed five
274 intersecting genes harboring mutations in *RPS6KA2*, *GPM6A*, *PATZ1*, *HACD4*, and
275 *CBFA2T3* (Figure 3C, S3A, and Table S2). Biological processes connected to altered
276 genes were mainly involved in cellular metabolism (*i.e.*, fatty acid metabolism, glycolytic
277 process, and nucleotide metabolism). Notably, a significant impact on the biosynthesis
278 of unsaturated fatty acids and fatty acid elongation pathways was recognized (Figure
279 3D and S3B-C). In concordance, impairments in fatty acid metabolism, purine
280 metabolism, and tri-carboxylic acid cycle were reported in MTC patients compared to
281 healthy controls [42]. In summary, our results demonstrated a profile of signaling
282 pathways altered in human tumors and replicated in our mouse models. Of particular

283 interest are the ‘mitotic cell cycle process’ in NSE-p25OE and ‘metabolic impairment’ in
284 CGRP-p25OE models. Further in-depth understanding of these processes can uncover
285 the underlying cause of the differential rate of tumor progression in individual models
286 and possibly human patients.

287 **Functional impact of p25OE on transcriptomics of mouse tumors**

288 Gene mutations have the propensity to induce transcriptional changes which influence
289 cancer cell progression and responses to chemotherapy. To identify the alterations in
290 gene expression, bulk RNA sequencing was performed on growing and arrested MTC
291 tumors derived from NSE and CGRP models. The principal component analysis
292 demonstrated distinct segregation of gene expression between growing and arrested
293 tumors derived from NSE/CGRP (Figure 4A). Further gene expression analysis
294 indicates a total of 4920 differentially expressed genes (DEGs), of which 2426 were
295 upregulated and 2429 were downregulated in growing NSE-p25OE tumors. Whereas
296 CGRP-p25OE revealed a total of 4348 DEGs, of which 2079 were upregulated and
297 2269 were down-regulated (Figure 4B). Intersection size of unique and common DEGs
298 up- and down-regulated in NSE and CGRP tumors was determined by upset plots.
299 Notably, both NSE/CGRP tumors showed upregulated transcripts of Cdk5R1 and
300 Cdk5RAP2 indicating augmented transcriptional regulation of Cdk5 signaling
301 components in these models (Figure 4C and Table S3).

302 Pathway and process analyses performed on DEGs were clustered based on
303 similarities of enriched terms (p-value < 0.01, gene count, and enrichment factor > 1.5).
304 Network analysis of enriched nodes with a similarity score of >0.3 was connected by
305 edges. Accordingly, upregulated DEGs in NSE tumors show hallmark clusters involved

306 in processes such as cell adhesion, positive regulation of cell migration, cell motility,
307 actin filament polymerization, cytokine signaling, T-cell activation, and lymphocyte
308 proliferation (Figure 4D). The unique genes integrated within the main clusters are
309 shown in Table S4. The downregulated DEG in NSE tumors clustered cell
310 morphogenesis, ion transport, receptor kinases, MAPK, and PI3K activities (Figure 4E).
311 Notably, processes such as tissue morphogenesis, ion transport, cytokine signaling,
312 and extracellular matrix organization were afflicted both with mutations and
313 transcriptional dysregulation in NSE tumors. Further, TRRUST database uncovered the
314 transcriptional factors (TF) namely, c-Jun, Sp1, and NFkB as putative regulators of
315 DEGs in NSE-p25OE (Figure S4A). Interestingly, the activity of c-Jun is regulated via
316 Rho GTPases which in turn drives the transcription of genes involved in the cell cycle
317 progression [43]. This aligns with the exome data showing altered Rho GTPase
318 signaling in NSE mice (Figure 2E). Likewise, the Sp1 is a known regulator of ion
319 transport in the thyroid cancer [44] while the enrichment of NFkB signifies a plausible
320 contribution to cytokine and inflammatory responses in NSE-p25 tumors [45].

321 Analysis of upregulated DEGs in CGRP-p25OE revealed enrichment clusters
322 across the cell cycle, cell division, metabolism of lipids, nucleotide metabolic processes,
323 SUMOylation, RNA splicing/localization, chromatin-modifying enzyme, and transforming
324 growth factor beta (TGF β) (Figure 4F). The prominent gene hits involved in these
325 processes are enlisted in Table S5. The downregulated transcripts altered many
326 metabolic pathways like those afflicted by mutations in CGRP tumors (Figure 4G and
327 Figure 2F). TRRUST query identified Ncoa1 as the putative transcriptional regulator of
328 DEGs in CGRP tumors, which is shown to regulate lipogenic and glucose metabolic
329 pathways [46, 47] (Figure S4B). These results indicate dysregulation of distinct

330 pathways impacted both by mutations and gene expression changes downstream of
331 hyperactive Cdk5 in NSE/CGRP models of MTC.

332 **Consequence of somatic mutations on gene expression of mouse tumors**

333 Genetic abnormalities can influence gene expression and signaling pathways
334 contributing to the tumorigenic process. To prioritize the genes that confer a growth
335 advantage in our MTC models, we determined the influence of mutations on the
336 expression level of their residing genes. The upset plot shows 128 and 144 altered
337 genes that correlate with changes in mRNA expression of NSE-p25OE tumors (Figure
338 5A and Table S6). The top-upregulated mRNA gene sets hit by somatic mutations were
339 enriched in spindle assembly, APC/C-CDC20 complex, kinetochore assembly, and
340 NOTCH signaling pathways (Figure 5B). Conversely, the key mutated genes that
341 correlated with downregulated transcripts were primarily involved in cancer-associated
342 proliferative signaling (Figure 5C). Subsequent prioritization of mutated genes based on
343 changes in gene expression displayed BUB1B, MAD1L1, and DDL4 as main targets,
344 elevated in growing tumors compared to arrested tumors signifying a potential tumor-
345 promoting role (Figure 5D). In addition, the suppression of EPHA4 and NFkB2 mRNA
346 levels in growing tumors indicates tumor suppressive function of the residing mutations
347 (Figure 5E).

348 Next, we determined the consequence of mutations on the expression profile of
349 the CGRP-p25OE model. Overlap of WES with RNA seq data revealed six alterations
350 that caused mRNA upregulation (Figure 5F and Table S6). Pathways analysis disclosed
351 metabolic processes such as hyaluronan metabolism, glycosaminoglycan metabolism,
352 and carbohydrate metabolism in addition to extracellular matrix-receptor interaction and

353 cell adhesion processes associated with upregulated mutated genes (Figure 5G).
354 Further, 17 mutated genes correlated with transcriptional repression (Figure 5F).
355 Enrichment analysis of intersecting genes indicates suppression of mTOR signaling,
356 RSK activation, CREB phosphorylation, and fatty acid elongation in mitochondria
357 (Figure 5H). Finally, gene prioritization based on alterations in gene and transcript levels
358 revealed HMMR, and MPZL1 as tumor promoters, whereas RPS6KA2 and PDK2 as
359 tumor suppressors in growing CGRP tumors (Figure 5I-J). In conclusion, the
360 comparative mutational and transcriptomic landscape of CGRP/NSE models revealed
361 candidate genes that may serve as potential regulators of tumor progression
362 downstream of aberrant Cdk5.

363 **Histodiagnostic characterization of Cdk5 activity in mouse and human tumors**

364 We previously showed that hyperactive Cdk5 plays a critical role in MTC progression
365 [10]. A positive correlation was demonstrated between Cdk5 and its downstream targets
366 in human MTC. The main protein phosphorylation substrates of this aberrantly active
367 kinase included P-T143 FAM53C, P-T202 LARP6, P-S988 RBL1, P-S17 H1.5, and P-
368 S391 SUV39H1 [48]. Both NSE/CGRP models manifest aberrant Cdk5 activation as
369 indicated by increased Cdk5-dependent phosphorylation in growing (p25OE) versus
370 arrested tumors (p25OFF) (Figure. S5A), suggesting these phosphosites may serve as
371 biomarkers for the detection of Cdk5-driven human tumors. However, the polyclonal
372 antibodies first used to detect these Cdk5 targets were raised against short phospho-
373 peptide epitopes that were limited in specificity and often detected cross-reactive
374 proteins harboring similar phosphorylation site motifs. Considering the potential
375 importance of aberrant Cdk5 in MTC diagnosis, we sought to derive more selective and

376 specific monoclonal antibodies (mcAb) that could precisely probe Cdk5 activity in
377 mouse and human tumors. Recombinant phosphorylation state-specific mcAb were
378 generated in collaboration with the National Cancer Institute's Antibody Program via its
379 Antibody Characterization Laboratory (ACL). The specificity of mcAb in growing (G) and
380 arrested (A) tumors were evaluated for their detection of Cdk5 phosphorylation sites by
381 immunoblotting, immuno-cyto, and -histochemistry. Expression analysis of P-RBL1, P-
382 LARP6, P-H1.5, P-SUV39H1, and P-FAM53C showed improved efficiency and reduced
383 non-specific binding of mcAb over polyclonal (pcAb) (Figure S6A-E). Further, the mcAb
384 was tested on mouse cells derived from NSE-p25OE cells. These cells preserve the
385 characteristics of mouse MTC where cell proliferation is regulated by p25OE (Figure
386 6A). Increased nuclear staining of Cdk5 target sites– P-RBL1, P-LARP6, and P-H1.5
387 were identified in growing/p25OE mouse cells compared to their arrested/p25OFF
388 counterparts (Figure 6B). A similar effect was mirrored in CGRP/NSE-derived mouse
389 tumor tissues where the expression of phospho-targets was higher in p25OE vs
390 p25OFF tumors, suggesting dependency of these phosphosites on aberrant Cdk5
391 activity (Figure 6C). The improved detection of aberrant Cdk5 activity in
392 inducible/arrestable mice models spurs the efforts to evaluate these mcAbs in human
393 cells and tissues. Human MTC TT cells known for Cdk5-dependent cell growth were
394 utilized was probing key phosphoproteins [49]. The main phosphoproteins including,
395 RBL1 (RB transcriptional corepressor like 1) regulate the cell cycle, and proliferation by
396 modulating chromatin structure. LARP6 (La Ribonucleoprotein 6), a translational
397 regulator shuttles between cytoplasm and nucleus promotes nucleic acid binding while
398 linker histone H1.5 facilitates chromatin compaction. The immunocytochemical staining
399 of TT cells displayed nuclear localization of these phosphoproteins similar to that

400 observed in mouse MTC cells, consistent with the known function of these proteins in
401 chromatin structure modulation. Having established selective detection of these
402 aberrant Cdk5 effectors in human cells, we obtained histological tumor sections from a
403 small cohort of MTC patients to assess the presence of these sites. Interestingly, the
404 immunohistochemical results showed varying degrees of phospho-site staining across
405 MTC patients confirming a characteristic heterogeneous expression profile of MTC
406 tumors (Figure 6E).

