

1 Single Cell Track and Trace: live cell labelling and 2 temporal transcriptomics via nanobiopsy.

3

4 *Fabio Marcuccio^{1,2,3,4,†}, Chalmers C. Chau^{2,3,4,†}, Georgette Tanner^{4,‡}, Marilena Elpidorou^{3,4},*
5 *Martina A. Finetti⁴, Shoaib Ajaib⁴, Morag Taylor⁴, Carolina Lascelles⁴, Ian Carr⁴, Iain Macaulay⁵,*
6 *Lucy F. Stead^{4,*} and Paolo Actis^{2,3,*}*

7

8 ¹Faculty of Medicine, Imperial College London, London, UK

9 ²Bragg Centre for Materials Research, University of Leeds, Leeds, UK

10 ³School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK

11 ⁴Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK

12 ⁵Earlham Institute, Norwich Research Park, Norwich, UK

13

14 [#]These authors contributed equally

15 *Joint corresponding authors. Correspondence to p.actis@leeds.ac.uk and l.f.stead@leeds.ac.uk

16

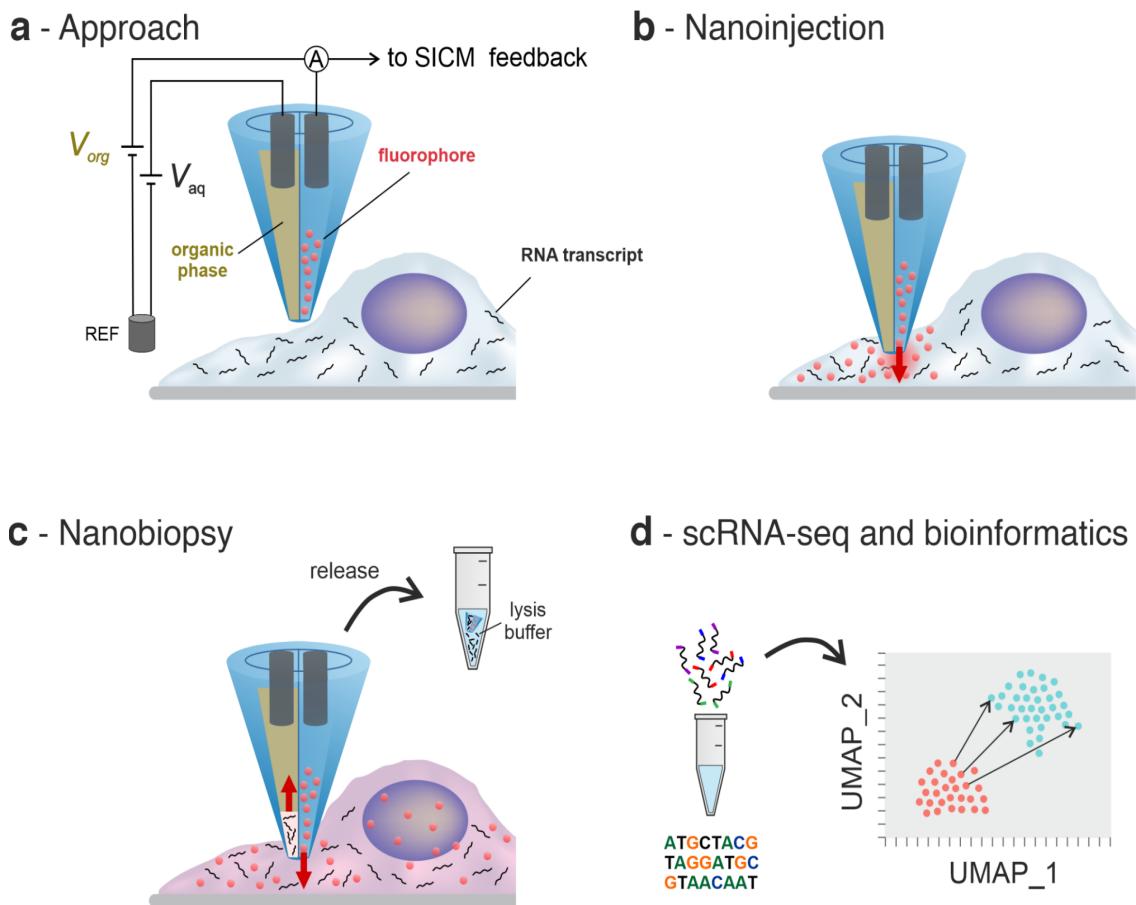
17 ABSTRACT

18 Single-cell RNA sequencing has revolutionised our understanding of cellular heterogeneity, but whether
19 using isolated cells or more recent spatial transcriptomics approaches, these methods require isolation and
20 lysis of the cell under investigation. This provides a snapshot of the cell transcriptome from which dynamic
21 trajectories, such as those that trigger cell state transitions, can only be inferred. Here, we present cellular
22 nanobiopsy: a platform that enables simultaneous labelling and sampling from a single cell without killing it.
23 The technique is based on scanning ion conductance microscopy (SICM) and uses a double-barrel
24 nanopipette to inject a fluorescent dye and to extract femtolitre-volumes of cytosol. We used the nanobiopsy
25 to longitudinally profile the transcriptome of single glioblastoma (GBM) brain tumour cells in vitro over
26 72hrs with and without standard treatment. Our results suggest that treatment either induces or selects for
27 more transcriptionally stable cells. We envision the nanobiopsy will transform standard single-cell
28 transcriptomics from a static analysis into a dynamic and temporal assay.

29 INTRODUCTION

30 Microfluidics platforms coupled with advances in molecular biology have enabled high-throughput analysis
31 of the minute amount of genetic material contained in a single cell¹. The advent of spatial transcriptomics has
32 then further enabled the generation of single cell gene expression data while maintaining the spatial context
33 of those cells within a tissue². However, all these approaches are end-point assays that require the cell to be
34 lysed or fixed before profiling. An exciting new frontier in single cell analysis is the facilitation of
35 temporal/sequential/longitudinal cellular profiling^{3,4}. Chen, Guillaume-Gentil et al established Live-seq, a
36 technique based on fluidic force microscopy⁵ allowing the pressure-driven RNA extraction from living cells
37 at distinct time points⁶. The authors sequentially profiled the transcriptomes of individual macrophages
38 before and after lipopolysaccharide (LPS) stimulation, and of adipose stromal cells pre- and post-
39 differentiation⁶. Nadappuram, Cadinu et al developed minimally invasive dielectrophoretic nanotweezers
40 based on dual carbon nanoelectrodes that allowed the trapping and extraction of nucleic acids and organelles
41 from living cells without affecting their viability⁷. The authors demonstrated the single organelles resolution
42 of their techniques but did not demonstrate longitudinal sampling. Alternative approaches relying on vertical
43 nanoneedle platforms have the potential to enable high throughput single cell manipulation⁸ and they
44 recently enabled the intracellular sampling from a few cells to investigate cellular heterogeneity⁹. Our group
45 has pioneered the use of nanopipettes coupled with electrowetting and integrated into a Scanning Ion
46 Conductance Microscope (SICM)^{10,11} to perform nanobiopsies of living cells in culture¹². SICM relies on the
47 measurement of the ion current between an electrode inserted in a glass nanopipette, the probe, and a
48 reference electrode immersed in an electrolytic solution where the cells are placed¹¹. By applying a voltage
49 between the two electrodes, an ion current flows through the nanopore at the tip of the nanopipette. When the
50 nanopipette approaches a surface, the measured ion current drops. This current drop is proportional to the
51 separation between the nanopore and the sample and can be used as active feedback to maintain the
52 nanopipette-sample distance constant and it has been extensively used for high resolution topographical
53 mapping of living cells¹¹. The nanobiopsy technique has enabled the extraction of RNA and organelles from
54 single cells, the study of mRNA compartmentalization within neuronal cells¹³ and the localised sampling of
55 mitochondria from human tissues¹⁴.

56 Here, we show the development of a platform technology enabling nanoinjection of exogenous molecules
57 into a living cell and extraction of femtolitre-volumes of cytoplasm, via a double-barrel nanopipette. The
58 platform enables longitudinal nanobiopsy of the same cell to profile gene expression changes over a 72-hour
59 period. As a proof of concept, we applied our novel method to investigate changes in gene expression in a
60 model of the most aggressive brain cancer, glioblastoma (GBM) caused by non-surgical elements of the
61 standardised treatment given to patients: radiotherapy and chemotherapy with the drug temozolomide
62 (TMZ). This approach allowed for direct characterisation of therapy driven changes in cell state, offering
63 unique insights into the gene expression changes that may underpin the ability of these cells to
64 phenotypically adapt and resist treatment. Such investigations allow for unprecedented insights into how
65 cells respond under different conditions or with different treatments, which will be invaluable in many
66 research settings.


67 **RESULTS**

68 Double-barrel nanopipettes integrated into a SICM enable the injection into living cells followed by
69 extraction of minute amount of the cytoplasm for downstream gene expression profiling. Our platform
70 technology employs a double-barrel nanopipette (individual barrel with a pore of ~150 nm, **Supplementary**
71 **Fig. SF1.1**) where one barrel, filled with an organic solution is used as an electrochemical syringe to perform
72 cytoplasmic extractions^{12–16}, while the second barrel, filled with an aqueous electrolyte solution, provides a
73 stable ion current for precise positioning and enables the nanoinjection of exogenous molecules into the cell.
74 **Figure 1** illustrates the nanobiopsy technology and its workflow composed of automated nanopipette
75 approach to the cell (a), penetration of the cell membrane followed by nanoinjection (b), extraction of
76 cytoplasmic RNA via nanobiopsy (c), transcriptomics analysis based on next-generation sequencing and
77 bioinformatics analysis (d).

