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ABSTRACT

Sleep is observed in most animals, which suggests it subserves a fundamental process associated with
adaptive biological functions. However, the evidence to directly associate sleep with a specific function
is lacking, in part because sleep is not a single process in many animals. In humans and other mammals,
different sleep stages have traditionally been identified using electroencephalograms (EEGs), but such
an approach is not feasible in different animals such as insects. Here, we perform long-term
multichannel local field potential (LFP) recordings in the brains of behaving flies undergoing
spontaneous sleep bouts. We developed protocols to allow for consistent spatial recordings of LFPs
across multiple flies, allowing us to compare the LFP activity across awake and sleep periods and further
compare the same to induced sleep. Using machine learning, we uncover the existence of distinct
temporal stages of sleep and explore the associated spatial and spectral features across the fly brain.
Further, we analyze the electrophysiological correlates of micro-behaviours associated with certain
sleep stages. We confirm the existence of a distinct sleep stage associated with rhythmic proboscis

extensions and show that spectral features of this sleep-related behavior differ significantly from those
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associated with the same behavior during wakefulness, indicating a dissociation between behavior and

the brain states wherein these behaviors reside.

Introduction

Humans spend a third of their life engaged in sleep, wherein they become less responsive to external
stimuli. Most animals studied so far, starting from the tiny fruit fly to the large sperm whale (Miller et
al. 2008) display extended periods of quiescence, which are now categorized as sleep. Evolutionary
conservation of the sleep state in all animals suggests that its benefits outweigh the potential risks and
vulnerabilities brought on by losing awareness of one’s external environment. Sleep deprivation has
been shown to produce deficits in learning and memory (Rasch and Born 2013), immune system
malfunction (Besedovsky, Lange, and Born 2012) and stress regulation (Paul J. Shaw et al. 2002).
However, the organization of sleep in relation to its potential functions remains unclear. Different
theories have been proposed for functions of sleep including those involving processes like neuronal
plasticity and synaptic downscaling (Cirelli and Tononi 2008) and metabolic waste clearance (Xie et al.
2013). However, sleep research methodology is largely driven by research in humans and other
mammals and the primary way of classifying sleep states has therefore been using electrophysiological
readouts, such as electroencephalography (EEG). By identifying distinct electrical signatures associated
with the different stages of sleep, different functional roles have been hypothesized for them. For
example, rapid eye movement (REM) sleep in mammals has been proposed to regulate motor learning
and memory consolidation (Siegel 2001; Walker and Stickgold 2004), while slow wave sleep (SWS) has

been proposed to regulate synaptic strength and homeostasis mechanisms (Tononi and Cirelli 2014).

One of the primary challenges for understanding sleep architecture has been developing a capacity to
record and assess brain-wide patterns of electrical activity across long time periods that encompass
several sleep-wake transitions. In this context, small animals such as the fruitfly Drosophila
melanogaster present as extremely challenging subjects, even though they could potentially provide a
wealth of molecular genetic tools to help better understand sleep biology. Previous sleep studies in flies

have either recorded from just a single LFP channel during spontaneous sleep bouts (Yap et al. 2017;


https://paperpile.com/c/P0heRD/8lIF
https://paperpile.com/c/P0heRD/8lIF
https://paperpile.com/c/P0heRD/B7bZ
https://paperpile.com/c/P0heRD/qsS1
https://paperpile.com/c/P0heRD/8nrp
https://paperpile.com/c/P0heRD/6cNw
https://paperpile.com/c/P0heRD/obWj
https://paperpile.com/c/P0heRD/obWj
https://paperpile.com/c/P0heRD/3FvE+8hnG
https://paperpile.com/c/P0heRD/444B
https://paperpile.com/c/P0heRD/HIrO+Evi2+tDl2+Ki8D
https://doi.org/10.1101/2023.06.12.544704
http://creativecommons.org/licenses/by/4.0/

56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

84

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544704; this version posted June 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

van Alphen et al. 2013; Nitz et al. 2002; B. van Swinderen, Nitz, and Greenspan 2004), or from multi
channel probes during short (T15min) bouts of genetically-induced sleep (Yap et al. 2017; Paulk et al.
2013). In other work, whole-brain calcium imaging in sleep-deprived flies revealed distinct stages of
spontaneous sleep (Tainton-Heap et al. 2021), although these recordings were rarely long enough to
display any revealing sleep architecture, and it remains unclear how these different sleep stages might

be manifested across the fly brain from the central complex to optic lobes.

The primary reasons for the lack of whole-brain or multichannel sleep data in Drosophila are technical
in nature: a) it is difficult to perform long-term electrophysiological recordings with multiple electrodes
in such small brains; the survival rate is low; and the recording tools used do not yet allow for consistent
spatial positioning of multiple electrodes across different flies. b) calcium imaging on the other hand,
which lacks in temporal precision compared to LFPs, does allow for consistent spatial locations of
recordings (with image registration tools), however concerns with photobleaching and phototoxicity
have made it difficult to achieve the long-term recordings to acquire spontaneous sleep data.
Subsampling provides one solution: for example, in a recent study 24 hr recordings were conducted by
recording for only 1 sec after every minute (thus recording for only 1.6% of the overall time) (Flores-
Valle and Seelig 2022). However, this subsampling approach might miss important sleep transitions or
longer-lasting sleep phenomena. To best compare the brain activity during sleep in flies with similar
data from other animals would ideally involve similar readouts akin to a whole-brain EEG, which in
Drosophila would necessarily involve miniaturized multichannel probes such as used previously for
visual studies (Paulk et al. 2013, 2015) as well induced sleep (Yap et al. 2017) and anesthesia
experiments (Leung et al. 2021; Cohen, van Swinderen, and Tsuchiya 2018; Cohen et al. 2016; Cohen
and Tsuchiya 2018; Muifioz et al. 2020). Additionally, such recordings would ideally be supplemented
by detailed behavioral analysis beyond the simple locomotory determinants that have traditionally
defined sleep in flies (P. J. Shaw et al. 2000; Hendricks et al. 2000). Mammalian sleep stages involve
distinct micro-behaviors in addition to electrophysiological correlates (Dement and Kleitman 1957;
Fulda et al. 2011), and this seems to be true for invertebrates as well (van Alphen et al. 2021; Rof3ler et

al. 2022; Iglesias et al. 2019).
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85 In this study, we optimized a multichannel LFP recording preparation for Drosophila flies, to track
86  long-term neural activity in 16 channels across one hemisphere of the fly brain, in a transect from the
87  retina to the central complex. The flies underwent spontaneous sleep bouts while walking/resting on
88  anair-supported ball, and survived long enough to provide 20 hrs of data over one circadian cycle. We
89  developed calibration tools to consistently record from similar spatial locations in different flies. We
90  used machine learning based methods (support vector machines and random forest classifiers) to first
91  investigate the structure of sleep bouts, and further explored the spectral features across multiple brain
92  channels. We also employed machine learning techniques (pose tracking and identification) to identify
93  fly micro-behaviors during these long-term recordings, to determine their potential association with
94  different sleep stages. Taken together our analyses identify distinct sleep stages in the fly central brain,
95  with rhythmic proboscis extensions being a key behavioral feature. We find that the LFP features
96  associated with proboscis extensions during wake and sleep are dissimilar, suggesting that a distinct

97  brain state is driving the sleep functions associated with this rhythmic micro-behavior.

98

99 Results

100  Behavioral analysis of tethered flies during sleep and wake.

101  Prior to conducting any electrophysiological recordings, we first investigated how flies slept when
102  tethered to a rigid metal post while being able to walk on an air-supported ball (Figure 1A). Flies were
103  filmed overnight under infrared illumination, and locomotory behavior was quantified using a pixel
104  subtraction method (Yap et al. 2017) to identify sleep epochs, defined by the absence of locomotion or
105 grooming behavior for 5 minutes or more (P. J. Shaw et al. 2000; Hendricks et al. 2000; van Alphen et
106  al. 2013; Yap et al. 2017). We also tracked the movement of different body parts, including the
107  proboscis, antennae, and abdomen to detect potential micro-behaviors during sleep. For this, we used
108  machine learning (DeepLabCut (Mathis et al. 2018)) to train a classifier to track micro-behavioral
109 movements through wake as well as sleep (Figure 1B). As shown previously (Yap et al. 2017) tethered
110 flies were able to sleep in this context (Figure 1C; Figure S1A). As described recently (van Alphen et
111  al. 2021), we also observed regular proboscis extensions (PEs) during wake, as well as during sleep bouts
112  (Figure S1B), which often occurred in rhythmic succession (Figure 1C, orange trace). We also observed

113  antennal movements and were surprised to discover that these were oscillatory in a subset of flies
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114  (Figure IC, red trace). Since PEs were also often rhythmic during sleep, we characterized both micro-
115  behaviors in the frequency domain (Figure 1D,E, top) to determine if these were different between
116  sleep and wake. We found that a greater proportion of the sleeping states displayed both antennal
117  periodicity as well as PE periodicity, compared to the waking states (Figure 1D,E, bottom), and that
118  antennal periodicity occurred at a small but significantly lower frequency during wake (Figure SIG).
119  However, the time course and presence of individual proboscis extensions (Figure S15/C), as well as
120  the dynamics (e.g., periodicity, frequency) of periodic proboscis extensions were not different between
121  sleep and wake (Figure S1F), even if this presence varied across sleep and wake.

