

1 **Breast cancer secretes anti-ferroptotic MUFAs and depends on selenoprotein**  
2 **synthesis for metastasis**

3  
4 Tobias Ackermann<sup>1,2</sup>, Engy Shokry<sup>1</sup>, Ruhi Deshmukh<sup>1</sup>, Jayanthi Anand<sup>1</sup>, Laura C.A.  
5 Galbraith<sup>1</sup>, Louise Mitchell<sup>1</sup>, Giovanny Rodriguez-Blanco<sup>1</sup>, Victor H. Villar<sup>1,3</sup>, Britt Amber  
6 Sterken<sup>1</sup>, Colin Nixon<sup>1</sup>, Sara Zanivan<sup>1,2</sup>, Karen Blyth<sup>1,2</sup>, David Sumpton<sup>1</sup> and Saverio Tardito<sup>1,2</sup>

7 <sup>1</sup>Cancer Research UK Scotland Institute; Garscube Estate, Switchback Road, Glasgow, G61  
8 1BD, UK.

9 <sup>2</sup>School of Cancer Sciences, University of Glasgow; Glasgow, G611QH, UK.

10 <sup>3</sup> Current affiliation: School of Medicine, University of St Andrews, St. Andrews KY16 9TF,  
11 UK

12 Email: saverio.tardito@glasgow.ac.uk

13 **Abstract**

14 The limited availability of therapeutic options for patients with triple-negative breast cancer  
15 (TNBC) contributes to the high rate of metastatic recurrence and poor prognosis. Ferroptosis  
16 is a type of cell death caused by iron-dependent lipid peroxidation and counteracted by the  
17 antioxidant activity of the selenoprotein GPX4. Here, we show that TNBC cells secrete an anti-  
18 ferroptotic factor in the extracellular environment when cultured at high cell densities but are  
19 primed to ferroptosis when forming colonies at low density. We found that secretion of the anti-  
20 ferroptotic factors, identified as monounsaturated fatty acid (MUFA) containing lipids, and the  
21 vulnerability to ferroptosis of single cells depends on the low expression of stearyl-CoA  
22 desaturase (SCD) that is proportional to cell density. Finally, we show that the inhibition of  
23 Sec-tRNA<sup>Sec</sup> biosynthesis, an essential step for selenoprotein production, causes ferroptosis  
24 and impairs the lung seeding of circulating TNBC cells that are no longer protected by the  
25 MUFA-rich environment of the primary tumour.

26 **Introduction**

27 Ferroptosis is a form of cell death caused by iron-dependent peroxidation of polyunsaturated  
28 fatty acids (PUFA) within membranes. Peroxidised lipids cause stiffening and thinning of the  
29 membrane bilayer making it prone to rupture <sup>1,2</sup>. In recent years, several cell-intrinsic pathways  
30 that prevent or revert lipid peroxidation have been discovered. To reduce the free radical  
31 species generated from lipidic hydroperoxide, cells rely on lipophilic antioxidants such as  
32 tetrahydrobiopterin, 7-dehydrocholesterol, ubiquinone, vitamin K and E, while the membrane-

33 associated peroxidase selenoprotein GPX4, acts through a distinct mechanism that can  
34 directly reduce hydroperoxides <sup>3-10</sup>. In addition, the fatty acid composition of the membrane  
35 influences the cellular susceptibility to ferroptosis. The synthesis of saturated fatty acids and  
36 the Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) mediated incorporation of  
37 PUFAs into membranes promote ferroptosis <sup>11,12</sup>. Furthermore, exogenous diacyl-PUFA  
38 phosphatidylcholines are pro-ferroptotic molecules that accumulate in cell membranes and  
39 correlate with cancer cell sensitivity to GPX4 inhibition <sup>13</sup>. On the other hand, membrane  
40 incorporation of the exogenously supplemented or adipocyte-provided monounsaturated fatty  
41 acid (MUFA) oleic acid, as well as its cell-autonomous production mediated by the stearoyl-  
42 CoA desaturase (SCD), has been shown to prevent ferroptosis *in vitro* and *vivo* <sup>14-17</sup>.

43 Selenocysteine is a genetically encoded amino acid, and a structural analogue of cysteine  
44 with a selenium atom instead of the sulphur one. Proteins that incorporate selenocysteine are  
45 defined as selenoproteins. During mRNA translation, selenocysteine is incorporated by a  
46 recoding event. If an mRNA contains a selenocysteine insertion sequence (SECIS), the  
47 canonical UGA stop codon is translated to selenocysteine. In addition, selenocysteine  
48 incorporation into peptides depends on the presence of specific translation factors, the  
49 eukaryotic elongation factor selenocysteine (eEFsec) and SECIS binding protein (SECISBP2)  
50 <sup>18</sup>. Despite the chemical similarity, cysteine and selenocysteine do not share the biosynthetic  
51 pathway. In fact, selenocysteine is synthesised on the selenocysteine tRNA (tRNA<sup>sec</sup>) that is  
52 firstly charged with serine by seril-tRNA synthetase. The serine on the tRNA<sup>sec</sup> is then  
53 phosphorylated by phosphoseryl-tRNA kinase (PSTK). The selenophosphate (SePO<sub>3</sub><sup>(3-)</sup>)  
54 synthesized by the Selenophosphate Synthetase 2 (SEPHS2) is used by O-phosphoseryl-  
55 tRNA<sup>Sec</sup> selenium transferase (SEPSECS) to synthesize selenocysteinilated tRNA<sup>sec</sup> (Sec-  
56 tRNA<sup>sec</sup>). This is the only known pathway to produce the Sec-tRNA<sup>sec</sup> and free selenocysteine  
57 obtained from selenoproteins degradation cannot be directly charged onto tRNA<sup>sec</sup> <sup>19</sup>.

58 The supplementation with an excess of selenium and the inhibition of Sec-tRNA<sup>sec</sup> synthesis  
59 can both lead to the accumulation of reactive selenium species toxic to cancer cells <sup>20,21</sup>. On  
60 the other hand, selenium deprivation has been shown to induce ferroptosis in cells from breast  
61 cancer, acute myeloid leukaemia, and neuroblastoma <sup>22-24</sup>. Several pre-clinical and clinical  
62 studies assessed selenium supplementation as an antioxidant cancer-preventive intervention  
63 and selenium is frequently found in fortified food, and multivitamin/multimineral supplements  
64 <sup>25,26</sup>.

65 However, susceptibility to ferroptosis does not only depend on selenium availability. In this  
66 study, we show that triple-negative breast cancer (TNBC) cells under selenium starvation die  
67 of ferroptosis selectively when seeded at low density. We found that this phenotype can be

68 rescued by transferring medium conditioned by high density cultures of breast cancer cells or  
69 cancer associated fibroblasts, but not normal cells. By means of analytical methods coupled  
70 with mass spectrometry-based lipidomics, we identified SCD-derived MUFA-containing lipids  
71 as the anti-ferroptotic factors released by TNBC cells. Finally, we interfered with the  
72 expression of genes of the selenocysteine biosynthesis pathway to prove that *in vivo* TNBC  
73 cells require the antioxidant action of selenoproteins to overcome the pro-ferroptotic  
74 environment encountered during the metastatic cascade.

75

76 **Materials and Methods**

77 **Cell culture**

78 Cultures of breast cancer cells (BT549, Cal120, EO771, MCF7, MDA-MB-231 and  
79 MDA-MB-468), human dermal fibroblast (DF), human mammary fibroblast (MF) and cancer  
80 associated fibroblast (CAF) were maintained in DMEM/F-12 (Thermo Fisher Scientific,  
81 #21331046) supplemented with 2 mM Glutamine (Thermo Fisher Scientific, #25030149) and  
82 10% foetal bovine serum (FBS, Thermo Fisher Scientific, #10270106). MF and CAF cell lines  
83 were kindly provided by Prof. Akira Orimo and have been previously characterised<sup>27,28</sup>. All  
84 cell lines were tested negative for mycoplasma (Venor GeM qOneStep Mycoplasma Detection  
85 Kit). Cell lines were authenticated using genomic DNA extracted with Puregene Gentra Kit  
86 and multiplexed using the Promega Geneprint Kit and multiplexed with a STR-based method  
87 (Promega Geneprint System). Samples were run on an Applied Biosystems 3130xl DNA  
88 analyser and the results analysed using the Applied Biosystems Genemapper v4.1 software.  
89 Profiles were matching the references reported by ATCC (LGC standards), Cellosaurus and  
90 DSMZ databases.

91

92 **Conditioned medium**

93 To condition medium from high density cultures of BT549, Cal120, EO771, MCF7, MDA-MB-  
94 231, MDA-MB-468, DF, MF and CAF cell lines,  $6 \times 10^6$  cells were seeded in DMEM/F-12 with  
95 10% FBS in a dish with a diameter of 145mm. The day after seeding, the medium was replaced  
96 with 20 ml of DMEM/F-12 without FBS and conditioned for two days. For non-targeting control  
97 (NTC) and SCDko MDA-MB-468 cells,  $5 \times 10^6$  and  $1.1 \times 10^7$  cells were seeded respectively to  
98 condition the medium. For experiments with acute SCD inhibition,  $2 \times 10^7$  MDA-MB-468 cells  
99 were seeded in DMEM/F-12 with 10% FBS in a dish with a diameter of 145mm. The day after  
100 seeding the medium was replaced by DMEM/F-12 without FBS and supplemented with 200  
101 nM CAY10566 (SCD inhibitor, Cayman chemicals, #10012562). After 18h incubation with 200  
102 nM CAY10566, cells were washed once with PBS, and 15 ml DMEM/F-12 medium without  
103 FBS was conditioned for 2h. For experiments shown in Figure 2A,  $6 \times 10^6$  MDA-MB468 cells  
104 were seeded in DMEM/F-12 with 10% FBS in a dish with a diameter of 145mm. The day after  
105 seeding, the medium was replaced with 20 ml of DMEM/F-12 or selenite-free Plasmax<sup>TM</sup> 23,  
106 both supplemented with 10% FBS and conditioned for two days. The conditioned medium was  
107 diluted with three volumes of serum-free unconditioned medium and used for the colony  
108 forming assays.

109 To generate mock medium, cell culture medium was incubated in a cell culture dish maintained  
110 at 37°C without cells for the respective experimental time periods (2h or 2 days).

111

## 112 **Colony formation assays**

113 Colony formation assays were performed as described previously <sup>23</sup>. For MDA-MB-468 cells,  
114 we seeded 5,000 cells/well in a 6 well plate with 2 ml/well of DMEM/F-12 supplemented with  
115 2.5% FBS. To test the effects of lipid extracts from medium conditioned by MDA-MD-468 cells,  
116 1,000 cells/well were seeded in a 24 well plate with 0.5ml of medium/ well. After 7 days  
117 incubation, colonies from MDA-MB-468 cells were fixed by replacing the medium with a  
118 solution of 3% trichloroacetic acid in water (Merck, #T6399-500G), rinsed twice with water,  
119 stained with 0.057% Sulforhodamine B solution in 1% acetic acid (Merck, #230162) and  
120 washed twice with a 1% acetic acid solution in water. For BT549, Cal120, MCF7, MDA-MB-  
121 231 and EO771 cells, 500 cells/well were seeded in a 6 well plate and fixed after 14 days of  
122 culture with the exception of EO771 cells that were fixed 7 days after seeding. Plates stained  
123 with Sulforhodamine B were scanned with Li-Cor Odyssey® DLx imaging system and the  
124 fluorescent signal quantified with ImageJ as previously described <sup>23</sup>. In figures reporting colony  
125 area or number, each data point represents an independent colony forming assay mean of 2  
126 or 3 replicate wells.

127

## 128 **Cell proliferation assay**

129 To determine the number of NTC control and SCDko cells during the medium conditioning  
130 experiments,  $3.32 \times 10^5$  NTC control cells per well and  $7.3 \times 10^5$  SCDko cells per well were  
131 seeded in a 6 well plate with DMEM/F-12 containing 10% FBS. One day after seeding, cells  
132 were trypsinized and counted with a Casy counter. At this time, the medium of parallel plates  
133 seeded and incubated in the same conditions was replaced with DMEM/F-12 without FBS,  
134 and two days after, the cells were counted with a Casy counter.

135 For proliferation assays, NTC control or SCDko MDA-MB-468 cells were seeded at  $3 \times 10^4$ / well  
136 in a 6 well plate with DMEM/F-12 supplemented with 2.5% FBS, 50 nM Na<sub>2</sub>SeO<sub>3</sub> (Merck,  
137 #S5261), 2.5 µM Deferoxamine (Merck, # D9533), 1 µM Ferrostatin-1 (Merck, #SML0583), 10  
138 µM oleic acid (Merck, #O1008), or vehicles (0.05% DMSO and 0.02% ethanol). For  
139 proliferation assays with GPX4 inhibitor (RSL3), cells were seeded and incubated as  
140 described above and supplemented with 50 nM RSL3 (Merck, #SML2234) and 10% FBS.  
141 After 5 days, cells were counted with a Casy counter or stained with Sulforhodamine B and  
142 images acquired and analysed as described for the colony formation assays.

143

144 **Live cell imaging**

145 For Live cell imaging, MDA-MB-468 cells were seeded at 5x10<sup>3</sup>/ well in a 24 well plate with  
146 DMEM/F-12 containing 2.5% FBS and 3 nM Incucyte® Cytotox Green Dye (Satorius, #4633),  
147 50 nM Na<sub>2</sub>SeO<sub>3</sub> or 2 µM Ferrostatin-1 as indicated in figures. 24h after seeding and every 2h  
148 thereafter, 9 images per well were acquired with phase contrast and green fluorescence  
149 (acquisition time: 200 ms) with a 10x objective using an Incucyte S3 (Satorius). To quantify  
150 the number of dead cells, the fluorescent objects were counted using Incucyte 2022B  
151 software.

152

153 **Medium fractionation and heat inactivation**

154 Medium conditioned by MDA-MB-468 cells was loaded into size exclusion columns (Amicon®  
155 Ultra-15 Ultracel-10 Centrifugal Filter Unit, Merck, #UFC901024) centrifuged at 4,000g for 30  
156 min and the fractions stored at -20°C until further analysis. The concentrated fraction  
157 (CM>10kDa) was diluted 1:40 in unconditioned DMEM/F-12 medium, supplemented with 2.5%  
158 FBS and used for colony forming assays. The column flow-through (CM<10kDa) was  
159 supplemented with 2.5% FBS and used undiluted for colony forming assays.

160 For heat inactivation and protein denaturation, the concentrated fraction (CM>10kDa) was  
161 incubated for 15 min at 95°C, afterwards diluted 1:40 in unconditioned DMEM/F-12 medium  
162 supplemented with 2.5% FBS and used for colony forming assays.

163

164 **Lipid extraction**

165 Lipids were extracted from the concentrated fraction (CM>10kDa) of the conditioned medium  
166 following the Bligh and Dyer method and used for colony forming assays or directly from the  
167 conditioned medium with a methyl tertiary-butyl ether (MTBE) solution and used for lipidomic  
168 analysis<sup>29</sup>. For the Bligh and Dyer extraction, 250 µl of the concentrated fraction (CM>10kDa)  
169 from the size exclusion columns were mixed with 960 µl of a 1:2 chloroform:methanol mixture.  
170 Afterwards, 310 µl chloroform and 310 µl water were added and the solution mixed to achieve  
171 a phase separation. The lower, chloroform containing phase was transferred to a new glass  
172 vial, dried at room temperature by nitrogen flow and resuspended in 25 µl of ethanol. 5 µl of  
173 lipid containing ethanol was supplemented to 2 ml of DMEM/F-12 with 2.5% FBS to perform  
174 colony forming assays.

175 For the MTBE extraction, 5 ml MTBE and 1 ml methanol were added to 2.5 ml of conditioned  
176 medium. After mixing the solution three times for 30 s, the upper phase was transferred to a  
177 new glass vial, dried under nitrogen flow at 35°C and resuspended in 25µl ethanol. 1 µl of the  
178 lipid ethanol solution was supplemented to 1 ml of DMEM/F-12 with 2.5% FBS and used for  
179 colony forming assays.

180

## 181 **Lipidomic analysis**

182 For lipidomic analysis, 5x10<sup>5</sup> NTC control and SCDko cells were seeded in 20 ml of DMEM/F-  
183 12 supplemented with 2.5% FBS in plates of 145 mm diameter. After 2 days, cells were  
184 scraped off the plate in the culture medium, collected in a tube and centrifuged at 1,000g for  
185 3 min. The cell pellet was resuspended in 1 ml of ice-cold PBS, transferred to 1.5 ml Eppendorf  
186 vial, and centrifuged at 10,000 g for 10 s. Lipids were extracted from the cell pellet with 200 µl  
187 of butanol:methanol solution (1:1) centrifuged at 16,000g for 10 min, and analysed using high  
188 resolution mass spectrometry.