407 Our data suggest that these phosphorylation biomarker detection reagents have
408 the potential to identify aberrant Cdk5-driven human patient tumors. To explore this
409 further, the expression of key Cdk5 phosphorylation sites including P-RBL1 and P-
410 LARP6 was more broadly assessed across the three independent human MTC tissue
411 microarrays (TMA 1-3), and compared with the normal non-tumor controls such as the
412 prostate, placenta, spleen, and liver (Figure 7A-B). Quantification of phospho-site
413 expression indicated by optical density (OD), shows 27% and 44% of patients with
414 elevated P-RBL1 and P-LARP6 in TMA1 respectively while 28% of patients exhibited an
415 increase in both P-LARP6/P-RBL1 (n=25; TMA1; stages: pT1bNX, and pT2N0). In TMA
416 2, 25% of patients with lymph node metastasis showed increased P-RBL1/ P-LARP6
417 (n=12; stage: pT3N1b). Quantification of TMA 3 displayed an increase of both
418 phosphosites in ~36% of patients (n=11; stage: pT2NX and few cases with metastatic
419 deposits in lymph nodes) (Figure 7C-D). Overall histo-analysis of tissue microarrays
420 showed a significant increase of Cdk5 phosphosites in patient tumors trending towards
421 metastasis compared to the normal tissues (Figure 7A-D). Until last year, the World
422 Health Organization (WHO) did not recommend the testing of Ki-67 proliferation index in
423 cases of MTC. Therefore, it is advised by the pathologist in this study to acknowledge

424 the fact that our dataset cases were not tested for Ki-67 as it was not considered a
425 standard practice during the time of surgery and pathological diagnosis. In summary,
426 our findings characterize the efficacy of mcAbs in identifying aberrant Cdk5 activity
427 across mouse and human tumors manifesting diagnostic value in stratifying cancer
428 patients that are most likely to have clinical benefits from Cdk5 inhibitors.

429 **Discussion**

430 The lack of reliable animal models that mimics aggressive MTC disease is a major
431 setback in the investigation of genetic alterations, identification of diagnostic
432 biomarkers, and molecular mechanisms associated with malignant growth. Cdk5 is
433 aberrantly activated in several NETs including MTC, contributing to tumor development.
434 To circumvent the lack of appropriate models, we utilized Cdk5 as a tool to generate
435 conditional transgenic mice that develop 'slow' and 'rapid' onset human-like MTC
436 tumors. Aberrant Cdk5 can be characterized by the simultaneous activation of multiple
437 pathways regulating cell proliferation and invasion. Hence it is critical to capture the
438 complexity of signal transduction downstream of hyperactive Cdk5 to identify distinctive
439 markers of aggressiveness and targets for therapeutic intervention. Here we
440 characterized two mouse models of MTC, namely NSE-p25OE and CGRP-p25OE,
441 mediating mild and aggressive onset of the disease. To understand the genes and
442 pathway perturbation in these models, exomic and RNA sequencing was performed in
443 tumors derived from the respective models. Computational analysis identified potential
444 pathways associated with the altered genes in mouse tumors and those intersecting
445 with human tumors. In addition, critical genes were prioritized based on changes in the
446 gene and transcript levels.

447 Major pathways associated with altered genes in NSE-p25OE tumors were
448 involved in actin filament-based processes. Actin-dependent enrichment included
449 mitotic cell cycle, cell adhesion, Rho GTPase, actomyosin, and extracellular matrix
450 organization, processes known for their role in cancer cell proliferation [50-53]. In
451 agreement, the causal impact of unbalanced actin dynamics in MTC tumor invasiveness
452 and growth has been suggested [54]. Cdk5 is known to regulate actin microtubule
453 cytoskeleton, suggesting a Cdk5-dependent phenotype is acquired by the NSE model
454 [55, 56]. Furthermore, the main overlapping mutated genes and pathways altered in
455 NSE-p25OE and human tumors were comprised of RB1, AKT1, SMARCA2, PLD1,
456 FOXO3a, Notch, NFkB, and G1/S phase transition. Notably, many of these pathways
457 have previously demonstrated oncogenic or tumor-suppressive roles in thyroid cancer
458 [36, 39, 40, 57]. Moreover, network pathway analysis of transcriptomic data revealed
459 recurrent pathways afflicted both by mutations and gene expression changes. These
460 data suggest that neoplastic transformation in the slow growing NSE-p25OE model
461 recapitulates the indolent form of human disease that may have a higher plausibility of
462 dysregulated actin dynamics and mitotic cell cycle processes.

463 Conversely, the rapidly growing CGRP-p25OE model harbored mutations that
464 predominantly impacted fatty acid metabolism. This finding is supported by a recent
465 study that demonstrated perturbation of fatty acid metabolism in MTC patients
466 compared to healthy controls [42]. In addition, the overlapping mutated genes between
467 CGRP-p25OE mouse and human tumors clustered pathways associated with fatty acid
468 biosynthesis. This highlights the likelihood of metabolic dysregulations in instilling
469 aggressive phenotype in CGRP mouse and human MTCs. An increasing number of
470 studies show that malignant tumors are highly dependent on lipid metabolism and fatty

471 acid synthesis for growth and survival [58, 59]. Cdk5 is an emerging candidate
472 entangled in several metabolic conditions including cancer, diabetes, and obesity [60]
473 [61]. Notably, Cdk5-dependent phosphorylation of PPAR γ and PRKAG2 impairs key
474 metabolic sensors such as adiponectin, adiponectin, and AMPK kinase [12, 62]. A direct
475 connection between Cdk5 and lipid metabolism was recently reported where Cdk5-
476 mediated phosphorylation of acetyl-CoA synthetase 2 (ACSS2) regulates lipid
477 production and promotes glioblastoma growth [63].

478 Following WES, transcriptomic analysis of CGRP-p25OE tumors also revealed
479 alteration in metabolic pathways including lipid metabolism, arachidonic acid
480 metabolism, DNA metabolism, and metabolism of vitamins/ cofactors. Apart from
481 metabolism, cell cycle, and cell division mRNA clusters were enriched in CGRP tumors.
482 Periodic expression of cell cycle regulatory genes facilitates tumor cell proliferation [64].
483 For example, altered and periodic expression of cell cycle regulatory genes such as
484 *PTTG1*, *AURKA*, or loss of *CDK/RB*, *p18*, and *p27* are known for promoting
485 aggressiveness in MTC [65, 66]. Based on our analysis, we believe dysregulation of
486 lipid metabolism and cell cycle processes in orchestration with aberrant Cdk5 may lead
487 to aggressive phenotype in CGRP-p25OE tumors. Further investigation will be needed
488 to validate these mechanisms.

489 We also examined the transcriptional correlates of mutated genes to prioritize
490 crucial genes in mice models. The principal mutations that induced changes in the
491 mRNA expression of NSE-p25OE were in the leading edge of mitotic spindle assembly
492 and Notch signaling components. Our findings, in concordance with previous studies,
493 suggest that abnormal mitotic spindle and chromosomal instability can be vital drivers in
494 MTC progression [67] [68]. The involvement of Notch in the development of thyroid C-

495 cells and MTC growth further corroborate our analysis [40]. The spindle assembly and
496 Notch-related genes including *BUB1B*, *MAD1L1*, and *DLL4*, showed increased
497 expression in growing tumors and, hence, may be viewed as tumor-promoters, whereas
498 downregulated expression of mutated *EPHA4* and *NFKB2* in growing tumors as tumor
499 suppressors.

500 Assessment of mutational impact on gene expression of CGRP-p25OE mouse
501 revealed perturbation in metabolic and mTOR signaling pathways. Clearly, the
502 disruption of metabolic pathways was consistent across the exome-sequencing and
503 transcriptomic data, suggesting the need for functional investigation of metabolic targets
504 in aggressive tumors. For instance, *HMMR* (hyaluronan-mediated motility receptor) is a
505 putative neoplastic marker and a functional component of metabolic pathways
506 associated with cancer progression and poor clinical outcomes, was found highly
507 elevated in growing CGRP-p25 tumors [69]. Further, mutations and concomitantly
508 decreased expression of *RPS6KA2* (Ribosomal protein S6 kinase A2) and *PDK2*
509 (Pyruvate dehydrogenase kinase 2) implicate their function as potential tumor
510 repressors in CGRP tumors. Of note, both *RPS6KA2* and *PDK2* are components of
511 PI3K/Akt/mTOR pathway involved in cell cycle regulation and metabolic sensing in
512 glycolytic cancers [70] [71] [72].

513 Alterations at the genetic and transcriptional levels of certain genes within a
514 pathway can influence other genes eliciting interactions of multiple pathways. Our
515 findings reinforce the need to classify patients based on aberrant Cdk5 activity, and
516 further subclassify them into mild or aggressive forms based on the activation of distinct
517 molecular pathways as described here. Here we developed and demonstrated new
518 biomarker detection agents in the form of recombinant monoclonal antibodies that can

519 distinguish Cdk5-dependent tumors. Previously, we showed that these biomarkers can
520 predict anti-Cdk5 therapy responsiveness in patient-derived xenografts [48]. In the
521 future, we aim to develop a monoclonal antibody-based diagnostic assay that can
522 effectively stratify patients dependent on aberrant Cdk5 activity, as a potentially
523 important step toward personalized therapy. Understanding the pattern of candidate
524 oncogenic or tumor suppressor markers downstream of Cdk5-dependent MTC is
525 crucial. Our findings meaningfully contribute to delineating the causes of malignant
526 progression and can provide a path to potentially advance the effectiveness of the
527 current treatment regimens.

528 In summary, we established transgenic mouse models that recapitulate both slow
529 and rapid-onset human-like MTC tumors driven by aberrant Cdk5 activity. The CGRP-
530 p25OE model mimics aggressive tumors primarily characterized by alterations in
531 metabolic pathways. NSE-p25OE mice develop slow-growing tumors characterized by
532 dysregulation of mitotic spindle assembly and Notch signaling components. Our findings
533 encourage functional validation of putative targets that may lead to the development of
534 personalized therapeutic strategies involving Cdk5 inhibitors in combination with patient-
535 specific signaling modulators such as those targeting fatty acid metabolism or cell cycle
536 regulators.

537 **Declaration of interests**

538 The authors declare no competing interests.

539 **Acknowledgments**

540 We thank the National Cancer Institute Antibody Characterization Laboratory, the Office
541 of Cancer Clinical Proteomics Research, and the Frederick National Laboratory for
542 Cancer Research for the generation of recombinant monoclonal antibodies. We thank

543 the UAB O’Neal Comprehensive Cancer Center Small Animal Imaging Facility, UAB
544 Genomics Core, and the UAB High-Resolution Imaging Facility (P30CA013148-49, and
545 S10OD028498). This research was supported by funding from the Robert Reed
546 Foundation (H.C., S.R.), the International Thyroid Oncology Group (H.C.), the SDHB
547 Pheo Para Coalition (J.A.B.), and the Neuroendocrine Tumor Research Foundation
548 (J.A.B.). NIH awards that contributed to this work include the UAB Medical Scientist
549 Training Program T32 GM008361 (B.H.), F31CA260945 (B.H.), K08CA234209 (B.R.),
550 CA245580 (R.J.S.), American Cancer Society Postdoctoral Fellowship (A.M.C.), and
551 ITOG (H.C.). Some aspects were facilitated by MH116896 and MH126948 (J.A.B.).
552 Research was also supported by the UAB Center for Clinical and Translational
553 Sciences Training Grant (TL1 TR001418).

554 **Author contributions**

555 Conceptualization: P.G., J.A.B.; Methodology: P.G., J.A.B.; Investigation: P.G., B.H.,
556 N.K., R.T., F.W., P.K.; A.M.C.; D.L; Resources: H.C., B.R., R.J-S., S.R.; Writing Original
557 Draft: P.G.; Review & Editing: J.A.B.; Funding Acquisition and Supervision: S.M., R. J.-
558 S., S.R., J.A.B.