122

123 A previous study suggested that PEs during sleep are accomplishing a specific function in flies linked
124  to waste clearance, and that these might be specific to a deeper sleep stage (van Alphen et al. 2021).
125  We therefore next examined if PE and antennal periodicity varied throughout a sleep bout. For this,
126  we segmented all >5 min sleep bouts into 5 distinct epochs, as done previously for spontaneous sleep
127  experiments in tethered flies (Yap et al. 2017; Tainton-Heap et al. 2021) (Figure 1C, top schema). The
128  first 2 and last 2 minutes of sleep (flanked by locomotory behavior) were analyzed separately for micro-
129  behaviors, and compared to ‘midsleep’ epochs which could be of different durations. To understand if
130  likelihood of periodicity for both antennae and proboscis vary based on the sleep epochs we used
131  multilevel modeling instead of traditional repeated measures of analysis of variance (as different flies
132  had varying numbers of sleep epochs). For details refer to the methods section (Multilevel models -
133  models for antennal, proboscis periodicity). For all the micro-behaviors, the ‘epoch’ model (where the
134  periodicity depends only on the sleep epoch) emerged as the winning model and a reliable main effect
135  of epoch was found (p<0.001) in all cases. Further, we performed post-hoc tests using tukey adjustment
136  (for multiple comparisons) to identify differences between pairs that are significant. Thus, we found an
137  apparent increase in the likelihood of periodicity for both antennae and proboscis during the middle
138  segments of sleep bouts (Figure 1F,G). This suggested physiological differences which might be detected

139  in the fly brain, so we then performed electrophysiological recordings in a similar context.
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140
141  Figure 1: Micro-behaviors of tethered flies. A) Schema for the setup used to record micro-behaviors of sleeping

142  and waking flies. A tethered fly stands on an air-supported ball. B) The fly is filmed by two cameras. Footage from
143  these camerasis fed through a preprocessing pipeline that tracks movements of the antennae (Top), legs (Middle),
144  abdomen and proboscis (Bottom). C) An example sleep bout from a fly. Locomotive activity (Black) has ceased
145  forlong enough that the period of inactivity is classified as a sleep bout. The movement of the right antenna (Red
146  trace) shows an apparent low frequency periodicity (See inset) across the 6 minute bout, interrupted in the middle
147 by a series of proboscis extensions (Orange trace; See inset). D) Top, FFT of antennal activity during an exemplar
148  sleep bout containing antennal periodicity. Bottom, Comparison of the fraction of sleep and wake that consisted
149  of periodic antennal activity (*p < 0.05; Student’s T-test). E) As with D, for proboscis periodicity. F) Proportions
150  of antennal periodicity (left and right antennae) across different sleep segments: +0:+1 indicates 1 mins after start

151  of sleep, +1:+2 indicates 2 mins after start of sleep, x:-2 indicates 2 mins before end of sleep, x:-1 indicates 1 mins
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152  before end of sleep. The normalized count is significantly higher in the midsleep segments compared to other
153  segments. G) As with F, but for periodic extensions of the proboscis**p<0.001, ns indicates not significant.

154

155  Long-term multichannel recordings with spontaneous sleep bouts.

156  We recorded local field potentials (LFPs) across the fly brain using a linear 16-channel electrode
157  inserted into the left eye of flies in a similar context as above, walking (or resting) on an air-supported
158  ball (Figure 2A,B). The electrode insertion location was positioned to sample LFPs from the retina to
159  the central brain (Paulk et al. 2013) (Figure 2C, white arrowheads). The depth of insertion of the
160  electrode was optimized by using a visual stimulus calibration protocol, based on a reliable LFP
161  polarity-reversal identified in the fly inner optic lobes (Figure S2; and see Methods for polarity
162  reversal). The change in polarity (positive to negative deflections in response to the visual stimulus)
163  was always positioned between electrodes 11-13 in all flies, before the start of the long-term LFP
164  recordings. This LFP polarity-based method allowed us to maintain a level of recording consistency
165  across flies in terms of spatial locations of the electrodes, thereby allowing us to compare and combine
166  LFP data across multiple flies. To further ensure reproducible recording locations, we also developed a
167  dye-based registration method (Figure 53,4, and see Methods for dye-based localization) and estimated
168  recording channel locations in the brain for two sample flies. Using this method we identified three
169  broadly-defined brain recording regions to simplify our subsequent analyses (Figure 2ZD): central
170  channels (1-5), middle channels (6-10) and peripheral channels (12-16); here assuming polarity reversal
171  inchannel 11. Also for further analysis, as the polarity reversal channel is used for re-referencing, the
172  number of channels used in analysis becomes 15.

173

174  We utilized the above calibration steps and recorded LFP data from 16 flies over the course of a day
175  and night cycle (Figure 2E; and See Methods for data exclusion criteria). We designed our recordings
176  so that experiments were started at different times in different flies, to achieve complete coverage of a
177  full day-night cycle. We however only examined the first 8 hours of the LFP data in each fly (Figure
178  ZE), to ensure we were always recording from active and responsive animals (all 16 flies were still alive
179  after 24 hours).

180
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181

182  Figure 2: A) In vivo long-term electrophysiology recording setup: tethered flies were placed on an air supported
183  ball setup which served as a platform for walking/rest. B) Top view of electrode insertion process, with electrode
184  approaching from the left eye of an example fly. C) Side view of electrode insertion site on the dorsal part of the
185  left eye. D) Localization of electrodes using fluorescent dye: the electrode numbers (black) are displayed along
186  with the dye (green), eigenvector (yellow) indicating the main path of the probe, the fafb14 neuropil (red). E)
187  Raster plot showing the used recording times (LFP) for the 16 flies. Only the first 8 hours of LFP recording were
188  used for analysis though all the flies survived for more than 24 hours. F) Fly movement is quantified using video

189  recorded in profile view with infrared lighting. Movement was quantified between adjacent frames with pixel
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190  difference and contour thresholding. G) Movement area (activity pattern) plotted along with ‘awake’ and ‘sleep’
191  state labeling for an example sleep bout. H) Sleep bouts during day are significantly longer than night thus
192  confirming the occurrence of natural sleep in our setup. * indicates p < 0.05

193

194  The behavior of the flies was recorded under infrared lighting (Figure 2F) and their movements were
195  quantified using a combination of pixel difference (van Alphen et al. 2013) and contour thresholding
196  between neighboring frames (See Methods for movement analysis). Sleep was defined by 5 min
197  immobility criteria, based on previous observations in unrestrained flies (P. J. Shaw et al. 2000;
198  Hendricks et al. 2000) as well as tethered flies (van Alphen et al. 2013; Yap et al. 2017). Fly mobility
199  along with classification of different behavioral states (‘awake’, ‘sleep’) for an example sleep bout is
200  shownin Figure 2G. Since it was unclear whether flies would even sleep in this multichannel recording
201  preparation, we tallied immobility bout durations across the day and the night for each fly (we used 16
202  hrs of video data for each fly - See Methods for data exclusion criteria), expecting that flies should be
203  sleeping more at night on average. We found that flies were able to sleep in this preparation, and that
204  nighttime sleep bouts were indeed longer than daytime sleep bouts (median = 22.42 min vs 13.99 min,
205  respectively; t(13) = -2.32, p<0.05) (Figure 2H). This confirms that similar to single channel LFP
206  recordings (van Alphen et al. 2013; Yap et al. 2017) flies slept reliably in this multichannel recording
207  preparation, allowing us to assess changes in LFP activity across the fly brain during sleep and

208  wakefulness, and to relate these changes to sleep micro-behaviors.

209

210  LFP differences across the brain during spontaneous sleep and awake.

211  Next, we focused on the multichannel data to identify potential differences between sleep and wake
212 across the fly brain, separating our recordings into three broad regions: central, middle, and peripheral
213  (Figure 3A). An example sleep bout and its corresponding spectrograms across the central, middle, and
214  peripheral channels reveals increased activity during sleep in the central brain compared to the
215  periphery (Figure 3B). Additionally, we noted variegated effects in the lower frequencies (5-10 Hz)
216  within the sleep bout (Figure 3B, arrowheads) as well as significant LFP activity (5-40 Hz) associated

217 with locomotion.
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225  When we examined sample LFP data more closely across all channels (Figure 4), we observed higher
226  LPF amplitudes in the central and middle channels than in the peripheral channels, and more activity

227  during wake than during sleep (Figure 4A,B).
228

229  Interestingly, the fly brain is not necessarily quiet during sleep, with some channels (e.g., channels 5-
230  7) displaying increased activity compared to other channels. To substantiate our observations, we
231  performed spectral analysis on the data. For this purpose, we epoched the LFP data into 60 sec bins and
232  computed the power spectrum per epoch per channel (See Methods for LFP analysis - preprocessing,
233  power spectrum analysis). Since LFP data recorded from flies can be sensitive to physiological artifacts
234 such as heartbeat and body movements (Paulk et al. 2013), we employed a common referencing system
235  (based on a brain based signal) that allowed for removal of non-brain based physiological noise. Plotting
236  the power spectral density across the three different channel groupings for different frequency bands
237  (5-40 Hz), revealed consistently greater power in all flies (n=16) during wake than during sleep across
238  the entire recording transect (Figure 4D). Although decreased LFP power during sleep is consistent
239  with previous findings involving single channel recordings in flies (van Alphen et al. 2013; Yap et al.
240  2017; Nitz et al. 2002), it was surprising to see that even the fly optic lobes are significantly less active
241  during sleep compared to wake, suggesting a brain-wide effect.

242

243  We next examined more closely the relationship between individual channels and LFP spectral
244  frequency between sleep and wake states. We employed non-parametric resampling tools to identify
245  the precise patterns (frequency x channel pairs) differing across awake and sleep at the group level. For
246  this purpose, we first computed the difference in mean spectral data across awake and sleep for
247  individual flies. Then, we performed a cluster permutation test (flies x frequencies x channels) on the
248  difference between awake and sleep data (Figure 4D - left panel) to reveal a significant cluster
249  (frequency x channel pair). The significant cluster as indicated by the magenta box (Figure 4D - left
250  panel) covered all frequencies (5-40 Hz) and channels (1-15), thereby confirming the spectral results
251  in Figure 4Cthat found a brain-wide decrease in power during sleep compared to wake. As we had a
252  single significant cluster (magenta box), we then sought to identify subclasses of frequencies and

253  channels within this cluster which might be more specifically associated with sleep.
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255  Figure 4: A,B) Average LFP across a sample awake and sleep bout in an example fly. C) Mean power spectrum of
256  LFP (5-40 Hz) across ‘awake’ and ‘sleep’ states in the central, middle, peripheral channels. Across all channels,
257  ‘sleep’ periods have lower LFP power compared to the ‘awake’ periods. D) Spectrogram showing the mean
258  difference across ‘sleep’ and ‘awake’ periods, while clustering analysis reveals a single significant cluster (magenta
259  box) across all channels and frequencies. Effect sizes are also plotted to identify the individual effect values for
260  every frequency and channel pair.

261

262  We computed the effect sizes for every channel x frequency combination (Figure 4E - right panel).
263  This revealed an interesting frequency structure distinguishing sleep from wake. This included areas of
264  interestin the 5-10 Hz and 25-40 Hz range in the central channels (1-3). The 5-10 Hz frequency domain
265  was identified in a previous study as being relevant to sleep in Drosophila (Yap et al. 2017), and the
266  higher 25-40 Hz range overlaps with the frequencies associated with attention-like behavior in flies
267  (Bruno van Swinderen and Greenspan 2003; Grabowska et al. 2020). Consistent with previous work, it
268  is however clear that LFP activity is mostly decreased during all of sleep compared to wake, even in
269  the 7-10 Hz range that has been associated with certain sleep stages (Figure S5).

