

1

2 **Rewiring of the epigenome and chromatin architecture by 3 retinoic acid signaling during zebrafish embryonic 4 development**

5

6 Marta Moreno-Oñate^{1*}, Lourdes Gallardo-Fuentes^{1*}, Pedro M. Martínez-García¹,
7 Silvia Naranjo¹, Sandra Jiménez-Gancedo¹, José L. Gómez-Skarmeta^{1†}, Juan J. Tena¹
8 and José M. Santos-Pereira^{1#}

9

10 ¹ Centro Andaluz de Biología del Desarrollo (CABD), Consejo Superior de Investigaciones
11 Científicas/Universidad Pablo de Olavide, 41013 Seville, Spain.

12

13 * These authors contributed equally to this work.

14

15 † Deceased.

16

17 # Corresponding author:

18 José M. Santos-Pereira

19 phone: +34 954 348 687

20 email: jmsanper1@upo.es

21

22

23 Word count: 9,644

24 Number of figures: 6

25 **Abstract**

26 **Background:** Retinoic acid (RA) functions as a ligand for the nuclear RA receptors (RARs),
27 which regulate the expression of target genes by binding to RA response elements. RA
28 signaling is required for multiple processes during chordate embryonic development, such as
29 body axis extension, hindbrain antero-posterior patterning and forelimb bud initiation. Although
30 some RA target genes have been identified, little is known about the genome-wide effects of
31 RA signaling during *in vivo* embryonic development.

32 **Results:** Here we stimulate the RA pathway during development by treating zebrafish embryos
33 with all-trans-RA (atRA), the most abundant form of RA, and use a combination of RNA-seq,
34 ATAC-seq, ChIP-seq and HiChIP to gain insight into the molecular mechanisms by which RA
35 signaling control target gene expression. We find that RA signaling is involved in
36 anterior/posterior patterning and development of the central nervous system, participating in
37 the transition from pluripotency to differentiation. atRA treatment also induces alterations in
38 chromatin accessibility during early development and promotes chromatin binding of RAR α a
39 and the RA targets Hoxb1b, Meis2b and Sox3, which cooperate in central nervous system
40 development. Finally, we show that RA induces a rewiring of chromatin architecture, with
41 alterations in chromatin 3D interactions that are consistent with target gene expression. This
42 is illustrated by the specific induction of anterior HoxB genes by RARs, among other examples.

43 **Conclusions:** Altogether, our findings identify genome-wide targets of RA signaling during
44 embryonic development and provide a molecular mechanism by which developmental
45 signaling pathways regulate the expression of target genes by altering chromatin topology.

46

47

48 **Keywords:** embryonic development, retinoic acid signaling, RAR, Hox genes, Meis2, Sox3,
49 chromatin architecture.

50

51 **INTRODUCTION**

52

53 Retinoic Acid (RA) is an active metabolite derived from retinol, also known as vitamin A, that
54 regulates multiple developmental processes in chordate animals acting as a diffusible signaling
55 molecule (1). Several isomeric forms of RA exist in cells, including 9-cis-RA, 13-cis-RA and all-
56 trans-RA (atRA), being atRA the major physiological form. RA is produced in two steps by
57 retinol dehydrogenase-10 (Rdh10), which produces retinaldehyde from retinol, and
58 retinaldehyde dehydrogenases (Aldh1a1-3), which convert retinaldehyde to RA (2, 3, 4). On
59 the other hand, RA synthesis is counteracted by dehydrogenase/reductase 3 (Dhrs3), which
60 converts retinaldehyde back to retinol (5). Finally, RA is degraded by cytochrome P450 family
61 enzymes, including Cyp26a1, Cyp26b1 and Cyp26c1 (6, 7). RA is the ligand of RA receptors
62 (RARs), which are transcription factors (TFs) of the nuclear receptor (NR) superfamily that bind
63 chromatin at RA response elements (RAREs) (8, 9). RAREs located nearby RA target genes
64 typically consist of hexameric direct repeats with an interspacing of 2 or 5 bp (DR2 or DR5,
65 respectively) (10), where RARs bind forming a heterodimer with retinoid X receptors (RXRs)
66 to activate target gene expression. There are three RAR isoforms in mammals, RAR α , β and
67 γ , as well as three RXR isoforms, RXR α , β and γ , while zebrafish lacks RAR β and have two
68 paralogs of all the other isoforms with different expression patterns (11).

69 RARs can regulate transcription of important developmental genes in response to RA
70 signaling, being involved in the development of many organs and tissues that include body
71 axis, hindbrain, heart, forelimbs, eyes and reproductive tract (1). During early vertebrate
72 development, RA is produced in the trunk presomitic mesoderm by expression of *Rdh10* and
73 *Aldh1a2*, generating a two-tailed gradient that diffuses anteriorly until the hindbrain and heart,
74 and posteriorly until the caudal progenitor zone (12, 13). At these regions, opposite gradients
75 of *Fgf8* signaling and *Cyp26a1* expression limit RA action (14, 15, 16), completing a regulatory
76 mechanism that controls the extension of body axis in vertebrates, although the requirement
77 of RA for this process in zebrafish remains controversial (17). An opposite antagonist
78 interaction between RA and *Fgf8* signaling also occurs in heart antero-posterior patterning and
79 in the initiation of forelimbs and fin buds (18, 19).

80 RA signaling plays a key role in the patterning of the posterior central nervous system,
81 including the hindbrain and the spinal cord (20, 21), and RA treatment induces differentiation
82 of embryonic stem cells to neuroectodermal fates (22). In this regard, *Hox* genes, which
83 encode TFs that are involved in establishing the antero-posterior body axis in animal embryos,
84 as well as other axial structures including limbs and genitalia (23), are well-known downstream
85 targets of RA signaling (24). *Hox* genes respond to RA treatment both in cultured cells and

86 embryos (25, 26), and are organized in several clusters (four in mammals: HoxA, HoxB, HoxC
87 and HoxD; seven in zebrafish) where their spatial organization correlates with their temporal
88 and spatial expression patterns, a property known as collinearity (27). This phenomenon also
89 applies for the relative response of *Hox* genes to signaling pathways as RA, since 3' genes are
90 more responsive to RA than 5' genes (28). On the other hand, the binding specificity of Hox
91 TFs to chromatin may be altered by their co-binding with co-factors, including the three amino
92 acid loop extension (TALE) class of homeodomain-containing TFs, such as Pbx, Meis and
93 Prep families (29). In this sense, RA signaling also promotes the expression of *Meis* genes
94 during mouse limb induction in the proximal domains (30), and Meis, Pbx and Hox TFs are
95 known to cooperate in the specification of the hindbrain in *Xenopus* and zebrafish (31).

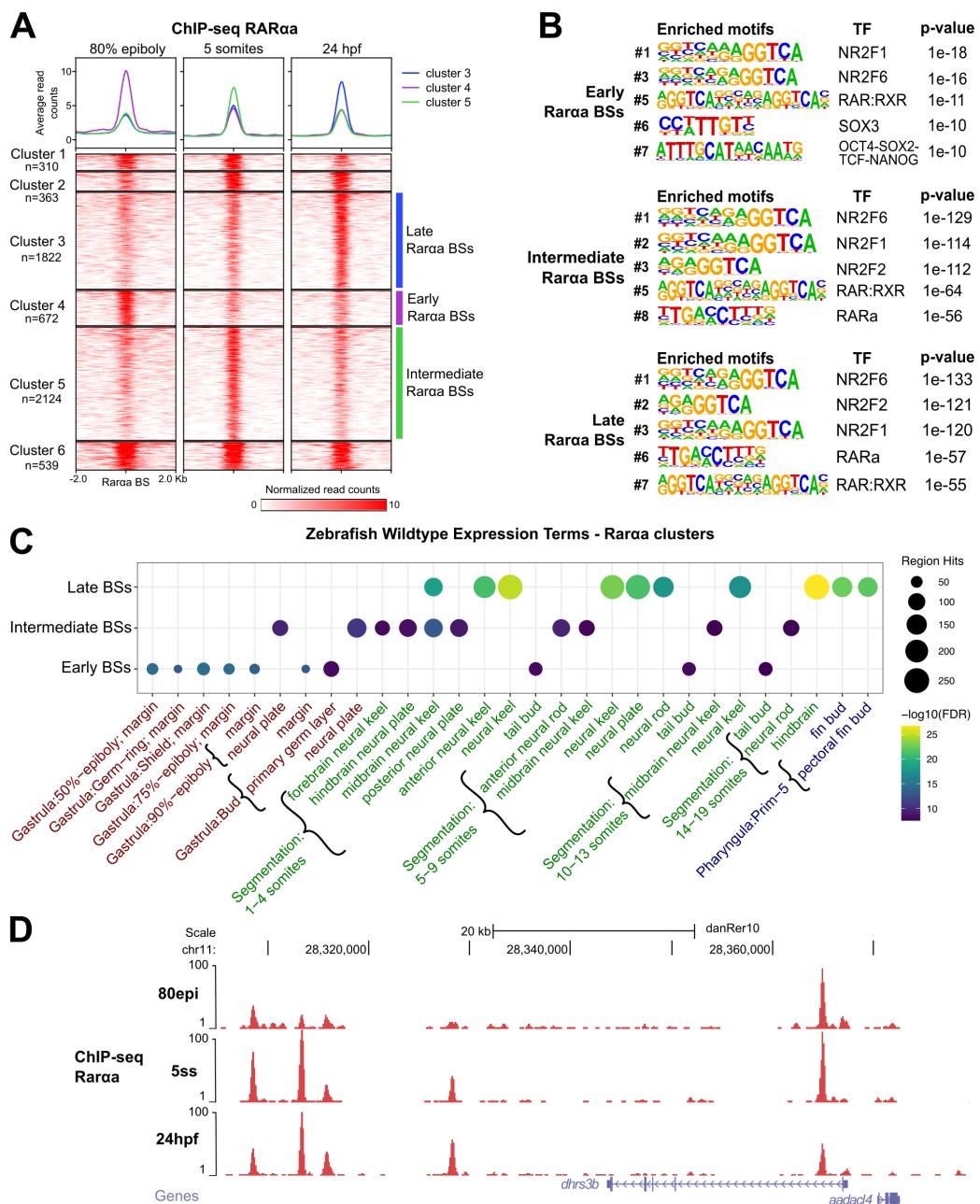
96 Despite the large amount of evidence establishing the function of RA signaling and
97 RARs in the regulation of target gene expression, very little is known about their global effect
98 on the chromatin landscape. In this sense, recent findings in mouse and zebrafish pancreas
99 suggest that RA signaling may rewire the chromatin landscape leading to *cis*-regulatory
100 element (CRE) activation (32, 33). Previous studies indicate that active enhancers are
101 engaged in chromatin 3D interactions with target promoters, being established either before or
102 concomitant with gene activation, depending on the context (34, 35). While poised enhancers
103 are already interacting with target promoters in mouse embryonic stem cells (mESCs) (36),
104 enhancer-promoter interactions involving lineage-specific genes are established during neural
105 or erythroid differentiation (37, 38). In the case of RA-induced differentiation, changes in
106 interactions between the RA target gene *Hoxa1* and three nearby enhancers have been
107 recently reported in mESCs (39). However, the effects of RA signaling on global chromatin 3D
108 interactions between enhancers and promoters in an *in vivo* context have not been addressed
109 before.

110 In this work, we have analyzed the effects of RA treatment during early development in
111 zebrafish embryos at the transcriptomic, epigenomic and chromatin conformation levels, by
112 integrating RNA-seq, ATAC-seq, ChIP-seq and HiChIP. First, we describe the dynamic
113 chromatin binding of one of the zebrafish RARs, RAR α a, during gastrulation, segmentation
114 and phylotypic stages. Then, we treat embryos with RA and analyze the global effects at the
115 transcriptomic and epigenomic levels using RNA-seq and ATAC-seq, respectively, uncovering
116 thousands of genes and putative CREs responding to RA signaling. Leveraging ChIP-seq
117 experiments, we show that RA treatment induces chromatin binding not only of RAR α a, but
118 also of Hoxb1b, Meis2b and Sox3 TFs, which cooperate to promote the development and
119 patterning of the central nervous system. Finally, we assess chromatin 3D interactions altered
120 by RA signaling using HiChIP of active promoters and find a link between miss-regulation of
121 gene expression and changes in promoter contacts that is illustrated by bona fide RA target

122 genes. Altogether, our data show that RA signaling rewrites the epigenome and chromatin
123 architecture to promote the expression of target genes during early embryonic development.