559 **Figure legends**

560 **Figure 1.** Generation of transgenic mouse models of MTC. (A) Schematic showing
561 tetracycline controlled bitransgenic system where a neuroendocrine cell-specific
562 promoter linked to the tetracycline transactivator (tTA) activates Tet-Operon driving p25-
563 GFP expression. The resultant Cdk5–p25GFP interaction promotes neoplastic
564 transformation. (B-C). Schematic showing the induction of p25GFP in doxycycline-
565 controlled bitransgenic models driven by NSE and CGRP promoters. (D) Gross

566 anatomy of tumors in NSE-p25GFP and CGRP-p25GFP models (upper panel);
567 histopathological neuroendocrine features characterized by H & E (bottom panel), scale;
568 50 μ m, tr; trachea. (E) Tumor volume growth curves of NSE (growing n=4; arrested n=5)
569 and CGRP (growing n=3; arrested n=5) mice showing weekly measurements of tumor
570 volume under Dox Off vs. Dox On conditions (left); Bar graph on right shows tumor
571 volume fold change of growing tumors (G; 14 weeks Dox Off) relative to arrested (A; 14
572 weeks Dox On); values are mean \pm SD, *p<0.05 compared by Student's *t*-test. (F-G)
573 Representative immunostains comparing expression of p25GFP and Chromogranin A
574 (ChrA) in NSE (F) and CGRP (G) mice tissues extracted from growing and arrested
575 tumors. A version of NSE-p25GFP MTC tumors (1D, left) was previously published [10]
576 and shown here at a different magnification for comparison.

577 **Figure 2.** Mutational landscape of mouse tumor models. (A) Mutation profile of growing
578 (Dox Off or p25OE) NSE (n=4) and CGRP (n=3) mouse tumors across chromosomes.
579 (B) Plot of variant classification by type; frequency of variant (y-axis), colors denote
580 types of variation. (C) Variant type presented as SNP (single nucleotide polymorphism),
581 INS (insertion), DNP (double nucleotide polymorphism), DEL (deletion), TNP (triple
582 nucleotide polymorphism); frequency (y-axis). (D) UpSet plot showing counts of unique
583 or overlapping mutated genes in NSE and CGRP models. (E) Bar chart displaying
584 enriched pathways associated with altered genes in NSE-p25OE mice; (F) Enriched
585 pathways in CGRP-p25OE mice; (G) Enriched pathways common in –NSE and –CGRP
586 p25OE mice. Significant functions are shown where p-value < 0.01.

587 **Figure 3.** Comparison of mouse and human tumors mutational profile. (A) Venn
588 diagram showing overlapping genes between NSE-p25OE mice and human tumors

589 [35]. (B) GO term enrichment analysis shows biological processes and pathways
590 associated with the altered genes shared by NSE-p25OE mice and human tumors. (C)
591 Overlapping mutated genes in CGRP-p25OE mice and human tumors [35] are shown.
592 (D) GO analysis of overlapping genes shared by CGRP-p25OE mice and human
593 tumors. Bars sorted by p-value ranking; p-value cut-off < 0.05; GO, Gene Ontology.

594 **Figure 4.** Transcriptomic analysis of mouse models. (A) Principal component analysis
595 of RNA-seq reads in NSE-p25OE ($n = 4$ growing; $n = 5$ arrested) and CGRP-p25OE
596 mice ($n = 5$ growing; $n = 5$ arrested). (B) Volcano plot presenting differentially expressed
597 genes (DEGs) in growing vs. arrested tumors of NSE-p25OE and CGRP-p25OE
598 models. Red = upregulated DEGs; Green = downregulated DEGs; $\log_2\text{FC}>1.5$. (C)
599 UpSet plot summarize unique and overlapping DEGs in NSE and CGRP p25OE
600 models. Visualization of enrichment network of DEGs up and downregulated (D-E) in
601 NSE-p25OE mice, and (F-G) in CGRP-p25OE mice. Cluster annotation is indicated by
602 color code, nodes with the same color are closely spaced and associated with the same
603 cluster, clusters were labeled manually; enriched terms with a similarity score of >0.3
604 are connected by edges.

605 **Figure 5.** Impact of genetic alterations on mRNA expression. (A) UpSet plot depicts the
606 overlap between mutations and corresponding gene expression in NSE-p25OE mice.
607 (B-C) Pathway visualization of overlapping genes afflicted both with mutations and
608 changes in mRNA expression. Bar charts showing pathways associated with the
609 mutated genes where mRNA was up- (B) or down-regulated (C) in NSE-p25OE mice.
610 (D) Violin plots compare mRNA reads of mutated genes involved in spindle assembly
611 and Notch signaling. (E) Violin plots compare mRNA reads of mutated genes enriched

612 in cancer-associated proliferative signaling (G, growing; A, arrested tumors). (F)
613 Intersection size of mutated genes and corresponding mRNAs in CGRP-p25OE mice.
614 (G-H) Functional enrichment of overlapping mutated genes where mRNA was either up-
615 (G) or down-regulated (H) in the CGRP-p25OE mice. (I) Plots showing mRNA reads of
616 mutated genes associated with metabolic pathways and cell migration, or (J) mRNA
617 reads of mutated genes involved in mTOR signaling.

618 **Figure 6.** Efficacy of monoclonal antibodies for detection of aberrant Cdk5 activity. (A)
619 Graph showing cell proliferation in mouse MTC cells under p25OE vs. p25OFF
620 conditions, n = 3, Mean \pm SD, *** p < 0.001. (B) Immunocytochemical analysis of Cdk5-
621 dependent phosphorylations in mouse MTC cells as indicated, scale; 70 μ m. (C)
622 Immunohistochemical staining of Cdk5 phosphorylations in growing (p25OE) and
623 arrested (p25OFF) tumor sections derived from NSE/CGRP models, scale; 50 μ m. (D)
624 Immunofluorescent and (E) Immunohistochemical micrographs of Cdk5 phosphosites in
625 human TT cells and patient tumor sections, respectively (n = 5), scale; 50 μ m.

626 **Figure 7.** Histological evaluation of aberrant Cdk5 activity in human tissue microarray.
627 (A-B) Representative immunohistochemical micrographs showing Cdk5 phosphosites
628 *viz.* P-RBL1 and P-LARP6 in tissue microarray sections of MTC tumors. magnification;
629 4x (scale, 200 μ m), 20x (scale, 50 μ m). (C-D) Quantification is presented as the optical
630 density for (C) P-RBL1 (TMA 1-3), and (D) P-LARP6 (TMA 1-3). TMA 1: Nor = 5, tumor
631 = 25; TMA 2: Nor = 5, tumor = 12; TMA 3: n = 5, tumor = 11. *p < 0.05, **p < 0.01, ***p
632 < 0.001; values compared using Student's *t*-test with Welch's correction.

633 **Supplementary legends**

634 **Figure S1.** Enrichment analysis of mutated genes in mouse tumors. KEGG and GO
635 enrichment in (A) NSE-p25OE and, (B) CGRP-p25OE mice. y-axis = pathway
636 description; x-axis = fold enrichment. Analysis performed in Shiny GO 0.76.2; the
637 bubble size indicates the number of genes, and the bar color code signifies the
638 corrected p-value as indicated. GO: Gene Ontology (biological process); KEGG: Kyoto
639 Encyclopedia of Genes and Genomes.

640 **Figure S2.** Mitotic cell cycle pathways shared by NSE mouse and human tumors. (A)
641 UpSet plot showing intersecting mutated genes in mouse and human tumors. (B)
642 Lollipop chart and (C) network visualization summarize significantly enriched GO terms
643 common in NSE and human tumors. In a network diagram, two nodes are connected if
644 they share >20% of their genes, FDR cutoff = 0.05.

645 **Figure S3.** Metabolic pathways shared by CGRP mouse and human tumors. (A) Plot
646 showing counts of unique and overlapping genes between mouse and human tumors.
647 (B) Pathway and process enrichment and (C) Network tree of significantly enriched
648 gene sets common in CGRP-p25OE mouse and human MTC, FDR cutoff = 0.05.

649 **Figure S4.** Enrichment of transcription factors in NSE-p25OE mice. (A) Plot showing
650 putative regulators of DEGs in NSE-p25OE mice determined via TRRUST database
651 [73]. (B) Summary of the enriched transcription factor in CGRP-p25OE mice. TRRUST
652 database revealed putative regulators of DEGs in CGRP-p25OE mice. Terms with a p-
653 value < 0.01; minimum count of 3, enrichment factor > 1.5 [74].

654 **Figure S5.** Detection of Cdk5 activity in NSE and CGRP tumors. (A) Immunoblots
655 showing expression levels of p25GFP, P-RBL1, and P-H1.5 in tissue lysates extracted

656 from growing (p25OE) vs. arrested (p25OFF) tumors. Polyclonal antibodies were used
657 for probing the indicated phosphosites; mMTC = mouse MTC.

658 **Figure S6.** Characterization of recombinant phospho-specific mcAbs in mouse tumors.
659 Comparative analysis of Cdk5 phosphorylation state-specific polyclonal antibodies
660 (pcAb) vs. recombinant mcAbs. Lysates from growing (G) and arrested (A) tumors were
661 analyzed via immunoblotting using Abs as indicated. Phospho-sites probed were (A)
662 phospho-Ser988 RBL1, (B) phospho-Thr202 LARP6, (C) phospho-Ser17 Histone H1.5,
663 (D) phospho-Ser391 SUV39H1, and (E) phospho-Thr143 FAM53C.

664

Supplemental information

Download all supplemental files included with this article.

Table S1. Data summary of mutational profile of mouse tumors, related to Figure 2.

Table S2. Summary of overlapping mutated genes in mouse and human tumors, related to Figure 3.