270

271  LFP differences across induced sleep and awake.

272  Sleep can be acutely induced in Drosophila by using optogenetic or thermogenetic activation of sleep-
273  promoting neurons (Shafer and Keene 2021). We were curious whether induced sleep revealed similar
274  effects across the fly brain, following the same statistical approaches employed above for spontaneous
275  sleep. For this, we focused on whole-brain recordings taken from 104y-Gal4 / UAS-TrpAl flies, a sleep-
276  promoting circuit (Figure S6A) that expresses a temperature sensitive cation channel in the fan-shaped
277  body in the central brain (Donlea et al. 2011). As shown in a previous study (Yap et al. 2017) as well as
278  other Drosophila sleep studies (Dag et al. 2019), activating these neurons with heat (temperature ~
279  29°C) results in behavioral quiescence and induced sleep, whereas control strains remain awake and
280  active. In these recordings, a different multichannel probe was employed (Figure S65), with 16
281  recording sites that spanned the entire brain from eye to eye (Paulk et al. 2013). We preprocessed the
282  induced sleep LFP data (See Methods for thermogenetic sleep induction) in a similar fashion to the
283  spontaneous sleep LFP data. We first contrasted the mean power spectra per fly under two conditions:
284  baseline and sleep induction (Figure S6C). As above, we then performed a cluster permutation test (flies

285  x frequencies x channels) on the difference between baseline wakefulness and induced sleep, to reveal
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286  asignificant cluster (frequency x channel pair). Thus, we uncovered a significant cluster (Figure S6D)
287  in the central brain channels across all (5-40Hz) frequency bands, whereas the 104y-Gal4/+ control
288  flies did not reveal such a cluster (Figure S6E,F). It is interesting to note that sleep induction using this
289  strain yielded an opposite effect to what we found during spontaneous sleep: LFP activity during
290  induced sleep is on average higher than during baseline wakefulness (Figure S6D), while it was lower
291  during spontaneous sleep (Figure S5). Additionally, the effect observed during induced sleep was only
292  observed in the central channels whereas the spontaneous sleep effects appear to at least cover the
293  entire hemisphere from center to periphery. This shows that genetically-induced sleep in flies can
294  produce strikingly different electrophysiological signatures than spontaneous sleep, consistent with
295  several previous similar observations (Tainton-Heap et al. 2021; Yap et al. 2017; Anthoney et al. 2023;
296 Lin, Panula, and Passani 2015; Troup et al. 2018). For the rest of this current study, we focus on
297  spontaneous sleep.

298

299  Machine learning identifies distinct sleep stages in multichannel data.

300  Our earlier analysis of micro-behaviors during sleep in this preparation (Figure I) suggests that sleep is
301 not a single phenomenon, and that the requisite 5 min immobility criterion might not fully capture
302  potential LFP and behavioral changes that might occur across a sleep bout. There is evidence that sleep
303  quality (via arousal threshold probing) in wild-type Drosophila flies also changes across a bout of
304  quiescence (van Alphen et al. 2013; Faville et al. 2015), suggesting that flies transition from lighter to
305  deeper sleep stages. To assess whether this might also be evident in our multichannel recordings, we
306  divided our LFP data (for all channels) into five different temporal segments, analyzing only sleep
307  epochs that were 5 min or longer (Figure 5A4): 1) ‘presleep’: the 2 mins (-2 to 0 mins) before flies stopped
308  moving; 2) ‘earlysleep’: the first 2 mins (0 to 2 mins) after the start of a sleep bout; 3) ‘latesleep’: the last
309 2 mins of sleep before mobility resumed; 4) ‘midsleep’: any time between ‘earlysleep’ and ‘latesleep’. 5)
310  ‘awake’ therest of our LFP data. Our partitioning of the LFP data matches a similar partitioning applied
311  to whole-brain calcium imaging of flies engaged in spontaneous sleep (Tainton-Heap et al. 2021).

312
313

314
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320 Figure 5: A) Sleep bouts (> 5 min) were binned into 4 segments. 2 mins before the start of immobility (presleep),
321 2 mins after the start of immobility (earlysleep), 2 mins before the end of immobility (latesleep), the period
322  between early and latesleep is midsleep, rest of the periods are categorized as awake. B) Probability estimates (of
323  awake class) plotted across different time segments. Horizontal dotted line indicates values above 0.5 are likely
324 to be classified as awake and below 0.5 as sleep. Vertical dotted line at 0 indicates start of immobility period and
325  atxindicates end of immobility period. Unpaired samples t-test was conducted across different epochs to test for
326  statistical significance. C) Comparison of mean power spectrum across different channels and different sleep
327  stages. ** p<0.01, **p<0.001, ns indicates not significant.

328

329  To understand how LFP based signatures change within a sleep bout, we decided to perform a
330  hypothesis-agnostic analysis through machine learning techniques. To perform such machine learning
331  based classification, we first used support vector machine (SVM) based techniques. Briefly, SVM belong
332  toaclass of supervised learning model, that is comprised of building a hyperplane or set of hyperplanes
333  ina high dimensional space (using the kernel trick for non-linear mapping functions) with the goal to
334  maximize the separation distance between the closest data point (in the training dataset) of any class
335  (functional margin) (Cortes and Vapnik 1995). The choice of the optimal hyperplane is made in such a
336  way that the generalization error would be lower for the new data points in the test dataset (Figure
337  S7A). For detailed steps for preprocessing of data and implementation of classifiers refer to Methods for
338  sleep staging by classifiers. The probabilistic prediction per class per iteration is shown in Figure 5B. It
339 s interesting to note several points. First, the probability of awake data is 70.7 and of midsleep is ~0.0
340  indicating that the classifier performs well on classes that it has already been trained on. Second, at the
341  epoch -2 to -1min, when the fly is still moving (yellow circles), LFP data indicates that it is closer to
342  resembling sleep (<0.5), before dropping fast to ~0.3 (turquoise circles) in the first two minutes of sleep.
343

344  The above analysis indicates that with this approach we could predict the probability a fly will fall
345  asleep 2 mins before the start of the immobility period. Interestingly, just 1 min before flies fall asleep
346  the LFP data indicates a brief moment more closely resembling wake (yellow circles), perhaps
347  associated with grooming periods (observed in honeybees for example (Eban-Rothschild and Bloch
348  2008)). Interestingly, in the first two minutes of sleep (turquoise circles) reveal a probability metric
349  halfway between midsleep and wake, suggesting either a gradual descent into deeper sleep or a distinct
350  sleep stage. Finally, at the epoch from x-2 to x-1 min before mobility resumes (brown circles), the

351  probability metric returns to a similar level as early sleep. Immediately after mobility resumes, the LFP
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352  datais classified as no different than awake, i.e, there is no post-sleep ambiguity. It is important to note
353  that only the ‘awake’ and ‘midsleep’ data has been seen by the classifier, the rest of the data -4 to +2
354  min, x-2 to x+2 min has never been seen by the classifier. Additionally, midsleep collapses a wide range
355  of different sleep durations in different flies, so could still be averaging different sleep states within.
356  Nevertheless, our results suggest that broadly dichotomizing mid sleep and wake identifies other sleep
357  stages that resemble neither.

358

359  Model based spectral analysis differentiates wakefulness from sleep bouts across different

360  channels.

361  Having revealed how multichannel LFP data can be used to differentiate across different temporal
362  stages of sleep, we next decided to identify what channels might be important for revealing this. For
363  this purpose, we employed a multilevel modeling approach. To reveal how spectral data might change
364  throughout the fly brain across a sleep bout, we calculated the mean spectral power for each of the
365  aforementioned epochs and pooled data from central, middle, and peripheral channels. Because
366  different flies had varying numbers of sleep epochs, we used multilevel models instead of traditional
367  repeated measures of analysis of variance. For details refer to the methods section (Multilevel models -
368  models for spectral analysis). The ‘epoch-channel’ model emerged as the winning model; here the
369  power spectrum depends on a combination of the LFP epoch type and the channel type. In the epoch-
370  channel model, we found that there was a reliable main effect of both epoch (p<0.001) and channel
371  (p<0.001) on power spectrum and also the interaction between epoch and channel also had a reliable
372  effect (p<0.001) on power spectrum. In summary, the above model-based analysis confirms that the
373  power spectrum of the LFP data varies based on the channel location and also the epoch state of the
374  Afly.

375

376  We then proceeded to examine more closely how differences in the sleep LFP might be segregated
377  across the fly brain (Figure 5C) using post-hoc tests (using tukey adjustment for multiple comparisons)
378  from the epoch-channel model. In the central channels, the ‘awake’ data was significantly different
379  compared to all sleep categories, and critically was also different to the ‘presleep’ data. It is important

380  tonote that behaviourally the fly is still considered awake in the ‘presleep’ period (i.e., it is still moving).
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381  Thus, the ability to predict sleep at least 2 mins before the onset of immobility, which was revealed in
382  our SVM analysis (Figure 5B), might be explained by these significant spectral differences only
383  observed in the central channels. In the middle channels, the ‘awake’ data was also significantly
384  different across all sleep categories, however was not different to the ‘presleep’ data. Further, the
385  ‘presleep’ period was significantly different from ‘earlysleep’,‘midsleep’,latesleep’ periods. In the
386  peripheral channels, the ‘awake’ data was significantly different across all sleep categories, however
387  wasagain not different to the ‘presleep’ data. Taken together, mean power spectral data across different
388  channels was thus able to differentiate between ‘awake’, ‘presleep’, and different sleep epochs of sleep.
389  However, the post-hoc analysis did not differentiate among sleep epochs (‘earlysleep’, ‘midsleep’,
390  ‘latesleep’). Since this is inconsistent with previous findings using single glass electrodes (Yap et al.
391  2017), we questioned if the pooling of channel x frequencies data (3 broad brain regions x 1 overall
392  power spectrum) could be hiding more specific effects which might become evident with the full
393  (15x145) dimension of channels x frequencies.

394

395  LFP features across different temporal stages of sleep.

396  Having established the existence of different temporal stages of sleep using a classifier based on SVM
397  and confirming the same using model-based analysis, we were next interested in the features in the
398  LFP data (which channels at what frequencies are important for distinguishing epochs within a sleep
399  bout), that helps us differentiate these stages.

400

401  For this purpose we used random forest classifiers. A random forest classifier is a class of supervised
402  learning algorithms that utilizes an ensemble of multiple decision trees for classification/regression.
403  This could be illustrated by an example (Figure 6A). In the first step subsets of training data (#1 to #n)
404  were created by making a random sample of size N with replacement. This allows for the ensemble of
405  decision trees (#1 to #n) to be decorrelated and the process of such random sampling is called bagging
406  (bootstrap aggregation). In the second step, each decision tree (#1 to #n) picks only a random subsample
407  of features (feature randomness) instead of all features (again allowing for the decision trees to be

408  decorrelated).
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410  Figure 6: A) Schematic indicating the workings of a multiclass random forest classifier in identifying the predicted
411  class. B) Performance metrics like precision, recall, f1-score across different classes of the trained classifier. C)
412  Normalized confusion matrix of the trained classifier. D) Feature importance of the multiclass classifier indicates
413  an ROI across central channels and frequency bands (5-10 Hz) as critically important.