124

125


126 RESULTS

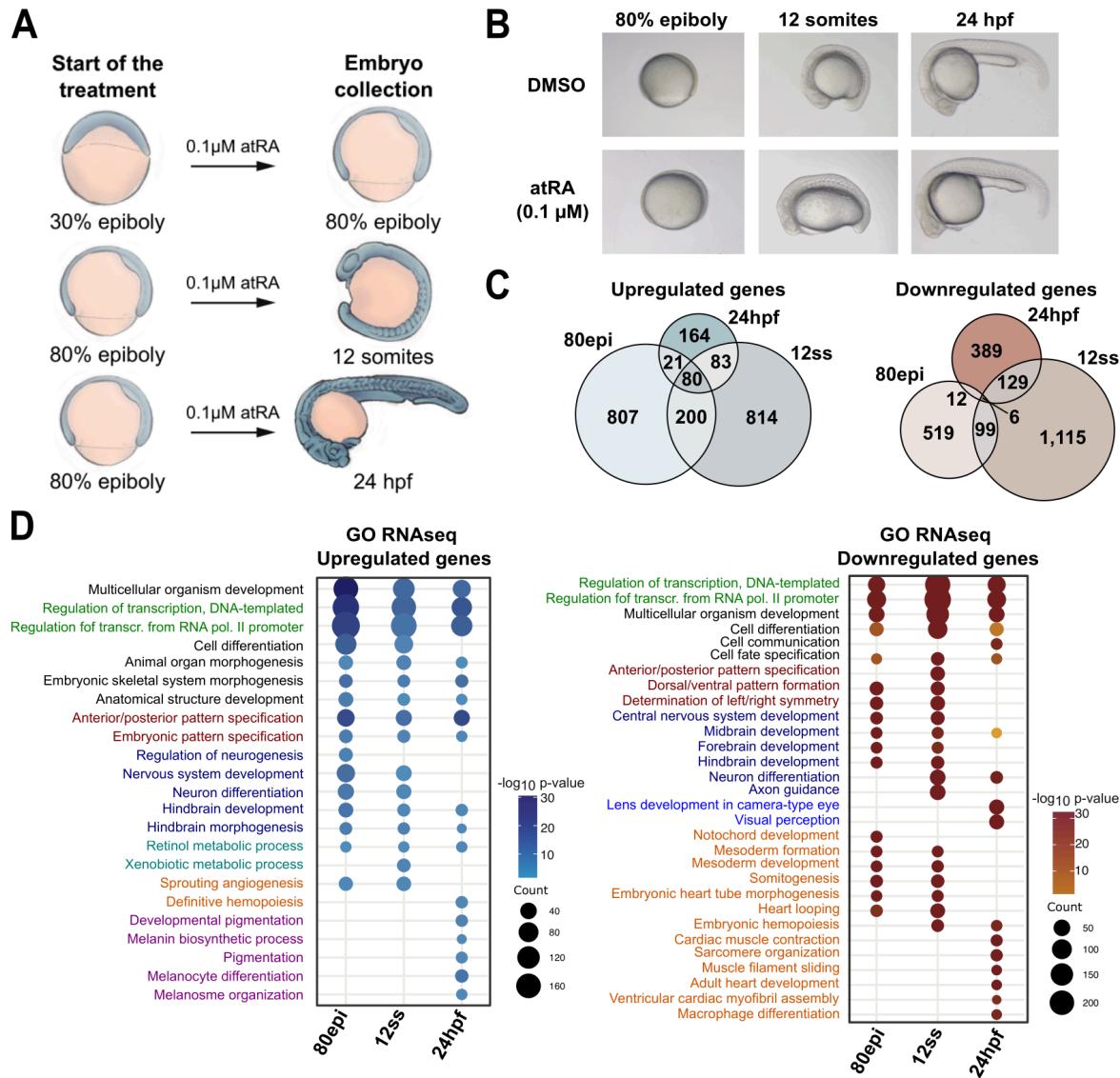
127

128 **Dynamic binding of Retinoic Acid Receptor to chromatin during zebrafish development.**

129 To study the functions of the retinoic acid signaling pathway during zebrafish embryonic
130 development, we first characterized by ChIPmentation (ChIP-seq coupled to Tn5-mediated
131 TAGmentation of chromatin) (40) in whole embryos the chromatin binding dynamics of the
132 main RAR isoform in zebrafish, RAR α a (41). For this, we selected three embryonic stages:
133 80% of epiboly (80epi, 8.3 hours post fertilization, hpf), which corresponds to gastrulation; 5
134 somite stage (5ss, 11.6 hpf), which corresponds to early neurulation and segmentation; and
135 24 hpf, which corresponds to the phylotypic stage. We obtained a total of 8,084 high confident
136 RAR α a binding sites (BSs) throughout the three embryonic stages (Figure 1A). A *k*-means
137 clustering analysis of RAR α a BSs revealed 6 major clusters, 3 of them showing a marked
138 dynamic behavior: cluster 4 was composed of early RAR α a BSs peaking at 80epi; cluster 5
139 was composed of intermediate RAR α a BSs peaking at 5ss; and cluster 3 was composed of
140 late RAR α a BSs peaking at 24 hpf (Figure 1A). Motif enrichment analyses of dynamic BSs
141 confirmed the prevalence of the RAR:RXR binding motif and other NR family motifs in all
142 clusters (Figure 1B). In addition, early RAR α a BSs showed also enrichment of the Sox family
143 motif (Sox3), suggesting a cooperation between RAR α a and the neuroectodermal TF Sox3
144 during early development that is consistent with the known role of RA inducing differentiation
145 to neuroectoderm in ESCs (42). Early RAR α a BSs also showed enrichment of the pluripotency
146 TFs motif (Oct4-Sox2-Tcf-Nanog; Figure 1B), suggesting that RA signaling might have a role
147 at pluripotency CREs.

148 Next, we associated the dynamic RAR α a BSs to their putative target genes using
149 GREAT (see Methods) and found thousands of genes potentially regulated by RA signaling.
150 Among them, there were many known RA targets in the three clusters, including RAR genes

Figure 1. Dynamics of RAR α binding to chromatin during zebrafish embryonic development.


(A) Heatmaps of the 8,084 RAR α BSs obtained from ChIP-seq in 80% of epiboly, 5 somites and 24hpf stages (n = 2 biological replicates per stage). Peaks were clustered using k-means clustering, obtaining six clusters, with three of them showing a clear dynamic behavior: cluster 4 (n = 672), or early BSs, cluster 5 (n = 2,059) or intermediate BSs, and cluster 3 (n = 1,764) or late BSs. Average profiles of clusters 4, 5 and 3 are shown on top. **(B)** Motif enrichment analysis of the early (top), intermediate (medium) and late (bottom) RAR α BSs. Five representative motifs of the top-10 were chosen. Motif logos are represented with their position in the top-10, the TF names and the enrichment p-values. **(C)** Zebrafish wild-type expression terms enriched for the genes associated with dynamic RAR α BSs. The top-10 terms for each stage have been combined. **(D)** Genome tracks of RAR α ChIP-seq at the indicated developmental stages showing signal intensities in the dhrs3b locus. The Genes track represents ENSEMBL annotated genes.

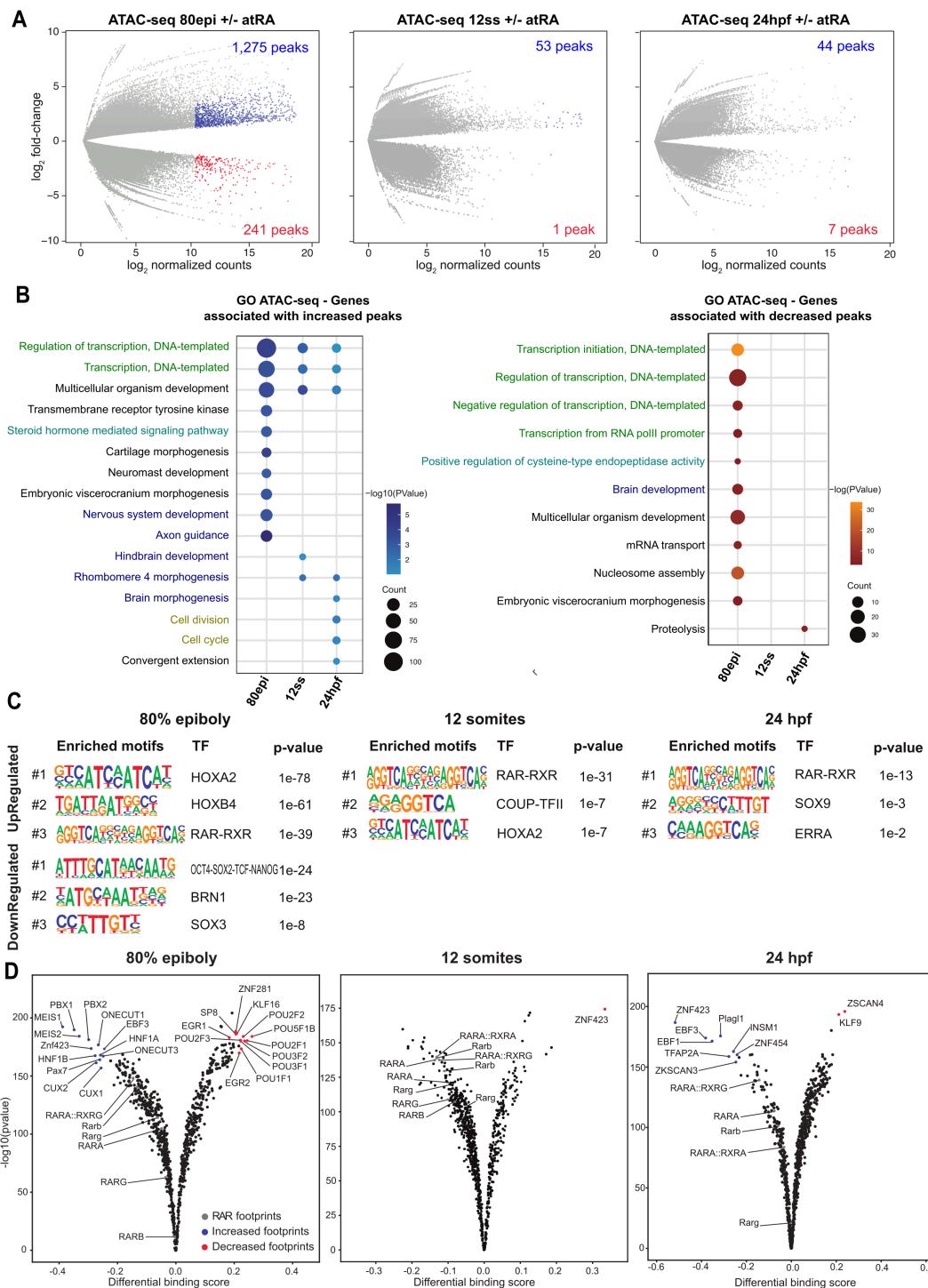
151 (raraa, rarab, rarga and rargb), RA metabolism genes (aldh1a2, aldh1a3, dhrs3a, cyp26a1,
 152 cyp26b1), early Hox genes (hoxa1a, hoxb1a, hoxb1b, hoxc1a, etc.), Meis genes (meis1,
 153 meis2a and meis3) and other reported RA targets (fgf8a, pax6a/b, crabbp2a, nrf1)
 154 (Supplementary Dataset). Gene Ontology (GO) term enrichment analyses showed biological

155 functions related to regulation of gene expression and embryonic patterning among the genes
156 associated with the early RAR α a BSs, development of the eye, digestive tract and brain for
157 intermediate RAR α a BSs and response to hormone for the late RAR α a BSs (Suppl. Figure
158 S1A), most of them corresponding to described functions of the RA signaling pathway and
159 reflecting its high pleiotropy (1). Enrichment of genes belonging to the Notch signaling pathway
160 was also found, illustrating the high interconnectivity among developmental signaling pathways
161 in vertebrates (43). We also analyzed the enrichment in gene expression patterns using
162 annotated information from the ZFIN database (see Methods). We found that genes associated
163 with dynamic RAR α a BSs exhibited a significant enrichment in gene expression primarily
164 during the developmental stage in which the RAR α a BSs reached maximum levels in each
165 cluster (Figure 1C). In terms of anatomical structures, genes associated to early RAR α a BSs
166 were mostly expressed in the blastoderm margin, while genes associated to intermediate and
167 late RAR α a BSs were mostly expressed in the developing nervous system, including neural
168 plate, neural keel, neural rod and hindbrain (Figure 1C). Expression in the pectoral fin buds
169 also emerged in the cluster peaking at 24 hpf, which is consistent with the function of the RA
170 pathway in the induction of the pectoral fin bud (44). Non-dynamic clusters of RAR α a BSs
171 were also associated to genes expressed in the developing nervous system during
172 gastrulation, segmentation and pharyngula stages (data not shown). As an example, we found
173 RAR α a BSs with different temporal dynamics in close proximity to the *dhrs3b* gene, which
174 encodes retinaldehyde reductase 3b, an enzyme that prevents the excessive accumulation of
175 RA by the conversion of retinaldehyde back to retinol (Figure 1D) (45). Altogether, these data
176 show that RAR α a follows a dynamic chromatin binding behavior during zebrafish development,
177 likely regulating genes that are related to known functions of the RA pathway, including but not
178 restricted to the development of the nervous system and pectoral fin buds.
179

180 **Transcriptomic changes driven by RA treatment of zebrafish embryos.**

181 We aimed to identify the genes that are regulated by RA signaling during zebrafish
182 development. For this purpose, we treated embryos with atRA at different timepoints and
183 durations during development: gastrulation, by starting the treatment at 30% of epiboly and
184 collecting embryos at 80epi; early segmentation and neurulation, by starting the treatment at
185 80epi and collecting embryos at 12 somites stage (12ss, 14 hpf); and the phylotypic stage, by
186 starting the treatment also at 80epi and collecting embryos at 24 hpf (Figure 2A). AtRA
187 treatment induced increased elongation of zebrafish embryos at the three tested conditions,
188 but specially at 12ss, consistent with the role of RA signaling in body axis extension (Figure
189 2B).

Figure 2. Transcriptomic effects of RA treatment to zebrafish embryos. (A) Picture depicting the treatments with 0.1 μ M all-trans retinoic acid (atRA) of zebrafish embryos at different developmental stages. **(B)** Pictures of zebrafish embryos at 80% of epiboly, 12 somites and 24 hpf stages treated with DMSO or 0.1 μ M atRA. **(C)** Venn diagrams showing the overlap between upregulated and downregulated genes at the analyzed stages. **(D)** GO Biological Process terms enriched for the upregulated and downregulated genes. The top-10 terms for each stage have been combined.