189 For lipidomic analysis of low-density cultures, 1.6x10<sup>5</sup> MDA-MB-468 cells were seeded in  
190 plates of 145 mm diameter with 20 ml of mock or conditioned DMEM/F-12 supplemented with  
191 2.5% FBS and 2 µM Ferrostatin-1. Vehicle control or 10 µM oleic acid were added as indicated  
192 in Figure S3A. After 2 days, cells were scraped off the plate in the culture medium, collected  
193 in a tube and centrifuged at 1,000g for 3 min. The cell pellet was resuspended in 1 ml of ice-  
194 cold PBS, quickly transferred to 1.5 ml Eppendorf vial, and centrifuged at 10,000 g for 10 s.  
195 Lipids were extracted from the cell pellet with 100 µl of butanol:methanol solution (1:1),  
196 centrifuged at 16,000g for 10 min, and analysed using high resolution mass spectrometry.

197 For the lipidomic analysis of media, 10 µl of conditioned medium enriched (CM>10kDa) or  
198 depleted (CM<10kDa) fractions were diluted with 190 µl of butanol:methanol solution (1:1),  
199 centrifuged at 16,000g for 10 min, and analysed using high resolution mass spectrometry.

200 For the lipidomic analysis of interstitial fluid (IF), 5µl of IF from individual NTC or SCDko  
201 tumours were diluted with 45 µl of butanol:methanol solution (1:1), centrifuged at 16,000g for  
202 10 min, and analysed using high resolution mass spectrometry.

203 Lipidomic analyses were performed using a Thermo Fisher Scientific Ultimate 3000 binary  
204 UPLC coupled to a Q Exactive Orbitrap mass spectrometer equipped with a Heated  
205 Electrospray Ionization (HESI-II) source (Thermo Fisher Scientific, Massachusetts, USA). For  
206 each sample, MS data were acquired using full MS/ dd-MS2 in positive and negative modes  
207 to maximize the number of detectable species. Details on the parameters for the MS methods  
208 using different polarities is provided in Table 1. Chromatographic separation was achieved  
209 using a Waters CSH C18 analytical column (100 x 2.1mm, 1.7µm) maintained at 55°C. The

mobile phase consisted of 60:40 (v/v) acetonitrile:water containing 10 mM ammonium formate and 0.1% formic acid (phase A) and 90:10 (v/v) isopropanol:acetonitrile containing 10 mM ammonium formate and 0.1% formic acid (phase B) at a flow rate of 400  $\mu$ l/min. The gradient elution consisted of 30% B for 0.5 min, increasing linearly to reach 50% at 4 min, then 80% at 12 min, then 99% B at 12.1 min then held at 99% for 1 min, then returned to starting condition in 1 min and kept constant for 2 min. The total run time was 20 min. The whole system was controlled by Xcalibur version 4.3. Quality control (QC) samples prepared by mixing equal volumes of experimental samples were injected at regular interval throughout the whole batch to monitor the instrument performance. Lipidomics data were analysed with Compound Discoverer v.3.1 (ThermoFisher Scientific) and LipiDex<sup>30</sup>, an open-source software suite available at <http://www.ncqbc.com/resources/software/>. Briefly, raw files were loaded into Compound Discoverer and processed using two workflows (aligned and unaligned) as previously described<sup>31</sup>. Compound result tables were exported for further processing using the 'Peak picking' tab in Lipidex. In addition, the raw data files were converted to .mgf files using MSConvert (ProteoWizard, P. Mallick, Stanford University)<sup>32</sup> and imported into the 'Spectrum Searcher' tab in Lipidex, where the following libraries were searched 'LipidBlast\_Formate', 'LipiDex\_HCD\_Formate', 'LipiDex\_Splash\_ITSD\_Formate', 'LipiDex\_HCD\_ULCFA' using the default search tolerances for MS1 and MS2. For a lipid to be considered identified it required a minimum of 75% spectral purity, an MS2 search dot product score of at least 500 and reverse dot product of at least 700.

For the determination of the total fatty acid content of the lipid species, samples were analysed using GC-MS after transesterification using a methanolic solution of (m-trifluoromethylphenyl) trimethyl ammonium hydroxide (Meth-Prep II), to provide fatty acid methyl esters (FAME) in a one-step reaction followed by monitoring of the generated FAME using GC/MS in SIM mode. Briefly, samples were first spiked with heptadecanoic (C17:0) as an internal standard, dried under nitrogen stream and resuspended in 27 $\mu$ L of chloroform. 3  $\mu$ L of Meth-Prep II were added and samples were mixed and analysed within 2 days. Analysis was performed using an Agilent 7890 GC chromatograph and 7693 autosampler coupled with an Agilent 7000 GC/MS provided with (Agilent, CA, United states). High purity helium (99.999%) was used as carrier gas at an initial flow rate of 1 mL/min increased to 2 mL/min in 12 seconds and kept constant for 1 min and then returned to 1mL/min for the rest of the run time. The chromatographic column used was Phenomen BPX70 (60 m x 250  $\mu$ m, 0.25  $\mu$ m) (Fisher Scientific, USA). The injector was set at a temperature of 300 °C, a pressure of 21 psi and a septum purge flow of 3mL/min. Injection was performed in a pulsed splitless mode at 60 psi for 1.2 min and a purge flow to split vent of 50 mL/min at 1.2 min. The injection volume was 1  $\mu$ l. The oven temperature was set to an initial temperature of 100°C held for 2 min followed

246 by a linear increase to 172°C at 8°C/min (held for 6 min), then 196°C (held for 9 min) then  
247 204°C (held for 15 min). The total run time was 45 min. For the separation of the palmitoleic  
248 acid and oleic acid isomers, a longer chromatographic run was used applying the same  
249 starting conditions, followed by a stepwise increase in temperature initially to 160°C at 8°C/min  
250 (held for 6 min), then to 185 °C at 0.5°C/min (held for 9 min), then 204°C at 8°C/min (held for  
251 15 min). The MS was operated in electron ionization (EI) mode at 70 eV and the MSD transfer  
252 line was set to 260 °C. MS data were acquired in SIM mode for monitoring of the individual  
253 fatty acid derivatives. MS recording started at a cut-off of 8 min. Data were processes using  
254 Agilent MassHunter Quantitative analysis software (Agilent, CA, United states). Initially, fatty  
255 acids were annotated by comparison to FAME Standard Mixture (Merck Life Science UK  
256 Limited, United Kingdom) using a combination of retention time and fragmentation pattern  
257 using full scan. A SIM mode for selected fragments was applied to improve the sensitivity of  
258 detection.

259 **Table 1.** Parameters of the mass spectrometry methods using positive and negative polarities.

| Parameters                                                                                                                                                                                                                      | Positive Mode                                      | Negative Mode                                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|----------------------------------------------------|
| <b>Source parameters:</b> <ul style="list-style-type: none"><li>- Capillary Temperature:</li><li>- Sheath gas:</li><li>- Aux gas:</li><li>- Spare gas:</li><li>- Probe heater Temperature:</li><li>- S-Lens RF level:</li></ul> | 262.5°C<br>50.0<br>12.5<br>2.5<br>425.0 °C<br>50   | 300.0 °C<br>50.0<br>7.0<br>5.0<br>300.0 °C<br>50   |
| <b>Full MS:</b> <ul style="list-style-type: none"><li>- Chromatographic peak width</li><li>- Default Charge:</li><li>- Resolution:</li><li>- AGC target:</li><li>- Maximum IT:</li><li>- Scan range:</li></ul>                  | 15s<br>1<br>70,000<br>3e6<br>100ms<br>240-1200 m/z | 10s<br>1<br>70,000<br>3e6<br>100ms<br>240-1600 m/z |
| <b>dd-MS2:</b> <ul style="list-style-type: none"><li>- Resolution:</li><li>- AGC target:</li><li>- Loop count:</li><li>- Isolation window:</li><li>- Stepped nce:</li><li>- Spectrum data:</li></ul>                            | 17,500<br>2e5<br>5<br>1.4 m/z<br>25<br>centroid    | 17,500<br>1e5<br>5<br>1.4 m/z<br>25<br>centroid    |
| <b>dd-settings:</b> <ul style="list-style-type: none"><li>- Minimum AGC:</li><li>- Exclude Isotopes:</li><li>- Dynamic exclusion:</li></ul>                                                                                     | 4e3<br>On<br>8s                                    | 1e3<br>On<br>5s                                    |

260

261 **Cloning and CRISPR-based gene editing**

262 The following gRNA sequences: Non-Targeting Control (NTC): 5'-  
263 GTAGCGAACGTGTCCGGCGT-3', ACSL3 5'-GAGCTATCATCCACTCGGCC-3', LRP8 5'-  
264 GGCCACTGCATCCACGAACGG-3', PSTK: 5'-AAACTGATCAGACACTCCGA-3', SCD: 5'-  
265 GCAGCCGAGCTTGTAAGAG-3', SEPHS2: 5'-GAGGGACGGCAGTGACCGG-3',  
266 SEPSECS: 5'-AACCGCGAGAGCTTCGCGG-3' were cloned into lentiCRISPRv2 vector  
267 (Addgene, Plasmid #52961) using BsmBI restriction sites. For lentivirus production, 2x10<sup>6</sup>  
268 HEK293T cells were transfected with 5 µg lentiCRISPR plasmid (NTC or on target), 1µg  
269 pVSV-G (viral envelope) and psPAX2 (2<sup>nd</sup> generation lentiviral packaging plasmid) using  
270 JetPrime (Polyplus, #101000015) according to the manufacturer's protocol. Six hours after  
271 transfection the medium was replaced, incubated for 18 hours and harvested for viral infection  
272 of recipient cells. The recipient MDA-MB-468 cells were cultured for 24 hours with lentivirus-  
273 containing medium supplemented with 8 µg/ml Polybrene, for an additional 24 hours with fresh  
274 medium and selected for 4 days with medium supplemented with 0.75µg/mL puromycin.

275 After infection, SCD ko pools and clones were cultured in DMEM/F-12 with 10% FBS and  
276 0.8 g/L AlbuMAX II lipid-rich BSA (Thermo Fisher Scientific, # 11021029). After infection,  
277 ACSL3 and LRP8 ko pools were cultured in DMEM/F-12 with 10% FBS and 50 nM Na<sub>2</sub>SeO<sub>3</sub>.  
278 In maintenance culture, ACSL3 and LRP8 ko clones were grown with 2.5% FBS. sgPSTK,  
279 sgSEPHS2 and sgSEPSECS cell lines were cultured in DMEM/F-12 with 2.5% FBS, 0.8 g/l  
280 AlbuMAX II lipid-rich BSA and 1µM Ferrostatin-1 (MERCK, # SML0583-5MG) unless  
281 otherwise indicated.

282 Firefly luciferase expression cassette (fluc+) was excised from pGL4.50 vector (Promega,  
283 # E1310) using Ndel and BamHI restriction enzymes and cloned into pLenti6NEO vector using  
284 the same restriction sites. The integration of the cloned fragment was confirmed by Sanger  
285 sequencing. Virus production and infection of MDA-MB-468 target cells was performed as  
286 described above for lentiCRISPR vectors. After the infection cells were selected for 7 days  
287 with 500 µg/ml G-418S sulphate (Formedium, # G418S). Luciferase activity was checked by  
288 supplementing the culture medium with luciferin (100 µg/ml, Abcam, #ab143655) and the  
289 bioluminescent signal assessed with a Tecan Spark multiplate reader.

290

291 **C11 BODIPY lipid peroxidation assay**

292 5x10<sup>5</sup> NTC control and SCDko cells were seeded in DMEM/F-12 supplemented with 2.5%  
293 FBS in plates of 145mm diameter. 2 days after seeding cells were incubated for 30 min with  
294 1 µM BODIPY 581/591 C11 lipid peroxidation sensor (Thermo Fisher Scientific, #D3861).

295 Cells were then washed with PBS, detached by trypsinisation, pelleted by centrifugation, and  
296 resuspended in 400  $\mu$ L PBS with 1  $\mu$ g/ml DAPI used to stain dead cells. Peroxidation of the  
297 BODIPY probe in live cells was measured by fluorescent-activated flow cytometry (FACS).  
298 The fluorescence of the reduced probe was measured at 581/591 nm (excitation/emission,  
299 Texas Red filter set) and the oxidised probe at 488/510 nm (FITC filter set). The ratio between  
300 the signals at 510 and 591 nm (oxidised/reduced) was used as a readout for lipid peroxidation.  
301 5x10<sup>5</sup> NTC control and SCDko cells exposed to 100 nM RSL3 for 2 hours were used as  
302 positive control for lipid peroxidation.

303

#### 304 **Immunoblotting**

305 Cells were lysed in radioimmunoprecipitation assay (RIPA) buffer (Millipore, #20-188). Lysates  
306 were incubated in Laemmli buffer (Bio-rad, #1610747) at 95°C for 3 min and loaded onto a  
307 SDS-polyacrylamide gel (4-12%, Invitrogen NuPAGE, #NP0336BOX). After size separation,  
308 proteins were transferred onto nitrocellulose membrane (0.2  $\mu$ M pore size, Amersham, #  
309 10600001) and membrane was blocked for 1h at room temperature by 5% non-fat dry milk (in  
310 tris-buffered saline with 0.01% Tween (TBST)). Membranes were incubated overnight at 4°C  
311 in a 5% BSA/TBST solution of primary antibody at the following dilutions: vinculin, 1:2000,  
312 Merck, # SAB4200080; GPX4, 1:1000, Abcam, # ab125066; ACSL3, 1:1000, Abcam,  
313 #ab151959; LRP8, 1:1000, Abcam, # ab108208; SEPHS2, 1:1000, Proteintech, # 14109-1-  
314 AP; SCD, 1:1000, Alpha Diagnostics # SCD11-A in Figure 4E and Figure 5G for MDA-MB-  
315 468; SCD, 1:1000, Abcam, # ab19862 in Figure 4H and Figure 5G for BT549, CAL120, MDA-  
316 MB-231, MCF7. The next day membranes were washed and stained with species-specific  
317 near-infrared fluorescent, secondary antibodies (Li-COR) for 1h at room temperature. After  
318 additional washing steps, membranes were imaged with Li-Cor Odyssey® DLx imaging  
319 system.

320

#### 321 **RNA isolation and qRT-PCR analysis**

322 The same number of MDA-MB-468 cells (1.6 x10<sup>5</sup>) were seeded per well in a 6 well plate or  
323 in plates of 145mm diameter for high- and low-density cultures, respectively. For BT549,  
324 CAL120, MDA-MB-231 and MCF7 cells, low- and high-density cultures were achieved by  
325 seeding 4x10<sup>4</sup> cells in plates of 145mm diameter and 1.6x10<sup>5</sup> per well in a 6 well plate,  
326 respectively. 2 days after seeding, the cells were washed with ice-cold PBS, scraped off the  
327 plate and pelleted at 4°C at 10,000g for 30s. RNA was isolated from cell pellets and tumour  
328 fragments following the kit manufacturer's protocol (Qiagen RNeasy, # 74104). 500 ng RNA

329 was used for cDNA synthesis (SuperScript VILO MasterMix, # 11755-050). 5ng cDNA and 8  
330 pmol of each primer were used in each quantitative real-time polymerase chain reaction  
331 (Applied Biosystems Fast SYBR Green Master Mix, #4385612). Primer sequences were  
332 obtained from primer bank (<https://pga.mgh.harvard.edu/primerbank/>). A standard curve  
333 method with linear regressions  $R^2 > 0.8$  was used to obtain relative quantification of mRNAs  
334 expression.

| Gene symbol | forward primer (5'-3')  | reverse primer (5'-3')  |
|-------------|-------------------------|-------------------------|
| ACACA       | TCACACCTGAAGACCTTAAAGCC | AGCCCACACTGCTTGTACTG    |
| ACSL4       | CATCCCTGGAGCAGATACTCT   | TCACTTAGGATTCCCTGGTCC   |
| ACTB        | GGCATGGTCAGAAGGATT      | ACATGATCTGGTCATCTCTC    |
| AIFM2       | AGACAGGGTCGCCAAAAAGA    | CAGGTCTATCCCCACTACTAGC  |
| DHFR        | CGCTCAGGAACGAGTTCAAGT   | TGCCAATTCCGGTTGTTCAATAA |
| DHODH       | CCACGGGAGATGAGCGTTTC    | CAGGGAGGTGAAGCGAACAA    |
| ELOVL3      | CTGTTCCAGCCCTATAACTTCG  | GAATGAGGTTGCCAATACTCC   |
| FADS1       | CTACCCCGCGCTACTTCAC     | CGGTCGATCACTAGCCACC     |
| FADS2       | GACCACGGCAAGAACTCAAAG   | GAGGGTAGGAATCCAGCCATT   |
| FASN        | AAGGACCTGTCTAGGTTGATGC  | TGGCTTCATAGGTGACTTCCA   |
| LMNB1       | AAGCAGCTGGAGTGGTTGTT    | TTGGATGCTCTGGGGTTC      |
| SCD         | TCTAGCTCCTATACCACCA     | TCGTCTCCAACTTATCTCCTCC  |
| SEPHS2      | GCGGCTGAGGAAGGAGGGACG   | ACGGCGCTGTCCGGCATTATG   |
| TBP         | AGTGACCCAGCATCACTGTT    | TAAGGTGGCAGGCTGTTGTT    |

335

### 336 **Xenograft experiments**

337 Animal experiments were performed in accordance with UK Home Office Regulations and  
338 Directive 2010/63/EU and subjected to review by the Animal Welfare and Ethical Review  
339 Board of the University of Glasgow (Project licence PP6345023 and P38F4A67E). In house-  
340 bred or commercially sourced (Charles River) NOD SCID gamma (NSG) mice were housed  
341 at temperatures between 19 and 23 °C in ventilated cages with *ad libitum* food and water  
342 access and 12 hours light/dark cycles. To minimise pain and distress, Rimadyl was added to  
343 the drinking water 24 hours prior to xenotransplantation and removed 3 days post implantation.  
344 For experiments with sgSEPHS2 and sgSEPSECS MDA-MB-468 cells, 24 female NSG mice  
345 aged between 81-170 days were anesthetized and transplanted into the inguinal mammary  
346 fat pad with 50 µl per transplantation of 1:1 PBS:Matrigel solution containing  $3 \times 10^6$  luciferase-  
347 expressing mycoplasma-negative cells. Groups of eight age-matched animals were randomly

348 assigned to the three experimental groups (NTC, sgSEPHS2 and sgSEPSECS). All the mice  
349 were transplanted with cells bilaterally. Tumours were measured by calliper 3 times/week by  
350 animal technicians blinded to the scientific outcome. The tumour volume was calculated using  
351 the equation [length × width<sup>2</sup>]/2, where width is the smaller of the two dimensions. 38 days  
352 post-transplantation mice were culled, and mammary tumours were harvested. Tissues were  
353 frozen at -80°C or fixed in 10% buffered formalin solution and embedded in paraffin.