78

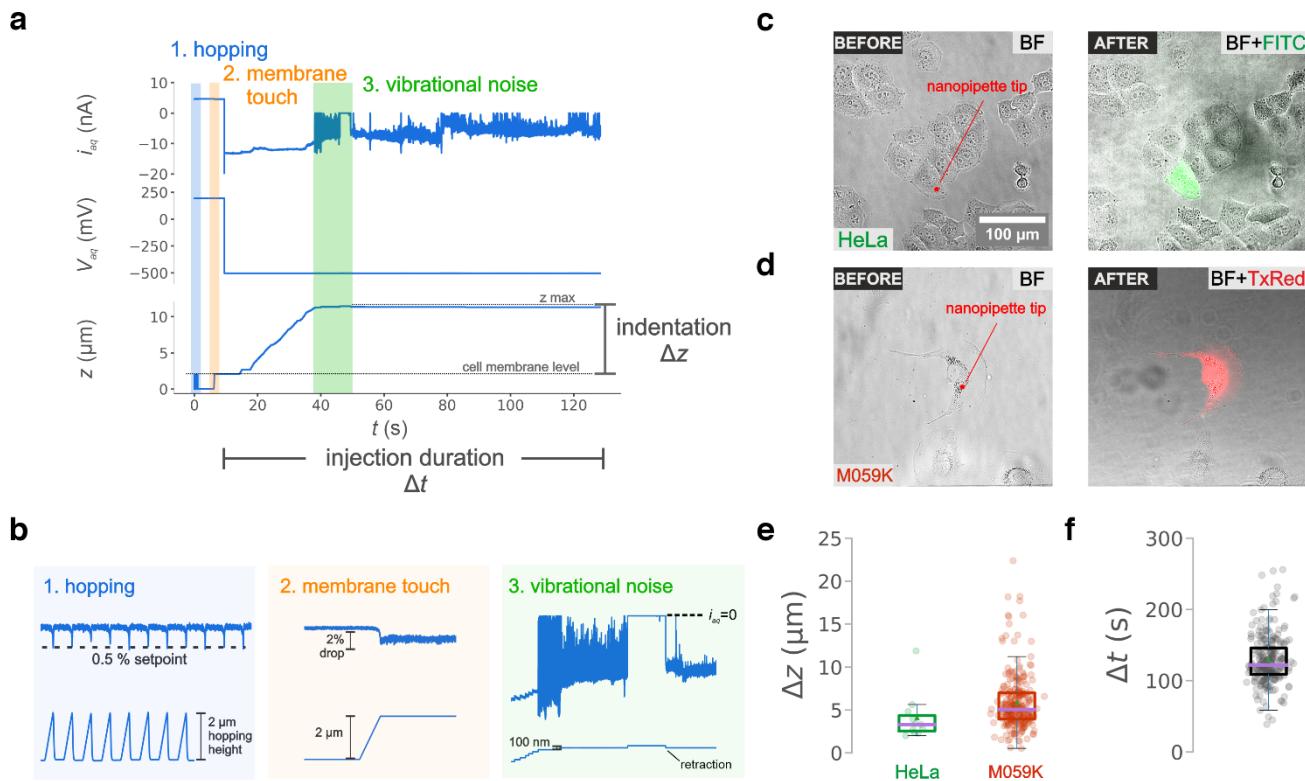
79

80

Figure 1. Illustration of the main phases of the single-cell nanobiopsy procedure enabling cytoplasmic nanoinjections and extractions from individual cells. A double-barrel nanopipette integrated to an SICM is brought in proximity of the cellular membrane (a) where it penetrates the latter enabling the release of the fluorophore through the aqueous barrel (b), and cytoplasmic extractions through the organic barrel (c). After the extraction, the sample containing RNA transcripts is released in lysis buffer and it is reverse transcribed, amplified and sequenced for downstream gene expression analysis via bioinformatics (d).

81

82 APPROACH


83 In the approach phase, the double-barrel nanopipette automatically approaches the cell membrane under
 84 control of the SICM interface¹⁷. The electrolyte solution in the aqueous barrel is characterised by an
 85 electrical conductivity $\kappa_{aq} = 1.30 \text{ S/m}$ which is two orders of magnitude higher than the conductivity of the
 86 organic solution $\kappa_{org} = 0.01 \text{ S/m}$ ¹⁵. This results in a median electrical resistance of the aqueous barrel $R_{aq} =$
 87 $45.7 \text{ M}\Omega$ being 59 times smaller than the median resistance of the organic barrel $R_{org} = 2.7 \text{ G}\Omega$ which
 88 translates with higher values of ion current magnitude that facilitate the SICM operations. A positive bias is
 89 applied to the electrode in the aqueous barrel ($V_{aq} = 200 \text{ mV}$) with respect to a reference electrode immersed
 90 in the culture medium. When the nanopipette approaches the plasma membrane, the magnitude of the ion

91 current decreases due to the increase in the nanopipette access resistance^{10,18} until the setpoint current (99.5%
92 of the baseline current magnitude) is detected.
93 At this point, the SICM feedback mechanism stops and retracts the nanopipette to keep a 2 μm distance from
94 the cell membrane. The ion current through the aqueous barrel i_{aq} corresponding to the vertical position z of
95 the nanopipette recorded during the approach phase, the boxplots showing the resistance of the organic and
96 aqueous barrel, and the optical micrographs of the process are shown in **Supplementary Fig. SF1.2 and**
97 **SF1.3**. For the entire duration of the approach phase, the potential applied to the electrode in the organic
98 phase is kept at a constant positive value ($V_{\text{org}} = 300$ mV) to prevent the aqueous phase from entering the
99 nanopipette^{12,15}.

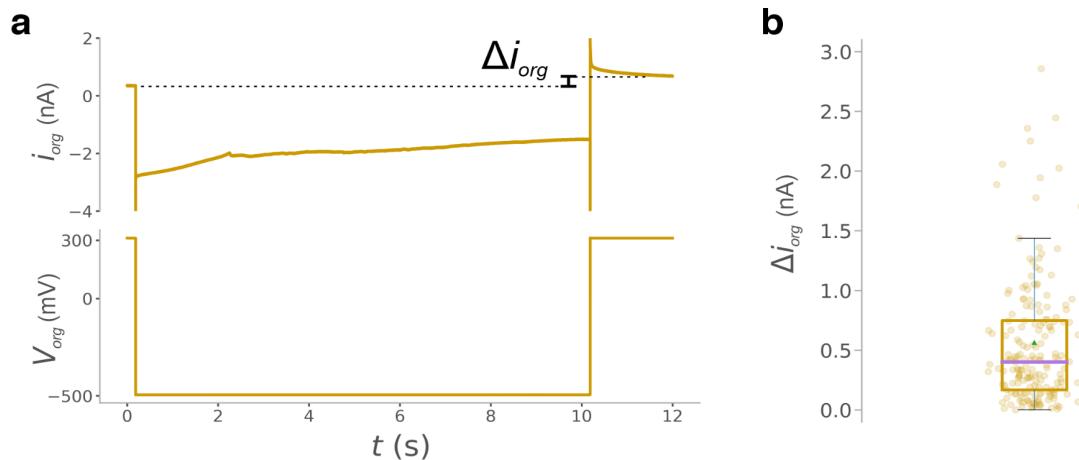
100

101 NANOINJECTION

102 In the nanoinjection phase, the nanopipette position is manually controlled to enable the reproducible
103 penetration of the cell membrane. First the nanopipette is lowered by 2 μm to reach the cell membrane, then
104 the potential applied to the aqueous barrel is switched to $V_{\text{aq}} = -500$ mV to allow the electrophoretic release
105 of the anionic fluorophore from the nanopipette. Next, the nanopipette is lowered at high speed (100 nm/ms)
106 with 100-nm steps until we detect a ~2% drop in the ion-current magnitude that we assign to the nanopipette
107 touching the cell membrane (subphase 2: membrane touch). The nanopipette is then further lowered until we
108 detect a vibrational noise, which could be due to the proximity of the nanopipette tip to the petri dish
109 (subphase 3: vibrational noise). A further 100-nm step brings the nanopipette in contact with the polymer
110 coverslip of the petri dish and no ion current is detected ($i_{\text{aq}} = 0$ pA). Finally, the nanopipette is retracted by
111 100 nm and it is kept at a fixed position for approximately 1 minute to allow the release of a sufficient
112 amount of fluorophore into the cytoplasm. This method is robust and reproducible, allowing penetration of
113 the membranes of different cell types (HeLa: epithelial cell; M049K: glial cell) with distinct mechanical
114 properties^{19,20}, to enable injection of exogenous molecules and extraction of cytoplasmic content. **Figure 2a**
115 shows the ion current i_{aq} and the potential applied V_{aq} in the aqueous barrel and the vertical position z of the
116 nanopipette during nanoinjection, while the zoomed-in traces for the individual approach (1), membrane
117 touch (2) and vibrational noise (3) phases are shown in **Fig. 2b**. Note that the nanopipette vertical position z
118 increases as the distance between nanopipette and cell membrane decreases.