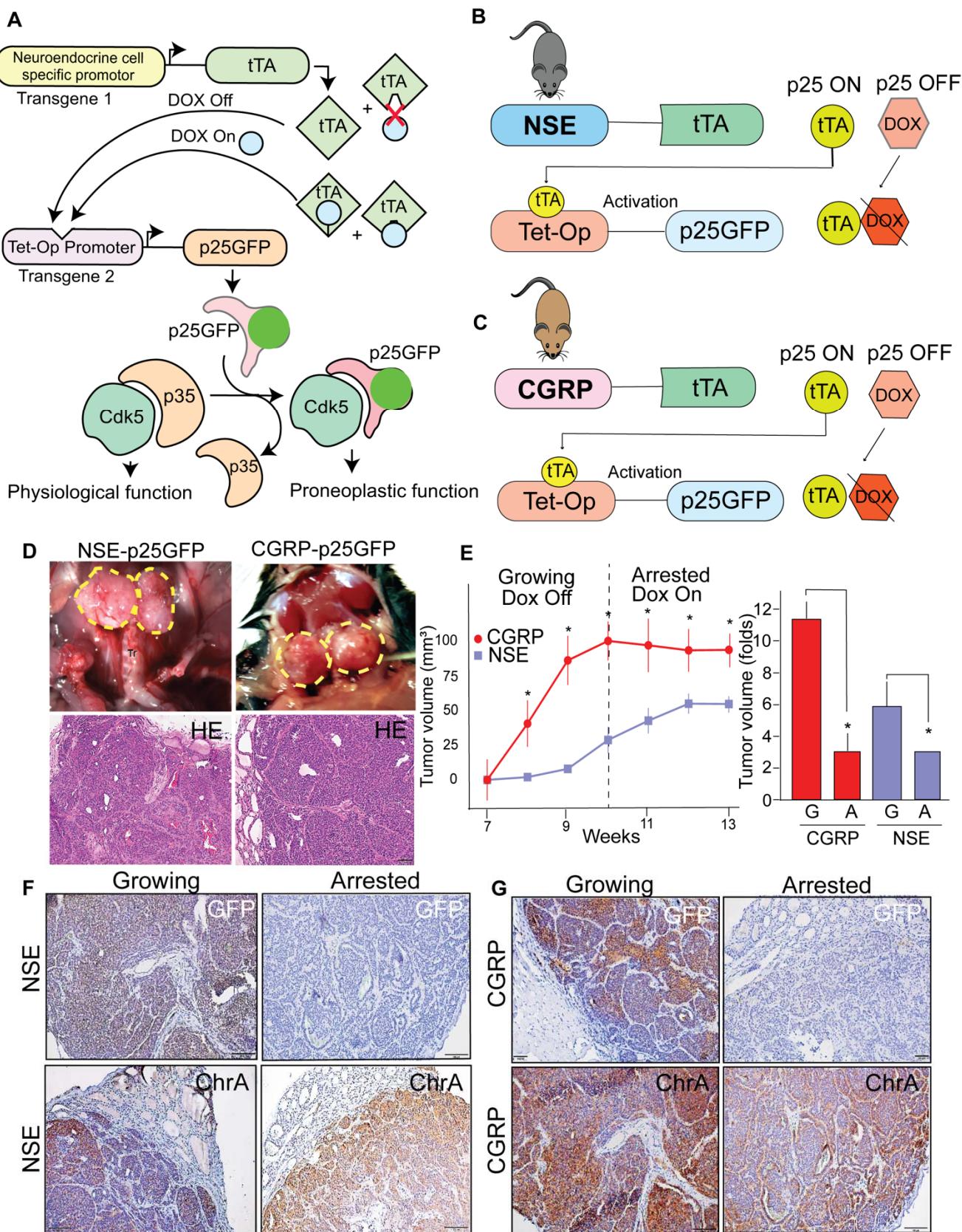
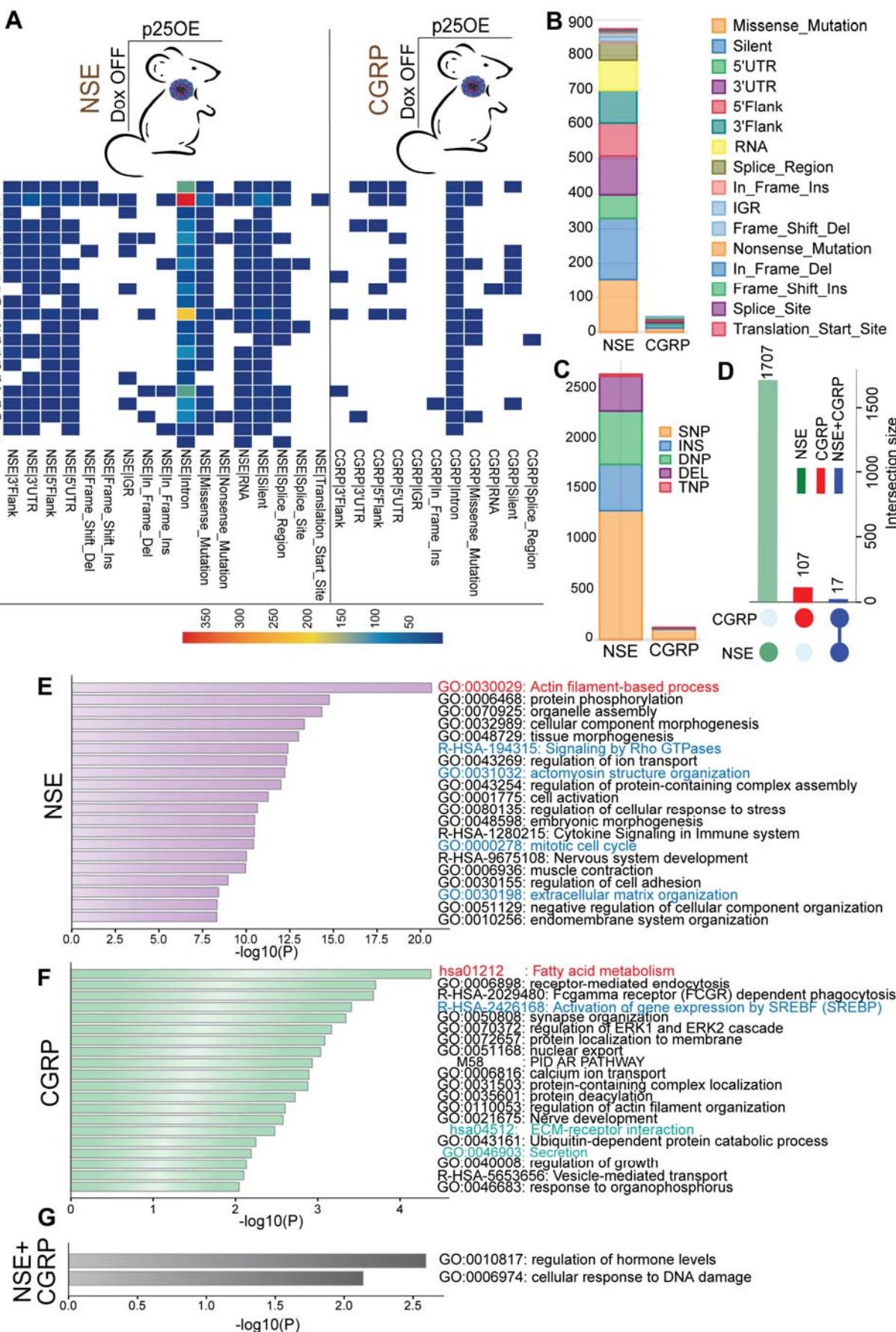
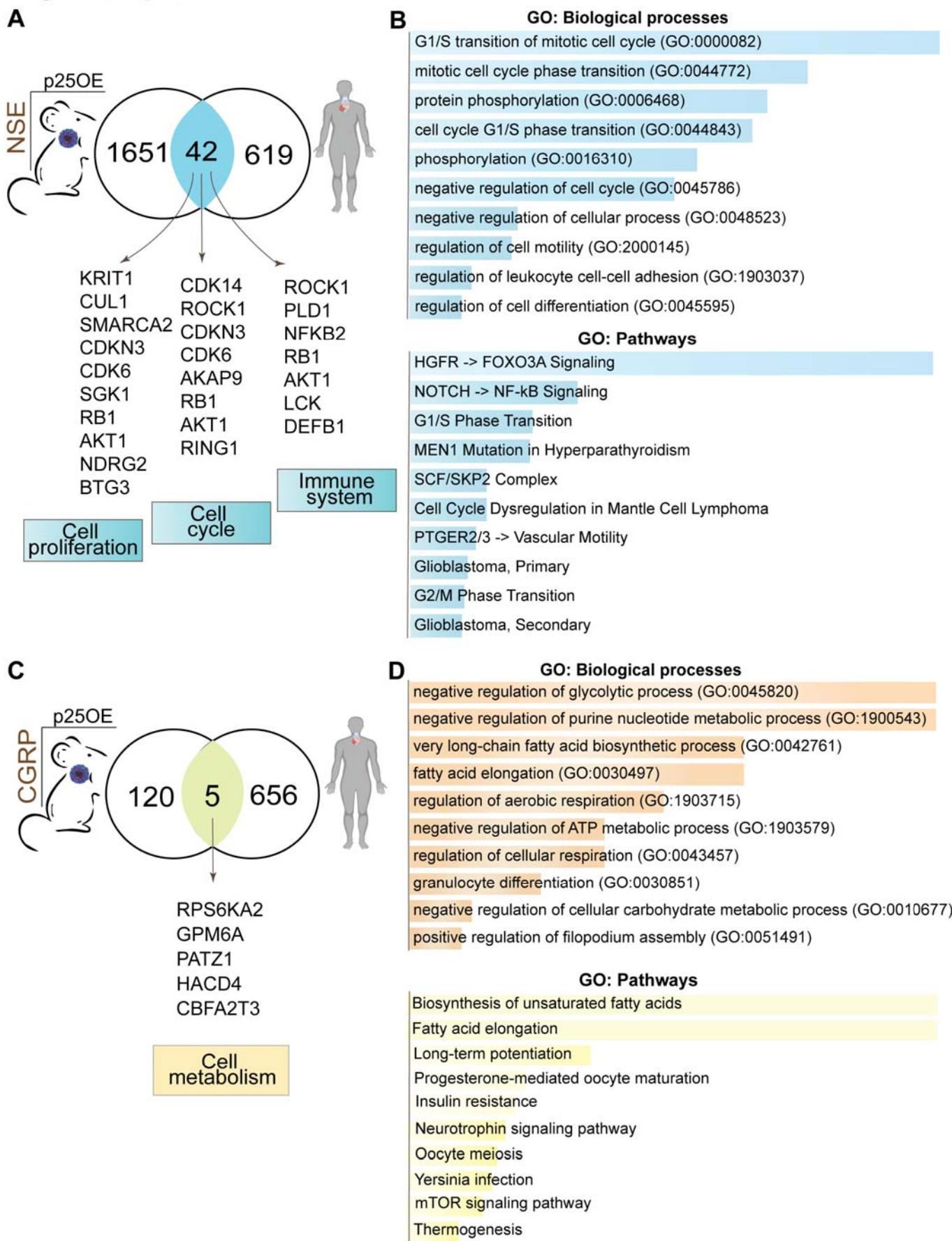
Table S3. List of differentially expressed genes (DEGs) in NSE-p25OE and CGRP-p25OE mice, related to Figure 4.

Table S4 and S5. List of gene hits associated with the main clusters of upregulated DEGs in NSE-p25OE and CGRP-p25OE tumors respectively, related to Figure 4.

Table S6. List of altered genes that correlate with changes in mRNA expression of mouse tumors, related to Figure 5.

Figures

Figure 1, Gupta, et al.