354 To assess the metastatic seeding of breast cancer cells, 2x10<sup>6</sup> luciferase-expressing  
355 mycoplasma-negative MDA-MB-468 cells were passed through a 70 µm strainer,  
356 resuspended in 100µL of 4.5% BSA PBS solution (pH 7.4), and injected into the tail vein of 24  
357 female NSG mice aged to 79 days. Mice were randomly assigned to three experimental  
358 groups (NTC, sgSEPHS2 and sgSEPSECS) consisting of eight mice per group. Mice were  
359 imaged by IVIS bioluminescence at the specified times (indicated in figures) and culled 7-  
360 weeks after injection prior to reaching clinical endpoint. Organs were harvested, fixed in 10%  
361 buffered formalin solution, and embedded in paraffin for immunohistochemistry.

362 For experiments with SCDko MDA-MB-468 cells, 12 female NSG mice of 113-137 days of age  
363 were anesthetized and transplanted unilaterally into the inguinal mammary fat pad with 50 µl  
364 per transplantation of 1:1 PBS:Matrigel solution containing 3x10<sup>6</sup> cells (mycoplasma-  
365 negative). Two groups of six age-matched animals were randomly assigned to the NTC and  
366 SCDko experimental groups. Tumours were measured by calliper 3 times/week by animal  
367 technicians blinded to the scientific outcome. The tumour volume was calculated using the  
368 equation [length × width<sup>2</sup>]/2, where width is the smaller of the two dimensions. 43 days post-  
369 transplant mice were culled, and tumours were harvested. Tissue fragments were immediately  
370 processed for the isolation of interstitial fluid, or frozen on dry ice and stored at -80°C or fixed  
371 in 10% buffered formalin solution and embedded in paraffin.

372

### 373 **Isolation of interstitial fluid**

374 Tissue freshly isolated from mammary fat pad tumours were cut by scalpel in 4 slices of  
375 approximately 2-4 mm thickness and each slice was transferred to an individual cell strainer  
376 (Mini Cell Strainer II, Funakoshi, #HT-AMS-04002). The cell strainers were then placed into  
377 1.5ml Eppendorf tubes and centrifuged at 100g for 10 min at 4°C to separate the interstitial  
378 fluid. The interstitial fluid from 4 slices was merged into one sample representative of one  
379 tumour, frozen on dry ice and stored at -80°C until lipidomic analysis.

380

### 381 **Immunohistochemistry**

382 All immunohistochemistry (IHC) staining was performed on 4µm formalin fixed paraffin  
383 embedded sections (FFPE) heated at 60°C for 2 hours.

384 The following antibodies were used to stain sections with a Leica Bond Rx autostainer: Cas9  
385 (14697, Cell Signaling) and Ku80 (2180, Cell Signaling). All FFPE sections underwent on-  
386 board dewaxing (AR9222, Leica) and antigen retrieval using ER2 solution (AR9640, Leica) for  
387 20 min at 95°C. Sections were rinsed with Leica wash buffer (AR9590, Leica) before  
388 peroxidase block was performed using an Intense R kit (DS9263, Leica) for 5 min. After rinsing  
389 with wash buffer, mouse Ig blocking solution (MKB-2213, Vector Labs) was applied to Cas9  
390 sections for 20 min. Sections were rinsed with wash buffer and then primary antibody applied  
391 at an optimal dilution (Cas9, 1:250; Ku80, 1:400) for 30 min. The sections were rinsed with  
392 wash buffer and appropriate secondary antibody was applied for 30 min (Cas9, Mouse  
393 Envision (Agilent, K4001); Ku80, Rabbit Envision (Agilent, K4003). The sections were rinsed  
394 with wash buffer and visualised using DAB with the Intense R kit.

395 The sections were washed in water and counterstained with haematoxylin z (RBA-4201-00A,  
396 CellPath). To complete IHC staining FFPE sections were rinsed in tap water, dehydrated  
397 through graded ethanol's, and placed in xylene. The stained sections were coverslipped in  
398 xylene using DPX mountant (SEA-1300-00A, CellPath). Slides were scanned at 20x  
399 magnification and analysed with HALO image analysis software (Indica labs).

400

#### 401 **Statistical analysis**

402 Independent experimental replicate numbers and statistical tests are described in the figure  
403 legends. For all t-tests and ANOVA analyses, GraphPad Prism 9.0 or later versions were used.  
404 For the statistical analysis in figure 6F, we used the CGGC permutation test  
405 <https://bioinf.wehi.edu.au/software/compareCurves/> to assess the significant differences  
406 between growth curves.

407

#### 408 **Data availability**

409 This study includes no data deposited in external repositories. Source data files that support  
410 the findings of this study are stored at the Cancer Research UK Scotland Institute and are  
411 available from the corresponding author upon reasonable request. Requests for unique  
412 biological materials can be made to the corresponding author.

413

414 **Results**

415 **Medium conditioned by breast cancer cells increases colony formation efficiency of**  
416 **triple negative breast cancer (TNBC) cells**

417 We have previously shown that TNBC cells seeded at low density are enabled to form colonies  
418 by the sodium selenite present in the physiological cell culture medium Plasmax™<sup>23</sup>. To  
419 directly visualize if TNBC cells die when seeded at low density we performed live cell imaging  
420 on MDA-MB-468 cells (**Figure 1A**). Four days after seeding, the frequency of cell death was  
421 significantly decreased if the medium was supplemented with sodium selenite or Ferrostatin-  
422 1, demonstrating that TNBC cells seeded at low density die of ferroptosis impairing their colony  
423 formation (**Figure 1B**).

424 However, TNBC cells' susceptibility to ferroptosis has been shown to be cell density  
425 dependent, with cells undergoing ferroptosis selectively when seeded at low density<sup>23,33,34</sup>. To  
426 dissect the mechanism underpinning the dependency of ferroptosis on culture density, we  
427 tested whether the ferroptosis-resistance observed in selenium-restricted cultures at high  
428 density (**Figure S1A**) was transferrable with the conditioned medium. The medium  
429 conditioned for 48 hours by high-density cultures of MDA-MB-468 cells, was employed to seed  
430 cells at low density. Similarly to the anti-ferroptotic agents, sodium selenite and Ferrostatin-1,  
431 the conditioned medium conferred the capacity to survive ferroptosis and form colonies to  
432 MDA-MB-468 cells (**Figure 1C and S1B**). The medium conditioned by high-density cultures  
433 of human BT549, CAL-120, MDA-MB-231 and murine EO771 TNBC cells also promoted  
434 colony formation in the respective cell lines seeded at low density (**Figure 1D**). However, this  
435 effect was not observed with the luminal A, ER-positive MCF7 breast cancer cells, for which  
436 the number of colonies was not altered by the conditioned medium (**Figure 1D**). Moreover,  
437 the medium conditioned by BT549, CAL-120 and MCF7 cells stimulated MDA-MB-468 colony-  
438 forming capacity, demonstrating that the anti-ferroptotic effect of conditioned medium is  
439 preserved across cell lines (**Figure 1E**).

440 This observation prompted us to test if conditioned medium from untransformed cells could  
441 also support clonal growth of cancer cells. Cancer-associated fibroblasts (CAFs) are known  
442 to support the proliferation of cancer cells *in vivo*<sup>27,35</sup>. Conditioned medium from CAFs  
443 increased the colony formation capacity of MDA-MB-468 comparably to the anti-ferroptotic  
444 agent sodium selenite (**Figure 1F**). Conversely, neither the media conditioned by human  
445 normal fibroblasts from the mammary gland (MF), or from the dermis (DF), significantly  
446 increased the colony-forming capacity of MDA-MB-468 cells (**Figure 1F**). These data suggest  
447 that the medium conditioned by transformed or cancer-reprogrammed cells supports clonal  
448 growth of cancer cells by preventing ferroptosis.

449 **Breast cancer cells cultured at high density produce and secrete an anti-ferroptotic**  
450 **factor**

451 To test whether cells cultured at high density condition the medium by depleting a ferroptosis  
452 inducing molecule (e.g. iron) or produce a factor that prevents ferroptosis, we collected  
453 medium conditioned by high density MDA-MB-468 cells and diluted with fresh medium (1:3).  
454 The diluted conditioned medium enabled colony formation of MDA-MB-468 cells comparably  
455 to medium supplemented with the anti-ferroptotic agent Ferrostatin-1 (**Figure 2A**). This factor  
456 is also produced and secreted by TNBC cells cultured in a sodium selenite-free version of the  
457 physiological culture medium Plasmax™<sup>23</sup> (**Figure 2A**). These results suggest that breast  
458 cancer cells produce an anti-ferroptotic factor that compensates for the selenium deficiency.  
459 To test whether the conditioned medium regulates the expression of known ferroptotic  
460 mediators in the recipient cells we measured the mRNA levels of AIFM2, ACSL4, DHFR,  
461 DHODH, and GPX4 in cells cultured at low density and exposed to the condition medium.  
462 However, the expression pattern of these genes did not explain the anti-ferroptotic activity of  
463 the conditioned medium (**Figure S2A-F**), suggesting that the secreted factor does not activate  
464 a transcriptional anti-ferroptotic response in the recipient cells.

465 To identify this factor, we first fractionated the conditioned medium with a size exclusion  
466 column with a 10 kDa cut-off (**Figure 2B**). The flow-through fraction of the condition medium  
467 depleted of molecules > 10 kDa did not significantly increase the colony forming capacity of  
468 MDA-MB-468 cells compared to unconditioned medium. On the contrary the concentrated  
469 fraction of the conditioned medium enriched in molecules > 10 kDa significantly boosted the  
470 colony formation when used to supplement the fresh medium (**Figure 2C**). Moreover, its  
471 activity was retained when incubated for 15 min at 95°C (**Figure 2D**). To further investigate  
472 the chemical properties of this factor we applied a Bligh and Dyer lipid extraction to the  
473 > 10kDa fraction of the condition medium. The extracted lipidic fraction used to supplement  
474 the medium of the MDA-MB-468 cells increased their colony forming capacity comparably to  
475 sodium selenite supplementation (**Figure 2E**). Altogether these results suggest that the active  
476 anti-ferroptotic factor produced by TNBC cells at high density is bound to a dispensable carrier  
477 > 10 kDa and is a heat-resistant lipid sufficient to confer anti-ferroptotic effects to the  
478 conditioned medium. Consistently with this hypothesis, the deletion of the long-chain-fatty-  
479 acid-CoA ligase 3 (ACSL3), an enzyme that plays a key role in lipid biosynthesis, ablated the  
480 protective effect of the conditioned medium (**Figure 2F-G**), strengthening the hypothesis that  
481 the secreted pro-survival factor is of lipidic nature.

482 **Monounsaturated fatty acids prevent ferroptosis of TNBC cells**

483 To gain an insight into the lipidic composition of the conditioned medium, we performed a  
484 lipidomic analysis on its size-separated fractions. Overall, we could detect 213 lipids from 12  
485 classes, and all of them were more abundant in the > 10 kDa fraction (**Figure 3A**). Notably,  
486 86% of the acyl chains of the detectable lipids had one (35%) or more double bonds (**Figure**  
487 **3B**). In addition to the lipidic classes reported in Figure 3a, we could detect free C18:1  
488 monounsaturated fatty acid (MUFA), that was significantly more abundant in the > 10 kDa  
489 fraction of the conditioned medium (**Figure 3C**).

490 Based on this evidence, we tested if individual fatty acid (FA) supplementation influenced the  
491 capacity of MDA-MB-468 cells to form colonies. At 50  $\mu$ M, the saturated FA 16:0 and 18:0 did  
492 not have a significant effect on colony formation, while out of the 8 MUFAAs tested, 7  
493 significantly increased the colony forming capacity (**Figure 3D and S3B**). Of the 7 MUFAAs  
494 with colony stimulating activity, 4 (C16:1n7, C18:1n7, C18:1n9 and C20:1n9) retained their  
495 activity at a lower concentration (10  $\mu$ M, **Figure 3E and S3C**). In addition, 10  $\mu$ M C18:1n9  
496 (oleic acid) increased the colony formation capacity in BT549 and CAL120 TNBC cells but not  
497 in MCF7 cells, thereby phenocopying the effects of conditioned medium across these breast  
498 cancer cell lines (**Figure 3F and S3D**).

499 To profile the effects of oleic acid and conditioned medium on the lipidome of recipient cells  
500 we performed lipidomic analysis on MDA-MB-468 cells cultured at low cell density and  
501 exposed to those agents. The results show that 350 out of the 790 lipidic species identified  
502 were consistently and coherently regulated by the oleic acid and the conditioned medium  
503 compared to cells exposed to mock medium (**Figure S3A**). Triglycerides emerged as the class  
504 of lipids whose abundance was consistently increased by both oleic acid and conditioned  
505 medium. Conversely, polyunsaturated phosphatidylcholines were downregulated in cells  
506 cultured with conditioned medium or oleic acid. These results show that the lipidome changes  
507 elicited by oleic acid and the condition medium largely overlap, suggesting a common mode  
508 of action for these anti-ferroptotic agents.

509 **SCD activity is required to condition the medium with an anti-ferroptotic factor**

510 Notably, all the MUFAAs stimulating the clonogenic growth at 10  $\mu$ M (**Figure 3E**) were products  
511 of the stearoyl-CoA desaturase (SCD), therefore we hypothesized that the presence of the  
512 anti-ferroptotic factor in the conditioned medium could be SCD-mediated. To test this  
513 hypothesis, we compared the colony-stimulating capacities of media conditioned by MDA-MB-  
514 468 cells pre-treated with the SCD inhibitor CAY10566 or vehicle control (**Figure 4A**). SCD  
515 inhibition had no significant effects on the viability of high-density cultures employed to  
516 condition the medium (**Figure 4B**). Nevertheless, the medium conditioned by SCD-inhibited  
517 cells was significantly less effective in stimulating colony formation compared to medium

518 conditioned by vehicle-treated cells (**Figure 4C**). Consistently with this observation, the levels  
519 of C16:1n7 (palmitoleic acid), a product of SCD, were significantly lower in the medium  
520 conditioned by SCD-pre-inhibited cells (**Figure 4D**) while other fatty acids were not  
521 significantly affected (**Figure S4A**).

522 To further validate the essential role of SCD to produce the anti-ferroptotic factor secreted in  
523 the medium, we generated two SCD knockout (ko) clones derived from MDA-MB-468 cell lines  
524 (**Figure 4E**). Constitutive SCD deletion (SCDko) impaired cell proliferation (**Figure 4F**),  
525 therefore the number of cells seeded was adjusted to obtain comparable levels of medium-  
526 conditioning in 48 hours (**Figure 4F**). Compared to medium conditioned by NTC cells, the  
527 media from SCDko cells was significantly less potent in stimulating colony formation (**Figure**  
528 **4G**). Moreover, media conditioned by SCDko cells was less effective than medium from NTC  
529 cells in supporting colony formation of cells that lack the selenoprotein P (SELENOP) receptor,  
530 LRP8 (**Figure S4B-C**). These results indicate that SCD activity in TNBC cells is required to  
531 produce an anti-ferroptotic factor transferrable with the conditioned medium, whose action is  
532 not dependent on the uptake of a major selenium carrier, SELENOP.

533 To test if the SCD-dependent secretion of lipids occurs in the tumour microenvironment *in*  
534 *vivo*, SCDwt and SCDko MDA-MB-468 cells were orthotopically transplanted in the mammary  
535 fat pad of mice and the interstitial fluid was collected from the respective tumours. The deletion  
536 of SCD (**Figure 4H**) did not affect tumour growth (**Figure 4I-J**), but it selectively decreased  
537 the levels of the SCD-derived MUFAAs oleic, palmitoleic and vaccenic acids in the tumour  
538 interstitial fluid (**Figure 4K**). These results show that breast cancer cells release SCD-  
539 produced MUFAAs in the extracellular tumour microenvironment where, similarly to what we  
540 observed in high cell density cultures, MUFAAs and selenium-dependent pathways have  
541 overlapping anti-ferroptotic functions.