190 Next, we analyzed global gene expression changes induced by atRA treatment using
 191 RNA-seq in whole embryos. Differential expression analyses revealed 1,108, 1,177 and 348
 192 upregulated, and 636, 1,349 and 536 downregulated genes at 80epi, 12ss and 24 hpf,
 193 respectively (FDR < 0.05, Fold-change ≥ 1.5 ; [Suppl. Figure S1B](#)). The lower number of
 194 differentially expressed genes (DEGs) at 24 hpf may be due to compensating mechanisms
 195 over developmental time, as the observed elongation phenotype is less evident at 24 hpf than
 196 at 12ss. We found a higher overlap among the upregulated genes at the three analyzed
 197 developmental stages, with 80 common genes, than among the downregulated genes, with
 198 only 6 common genes ([Figure 2C](#)). Common upregulated genes include well documented RA
 199 target genes, such as RA receptors (*raraa*, *rxrga* and *rxrgb*), genes involved in RA metabolism
 200 (*cyp26a1*, *dhrs3a* and *dhrs3b*), early Hox genes (*hoxa1a*, *hoxb1a*, *hoxb1b*, *hoxc1a*, etc) and

201 Meis genes (*meis2b*, *meis3*), while common downregulated genes include *dmox1a*, an
202 homeobox gene involved in eye and tectum development (46) ([Supplementary Dataset](#)). GO
203 term enrichment analyses of the DEGs showed an enrichment at the three stages of genes
204 related to transcriptional regulation (i.e., TF genes), embryo patterning, neural development
205 and differentiation for both up- and downregulated genes ([Figure 2D](#)), consistent with the
206 known role of RA signaling in the development and patterning of the nervous system and with
207 the regulation of downstream effector genes (1, 21). Pigmentation and melanocyte
208 differentiation terms were also enriched in genes upregulated at 24 hpf, suggesting a role of
209 RA signaling in the development of neural crest-derived cells, while terms related to mesoderm
210 development, somitogenesis and heart development were enriched in the downregulated
211 genes, suggesting that atRA treatment may have a negative effect in the specification of the
212 mesoderm ([Figure 2D](#)). Consistently, gene expression patterns enriched for upregulated
213 genes included rhombomeres of the hindbrain, spinal cord, somites and the neural crest, while
214 those enriched for downregulated genes included also endoderm, otic vesicle and heart
215 ([Supplementary Fig. S1C](#)). Altogether, these results highlight the importance of RA signaling
216 regulation for multiple processes during early vertebrate development.

217

218 **RA treatment leads to an epigenome rewiring during early development.**

219 Previous studies showed changes in histone modifications and chromatin accessibility upon
220 alteration of RA levels (32, 33). Thus, we wondered whether changes in gene expression
221 induced by atRA treatment in zebrafish whole embryos could also occur together with
222 alterations in CRE function. To address this, we performed ATAC-seq experiments in embryos
223 treated with atRA as in [Figure 2A](#). Statistical analyses of differentially accessible regions
224 (DARs, FDR<0.1) showed 1,275 and 241 regions with increased and decreased accessibility,
225 respectively, at 80epi ([Figure 3A](#)). However, only 53 and 44 peaks showed increased
226 accessibility at 12ss and 24 hpf, respectively, and 1 and 7 peaks showed decreased
227 accessibility at these stages ([Figure 3A](#)). Among the genes associated with increased DARs,
228 we found RA pathway genes (*raraa*, *rxrga*, *roraa*, *dhrs3b*, *cyp26b1*), 3' Hox genes (*hoxb1a*,
229 *hoxb1b*, *hoxb2a*, *hoxd3a* and *hoxd4a*), Meis and Pbx genes (*meis2a*, *meis2b*, *pbx1b* and
230 *pbx3b*) ([Supplementary Dataset](#)). GO enrichment analyses of genes associated with DARs
231 showed biological functions consistent with our ChIP-seq and RNA-seq results, such as
232 regulation of transcription, steroid hormone mediated signaling pathway, or nervous system
233 development, even in the few peaks with increased accessibility at 12ss and 24 hpf ([Figure](#)
234 [3B](#)). Globally, there is a higher effect in chromatin accessibility of atRA treatment during
235 gastrulation than during segmentation, suggesting that CREs responding to RA may become
236 accessible during gastrulation, while treatment at later stages is not able to further increase
237 their accessibility. The apparent discrepancy between ATAC-seq and RNA-seq data at 12ss
238 and 24 hpf stages, with hundreds to thousands of DEGs but only few DARs, could be explained

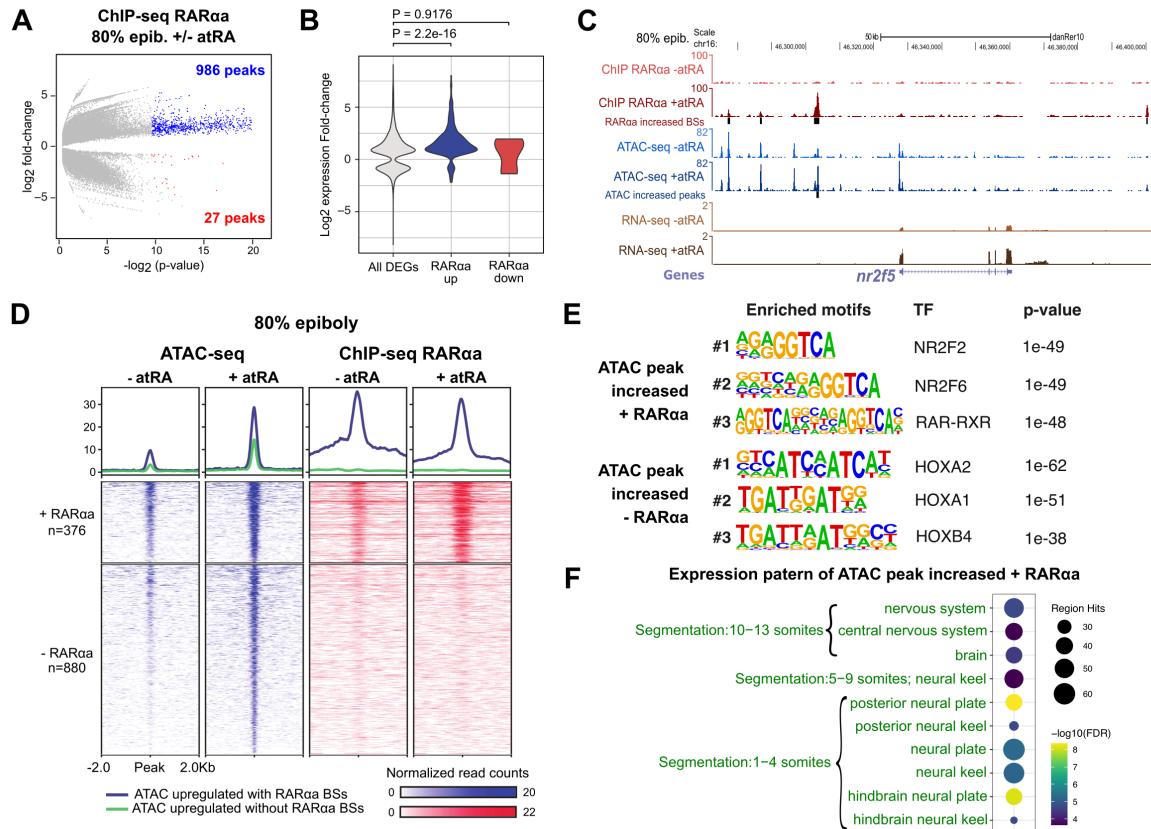
Figure 3. Changes in chromatin accessibility and TF binding induced by RA treatment. (A) Differential analyses of chromatin accessibility between atRA and DMSO treated embryos at 80% of epiboly, 12 somites and 24 hpf stages from ATAC-seq data ($n = 2$ biological replicates per stage and condition). The \log_2 p-value versus the \log_2 fold-change of accessibility is plotted. Regions showing statistically significant differential accessibility (adjusted P-value < 0.1) are highlighted in blue (increased) or red (decreased). The total number of differential peaks is shown inside the boxes. **(B)** GO Biological Process terms enriched for the genes associated with peaks with increased or decreased accessibility. The top-10 terms for each stage have been combined. **(C)** Motif enrichment analysis of the peaks with increased or decreased accessibility. The top-3 motifs have been selected for each stage. **(D)** Differential TF binding analysis in atRA and DMSO treated embryos at 80% of epiboly, 12 somites and 24 hpf stages from ATAC-seq data using TOBIAS. Volcano plots represent the differential binding score versus the $-\log_{10}$ p-value.

239 either by the fact that chromatin binding of RAR α and its targets may occur to already opened
240 regions, without major alterations of global chromatin accessibility, although we cannot discard

241 a higher dilution effect for the ATAC-seq in whole-embryo samples.

242 Motif enrichment analyses of DARs showed the RAR::RXR dimer binding motif among
243 the top-3 motifs in regions with increased accessibility at the three embryonic stages (Figure
244 3C). We also found a high enrichment of HOX family motifs at 80epi, which was lower at 12ss
245 and is consistent with Hox TFs being well-known targets of RA signaling (11). Finally, DARs
246 with decreased accessibility upon atRA treatment at 80epi showed a high enrichment of
247 pluripotency factor binding motifs, as well as SOX family motifs (Figure 3C), suggesting a
248 function of RA signaling at CREs associated with pluripotency during early embryonic
249 development. Indeed, we found binding of pluripotency TFs, including Pou5f3 (the zebrafish
250 homolog of mammalian Oct4), Nanog and Sox2, specifically at DARs with decreased
251 accessibility upon atRA treatment (Suppl. Figure S2A), and downregulation of *nanog*, *sox2*
252 and *pou5f3* upon atRA treatment (Suppl. Figure S2B), which is in agreement with the reported
253 repression of *pou5f1* by RAREs in zebrafish (47). These data suggest that RA signaling could
254 be involved in the transition from pluripotent to differentiating cellular states.

255 Next, we aimed to detect TFs cooperating with RAR α a in the response to RA signaling.
256 For this, we performed footprinting analyses in our ATAC-seq data and calculated differential
257 TF binding. Consistent with the differential accessibility analyses, we found significant changes
258 in TF binding at 80epi but minor at 12ss and 24 hpf (Figure 3D). We detected increased binding
259 of RAR at 80epi (8-10% increase over control, which is below our threshold of at least 15%
260 change) and few changes at 12ss and 24 hpf. Interestingly, we found a higher chromatin
261 binding of Meis and Pbx TFs at 80epi, which are known TFs cooperating with Hox proteins
262 and have been recently described to cooperate with RA signaling in axial skeleton anterior-
263 posterior patterning (48). Other TFs with increased footprint signal upon atRA treatment
264 include Hnf1a, which is known to be activated by RA in the zebrafish posterior hindbrain (20);
265 members of the cut-homeodomain family such as Cux2, which is a RA target that participates
266 in the chicken limb positioning (49); Pax7, which is a marker of muscle stem cells whose
267 expression is enhanced by RA (50); and Znf423, a TF involved in the midline patterning of the
268 nervous system that is required for RA-induced differentiation (51). Surprisingly, the footprint
269 of ZNF423 is increased by atRA treatment at 80epi but decreased at 12ss, coinciding with the
270 alternate up- and downregulation of *znf423* gene at these stages, while at 24 hpf the footprint
271 is increased again with no detected gene miss-expression, which suggests a complex
272 regulation of this gene. Among the differentially bound TFs identified at 24 hpf, we detected
273 increased footprints of the regulator of neural crest development Tfap2a (52), consistent with
274 a possible role of RA signaling in neural crest-derived cells (Figure 2E). On the other hand,
275 POU family of homeobox TFs showed decreased chromatin binding, consistent with motif
276 analyses and chromatin closing of CREs related to pluripotency and with repression of *pou5f1*
277 by RA (47), as well as Znf281, an inhibitor or RA-induced neuronal differentiation (53), Sp8, a


278 regulator of Fgf8 and limb outgrowth ([54](#)), Klf16 and Egr1/2. Altogether, these data suggest
279 that RA signaling promotes target gene expression during early development in cooperation
280 with Hox/Meis/Pbx TFs and participates in the transition from pluripotency to lineage
281 specification and differentiation.