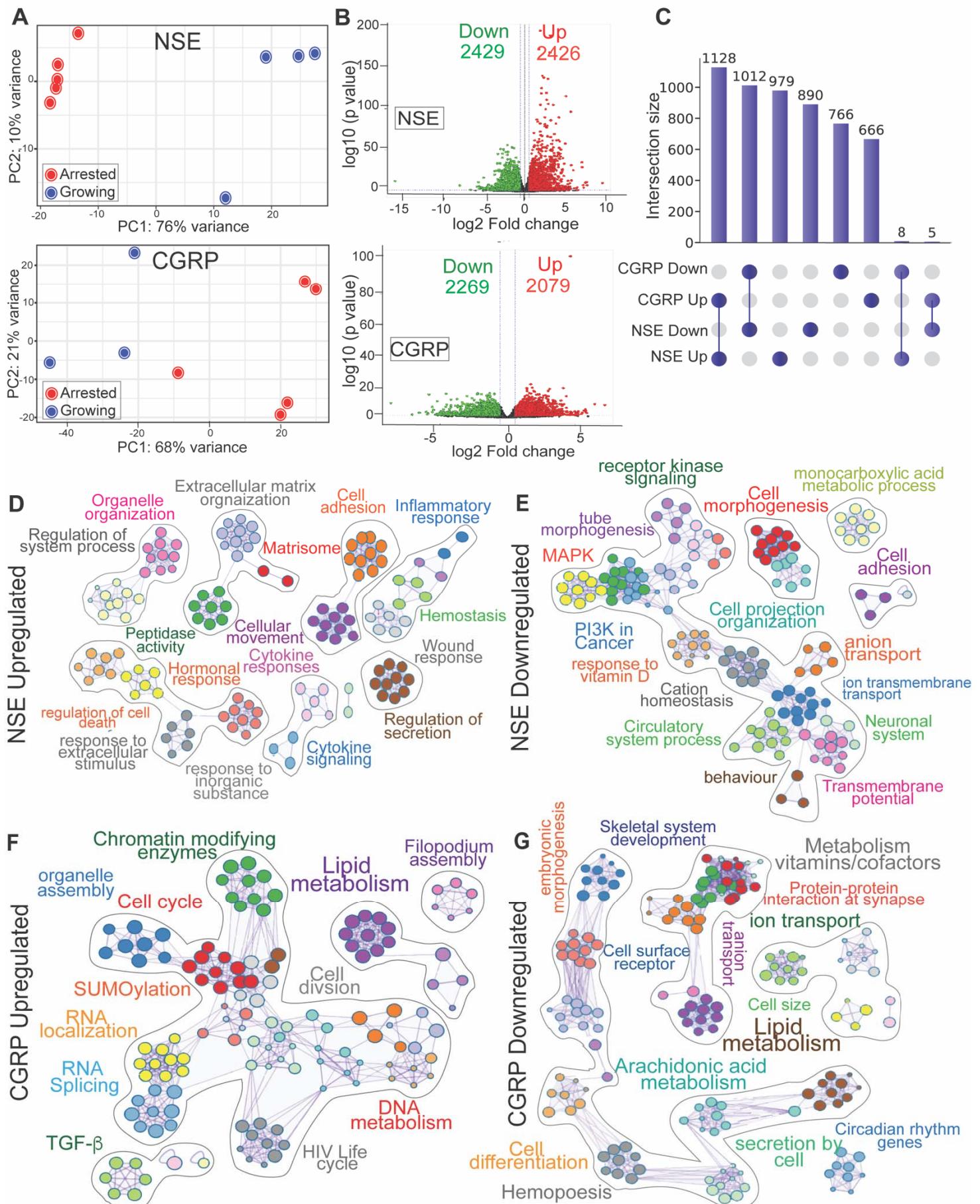
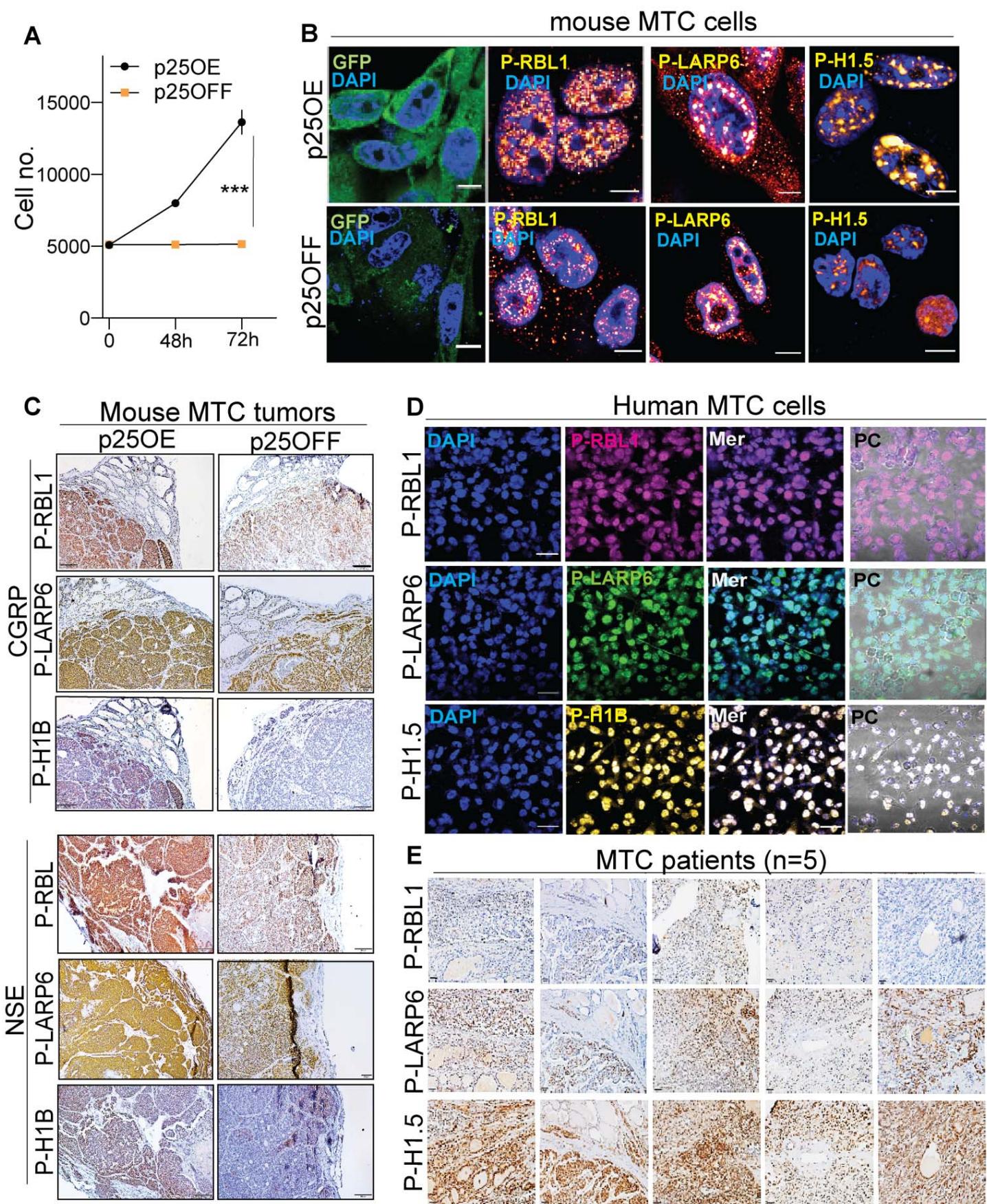
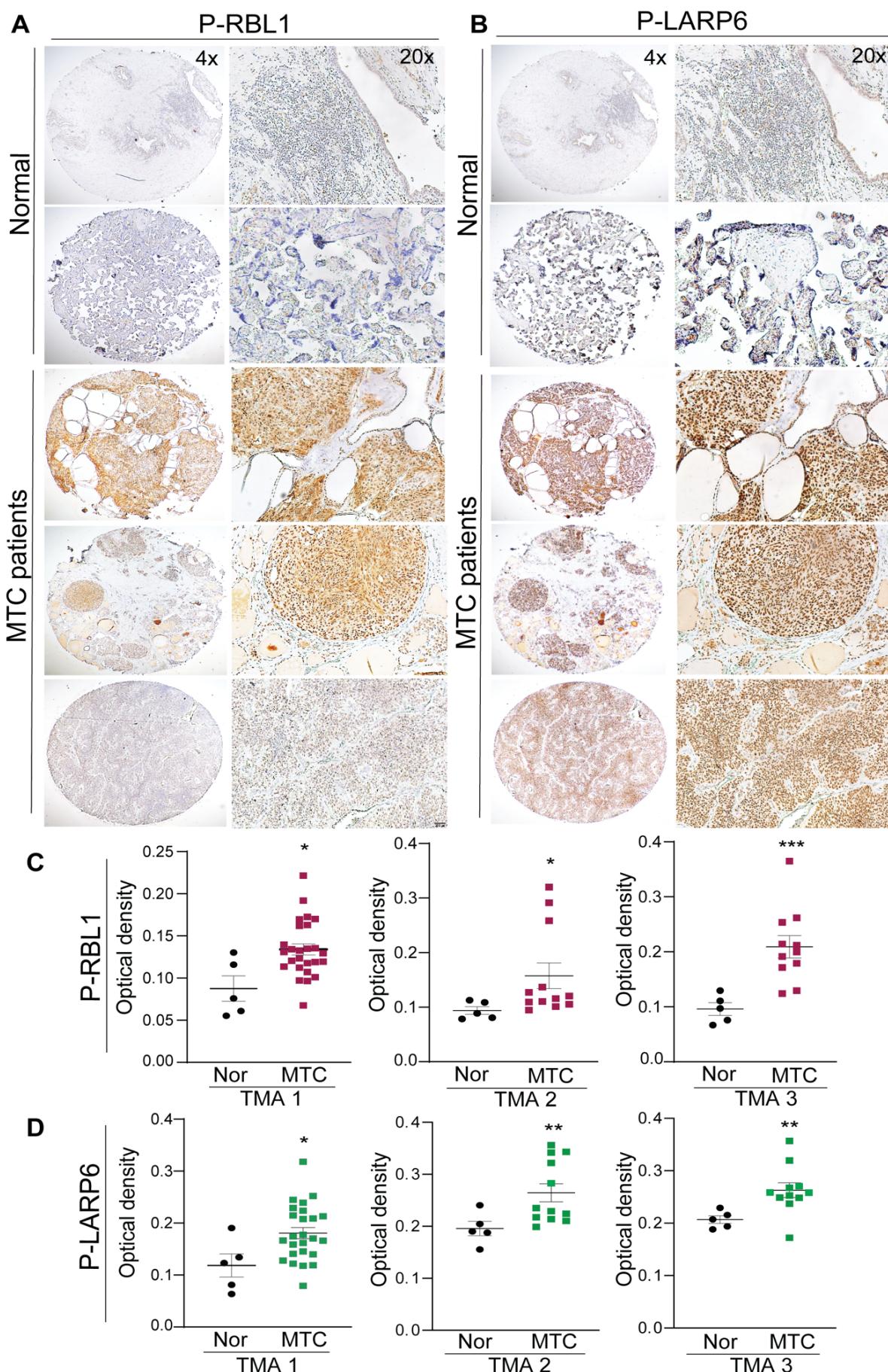
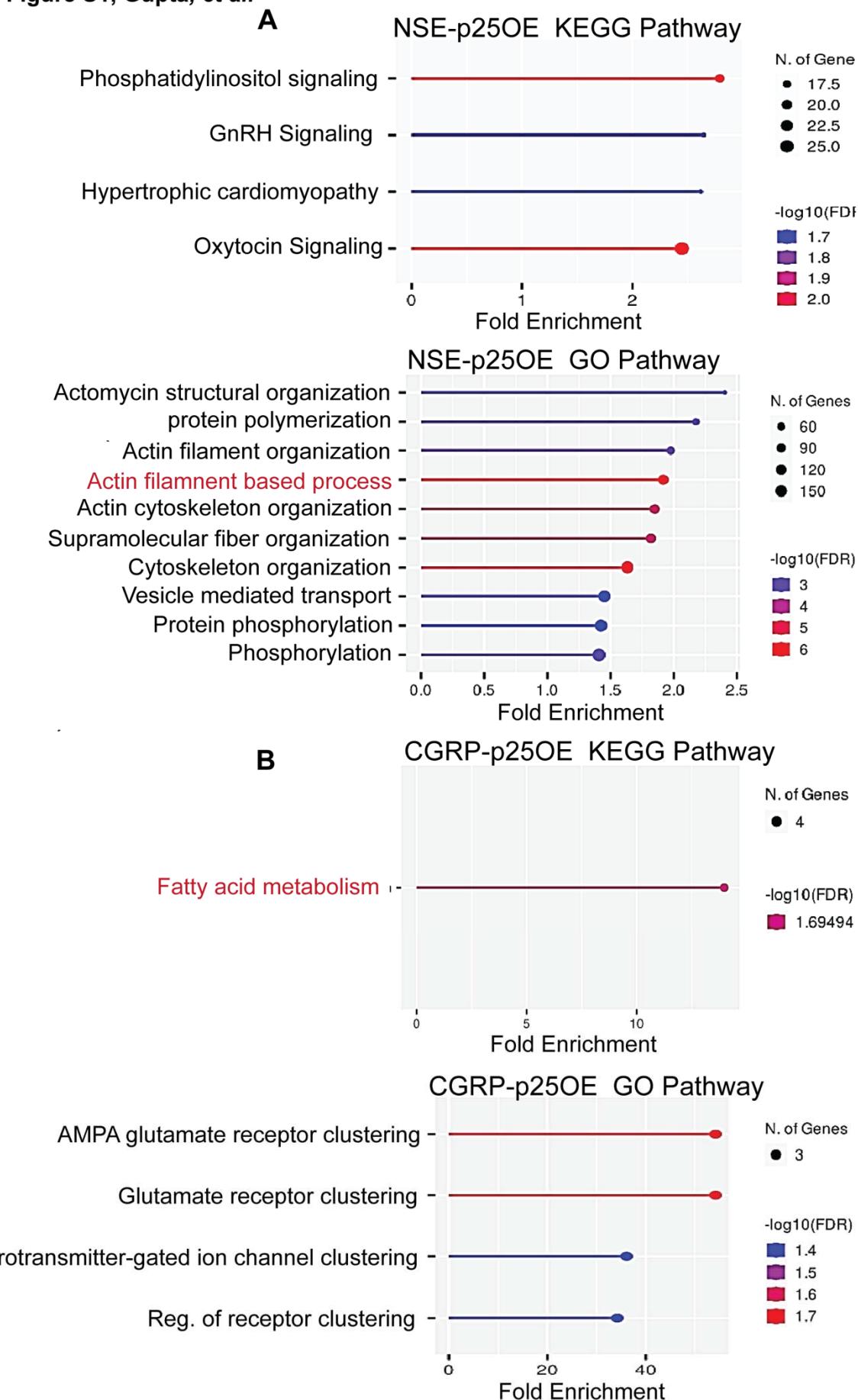
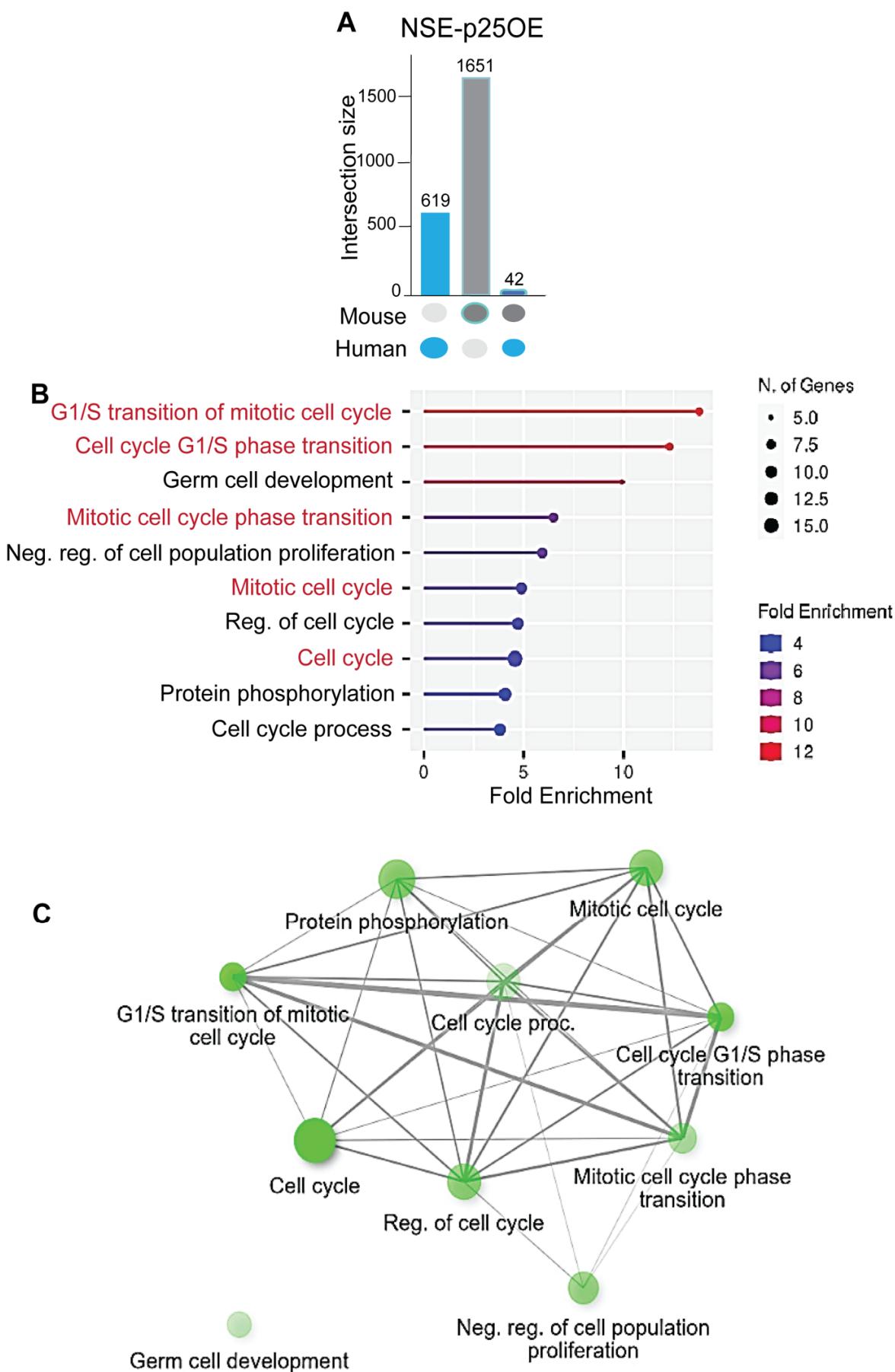