#### 542 **Cell density-dependent loss of SCD expression sensitizes TNBC cells to ferroptosis**

543 Having demonstrated the anti-ferroptotic role of SCD-derived lipids secreted in the conditioned  
544 medium, we assessed whether SCD-deletion could sensitize to ferroptosis TNBC cells  
545 cultured at high density upon selenium restriction (i.e. 2.5% FBS). The number of SCDko cells  
546 cultured at high density was partially rescued by the individual supplementation of oleic acid,  
547 sodium selenite, ferrostatin-1 and deferoxamine (**Figure 5A**) demonstrating that SCDko  
548 promotes ferroptosis upon selenium restriction. In addition, the survival of the SCDko cells,  
549 but not that of NTC control cells, was significantly impaired by the treatment with 50 nM of  
550 GPX4 inhibitor RSL3 and rescued by oleic acid supplementation (**Figure 5B and S5A**),  
551 demonstrating that the SCD-dependent production of MUFAAs such as palmitoleic and oleic  
552 acids (**Figure 5C-D**) becomes essential for cell survival when the selenium-dependent anti-

553 ferroptotic function is hindered. Unexpectedly, the levels of oxidized C11 BODIPY, a probe for  
554 lipid peroxidation, were not significantly affected by *SCD* deletion (**Figure 5E**) suggesting that  
555 *SCD*-derived fatty acids desensitize cells from ferroptosis acting downstream of lipid  
556 peroxides.

557 To find a mechanistic rationale for the cell density-dependent susceptibility to ferroptosis  
558 observed in TNBC cells (i.e. maximal at low density), we assessed the levels of *SCD* mRNA  
559 and protein expression and found that it was proportional to cell density in all four TNBC lines  
560 tested (**Figure 5F-G**). Consistently with the unresponsiveness of luminal A MCF7 cells to the  
561 conditioned medium (**Figure 1B**), these cells did not modulate *SCD* expression depending on  
562 cell density (**Figure 5F-G**). Furthermore, the mRNA expression of key enzymes for fatty acid  
563 synthesis, elongation, and desaturation (FASN, ELOVL3, FADS1 and FADS2) was also  
564 proportional to TNBC cell density (**Figure 5H**).

565 These data show that TNBC cells have an impaired fatty acid synthesis and desaturation  
566 capacity at low cell density, thereby increasing their vulnerability to ferroptosis mediated by  
567 selenium starvation.

568 **Inhibition of selenocysteine synthesis induces ferroptosis and impairs lung metastatic  
569 colonization**

570 GPX4 is a potent anti-ferroptotic enzyme whose catalytic activity requires selenocysteine in  
571 its active site. The amino acid selenocysteine is only synthesised on its tRNA and cannot be  
572 re-cycled as such for the synthesis of selenoproteins (**Figure 6A**). This makes selenocysteine  
573 synthesis a limiting step to counteract ferroptosis and it could constitute a novel therapeutic  
574 target for ferroptosis-primed TNBC cells. On these bases, we designed guide RNAs (gRNAs)  
575 against the three genes encoding the enzymes required for the synthesis of  
576 selenocysteinilated tRNA<sup>sec</sup> (PSTK, SEPHS2 and SEPSECS, **Figure 6A**). The interference  
577 with the expression of each of the enzymes resulted in low GPX4 levels in MDA-MB-468 cells,  
578 comparable to those observed upon selenium starvation (**Figure 6B**). The loss of SEPHS2 or  
579 SEPSECS expression as well as Ferrostatin-1 supplementation had no significant effects on  
580 the viability of cells seeded at high density, demonstrating that the anti-ferroptotic function of  
581 selenoproteins is redundant under these conditions (**Figure 6C and S6A**). On the contrary, at  
582 low cell density survival depends on ferroptosis inhibition, achieved by either selenium or  
583 ferrostatin-1 supplementation (see NTC in **Figure 6D and S6B**). In these ferroptosis-priming  
584 conditions, the interference with SEPSECS, SEPHS2 and PSTK expression ablates the  
585 protective effect of selenium, while Ferrostatin-1 retains its anti-ferroptotic effect. These results  
586 indicate that selenocysteine synthesis inhibition triggers ferroptosis selectively in TNBC cells  
587 cultured at low density (**Figure 6D and S6B**).

588 Next, we orthotopically transplanted NTC control, sgSEPHS2 and sgSEPSECS MDA-MB-468  
589 cell pools into the mouse mammary fat pad to investigate the effect of selenocysteine  
590 synthesis on tumour growth (**Figure 6 E-F**). The growth rate of sgSEPHS2 and sgSEPSECS  
591 tumours was not different from that of NTC controls, an observation confirmed *ex vivo* by  
592 tumour weights (**Figure 6F-G**). However, compared to NTC controls the lower levels of  
593 SEPHS2 and GPX4 expression observed pre-implantation (**Figure 6E**) were restored in  
594 sgSEPHS2 or sgSEPSECS tumours at endpoint (**Figure S6D-E**), suggesting a  
595 counterselection of the interfered cells.

596 To assess whether the colonization of distant organs by TNBC cells is affected by  
597 selenocysteine synthesis inhibition, we injected luciferase-expressing NTC, sgSEPHS2 and  
598 sgSEPSECS MDA-MB-468 cells into the tail vein of female NSG mice. One hour after tail vein  
599 injection, the luciferase signal was detectable in the lungs of all mice, and it was comparable  
600 between experimental groups (**Figure S6C**). However, nine days after injection, the luciferase  
601 signal was significantly lower (~2-fold) in animals injected with sgSEPHS2 and sgSEPSECS  
602 compared to NTC cells (**Figure 6H**). This difference was further exacerbated 35 days after  
603 injection (~3-5 fold, **Figure 6I**). To validate the luciferase-based results, we stained the lungs  
604 of the tail vein-injected animals with antibodies against Cas9 and human Ku80 to visualize  
605 individual metastatic cells (**Figure 6J**). We found two to three times more Ku80-positive cells  
606 in lungs of mice injected with NTC cells (~1.15% of all cells in the lung) compared to  
607 sgSEPHS2 (~0.55%) or sgSEPSECS cells (~0.4%, **Figure 6K**). The magnitude of these  
608 differences was enhanced if Cas9-positive cells were counted in the lungs of the same mice  
609 (NTC cells ~0.55%, sgSEPHS2 ~0.1%, and sgSEPSECS ~0.2%). Overall, these *in vivo*  
610 results demonstrate that the expression of SEPHS2 and SEPSECS is dispensable for primary  
611 breast tumour growth but support the capacity of breast cancer cells to survive the  
612 bloodstream and colonize the lungs, recapitulating the conditional essentiality of  
613 selenocysteine synthesis for clonogenic growth observed *in vitro*.

614

615 **Discussion**

616 Understanding the regulation of ferroptotic cell death will provide new avenues to treat  
617 cardiovascular disease, neurodegenerative diseases, and cancer<sup>36,37</sup>. In the recent years,  
618 several redundant anti-ferroptosis pathways have been described<sup>3-5,7</sup>. However, it remains to  
619 be elucidated which of those pathways are conserved in specific tissues and cell types. We  
620 and others have previously showed that selenium deprivation and uptake inhibition sensitizes  
621 to ferroptosis selectively when cells are cultured at low density<sup>23,24,34</sup>. Here we demonstrate  
622 that in triple-negative breast cancer (TNBC) cells, the seeding density positively regulates the  
623 expression of genes involved in fatty acid synthesis and desaturation (i.e. SCD). Intriguingly,  
624 we found that medium conditioned by cancer cells and cancer associated fibroblasts cultured  
625 at high density has a pro-survival effect on TNBC cells seeded at low density for colony forming  
626 assays (**Figure 1**). Specifically, we showed that the pro-clonogenic activity of the conditioned  
627 medium is thermostable and is retained in its lipidic fraction (**Figure 2E**). Moreover, the  
628 supplementation of specific monounsaturated fatty acids (MUFAs) was effective in preventing  
629 ferroptosis occurring during colony formation (**Figure 3D**). Indeed, SCD-derived MUFAs are  
630 the most potent in rescuing ferroptosis when supplemented to TNBC cells at low density.  
631 Consistently, the loss of SCD activity in TNBC cells cultured at high density sensitises to  
632 ferroptosis (**Figure 5A-C**). These results suggest that diets low in SCD-derived MUFAs might  
633 enhance the efficacy of pro-ferroptotic agents in TNBC<sup>15</sup>. In line with this hypothesis, Dierge  
634 et al. showed that oleate-rich and PUFA-rich diets have opposite effects on the ferroptosis  
635 susceptibility of acidotic cancer cells, and Ubellacker et al. described the anti-ferroptotic effects  
636 of oleic acid in melanoma<sup>16,38</sup>. We showed that unlike normal cells, high density cultures of  
637 breast cancer cells or cancer-associated fibroblasts secrete lipids containing  
638 monounsaturated fatty acid in the extracellular environment in quantities that prevent  
639 ferroptosis when supplemented to colony-forming cells (**Figure 1 and 2E**). Recently, it has  
640 been shown that primary breast tumours can secrete a factor that increases palmitate  
641 production in the lung, conditioning the metastatic niche to favour cancer cell growth<sup>39</sup>.  
642 Furthermore, it has been shown that the pro-metastatic effect of high fat diets relies on CD36-  
643 dependent MUFA uptake<sup>40</sup>. Our results show that mammary tumours, where cells are at high  
644 density, secrete MUFA-containing lipids in the interstitial fluid altering the lipid composition of  
645 tumour microenvironment (**Figure 4K** and Synopsis). On these bases, we hypothesized that  
646 selenocysteine biosynthesis could be a novel target to kill ferroptosis-primed triple-negative  
647 breast cancer (TNBC) cells that have left the MUFA-rich environment of the primary tumour.  
648 Indeed, the interference with SEPHS2 or SEPSECS, enzymes of the selenocysteine  
649 biosynthesis pathway (**Figure 6A**), strongly impairs the lung seeding of cancer cells injected  
650 into the bloodstream (**Figure 6H-K**). In culture, we show that each of the three enzymes

651 synthesizing the Sec-tRNA<sup>sec</sup> (PSTK, SEPHS2 and SEPSECS) as well as selenium  
652 supplementation are all required to prevent ferroptosis in cells at low density (**Figure 6**).  
653 Carlisle et al. have shown that high SEPHS2 expression correlates with poor survival in  
654 patients with breast carcinoma and that its loss induces glioblastoma cell death by the  
655 accumulation of toxic H<sub>2</sub>Se upon supraphysiological supplementation of sodium selenite <sup>20</sup>.  
656 Our data show that loss of SEPHS2 in TNBC cells phenocopies the cytotoxic effects of  
657 selenium deprivation and does not require the accumulation of toxic selenium metabolites to  
658 prime cells to ferroptosis (**Figure 6C and D**).

659 Breast cancer tissue shows increased levels of protein-bound selenium compared to healthy  
660 tissue surrounding the tumour <sup>41</sup> suggesting that unrestricted selenium availability is promoting  
661 tumour cells survival. Indeed, GPX4 inhibition in combination with immunotherapy showed  
662 promising results in murine models of TNBC <sup>42</sup>. While selenium-deprived diets have not been  
663 tested in breast cancer models, Eagle et al. showed a therapeutic effect of selenium  
664 deprivation in leukaemia models, while Alborzinia et al. inhibited cellular selenoprotein P  
665 uptake to decrease the expression of selenoproteins and induce ferroptosis in  
666 neuroblastoma<sup>22,24</sup>.

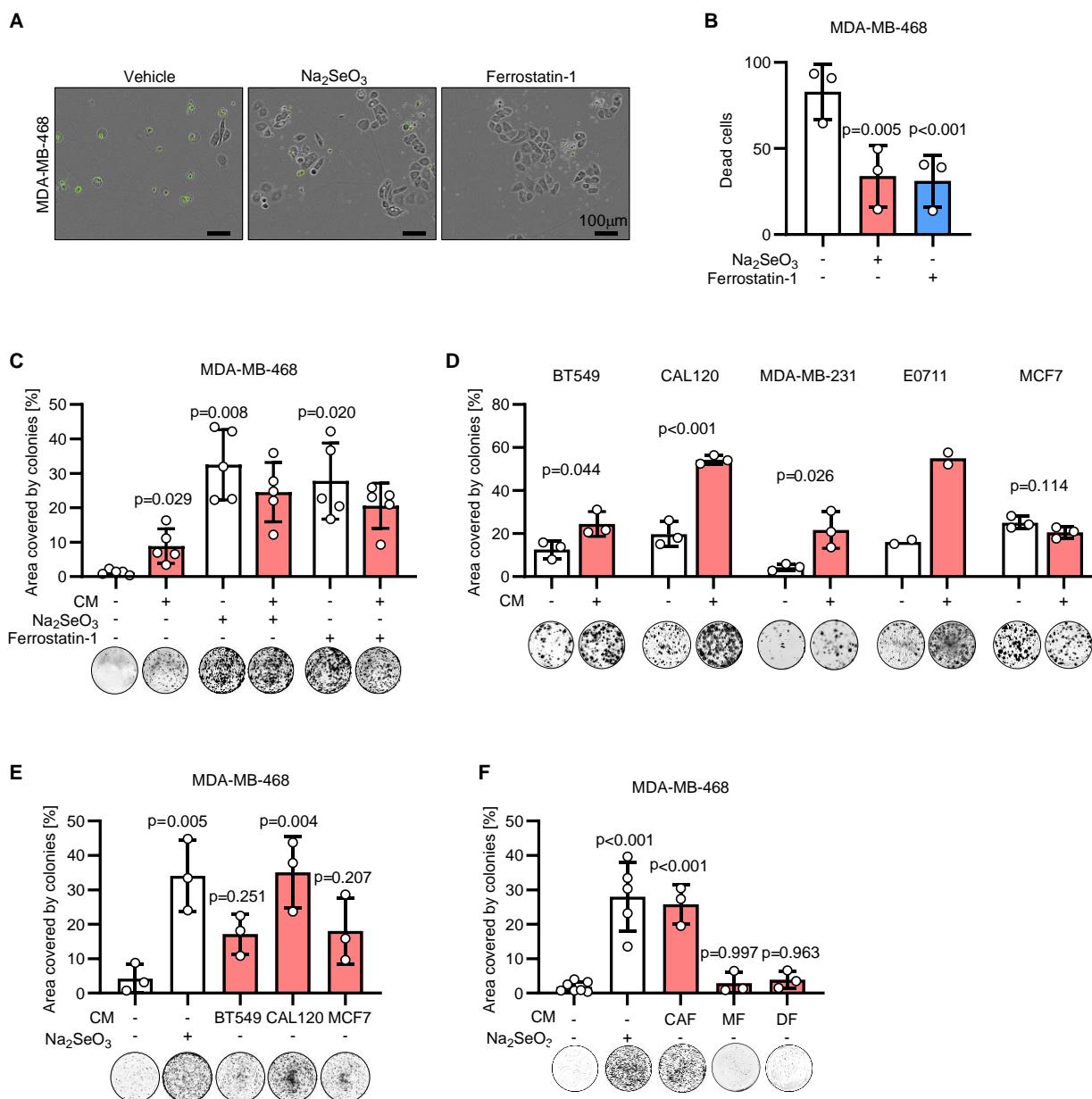
667 On the contrary, selenium-supplemented diets have been assessed with clinical trials (Select  
668 trial, NCT00006392) as preventive interventions for breast and prostate cancer with the  
669 rationale to boost the antioxidant capacity of the host. However, whether diet intervention can  
670 lead to selenium concentrations that limit selenocysteine synthesis has yet to be established.  
671 Moreover, the pharmacologic inhibition of Sec-tRNA<sup>sec</sup> synthesis might have a more precise  
672 effect on the selenoprotein production in cancer cells that enter the blood circulation and  
673 depend on the antioxidant function of selenoproteins for their survival. Interestingly, PSTK  
674 shows low similarity to other eukaryotic kinases thereby favouring the design of specific small  
675 molecule inhibitors <sup>43</sup>.

676 Taken together, our *in vitro* data show that SCD expression increases with cell density in  
677 TNBC cells and mechanistically, the loss of the pro-survival effect of SCD in cells at low density  
678 enhances their dependency on the antioxidant action of selenoproteins to survive ferroptosis  
679 and form colonies. This principle translates *in vivo* where we show that TNBC cells injected in  
680 the bloodstream metastasize less efficiently to the lung when selenoprotein synthesis is  
681 impaired by the deletion of SEPHS2 and SEPSECS, two key enzymes in the Sec-tRNA<sup>sec</sup>  
682 synthesis. In line with the working model proposed the deletion of SEPHS2 and SEPSECS  
683 does not impact the proliferation of TNBC cultured at high density or grown as orthotopic  
684 mammary tumours, suggesting that inhibition of the Sec-tRNA<sup>sec</sup> could be a valid

685 therapeutic target to eradicate metastatic TNBC cells primed to ferroptosis by an imbalance  
686 in fatty acid saturation.