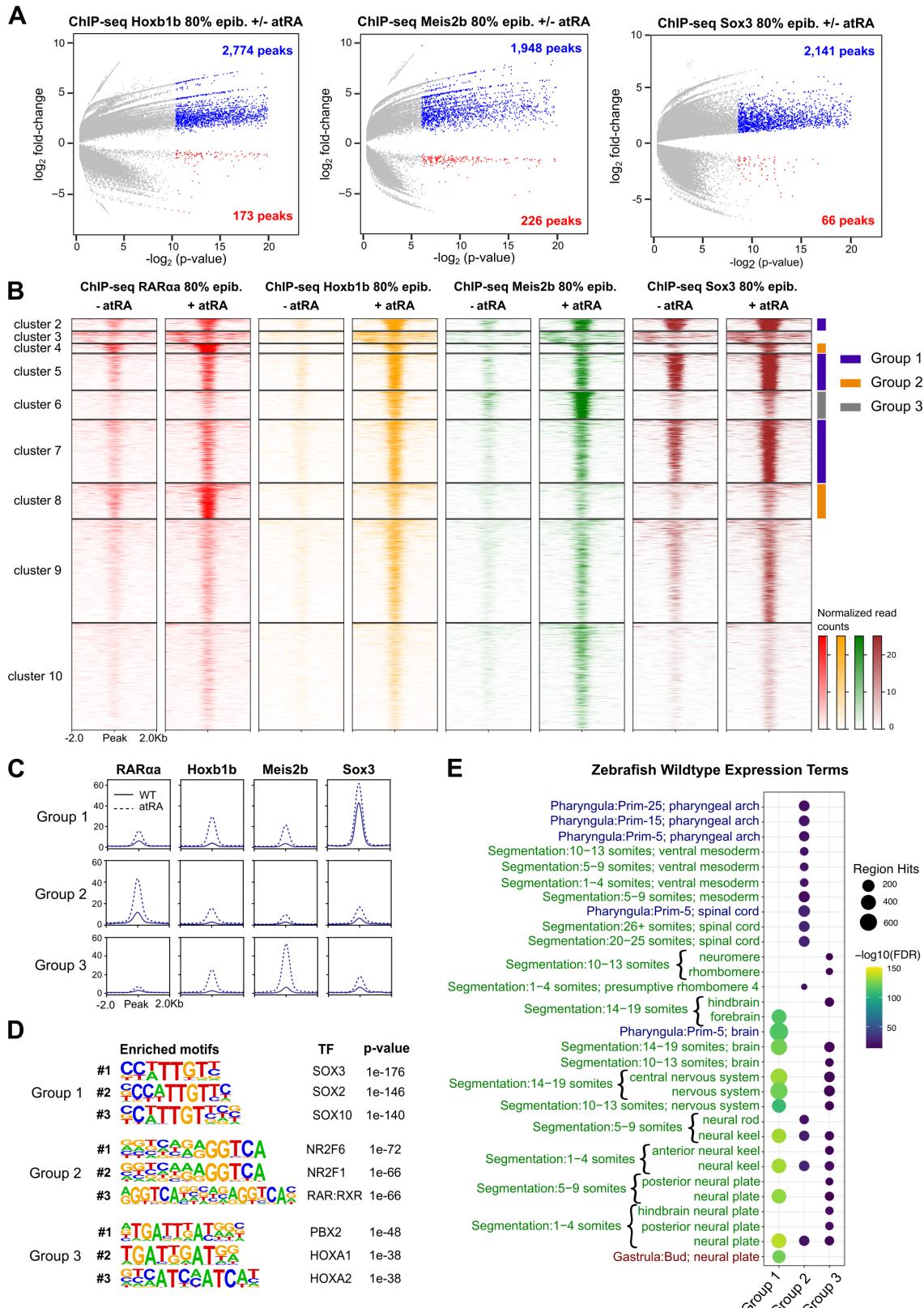
282

283 **atRA treatment induces RAR α chromatin binding.**

284 AtRA treatment promotes chromatin accessibility at more than a thousand CREs detected by
285 ATAC-seq during development ([Figure 3](#)). To assess what proportion of these CREs are
286 opened directly or indirectly by increased RAR α binding, we first performed ChIP-seq of
287 RAR α at 80epi embryos treated with atRA as described above ([Figure 2A](#)). Differential
288 binding analysis found 986 peaks with increased RAR α binding and only 27 peaks with
289 decreased binding upon atRA treatment ([Figure 4A and Supplementary Fig. S3A](#)), which
290 validates *raraa* gene increased expression and confirms that exposure to RA at this stage is
291 stimulating the binding of this RAR to chromatin. RAR α binding was highly specific, showing
292 high enrichment of the RAR and NR family motifs in the peaks with increased RAR α binding
293 ([Suppl. Figure S3B](#)). Genes associated to the new RAR α BSs in 80epi were enriched in
294 expression in the neural keel and spinal cord during segmentation stages ([Suppl. Figure S3C](#)),
295 suggesting that atRA treatment is causing a premature expression of RA target genes. Indeed,
296 genes associated to BSs with increased RAR α binding were mostly upregulated ([Figure 4B](#)).
297 This is illustrated by the *nr2f5* gene, which is upregulated by atRA treatment and has 5 RAR α
298 BSs in proximity that arise upon RA stimulation ([Figure 4C](#)).

299 Next, to distinguish between direct effects from atRA treatment that are carried out by
300 RAR α from indirect effects caused by downstream regulators, we analyzed what proportion
301 of the DARs with increased accessibility overlapped with RAR α binding at 80epi. We found
302 that 376 out of 1275 (29.5 %) DARs with increased accessibility overlapped with RAR α BSs,
303 which showed on average increased RAR α binding ([Figure 4D](#)), suggesting that almost one

Figure 4. RA treatment leads to increased chromatin binding of its receptor RAR α a. (A) Differential analysis of RAR α a chromatin binding by ChIP-seq between atRA treated and control embryos at 80% of epiboly stage (n = 2 biological replicates per stage and condition). The log₂ p-value versus the log₂ fold-change of ChIP-seq signal are plotted. Regions showing statistically significant differential binding (adjusted P-value < 0.05) are highlighted in blue (increased) or red (decreased). The total number of differential peaks is shown inside the box. **(B)** Violin plots showing the distribution of log₂ fold-change of expression (RNA-seq) all DEGs and those associated with increased or decreased chromatin binding of RAR α a. **(C)** Genome tracks of RAR α a ChIP-seq, ATAC-seq and RNA-seq at 80% of epiboly stage showing signal intensities in the nr2f5 locus. The Genes track represents ENSEMBL annotated genes. **(D)** Heatmaps of the 1,275 ATAC-seq peaks with increased accessibility in atRA treated embryos at 80% of epiboly stage, separating those overlapping (n = 376) or not (n = 880) RAR α a peaks. Average profiles of both groups are shown on top. **(E)** Motif enrichment analysis of the peaks with increased accessibility and RAR α a binding or without RAR α a. The top-3 motifs have been selected for each stage. **(F)** Zebrafish wildtype expression terms enriched for the genes associated with increased ATAC-seq peaks and RAR α a binding. No enriched GO terms were found for the genes associated with increased ATAC-seq peaks but without RAR α a binding.


304 third of the effects of atRA on chromatin accessibility were due to a direct function of RAR α a.
 305 In fact, these peaks showed a strong enrichment of the RAR and NR family binding motifs
 306 (Figure 4E). On the other hand, DARs with increased accessibility but no RAR α a binding were
 307 highly enriched in HOX binding motifs (Figure 4E), suggesting that these TFs could be involved
 308 in the response to RA at the chromatin level and downstream of the RA receptor, which would
 309 be consistent with *Hox* genes being targets of RA signaling (24). GO enrichment analyses of
 310 genes associated to both groups of peaks showed an enrichment in genes expressed in the
 311 nervous system during segmentation stages for peaks with RAR α a binding (Figure 4F), but no
 312 enrichment for peaks without RAR α a binding. Taking together, our data indicate that

313 epigenomic changes induced by atRA are due both to a direct function of RAR α a in chromatin
314 and to the indirect action of downstream effectors, among which Hox TFs could be involved.
315

316 **Chromatin binding of Hoxb1b, Meis2b and Sox3 TFs is stimulated by RA.**

317 We have shown so far that RA signaling promotes target gene expression by a rewiring of the
318 chromatin accessibility landscape in which RAR and other downstream TFs may be involved,
319 including Hox proteins. Indeed, we confirmed that multiple *hox* genes are upregulated upon
320 atRA treatment and that multiple RARes near *hox* clusters show increased RAR α a binding
321 ([Suppl. Figure S4](#)). It is worth noting that most RAR α a BSs responding to atRA treatment are
322 located in the 3' region of the *hox* clusters and that 3' *hox* genes show a higher overexpression
323 in response to atRA than 5' *hox* genes ([Suppl. Figure S4](#)), consistent with the reported colinear
324 activation of *hox* genes by RA signaling in chick embryos ([28](#)). Therefore, we wondered
325 whether the transcriptional activation of 3' *hox* genes by RA could result in increased chromatin
326 binding of these TFs. To answer this, we performed ChIP-seq experiments at 80epi stage upon
327 atRA treatment pulling down Hoxb1b, an anterior Hox TF involved in AP patterning whose
328 expression is stimulated by atRA treatment. Differential binding analyses showed increased
329 chromatin binding in 2,774 Hoxb1b BSs, while only 173 BSs showed decreased binding
330 ([Figure 5A](#) and [Supplementary Fig. S5A](#)). In addition, since Meis and Pbx TFs are well-known
331 co-factors of Hox proteins and given that we see the increased footprint signals of these TFs
332 detected at 80epi ([Figure 3D](#)), we took advantage of the availability of the zebrafish Meis2b
333 antibody and performed ChIP-seq experiments at 80epi upon atRA treatment. We detected
334 1,948 and 226 peaks with increased or decreased Meis2b binding, respectively ([Figure 5A](#) and
335 [Supplementary Fig. S5A](#)). These results confirm that RA signaling promotes the chromatin
336 binding of Hox and Meis TFs.

337 Motif enrichment analyses of the increased Hoxb1b and Meis2b BSs showed a strong
338 enrichment of the HOX and PBX family motifs, consistent with the known cooperative role of
339 Pbx and Meis TFs with Hox proteins ([29](#)), but also an enrichment of Sox family binding motifs
340 ([Supplementary Fig. S5B](#)). The latter result, together with the enrichment of Sox motifs at early
341 RAR α a BSs ([Figure 1B](#)), suggests a cooperation among RA, Hox/Meis and Sox TFs. Thus,
342 we decided to perform additional ChIP-seq experiments at 80epi with atRA treatment by pulling
343 down the neuroectodermal TF Sox3. Differential binding analyses detected 2,141 and 66 Sox3
344 BSs with increased or decreased binding, respectively ([Figure 5A](#) and [Supplementary Fig.](#)
345 [S5A](#)), with a high enrichment of Sox family motifs in the sites with increased binding
346 ([Supplementary Fig. S5B](#)). Analyses of the expression pattern of genes associated to sites
347 with increased binding of Hoxb1b, Meis2b or Sox3 showed a high overlap of expression in
348 neural structures, including neural plate, neural keel, brain and spinal cord mainly during
349 segmentation stages ([Supplementary Fig. S5C](#)). Altogether, these data indicate a cooperation

350 of RA, Hox/Meis and Sox3 TFs during the early specification of the nervous system in zebrafish
351 in response to RA signaling.

352 Next, we aimed to differentiate distinct functions of RAR α a, Hoxb1b, Meis2b and Sox3
353 during early zebrafish development. For that purpose, we merged the TF BSs detected by
354 ChIP-seq to be increased by atRA treatment and performed unsupervised k -means clustering.

355 We detected 10 clusters with different TF profiles, selected those with the clearest differences
356 in TF binding and grouped those with similar behaviors (Figure 5B). Thus, group 1 of BSs was
357 composed of clusters 2, 5 and 7, and showed high levels of Sox3 occupancy that were further
358 increased by atRA treatment and moderate increase in Hoxb1b and Meis2b binding; group 2
359 of BSs was composed of clusters 4 and 8, and showed high levels of RAR α a upon atRA
360 treatment, but low binding of the other TFs; and group 3 of BSs corresponded to cluster 6 and
361 showed high occupancy of Meis2b upon atRA treatment and a moderate increase in Hoxb1b
362 binding (Figure 5C). Motif enrichment analyses confirmed that group 1 corresponded mostly
363 to Sox BSs, group 2 was composed of RAR BSs and group 3 were mainly Hox/Meis/Pbx BSs
364 (Figure 5D). To distinguish specific functions of these groups of BSs, we associated them to
365 their putative target genes and found that all of them were enriched in neural expression during
366 segmentation stages, including neural plate, neural keel and brain (Figure 5E). However, there
367 was a specific enrichment of expression in the spinal cord, the ventral mesoderm, and the
368 pharyngeal arches slightly later in development (late segmentation and pharyngula stages) for
369 the group 2, which corresponded to RAR α a BSs (Figure 5E). Altogether, these data suggest
370 that, at the analyzed stages of zebrafish development, RA signaling and its receptor RAR α a
371 cooperate with Hoxb1b/Meis2b and Sox3 in the gene regulatory network of the central nervous
372 system early development, while it contributes to the development of the spinal cord, the
373 ventral mesoderm and the pharyngeal arches independently of these TFs.

374

375 **RA signaling rewires promoter 3D interactions of target genes.**

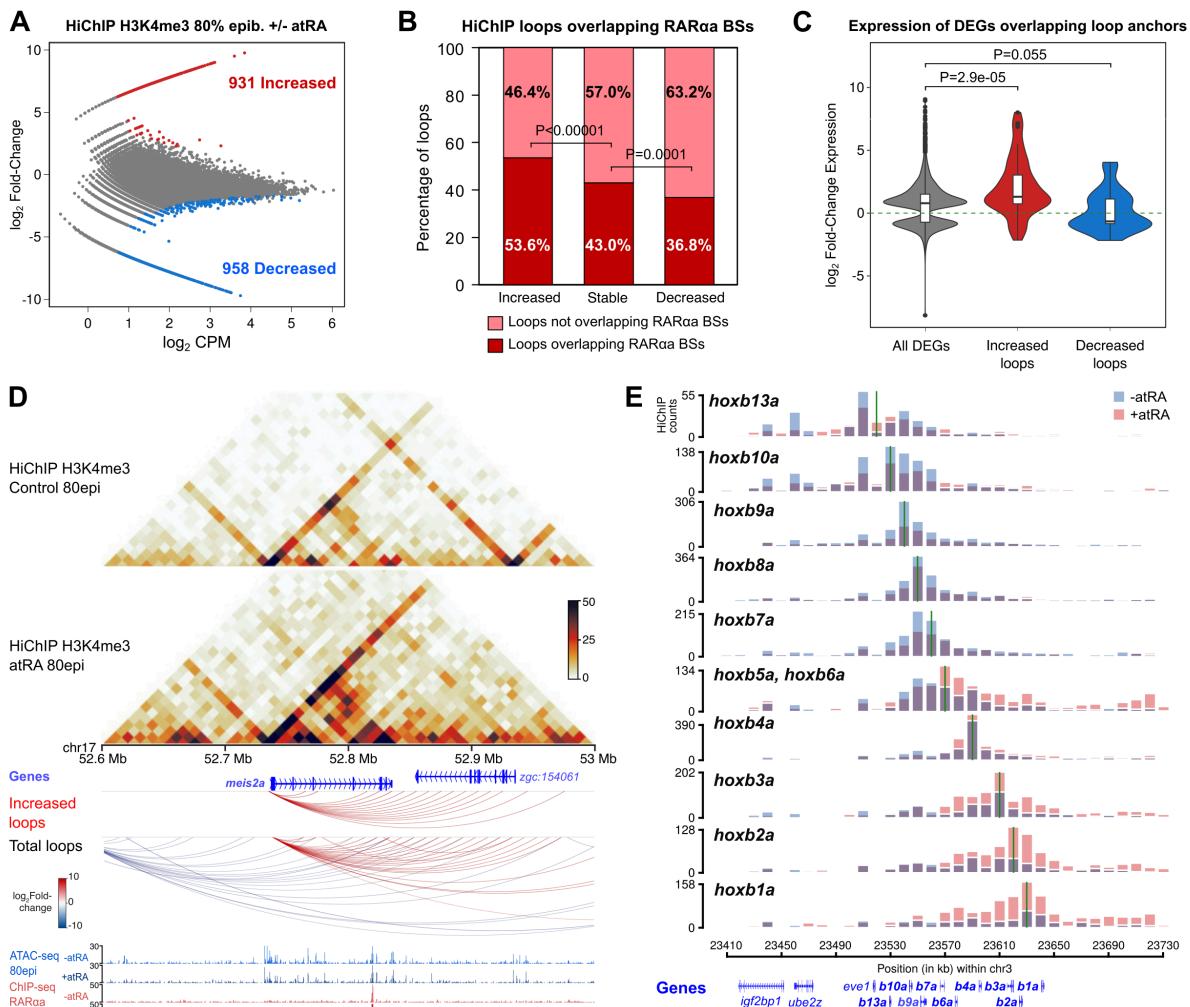

376 We wondered whether atRA treatment could lead to the connection of CREs and genes
377 regulated by RA signaling by chromatin 3D interactions. For this, we performed ChIP-seq
378 experiments, which allow the analysis of chromatin 3D interactions at higher resolution than
379 HiC by concentrating on those involving a protein or histone modification of interest. We
380 analyzed whole embryos at 80% epiboly stage, treated or not with atRA as in Figure 2A, by pulling
381 down histone H3 lysine 4 trimethylation (H3K4me3), a mark of active promoters. Using this