Figure 2, Gupta, et al.

Figure 3, Gupta, et al.


Figure 4, Gupta, et al.


Figure 5, Gupta, et al.


Figure 6, Gupta, et al.


Figure 7, Gupta, et al.

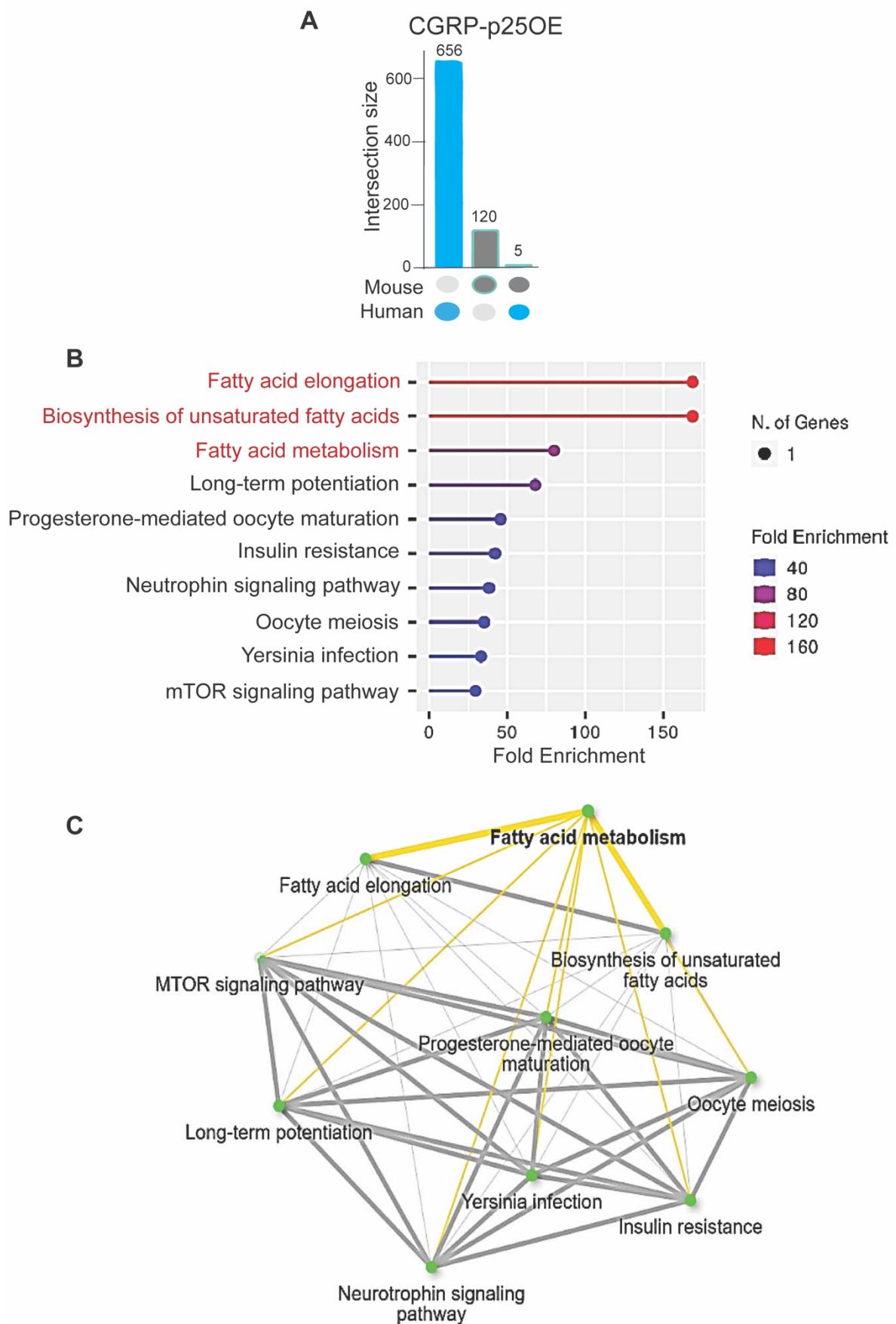

Figure S1, Gupta, et al.

Figure S2, Gupta, et al.