687 **Acknowledgements:** The authors thank the Core Services and Advanced Technologies at  
688 the Cancer Research UK Scotland Institute, and particularly the Metabolomics, Biological  
689 Services Unit, Histology Service, Molecular Technologies and Advanced Imaging Resource.  
690 The authors acknowledge Catherine Winchester (CRUK Scotland Institute) for critically  
691 reviewing this manuscript and all the members of the Oncometabolism lab for the constructive  
692 discussions. This work was funded by Cancer Research UK core funding awarded to the  
693 CRUK Scotland Institute (grant number A31287), Stand Up to Cancer campaign for CRUK  
694 awarded to S.Z. (grant number A29800), Breast Cancer Now awarded to S.Z. (grant number  
695 2018NovPR102), Cancer Research UK core funding awarded to K.B. (grant number A29799)  
696 and Cancer Research UK core funding awarded to S.T. (grant number A23982).

697 **Author contributions:**


698 The study was conceptualized by T.A. and S.T.; methods were developed by E.S., G.R.B.,  
699 C.N., V.H.V, D.S.; experiments were performed by T.A., E.S., R.D., J.A., L.C.A.G., B.A.S.;  
700 data were graphically visualized by T.A. and S.T.; the study was supervised by L.M. S.Z., K.B.,  
701 D.S., S.T.; the manuscript was written by T.A. and S.T with reviewing and editing by all  
702 authors; funding was acquired by S.Z., K.B.,S.T..

703

704 **Competing interests**

705 ST is the inventor of Plasmax<sup>TM</sup> cell culture medium. All other authors declare no competing  
706 interests.

707



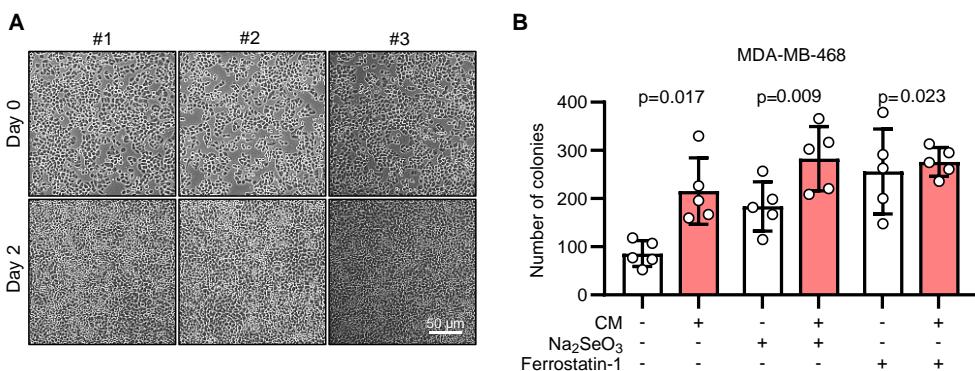
708

709 **Figure 1: Medium conditioned by breast cancer cells and cancer-associated fibroblasts**  
710 **enhances the clonogenicity of triple-negative breast cancer cells.**

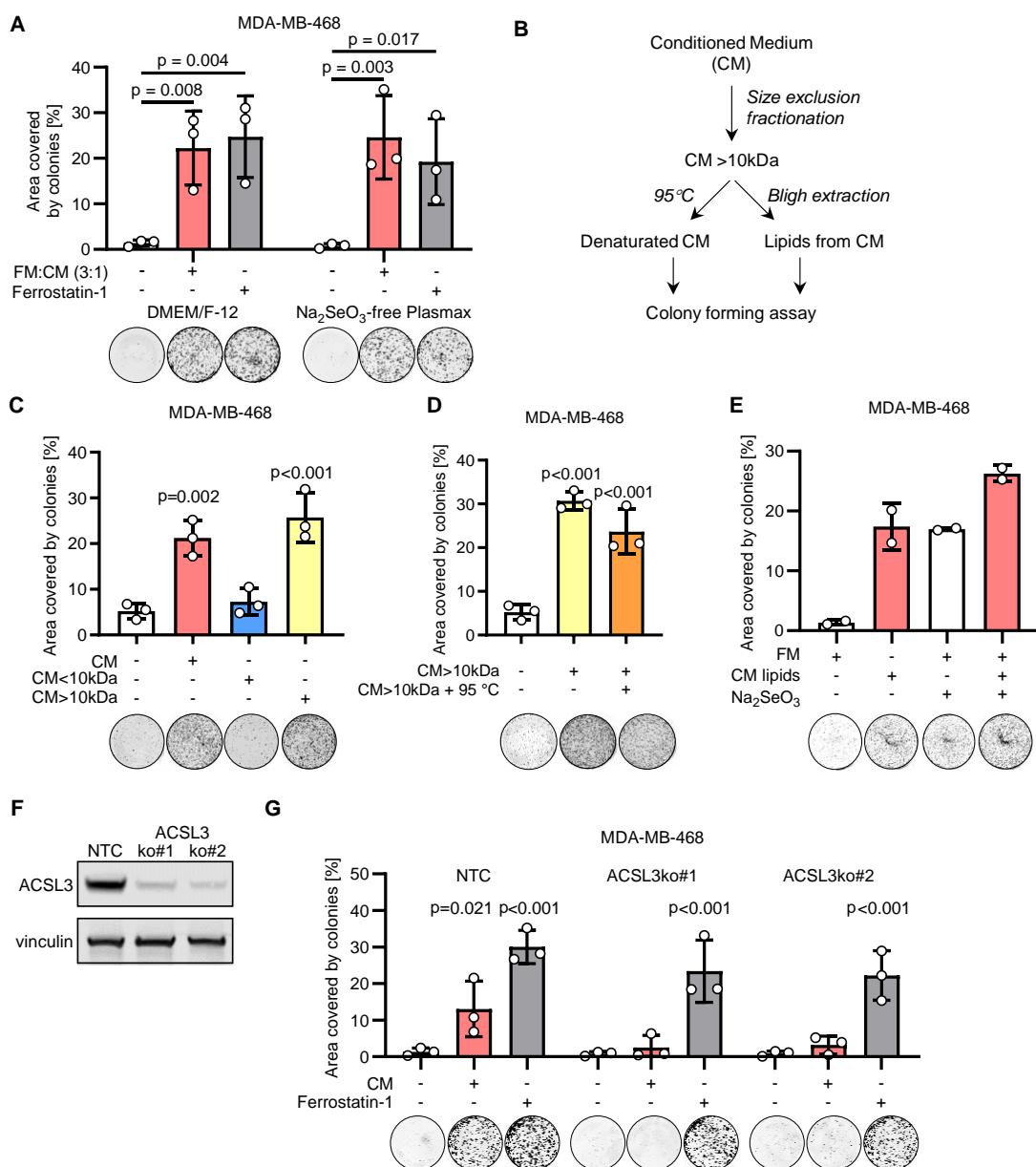
711 A. Representative images of MDA-MB-468 cells seeded at low density and incubated for 96 h  
712 with 50 nM  $\text{Na}_2\text{SeO}_3$  or 2  $\mu\text{M}$  Ferrostatin-1 as indicated. Phase contrast and fluorescence  
713 images were overlayed and dead cells were identified by green fluorescence emitted by the  
714 Incucyte® Cytotox Green Dye. B. Quantification of the dead cells stained with the green  
715 fluorescent dye in the conditions described in A.

716 C. Well area covered by colonies formed by MDA-MB-468 cells incubated for 7 days with  
717 mock medium or medium conditioned by MDA-MB-468 cells seeded at high density (CM).  
718 Media used for the colony forming assay were supplemented with 50 nM  $\text{Na}_2\text{SeO}_3$  or 2  $\mu\text{M}$

719 Ferrostain-1 as indicated. P values refer to a two-way ANOVA test for unpaired samples with  
720 Dunnett's multiple comparisons test.


721 D. Well area covered by colonies formed by the indicated cell lines incubated for 7 days with  
722 mock medium or medium conditioned by BT549, CAL-120, MDA-MB-231, EO771 and MCF7  
723 cells seeded at high density. Conditioned medium was used on the respective cell line.  
724 P values refer to a two-tailed, homoscedastic Student's *t* tests for unpaired samples.

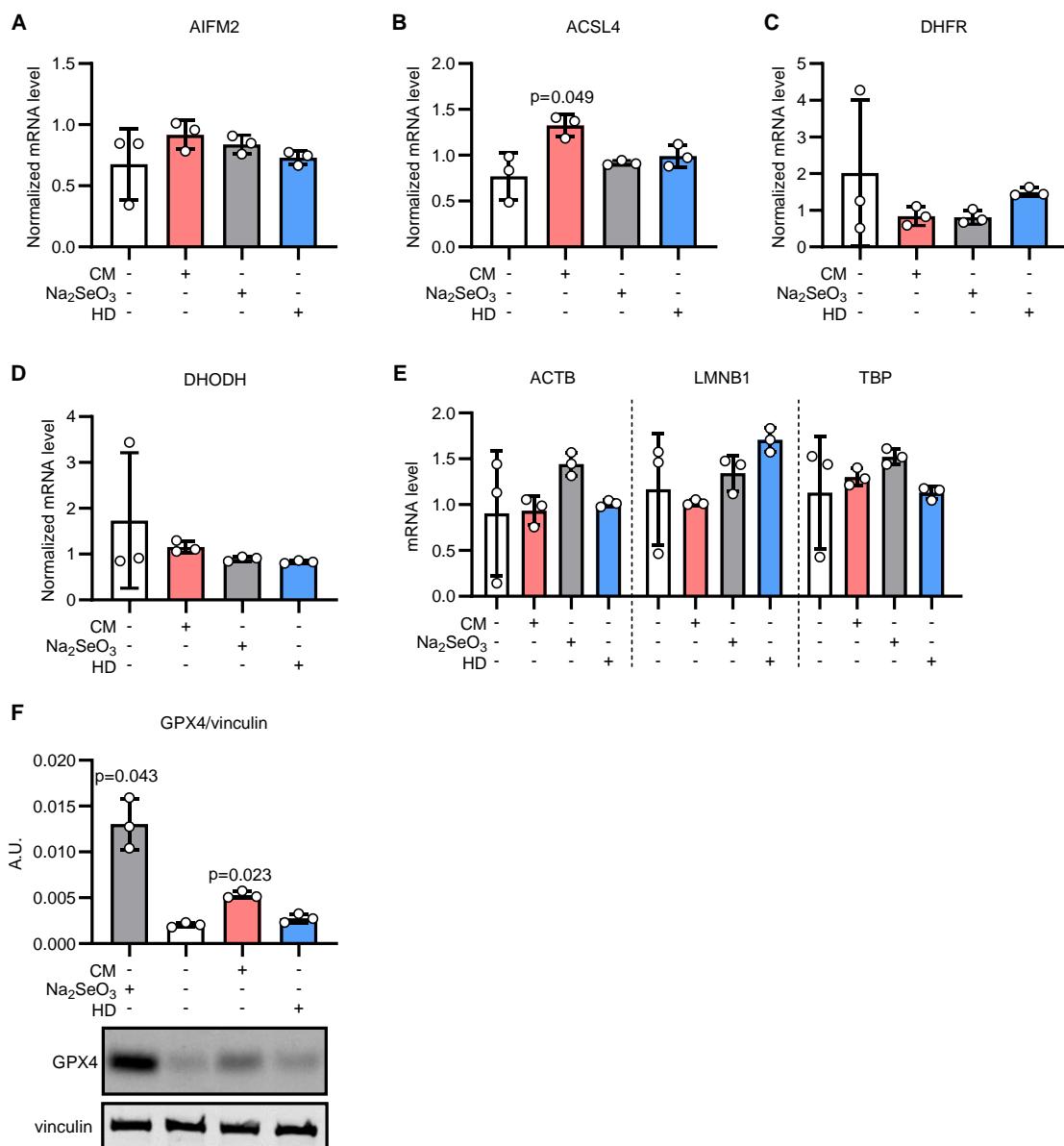
725 E. Well area covered by colonies formed by MDA-MB-468 incubated for 7 days with mock  
726 medium or medium conditioned by BT549, CAL120 or MCF7 cells seeded at high density.  
727 Media used for the colony forming assay were supplemented with 50 nM Na<sub>2</sub>SeO<sub>3</sub> as  
728 indicated. P values refer to a one-way ANOVA test for unpaired samples with Dunnett's  
729 multiple comparisons test.


730 F. Well area covered by colonies formed by MDA-MB-468 incubated for 7 days with mock  
731 medium or medium conditioned by cancer associated fibroblasts (CAF), immortalised  
732 mammary fibroblasts (MF), or immortalised human dermal fibroblasts (DF) seeded at high  
733 density. Media used for the colony forming assay were supplemented with 50 nM Na<sub>2</sub>SeO<sub>3</sub> as  
734 indicated. P values refer to a one-way ANOVA test for unpaired samples with Dunnett's  
735 multiple comparisons test.

736 C-F. Representative images of wells with colonies are shown for each experimental condition.  
737 n<sub>exp</sub>=2-7 as indicated by the data points in each panel. Bars represent mean  $\pm$  s.d..

738

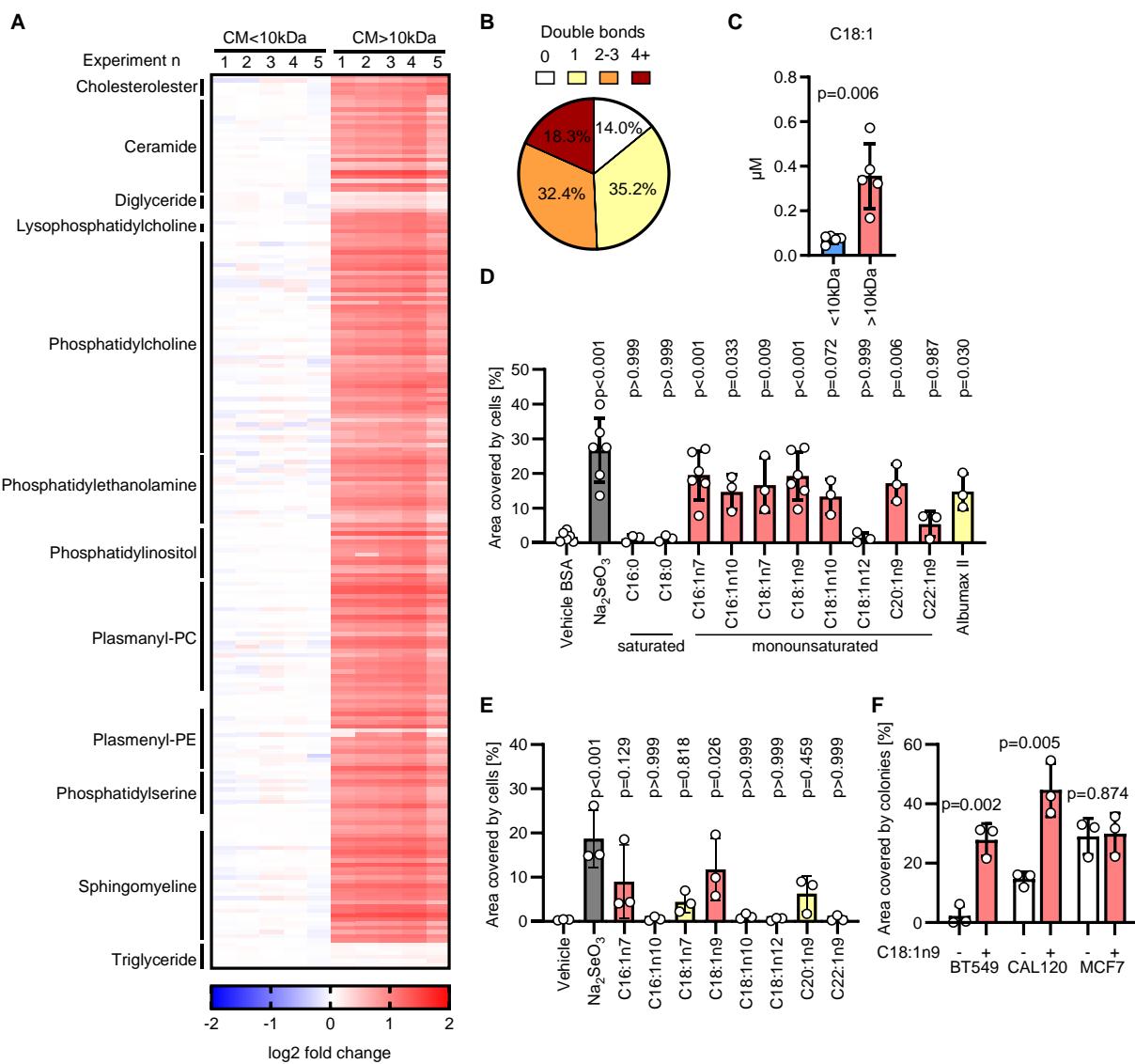



739  
740 **Figure S1: Medium conditioned by breast cancer cells and cancer-associated**  
741 **fibroblasts enhances the clonogenicity of triple-negative breast cancer cells.**  
742 A. Images of high-density cultures of MDA-MB-468 cells at the start (day 0) and end (day 2)  
743 of the medium conditioning period. Representative fields of view from 3 independent  
744 experiments (#1-3) are shown.  
745 B. Quantification of the number of colonies obtained from the assays shown in Figure 1C.  
746 P values refer to a two-way ANOVA test for unpaired samples with Dunnett's multiple  
747 comparisons test  
748  
749



750 **Figure 2: Breast cancer cells produce an anti-ferroptotic molecule at high density.**