Figure 5. Chromatin binding of Hoxb1b, Meis2b and Sox3 is increased upon RA treatment. (A) Differential analysis of Hoxb1b, Meis2b and Sox3 chromatin binding by ChIP-seq between atRA treated and control embryos at 80% of epiboly stage (n = 2 biological replicates per condition). The log₂ p-value versus the log₂ fold-change of ChIP-seq signal are plotted. Regions showing statistically significant differential binding (adjusted P-value < 0.05) are highlighted in blue (increased) or red (decreased). The total number of differential peaks is shown inside the boxes. (B) Heatmaps of the combined 4,751 ChIP-seq peaks with increased binding of either RAR α a, Hoxb1b, Meis2b or Sox3 obtained from ChIP-seq in 80% of epiboly. Peaks were clustered using k-means clustering, obtaining ten clusters, six of which were selected and combined in three groups with similar binding profiles of the four TFs: group 1 (n = 1,286, blue), group 2 (n = 515, orange) and group 3 (n = 328), grey. Cluster 1 was too small to plot and was omitted. (C) Average profiles of groups 1, 2 and 3 of ChIP-seq peaks with increased TF binding upon atRA treatment. (D) Motif enrichment analyses of the groups 1, 2 and 3 of ChIP-seq peaks with increased TF binding upon atRA treatment. The top-3 motifs have been selected for each group. (E) Zebrafish wild-type expression terms enriched for the genes associated with groups 1, 2 and 3 of ChIP-seq peaks with increased TF binding upon atRA treatment. The top-20 terms for each stage have been combined.

382 approach, we calculated differential promoter loops in both conditions, finding 931 and 958
383 loops with increased or reduced contacts, respectively, upon atRA treatment ([Figure 6A](#)). To
384 see whether differential loops were associated with RA signaling, we calculated the overlap
385 between loop anchors and RAR α a BSs. Interestingly, we found that 53.6 % of loops with
386 increased contacts upon atRA treatment contained RAR α a BSs, versus 43 % of stable loops
387 and 36.8 % of decreased loops ([Figure 6B](#)), a difference that was statistically significant ($P <$
388 0.00001). However, this was not the case of *Hoxb1b*, *Meis2b* and *Sox3*, since loop anchors
389 with increased contacts were similarly or less occupied by these TFs than stable loops
390 ([Supplementary Figure S6A](#)). These data suggest that RAR α a-bound CREs engage into
391 chromatin 3D contacts that are stimulated by RA signaling.

392 Next, to test whether the changes in loop intensity were associated with changes in gene
393 expression, we calculated the distribution of gene expression changes for DEGs
394 overlapping increased or decreased loops. This analysis showed that RA target genes
395 associated with increased promoter loops were significantly upregulated ($P = 2.9e-5$), while
396 those associated with decreased promoter loops tended to be downregulated ($P = 0.055$;
397 [Figure 6C](#)), indicating that changes in promoter 3D interactions often reflect changes in gene
398 expression. Indeed, DEGs associated with increased loops were enriched in AP pattern
399 specification, while those associated with decreased loops were enriched in somitogenesis
400 and dorsal/ventral pattern formation, among other functions ([Supplementary Figure S6B](#)).
401 These data suggest that RA signaling induces a rewiring of promoter 3D interactions of
402 responsive genes that is concomitant with changes in their expression. The latter observation
403 is illustrated by several RA target genes reported here. First, the *meis2a* gene is upregulated
404 in response to atRA treatment, show near ATAC-seq and ChIP-seq peaks responding to atRA
405 and its promoter is engaged in chromatin 3D interactions that are stimulated by RA ([Figure
406 6D](#)). On the other hand, the *pou5f3* gene is downregulated by atRA treatment and its promoter
407 shows decreased contacts with nearby CREs ([Supplementary Figure S6C](#)).

408 Finally, we analyzed changes in chromatin 3D interactions at the HoxB cluster by
409 calculating virtual 4C contacts from the HiChIP data for every HoxB gene promoter. [Figure 6E](#)
410 shows that promoter interactions of 3' HoxB genes, including *hoxb1a*, *hoxb2a*, *hoxb3a*,
411 *hoxb4a*, *hoxb5a* and *hoxb6a*, are increased upon atRA treatment at the 3' region of the cluster
412 and the downstream gene desert. However, promoter interactions of 5' HoxB genes, including
413 *hoxb7a*, *hoxb8a*, *hoxb9a*, *hoxb10a* and *hoxb13a* show mainly decreased interactions upon
414 atRA treatment with the 5' region of the cluster and the upstream gene desert. Increased
415 chromatin interactions at the downstream gene desert coincide with CREs showing enhanced
416 accessibility and RAR α a binding upon atRA treatment ([Supplementary Figure S4D](#)), as well
417 as increased expression of the 3' HoxB genes ([Supplementary Figure S6D](#)). These data
418 support the idea that RA signaling promotes the expression of AP patterning genes by
419 increased promoter 3D interactions with CREs activated by RAR α a.

Figure 6. Rewiring of promoter 3D interactions by RA signaling. (A) Differential analyses of H3K4me3 HiChIP loops between control and atRA treated embryos at 80epi stage ($n = 2$ biological replicates per condition) at 10-Kb resolution. The \log_2 normalized counts per million (CPM) of control reads versus the \log_2 fold-change of contacts are plotted. Loops showing a statistically significant differential intensity ($FDR < 0.05$) are highlighted in red (increased) or blue (decreased). (B) Percentage of loops showing RAR α binding at least in one anchor for increased, stable and decreased loops. (C) Violin plots showing the expression fold-change in atRA treated embryos at 80epi of all DEGs and those associated with increased and decreased loops. (D) From top to bottom, heatmaps showing H3K4me3 HiChIP signal in control and atRA treated embryos, annotated genes, HiChIP loops increased by atRA treatment ($FDR < 0.05$), total HiChIP loops and tracks with ATAC-seq and RAR α ChIP-seq in control and atRA treated embryos at 80epi stage, in a 400-Kb region of chromosome 17 containing the upregulated gene *meis2a*. (E) Virtual 4C showing contact quantification calculated from H3K4me3 HiChIP data using as viewpoints 10-kb bins containing the gene promoters in the HoxBa cluster, both in control and atRA treated embryos at 80epi stage. A green vertical line indicates the bin used as viewpoint in each case. Annotated genes are shown at the bottom. Boxplots in C show: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; notches, 95% confidence interval of the median. Statistical significance was assessed using a two-sided Wilcoxon's rank sum test in C, and with a two-sided Fisher's exact test in B.

420

421

422 DISCUSSION

423

424 In this work, we have used an integrative approach consisting of epigenomic, transcriptomic
 425 and chromatin conformation experiments, to get insight into the mechanisms by which RA
 426 signaling controls the expression of its target genes during early embryonic development.

427 Using whole zebrafish embryos as a model, we leveraged TF ChIP-seq, ATAC-seq, RNA-seq
428 and HiChIP experiments to show that this important signaling pathway rewrites the embryo
429 epigenome and reorganizes chromatin architecture, cooperating with downstream TFs to
430 control its gene regulatory network.

431 Only few studies have addressed the genome-wide effects of RA signaling *in vivo*. In
432 this sense, a recent report used dissected embryonic trunks from *Aldh1a2* knockout mice and
433 identified CREs switching epigenomic state in the absence of RA near well-known RA target
434 genes in the trunk (32). More recently, another study used endodermal cells from zebrafish
435 embryos treated with RA or the inverse agonist BMS493, and found alterations in chromatin
436 accessibility associated with genes involved in pancreatic development (33). Here, we have
437 taken advantage of a zebrafish-specific antibody to profile the dynamic chromatin binding of
438 the RA receptor RAR α a by ChIP-seq through early development, covering from gastrulation
439 to the phytotypic stage. Using this approach, we have identified dynamic RAR α a BSs peaking
440 at different stages (Figure 1) and have shown that early RAR α a BSs, which are highly bound
441 during gastrulation, are enriched in the DNA binding motif of the pluripotency TFs Oct4-Sox2-
442 Tcf-Nanog. This is consistent with previous observations in embryonic carcinoma cells
443 differentiating to primitive endoderm by RA treatment, in which RAR/RXR dimers bind to CREs
444 occupied by pluripotency factors in undifferentiated cells, switching to Sox17 BSs in
445 differentiated cells (55). However, RAR α a BSs peaking later in development are highly
446 enriched in RAR/RXR binding motifs and associated with genes expressed in the central
447 nervous system and pectoral fins, suggesting that RARs may regulate the transition from
448 pluripotency to patterning and differentiation processes.

449 Two main strategies have been used so far to identify RA functions and target genes
450 in development: loss-of-function approaches, through the genetic knockout of RA producing
451 enzymes (e.g. *Aldh1a2*) or the use of RA antagonists, and gain-of-function approaches,
452 through the treatment with RA (56). Since zebrafish embryos can be treated with RA by just
453 adding it to the embryo medium, we have taken advantage of this and treated them with 0.1
454 μ M atRA at different embryonic stages, observing increased body axis elongation at all the
455 analyzed stages (Figure 2). In contrast, previous studies using higher concentrations of atRA
456 (1 μ M) showed the opposite effect, i.e. body axis truncation (33), suggesting that the effect of
457 RA signaling is highly dose-dependent. Indeed, lower concentrations of atRA require more
458 exposure time to produce morphological effects (57). Using this approach, we have analyzed
459 the transcriptomic changes driven by RA treatment at different developmental stages (Figure
460 2) and have observed that RA leads to a miss-regulation of more genes at the earlier stages,
461 including gastrulation and early neurulation and segmentation, while treatment until 24 hpf
462 provokes milder effects. Genes up-regulated at all stages include bona-fide RA target genes,
463 such as *RAR* genes, RA metabolism genes, anterior *Hox* genes and *Meis* genes, as well as

464 other genes involved in anterior/posterior pattern specification and nervous system
465 development. These observations are consistent with the reported role of RA signaling in the
466 patterning of the central nervous system and the pectoral fin bud during zebrafish pre-
467 segmentation stages (44). Interestingly, genes stimulated by RA at later stages show
468 enrichment of melanocyte development and neural crest-expressing genes, suggesting a
469 function of RA signaling in neural crest development that agrees with its reported role in the
470 generation and migration of neural crest cells in both avian and mammalian models (58, 59,
471 60).

472 We have also analyzed here the effects of RA treatment on chromatin accessibility by
473 ATAC-seq (Figure 3). We have found more than a thousand putative CREs that gain
474 accessibility upon atRA treatment during gastrulation, a third of which correspond to RAR α
475 BSs and the remaining ones being enriched in Hox motifs (Figure 4). In contrast, putative
476 CREs losing accessibility are occupied by pluripotency TFs, including Sox2, Nanog and
477 Pou5f3 (the zebrafish ortholog of Oct4) (Supplementary Figure S2). These genes are also
478 down-regulated at this stage, consistent with a possible role of RA signaling in exiting from
479 pluripotent states and with a previous report showing reduced expression of pluripotency
480 genes in the RA-induced differentiation to neural and endoderm fates (61). Surprisingly and in
481 contrast to changes at the transcriptomic level, very few CREs show RA-induced changes in
482 chromatin accessibility at later stages. This discrepancy may be due to CREs responding to
483 RA being rewired at earlier stages, during gastrulation, and/or to RAR α binding to already
484 accessible chromatin that is not opened further. Indeed, the latter possibility has been
485 previously observed for the glucocorticoid receptor (62), and a recent study in MCF-7 cells
486 showed that either RA or TGF- β treatment induced both concordant and discordant changes
487 in accessibility and gene expression (63). We cannot discard though a higher dilution effect on
488 ATAC-seq data at later developmental stages due to the whole-embryo approach.

489 Estimation of differential TF binding upon RA treatment using footprint analyses
490 confirms that Pou family of TFs show a reduced chromatin binding at early stages and that
491 there is an increased binding of Meis and Pbx families. This is consistent with the enrichment
492 of the Hox binding motif at CREs with increased accessibility, since these are common Hox
493 co-factors (29). Anterior Hox genes are indeed well-known targets of RA signaling (24, 25, 26),
494 and we show using TF ChIP-seq during gastrulation that not only RAR α binding is stimulated
495 by RA (Figure 4), but also Hoxb1b, the earliest HoxB gene to be expressed, and Meis2b also
496 increase their chromatin binding (Figure 5). Moreover, we also report the involvement of the
497 early neuroectodermal TF Sox3, whose chromatin binding is also stimulated by RA. This
498 observation agrees with a previous report showing that SOX3 expression is stimulated by
499 RAR/RXR binding elements (64), but little is known about this interaction and our observations
500 provide a new branch of RA signaling downstream of RARs to promote neural development.

501 Indeed, we show that RAR α a, Hoxb1b, Meis2b and Sox3 regulate genes required for
502 development of the central nervous system. In contrast, RAR α a participates in additional
503 functions independently of those TFs, such as the development of the ventral mesoderm and
504 the pharyngeal arches, probably in cooperation with other developmental regulators not
505 identified here. This illustrates the pleiotropy and multifunctional character of the RA signaling
506 pathway during embryonic development.