Figure 2. (a) Electrical traces for the ion current i_{aq} and potential bias V_{aq} in the aqueous barrel and z-position of the nanopipette z during the nanoinjection phase where the shaded regions highlight the hopping (1), membrane touch (2) and vibrational noise (3) subphases. The parameters for the indentation Δz and the injection duration Δt can be extracted. (b) Zoomed-in traces for the ion current i_{aq} (top) and nanopipette vertical position z (bottom) recorded during the hopping (1), membrane touch (2) and vibrational noise (3) subphases whose detection guarantees a successful membrane penetration and nanoinjection. The bright field (BF) and epifluorescence (FITC, TxRed) micrographs of a HeLa (c) and M059K (d) cell acquired before and after the nanoinjection phase show the cell emitting a fluorescent signal following injection of a green (ATTO 488) and red (ATTO 565) fluorophore, respectively. (e) Boxplots showing the maximum indentation Δz in the case of nanoinjections performed into HeLa ($n=10$) and M059K cells ($n=256$), and (f) the total injection duration Δt ($n=256$).

119


120 Also, the power spectral density of the ion current i_{aq} traces can be used as quality control because when the
 121 presence of the individual sub-phases strongly correlated with a successful nanoinjection (**Supplementary**
 122 **Section S1.4-S1.5, Supplementary Figs. SF1.4 - SF1.6**) resulting into a fluorescently labelled cell. **Figures**
 123 **2c-d** show the optical micrographs obtained before and after the nanoinjection of a green anionic fluorophore
 124 (ATTO 488) into a HeLa cell and a red anionic fluorophore (ATTO 565) into a M059K cell. **Figure 2e**
 125 shows the indentation of the nanopipette onto the cellular membrane necessary to puncture the membrane
 126 and access the cytoplasm extracted from the traces shown in **Fig. 2a**. The boxplots show a median value
 127 (purple line) of $\Delta z = 3.32 \mu\text{m}$ and $\Delta z = 5.06 \mu\text{m}$ and an average (green triangle) of $\Delta z = 4.12 \mu\text{m}$ and $\Delta z =$
 128 $4.85 \mu\text{m}$ in the case of HeLa and M059K cells, respectively. The distribution for total injection duration Δt is
 129 shown in the boxplot in **Fig. 2f** where the median value is $\Delta t = 129 \text{ s}$.

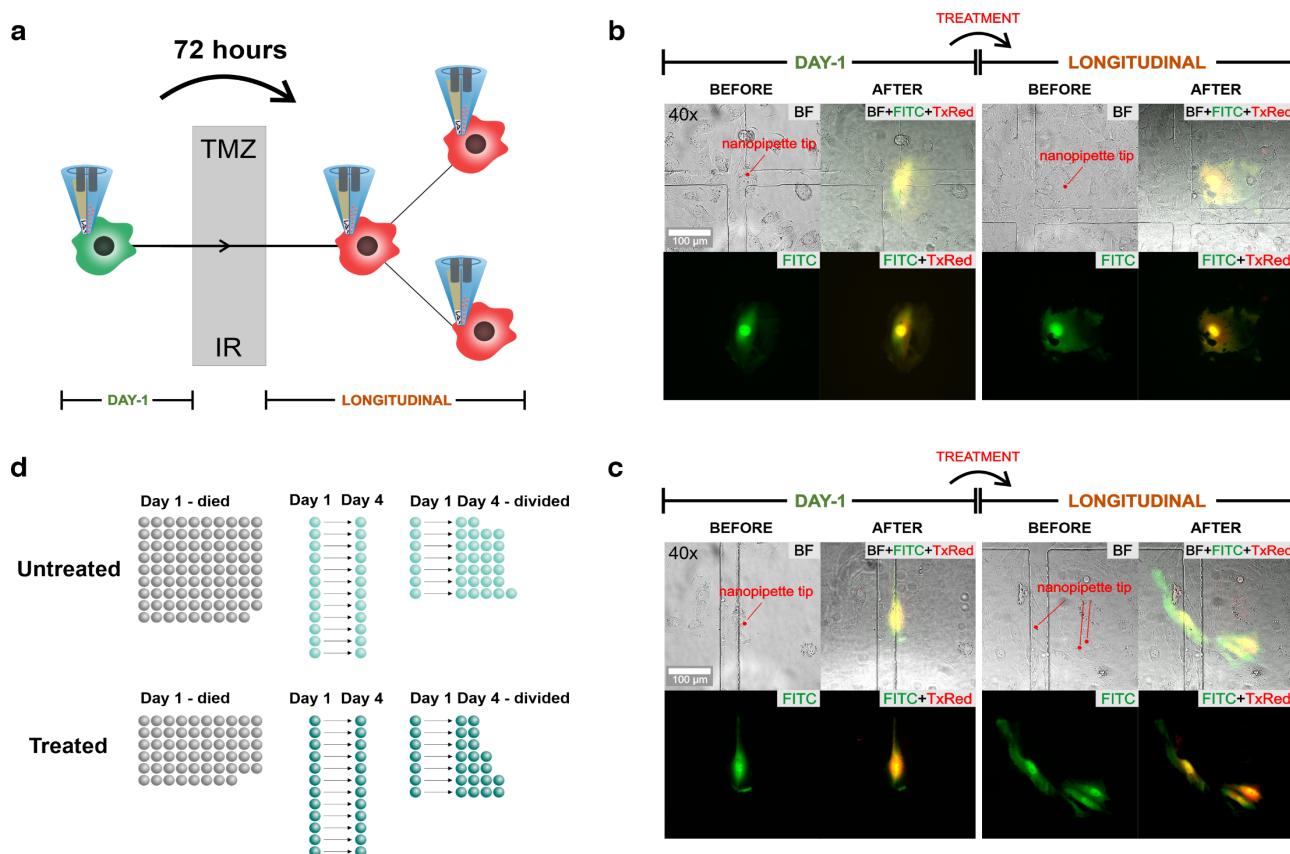
130

131 NANOBIOPSY

132 Following the nanoinjection step, our platform technology enables the extraction of intracellular RNA.

133 **Figure 3a** shows an example of the ion current i_{org} and the potential V_{org} applied to the electrode in the
134 organic barrel during the nanobiopsy phase where the electric potential is switched to $V_{\text{org}} = -500$ mV for 10
135 s. Upon switching the potential, the ion current in the organic barrel increases from $i_{\text{org}} = 0.35$ nA to $i_{\text{org}} = -$
136 2.83 nA and it decreases slowly until the end of the 10 s when the potential is returned to $V_{\text{org}} = 300$ mV.

Figure 3. (A) Ion current i_{org} and applied voltage V_{app} trace in the organic barrel during nanobiopsy. After the extraction ($t > 10$ s), the ion current i_{org} is characterised by a higher magnitude due to the cytoplasm entering the nanopipette which decreases the nanopipette resistance. (B) Boxplot showing the distribution of the increase in current magnitude Δi_{org} ($n=184$).