751 A. Well area covered by colonies formed by MDA-MB-468 incubated for 7 days with fresh  
 752 medium (FM) without or with supplementation of 2  $\mu$ M ferrostatin-1, or with FM mixed 3:1 with  
 753 medium conditioned by MDA-MB-468 cells seeded at high density (CM). Experiments were  
 754 performed in DMEM/F-12 or Na<sub>2</sub>SO<sub>3</sub>-free Plamax™. P values refer to a two-way ANOVA test  
 755 for unpaired samples with Dunnett's multiple comparisons test.  
 756 B. Schematic diagram of the analytical procedures applied to CM to identify the factor rescuing  
 757 colony formation.  
 758 C-D. Well area covered by colonies formed by MDA-MB-468 incubated for 7 days with CM or  
 759 with medium supplemented with the fractions separated by a size exclusion column as


760 described in the Methods section (C), and further incubated for 15 min at 95°C (D). P values  
761 refer to a one-way ANOVA test for unpaired samples with Dunnett's multiple comparisons test.  
762 E. Well area covered by colonies formed by MDA-MB-468 incubated for 7 days with fresh  
763 medium (FM) supplemented with lipidic extracts obtained from the conditioned medium (CM)  
764 as shown in B.  
765 F. Immunoblot of ACSL3 and vinculin (loading control) in NTC and two ACSL3 ko clones  
766 obtained from MDA-MB-468 cells.  
767 G. Well area covered by colonies formed by MDA-MB-468 control (NTC) or ACSL3 ko cells  
768 incubated for 7 days with fresh medium, conditioned medium (CM) or fresh medium  
769 supplemented with 2  $\mu$ M ferrostatin-1 as indicated. P values refer to a two-way ANOVA test  
770 for paired samples with Sidak's multiple comparisons test.  
771 A, C-E, G. Representative images of wells with colonies are shown for each experimental  
772 condition.  $n_{exp}=2-3$  as indicated by the data points in each panel. Bars represent mean  $\pm$  s.d..  
773  
774



775  
776 **Figure S2: Breast cancer cells produce an anti-ferroptosis molecule at high density.**  
777 A-D. qPCR quantification of *AIFM2* (A), *ACSL4* (B), *DHFR* (C), and *DHODH* (D) mRNA  
778 expression in MDA-MB-468 cells seeded at low density in mock medium and supplemented  
779 with 50 nM selenite or conditioned medium (CM) for 2 days as indicated. The gene expression  
780 was also assessed in cells seeded at high density (HD) grown for 2 days in mock medium.  
781 The mRNA level is normalized to the mean mRNA abundance of the 3 housekeeping genes  
782 (*ACTB*, *LMNB1*, and *TBP*) shown in E. P values refer to a one-way ANOVA for paired samples  
783 with Dunnett's multiple comparisons test.  $n_{exp}=3$ . Bars represent mean  $\pm$  s.d.  
784 E. qPCR quantification of *ACTB*, *LMNB1*, and *TBP* mRNA expression in MDA-MB-468 cells  
785 seeded and treated as described in A-D.

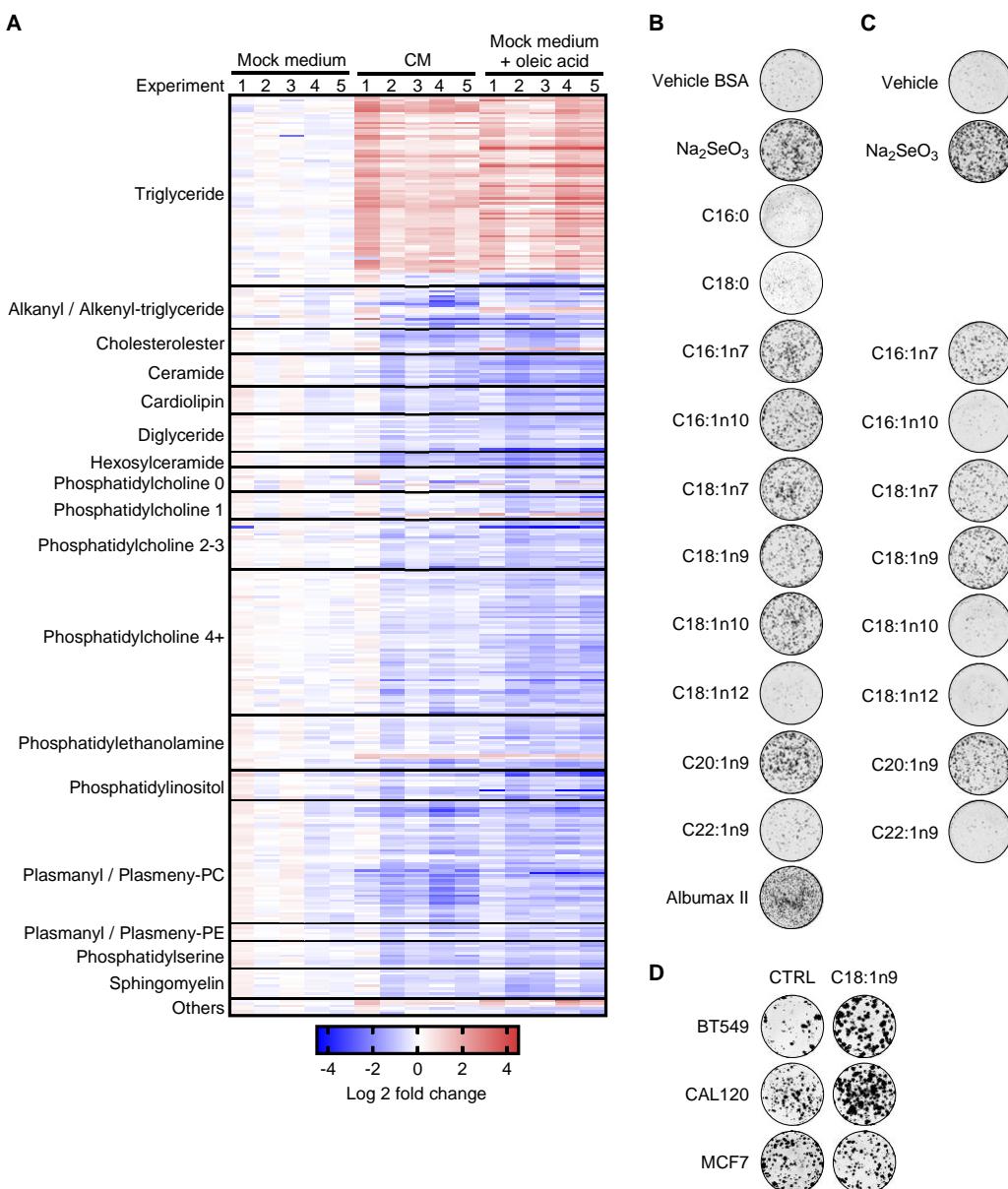
786 F. Immunoblot analysis of GPX4 and vinculin (loading control) in MDA-MB-468 cells MDA-MB-  
787 468 cells seeded and treated as described in A-D. A.U.: arbitrary unit. Representative images  
788 of GPX4 and vinculin (loading control) from one of the 3 experiments quantified in the upper  
789 graph. P values refer to a one-way ANOVA for paired samples with Dunnett's multiple  
790 comparisons test. Bars represent mean  $\pm$  s.d.

791



792

793 **Figure 3: Monounsaturated fatty acids are enriched in the conditioned medium and**  
794 **prevent ferroptosis.**


795 A. Heat map of lipids identified in the fractions of condition medium (CM) described in Figure  
796 2B-C. Selected classes of lipids are indicated.  $n_{exp}=5$ .

797 B. Pie chart depicting the proportion of lipid-bound fatty acids with 0, 1, 2-3, or  $\geq 4$  double  
798 bonds detected by LC-MS in the CM $> 10$  kDa fraction .

799 C. Concentration of free C18:1 fatty acid measured in the fractions of conditioned medium  
800 described in Figure 2B-C. P value refers to a two-tailed, homoscedastic Student's *t* tests for

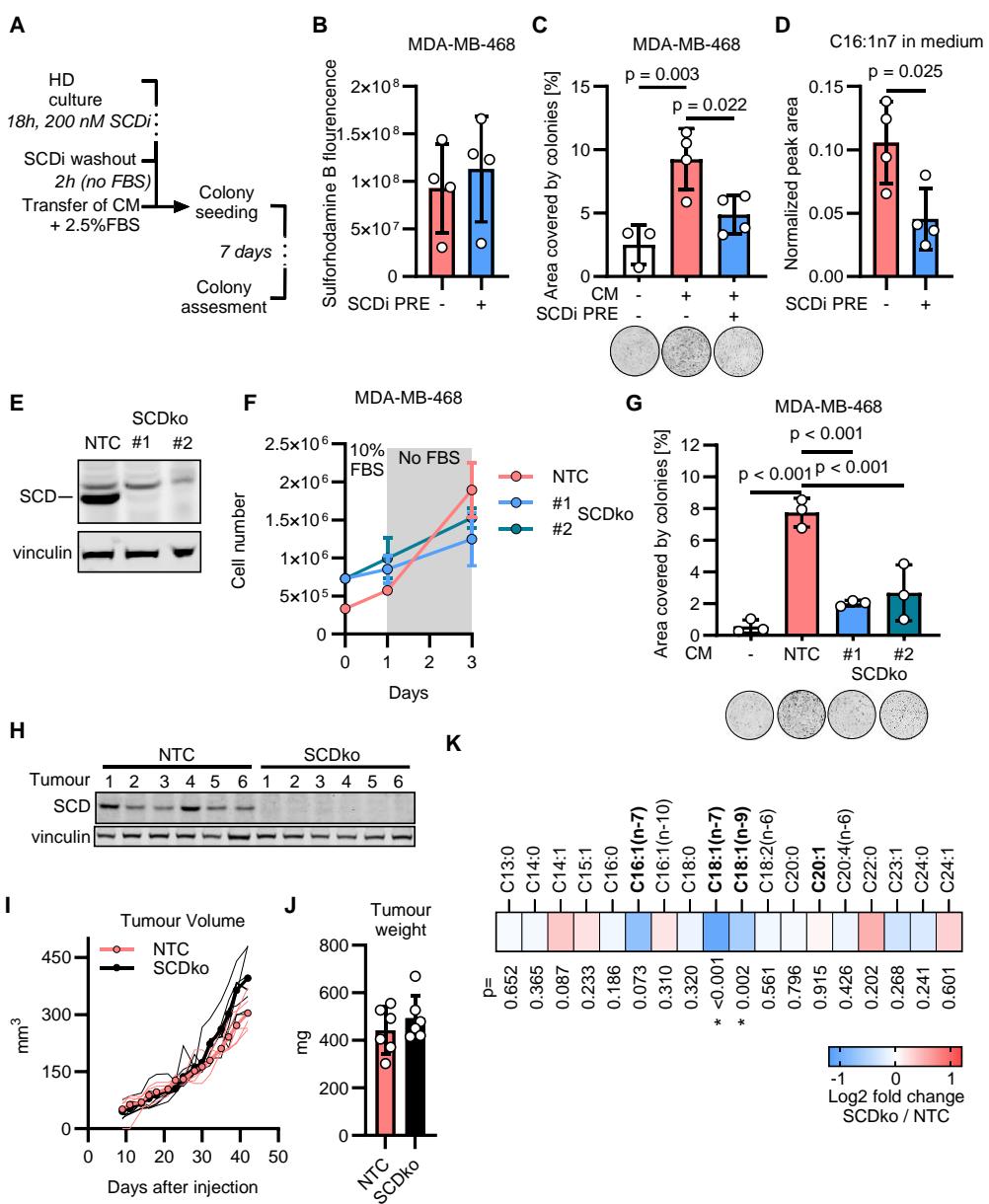
801 unpaired samples.

802 D. Well area covered by colonies formed by MDA-MB-468 cells incubated for 7 days with  
803 medium supplemented with 0.015% BSA (vehicle), 0.015% BSA + 50 nM Na<sub>2</sub>SeO<sub>3</sub>, 0.015%  
804 BSA + 50 µM of the indicated fatty acids, 1.6g/L lipid-rich BSA (Albumax II). P values refer to  
805 a one-way ANOVA test for unpaired samples with Dunnett's multiple comparisons test.  
806 E. Well area covered by colonies formed by MDA-MB-468 cells incubated for 7 days with fresh  
807 medium supplemented with vehicle control, 50 nM Na<sub>2</sub>SeO<sub>3</sub> or 10 µM of the indicated fatty  
808 acid. P values refer to a one-way ANOVA test for unpaired samples with Dunnett's multiple  
809 comparisons test.  
810 F. Well area covered by colonies formed by the indicated cell lines incubated for 7 days with  
811 or without the supplementation of 10 µM oleic acid (C18:1n9). P values refer to a two-tailed,  
812 homoscedastic Student's *t* tests for unpaired samples.  
813 C-F. n<sub>exp</sub>=3-5 as indicated by the data points. Bars represent mean ± s.d..



814 **Figure S3: Monounsaturated fatty acids are enriched in the conditioned medium and  
815 prevent ferroptosis.**

816 A. Heatmap of lipids regulated in MDA-MB-468 cells cultured at low density with mock  
817 medium, conditioned medium (CM) or mock medium with 10  $\mu\text{M}$  oleic acid. Ferrostatin-1 was  
818 supplemented at 2  $\mu\text{M}$  in all conditions. The lipids identified as significantly regulated with a  
819 two-tailed, homoscedastic Student's *t* tests for unpaired samples in the comparison between  
820 conditioned medium and mock medium are reported and selected classes of lipids are  
821 indicated. For the phosphatidylcholine class the number of double bonds is also reported (0,  
822 1, 2-3, 4+). The Log2 fold change refers to the comparison with mock medium supplemented  
823 cells.  $n_{\text{exp}}=5$ .


824 B. Representative images for the colony forming assays displayed in Figure 3D.

825 C. Representative images for the colony forming assays displayed in Figure 3E.

826 D. Representative images for colony forming assays displayed in Figure 3F.

827

828



829 **Figure 4: SCD is required for the anti-ferroptotic capacities of conditioned medium.**

830 A. Schematic depicting the experimental workflow to condition the medium by MDA-MB-468  
831 at high density (HD) pre-incubated with SCD inhibitor (SCDi, CAY10566).  
832 B. Quantification of Sulforhodamine B staining performed on MDA-MB-468 cells immediately  
833 after the conditioning of the medium that followed the SCD inhibitor pre-treatment (SCDi PRE)  
834 as described in A.  
835 C. Well area covered by colonies formed by MDA-MB-468 cells incubated for 7 days with  
836 mock medium and medium conditioned for 2 hours by MDA-MB-468 cells without or with SCD  
837 inhibitor pre-treatment (SCDi PRE). P values refer to a one-way ANOVA test for unpaired

838 samples with Dunnett's multiple comparisons test. Representative images of wells with  
839 colonies are shown for each experimental condition.

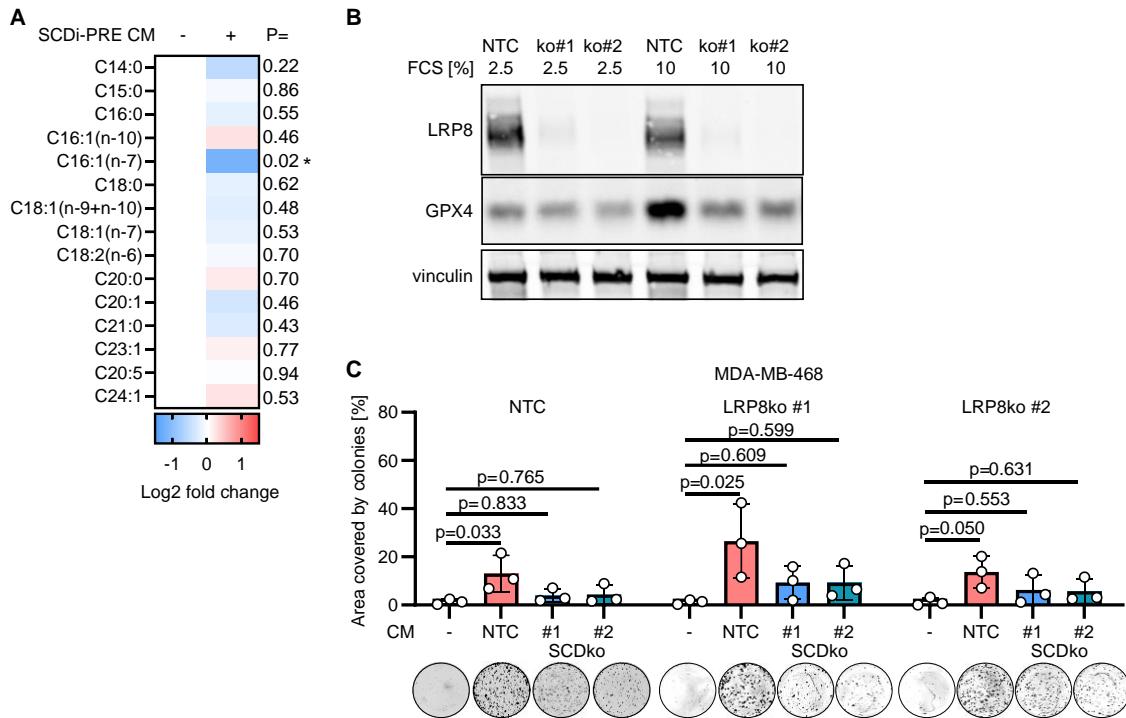
840 D. Quantification of total palmitoleic acid levels (free and lipid-bound C16:1n7) in medium  
841 conditioned by MDA-MB-468 cells without or with SCD inhibitor pre-treatment (SCDi PRE).  
842 Peak area values are normalized on the signal from internal standard (C17:0). P value refers  
843 to a two-tailed, homoscedastic Student's *t* tests for unpaired samples.