507 Finally, we have investigated the molecular mechanisms connecting RA-induced
508 transcriptomic and enhancer rewiring. Enhancers usually interact with their target promoters
509 by chromatin 3D interactions that are believed to be essential for target gene expression (34).
510 We show here using HiChIP that RA treatment of zebrafish embryos leads to a rewiring of
511 chromatin architecture, with almost two thousand promoter interactions showing increased or
512 decreased contacts (Figure 6). Promoter loops that change intensity by RA signaling are
513 connected to genes whose transcriptional response to RA goes in the same direction,
514 indicating a consistent connection between enhancer-promoter interactions and target gene
515 expression. This has been previously shown for other differentiation processes *in vitro*,
516 including neural and erythroid differentiation (37, 38). Regarding TF binding, we detect a higher
517 enrichment of RAR α a BSs at the anchors of loops induced by RA, suggesting a connection
518 between TF binding and target gene expression by the establishment of chromatin 3D
519 interactions. However, Hoxb1b, Meis2b and Sox3 do not show this enrichment, which could
520 be due to their implication in pre-established loops or to a lower detection of differential loops in
521 which they participate. In any case, the existence of chromatin loops altered by RA and
522 connected to RA-responding genes is illustrated by bona-fide induced and repressed targets,
523 such as *meis2a* and *pou5f3*, respectively. Further evidence comes from the regulation of the
524 HoxB cluster by RA, for which we show that the anterior HoxB genes are engaged in increased
525 chromatin interactions within the cluster and with the 3' gene desert, while posterior HoxB
526 genes show decreased interactions. These observations are consistent with the specific
527 upregulation of anterior HoxB genes and with the existence of RAR α a BSs only in the 3' region
528 and gene desert of the cluster (Supplementary Figure S4) and confirms the importance of RA
529 signaling in regulating the establishment of the anterior/posterior body axis. Consistently, a
530 previous study in ESCs showed increased interactions between enhancers containing RAREs
531 and *Hoxa1* gene that promoted its expression (39), while here we show that this is a general
532 effect concerning anterior Hox genes and the main RA target genes.

533

534

535 CONCLUSIONS

536

537 We show here that RA signaling leads to changes in gene expression and chromatin
538 accessibility during embryonic development. It promotes chromatin binding of RAR α a and the
539 downstream TFs Hoxb1b, Meis2b and Sox3 to promote the anterior/posterior patterning and
540 development of the central nervous system and other structures. Furthermore, we connect
541 changes in TF binding and target gene expression by showing that RA signaling rewrites
542 chromatin 3D interactions, providing a molecular mechanism by which developmental
543 signaling pathways control the expression of their target genes. Further studies will be required
544 to see whether this mechanism also applies to other signaling pathways or is more prevalent
545 for some of them, including RA.

546

547

548 **METHODS**

549

550 **Animal experimentation and embryo treatments**

551 Wild-type AB/Tübingen zebrafish strains were maintained and bred under standard conditions.
552 All experiments involving animals conform national and European Community standards for
553 the use of animals in experimentation and were approved by the Ethical Committees from the
554 University Pablo de Olavide, CSIC and the Andalusian government. Embryos were treated
555 with 0.1 μ M atRA or DMSO and collected at the indicated developmental stages (Figure 2A).

556

557 **RNA-seq**

558 For total RNA extraction, atRA or DMSO treated embryos were collected, de-chlorinated with
559 30 mg/mL Pronase (Roche) and suspended in TRIsure (Bioline). 30 embryos were used for
560 80epi stage, 20 embryos for 12ss and 15 embryos for 24hpf. RNA was then purified with Direct-
561 zol RNA miniprep kit (Zymo Research) and treated with TURBO DNA free kit (Invitrogen).
562 Three biological replicates were used for each analyzed treatment and stage. Illumina libraries
563 were constructed and sequenced in a BGISEQ-500 single-end lane producing around 50
564 million (M) of 50-bp reads. Reads were aligned to the GRCz10 (danRer10) zebrafish genome
565 assembly using STAR 2.5.3a (65) and counted using the htseq-count tool from the HTSeq
566 0.8.0 toolkit (66). Differential gene expression analysis was performed using the DESeq2
567 1.18.1 package in R 3.4.3 (67), setting a corrected P value < 0.05 and fold-change > 1.5 as
568 the cutoff for statistical significance of the differential expression. Enrichment of GO Biological
569 Process terms was calculated using David 6.8 (68), with a false discovery rate (FDR)-corrected
570 P value < 0.05 as statistical cutoff. Enrichment of zebrafish wild-type expression patterns was
571 calculated using previously published code (69).

572

573 **ATAC-seq**

574 ATAC-seq assays were performed using standard protocols ([70](#), [71](#)), with minor modifications.
575 Briefly, atRA and DMSO treated embryos were de-chorionated with 30 mg/mL Pronase
576 (Roche). 30 embryos were used for 80epi stage, 10 embryos for 12ss and 5 embryos for 24hpf.
577 Yolk was dissolved with Ginzburg Ring Finger (55 mM NaCl, 1.8 mM KCl, 1.15 mM NaHCO₃)
578 by pipetting and shaking 5 min at 1100 rpm. Deyolked embryos were collected by
579 centrifugation for 5 min at 500g 4°C. Supernatant was removed and embryos washed with
580 PBS. Then, embryos were lysed in 50 µl of Lysis Buffer (10 mM Tris-HCl pH 7.4, 10 mM NaCl,
581 3 mM MgCl₂, 0.1% NP-40) by pipetting up and down. From the whole cell lysate, 80,000 cells
582 were used for TAGmentation, which were centrifuged for 10 min at 500g 4°C and resuspended
583 in 50 µl of the Transposition Reaction, containing 1.25 µl of Tn5 enzyme and TAGmentation
584 Buffer (10 mM Tris-HCl pH 8.0, 5 mM MgCl₂, 10 % w/v dimethylformamide), and incubated for
585 30 min at 37°C. Immediately after TAGmentation, DNA was purified using the MinElute PCR
586 Purification Kit (Qiagen) and eluted in 10 µl. Libraries were generated by PCR amplification
587 using NEBNext High-Fidelity 2X PCR Master Mix (NEB). The resulting libraries were purified
588 using MinElute PCR Purification Kit (Qiagen), multiplexed and sequenced in a HiSeq 4000
589 pair-end lane producing around 100M of 49-bp pair end reads per sample.
590

591 **ChIP-seq by ChIPmentation**

592 ChIP-seq of RAR α , Hoxb1b, Meis2b and Sox3 were performed by ChIPmentation, which
593 incorporates Tn5-mediated TAGmentation of immunoprecipitated DNA, as previously
594 described ([40](#), [69](#)). Briefly, 400 zebrafish atRA treated or control embryos were dechorionated
595 with 300 µg/ml pronase, fixed for 10 min in 1% paraformaldehyde (in 200 mM phosphate buffer)
596 at room temperature, quenched for 5 min with 0.125 M glycine, washed in PBS and frozen at
597 -80°C. Fixed embryos were homogenized in 2 ml cell lysis buffer (10 mM Tris-HCl pH 7.5, 10
598 mM NaCl, 0.3% NP-40, 1x Roche Complete protease inhibitors cocktail) with a Dounce
599 Homogenizer on ice and centrifuged 5 min 2,300g at 4°C. Pelleted nuclei were resuspended
600 in 333 µl of nuclear lysis buffer (50 mM Tris-HCl pH 7.5, 10 mM EDTA, 1% SDS, 1x Roche
601 Complete protease inhibitors cocktail), kept 5 min on ice and diluted with 667 µl of ChIP dilution
602 buffer (16.7 mM Tris-HCl pH 7.5, 1.2 mM EDTA, 167 mM NaCl, 0.01% SDS, 1.1% Triton-
603 X100). Then, chromatin was sonicated in a Covaris M220 sonicator (duty cycle 10%, PIP 75W,
604 100 cycles/burst, 10 min) and centrifuged 5 min 18,000g at 4°C. The recovered supernatant,
605 which contained soluble chromatin, was used for ChIP or frozen at -80°C after checking the
606 size of the sonicated chromatin. Four 250 µl aliquots of sonicated chromatin were used for
607 each independent ChIP experiment, and each aliquot incubated with 2 µg of antibody (anti-
608 Rar α GTX124492, anti-Hoxb1b GTX128322, anti-Meis2b GTX127229, or anti-Sox3
609 GTX132494) and rotated overnight at 4°C. Next day, 20 µl of protein G Dynabeads (Invitrogen)
610 per aliquot were washed twice with ChIP dilution buffer and resuspended in 50 µl/aliquot of the
611 same solution. Immunoprecipitated chromatin was then incubated with washed beads for 1

612 hour rotating at 4°C and washed twice sequentially with wash buffer 1 (20 mM Tris-HCl pH 7.5,
613 2 mM EDTA, 150 mM NaCl, 1% SDS, 1% Triton-X100), wash buffer 2 (20 mM Tris-HCl pH
614 7.5, 2 mM EDTA, 500 mM NaCl, 0.1% SDS, 1% Triton-X100), wash buffer 3 (10 mM Tris-HCl
615 pH 7.5, 1 mM EDTA, 250 mM LiCl, 1% NP-40, 1% Na-deoxycholate) and 10 mM Tris-HCl pH
616 8.0, using a cold magnet (Invitrogen). Then, beads were resuspended in 25 μ l of
617 TAGmentation reaction mix (10 mM Tris-HCl pH 8.0, 5 mM MgCl₂, 10 % w/v
618 dimethylformamide), added 1 μ l of Tn5 enzyme and incubated 1 min at 37°C. TAGmentation
619 reaction was put in the cold magnet and the supernatant discarded. Beads were washed twice
620 again with wash buffer 1 and 1x TE and eluted twice for 15 min in 100 μ l of elution buffer (50
621 mM NaHCO₃ pH 8.8, 1% SDS). The 200 μ l of eluted chromatin per aliquot were then
622 decrosslinked by adding 10 μ l of 4M NaCl and 1 μ l of 10 mg/ml proteinase K and incubating
623 at 65°C for 6 hours. DNA was purified using Minelute PCR Purification Kit (Qiagen), pooling all
624 aliquots in a single column, and eluted in 20 μ l. Library preparation was performed as
625 previously described for ATAC-seq (see above). Libraries were multiplexed and sequenced in
626 HiSeq 4000 or DNBseq pair-end lanes producing around 20M of 49-bp or 50-bp paired-end
627 reads per sample, respectively.

628

629 ChIP-seq and ATAC-seq data analyses

630 ChIP-seq and ATAC-seq reads were aligned to the GRCz10 (danRer10) zebrafish genome
631 assembly using Bowtie2 2.3.5 ([72](#)) and those pairs separated by more than 2 Kb were
632 removed. For ATAC-seq, the Tn5 cutting site was determined as the position -4 (minus strand)
633 or +5 (plus strand) from each read start, and this position was extended 5 bp in both directions.
634 Conversion of SAM alignment files to BAM was performed using Samtools 1.9 ([73](#)).
635 Conversion of BAM to BED files, and peak analyses, such as overlaps or merges, were carried
636 out using the Bedtools 2.29.2 suite ([74](#)). Conversion of BED to BigWig files was performed
637 using the genomecov tool from Bedtools and the wigToBigWig utility from UCSC ([75](#)). For
638 ATAC-seq, peaks were called using MACS2 2.1.1.20160309 algorithm ([76](#)) with an FDR <
639 0.05 for each replicate and merged in a single pool of peaks that was used to calculate
640 differentially accessible sites with DESeq2 1.18.1 package in R 3.4.3 ([67](#)), setting a corrected
641 P value < 0.1 as the cutoff for statistical significance of the differential accessibility. For ChIP-
642 seq, RAR α peaks with a global IDR < 0.01 were called using the IDR framework (idr 0.1
643 version) to obtain high confidence peaks based on replicate information, as previously
644 described ([77](#)), and these peaks were used for clustering analyses. Alternatively, RAR α ,
645 Hoxb1b, Meis2b and Sox3 peaks with an FDR < 0.05 were called with MACS2 and used for
646 differential binding calculation with DESeq2 1.18.1 package in R 3.4.3 ([67](#)), setting a corrected
647 P value < 0.05 as the cutoff for statistical significance of the differential binding. For
648 visualization purposes, reads were extended 100 bp for ATAC-seq and 300 bp for ChIP-seq.

649 For data comparison, all ChIP-seq and ATAC-seq experiments used were normalized using
650 reads falling into peaks to counteract differences in background levels between experiments
651 and replicates (69).

652 Heatmaps and average profiles of ChIP-seq and ATAC-seq data were generated using
653 computeMatrix, plotHeatmap and plotProfile tools from the DeepTools 3.5 toolkit (78). TF motif
654 enrichment was calculated using the script FindMotifsGenome.pl from Homer 4.11 software
655 (79), with standard parameters. For gene assignment to ChIP and ATAC peaks, coordinates
656 were converted to Zv9 (danRer7) genome using the LiftOver tool of the UCSC Genome
657 Browser (75) and assigned to genes using the GREAT 3.0.0 tool (80), with the basal plus
658 extension association rule with standard parameters (5 Kb upstream, 1 Kb downstream, 1 Mb
659 maximum extension). This tool was also used to calculate Gene Ontology and zebrafish
660 wildtype expression term enrichment with standard parameters (significant by both region-
661 based binomial and gene-based hypergeometric test, FDR < 0.05). Peak *k*-means clustering
662 was calculated using seqMiner (81). For footprinting analyses, we used TOBIAS 0.12.9 (82).
663 First, we performed bias correction using ATACorrect and calculated footprint scores with
664 ScoreBigwig, both with standard parameters. Then, we used BINDetect to determine the
665 differential TF binding for all vertebrate motifs in the JASPAR database (83). We considered
666 as differentially bound those motifs with a linear fold-change $\geq 15\%$ between atRA and DMSO
667 treated embryos.