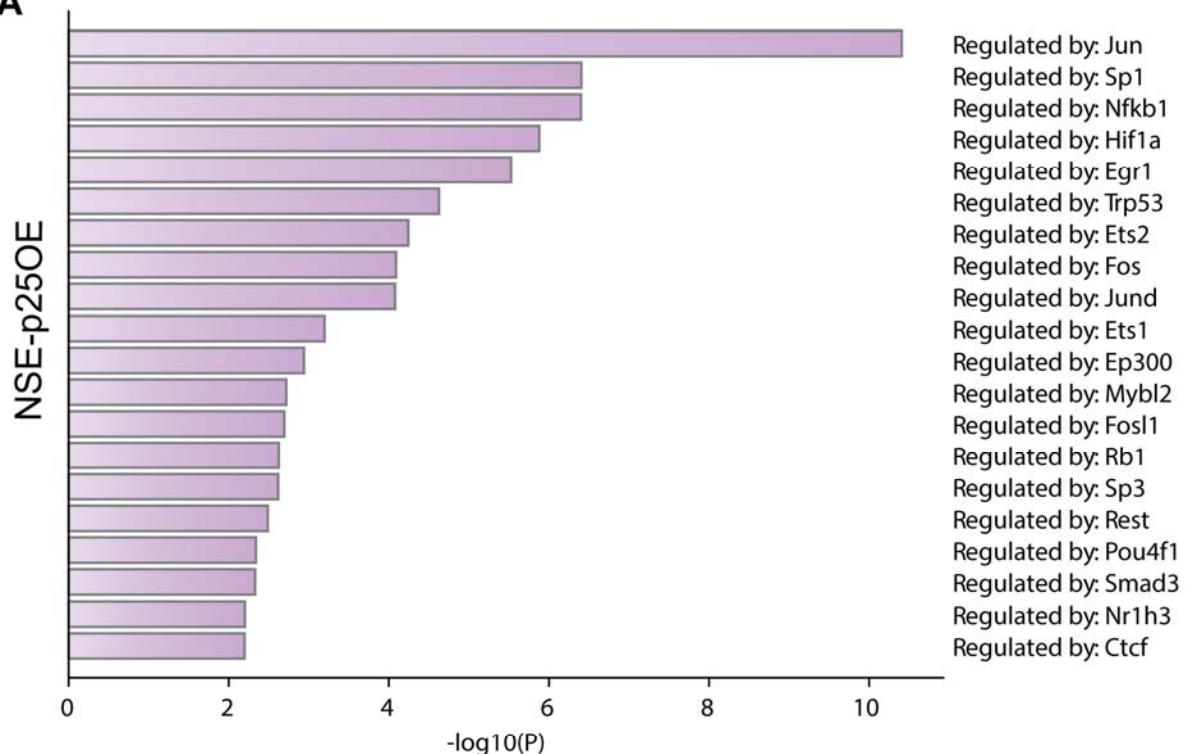


Figure S3, Gupta, et al.

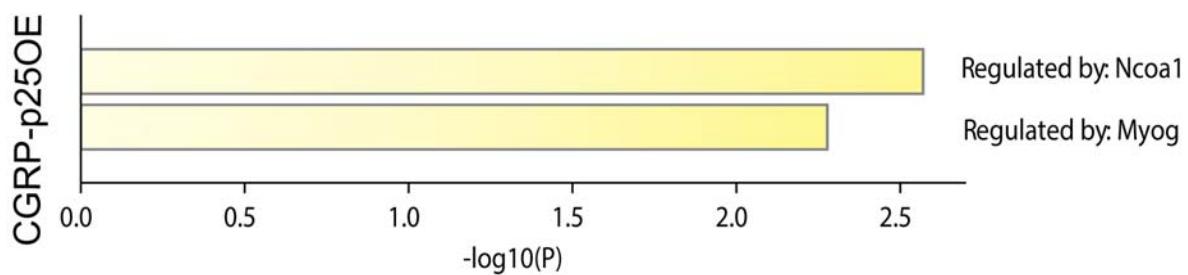
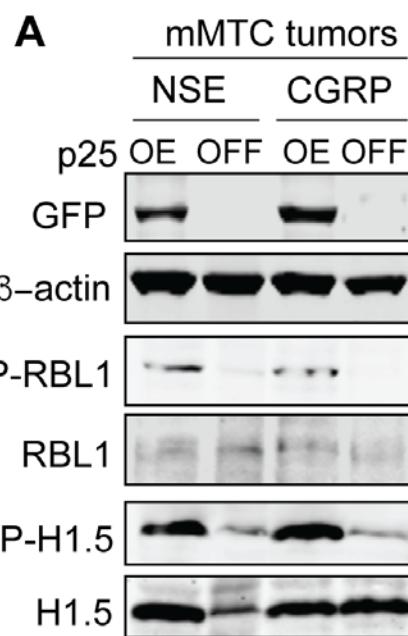


Figure S4, Gupta, et al.


A

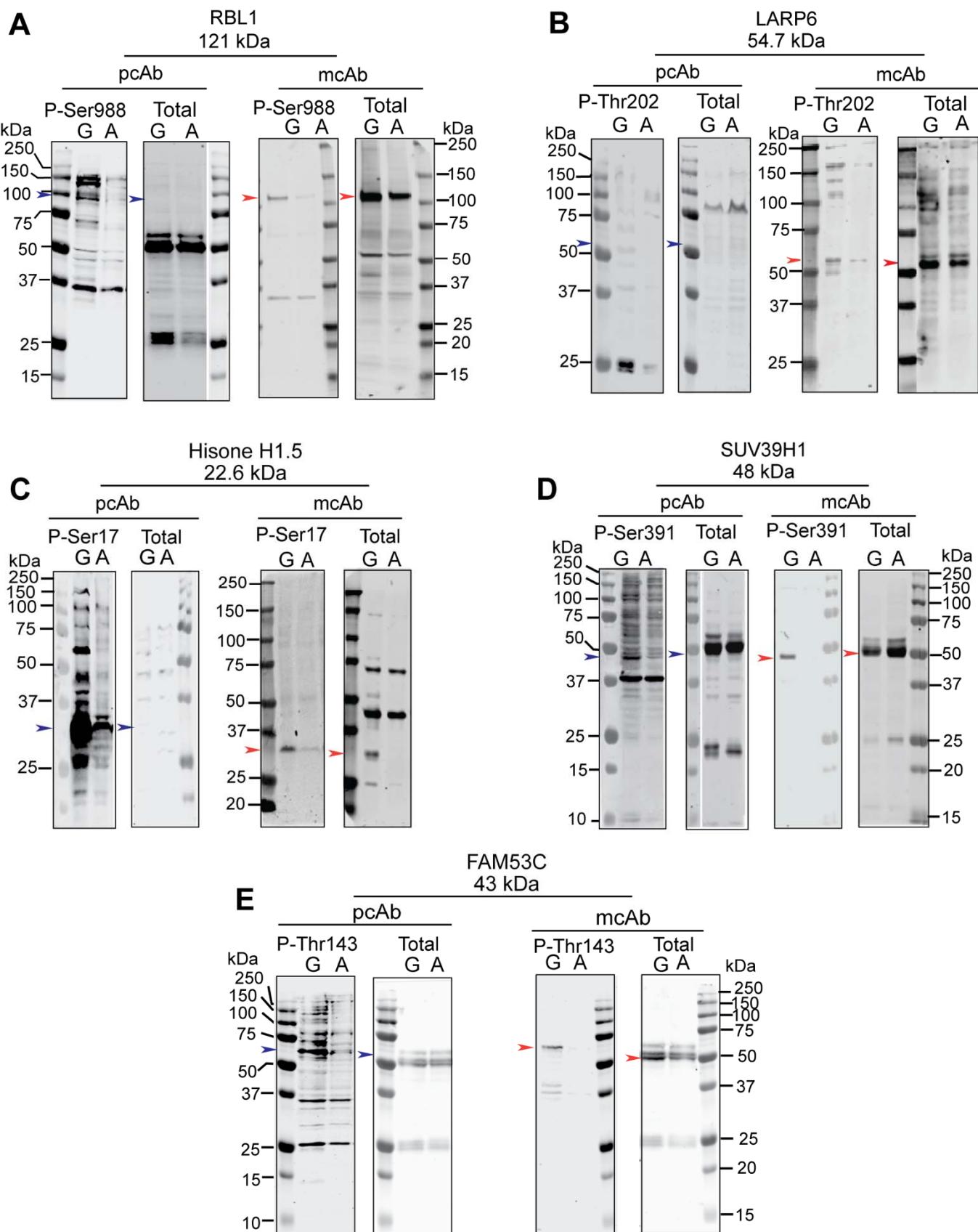

B

Figure S5, Gupta, et al.

Figure S6, Gupta, et al.

References

1. Modigliani, E., et al., *Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma: results in 899 patients. The GETC Study Group. Groupe d'etude des tumeurs a calcitonine*. Clin Endocrinol (Oxf), 1998. **48**(3): p. 265-73.
2. Bartz-Kurycki, M.A., O.E. Oluwo, and L.F. Morris-Wiseman, *Medullary thyroid carcinoma: recent advances in identification, treatment, and prognosis*. Ther Adv Endocrinol Metab, 2021. **12**: p. 20420188211049611.
3. Maxwell, J.E., et al., *Medical management of metastatic medullary thyroid cancer*. Cancer, 2014. **120**(21): p. 3287-301.
4. Sippel, R.S., M. Kunnumalaiyaan, and H. Chen, *Current management of medullary thyroid cancer*. Oncologist, 2008. **13**(5): p. 539-47.
5. Chen, H., et al., *The North American Neuroendocrine Tumor Society consensus guideline for the diagnosis and management of neuroendocrine tumors: pheochromocytoma, paraganglioma, and medullary thyroid cancer*. Pancreas, 2010. **39**(6): p. 775-83.
6. Pajak, C., et al., *(68)Ga-DOTATATE-PET shows promise for diagnosis of recurrent or persistent medullary thyroid cancer: A systematic review*. Am J Surg, 2022. **224**(2): p. 670-675.
7. Chen, H., et al., *Effective long-term palliation of symptomatic, incurable metastatic medullary thyroid cancer by operative resection*. Ann Surg, 1998. **227**(6): p. 887-95.
8. Oczko-Wojciechowska, M., et al., *Current status of the prognostic molecular markers in medullary thyroid carcinoma*. Endocr Connect, 2020. **9**(12): p. R251-R263.
9. Pozo, K. and J.A. Bibb, *The Emerging Role of Cdk5 in Cancer*. Trends Cancer, 2016. **2**(10): p. 606-618.
10. Pozo, K., et al., *The role of Cdk5 in neuroendocrine thyroid cancer*. Cancer Cell, 2013. **24**(4): p. 499-511.
11. Carter, A.M., et al., *Cdk5 drives formation of heterogeneous pancreatic neuroendocrine tumors*. Oncogenesis, 2021. **10**(12): p. 83.
12. Gupta, P., et al., *Genetic impairment of succinate metabolism disrupts bioenergetic sensing in adrenal neuroendocrine cancer*. Cell Rep, 2022. **40**(7): p. 111218.
13. Meyer, D.A., et al., *Striatal dysregulation of Cdk5 alters locomotor responses to cocaine, motor learning, and dendritic morphology*. Proc Natl Acad Sci U S A, 2008. **105**(47): p. 18561-6.
14. Lange, S., et al., *Analysis pipelines for cancer genome sequencing in mice*. Nat Protoc, 2020. **15**(2): p. 266-315.
15. Bolger, A.M., M. Lohse, and B. Usadel, *Trimmomatic: a flexible trimmer for Illumina sequence data*. Bioinformatics, 2014. **30**(15): p. 2114-20.
16. Li, H. and R. Durbin, *Fast and accurate short read alignment with Burrows-Wheeler transform*. Bioinformatics, 2009. **25**(14): p. 1754-60.
17. McKenna, A., et al., *The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data*. Genome Res, 2010. **20**(9): p. 1297-303.
18. Benjamin, D., et al., *Calling Somatic SNVs and Indels with Mutect2*. 2019, bioRxiv.
19. Kuilman, T., et al., *CopywriteR: DNA copy number detection from off-target sequence data*. Genome Biol, 2015. **16**: p. 49.
20. Chen, S., et al., *fastp: an ultra-fast all-in-one FASTQ preprocessor*. Bioinformatics, 2018. **34**(17): p. i884-i890.
21. Dobin, A., et al., *STAR: ultrafast universal RNA-seq aligner*. Bioinformatics, 2013. **29**(1): p. 15-21.
22. Anders, S., P.T. Pyl, and W. Huber, *HTSeq--a Python framework to work with high-throughput sequencing data*. Bioinformatics, 2015. **31**(2): p. 166-9.
23. Love, M.I., W. Huber, and S. Anders, *Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2*. Genome Biol, 2014. **15**(12): p. 550.