414

415 In the final step, all the decision trees create individual predictions of classes and the final outcome
416  would be resolved by simple majority voting (illustrated here with a goal of classifying ‘awake’ vs
417  ‘sleep’). Thus, bagging and feature randomness allows for the random forest to perform better than
418  individual decision trees.

419

420  We performed a multiclass classification of the following classes: ‘awake’, ‘presleep’, ‘earlysleep’,
421  ‘midsleep’, ‘latesleep’. For the detailed preprocessing and feature computation steps refer to the
422  methods section (Sleep staging by classifiers - multiclass svm analysis & feature importance). We then
423  computed classifier performance metrics (See methods for sleep staging by classifiers - classifier
424  metrics) like precision, recall, f1-score (Figure 6B) and further normalized confusion matrix (Figure
425  6C) which reveal excellent performance in predicting the multiple classes (green boxes). This indicates
426  that classifier features (channels x frequency) are sufficient to distinguish multiple sleep stages (classes)
427  and furthermore provide direct evidence of multiple sleep stages. Another reason for using random
428  forest classifiers is that it is possible to identify relative feature importance in the performance of
429  classifiers, thereby identifying features (channels x frequency) which are important for differentiating
430  across multiple sleep stages.

431

432  To identify the LFP features most likely discriminating among sleep stages, we utilized the multiclass
433  random forest classifier (described above), and uncovered the features that are important in this
434  classifier (Figure 6D) with permutation importance technique. Interestingly, the most important
435  features fall within a narrow range of channels (1-3) and frequencies (5-10 Hz). This indicates that the
436  5-10 Hz frequency range within the central channels are the most important in resolving different
437  sleep stages. Next, we decided to cross-validate the utility of this permutation-based technique in
438  resolving across different epochs. For this purpose, we created a multiclass random forest classifier,
439  with target classes as: ‘awake’, ‘sleep’, and identified the features that are important in this classifier

440  (Figure S8A). The most important features are actually distributed evenly among all the features
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441  (channels x frequency), thus cross-validating our previous clustering results (Figure 4D) wherein we
442  showed that the LFP differences across ‘awake’ and ‘sleep’ are distributed across all channels and
443  frequencies.

444

445  Proboscis extension behavior during sleep in multichannel recordings.

446  Earlier, we identified rhythmic proboscis extensions (PEs) during midsleep (Figure 1), which we
447  propose describe a distinct sleep stage in Drosophila (van Alphen et al. 2021). However, it is unclear if
448  brain activity associated with PEs are sleep-like or PE-specific. This distinction is important, as it would
449  disambiguate a unique brain state (deep sleep) from a specific behavior associated with that state (PEs).
450  In order to identify PEs in our electrophysiological dataset, we again used DeepLabCut (Mathis et al.
451  2018) to track different body parts of the fly (Figure 7A). We further used multiple classifiers based on
452  the tracking data, followed by manual verification to identify the PEs. Sample proboscis extension
453  periods in an example fly along with a few of the features (x,y proboscis location, likelihood of location,
454  distance of proboscis to eye) are shown in Figure 7B. For more details on the proboscis detection steps
455  refer to the section - Methods for proboscis tracking for flies on electrophysiology setup. Our classifier
456  accuracy was over 80% for most flies (Figure 7C): the ground truth was validation by a human observer
457  on classifier detected events. In Figure 7D, we plot the mean proboscis to eye distance for all the flies
458  averaged across awake and sleep bouts. As described earlier for flies without implanted electrodes, PEs
459  executed during wake and sleep are behaviourally similar and hence would be difficult to distinguish
460 from each other using video alone. Similar to our behavioral dataset, PE events usually occur in
461  rhythmic bouts of more than one, rather than single events. In Figure 7E, we plot the inter-proboscis
462  interval period, which is the interval between consecutive PE events in a single proboscis bout. It can
463  be seen that most proboscis events occur within 1.8 sec (95 percentile) of each other. As shown before
464  in our behavioral data without implanted electrodes, the inter-proboscis interval does not vary across
465  awake and sleep periods. Next in Figure 7F, we decided to probe the number of single (one PE event)
466  and multi (>1 PE event) across different flies. We found that occurrences of single PE events are
467  significantly lower than multi PE events using a pairwise t-test with t(13) = 3.72, p<0.01.

468

469
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473  Figure 7: A) Seven different body parts were annotated using DeepLabCut for pose estimation. B) Identified PE
474  periods (yellow boxes) were plotted along with filtered body parts of proboscis and other estimated metrics. C)
475 PE events detection accuracy across different flies. D) Average proboscis to eye distance (across all flies) plotted
476  across frames and time periods are similar in awake and sleep states. E) During PE burst events, inter proboscis
477  intervals are highly regular, with one PE occurring every 1.5 s at group level. F) PE events are more likely to
478  occur as multiple events (bursts) instead of a single event. G) About 33% of PE events occur as single while the
479  rest are bursts of varying length. H) Number of PE events occurring after the first 5 mins of sleep is significantly
480  higher than in the first 5 mins, indicating that more PE events occur in deeper stages of sleep. Also displayed is
481  the control analysis, with awake depth showing no increase with PE event count. I) Normalized proboscis event
482  count across different sleep segments: -2:-1 indicates 2 mins before start of sleep, -1:0 indicates 1 mins before start
483  ofsleep, +0:+1 indicates 1 mins after start of sleep, +1:+2 indicates 2 mins after start of sleep, x:-2 indicates 2 mins
484  before end of sleep, x:-1 indicates 1 mins before end of sleep. The normalized count is significantly higher in the
485  midsleep segments compared to other segments. J) Proboscis events occurring in midsleep across different sleep
486  depths. *p<0.05, * p<0.01, **p<0.001, ns indicates not significant.

487

488  To further illustrate this point in Figure 7G, we plotted the burst length of a PE event (number of
489  extension events within a PE bout) and found that only 33% of the events are single PE while the rest
490  are multiple PE events. Overall, our investigation of PEs in this multichannel recording dataset is in
491  concurrence with our first (electrode-free) dataset, suggesting that inserting probe into the fly brain
492  does not alter several measures associated with this micro-behavior.

493

494  Previous work has linked PEs with a deep sleep stage in flies (van Alphen et al. 2021). We therefore
495  next investigated whether the number of PEs varied across a sleep bout in our LFP recording dataset,
496  assuggested in our purely behavioral dataset (Figure 1G). We found that more PE events occur after 5
497  min of a sleep bout, compared to those occurring before the 5th min of a sleep (Figure 7H) (pairwise t-
498  test, t(12) = -2.8, p<0.05), suggesting that PEs indeed predominate during deeper sleep. We also
499  compared PEs immediately after flies had awakened from sleep, which revealed no significant
500  difference (Figure 7H) (pairwise t-test, t(13) = -1.92, p>0.05) between PE bouts occurring after the 5th
501  min of an awake bout compared to those occurring before the 5th min of an awake bout, confirming
502  that transitions into sleep (rather than transitions back to wake) were associated with increased PE
503  events.

504

505

506

23


https://paperpile.com/c/P0heRD/samO
https://doi.org/10.1101/2023.06.12.544704
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544704; this version posted June 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

507  We next asked if the number of PE events changed across a sleep bout in our multichannel recording
508  preparation. To determine if the PE event count varies across different temporal sleep stages ( Figure
509 7I) we used multilevel models. For details refer to the methods section (Multilevel models - models for
510 PE event counts). The time_label model (where the PE event count depends only on the specific
511  temporal sleep stage) emerged as the winning model. Further, we performed post-hoc tests using tukey
512  adjustment (for multiple comparisons) to identify differences between pairs that are significant. We
513  found that PE events occur more often in midsleep compared to other sleep stages. Returning to our
514  original observation that most PEs occur after 5min of sleep, we plotted the distribution of PE events
515  occur in the midsleep epoch across all flies (Figure 7J), and found that 95 percentile of all PE events in
516  midsleep indeed occur after 2.5 minutes of the midsleep epoch (thus, 4.5 mins from sleep onset).

517

518  LFP features of a deep sleep stage with proboscis extension.

519  We next questioned whether PEs occurring during sleep and wake had similar neural correlates, or if
520  the sleep-related events were indeed different and thus indicative of a unique sleep-related function.
521  Wetherefore focused on the multichannel data to identify any differences in the LFP activity associated
522  with PEs during wake and sleep epochs. We first identified the PE periods (Refer to Methods LFP
523  analysis - proboscis: Identification of proboscis periods) and extracted the LFP data and epoched them
524  into 1 sec bins. Second, we used spectral analysis to determine if epochs characterized by PEs differ in
525  frequencies across different channels, for wake compared to sleep. For this purpose, we computed the
526  spectral power for every 1 sec epoch per channel (See Methods for LFP analysis - proboscis: power
527  spectrum analysis), using as before a common reference system for re-referencing the LPF data. Third,
528  we employed non-parametric resampling tools to identify the precise patterns (frequency x channel
529  pairs) differing in proboscis periods within awake and sleep at the group level. For this purpose, we
530 first computed the difference in mean spectral data across non-proboscis periods (awake or sleep) and
531  proboscis periods (awake proboscis and sleep proboscis respectively) for individual flies. We then
532  performed a cluster permutation test (flies x frequencies x channels) on the difference data to reveal
533  significant clusters (frequency x channel pair).

534
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Figure 8: A) Spectrogram showing the mean difference across ‘awakeprob’ (PE events in awake periods) and
‘awake’ periods, while clustering analysis reveals a single significant cluster across middle channels in all
frequencies. Activity within the significant cluster indicates activity in the ‘awakeprob’ is comparatively lower
than ‘awake’ periods. B) Spectrogram showing the mean difference across ‘sleepprob’ (PE events in sleep periods)
and ‘sleep’ periods, while clustering analysis reveals a single significant cluster across central channels in higher
frequencies (35 - 40 Hz). Activity within the significant cluster indicates activity in the ‘sleepprob’ is
comparatively higher than ‘sleep’ periods. C) Spectrogram showing the mean difference across ‘awakeprob’ and
‘sleepprob’ periods, while clustering analysis reveals a single significant cluster mostly across all channels in
higher frequencies (25 - 40 Hz). Activity within the significant cluster indicates activity in the ‘sleepprob’ is
comparatively lower than ‘awakeprob’ periods, thereby elucidating a significant difference across proboscis

events occurring in sleep and awake periods (though phenotypically they look the same - Figure 7D).
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548

549  In Figure 8A, we show the difference data (awake proboscis - awake period) and clustering analysis,
550  which reveals a significant cluster in the middle channels (6-10) across all frequencies. Further, within
551  the significant cluster we also performed a post hoc analysis revealing that spectral activity within the
552  awake proboscis periods are lower than awake periods. In Figure 8B, we show the difference data (sleep
553  proboscis - sleep period) and clustering analysis reveals a significant cluster in the central channels (1-
554  5) across higher frequencies (32-40 Hz). Further, within the significant cluster we also performed a
555  post hoc analysis revealing that spectral activity within the sleep proboscis periods are higher than
556  sleep periods (in contrast to the awake proboscis periods). In Figure 8C, we directly compared the
557  awake and sleep proboscis periods and showed the difference data (awake proboscis - sleep proboscis)
558  and clustering analysis, which reveals a significant cluster in the central, middle channels (1-9) across
559  higher frequencies (25-40 Hz). Further, within the significant cluster we also performed a post hoc
560  analysis revealing that spectral activity within the sleep proboscis periods are lower than awake
561  proboscis periods. This suggests that PEs occurring during sleep are qualitatively different from
562  identical PE events occurring during wake. This suggests that the brain activity state (e.g., quiet or deep
563  sleep (Tainton-Heap et al. 2021; Anthoney et al. 2023)) overrides the neural correlates associated with

564  the same behavior occurring during wake.