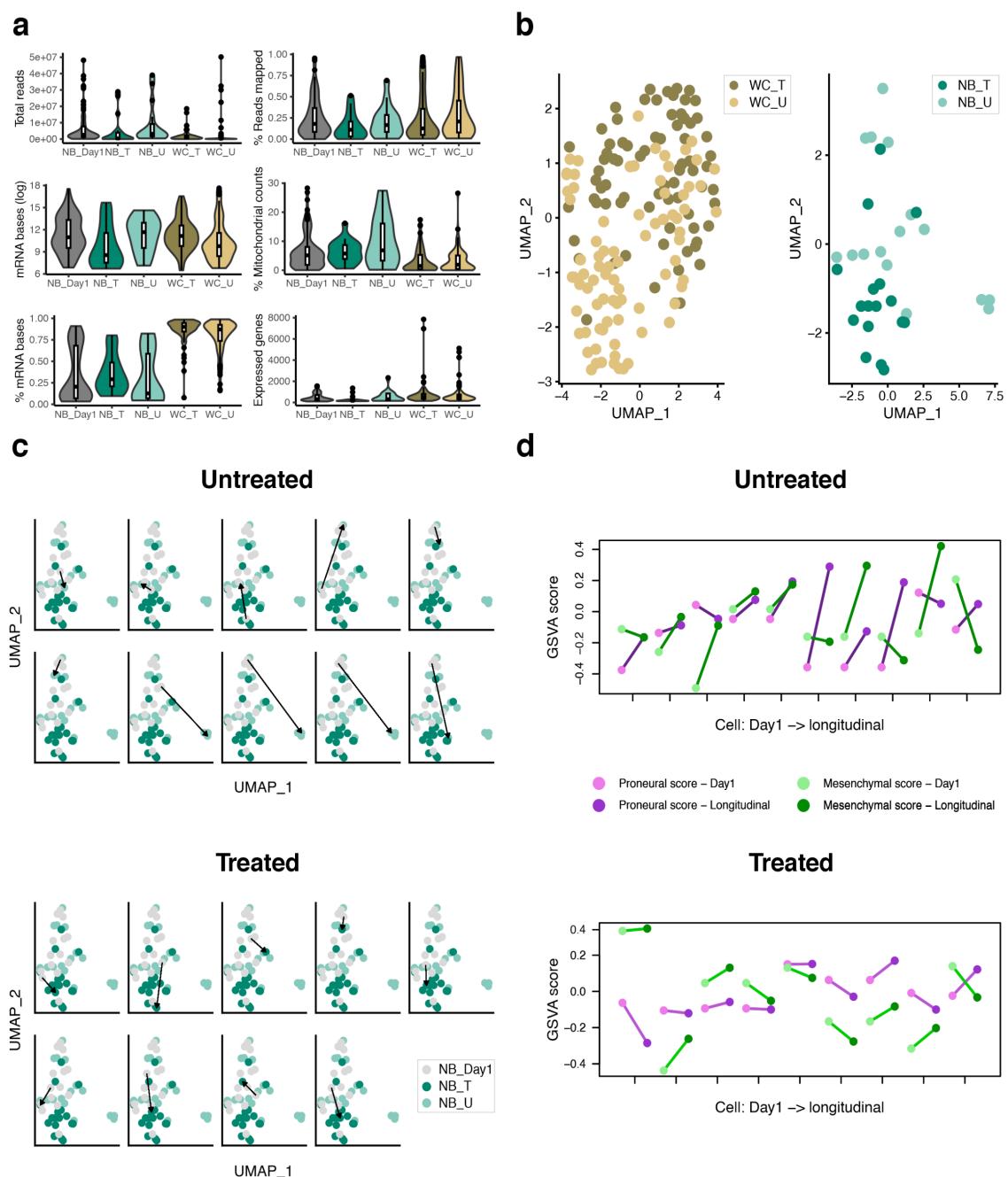

137 This behaviour is driven by the velocity of the displacement of the liquid-liquid interface between the
138 solution in the barrel (organic phase) and the cytoplasm (aqueous phase) which is fast at the beginning and
139 decreases over time. At this point, the magnitude of the ion current is approximately equal to $i_{\text{org}} \sim 2.20$ nA
140 and it slowly decreases until reaching $i_{\text{org}} = 0.70$ nA, when the equilibrium is re-established. In the example
141 trace, the increase in current magnitude due to ingress of cytoplasm after the extraction is equal to $\Delta i_{\text{org}} =$
142 0.35 nA. **Figure 3b** shows the boxplot with the distribution of the current magnitude increase Δi_{org} obtained
143 after the extraction phase of 184 nanobiopsied cells with median value (purple line) equal to $\Delta i_{\text{org}} = 0.40$ nA.
144 The value Δi_{org} can be used to estimate the cytoplasmic volume extracted¹⁵. Our estimation indicates 75% of
145 samples showing an extracted volume ≤ 200 fL. However, this figure is only qualitative as the geometrical
146 and electrical assumptions required for the estimation have large errors and cannot be used to precisely
147 estimate the extracted volume. Nevertheless, **Fig. 3b** demonstrates the reproducibility of the protocol and
148 indicates that it is very likely that a less than a pL is extracted from the cell. Further ion current traces
149 recorded during nanobiopsy are shown in **Supplementary Fig. SF1.6**.

150 SINGLE-CELL RNA SEQUENCING

151 Following nanobiopsy, the nanopipette is placed in a tube preloaded with 2 μ l of lysis buffer containing an
152 RNase inhibitor to prevent mRNA degradation and immediately immersed in liquid nitrogen for short-term
153 storage. The time elapsed from the nanopipette withdrawal to storage of the sample in liquid nitrogen was <
154 3 minutes and includes the time required to withdraw the nanopipette from the culture solution, break the
155 nanopipette tip in the tube containing lysis buffer, label the tube and immerse it in liquid nitrogen. Next, the
156 mRNA collected is reverse transcribed into cDNA and amplified according to Smart-Seq2²¹ and single-cell
157 libraries are prepared for subsequent next-generation RNA sequencing and gene expression profiling.

158

159 LONGITUDINAL NANOBIOPSIES OF THE SAME GLIOBLASTOMA CELL


Figure 4. Longitudinal nanobiopsy of the same glioblastoma cells through standard therapy. (A) An individual GBM cell is nanobiopsied and injected (day-1) and standard treatment of temozolomide (TMZ) and irradiation (IR) is applied after which the same GBM cell or its progeny is nanobiopsied and injected a second time (longitudinal) 72 hours following the first nanobiopsy. (B) Optical (BF) and fluorescence (FITC, TxRed) micrographs of an individual M059K_{GFP} cell before and after nanobiopsy and nanoinjection and before (day-1) and following standard treatment (longitudinal). (C) Optical and fluorescence micrographs of an individual M059K_{GFP} cell that is nanobiopsied and nanoinjected on day 1, survive treatment and divide, whose progeny is nanobiopsied and nanoinjected a second time following treatment. (D) Illustration of the nanobiopsy count of untreated (blue) and treated (red) cells that were nanobiopsied on day 1 and died (Day 1 – died), nanobiopsied on day 1, survived, didn't divide and nanobiopsied again on day 4 (Day 1 Day 4) and cells that are nanobiopsied on day 1, divided, and whose progeny was nanobiopsied again on day 4 (Day 1 Day 4 – divided).

160 The nanobiopsy technology allows the longitudinal gene expression profiling of single cells in culture. As a
161 proof of concept, we investigated the transcriptional reprogramming in GBM cells in response to treatment.
162 M059K GBM cells are amenable to nanobiopsy and can be visually tracked, along with their progeny, over a
163 72-hour time frame without leaving the field of view. Topographical mapping with SICM and fluorescent
164 staining was performed on some of the M059K GBM cells to assess the average cell height, surface area and
165 volume, this information was then used to guide the location of the nanobiopsy procedure (**Supplementary**
166 **Fig. SF2.1**). For consistency, all nanobiopsies were carried out in the perinuclear region, and fluorescent
167 staining indicated the presence of mitochondria and the endoplasmic reticulum in that region
168 (**Supplementary Fig. SF2.2**). To enable longitudinal tracking of individual GBM cells over time, mixed

169 cultures of GFP-transfected (M059K_{GFP}) and wild type (M059K_{WT}) cells were plated on gridded dishes at a
170 ratio of 1:350 (M059K_{GFP} : M059K_{WT}). This ratio facilitated the identification of individual M059K_{GFP}
171 surrounded by M059K_{WT}. The experimental setup and use of gridded dishes to locate cells, including
172 following division, is outlined in **Supplementary Section S2.3**. In order to perform longitudinal analysis, it
173 is crucial to ensure that the same cell is sampled. Therefore, the total (Δx_{tot}) and maximum (Δx_{max}) cellular
174 migration over the planned 72-hour time course was quantified and showed not to differ between repeats (t-
175 test, $p>0.5$) and to be substantially less ($\Delta x_{\text{max}} < 800 \mu\text{m}$, $\Delta x_{\text{max}} < 600 \mu\text{m}$) than the field of view (1300 x
176 1300 μm). Furthermore, the largest area enclosing all progeny, in cases where the cell divided over the time
177 course, was 0.35 mm² which is ~5 times smaller than the area of the field of view (1.69 mm²)
178 (**Supplementary Fig. SF2.3**).

179
180
181 We are therefore confident that the same cell was longitudinally sampled. Next, we tested whether the same
182 M059K GBM cell could be sampled at different time points and we followed the same cell over the 72-hour
183 time course. Results showed that the cell was successfully biopsied and injected on day 1, imaged on day 2
184 and day 3, and longitudinally biopsied and injected on day 4 (**Supplementary Fig. SF2.4**). Having
185 established the suitability of the nanobiopsy for longitudinal sampling of the same GBM cell, we performed
186 longitudinal sampling of M059K GBM cells through standard therapy as depicted in **Fig. 4a**. Single
187 M059K_{GFP} cells were identified and their location recorded. A first nanobiopsy of the cell was executed to
188 extract cytoplasm (day 1 sample) and inject a fluorescent dye. This was repeated on day 4 on the same cell,
189 or each progeny thereof. On day 2, half of the dishes had been subjected to non-surgical elements of standard
190 GBM treatment, including 2 Gy irradiation (IR) and 30 μM Temozolomide (TMZ), while the remaining half
191 were left untreated. **Figure 4b** shows the optical micrographs of an individual M059K_{GFP} cell that was
192 biopsied and injected on day 1, treated, and longitudinally biopsied on day 4 while **Fig. 4c** shows the case of
193 an individual M059K_{GFP} that was biopsied and injected on day 1 and that divided following standard therapy
194 and whose progeny was longitudinally biopsied and injected on day 4. Similar examples for the longitudinal
195 samples collected from the untreated cells are shown in **Supplementary Fig. SF2.5**. The total number of
196 nanobiopsies taken for each group (treated and untreated) at each timepoint (day 1 and day 4) is summarised
197 in the schematics in **Fig. 4d**. 256 samples were collected from M059K_{GFP} cells of which 71 were longitudinal
198 samples from 32 treated and 39 untreated cells. 12 treated and 12 untreated cells sampled longitudinally did