844 E. Immunoblot of SCD and vinculin (loading control) in NTC and two SCDko clones from MDA-  
845 MB-468 breast cancer cells. Images representative of 3 independent experiments are shown.

846 F. Number of cells obtained with MDA-MB-468 NTC and SCDko clones cultured as described  
847 in the methods section 'Conditioned medium'. The number of seeded NTC and SCDko cells  
848 was adjusted to reach a comparable conditioning of the medium employed for the colony  
849 forming assays shown in G.  $n_{exp}=2$

850 G. Well area covered by colonies formed by MDA-MB-468 cells incubated for 7 days with  
851 mock medium or medium conditioned by NTC or SCDko MDA-MB-468 clones cultured as  
852 described in F and in the methods section 'Conditioned medium'. P values refer to a one-way  
853 ANOVA test for unpaired samples with Dunnett's multiple comparisons test. Representative  
854 images of wells with colonies are shown for each experimental condition.

855 H. Immunoblot of SCD and vinculin (loading control) in NTC and SCDko tumours ( $n=6$ )  
856 harvested 7 weeks after that  $3 \times 10^6$  MDA-MB-468 cells were transplanted unilaterally in the  
857 mammary fat pad of NSG female mice.


858 I. Calliper-measured volume of the tumours obtained as described in H. Thinner lines  
859 represent the volumes of tumours obtained from each transplantation, thicker lines and  
860 symbols represent group means.  $n_{tumour}=6$ .

861 J. Ex vivo tumour weight of NTC and SCDko tumours described in H.  $n_{tumour}=6$ . Bars represent  
862 mean  $\pm$  s.d.

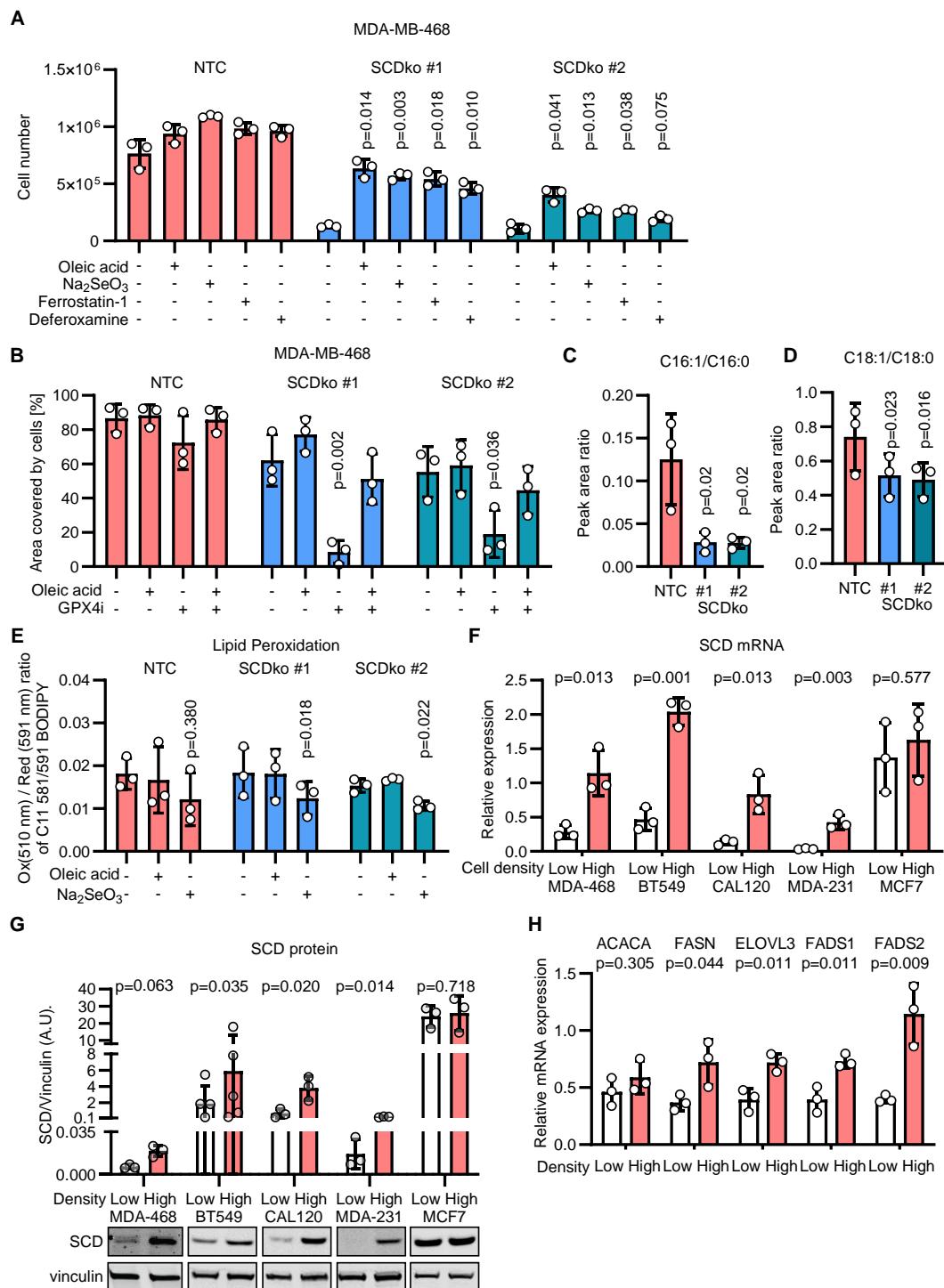
863 K. Quantification of total (free and lipid-bound) fatty acid species in interstitial fluid of the  
864 tumours described in H. SCD-derived fatty acids are highlighted in bold. Peak area values  
865 normalized on the signal from internal standard (C17:0) were used to calculate the Log2 fold  
866 change. \* indicate significance and p values refer to a two-tailed, homoscedastic Student's *t*  
867 tests for unpaired samples.  $n_{tumour}=6$ .

868 B-D, G.  $n_{exp}=3-4$  as indicated by the data points in each panel. Bars represent mean  $\pm$  s.d.

869



870 **Figure S4: SCD is required for the anti-ferroptotic capacities of conditioned medium.**


871 A. Quantification of total (free and lipid-bound) fatty acid species in medium conditioned by  
 872 MDA-MB-468 cells without or with SCD inhibitor pre-treatment (SCDi PRE). Peak area values  
 873 normalized on the signal from internal standard (C17:0) were used to calculate the Log2 fold  
 874 change. P value refers to a two-tailed, homoscedastic Student's *t* tests for unpaired samples.  
 875 These data complement Figure 4D.  $n_{exp}=4$ .

876 B. Immunoblot of LRP8, GPX4, and vinculin (loading control) in NTC and LRP8ko clones (#1-  
 877 2) derived from MDA-MB-468 breast cancer cells.

878 C. Well area covered by colonies formed by MDA-MB-468 NTC control cells and LRP8ko  
 879 clones incubated for 7 days with mock medium or medium conditioned by NTC or SCDko  
 880 MDA-MB-468 clones cultured as shown in Figure 4F. P values refer to a one-way ANOVA test  
 881 for unpaired samples with Dunnett's multiple comparisons test.  $n_{exp}=4$ . Bars represent mean  
 882  $\pm$  s.d.. Representative images of wells with colonies are shown for each experimental  
 883 condition.

884

885



886

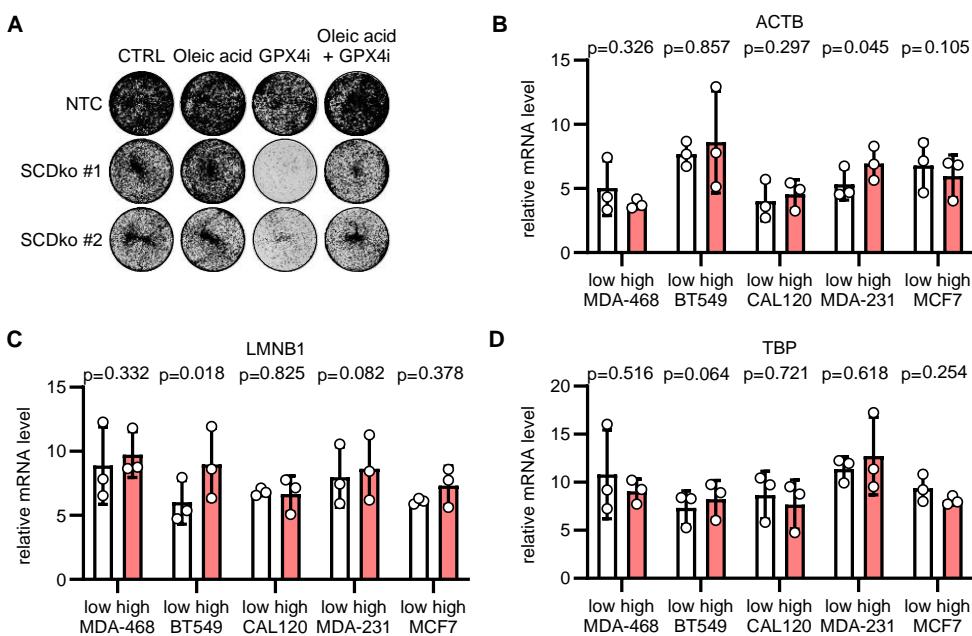
887 **Figure 5: Loss of SCD sensitises cells to ferroptosis.**

888 A. Number of NTC and SCDko MDA-MB-468 cells seeded at high density and incubated for  
889 5 days without or with 10  $\mu$ M oleic acid, 50 nM  $\text{Na}_2\text{SeO}_3$ , 2 $\mu$ M Ferrostatin-1 or 2.5  $\mu$ M  
890 Deferoxamine as indicated. P values refer to a two-way ANOVA test for unpaired samples  
891 with Dunnett's multiple comparisons test comparing to the respective unsupplemented  
892 controls.

893 B. Well area covered by NTC and SCDko MDA-MB-468 cells seeded at high density and  
894 incubated for 5 days without or with 50 nM GPX4 inhibitor (RSL3), 10  $\mu$ M Oleic acid or their  
895 combination (50 nM + 10  $\mu$ M, respectively). P values refer to a two-way ANOVA test for  
896 unpaired samples with Dunnett's multiple comparisons test comparing to the respective  
897 unsupplemented controls.

898 C-D. Peak Area ratio for C16:1 / C16:0 (C) and C18:1 / C18:0 (D) fatty acids in NTC and  
899 SCDko MDA-MB-468 cells seeded at high density. P values refer to a one-way repeated  
900 measures ANOVA test for paired samples with Dunnett's multiple comparisons test comparing  
901 to the NTC controls.

902 E. Ratio between oxidised (510 nm) and reduced (591 nm) BODIPY 581/591 C11 (lipid  
903 peroxidation sensor) in NTC and SCDko MDA-MB-468 cells seeded at high density and  
904 incubated for 2 days without or with 10  $\mu$ M oleic acid or 50 nM Na<sub>2</sub>SeO<sub>3</sub> as indicated. P values  
905 refer to a one-way repeated measures ANOVA test for paired samples with Dunnett's multiple  
906 comparisons test, comparing to the respective unsupplemented controls.


907 F. qPCR quantification of SCD mRNA expression in MDA-MB-468, BT549, CAL120, MDA-  
908 MB-231 and MCF7 cells seeded at low and high density and cultured for 2 days. The  
909 expression is relative to Actin, lamin B1 and TBP mRNA abundance. P values refer to a two-  
910 tailed, homoscedastic Student's *t* tests for unpaired samples.

911 G. Immunoblot analysis of SCD levels in MDA-MB-468 (antibody Alpha Diagnostics, #SCD11-  
912 A, 1:1000) and BT549, CAL120, MDA-MB-231, MCF7 cells (antibody Abcam, #ab19862,  
913 1:1000) seeded at low and high density and cultured for 2 days. The lower inset shows  
914 representative images of the western blot for SCD and vinculin (loading control) from one of  
915 the experiments quantified in the upper panel. P value refers to a two-tailed, homoscedastic  
916 Student's *t* tests for unpaired samples comparing low and high densities.

917 H. qPCR quantification of ACACA, FASN, ELOVL3, FADS1 and FADS2 mRNA expression in  
918 MDA-MB-468 cells seeded at low and high density and cultured for 2 days. The expression is  
919 normalized on the mean mRNA abundance of ACTB, LMNB1 and TBP (**Figure S5 B-D**).  
920 P values refer to a two-tailed, homoscedastic Student's *t* tests for unpaired samples comparing  
921 low and high densities.

922 A-H. n<sub>exp</sub>=3-6 as indicated by the data points in each panel. Bars represent mean  $\pm$  s.d..

923



924 **Figure S5: Loss of SCD sensitises cells to ferroptosis.**

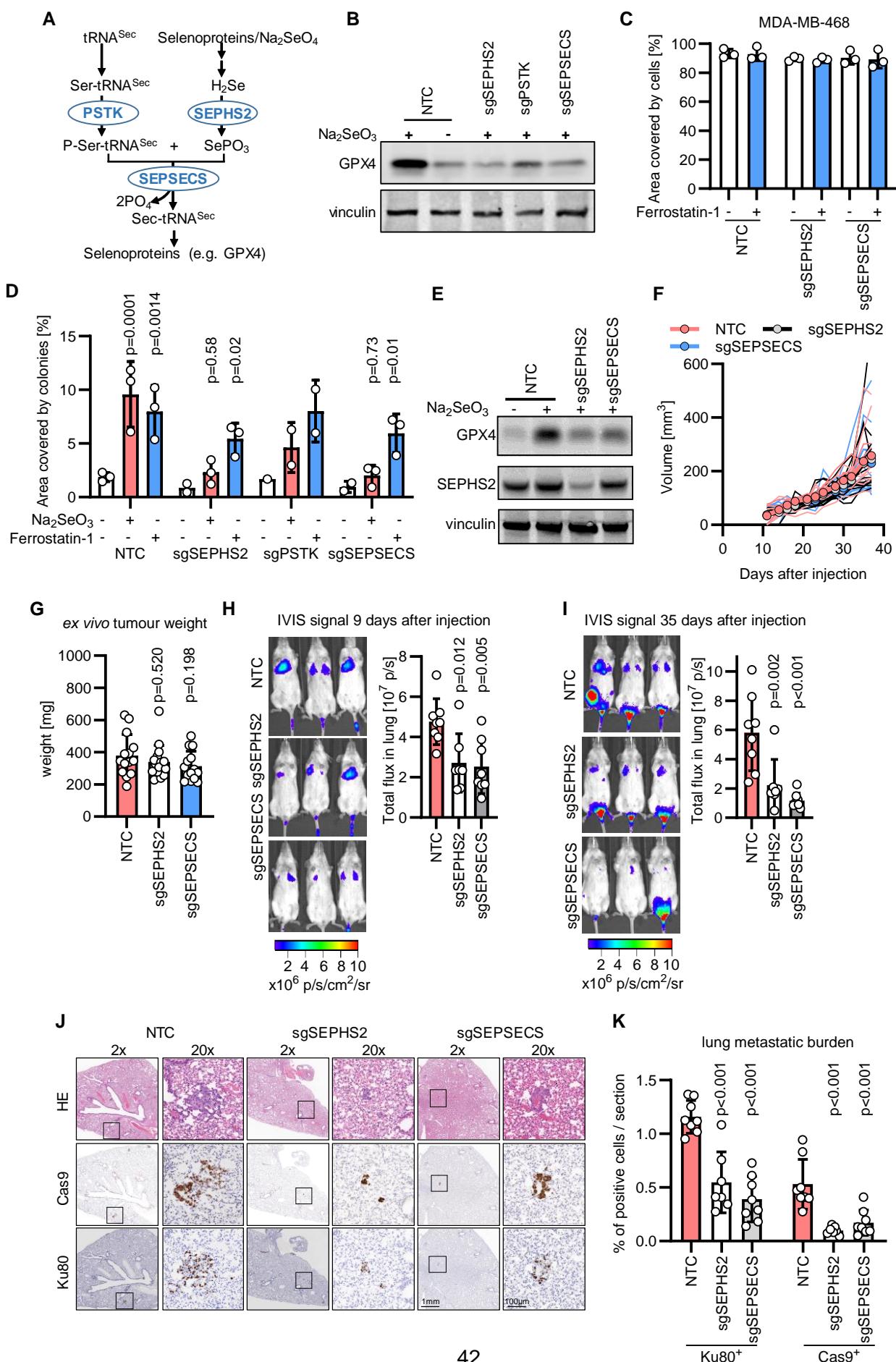
925 A. Representative images of the colony forming assays shown in Figure 5B.