565
566

567 Discussion

568  Sleep is most likely a whole-brain phenomenon, meaning that its presumed varied functions
569  (Kirszenblat and van Swinderen 2015) are understood to be of benefit to the entire brain rather than
570  to only specific sub-circuits. There is good evidence for this in the Drosophila model, with synaptic
571  physiology for example changing during sleep in the optic lobes of flies (Donlea, Ramanan, and Shaw
572 2009) as well as brain-wide (Gilestro, Tononi, and Cirelli 2009). Similarly, in mammals, subcortical as
573  well as cortical brain regions experience sleep-related changes that are thought to be important for
574  maintaining neuronal homeostasis (Tononi and Cirelli 2014). Accordingly, to better understand sleep
575  in an animal model such as Drosophila melanogaster requires sampling associated changes in neural
576  activity across the fly brain, and not only in specific sub-circuits of interest. Unlike in larger animal

577  models such as mice, recording from multiple brain regions in behaving (and sleeping) flies has been
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578  challenging, so there has been limited capacity to investigate dynamic brain processes during sleep in
579  this otherwise powerful model system. While genetically encoded reporters of neural activity (e.g.,
580  GCaMPs) have been successfully used to describe spontaneous sleep in flies (Tainton-Heap et al. 2021;
581  Flores-Valle and Seelig 2022; Bushey, Tononi, and Cirelli 2015), these are typically still limited to a
582  narrow region of interest (e.g., the mushroom bodies, or the central complex), and imaging conditions
583  are rarely commensurate with the typical day-night cycles of normal sleep. In this study, we overcame
584  these drawbacks by recording electrical activity from 16 channels across the fly brain, in behaving flies
585  across long-lasting recordings that spanned a typical day and night. Our multichannel recording
586  preparation therefore approximates as closely as possible - in flies - a sleep EEG, which has been the
587  starting point for most discussions on sleep physiology in other animals. The human sleep EEG has
588  defined the sleep stages that are now being investigated in other animals (Kirszenblat and van
589 Swinderen 2015; Van De Poll and van Swinderen 2021; Raccuglia et al. 2019, 2022), although this is
590  obviously a neocortical view with potentially little relevance to animals lacking the neural architecture
591  giving rise to sleep signatures such as delta (1-4Hz) during slow-wave sleep or theta (5-8Hz) during
592  REMsleep (Jaggard, Wang, and Mourrain 2021).

593

594  Rather than focus on specific frequency bands such as delta and theta, we conducted an agnostic
595  analysis of our multichannel LFP data using machine learning techniques. These unbiased classifiers
596  identified distinct stages of sleep, in flies that were otherwise entirely quiescent (apart from certain
597  micro-behaviors, which we discuss further below). These identified sleep stages align closely with
598  similar changes in brain activity dynamics observed in calcium imaging data in spontaneously sleeping
599  flies (Tainton-Heap et al. 2021). For example, in the calcium imaging data we showed that even before
600  sleep onset, the number of ‘active’ neurons is already different (lower) than wake; accordingly, in the
601  current electrophysiological data the classifiers predict sleep onset 2min before flies stop moving. This
602  also aligns with an older (single channel) electrophysiological sleep study in flies showing that brain
603  LFP activity becomes uncorrelated from behavior 5min before sleep onset (B. van Swinderen, Nitz, and
604  Greenspan 2004). Together, these findings make a compelling case for dissociative states in the fly
605  brain, which is consistent with the view that such states might also be changing within a sleep bout.

606
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607  Our multichannel recordings also revealed that changes in sleep physiology are likely to encompass the
608  entire fly brain, from the optic lobes to the central complex. This is also consistent with other studies,
609  although this has not been previously demonstrated using a comprehensive multichannel approach.
610  An early study in honeybees showed that visually responsive neurons in the optic lobes become
611  unresponsive during sleep (Kaiser and Steiner-Kaiser 1983), and that these cells become rapidly
612  responsive again when bees are woken up with an air puff. Immunochemical studies investigating
613  synaptic proteins found that these were downregulated in the optic lobes during sleep (Donlea,
614 Ramanan, and Shaw 2009), as well as in the whole brain (Gilestro, Tononi, and Cirelli 2009). It is
615  understood that the insect optic lobes receive significant feedback from the central brain, as well as
616  from the contralateral lobes (Scheffer et al. 2020; Mu et al. 2012), and it has been shown that oscillatory
617  neural activity extends throughout the fly brain (Paulk et al. 2013), so our finding that the optic lobes
618  also ‘sleep’ is not quite surprising. Recent work using a similar multichannel recording preparation
619  found that isoflurane anesthesia impacted feedback from the central brain to the optic lobes (Cohen,
620  van Swinderen, and Tsuchiya 2018), suggesting that such efferent communication is a feature of the
621  waking fly brain. Yet, sleep in the central fly brain is different from sleep in the periphery.
622  Interestingly, only central channels were predictive of sleep onset, and only the central channels
623  revealed the 5-10Hz frequency features that we have previously identified in single channel recordings
624  (Yap et al. 2017). This suggests a sleep-regulatory role for the central complex, which aligns well with
625  previous studies (Donlea et al. 2011; Troup et al. 2018; Tainton-Heap et al. 2021).

626

627  Sleep in Drosophila was originally defined by inactivity criteria, based on locomotion-based readouts
628  (P.]. Shaw et al. 2000; Hendricks et al. 2000). Subsequent studies employing video monitoring and
629  probing arousal thresholds confirmed these simple readouts to be accurate estimates of sleep in flies
630  (van Alphen et al. 2013; Faville et al. 2015; Wiggin et al. 2020), but these behavioral studies also showed
631  that flies slept in distinct stages. Only recently has closer video monitoring of fly micro-behaviors
632  revealed that these animals are not entirely immobile during sleep (van Alphen et al. 2021), although
633  some micro-behaviors were already anecdotally observed in the first reports of fly sleep, such as
634 changes in posture (P. J. Shaw et al. 2000; Hendricks et al. 2000). Other insects, such as honeybees,
635  display characteristic micro-behaviors during sleep, such as changes in posture (Eban-Rothschild and

636  Bloch 2008) and antennal movements (Sauer et al. 2003). Interestingly, in our study we also found
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637  evidence of altered antennal movements during fly sleep, alongside the previously reported proboscis
638  extensions (van Alphen et al. 2021). These micro-behaviors are not necessarily correlated, although
639  they do seem to be increased during mid-sleep epochs. PEs have been associated with a deep sleep
640  function (waste clearance) in a previous study (van Alphen et al. 2021), so their occurrence in rhythmic
641  spells during mid-sleep is consistent with that interpretation.

642

643  Interestingly, PEs during wake and sleep are electrophysiologically different, even though they are
644  behaviorally identical. We found that the neural signatures of PEs occurring during wake are
645  concentrated in the middle channels, and spread across all frequencies (5-40Hz). It is interesting to
646  note that these middle channels could coincide with the location of neuropils of the antennal
647 mechanosensory and motor center (AMMC). Several studies (Kain and Dahanukar 2015; Kim, Kirkhart,
648  and Scott 2017) have implicated the AMMC as the location of axons of gustatory projection neurons
649  (GPNs) and thus an immediate higher order processing center for taste. Other studies (Flood et al. 2013)
650  have also shown that persistent depolarization of motor command activity of the Fdg (feeding) neurons
651  could also result in PEs. In this context, it is pertinent to note that LFP activity during PE events in the
652  awake periods are higher than those in the ‘awake’ periods without PE events, suggesting a distinct PE
653  signature. But this is not the case for the exact same behaviors during sleep. We found that LFP activity
654  for PEs occurring during sleep bouts are concentrated instead in the central channels and engage
655  primarily the higher frequencies (32-40 Hz). This suggests a distinct control mechanism for PEs
656  occurring during sleep versus wake, with central brain circuits potentially involved in regulating this
657  sleep-related function.

658

659  There are obviously several drawbacks to studying sleep physiology in a tethered animal that has been
660  skewered by a recording electrode. Sleep cannot be quite normal in such a preparation. For example, it
661  ispossible that the damage caused by the electrode evokes an increased need for repair (Stanhope et al.
662  2020) and consequently waste clearance (van Alphen et al. 2021), thus increased PE behavior.
663  However, this would also be the case for windows in the brain created for calcium imaging (Tainton-
664  Heap et al. 2021) (and in the latter scenario the proboscis is typically glued in place to prevent brain

665  motion artifacts), so no fly brain recording preparation (yet) can realistically sidestep these concerns.
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666  Nevertheless, it is evident that even in this somewhat contrived context, flies do still sleep and their
667  sleep displays unequivocal evidence of distinct stages.

668

669  Our study also paves the way for asking fundamental questions about fly sleep in the following fashion.
670  First, the LFP activity of mutant strains (with higher, or lower baseline sleep) could be recorded and
671  its differences across the wild type could be quantified. Second, for understanding and probing the
672  exact spatial patterns of specific sleep stages identified in this study with higher resolution, 2-photon
673  imaging at the whole brain level could be recorded for longer duration (controlled by closed loop
674  detection of events), while optimizing for signal loss with photo bleaching. Third, closed loop
675  techniques could be employed to disrupt sleep either at the PE stage or at other relevant stages to
676  identify behavioral phenotypes, thereby providing casual evidence for function of the specific stage.
677

678  Our multichannel data add to the growing realization that the entire insect brain engages in dynamical
679  patterns of activity during both sleep and wake (Tainton-Heap et al. 2021; Troup, Tainton-Heap, and
680  van Swinderen 2023), and does not simply shut off when insects become immobile or quiescent. To
681  understand these patterns of activity and how they might relate to conserved sleep functions (Van De
682  Poll and van Swinderen 2021) requires novel approaches derived from machine learning, as done in
683  this study, rather than approximations inspired from human EEG.