24. Zhuang, Y., et al., *The novel function of tumor protein D54 in regulating pyruvate dehydrogenase and metformin cytotoxicity in breast cancer*. *Cancer Metab*, 2019. **7**: p. 1.
25. Baetscher, M., et al., *SV40 T antigen transforms calcitonin cells of the thyroid but not CGRP-containing neurons in transgenic mice*. *Oncogene*, 1991. **6**(7): p. 1133-8.
26. Johnston, D., D. Hatzis, and M.E. Sunday, *Expression of v-Ha-ras driven by the calcitonin/calcitonin gene-related peptide promoter: a novel transgenic murine model for medullary thyroid carcinoma*. *Oncogene*, 1998. **16**(2): p. 167-77.
27. Grundker, C. and G. Emmons, *The Role of Gonadotropin-Releasing Hormone in Cancer Cell Proliferation and Metastasis*. *Front Endocrinol (Lausanne)*, 2017. **8**: p. 187.
28. Liu, H., et al., *The oxytocin receptor signalling system and breast cancer: a critical review*. *Oncogene*, 2020. **39**(37): p. 5917-5932.
29. Stepulak, A., et al., *Glutamate and its receptors in cancer*. *J Neural Transm (Vienna)*, 2014. **121**(8): p. 933-44.
30. Haas, H.S., et al., *The influence of glutamate receptors on proliferation and metabolic cell activity of neuroendocrine tumors*. *Anticancer Res*, 2013. **33**(4): p. 1267-72.
31. Wen, Y.A., et al., *Downregulation of SREBP inhibits tumor growth and initiation by altering cellular metabolism in colon cancer*. *Cell Death Dis*, 2018. **9**(3): p. 265.
32. Wong, A., K. Nabata, and S.M. Wiseman, *Medullary thyroid carcinoma: a narrative historical review*. *Expert Rev Anticancer Ther*, 2022. **22**(8): p. 823-834.
33. Minna, E., et al., *Medullary Thyroid Carcinoma Mutational Spectrum Update and Signaling-Type Inference by Transcriptional Profiles: Literature Meta-Analysis and Study of Tumor Samples*. *Cancers (Basel)*, 2022. **14**(8).
34. Cakir, M. and A.B. Grossman, *Medullary thyroid cancer: molecular biology and novel molecular therapies*. *Neuroendocrinology*, 2009. **90**(4): p. 323-48.
35. Qu, N., et al., *Genomic and Transcriptomic Characterization of Sporadic Medullary Thyroid Carcinoma*. *Thyroid*, 2020. **30**(7): p. 1025-1036.
36. Cerrato, A., V. De Falco, and M. Santoro, *Molecular genetics of medullary thyroid carcinoma: the quest for novel therapeutic targets*. *J Mol Endocrinol*, 2009. **43**(4): p. 143-55.
37. Manfredi, G.I., et al., *PI3K/Akt/mTOR signaling in medullary thyroid cancer: a promising molecular target for cancer therapy*. *Endocrine*, 2015. **48**(2): p. 363-70.
38. Yin, A., et al., *Overexpression of NDRG2 Increases Iodine Uptake and Inhibits Thyroid Carcinoma Cell Growth In Situ and In Vivo*. *Oncol Res*, 2016. **23**(1-2): p. 43-51.
39. Karger, S., et al., *FOXO3a: a novel player in thyroid carcinogenesis?* *Endocr Relat Cancer*, 2009. **16**(1): p. 189-99.
40. Cook, M., X.M. Yu, and H. Chen, *Notch in the development of thyroid C-cells and the treatment of medullary thyroid cancer*. *Am J Transl Res*, 2010. **2**(1): p. 119-25.
41. Valenciaga, A., et al., *Reduced Retinoblastoma Protein Expression Is Associated with Decreased Patient Survival in Medullary Thyroid Cancer*. *Thyroid*, 2017. **27**(12): p. 1523-1533.
42. Jajin, M.G., et al., *Gas chromatography-mass spectrometry-based untargeted metabolomics reveals metabolic perturbations in medullary thyroid carcinoma*. *Sci Rep*, 2022. **12**(1): p. 8397.
43. Lukey, M.J., et al., *The oncogenic transcription factor c-Jun regulates glutaminase expression and sensitizes cells to glutaminase-targeted therapy*. *Nat Commun*, 2016. **7**: p. 11321.
44. Chiefari, E., et al., *Increased expression of AP2 and Sp1 transcription factors in human thyroid tumors: a role in NIS expression regulation?* *BMC Cancer*, 2002. **2**: p. 35.
45. Giuliani, C., I. Bucci, and G. Napolitano, *The Role of the Transcription Factor Nuclear Factor-kappa B in Thyroid Autoimmunity and Cancer*. *Front Endocrinol (Lausanne)*, 2018. **9**: p. 471.
46. Puig-Oliveras, A., et al., *Expression-based GWAS identifies variants, gene interactions and key regulators affecting intramuscular fatty acid content and composition in porcine meat*. *Sci Rep*, 2016. **6**: p. 31803.

47. Motamed, M., et al., *Steroid receptor coactivator 1 is an integrator of glucose and NAD+/NADH homeostasis*. Mol Endocrinol, 2014. **28**(3): p. 395-405.
48. Carter, A.M., et al., *Phosphoprotein-based biomarkers as predictors for cancer therapy*. Proc Natl Acad Sci U S A, 2020. **117**(31): p. 18401-18411.
49. Lin, H., et al., *Cdk5 regulates STAT3 activation and cell proliferation in medullary thyroid carcinoma cells*. J Biol Chem, 2007. **282**(5): p. 2776-84.
50. Haga, R.B. and A.J. Ridley, *Rho GTPases: Regulation and roles in cancer cell biology*. Small GTPases, 2016. **7**(4): p. 207-221.
51. Rodriguez-Hernandez, I., et al., *Rho, ROCK and actomyosin contractility in metastasis as drug targets*. F1000Res, 2016. **5**.
52. Heng, Y.W. and C.G. Koh, *Actin cytoskeleton dynamics and the cell division cycle*. Int J Biochem Cell Biol, 2010. **42**(10): p. 1622-33.
53. Vasioukhin, V. and E. Fuchs, *Actin dynamics and cell-cell adhesion in epithelia*. Curr Opin Cell Biol, 2001. **13**(1): p. 76-84.
54. Giardino, E., et al., *Cofilin is a mediator of RET-promoted medullary thyroid carcinoma cell migration, invasion and proliferation*. Mol Cell Endocrinol, 2019. **495**: p. 110519.
55. Strock, C.J., et al., *Cyclin-dependent kinase 5 activity controls cell motility and metastatic potential of prostate cancer cells*. Cancer Res, 2006. **66**(15): p. 7509-15.
56. Xie, Z., et al., *Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration*. Cell, 2003. **114**(4): p. 469-82.
57. Pacifico, F. and A. Leonardi, *Role of NF- κ B in thyroid cancer*. Mol Cell Endocrinol, 2010. **321**(1): p. 29-35.
58. Currie, E., et al., *Cellular fatty acid metabolism and cancer*. Cell Metab, 2013. **18**(2): p. 153-61.
59. Ferraro, G.B., et al., *Fatty Acid Synthesis Is Required for Breast Cancer Brain Metastasis*. Nat Cancer, 2021. **2**(4): p. 414-428.
60. Do, P.A. and C.H. Lee, *The Role of CDK5 in Tumours and Tumour Microenvironments*. Cancers (Basel), 2020. **13**(1).
61. Lowman, X.H., et al., *The proapoptotic function of Noxa in human leukemia cells is regulated by the kinase Cdk5 and by glucose*. Mol Cell, 2010. **40**(5): p. 823-33.
62. Choi, J.H., et al., *Anti-diabetic drugs inhibit obesity-linked phosphorylation of PPARgamma by Cdk5*. Nature, 2010. **466**(7305): p. 451-6.
63. Ciraku, L., et al., *O-GlcNAc transferase regulates glioblastoma acetate metabolism via regulation of CDK5-dependent ACSS2 phosphorylation*. Oncogene, 2022. **41**(14): p. 2122-2136.
64. Dominguez, D., et al., *A high-resolution transcriptome map of cell cycle reveals novel connections between periodic genes and cancer*. Cell Res, 2016. **26**(8): p. 946-62.
65. Pezzani, R., et al., *Novel Prognostic Factors Associated with Cell Cycle Control in Sporadic Medullary Thyroid Cancer Patients*. Int J Endocrinol, 2019. **2019**: p. 9421079.
66. Valenciaga, A., et al., *Transcriptional targeting of oncogene addiction in medullary thyroid cancer*. JCI Insight, 2018. **3**(16).
67. Yang, X., et al., *TPX2 overexpression in medullary thyroid carcinoma mediates TT cell proliferation*. Pathol Oncol Res, 2014. **20**(3): p. 641-8.
68. Tuccilli, C., et al., *Preclinical testing of selective Aurora kinase inhibitors on a medullary thyroid carcinoma-derived cell line*. Endocrine, 2016. **52**(2): p. 287-95.
69. Liu, M., C. Tolg, and E. Turley, *Dissecting the Dual Nature of Hyaluronan in the Tumor Microenvironment*. Front Immunol, 2019. **10**: p. 947.
70. Slattery, M.L., et al., *Genetic variation in RPS6KA1, RPS6KA2, RPS6KB1, RPS6KB2, and PDK1 and risk of colon or rectal cancer*. Mutat Res, 2011. **706**(1-2): p. 13-20.
71. Bignone, P.A., et al., *RPS6KA2, a putative tumour suppressor gene at 6q27 in sporadic epithelial ovarian cancer*. Oncogene, 2007. **26**(5): p. 683-700.

72. Atas, E., M. Oberhuber, and L. Kenner, *The Implications of PDK1-4 on Tumor Energy Metabolism, Aggressiveness and Therapy Resistance*. *Front Oncol*, 2020. **10**: p. 583217.
73. Han, H., et al., *TRRUST: a reference database of human transcriptional regulatory interactions*. *Sci Rep*, 2015. **5**: p. 11432.
74. Zhou, Y., et al., *Metascape provides a biologist-oriented resource for the analysis of systems-level datasets*. *Nat Commun*, 2019. **10**(1): p. 1523.