199 not divide over the 72 hours while 7 untreated and 7 treated cells sampled longitudinally divided. When
200 comparing between treated and untreated cells, there was no significant difference in the number of cells that
201 underwent day 1 nanobiopsies and died versus survived (chi-squared, $p=0.24$), nor that survived and divided
202 versus survived and didn't divide (chi-squared, $p=1.0$). SmartSeq2 was performed to create sequencing
203 libraries from the extracted cytoplasm samples, as well as from whole-cell lysates of treated and untreated
204 M059K as a comparison (**Supplementary Section S2.6** and **Supplementary Fig. SF2.6**). Quality metrics of
205 the two datasets (**Supplementary Fig. SF3.1**) were generally comparable, though the nanobiopsies had
206 higher total reads (mean= 6.5×10^6 vs. 2.8×10^6), fewer expressed genes (mean=497 vs. 1100), lower % of
207 bases aligning to mRNA regions (mean=0.28 vs. 0.82), and higher % mitochondrial gene counts (mean=23.4
208 vs. 7.5). Both datasets were filtered for >150 expressed protein coding genes, <10% ribosomal bases and
209 <30% mitochondrial gene counts, with the latter allowing for the high concentration of mitochondria in the
210 nanobiopsied region. The sequencing metrics after filtering are shown in **Fig. 5a**. Gene expression profiles
211 were generated for each nanobiopsy and whole cell sample and plotted using UMAP. Both the whole-cells
212 and longitudinal nanobiopsies showed separation between treated and untreated samples (**Fig. 5b**), and this
213 separation was not due to confounding from any observed technical biases (**Supplementary Fig. SF3.3**),
214 suggesting that the nanobiopsies are capturing true biological effects of the treatment. Furthermore, by
215 comparing day1 to day4 nanobiopsy positions on the UMAP plots we see differing trajectories of untreated
216 and treated cells (**Fig. 5c**). It has been shown previously that GBM cells lie on an axis of proneural (PN) to
217 mesenchymal (MES) cell subtypes, and that the distributions of these subtypes change through treatment²². It
218 isn't, however, known whether the change in distributions is due to differences in growth and death rates of
219 each subtype or instead due to cells directly changing subtype through transcriptional reprogramming. To
220 investigate this, we classified both treated and untreated M059K cells at each time point as either PN or MES
221 (**Supplementary Fig. SF3.4**) by applying gene set variation analysis (GSVA) to the nanobiopsy gene
222 expression profiles (**Fig. 5d**). There was no difference in the propensity of cell subtypes at day 1, irrespective
223 of treatment, to subsequently die (Chi-squared, $p=0.85$) or survive (Fisher's Exact Test, $p=0.67$). There was
224 also no difference, irrespective of treatment, in the proportion of cell subtypes at day 4 (Fisher's Exact Test,
225 $p=0.46$). There was, however, a significant difference in the proportion of cells that switched subtype, or

Figure 5: Data analysis of nanobiopsy and whole-cell lysate samples. a) Main sequencing metrics of day-1 nanobiopsy (NB_Day1) longitudinal nanobiopsy of treated (NB_T) and untreated (NB_U), and whole-cell lysate treated (WC_T) and untreated (WC_U) samples. b) UMAP visualisation of treated and untreated whole-cell lysate and longitudinal nanobiopsy samples. c) UMAP visualisation of paired Day-1, longitudinal treated and untreated nanobiopsy samples with arrows indicating the change in position of the paired day-1 and longitudinal sample. d) Cell scores from GSVA of proneural (purple) and mesenchymal (green) phenotypes for the paired day-1 (light colour) and longitudinal (dark colour) samples. The crossing of the lines indicates a subtype switch of the cell.

226 produced progeny with a different subtype when dividing, over time: of the cases where both day-1 and
 227 longitudinal biopsies had passed filtering, untreated cells switched subtype in 7/10 cases whereas treated
 228 cells only switched in 1/9 (**Supplementary Fig. SF3.4**, Fisher's Exact Test, $p=0.0094$). This suggests that
 229 untreated cells are significantly more plastic over the 3-day time course than treated cells, which is further
 230 indicated in the changes in both PN (absolute change in score is 3.0-fold higher in untreated versus treated

231 cells; T-test, $p=0.041$) and MES scores (absolute change in score is 2.6-fold higher in untreated versus
232 treated cells; T-test, $p=0.028$) over time.

233 **DISCUSSION**

234 There is significant interest in emerging technologies that can enhance our ability to understand and analyse transcriptome
235 dynamics. Recent developments in *in vivo* fluorescence and super-resolution microscopy enabled the visualisation of
236 transcription dynamics in living cells²³⁻²⁵. Single-cell RNA sequencing and lineage tracing have been coupled to combine
237 clonal information with cell transcriptomes^{26,27}, and metabolic labelling has been used to track newly synthesised RNA to
238 allow the study of transcriptional dynamics to investigate how perturbations impact gene expression²⁸⁻³⁰. However,
239 understanding how the initial state of a cell's transcriptome influences its response to a perturbation remains
240 challenging due to the assumptions required to infer a cell's initial state when using methodologies which require cell
241 lysis³¹. Recently, the development of Live-seq⁶ enabled single-cell profiling and functional analysis of the same cell at
242 distinct time points, preserving cellular functions and viability. The development of such technologies is of crucial
243 importance to complement already available high-throughput techniques to unravel the highly dynamic mechanisms of
244 gene expression dynamics and phenotype variation which characterise healthy and diseased tissues.

245 In this study, we developed a SICM-based technology enabling the simultaneous nanoinjection of exogenous molecules
246 into a living cell whilst extracting femtolitre-volumes of cytoplasm, via a double-barrel nanopipette. This method allows
247 for the injection of a fluorescent dye into a cell to facilitate labelling and tracking and enables subsequent longitudinal
248 nanobiopsy of the same cell to profile gene expression changes over time. Such investigations allow for unprecedented
249 insights into how cells respond under different conditions or with different treatments and will likely be invaluable in many
250 research settings including, for example, in understanding the development of treatment resistance in cancer. This may be
251 especially relevant in GBM, where, following surgical resection and subsequent treatment with radiotherapy and
252 chemotherapy, tumours almost always recur and are fatal, resulting in a median patient survival of just 15 months³². It is
253 not known what allows the GBM cells to resist treatment, but recent studies suggest the involvement of transcriptional
254 reprogramming and shifts to different cell states³³⁻³⁶. These investigations have largely relied on comparing cell
255 populations from distinct pre- and post-treatment tumour samples, and therefore, only inferences can be made about the
256 nature of any transcriptional reprogramming. We applied the nanobiopsy technique to M059K GBM cells to obtain
257 sequential transcriptional profiles from the same cells as they undergo standard treatment, which includes radiotherapy and
258 chemotherapy. The analysis of the sequencing metrics indicates that the nanobiopsy samples exhibit lower overall quality
259 compared to the whole-cell lysate samples. This outcome was expected since the nanobiopsy samples represent only a

260 small fraction of the total cytoplasmic mRNA, as supported by the estimated extracted volume (femtolitres) compared to
261 the cytoplasmic volume (picolitres). Approximately 55% of the nanobiopsy samples met the filtering criteria. Of these, a
262 separation between treated and untreated longitudinal nanobiopsy samples was observed on a UMAP plot. These results
263 were similar to those obtained from whole-cell lysates, indicating that the mRNA extracted through nanobiopsy can
264 indicate the cell's transcriptional profile. The cell phenotype scores of paired day-1 and longitudinal samples revealed
265 that treated cells tend to maintain the same phenotype during therapy, while untreated cells are more likely to switch
266 transcriptional state over a 72-hour period, suggesting that treatment either induces or selects for higher transcriptional
267 stability.

268 Future developments of the nanobiopsy technology will include increasing the extraction volume and optimising the
269 protocol for the reverse transcription and library preparation to enhance the sequencing data quality, following what was
270 done for the live-seq technique. We anticipate that the nanobiopsy technique will serve as a catalyst for the advancement of
271 novel technologies in single-cell sampling, thereby expanding the rapidly evolving domain of longitudinal transcriptomics.

272

273 METHODS

274 CELL CULTURE

275 HeLa and M059K cells were cultured in Dulbecco's Modified Eagle Medium/Nutrient Mixture F-12
276 (DMEM/F-12) (Gibco) supplemented with 10% Fetal Bovine Serum (Gibco) and 1x Penicillin/Streptomycin
277 solution (Life Technologies) in a 5% CO₂ humidified atmosphere at 37°C and maintained at less than 80%
278 confluence before passaging. The GFP-transfected M059K cell line was generated using the Dharmacon
279 GIPZ™ Lentiviral shRNA library encoding the green-fluorescent protein TurboGFP, denoted as M059K_{GFP}.

280

281 NANOPIPETTE FABRICATION

282 Double-barrel nanopipettes were pulled out of quartz theta capillaries (O.D. 1.2 mm, I.D. 0.9 mm, QT120-
283 90-7.5, World Precision Instruments) using a CO₂ laser puller (Sutter P2000, Sutter Instrument). A two-line
284 program (Line 1: HEAT 750, FILAMENT 4, VELOCITY 30, DELAY 150, PULL 80 / Line 2: HEAT 680,
285 FILAMENT 3, VELOCITY 40, DELAY 135, PULL 160) was used to generate double-barrel nanopipettes
286 with pore dimension of the individual barrel ~150 nm.

287

288 SICM SETUP

289 The double-barrel nanopipette was mounted on a custom designed holder. An Ag/AgCl and an Ag electrode
290 were inserted in the aqueous and organic barrel, respectively. Each electrode was connected to an headstage
291 amplifier (Axopatch CV-7B) mounted on the SICM frame. The headstage amplifiers were connected to a
292 patch-clamp amplifier (Multiclamp 700B) and to an analog-to-digital converter (Digidata 1550B). The ion
293 current was sampled using a sampling frequency of 10 kHz. The SICM setup was comprised of an Axon
294 MultiClamp 700B amplifier, MM-6 micropositioner (Sutter Instrument) and a P-753 Linear actuator (Physik
295 Instrumente) to allow precise three-dimensional movement of the micropipette. The SICM software was
296 used to control the positioning and topographical scanning capabilities of the SICM (ICAPPIC, London,
297 UK). The z-piezo actuator had travel range 38 μ m while the travel range for x and y-piezo was 96 μ m. An
298 Eclipse Ti2 inverted microscope (Nikon Instruments) and LED illumination system (pE-4000 CoolLED)
299 with filter sets for DAPI, FITC, TxRed were used for bright field and epifluorescence imaging. An ORCA-
300 Flash4.0 V3 Digital CMOS camera (C13440-20CU, Hamamatsu) was used to acquire optical and fluorescent
301 micrographs.