684

685

686

687

688

689

690

691

692

693

694

695
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696 Materials and Methods

697  Animals.

698  Flies (Drosophila melanogaster) were reared on a standard fly medium under a 12h light/dark cycle
699  (lights on at 8 A.M). Flies were raised on a 25°C incubator (Tritech research inc) with 50-60% humidity
700  and fewer than 5 flies were maintained per vial to ensure optimal nutrition and growth. Adult female
701  flies (<3 days post eclosion) of wild-type Canton-S (CS) were used for the electrophysiological
702  recordings. The choice of age of flies was based on pilot data that suggested a higher survival rate of
703  younger flies over a 12h period on the air supported ball setup (after electrode insertion). Flies used for
704  the behavioral dataset were between 3 - 7 days post eclosion. For thermogenetic experiments refer to
705  (Yap et al. 2017) for further details.

706

707  Fly tethering.

708  First, flies were anesthetized on a thermoelectric cooled-block maintained at a temperature of 1-2°C.
709  Second, the thorax, dorsal surface and wings of the fly were glued to a tungsten rod using dental cement
710  (Coltene Whaledent Synergy D6 Flow A3.5/ B3) and cured using high intensity blue light (Radii Plus,
711  Henry Scheinn Dental) for about 30-40 sec. Further, dental cement was also applied to the necks to
712  stabilize them and prevent lateral movement of the head during electrode insertion (next section).
713  Third, to prepare the fly for the multichannel overnight recording, we placed a sharpened fine wire
714  made of platinum into the thorax (0.25 mm; A-M systems). The platinum rod serves as a reference
715  electrode and helps filter the noise originating from non-brain sources. The insertion of a platinum
716  electrode (while providing minimal discomfort to movement of animal) was done using a custom
717  holder with a micro-manipulator to enable targeted depth of insertion. For flies in the behavioral
718 dataset, the procedure was the same, except that no reference wire was inserted.

719

720  Multichannel preparation.

721  First, the tethered fly from the previous step was placed on an air supported ball (polystyrene) that
722 served as a platform for walking/rest. Humidified air was delivered to the fly using a tube below the
723  ball (also from the side) to prevent desiccation. Second, to record from half of the regions in the fly

724  brain (half-brain probe) we used a 16-electrode linear silicon probe (model no. A1x16-3 mm50-177;

31


https://paperpile.com/c/P0heRD/HIrO
https://doi.org/10.1101/2023.06.12.544704
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544704; this version posted June 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

725  NeuroNexus Technologies). Third, the probe was inserted into the eye of the fly laterally using a micro-
726  manipulator (Merzhauser, Wetzlar, Germany). The probe was inserted such that the electrode sites
727  faced the posterior side of the brain. The final electrode position (depth of insertion) was determined
728  using the polarity reversal procedure described below. For flies recorded in the behavioral dataset the
729  setup was similar, except that a custom chamber was lowered over the ball and fly to maintain a
730  humidified environment during recordings.

731

732  Polarity reversal.

733  Variability in spatial location of recording sites across different flies is a primary impediment when
734  comparing data across different flies. This occurs mainly due to the angle and depth of insertion of the
735  probe, both of which cannot be precisely controlled. To overcome this issue and to obtain comparable
736  recording sites across flies, we designed a novel paradigm using visual evoked potentials (Figure S2).
737  First, while the probe was being inserted from the periphery to the center of the brain, we used visual
738  stimuli (square wave of 3 sec in duration with 1Hz frequency) from a blue LED. When the visual stimuli
739  wasdisplayed we simultaneously recorded the local field potentials from the 16 electrode sites. During
740  the initial stage of insertion, most of the electrodes are outside of the brain and only a few are inside
741  theeye, optic lobe. The recordings in the electrodes inside the eye, brain show a visual evoked potential
742  corresponding to the leading edge and the trailing edge of the square wave. Second, we move the probe
743  slowly towards the center of the brain so more of the electrode sites would now be inside the brain.
744 Third, we notice that some electrodes have a negative deflection and some have a positive deflection
745  with respect to the leading edge of the square wave. The electrodes in the eye, optic lobe regions display
746  apositive deflection and electrodes further to the central parts of the brain display a negative deflection.
747  However this polarity change usually happens in the electrodes that are coincident on the regions right
748  after the medulla. Fourth, for all flies we made sure that the polarity change coincided with the
749  electrodes 11-13 inorder to establish consistency in terms of the spatial locations.

750

751

752

753

754
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755  Dpye based localization.

756  Inorder to identify the possible locations in the brain targeted by the electrodes, we used a three step
757  procedure. In the first stage, we used immunohistochemistry to identify the locations of electrodes
758  using a fluorescent dye and neuropils using antibodies against nc82 (presynaptic marker bruchpilot)
759  respectively. In the second stage, we used a registration procedure to map the dye locations to an EM
760  dataset (using nc82 images). In the third stage, we used principal component analysis to identify the
761  precise neuropils targeted.

762 a) Immunohistochemistry.

763  First, we labeled the probe with Texas red fluorescent dye conjugated to 10,000-Da mol mass dextran
764  dissolved in distilled water (Invitrogen) to identify the recording locations. Second, after removing the
765  flies from the tether, the brains were dissected in ice cold 1x phosphate buffer solution (PBS) and fixed
766  in 4% paraformaldehyde diluted in PBS-T (1x PBS, 0.2 Triton-X 100) for 20 minutes in dark to preserve
767 the fluorescence of the dye. Third, after fixation, tissues were washed 3 times with PBS-T (0.2% Triton
768  X-100 in PBS (PBST) with 0.01% sodium azide (Sigma Aldrich)) and blocked for 1 hour in 10 % Goat
769  Serum (Sigma Aldrich). Fourth, the brains were then incubated overnight in a primary antibody
770  solution (mouse anti-nc82 1:20 DSHB). Fifth, on the next day brains were washed 3 times with PBS-T
771 (10 min per wash) and incubated overnight in a secondary anti-body solution (1:250 goat anti-mouse
772  Alexa 647). Finally, the brain was washed in PBST and embedded in Vectashield and imaged using a
773  confocal microscope (Zeiss).

774 b) Image registration.

775  First, for each fly we used the nc82 image as source space to align to the JFRC2 template space (which
776  is a spatially calibrated version of JFRC (Jenett et al. 2012) from FlyLight). The registration process
777  involved two steps: i) rigid affine registration that roughly aligned the source image to the template
778  space with 12 degrees of freedom (translation, rotation, scaling). ii) non-rigid registration that allowed
779  different brain regions to move independently with a smoothness penalty. The entire process was
780  carried out using the CMTXK plugin (FiJi toolbox) as described here (Ostrovsky, Cachero, and Jefferis
781  2013). Second, we then used the JFRC2 (light-level) registration as bridging registration to FAFB14
782  (EM dataset) using the natverse toolbox (Bates et al. 2020) and mapped both the nc82 images and the
783  dye locations to the FAFB14 space.
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784 c) Electrode localisation.

785  The electrode dye locations inside the brain are usually visible as fragments (points) instead of a single
786  continuous (line) segment, mainly because the insertion of the probe causes the smearing of the dye on
787  the neuropils in the brain. Inorder to identify the precise locations of the recording electrodes in the
788  brain, we first used the points and performed principal component analysis to find the eigenvector or
789  line (Ist principal component) that would have minimize the distance between the different points to
790  the line itself. This line could be thought of as the main path of the probe as it entered into the brain.
791  Next, we choose the innermost electrode as the projection of the innermost point (dye location)
792  projected onto the eigenvector. The rest of the recording electrode sites were obtained by sampling the
793  same eigenvector at intervals of 25 pm (which is the interelectrode distance on the probe) from the
794  innermost point.

795

796  LFP recording.

797  The LFP data from the 16-electrode probe was acquired using Tucker—Davis Technologies (Tucker-
798  Davis Technologies, US) multichannel data acquisition system at 25 kHz coupled with a RZ5 Bioamp
799  processor and RP2.1 enhanced real-time processor. Data was acquired and amplified using a pre-
800  amplifier (RA16PA/RA4PA Medusa PreAmp). The pre-amplifier used can only record data of up to 20
801  hours on a single charge cycle, hence we limited the recording of the LFP signals to 20 hour duration.
802  Further, as file sizes tend to be larger over longer recording periods, we recorded data in chunks of 1
803  hour which was automatically controlled via a MATLAB script.

804

805  Video recording for flies on electrophysiology setup.

806  The ball setup was illuminated with visible light, switched ON at 8 AM and switched OFF at 8 PM
807  (mimicking the light/dark cycle conditions in the incubator). Further, we used Infrared LEDs for
808  monitoring the movement of the fly on the ball (which allowed us to quantify movements under both
809  the light and the dark cycle. We recorded the fly in profile view with a digital camera from Scopetek
810 (DCM 130E) and to achieve optical magnification, we used a zoom lens (from Navitar). As done
811  previously (Yap et al. 2017), we removed the IR filter in front of the camera sensor, to allow for filming

812  under IR light, thereby achieving constant illumination under both day and night. We made a custom
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813  script with Python (2.7.15), OpenCV (3.4.2.17), that allowed for recording videos automatically and
814  saving them in hourly intervals. The video was recorded with a resolution of 640 x 480 pixels at 30
815  frames per second using Xvid codec and further with additional metadata (time stamps in a csv file)
816  that allowed a later matching up of the LFP data with the video data.

817

818  Video recording for flies on behavioral dataset setup.

819  The camera in this setup was a Point Grey/Teledyne FLIR Firefly perpendicular to the fly, in addition
820  to an extra camera (ProMicroScan) placed on the trinocular output of a Nikon SZ7 stereomicroscope.
821  Thissecond camera was used to record a close-up view of the head of the fly for the purposes of tracking
822  movements of the antennae. Illumination was as above with infrared LEDs and recordings were
823  obtained with the same Python scripts.