668

669 **HiChIP**

670 HiChIP assays were performed as previously described (84). Briefly, 1,000 atRA-treated or
671 control zebrafish embryos at 80% epiboly stage were dechorionated with 300 μ g/ml pronase
672 and transferred to 1 ml of Ginzburg fish ringer buffer (55 mM NaCl, 1.8 mM KCl, 1.25 mM
673 NaHCO₃). Yolks were disrupted by pipetting and shaking for 5 min at 1100 rpm. Embryos were
674 then spun down and fixed as indicated above for ChIPmentation. Fixed embryos were
675 homogenized in 5 ml cell lysis buffer (see above) with a Dounce Homogenizer on ice. Complete
676 cell lysis generating nuclei was checked at the microscope with methylgreen-pyronin staining.
677 Nuclei were then centrifuged 5 min at 600g at 4°C and in situ contact generation was performed
678 as described (85), with modifications. For chromatin digestion, 8 μ l of 50 U/ μ l DpnII restriction
679 enzyme were used. Ligation was incubated overnight at 16°C shaking at 900 rpm. Both
680 digestion and ligation efficiencies were monitored by taking control aliquots that were de-
681 crosslinked, phenol-chloroform purified and loaded in an 0.7% agarose gel. The controls
682 consisted of 5- μ l aliquots before and after digestion (undigested and digested controls), a 10-
683 μ l aliquot before end repair that was ligated with overhang ends (3C control) and a 25- μ l aliquot
684 after ligation (ligation control).

685 After ligation, nuclei were pelleted at 2500g for 5 min at RT, resuspended in 495 μ l of
686 nuclear lysis buffer (see above) and kept 5 min on ice to lysate nuclei. Then, 1,980 μ l of ChIP
687 dilution buffer (see above) were added and sample split in three 1-ml aliquots that were
688 sonicated in a Covaris M220 sonicator (duty cycle 10%, PIP 75W, 100 cycles/burst, 5 min).
689 Then, sonicated chromatin was centrifuged for 15 min at 16,000g at 4°C and the supernatant
690 transferred to a new tube. Sonication efficiency was checked using a 20- μ l aliquot that was
691 RNase A-treated, de-crosslinked, phenol-chloroform purified and loaded in a 0.7% agarose
692 gel. After this, chromatin was pre-cleared with Dynabeads protein G (Invitrogen) rotating for 1
693 hour at 4°C, recovered to new tubes using a magnet and incubated overnight rotating at 4°C
694 with 6.7 μ g (20 μ g total) of anti-H3K4me3 (Abcam ab8580) antibody per sample.
695 Immunoprecipitated chromatin was then washed and eluted from beads as described (85).
696 Before DNA purification, the three samples were mixed and split in two samples to generate
697 later two independent libraries, increasing likelihood of library amplification over primer artifact
698 amplification.

699 Biotin capture with Streptavidin C-1 beads (Invitrogen) and TAGmentation were
700 performed as described (85). For library preparation, samples were put in a magnet,
701 supernatant discarded, and beads resuspended in a 50- μ l PCR mix containing 1x NEBNEXT
702 High-Fidelity PCR Master Mix (NEB) and 0.5 μ M of Nextera Ad1_noMX and Ad2.X primers.
703 PCR was run for 5 cycles and then samples put in a magnet to separate beads. Then, cycle
704 number for library preparation was estimated by qPCR taking a 2- μ l aliquot from the samples,
705 and the remaining PCR was run for the empirically determined number of cycles. Finally,
706 libraries were recovered from beads using a magnet, pooled together, and purified using DNA
707 Clean and Concentrator columns (Zymo Research), eluting in 20 μ l of 10 mM Tris-HCl pH 8.0.
708 Libraries were quantified in a Qubit machine and sequenced using DNBseq technology to
709 generate around 500M of 50-bp paired-end reads.

710

711 **HiChIP data analyses**

712 HiChIP paired-end reads were aligned to GRCz10 (danRer10) zebrafish genome assembly
713 using the TADbit pipeline (86). Default settings were used to remove duplicate reads, assign
714 reads to DpnII restriction fragments, filter for valid interactions, and generate binned interaction
715 matrices with a 10-kb resolution. Data was visualized using the WashU Epigenome Browser
716 (87) and the fancplot tool from the FAN-C 0.9.14 toolkit 2 (88). Since HiC normalization
717 methods are not suitable for HiChIP data given the inherent scarcity of HiChIP matrices, we
718 scaled the samples to the same number of valid read pairs.

719 For differential analysis of HiChIP loops between atRA-treated and control embryos we
720 used the DiffAnalysisHiChIP tool of FitHiChIP 9.0 (89) with the following parameters:
721 interaction type peak to all, bin size 10 Kb, distance threshold between 20 Kb and 20 Mb, FDR

722 < 0.01, loose background for contact probability estimation [FitHiChIP(L)], coverage bias
723 regression and merging of redundant loops. We considered a stringent set of loops consisting
724 of the merge of those detected in both biological replicates per condition, with a differential
725 FDR threshold of 0.05 and a fold-change threshold of 1.5. To avoid calling loops as differential
726 due to different ChIP-seq coverage, we only considered loops involving H3K4me3 peaks not
727 called as differential by EdgeR (i.e., categories ND-ND, LD-LD and ND-LD from the differential
728 analysis output). Virtual 4C tracks of HoxB genes were generated from HiChIP interaction
729 matrices. First, virtual 4C baits were determined by overlapping of HiChIP 10-kb bins with
730 HoxB genes coordinates within chromosome 3. Then, we focused on a 320-kb locus around
731 the HoxB cluster (chr3:23410000-23730000) and extracted all interaction counts from each
732 single bait belonging to such locus.

733

734 **Statistical analyses**

735 For comparison of data distribution, two-tailed Wilcoxon's rank sum tests or Student's *t*-tests
736 were used. Statistical significance of contingency tables was assessed using the Fisher's exact
737 test.

738

739

740 **DECLARATIONS**

741

742 **Ethics approval and consent to participate.**

743 All experiments involving animals conform national and European Community standards for
744 the use of animals in experimentation and were approved by the Ethical Committees from the
745 University Pablo de Olavide, CSIC and the Andalusian government.

746

747 **Consent for publication.**

748 Not applicable.

749

750 **Availability of data and materials.**

751 The RNA-seq, ATAC-seq, ChIP-seq and HiChIP data generated in this study have been
752 deposited in the Gene Expression Omnibus (GEO) database under accession code
753 GSE233698. The ChIP-seq data used in Supplementary Figure S2 can be accessed using
754 codes GSE34684 and GSE39780.

755

756 **Competing interests.**

757 The authors declare that they have no competing interests.

758

759 **Funding**

760 JJT was funded by the Spanish Ministerio de Ciencia e Innovación (PID2019-103921GB-I00)
761 and the institutional grant Unidad de Excelencia María de Maeztu to CABD (CEX2020-001088-
762 M). JMS-P was funded by Junta de Andalucía (ProyExcel_00363) and a postdoctoral
763 fellowship (DOC_00512). PM-G was funded by a postdoctoral fellowship from Junta de
764 Andalucía (DOC_00397).

765

766 **Author contributions**

767 LG-F, MM-O, JLG-S and JMS-P conceived and designed the project; LG-F, MM-O, SN and
768 SJ-G performed the experiments; LG-F, MM-O, PMM-G, JJT and JMS-P analyzed the data;
769 LG-F, MM-O and JMS-P wrote the original manuscript. All authors contributed to the final
770 manuscript.

771

772 **Acknowledgements**

773 We dedicate this study to the memory of our friend, mentor and colleague, José Luis Gómez-
774 Skarmeta and thank C. Paliou and M. Franke for critical reading of the manuscript.

775

776

777 **REFERENCES**

- 779 1. Ghyselinck NB, Duester G. Retinoic acid signaling pathways. *Development*. 2019;146(13).
- 780 2. Niederreither K, Subbarayan V, Dolle P, Chambon P. Embryonic retinoic acid synthesis
781 is essential for early mouse post-implantation development. *Nat Genet*. 1999;21(4):444-8.
- 782 3. Sandell LL, Sanderson BW, Moiseyev G, Johnson T, Mushegian A, Young K, et al.
783 RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb,
784 craniofacial, and organ development. *Genes Dev*. 2007;21(9):1113-24.
- 785 4. Canestro C, Catchen JM, Rodriguez-Mari A, Yokoi H, Postlethwait JH. Consequences
786 of lineage-specific gene loss on functional evolution of surviving paralogs: ALDH1A and
787 retinoic acid signaling in vertebrate genomes. *PLoS Genet*. 2009;5(5):e1000496.
- 788 5. Feng L, Hernandez RE, Waxman JS, Yelon D, Moens CB. Dhrs3a regulates retinoic
789 acid biosynthesis through a feedback inhibition mechanism. *Dev Biol*. 2010;338(1):1-14.
- 790 6. Niederreither K, Dolle P. Retinoic acid in development: towards an integrated view. *Nat
791 Rev Genet*. 2008;9(7):541-53.
- 792 7. White JA, Guo YD, Baetz K, Beckett-Jones B, Bonasoro J, Hsu KE, et al. Identification
793 of the retinoic acid-inducible all-trans-retinoic acid 4-hydroxylase. *J Biol Chem*.
794 1996;271(47):29922-7.
- 795 8. Giguere V, Ong ES, Segui P, Evans RM. Identification of a receptor for the morphogen
796 retinoic acid. *Nature*. 1987;330(6149):624-9.
- 797 9. Petkovich M, Brand NJ, Krust A, Chambon P. A human retinoic acid receptor which
798 belongs to the family of nuclear receptors. *Nature*. 1987;330(6147):444-50.
- 799 10. Moutier E, Ye T, Choukrallah MA, Urban S, Osz J, Chatagnon A, et al. Retinoic acid
800 receptors recognize the mouse genome through binding elements with diverse spacing and
801 topology. *J Biol Chem*. 2012;287(31):26328-41.
- 802 11. Cunningham TJ, Duester G. Mechanisms of retinoic acid signalling and its roles in
803 organ and limb development. *Nat Rev Mol Cell Biol*. 2015;16(2):110-23.
- 804 12. Rossant J, Zirngibl R, Cado D, Shago M, Giguere V. Expression of a retinoic acid
805 response element-hsplacZ transgene defines specific domains of transcriptional activity during
806 mouse embryogenesis. *Genes Dev*. 1991;5(8):1333-44.

808 13. Shimozono S, Iimura T, Kitaguchi T, Higashijima S, Miyawaki A. Visualization of an
809 endogenous retinoic acid gradient across embryonic development. *Nature*.
810 2013;496(7445):363-6.

811 14. Diez del Corral R, Olivera-Martinez I, Goriely A, Gale E, Maden M, Storey K. Opposing
812 FGF and retinoid pathways control ventral neural pattern, neuronal differentiation, and
813 segmentation during body axis extension. *Neuron*. 2003;40(1):65-79.

814 15. Martin BL, Kimelman D. Brachyury establishes the embryonic mesodermal progenitor
815 niche. *Genes Dev*. 2010;24(24):2778-83.

816 16. Molotkova N, Molotkov A, Sirbu IO, Duester G. Requirement of mesodermal retinoic
817 acid generated by Raldh2 for posterior neural transformation. *Mech Dev*. 2005;122(2):145-55.

818 17. Berenguer M, Lancman JJ, Cunningham TJ, Dong PDS, Duester G. Mouse but not
819 zebrafish requires retinoic acid for control of neuromesodermal progenitors and body axis
820 extension. *Dev Biol*. 2018;441(1):127-31.

821 18. Sirbu IO, Zhao X, Duester G. Retinoic acid controls heart anteroposterior patterning by
822 down-regulating *Isl1* through the *Fgf8* pathway. *Dev Dyn*. 2008;237(6):1627-35.

823 19. Nishimoto S, Wilde SM, Wood S, Logan MP. RA Acts in a Coherent Feed-Forward
824 Mechanism with *Tbx5* to Control Limb Bud Induction and Initiation. *Cell Rep*. 2015;12(5):879-
825 91.

826 20. Hernandez RE, Rikhof HA, Bachmann R, Moens CB. *vhnf1* integrates global RA
827 patterning and local FGF signals to direct posterior hindbrain development in zebrafish.
828 *Development*. 2004;131(18):4511-20.

829 21. Sirbu IO, Gresh L, Barra J, Duester G. Shifting boundaries of retinoic acid activity
830 control hindbrain segmental gene expression. *Development*. 2005;132(11):2611-22.

831 22. Janesick A, Wu SC, Blumberg B. Retinoic acid signaling and neuronal differentiation.
832 *Cell Mol Life Sci*. 2015;72(8):1559-76.

833 23. Lonfat N, Duboule D. Structure, function and evolution of topologically associating
834 domains (TADs) at HOX loci. *FEBS Lett*. 2015;589(20 Pt A):2869-76.

835 24. Nolte C, De Kumar B, Krumlauf R. Hox genes: Downstream "effectors" of retinoic acid
836 signaling in vertebrate embryogenesis. *Genesis*. 2019;57(7-8):e23306.

837 25. Marshall H, Studer M, Popperl H, Aparicio S, Kuroiwa A, Brenner S, et al. A conserved
838 retinoic acid response element required for early expression of the homeobox gene *Hoxb-1*.
839 *Nature*. 1994;370(6490):567-71.

840 26. Studer M, Popperl H, Marshall H, Kuroiwa A, Krumlauf R. Role of a conserved retinoic
841 acid response element in rhombomere restriction of *Hoxb-1*. *Science*. 1994;265(5179):1728-
842 32.

843 27. Kmita M, Duboule D. Organizing axes in time and space; 25 years of colinear tinkering.
844 *Science*. 2003;301(5631):331-3.

845 28. Bel-Vialar S, Itasaki N, Krumlauf R. Initiating Hox gene expression: in the early chick
846 neural tube differential sensitivity to FGF and RA signaling subdivides the HoxB genes in two
847 distinct groups. *Development*. 2002;129(22):5103-15.