302

303 LONGITUDINAL NANOBIOPSIES

304 **Oligos**

305 Oligo-dT30VN: 5' - AAGCAGTGGT ATCAACGCAG AGTACTTTT TTTTTTTTTT TTTTTTTTT
306 TTTTVN - 3'

307 Template Switch Oligo (TSO): 5' - AAGCAGTGGTATCAACGCAG AGTACrGrG+G - 3' where "r"
308 indicates a ribonucleic acid base and "+" a locked nucleic acid base

309 IS-PCR primers: 5' - AAGCAGTGGTATCAACGCAGAGT - 3'

310 All oligos were purchased from Integrated DNA Technologies.

311

312 **Solutions**

313 Lysis buffer: was prepared in aliquots of 2 μ l stored at -80°C and contained 0.04 μ l 10% Triton X-100
314 (Sigma), 0.1 μ l SUPERasin RNase Inhibitor (20 U/ μ l) (Thermo Fisher Scientific), 1.86 μ l Nuclease Free
315 Water, for a total volume of 2 μ l.

316

317 Mastermix 1 (Priming mix) was prepared in aliquots of 19 μ l (10 rxs) and stored at -80°C and contained 1 μ l
318 dNTP mix (10 mM each, Thermo Fisher Scientific), 0.9 μ l Nuclease Free Water (Thermo Fisher Scientific)
319 for a total volume of 1.9 μ l per reaction. Prior to use, 1 μ l of Oligo-dT30VN (100 μ M) was added to the
320 thawed 19 μ l aliquot for a total volume of 20 μ l (10 rxs).

321

322 Mastermix 2 (RT-PCR mix) was prepared in aliquots of 48.5 μ l (10 rxs) and store at -80°C and contained
323 0.06 μ l MgCl₂ (1M, Sigma), 2 μ l Betaine (5M, Sigma), 0.5 μ l DTT (100 mM, Thermo Fisher Scientific), 2
324 μ l 5x Superscript first strand buffer (Thermo Fisher Scientific), 0.29 μ l Nuclease Free Water (Thermo Fisher
325 Scientific) per reaction. Prior to use, 1 μ l TSO oligo (100 μ M), 2.5 μ l SUPERasin RNase Inhibitor (20 U/
326 μ l) and 5 μ l Superscript II (200 U/ μ l) were added to the thawed 48.5 μ l aliquot for a total of 57 μ l (10 rxs).

327

328 Mastermix 3 (IS-PCR) was freshly prepared and contained 12.5 μ l Kapa HiFi Hotstart Readymix (2x,
329 Roche), 0.25 μ l IS PCR Primers (10 μ M) and 2.25 μ l Nuclease Free Water for a total of 15 μ l per reaction.

330

331 **Cell preparation**

332 M059K_{GFP} and M059K_{WT} cells were detached from the flasks using Trypsin-EDTA solution (Sigma Aldrich)
333 and centrifuged at 1000 RCF for 5 minutes. Cells were resuspended in 1 ml of fresh medium and counted
334 using a Hemocytometer (DHC-B01-50, Burker). M059K_{GFP} and M059K_{WT} cells were diluted to the same
335 concentration and seeded into a 35-mm μ -Dish, high Grid-500 (IBIDI IB-81166) with seeding density 2.5 ·
336 10⁴ cells/dish at a ratio of 1:350 (M059K_{GFP} : M059K_{WT}) to facilitate the identification and tracking of an
337 individual M059K_{GFP} cell on the grid. After seeding, cells were incubated in a 5% CO₂ humidified
338 atmosphere at 37°C for 12-18 hours before nanobiospy. Shortly before the experiment, the culture medium
339 was replaced with 2 ml of phenol free DMEM/F-12 (Gibco) supplemented with 10% Fetal Bovine Serum
340 (Gibco) and 1x Penicillin/Streptomycin solution (Life Technologies).

341

342 **Probe preparation**

343 One barrel of the nanopipette was filled with 5 μ l of 100 μ M fluorophore (ATTO 488, 41051 Sigma Aldrich,
344 for HeLa and ATTO 565, 75784 Sigma Aldrich, for M059K) in 0.1 M KCl (Sigma Aldrich). The operation
345 was performed ensuring that dry conditions were maintained to avoid water to wet the backend of the

346 nanopipette which represents the main cause of crosstalk between the two barrels. The second barrel was
347 filled with 5 μ l of the organic phase mixture of 10 mM THATPBCl in 1,2 DCE (Sigma), following
348 silanisation of the backend of the nanopipette by exposure to Trichloro(1H, 1H, 2H, 2H-perfluorooctyl)silane
349 (Sigma Aldrich) for 10 seconds until the glass wall appeared mat. This operation makes the glass
350 hydrophobic and reduce the insurgence of crosstalk during the experiment. After filling the two barrels, the
351 nanopipette was left for 5 minutes at 60°C to ensure that the back of the nanopipette was dry before the
352 experiment. The ion current generated in the aqueous barrel was used as SICM feedback to drive the
353 nanopipette towards and inside the cell. The electrolyte solution in the aqueous barrel has high electrical
354 conductivity ($\sigma_{\text{aq}} = 1.3 \text{ S/m}$) and generates an ion current with greater magnitude than the one generated in
355 the organic barrel, where the conductivity of the organic solution is two orders of magnitude smaller ($\sigma_{\text{org}} =$
356 0.011 S/m)¹⁵.

357

358 **Nanobiopsy**

359 An individual M059K_{GFP} was identified on the grid using a 10x magnification objective (Nikon) in
360 epifluorescence microscopy, ensuring that no other M059K_{GFP} were detected in the same field of view. Next,
361 a 40x objective (Nikon) was used to acquire the fluorescence and optical micrograph of the cell prior
362 nanobiopsy. The double-barrel nanopipette was mounted on the SICM holder and was immersed using the
363 linear actuator of the SICM until an ion current through the aqueous barrel was detected. During immersion,
364 the potential applied to the electrode in the aqueous and organic barrel was $V_{\text{aq}} = 200 \text{ mV}$ and $V_{\text{org}} = 300 \text{ mV}$,
365 respectively, with respect to a reference Ag/AgCl electrode immersed in the culture media. In the approach
366 phase, the SICM working in hopping mode (HPICM)¹⁷ moved the double-barrel nanopipette towards the cell
367 membrane until the setpoint current (99.5% of reference current) was detected in the aqueous barrel. At this
368 point the system stopped the nanopipette and retracted it to a distance from the cell equal to the hopping
369 height parameter that was set to 2 μm . Following approach, the double-barrel nanopipette was visualised at
370 the microscope and it was manually positioned onto the perinuclear region of the cell by means of a
371 micromanipulator. In the nanoinjection phase, the double-barrel nanopipette was first moved vertically
372 towards the cell of a distance equal to the hopping height (2 μm) to reach a position which is estimated to be
373 <500 nm from the cell membrane. At this point, the ion current in the aqueous barrel dropped of 2% from the
374 reference value because of the restricted ion flow due to the proximity of the membrane. Next, the potential

375 applied to the electrode in the aqueous barrel was switched to $V_{\text{aq}} = -500$ mV to release the anionic
376 fluorophore and the double-barrel nanopipette was moved towards the cell vertically with 100 nm steps at
377 100 nm/ms until the detection of the vibrational noise due to the proximity of the double-barrel nanopipette
378 to the polymer coverslip of the dish. Upon detection of the vibrational noise, the indentation of the
379 nanopipette to the cell membrane is enough to puncture the membrane and access the cytoplasm. Next, the
380 nanopipette was withdrawn of 100 nm and was kept in position for ~60 s to allow the electrophoretic release
381 of the anionic fluorophore into the cytoplasm. At the end of the nanoinjection phase, the cell emitted a red-
382 fluorescent signal that was visualised in epifluorescence. Following nanoinjection, the cytoplasmic extraction
383 is enabled by switching the potential applied to the electrode in the organic barrel to $V_{\text{org}} = -500$ mV for 10 s.
384 The application of the negative potential generated an inflow of cytoplasm in the nanopipette via
385 electrowetting of the organic phase in the nanopipette barrel. A successful cytoplasmic extraction resulted in
386 an increased magnitude of the ion current in the organic barrel i_{org} due to the ingress of cytoplasm whose
387 conductivity ($\sigma_{\text{cytoplasm}} \sim 0.35\text{--}0.5$ S/m)³⁷ is 30-45 times greater than the conductivity of the organic solution
388 ($\sigma_{\text{org}} = 0.011$ S/m). Following cytoplasmic extraction, the double-barrel nanopipette was withdrawn and
389 unloaded from the SICM and immediately placed in a tube preloaded with 2 μl of lysis buffer containing an
390 RNase inhibitor to prevent mRNA degradation. The tube was immersed in liquid nitrogen and stored until
391 reverse transcription and cDNA amplification via Smart-Seq2 which was performed in all cases <7 days
392 following nanobiopsy. The time elapsed from the withdrawal of the nanopipette to the immersion of the tube
393 in liquid nitrogen was estimated to be < 3 minutes, including the time required to withdraw the nanopipette
394 from the culture solution (~ 30 s), remove the electrode and unload the nanopipette (~ 30 s), gently break the
395 tip in the tube containing lysis buffer (~30 s), label the tube (1 min) and immerse the tube in liquid nitrogen
396 (<30 s). Following nanobiopsy, the dish containing the biopsied cells was left to recover in a 5% CO₂
397 humidified atmosphere at 37°C for 24 hours. On day 2, the dish was either subjected to non-surgical
398 elements of standard GBM treatment consisting of 2 Gy irradiation and 30 μM Temozolomide (treated
399 samples) or to mock irradiation (untreated samples). On day 3, cells were allowed to recover in the
400 incubator. On day 4, the same cell or the progeny thereof was localised in the same location on the grid in
401 epifluorescence and bright field microscopy and the same nanobiopsy procedure was carried out to perform
402 longitudinal cytoplasmic extractions.
403