824

825  Movement analysis.

826  The fly movement was quantified with the video files using Python (3.6.1), OpenCV (3.4.9) in the
827  following manner. First, every video file (1 per hour of recording) was read frame by frame. Second,
828  for each frame, we clipped the image such that the main focus was on the fly while ignoring items in
829  the background. Third, we converted the color space for each frame from BGR to grayscale. Fourth,
830  we computed the ‘deltaframe’ as the absolute difference of the current frame with the previous frame.
831  Fifth, we thresholded the deltaframe using a custom defined threshold per fly and converted them into
832  binary. Sixth, we dilated the thresholded image and identified contours in the dilated image and looped
833  over the different contours selecting those above a specific threshold (area). Finally, we drew rectangles
834  around the contours above the threshold on the original (color) image to manually verify the
835  movement location. Only those frames that had contours above threshold were regarded as ‘moved’
836  frames, other frames would be classified as ‘still’. Thus, each frame would be either O (still) or 1 (moved).
837  Inthe next stage, we used the frame by frame movement data to identify segments of LFP data as ‘sleep’
838  or ‘awake’ etc in the following fashion. First, we synced the LFP data with the video data by using the
839  time stamps in both the LFP data and video metadata (csv files). Second, we clipped both the LFP and
840  video data to the first 8 hours of recording. Though 23 flies survived for more than 24 hours, we only

841  used the first 8 hours to ensure that the fly’s health was completely optimal (considering the
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842  circumstances) in both the behavior and brain recordings. Further only 16 flies were used for the
843  analysis, as 7 of them had issues with calibration (noisy or no calibration) or abnormal activity (either
844  no sleep trials or very active). Third, we pruned movement data to ensure brief noise in movements
845  are avoided. Fourth, we identified the segments of data wherein the fly was immobile for more than 5
846  mins as ‘sleep’ and the segment immediately preceding 2 mins before the sleep data as ‘presleep’ and
847  the rest of the data as ‘awake’.

848

849

850  LFPanalysis.

851 a) Preprocessing.

852  LFP data was analyzed with custom-made scripts in MATLAB (The MathWorks) using EEGLAB
853  toolbox (Delorme and Makeig 2004). The preprocessing steps were as follows: First, the binary data was
854  extracted for every hour from Tucker-Davis technology ‘tank’ file format to MATLAB ‘mat’ file format.
855  Second, the data were resampled to 250 Hz and bandpass filtered with zero phase shift between 0.5 and
856 40 Hz using hamming windowed-sinc FIR filter, further line noise at 50 Hz was removed using a notch
857 filter. Third, the hourly LFP data was saved to EEGLAB “.set’ file format. Fourth, the hourly LFP data
858  were interpolated in a linear way to avoid any discontinuities between the hourly segments of data.
859  Fifth, the movement data (see Movement analysis) was added to the EEGLAB file along with the start
860 and end time based on video data. Sixth, the multi-hour LFP data (along with the movement data) is
861  collated for the first 8 hours of the recording. Seventh, we created separate epochs based on movement
862  data into ‘sleep’, ‘presleep’, ‘awake’ (where preceding 2 mins of immobility (-2 to 0 mins) is ‘presleep’
863  and immobility is ‘sleep’ and the rest of the data is ‘awake’, here 0 mins is the start of the immobility).
864  Eighth, the epochs were now re-referenced based on the channel where the polarity reversal occurred.
865  For this we identified the channel wherein the polarity reversal occurred (see Polarity reversal section)
866  andsubtracted all the channels from this channel, thus resulting in 15 channels after the re-referencing.
867  This brain based referencing technique (similar to the Cz based reference in human EEG recordings)
868  allows for filtering of non-brain based physiological noise (like heartbeat etc). Previous multichannel
869  recordings used only the thorax based referencing (followed by bipolar referencing) along with

870  Independent Component Analysis (ICA) to remove physiological noises. However, the identification
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871  of noise components like heartbeat etc from ICA is subjective and further depends on the expertise of
872  the human curator. Our technique overcomes these issues while simultaneously providing a method to
873  remove physiological noises not originating from the brain.

874 b) Power spectrum analysis (sleep vs awake).

875  The power spectra of the LFP data was computed for each fly in the following fashion. First, each
876  condition (‘awake’, ‘sleep’ etc) of varying duration was re-epoched into trials of 60 sec duration. Second,
877  each trial was bandpass filtered with zero phase shift between 5 and 40 Hz using hamming windowed-
878  sinc FIR filter. Third, for each trial, power spectra (in decibels) was computed using the ‘spectopo’
879  function in the EEGLAB toolbox in MATLAB. Fourth, the mean power spectra for all the trials per
880  condition per fly was computed. The goal of the power spectra analysis was to identify the cluster of
881  frequency bands and channels that differ across the sleep, awake periods at the group level. To perform
882  these group level comparisons (sleep vs awake periods) we only used flies that had at least 10 trials
883  under each condition. We performed a cluster permutation test (flies x frequencies x channels) using
884  MNE (0.22.0) in python (permutation_ cluster lsamp_test) (Gramfort et al. 2013) with all possible
885  permutations to identify clusters that differ across awake and sleep periods. We also computed the
886 effect sizes for every channel x frequency combination using cohen's d measure (difference of means/
887  standard deviation).

888

889  Thermogenetic sleep induction.

890  The thermogenetic sleep induction data was collected using 104y-Gal4 lines as part of the study (Yap
891  etal.2017). This multichannel recording consisted of a 16-electrode full-brain probe (model no. A1x16-
892  3mm50-177; NeuroNexus Technologies) covering the whole of the brain (Figure S6B) (in contrast to
893  the half-brain probe mentioned before) with interelectrode distance of 50 pm. The rest of the recording
894  parameters were the same as mentioned in the previous section. Sleep induction was achieved by
895  transient circuit activation of the sleep promoting circuit innervating the dorsal fan shaped body (dFB).
896  For example, this was done by using the 104y gal4 lines (offering cell type specificity in the dfB regions)
897  to control the expression of UAS driven TrpAl (temperature sensitive cation channel), thereby
898  allowing for the activation of the specific neurons in dFB with temperature changes. As described in

899  (Yap et al. 2017), before the induction of sleep, the baseline activity was recorded in the ‘baseline’
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900 condition for 3 secs, followed by stimulation in the ‘sleep induction’ condition for 3 secs before
901  returning to recovery for 3 secs.

902 a) Preprocessing.

903  LFP data was analyzed with custom-made scripts in MATLAB (The MathWorks) using EEGLAB as
904  mentioned before. The preprocessing steps were as follows: First, the LFP data per condition (‘baseline’,
905  ‘sleep induction’, ‘recovery’) was converted to EEGLAB “.set’ file format with a sampling rate of 1 KHz.
906  Second, the LFP data was re-referenced using a differential approach, wherein nearby channels are
907  subtracted with each other resulting in 15 channels.

908 b) Power spectrum analysis (baseline vs sleep induction).

909  The power spectra of the LFP data was computed for each fly in the following fashion. First, each
910  condition (‘baseline’, ‘sleep induction’ etc) was reepoched into trials of 1 sec duration. Second, each
911  trial was bandpass filtered with zero phase shift between 5 and 40 Hz using hamming windowed-sinc
912  FIR filter. Third, for each trial, power spectra (in decibels) was computed using the ‘spectopo’ function
913  in the EEGLAB toolbox in MATLAB. Fourth, the mean power spectra for all the trials per condition
914  per fly was computed. The group level comparison was performed using cluster permutation test
915 methods (as described in previous sections) to identify differences in frequency x channels across
916  ‘preheat’ and ‘heaton’ conditions.

917

918

919

920  Sleep staging by classifiers.

921  The main goal of this analysis was to use classifiers to identify the existence of sleep stages using LFP
922  data.

923 a) Labeling of sleep states.

924  Here, we relabelled the segments of data (already identified as ‘sleep’, ‘awake’ based on movement data)
925  in the following fashion. First, we labeled the segments of data in the first 2 mins (0 to 2 mins) after
926  the start of immobility as ‘earlysleep’ and the segments of the data in the preceding 2 mins (-2 to 0

927  mins) as ‘presleep’. Second, we labeled the segments of data in the last 2 mins of sleep as ‘latesleep’ and
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928  the segments of data in between the ‘earlysleep’ and ‘latesleep’ as ‘midsleep’. The rest of the data is
929  considered as ‘awake’.

930 b) Preprocessing & power spectrum computation.

931  The preprocessing steps were the same as mentioned in the previous section (LFP preprocessing). For
932  the computation of the power spectrum, we followed similar procedures as mentioned before, however
933  we saved the individual power spectrum per trial (channels x frequency) per fly in a csv file along with
934  the corresponding label of the sleep state.

935 c) Classifier probability analysis.

936  We implemented a support vector machine (svm) based classifier using scikit-learn (0.24.2) to classify
937  the LFP data using the following steps. First, we collated the features based on power spectrum
938  (channels x frequency) from all the flies across different sleep states. Second, we filtered the features to
939  only ‘awake’ (5106 epochs) and ‘midsleep’ (1165 epochs) states. Here, we also did not feed (for training)
940  the preceding 2 mins of ‘presleep’ and succeeding 2 mins of ‘earlysleep’ and the last 2 mins of sleep
941  ‘latesleep’ into the classifier (we used those minutes for sanity check purposes - Refer to Figure 5A).
942  Third, we encoded the target labels (‘awake’, ‘midsleep’) into binary states using ‘LabelEncoder’ from
943  scikit-learn. Fourth, we balanced the composition of labels (or classes) to prevent bias due to unequal
944 distribution of classes in the training dataset. Fifth, we divided the dataset into train and test sets (80%
945 train, 20% test) using ‘train_test_split’ from scikit-learn in a stratified fashion. Sixth, we subjected both
946 the train and test data to a standard scaler using ‘StandardScaler’ from scikit-learn, which removes the
947  mean of the data and scales it by the variance. Seventh, we implemented a svm based classifier using a
948  ‘linear’ kernel along with probability estimates per class and fit the classifier to the train dataset. Eighth,
949  we used the trained classifier on the test dataset and computed different metrics of classifier
950 performance like accuracy, roc_auc, recall, precision, fl-score etc using ‘metrics’ from scikit-learn
951  (Figure S7B). Ninth, we used the trained classifier on all class labels (‘awake’, ‘presleep’, ‘earlysleep’,
952  ‘midsleep’, ‘latesleep’, preceding 2 mins of ‘presleep’ and succeeding 2 mins of ‘latesleep’) from the
953  original dataset and computed the probability estimates per class. It is pertinent to note that none of
954  the ‘presleep’, ‘earlysleep’, latesleep’, preceding 2 mins of ‘presleep’ and succeeding 2 mins of ‘latesleep’

955  the data have not been seen by the classifier beforehand. The above process from Step 5 onwards is
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956  repeated a further 4 times with different test, train splits to create five different iterations of classifiers
957  and performance metrics.

958

959 d) Multiclass svin analysis & Feature importance.