848 29. Merabet S, Mann RS. To Be Specific or Not: The Critical Relationship Between Hox
849 And TALE Proteins. *Trends Genet*. 2016;32(6):334-47.

850 30. Mercader N, Leonardo E, Piedra ME, Martinez AC, Ros MA, Torres M. Opposing RA
851 and FGF signals control proximodistal vertebrate limb development through regulation of Meis
852 genes. *Development*. 2000;127(18):3961-70.

853 31. Frank D, Sela-Donenfeld D. Hindbrain induction and patterning during early vertebrate
854 development. *Cell Mol Life Sci*. 2019;76(5):941-60.

855 32. Berenguer M, Meyer KF, Yin J, Duester G. Discovery of genes required for body axis
856 and limb formation by global identification of retinoic acid-regulated epigenetic marks. *PLoS*
857 *Biol*. 2020;18(5):e3000719.

858 33. Lopez-Perez AR, Balwierz PJ, Lenhard B, Muller F, Wardle FC, Manfroid I, et al.
859 Identification of downstream effectors of retinoic acid specifying the zebrafish pancreas by
860 integrative genomics. *Sci Rep*. 2021;11(1):22717.

861 34. Oudelaar AM, Higgs DR. The relationship between genome structure and function. *Nat*
862 *Rev Genet*. 2021;22(3):154-68.

863 35. Tena JJ, Santos-Pereira JM. Topologically Associating Domains and Regulatory
864 Landscapes in Development, Evolution and Disease. *Front Cell Dev Biol*. 2021;9:702787.

865 36. Cruz-Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, et al. PRC2
866 Facilitates the Regulatory Topology Required for Poised Enhancer Function during Pluripotent
867 Stem Cell Differentiation. *Cell Stem Cell*. 2017;20(5):689-705 e9.

868 37. Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, et al.
869 Multiscale 3D Genome Rewiring during Mouse Neural Development. *Cell*. 2017;171(3):557-
870 72 e24.

871 38. Oudelaar AM, Beagrie RA, Gosden M, de Ornellas S, Georgiades E, Kerry J, et al.
872 Dynamics of the 4D genome during *in vivo* lineage specification and differentiation. *Nat
873 Commun*. 2020;11(1):2722.

874 39. Su G, Wang W, Zhao X, Chen J, Zheng J, Liu M, et al. Enhancer architecture-
875 dependent multilayered transcriptional regulation orchestrates RA signaling-induced early
876 lineage differentiation of ESCs. *Nucleic Acids Res*. 2021;49(20):11575-95.

877 40. Schmidl C, Rendeiro AF, Sheffield NC, Bock C. ChIPmentation: fast, robust, low-input
878 ChIP-seq for histones and transcription factors. *Nat Methods*. 2015;12(10):963-5.

879 41. Samarut E, Gaudin C, Hughes S, Gillet B, de Bernard S, Jouve PE, et al. Retinoic acid
880 receptor subtype-specific transcriptotypes in the early zebrafish embryo. *Mol Endocrinol*.
881 2014;28(2):260-72.

882 42. Bibel M, Richter J, Schrenk K, Tucker KL, Staiger V, Korte M, et al. Differentiation of
883 mouse embryonic stem cells into a defined neuronal lineage. *Nat Neurosci*. 2004;7(9):1003-9.

884 43. Gil-Galvez A, Jimenez-Gancedo S, Perez-Posada A, Franke M, Acemel RD, Lin CY,
885 et al. Gain of gene regulatory network interconnectivity at the origin of vertebrates. *Proc Natl
886 Acad Sci U S A*. 2022;119(11):e2114802119.

887 44. Grandel H, Lun K, Rauch GJ, Rhinn M, Piotrowski T, Houart C, et al. Retinoic acid
888 signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the
889 anterior-posterior axis of the CNS and to induce a pectoral fin bud. *Development*.
890 2002;129(12):2851-65.

891 45. Billings SE, Pierzchalski K, Butler Tjaden NE, Pang XY, Trainor PA, Kane MA, et al.
892 The retinaldehyde reductase DHRS3 is essential for preventing the formation of excess
893 retinoic acid during embryonic development. *FASEB J*. 2013;27(12):4877-89.

894 46. Kawahara A, Chien CB, Dawid IB. The homeobox gene *mbx* is involved in eye and
895 tectum development. *Dev Biol*. 2002;248(1):107-17.

896 47. Parvin MS, Okuyama N, Inoue F, Islam ME, Kawakami A, Takeda H, et al.
897 Autoregulatory loop and retinoic acid repression regulate *pou2/pou5f1* gene expression in the
898 zebrafish embryonic brain. *Dev Dyn*. 2008;237(5):1373-88.

899 48. Lopez-Delgado AC, Delgado I, Cadenas V, Sanchez-Cabo F, Torres M. Axial skeleton
900 anterior-posterior patterning is regulated through feedback regulation between Meis
901 transcription factors and retinoic acid. *Development*. 2021;148(1).

902 49. Tavares AT, Tsukui T, Izpisua Belmonte JC. Evidence that members of the
903 Cut/Cux/CDP family may be involved in AER positioning and polarizing activity during chick
904 limb development. *Development*. 2000;127(23):5133-44.

905 50. El Haddad M, Notarnicola C, Evano B, El Khatib N, Blaquiere M, Bonnici A, et al.
906 Retinoic acid maintains human skeletal muscle progenitor cells in an immature state. *Cell Mol
907 Life Sci*. 2017;74(10):1923-36.

908 51. Huang S, Laoukili J, Epping MT, Koster J, Holzel M, Westerman BA, et al. ZNF423 is
909 critically required for retinoic acid-induced differentiation and is a marker of neuroblastoma
910 outcome. *Cancer Cell*. 2009;15(4):328-40.

911 52. Wang WD, Melville DB, Montero-Balaguer M, Hatzopoulos AK, Knapik EW. Tfap2a and
912 Foxd3 regulate early steps in the development of the neural crest progenitor population. *Dev
913 Biol*. 2011;360(1):173-85.

914 53. Pieraccioli M, Nicolai S, Pitolli C, Agostini M, Antonov A, Malewicz M, et al. ZNF281
915 inhibits neuronal differentiation and is a prognostic marker for neuroblastoma. *Proc Natl Acad
916 Sci U S A*. 2018;115(28):7356-61.

917 54. Kawakami Y, Esteban CR, Matsui T, Rodriguez-Leon J, Kato S, Izpisua Belmonte JC.
918 Sp8 and Sp9, two closely related buttonhead-like transcription factors, regulate Fgf8
919 expression and limb outgrowth in vertebrate embryos. *Development*. 2004;131(19):4763-74.

920 55. Chatagnon A, Veber P, Morin V, Bedo J, Triqueneaux G, Semon M, et al. RAR/RXR
921 binding dynamics distinguish pluripotency from differentiation associated cis-regulatory
922 elements. *Nucleic Acids Res.* 2015;43(10):4833-54.

923 56. Berenguer M, Duester G. Retinoic acid, RARs and early development. *J Mol
924 Endocrinol.* 2022;69(4):T59-T67.

925 57. Samrani LMM, Pennings JLA, Hallmark N, Bars R, Tinwell H, Pallardy M, et al. Dynamic
926 regulation of gene expression and morphogenesis in the zebrafish embryo test after exposure
927 to all-trans retinoic acid. *Reprod Toxicol.* 2023;115:8-16.

928 58. Martinez-Morales PL, Diez del Corral R, Olivera-Martinez I, Quiroga AC, Das RM,
929 Barbas JA, et al. FGF and retinoic acid activity gradients control the timing of neural crest cell
930 emigration in the trunk. *J Cell Biol.* 2011;194(3):489-503.

931 59. Dupe V, Pellerin I. Retinoic acid receptors exhibit cell-autonomous functions in cranial
932 neural crest cells. *Dev Dyn.* 2009;238(10):2701-11.

933 60. Rekler D, Kalcheim C. Completion of neural crest cell production and emigration is
934 regulated by retinoic-acid-dependent inhibition of BMP signaling. *Elife.* 2022;11.

935 61. Mendoza-Parra MA, Malyshева V, Mohamed Saleem MA, Lieb M, Godel A,
936 Gronemeyer H. Reconstructed cell fate-regulatory programs in stem cells reveal hierarchies
937 and key factors of neurogenesis. *Genome Res.* 2016;26(11):1505-19.

938 62. John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, et al. Chromatin
939 accessibility pre-determines glucocorticoid receptor binding patterns. *Nat Genet.*
940 2011;43(3):264-8.

941 63. Kiani K, Sanford EM, Goyal Y, Raj A. Changes in chromatin accessibility are not
942 concordant with transcriptional changes for single-factor perturbations. *Mol Syst Biol.*
943 2022;18(9):e10979.

944 64. Nikcevic G, Savic T, Kovacevic-Grujicic N, Stevanovic M. Up-regulation of the SOX3
945 gene expression by retinoic acid: characterization of the novel promoter-response element and
946 the retinoid receptors involved. *J Neurochem.* 2008;107(5):1206-15.

947 65. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
948 universal RNA-seq aligner. *Bioinformatics.* 2013;29(1):15-21.

949 66. Anders S, Pyl PT, Huber W. HTSeq--a Python framework to work with high-throughput
950 sequencing data. *Bioinformatics.* 2015;31(2):166-9.

951 67. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for
952 RNA-seq data with DESeq2. *Genome Biol.* 2014;15(12):550.

953 68. Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large
954 gene lists using DAVID bioinformatics resources. *Nat Protoc.* 2009;4(1):44-57.

955 69. Santos-Pereira JM, Gallardo-Fuentes L, Neto A, Acemel RD, Tena JJ. Pioneer and
956 repressive functions of p63 during zebrafish embryonic ectoderm specification. *Nat Commun.*
957 2019;10(1):3049.

958 70. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. Transposition of native
959 chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins
960 and nucleosome position. *Nat Methods.* 2013;10(12):1213-8.

961 71. Fernandez-Minan A, Bessa J, Tena JJ, Gomez-Skarmeta JL. Assay for transposase-
962 accessible chromatin and circularized chromosome conformation capture, two methods to
963 explore the regulatory landscapes of genes in zebrafish. *Methods Cell Biol.* 2016;135:413-30.

964 72. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. *Nat Methods.*
965 2012;9(4):357-9.

966 73. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence
967 Alignment/Map format and SAMtools. *Bioinformatics.* 2009;25(16):2078-9.

968 74. Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic
969 features. *Bioinformatics.* 2010;26(6):841-2.

970 75. Haeussler M, Zweig AS, Tyner C, Speir ML, Rosenbloom KR, Raney BJ, et al. The
971 UCSC Genome Browser database: 2019 update. *Nucleic Acids Res.* 2019;47(D1):D853-D8.

972 76. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, et al. Model-based
973 analysis of ChIP-Seq (MACS). *Genome Biol.* 2008;9(9):R137.

974 77. Marletaz F, Firbas PN, Maeso I, Tena JJ, Bogdanovic O, Perry M, et al. Amphioxus
975 functional genomics and the origins of vertebrate gene regulation. *Nature.* 2018;564(7734):64-
976 70.

977 78. Ramirez F, Ryan DP, Gruning B, Bhardwaj V, Kilpert F, Richter AS, et al. deepTools2:
978 a next generation web server for deep-sequencing data analysis. *Nucleic Acids Res.*
979 2016;44(W1):W160-5.

980 79. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, et al. Simple combinations
981 of lineage-determining transcription factors prime *cis*-regulatory elements required for
982 macrophage and B cell identities. *Mol Cell.* 2010;38(4):576-89.

983 80. Hiller M, Agarwal S, Notwell JH, Parikh R, Guturu H, Wenger AM, et al. Computational
984 methods to detect conserved non-genic elements in phylogenetically isolated genomes:
985 application to zebrafish. *Nucleic Acids Res.* 2013;41(15):e151.

986 81. Ye T, Krebs AR, Choukallah MA, Keime C, Plewniak F, Davidson I, et al. seqMINER:
987 an integrated ChIP-seq data interpretation platform. *Nucleic Acids Res.* 2011;39(6):e35.

988 82. Bentsen M, Goymann P, Schultheis H, Klee K, Petrova A, Wiegandt R, et al. ATAC-
989 seq footprinting unravels kinetics of transcription factor binding during zygotic genome
990 activation. *Nat Commun.* 2020;11(1):4267.

991 83. Fornes O, Castro-Mondragon JA, Khan A, van der Lee R, Zhang X, Richmond PA, et
992 al. JASPAR 2020: update of the open-access database of transcription factor binding profiles.
993 *Nucleic Acids Res.* 2020;48(D1):D87-D92.

994 84. Franke M, De la Calle-Mustienes E, Neto A, Almuedo-Castillo M, Irastorza-Azcarate I,
995 Acemel RD, et al. CTCF knockout in zebrafish induces alterations in regulatory landscapes
996 and developmental gene expression. *Nat Commun.* 2021;12(1):5415.

997 85. Mumbach MR, Rubin AJ, Flynn RA, Dai C, Khavari PA, Greenleaf WJ, et al. HiChIP:
998 efficient and sensitive analysis of protein-directed genome architecture. *Nat Methods.*
999 2016;13(11):919-22.

1000 86. Serra F, Bau D, Goodstadt M, Castillo D, Filion GJ, Marti-Renom MA. Automatic
1001 analysis and 3D-modelling of Hi-C data using TADbit reveals structural features of the fly
1002 chromatin colors. *PLoS Comput Biol.* 2017;13(7):e1005665.

1003 87. Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, et al. The Human Epigenome
1004 Browser at Washington University. *Nat Methods.* 2011;8(12):989-90.

1005 88. Kruse K, Hug CB, Vaquerizas JM. FAN-C: a feature-rich framework for the analysis
1006 and visualisation of chromosome conformation capture data. *Genome Biol.* 2020;21(1):303.

1007 89. Bhattacharyya S, Chandra V, Vijayanand P, Ay F. Identification of significant chromatin
1008 contacts from HiChIP data by FitHiChIP. *Nat Commun.* 2019;10(1):4221.

1009

1010