404 **Reverse transcription and cDNA amplification**

405 The Smart-seq2 protocol²¹ was adjusted to optimise the reverse transcription and cDNA amplification of the
406 mRNA extracted via nanobiopsy. An aliquot of Mastermix 1 and Mastermix 2 were thawed on ice and the
407 required reagents were added to complete the reaction mix. A volume of 2 µl of Mastermix 1 was dispensed
408 in the PCR tube containing the nanobiopsy sample in 2 µl lysis buffer. Next, the tube was vortexed and
409 briefly centrifuged. The tube was incubated on a thermocycler (Eppendorf Mastercycler Nexus GX2) at 72°C
410 for 3 minutes to anneal the Oligo-dT30VN to the poly-A tail of the mRNA transcripts. After incubation, the
411 tube was immediately placed on ice for 1 minute. Next, the tube was centrifuged for few seconds to collect
412 condensations. A volume of 5.5 µl of Mastermix 2 was dispensed into the PCR tube. Next, the tube was
413 vortexed and briefly centrifuged. The total reaction volume was ~10 µl. The following thermal cycling
414 program was performed using a thermocycler: (1) 42°C for 90 min; (2) 50°C for 2 min; (3) 42°C for 2 min,
415 go to step (2) for 10 cycles; (4) 70°C for 15 min and (5) 4°C hold. The cDNA resulted from the reaction was
416 amplified using a hot-start PCR to obtain the concentration required for library preparation. 15 µl of
417 Mastermix 3 were added to the tube containing the RT-PCR product for a total reaction volume of ~25 µl.
418 The following thermal cycling program was performed using a thermocycler. (1) 98°C for 3 min; (2) 98°C
419 for 20 s; (3) 67°C for 15 s; (4) 72°C for 6 min, go to step (2) for 26 cycles; (5) 72°C for 5 min and (6) 4°C
420 hold. The amplified cDNA was purified using the HighPrep PCR Clean-up System (Sigma Aldrich AC-
421 60050) adding a volume of magnetic beads equal to 0.8x the sample volume. The individual cDNA samples
422 were quantified using the fluorometric assay QuantiFluor dsDNA System (Promega, E2670) using a 500 bp
423 dsDNA calibration sample. The quality and fragment size of the amplified cDNA was quality checked using
424 a D5000 tape (Agilent).

425

426 **Library preparation and Next-Generation Sequencing**

427 Next-generation sequencing libraries were prepared using the Nextera XT DNA Library Preparation Kit (FC-
428 131-1096, Illumina). Following fluorometric quantification, each cDNA sample was diluted to a
429 concentration of 0.2 ng/µl, which is the concentration needed for the tagmentation reaction. cDNA samples
430 were diluted in a 96-well plate (Plate 1: cDNA). The concentration of 12 wells (diagonal) of the plate
431 containing the diluted cDNA was checked using the QuantiFluor dsDNA System (Promega, E2670)
432 fluorometric assay as the initial cDNA concentration is a critical step to obtain libraries with adequate

433 fragment length. The tagmentation mastermix consisting of 300 μ l Tagment DNA Buffer and 150 μ l
434 Amplicon Tagment Mix for a total volume of 450 μ l was prepared on ice and a volume of 3.75 μ l of the
435 tagmentation mastermix was dispensed into each well of a new 96-well plate (plate 2: tagmentation) on ice.
436 Next, 1.25 μ l of the diluted 0.2 ng/ μ l cDNA was transferred from Plate 1 to Plate 2. Plate 2 was sealed and
437 centrifuged at 1000 g for 1 minute at 4°C and the tagmentation reaction was performed using a thermocycler:
438 (1) 55°C for 10 min and (2) 10°C hold. Next, 1.25 μ l of Buffer NT and 3.75 μ l of Nextera PCR Mastermix
439 (NPM) from the Illumina kit were added to each well of the 96-well plate on ice. For each well, a total of 2.5
440 μ l of Illumina indexes (i5 index + i7 index) were added at a 1:1 ratio. Following indexing, the amplification
441 of the tagmented DNA fragments was performed using a thermocycler: (1) 72°C for 3 min; (2) 95°C for 30
442 s; (3) 95°C for 15 s; (4) 55°C for 10 s, go to step (3) for 12 cycles; (5) 72°C for 5 min and (6) 4°C hold. At
443 the end of the PCR reaction, the cDNA fragments are of ideal size and uniquely barcoded (library). The
444 concentration of the individual libraries was spot checked on the diagonal of the 96-well plate (12 samples)
445 to ensure that the library concentrations were not too different from each other. A multiplexed library was
446 generated by transferring 5 μ l of each individual library into a tube and the multiplexed library was purified
447 using the HighPrep PCR Clean-up System using a library:bead ratio of 1:0.6. The size of fragments of the
448 multiplexed library was checked on a D1000 tape (Agilent). All the multiplexed libraries generated were
449 sequenced using NextSeq2000 (Illumina), a high-throughput flow cell and adopting a P2 200 cycle (100 Pair
450 End) and P3 200 cycle (100 Pair End) strategy.

451

452 WHOLE CELL LYSATE PREPARATION

453 The M059K_{GFP} cells were grown to 80% confluency inside tissue culture flask, the cells were then separated
454 into two flasks by depositing the same number of cells and allowed to grow 50% confluency in both flasks
455 before the next step. One of the two flask was then subjected to a treatment of 2 Gy irradiation and 30 μ M
456 Temozolomide, these cells were labelled as treated cells, the other flask of cells were labelled as the
457 untreated cells. Both flasks were left inside the incubator for 24 hours prior to Fluorescence-Activated Cell
458 Sorting (FACS). FACS were used to single cell sort the viable M059K_{GFP} into 96 wells plate. 2 μ l of lysis
459 buffer consists of 0.2% Triton X-100 and 1 U/ μ l SUPERasin RNase inhibitor (Thermo Fisher Scientific)
460 was added to all the wells of the 96 well plate, this procedure was carried out inside a RNase
461 decontaminated laminar flow hood. Prior to FACS, the treated cells were harvested and washed twice with

462 ice cold PBS at the concentration of 0.5×10^6 cells/ml and stained with DAPI (Sigma-Aldrich) at the
463 concentration of 0.1 μ g/ml to exclude dead cells. For FACS, the gates were adjusted to exclude cell debris
464 and doublets by size and scatter selection, only the viable GFP positive cells were selected, and subsequently
465 single cell sorted into the lysis buffer containing 96 wells plate. The sorted plates were immediately sealed,
466 and centrifuged at low speed for 1 minute, snap froze with dry ice and stored at -80°C. The same harvesting
467 and FACS procedure were used again to single cell sort the untreated cells on the same day. The plates were
468 used within 2 weeks after the sorting. The single cell sorted plates were subjected to the adjusted Smart-Seq2
469 protocol²¹ as outlined in the longitudinal nanobiopsy procedure with the exception that all the reaction
470 solutions were freshly prepared prior to procedure. The amplified cDNA samples were then used for library
471 preparation as outlined in the longitudinal nanobiopsy procedure above.

472

473 DATA ANALYSIS

474 Reads were trimmed with cutadapt (v4.1) to remove Nextera adapters and low-quality bases with the
475 parameters "-a CTGTCTCTTATA -A CTGTCTCTTATA --minimum-length 30 --overlap 5 -q 10". Reads
476 were then aligned and transcripts quantified using the GRCh38 genome with Gencode v27 basic annotations
477 via STARsolo (v2.7.10b) with "-outFilterMatchNmin" set to 60 to ensure high stringency alignments.
478 Resulting BAM files were split using samtools split (v1.16.1) and sequencing metrics generated via Picard
479 CollectRnaSeqMetrics (v2.20.2-SNAPSHOT). Nanobiopsies and whole cell lysates datasets were filtered for
480 >150 expressed genes, <30% mRNA bases, and <10% ribosomal bases. Genes were filtered separately in
481 each dataset for those that have >3 counts in each of 2 or more cells. Non-protein coding genes were also
482 removed. Gene counts were normalised and scaled via Seurat (v4.3.0) using default settings with the addition
483 of "scale.max = 5" and regressing out number of genes expressed and % mRNA bases, for the nano biopsies,
484 and number of genes expressed for the whole cell lysates. The top 600 highly variable genes were identified
485 in each using the Seurat "disp" method and used to perform PCA. UMAPs were then generated from the first
486 8 principal components. GSVA (v1.42.0) was run on the nanobiopsy scaled gene expression. Gene sets for
487 mesenchymal and proneural phenotypes were taken from the top and bottom 50 weighted genes from PC1
488 for the 10x single-cell dataset in Wang et al.²². The stemness gene set was taken from Patel et al.³⁸.

489

490 **DATA AVAILABILITY**

491 The data that support the findings of this study are openly available from the University of Leeds data
492 repository.

493
494 **CODE AVAILABILITY**

495 The raw sequencing data and the code used for data analysis are openly available from the University of
496 Leeds data repository and from https://github.com/GliomaGenomics/GBM_NB.