926 B-D. qPCR quantification of ACTB (B), LMNB1 (C), and TBP (D) mRNA expression in MDA

927 MB-468, BT549, CAL120, MDA-MB-231 and MCF7 cells seeded at low or high density and

928 cultured for 2 days. The mean values for the three genes were used to normalize the

929 expression of the genes shown in Figure 5 H. P value refers to a two-tailed, homoscedastic


930 Student's *t* tests for paired samples comparing low and high densities. Bars represent mean

931  $\pm$  s.d.

932

933

934



936 **Figure 6: Targeting selenocysteine biosynthesis impairs lung metastasis of TNBC.**

937 A. Schematic depicting selenocysteine synthesis on tRNA<sup>sec</sup>.

938 B. Immunoblot images of GPX4 and vinculin (loading control) in control MDA-MB-468 cells  
939 (NTC) or in cells depleted of PSTK, SEPHS2 and SEPSECS supplemented with 50 nM  
940 Na<sub>2</sub>SeO<sub>3</sub> as indicated.

941 C. Well area covered by NTC, sgSEPHS2 and sgSEPSECS MDA-MB-468 cells seeded at  
942 high density and incubated for 5 days without or with 1 μM Ferrostatin-1. n<sub>exp</sub>=3. Bars  
943 represent mean ± s.d..

944 D. Well area covered by colonies formed by NTC, sgSEPHS2, sgPSTK and sgSEPSECS  
945 MDA-MB-468 cells seeded at low density and incubated for 7 days without and with 50 nM  
946 Na<sub>2</sub>SeO<sub>3</sub> or 1 μM Ferrostatin-1. n<sub>exp</sub>=1-3 as indicated by the data points. P values refer to a  
947 two-way ANOVA test for unpaired samples with Dunnett's multiple comparisons test  
948 comparing to the respective unsupplemented controls. Bars represent mean ± s.d..

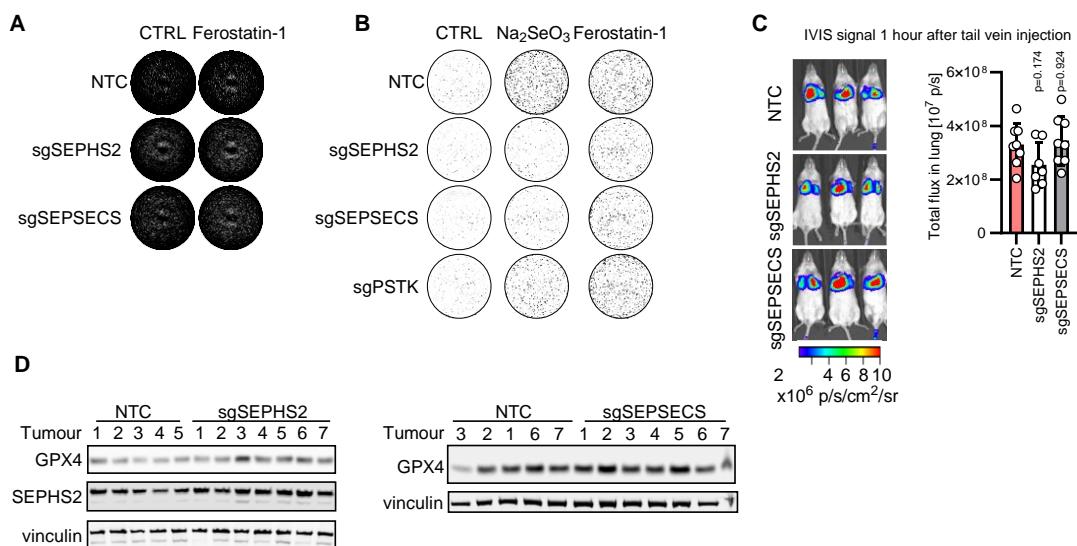
949 E. Immunoblot images of GPX4, SEPHS2 and vinculin (loading control) in MDA-MB-468 cells  
950 (NTC) or in cells depleted of SEPHS2 or SEPSECS supplemented with 50 nM Na<sub>2</sub>SeO<sub>3</sub> as  
951 indicated. Images are representative of 3 independent experiments.

952 F. Calliper-measured volume of tumours in the mammary fat pad of female NSG mice  
953 transplanted with NTC, sgSEPHS2 or sgSEPSECS MDA-MB-468 cells (n=8 mice/group). All  
954 mice were transplanted bilaterally with 3x10<sup>6</sup> cells. One transplanted mouse of each NTC and  
955 sgSEPSECS group had to be culled before the completion of the experiment for licence  
956 reasons due to the location of the tumour. When multiple tumours were formed from a single  
957 transplantation of cells their combined volumes were reported as one data point. Thinner lines  
958 represent the volumes of tumours obtained from each fat pad transplantation, thicker lines and  
959 symbols represent group means (n=14 tumours for NTC, n= 16 for sgSEPHS2, n=14 for  
960 sgSEPSECS).

A CGGC permutation test

961 (<https://bioinf.wehi.edu.au/software/compareCurves/>) was used to assess the significant  
962 differences between growth curves. Adjusted P value comparing the NTC to sgSEPHS2 or  
963 sgSEPSECS obtained with a test with 1000 permutations were 0.66 and 0.67, respectively.

964 G. Ex vivo weight of resected NTC, sgSEPHS2 or SEPSECS tumours taken 38 days after  
965 transplantation. P values refer to a one-way ANOVA test for unpaired samples with Dunnett's  
966 multiple comparisons test comparing to the NTC control. n=14 for NTC or sgSEPSECS  
967 tumours and n=16 for sgSEPHS2 as indicated by the data points.


968 H-I. IVIS pictures and quantification of lung metastasis burden 9 days (H) and 35 days (I) after  
969 tail vein injection of 2x10<sup>6</sup> NTC, sgSEPHS2 or sgSEPSECS MDA-MB468 cells. The same  
970 mice are shown in H and I. P value refers to a one-way ANOVA test for unpaired samples with  
971 Dunnett's multiple comparisons test comparing to the NTC control. n=7-8 female NSG mice

972 as indicated by data points. One injected mouse of sgSEPHS2 group had to be culled due to  
973 husbandry reasons.

974 J. Representative images of staining with haematoxylin and eosin (HE), human Ku80 and  
975 Cas9 of lungs of mice described in H-I seven weeks after tail vein injection. Black squares  
976 frame the areas magnified at 20x.

977 K. Lung metastasis burden assessed by quantifying the % of human Ku80 and Cas9 positive  
978 cells in lungs of mice described in H-I seven weeks after tail vein injection. P values refer to a  
979 one-way ANOVA test for unpaired samples with Dunnett's multiple comparisons test  
980 comparing to the NTC control. n=7-8 female NSG mice as indicated by data points.

981



982 **Figure S6: Targeting selenocysteine biosynthesis impairs lung metastasis of TNBC.**

983 A. Representative images of the well area covered by cells at the end of the assays shown in  
984 Figure 6C.

985 B. Representative images of the colony forming assays shown in Figure 6D.

986 C. IVIS pictures and quantification of lung metastasis burden 1 hour after tail vein injection of  
987  $2 \times 10^6$  NTC, sgSEPHS2 or sgSEPSECS MDA-MB468 cells. The same mice are shown in  
988 Figure 6 H and I. P value refers to a one-way ANOVA test for unpaired samples with Dunnett's  
989 multiple comparisons test comparing to the NTC control. n=7-8 female NSG mice as indicated  
990 by data points. One injected mouse of sgSEPHS2 group had to be culled due to husbandry  
991 reasons.

992 D. Immunoblot for GPX4, SEPHS2 and vinculin (loading control) in mammary tumours  
993 sampled 38 days after the transplantation of NTC, sgSEPHS2, or sgSEPSECS MDA-MB-468  
994 cells. For each experimental group the lysates from 7 tumours were loaded as indicated.

995



996

997 **Synopsis.** Triple negative breast cancer (TNBC) cells grown at high density and in cell-dense  
998 mammary tumours produce MUFAs *via* Stearoyl-CoA Desaturase (SCD) and secrete lipid-  
999 bound MUFAs that protects them from pro-ferroptotic lipid peroxidation. Conversely, TNBC  
1000 cells grown at low density or metastasizing in the bloodstream downregulate SCD expression  
1001 resulting in MUFAs deficiency. This metabolic shift renders metastatic cells dependent on the  
1002 anti-ferroptotic action of selenoproteins, in particular Glutathione Peroxidase 4 (GPX4),  
1003 exposing a novel conditional vulnerability tied to the inhibition of Sec-tRNA<sup>sec</sup> biosynthesis.  
1004 Indeed, in preclinical models targeting the enzymes of the Sec-tRNA<sup>sec</sup> biosynthesis  
1005 effectively impede TNBC lung metastasis.

1006

1007

## References

1. Yang, W. S. & Stockwell, B. R. Ferroptosis : Death by Lipid Peroxidation. *Trends Cell Biol* **26**, 165–176 (2016).
2. Zheng, J. & Conrad, M. The Metabolic Underpinnings of Ferroptosis. *Cell Metab* **32**, 920–937 (2020).
3. Bersuker, K. *et al.* The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. *Nature* **575**, (2019).
4. Mishima, E. *et al.* A non-canonical vitamin K cycle is a potent ferroptosis suppressor. *Nature* **608**, (2022).
5. Yang, W. S. *et al.* Regulation of Ferroptotic Cancer Cell Death by GPX4. *Cell* **156**, 317–331 (2014).
6. Ursini, F., Maiorino, M. & Gregolin, C. *The Selenoenzyme Phospholipid Hydroperoxide Glutathione Peroxidase*. *Biochimica et Biophysica Acta* vol. 839 (1985).
7. Freitas, F. P. *et al.* 7-Dehydrocholesterol is an endogenous suppressor of ferroptosis. *Nature* **626**, 401–410 (2024).
8. Li, Y. *et al.* 7-Dehydrocholesterol dictates ferroptosis sensitivity. *Nature* **626**, 411–418 (2024).
9. Mao, C. *et al.* DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. *Nature* **593**, 586–590 (2021).
10. Soula, M. *et al.* Metabolic determinants of cancer cell sensitivity to canonical ferroptosis inducers. *Nat Chem Biol* **16**, 1351–1360 (2020).
11. Doll, S. *et al.* ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. *Nat Chem Biol* **13**, 91–98 (2017).
12. Song, X. *et al.* PDK4 dictates metabolic resistance to ferroptosis by suppressing pyruvate oxidation and fatty acid synthesis. *Cell Rep* **34**, 108767 (2021).
13. Qiu, B. *et al.* Phospholipids with two polyunsaturated fatty acyl tails promote ferroptosis. *Cell* (2024) doi:10.1016/j.cell.2024.01.030.
14. Magtanong, L. *et al.* Exogenous Monounsaturated Fatty Acids Promote a Ferroptosis-Resistant Cell State. *Cell Chem Biol* **26**, 420-432.e9 (2019).
15. Tesfay, L. *et al.* Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. *Cancer Res* **79**, 5355–5366 (2019).
16. Ubellacker, J. M. *et al.* Lymph protects metastasizing melanoma cells from ferroptosis. *Nature* **585**, 113–118 (2020).
17. Xie, Y. *et al.* Mammary adipocytes protect triple-negative breast cancer cells from ferroptosis. *Journal of Hematology and Oncology* vol. 15 Preprint at <https://doi.org/10.1186/s13045-022-01297-1> (2022).
18. Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: Molecular Pathways and Physiological Roles. *Physiol Rev* **94**, 739–777 (2014).

1046 19. Burk, R. F. & Hill, K. E. Regulation of Selenium Metabolism and Transport. (2015)  
1047 doi:10.1146/annurev-nutr-071714-034250.

1048 20. Carlisle, A. E. *et al.* Selenium detoxification is required for cancer-cell survival. *Nat*  
1049 *Metab* **2**, 603–611 (2020).

1050 21. Chen, Y.-C., Prabhu, K. S. & Mastro, A. M. Is Selenium a Potential Treatment for  
1051 Cancer Metastasis? *Nutrients* **5**, 1149–1168 (2013).

1052 22. Eagle, K. *et al.* An oncogenic enhancer encodes selective selenium dependency in  
1053 AML. *Cell Stem Cell* **29**, 386-399.e7 (2022).

1054 23. vande Voorde, J. *et al.* Improving the metabolic fidelity of cancer models with a  
1055 physiological cell culture medium. *Sci Adv* **5**, eaau7314 (2019).

1056 24. Alborzinia, H. *et al.* LRP8-mediated selenocysteine uptake is a targetable vulnerability  
1057 in MYCN-amplified neuroblastoma. *EMBO Mol Med* (2023)  
1058 doi:10.15252/emmm.202318014.

1059 25. Vinceti, M. *et al.* Selenium for preventing cancer. *Cochrane Database of Systematic*  
1060 *Reviews* vol. 2014 Preprint at <https://doi.org/10.1002/14651858.CD005195.pub3>  
1061 (2014).

1062 26. National Institutes of Health - Office of Dietary Supplements. Selenium - Fact Sheet  
1063 for Health Professionals. <https://ods.od.nih.gov/factsheets/Selenium-HealthProfessional/> (2023).

1064 27. Kojima, Y. *et al.* Autocrine TGF- $\beta$  and stromal cell-derived factor-1 (SDF-1) signaling  
1065 drives the evolution of tumor-promoting mammary stromal myofibroblasts. *Proc Natl*  
1066 *Acad Sci U S A* **107**, 20009–20014 (2010).

1067 28. Hernandez-Fernaudo, J. R. *et al.* Secreted CLIC3 drives cancer progression through its  
1068 glutathione-dependent oxidoreductase activity. *Nat Commun* **8**, (2017).

1069 29. Matyash, V., Liebisch, G., Kurzchalia, T. V., Shevchenko, A. & Schwudke, D. Lipid  
1070 extraction by methyl-terf-butyl ether for high-throughput lipidomics. in *Journal of Lipid*  
1071 *Research* vol. 49 1137–1146 (2008).

1072 30. Hutchins, P. D., Russell, J. D. & Coon, J. J. Mapping Lipid Fragmentation for Tailored  
1073 Mass Spectral Libraries. *J Am Soc Mass Spectrom* **30**, 659–668 (2019).

1074 31. Hutchins, P. D., Russell, J. D. & Coon, J. J. LipiDex: An Integrated Software Package  
1075 for High-Confidence Lipid Identification. *Cell Syst* **6**, 621-625.e5 (2018).

1076 32. Chambers, M. C. *et al.* A cross-platform toolkit for mass spectrometry and proteomics.  
1077 *Nature Biotechnology* vol. 30 918–920 Preprint at <https://doi.org/10.1038/nbt.2377>  
1078 (2012).

1079 33. Panzilius, E. *et al.* Cell density-dependent ferroptosis in breast cancer is induced by  
1080 accumulation of polyunsaturated fatty acid-enriched triacylglycerides. *bioRxiv* (2018)  
1081 doi:10.1101/417949.

1082 34. Wu, J. *et al.* Intercellular interaction dictates cancer cell ferroptosis via NF2–YAP  
1083 signalling. *Nature* **572**, 402–406 (2019).

1084

1085 35. Sahai, E. *et al.* A framework for advancing our understanding of cancer-associated  
1086 fibroblasts. *Nature Reviews Cancer* vol. 20 174–186 Preprint at  
1087 <https://doi.org/10.1038/s41568-019-0238-1> (2020).

1088 36. Chen, Z. *et al.* The Role of Ferroptosis in Cardiovascular Disease and Its Therapeutic  
1089 Significance. *Front Cardiovasc Med* **8**, 733229 (2021).

1090 37. Yan, H. fa *et al.* Ferroptosis: mechanisms and links with diseases. *Signal*  
1091 *Transduction and Targeted Therapy* vol. 6 Preprint at <https://doi.org/10.1038/s41392-020-00428-9> (2021).

1093 38. Dierge, E. *et al.* Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic  
1094 tumor environment leads to ferroptosis-mediated anticancer effects. *Cell Metab* **33**,  
1095 1701-1715.e5 (2021).

1096 39. Altea-Manzano, P. *et al.* A palmitate-rich metastatic niche enables metastasis growth  
1097 via p65 acetylation resulting in pro-metastatic NF-κB signaling. *Nat Cancer* (2023)  
1098 doi:10.1038/s43018-023-00513-2.

1099 40. Terry, A. R. *et al.* CD36 maintains lipid homeostasis via selective uptake of  
1100 monounsaturated fatty acids during matrix detachment and tumor progression. *Cell*  
1101 *Metab* **35**, 2060-2076.e9 (2023).

1102 41. Charalabopoulos, K. *et al.* Selenium in serum and neoplastic tissue in breast cancer:  
1103 correlation with CEA. *Br J Cancer* **95**, 674–676 (2006).

1104 42. Yang, F. *et al.* Ferroptosis heterogeneity in triple-negative breast cancer reveals an  
1105 innovative immunotherapy combination strategy. *Cell Metab* **35**, 84-100.e8 (2023).

1106 43. Sherrer, R. L., O'Donoghue, P. & Söll, D. Characterization and evolutionary history of  
1107 an archaeal kinase involved in selenocysteinyl-tRNA formation. *Nucleic Acids Res* **36**,  
1108 1247–1259 (2008).

1109