497

498 **ACKNOWLEDGEMENTS**

499 This work was made possible owing to funding from The Brain Tumour Charity (TBTC) grant number GN-
500 000482 (to LFS and PA); UK Research and Innovation (UKRI) grant number MR/T020504/1 (to LFS);
501 European Commission H2020 grant number 812398 (to PA). This work was undertaken on ARC3, part of
502 the High-Performance Computing facilities at the University of Leeds, UK. We thank Dr. Alexander Kulak
503 for the help provided with SEM imaging of the double-barrel nanopipette.

504

505 **AUTHOR CONTRIBUTIONS**

506 F.M. designed and performed all experiments and contributed to data analysis. C.C. designed and performed experiments
507 and G.T. led and performed data analysis. L.F.S. and P.A. conceived the project, helped design the experiments and
508 supervised the research. M.E., M.F., S.A., helped design the experiments and data analysis. M.R., C.L., I.C. provided
509 technical help with library preparation and performed next-generation sequencing. I.M. provided training on Smart-Seq2
510 and helped with data analysis. All authors wrote and corrected the manuscript.

511

512 **ORCID**

513 Fabio Marcuccio: <https://orcid.org/0000-0003-4816-2896>
514 Chalmers C. Chau: <https://orcid.org/0000-0002-3134-6798>
515 Georgette Tanner: <https://orcid.org/0000-0001-9706-3590>
516 Marilena Elpidorou: <https://orcid.org/0000-0002-5533-2251>
517 Martina Finetti: <https://orcid.org/0000-0003-4589-3343>
518 Morag Taylor: <https://orcid.org/0000-0002-3907-1290>

519 Ian Carr: <https://orcid.org/0000-0001-9544-1068>
520 Iain Macaulay: <https://orcid.org/0000-0002-6761-757X>
521 Paolo Actis: <https://orcid.org/0000-0002-7146-1854>
522 Lucy F. Stead: <https://orcid.org/0000-0002-9550-4150>

523

524 **COMPETING INTERESTS STATEMENT**

525 The authors declare that they have no conflict of interest.

526

527 **REFERENCES**

- 528 1. Hwang, B., Lee, J. H. & Bang, D. Single-cell RNA sequencing technologies and bioinformatics pipelines. *Exp. Mol. Med.* **50**, 1–14 (2018).
- 529 2. Marx, V. Method of the Year: spatially resolved transcriptomics. *Nat. Methods* **18**, 9–14 (2021).
- 530 3. Actis, P. Sampling from Single Cells. *Small Methods* **2**, 1700300 (2018).
- 531 4. Sahota, A. *et al.* Recent advances in single-cell subcellular sampling. *Chem. Commun.* (2023) doi:10.1039/D3CC00573A.
- 532 5. Guillaume-Gentil, O. *et al.* Tunable Single-Cell Extraction for Molecular Analyses. *Cell* **166**, 506–516 (2016).
- 533 6. Chen, W. *et al.* Live-seq enables temporal transcriptomic recording of single cells. *Nature* 1–8 (2022) doi:10.1038/s41586-022-05046-9.
- 534 7. Nadappuram, B. P. *et al.* Nanoscale tweezers for single-cell biopsies. *Nat. Nanotechnol.* **14**, 80–88 (2019).
- 535 8. Elnathan, R. *et al.* Biointerface design for vertical nanoprobes. *Nat. Rev. Mater.* **7**, 953–973 (2022).
- 536 9. Wang, Z. *et al.* High-throughput intracellular biopsy of microRNAs for dissecting the temporal dynamics of cellular heterogeneity. *Sci. Adv.* **6**, eaba4971 (2020).
- 537 10. Zhu, C., Huang, K., Siepser, N. P. & Baker, L. A. Scanning Ion Conductance Microscopy. *Chem. Rev.* acschemrev.0c00962 (2020) doi:10.1021/acschemrev.0c00962.
- 538 11. Xu, X. *et al.* The New Era of High-Throughput Nanoelectrochemistry. *Anal. Chem.* **95**, 319–356 (2023).

547 12. Actis, P. *et al.* Compartmental genomics in living cells revealed by single-cell nanobiopsy. *ACS Nano* **8**, 546–553 (2014).

549 13. Tóth, E. N. *et al.* Single-cell nanobiopsy reveals compartmentalization of mRNAs within neuronal
550 cells. *J. Biol. Chem.* **293**, 4940–4951 (2018).

551 14. Bury, A. G. *et al.* A subcellular cookie cutter for spatial genomics in human tissue. *Anal. Bioanal. Chem.* **414**, 5483–5492 (2022).

553 15. Laforge, F. O., Carpino, J., Rotenberg, S. A. & Mirkin, M. V. Electrochemical attosyringe. *Proc. Natl. Acad. Sci. U. S. A.* **104**, 11895–11900 (2007).

555 16. Nashimoto, Y. *et al.* Evaluation of mRNA Localization Using Double Barrel Scanning Ion
556 Conductance Microscopy. *ACS Nano* **10**, 6915–6922 (2016).

557 17. Novak, P. *et al.* Nanoscale live-cell imaging using hopping probe ion conductance microscopy. *Nat. Methods* **6**, 279–281 (2009).

559 18. Korchev, Y. E., Bashford, C. L., Milovanovic, M., Vodyanoy, I. & Lab, M. J. Scanning ion
560 conductance microscopy of living cells. *Biophys. J.* **73**, 653–658 (1997).

561 19. Luo, Q., Kuang, D., Zhang, B. & Song, G. Cell stiffness determined by atomic force microscopy and
562 its correlation with cell motility. *Biochim. Biophys. Acta BBA - Gen. Subj.* **1860**, 1953–1960 (2016).

563 20. Lu, Y.-B. *et al.* Viscoelastic properties of individual glial cells and neurons in the CNS. *Proc. Natl. Acad. Sci.* **103**, 17759–17764 (2006).

565 21. Picelli, S. *et al.* Full-length RNA-seq from single cells using Smart-seq2. *Nat. Protoc.* **9**, 171–181
566 (2014).

567 22. Wang, L. *et al.* The Phenotypes of Proliferating Glioblastoma Cells Reside on a Single Axis of
568 Variation. *Cancer Discov.* **9**, 1708–1719 (2019).

569 23. Lim, B. Imaging transcriptional dynamics. *Curr. Opin. Biotechnol.* **52**, 49–55 (2018).

570 24. Wheat, J. C. *et al.* Single-molecule imaging of transcription dynamics in somatic stem cells. *Nature*
571 **583**, 431–436 (2020).

572 25. Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C. & Simon, M. D. TimeLapse-seq: adding a
573 temporal dimension to RNA sequencing through nucleoside recoding. *Nat. Methods* **15**, 221–225 (2018).

574 26. Baron, C. S. & van Oudenaarden, A. Unravelling cellular relationships during development and
575 regeneration using genetic lineage tracing. *Nat. Rev. Mol. Cell Biol.* **20**, 753–765 (2019).

576 27. Kester, L. & van Oudenaarden, A. Single-Cell Transcriptomics Meets Lineage Tracing. *Cell Stem*
577 *Cell* **23**, 166–179 (2018).

578 28. Rabani, M. *et al.* Metabolic labeling of RNA uncovers principles of RNA production and
579 degradation dynamics in mammalian cells. *Nat. Biotechnol.* **29**, 436–442 (2011).

580 29. Hersch, M., Biasini, A., Marques, A. C. & Bergmann, S. Estimating RNA dynamics using one time
581 point for one sample in a single-pulse metabolic labeling experiment. *BMC Bioinformatics* **23**, 147
582 (2022).

583 30. Cao, J., Zhou, W., Steemers, F., Trapnell, C. & Shendure, J. Sci-fate characterizes the dynamics of
584 gene expression in single cells. *Nat. Biotechnol.* **38**, 980–988 (2020).

585 31. Weinreb, C., Wolock, S., Tusi, B. K., Socolovsky, M. & Klein, A. M. Fundamental limits on
586 dynamic inference from single-cell snapshots. *Proc. Natl. Acad. Sci.* **115**, E2467–E2476 (2018).

587 32. Delgado-López, P. D. & Corrales-García, E. M. Survival in glioblastoma: a review on the impact of
588 treatment modalities. *Clin. Transl. Oncol.* **18**, 1062–1071 (2016).

589 33. Varn, F. S. *et al.* Glioma progression is shaped by genetic evolution and microenvironment
590 interactions. *Cell* **185**, 2184-2199.e16 (2022).

591 34. Barthel, F. P. *et al.* Longitudinal molecular trajectories of diffuse glioma in adults. *Nature* **576**, 112–
592 120 (2019).

593 35. Chaligne, R. *et al.* Epigenetic encoding, heritability and plasticity of glioma transcriptional cell
594 states. *Nat. Genet.* **53**, 1469–1479 (2021).

595 36. Wang, L. *et al.* A single-cell atlas of glioblastoma evolution under therapy reveals cell-intrinsic and
596 cell-extrinsic therapeutic targets. *Nat. Cancer* **3**, 1534–1552 (2022).

597 37. Afshar, S. *et al.* Progression of change in membrane capacitance and cytoplasm conductivity of cells
598 during controlled starvation using dual-frequency DEP cytometry. *Anal. Chim. Acta* **1059**, 59–67 (2019).

599 38. Patel, A. P. *et al.* Single-cell RNA-seq highlights intratumoral heterogeneity in primary
600 glioblastoma. *Science* **344**, 1396–1401 (2014).

601