960  To identify differences across multiple classes (‘awake’, ‘presleep’, ‘earlysleep’, ‘midsleep’, ‘latesleep’)
961  we implemented a random forest classifier using scikit-learn (0.24.2) to classify the LFP data using the
962  following steps. First, we collated the features based on power spectrum (channels x frequency) from
963  all the flies across different sleep states. Second, as the different labels (or classes) were unbalanced viz:
964  ‘awake’(5585 epochs), ‘presleep’(258 epochs), ’earlysleep’(262 epochs ), 'midsleep’ (1165 epochs ),
965  ’latesleep’ (262 epochs), we used SMOTE (Synthetic Minority Over-sampling Technique) from
966  imblearn (0.8.1) to balance the distribution of classes in the dataset. Third, we divided the dataset into
967 train and test sets (80% train, 20% test) using ‘train_test_split’ from scikit-learn in a stratified fashion.
968  Fourth, we subjected both the train and test data to a standard scaler using ‘StandardScaler’ from scikit-
969  learn, as mentioned in the previous section. Fifth, we encoded the target labels into binary states using
970 ‘LabelBinarizer’ from scikit-learn. Sixth, we implemented a random forest classifier for this multiclass
971  classification problem. As the random forest classifier has multiple hyperparameters that need to be
972  tuned, we first used a random grid (using ‘RandomizedSearchCV’ from scikit-learn) to search for the
973  hyperparameters and then further used these parameters in a grid search model (using ‘GridSearchCV’
974  from scikit-learn) to identify the best hyperparameters. Seventh, we used the trained classifier on the
975  test dataset and computed different metrics of classifier performance like recall, precision, f1-score etc
976  using ‘metrics’ from scikit-learn separately for all the 5 classes. Furthermore, we also computed a
977  normalized confusion matrix using ‘confusion_matrix’ from scikit-learn. The above process from Step
978 5 onwards is repeated a further 4 times with different test, train splits to create five different iterations
979  of classifiers and performance metrics. Finally to identify and rank the importance of different features
980  we utilized the permutation importance metric (using ‘permutation_importance’ from scikit-learn).
981  The permutation feature importance works by randomly shuffling a single feature value and further
982  identifying the decrease in the model score (Breiman 2001). The process breaks the relationship
983 between the shuffled feature and the target, thus if the feature is very important, it would be indicated
984 by a high drop in model score, on the other hand if it is relatively unimportant, then the model score

985  would not be affected so much. We used the permutation importance with a repeat of 5, and for each
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986  train/test split we computed a permutation importance score. Finally, the mean permutation
987  importance score was computed using all the splits.
988 e) Classifier metrics.
989  The performance of the above-mentioned classifiers (both SVM based, random forest based) was
990 evaluated using metrics like accuracy, recall, precision, roc_auc, fl-score. The definition of these
991  metrics are as follows:
992  Recall This refers to the ability of a classifier to correctly detect the true class of the epoch among the
993  classifications made. It is obtained by the (TP/TP + FN). It is also known as sensitivity. TP: True
994 Positives, FN: False Negatives.
995  Precision: This refers to the exactness of the classifier. It is obtained by the (TP/TP + FP). TP: True
996  Positives, FP: False Positives.
997  Fl-score: This refers to the harmonic mean between precision and recall.
998  roc_auc: This refers to the area under the receiver operating curve. In general, it refers to how efficient
999  the classifier is in identifying different epochs. Scores closer to 1 indicate a highly efficient classifier
1000  whereas those closer to 0 indicate otherwise.
1001  Accuracy: This is defined as the number of correctly classified epochs divided by the overall number
1002  of epochs classified.
1003  Confusion matrix: This enables visualization of the classifier performance, by tabulating the predicted
1004  classes against actual classes. For multiclass problems (random forest classifiers here), the values in the
1005  diagonal indicate where the predicted and actual classes converge, whereas those on the off-diagonal
1006  indicate misclassifications.
1007
1008  Proboscis tracking for flies on electrophysiology setup.
1009 a) Pose detection.
1010  We used DeepLabCut (Mathis et al. 2018) to track the different body parts of the fly using an artificial
1011  neural network trained in the following fashion. First, we extracted frames from: sample videos
1012  wherein the fly performs the following: normal walking movement on the ball (‘all_body’), proboscis
1013  extension periods ('proboscis’) both while asleep and awake. For each fly we extracted videos of the

1014  above mentioned categories for the purpose of creating annotation labels. Second, we extracted frames
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1015  from these videos and further labeled the different body parts: eye, proboscis, legl_tip, legl joint,
1016  leg3_tip,leg3_joint, abdomen (Figure 7). Third, we trained the neural network per fly using this dataset
1017  with ‘resnet_50’ weights until the loss parameter during training stabilizes. The performance of the
1018  network per fly (train, test error in pixels) was in general similar in both the train and test datasets.
1019  Fourth, we evaluated the annotation performance manually by labeling a test video and verifying the
1020  same. Finally, this trained network (per fly) was used for annotating the video for the first 9 hours of
1021  the recording.

1022 b) Pose analysis.

1023  In the next step, we use the pose detection output to design a classifier capable of identifying proboscis
1024  extension periods. First, we manually detected several sample time points (to be used as ground truth
1025  for training/testing the classifier) in the video of each fly and identified proboscis time periods and
1026  saved them in a ‘csv’ file. Second, we used the pose tracking data (x,y,likelihood) for the body parts of
1027  the proboscis, legl _tip, legl_joint, eye, abdomen and further computed low pass filtered data (0.1 Hz
1028  butterworth filter) of each body part. Further we also computed the moving average (window length
1029  of 5 samples) of the filtered data. Third, we computed ‘dist_eyeprob’ as the euclidean distance between
1030  the proboscis and eye body part and finally multiplied the same with the likelihood of the proboscis
1031  body part. Fourth, we used the above-mentioned body parts (and its derivatives) as features and used
1032  the ‘StandardScaler’ from scikit-learn for normalizing the data. Fifth, we divided the dataset into train
1033  and test sets (70% train, 30% test) using ‘train_test_split’ from scikit-learn. Sixth, we implemented a
1034 svm based classifier using a ‘rbf’ kernel and fit the classifier to the train dataset. Seventh, we used the
1035  trained classifier on the test dataset and computed different metrics of classifier performance like
1036  accuracy, recall, precision etc using ‘metrics’ from scikit-learn. The data segments (frames) identified
1037  here will be used to construct the candidate proboscis periods, which then will be further refined in
1038  the next steps.

1039 ¢) Proboscis detection.

1040  First, we use the frames identified by the classifier from the previous section and construct continuous
1041  segments to identify time periods of probable proboscis periods. Further, we add additional time periods
1042 by using the likelihood of the proboscis part with a threshold based method. Second, we identify the

1043  peak frame (where the maximum displacement of the proboscis occurs) in each proboscis extension
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1044  event (each proboscis bout consists of multiple proboscis extension events) and save the identified
1045 proboscis events (frame number, time, behavior state) to a ‘csv’ file. Third, each event in the csv file is
1046  manually verified and only true events are further taken forward. This process is repeated for all the
1047  flies and the proboscis detection accuracy per fly is plotted in Figure 7C.

1048

1049  Micro-behaviour tracking for flies on behavioral dataset setup.

1050 Here, the same method for tracking micro-behaviors via DeepLabCut was used, focusing on the
1051  proboscis and abdomen for the lateral camera view (See above), and the base and tip of the left and
1052  right antennae for the dorsal view of the fly head. The data from these two streams was imported into
1053 a custom MATLAB (2020a) script, which performed synchronization based on the integrated
1054  timestamps. After preprocessing, antennal tracking with DeepLabCut was converted into an angle for
1055  both respective antennae by calculation of the respective positions of the bases and tips, with the angle
1056  of the fly’s head with respect to the camera automatically derived from this data and used to correct
1057  the angle of the antennae. For the proboscis a median position was calculated for each recording -
1058  assumed to be the resting position - and the distance and angle between the proboscis at any given time
1059  point and this median position was calculated. Extensions of the proboscis were derived from this
1060  distance data with the ‘findpeaks’ function in MATLAB, with a number of exclusion criteria applied to
1061  remove tracking artifacts. For example, detected peaks that exceeded a biologically plausible distance
1062  threshold, lasted only for a single frame, or had an implausible instantaneous rise time were excluded.
1063  Since this method could potentially be biased towards identifying proboscis activity that follows a
1064  prototypical shape, we also employed an alternative proboscis event detection based purely on the
1065  current distance of the proboscis from resting. In this we used a manually set threshold for each fly to
1066  detect portions in the recording when the proboscis was extended versus not, and for these ‘events’ we
1067  calculated the duration and median angle of the proboscis during the span of the event. Periods of
1068  antennal periodicity in recordings were calculated based on a Fast Fourier Transform (FFT), applied to
1069  time segments of recordings. Since proboscis activity was not sinusoidal in nature (and thus would
1070  behave poorly if subjected to an FFT), periodicity for this organ was calculated manually as a factor of
1071  timing between individual PEs in that proboscis extensions were periodic if they occurred less than 6s
1072  after a preceding proboscis extension. This value was selected from observation of typical inter-PE

1073 intervals.

43


https://doi.org/10.1101/2023.06.12.544704
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544704; this version posted June 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

1074

1075  LFP analysis - proboscis.

1076  The main goal of this analysis was to identify the spectral signatures associated with the proboscis
1077  extension periods across ‘awake’ and ‘sleep’ states in the LFP data.

1078 a) Identification of proboscis periods.

1079  First, we used the csv file containing frame by frame detection of manually verified proboscis events
1080  (from the section above). Second, we identify periods of proboscis extensions which are close together
1081  (within 10 sec of each other) and label them as continuous periods. Third, we add activity labels like
1082  ‘awake’ (awake periods without any proboscis activity), ‘awakeprob’ (awake periods with proboscis
1083  activity), ‘sleep’ (sleep periods without any proboscis activity), ‘sleepprob’ (sleep periods with proboscis
1084  activity), ‘presleep’ (presleep periods without any proboscis activity), ‘presleepprob’ (presleep periods
1085  with proboscis activity) based on annotated behaviors. Fourth, we extract the LFP data corresponding
1086  to the different time periods across each fly.

1087 b) Power spectrum analysis.

1088  The preprocessing steps for the extracted LFP data were the same as mentioned in the previous section
1089  (LFP preprocessing). For the computation of the power spectrum, we followed similar procedures as
1090 mentioned before, however we computed the individual power spectrum per trial (channels x
1091  frequency) per fly by re-epoching them into trials of 1 sec in duration (instead of the 60 sec periods for
1092  sleep analysis, as the proboscis periods are usually shorter). Then the mean power spectrum for all the
1093  trials per condition per fly was computed. Next, we performed cluster permutation tests (flies x
1094  frequencies x channels) for identifying the differences across frequencies and channels across different
1095  conditions. For this analysis we only used flies that had at least 50 trials under each condition.

1096

1097  Multilevel models.

1098 a) Models for antennal, proboscis periodicity.

1099 We defined 2 different multilevel models (Supplementary Table 1,3,5 - left, right antenna, proboscis)
1100  tounderstand how the likelihood of periodicity varies by sleep epoch. In the null model, the periodicity
1101  depends only on the mean per fly (fixed effect) and the fly ID (random effect). In the second model
1102  (epoch model), the periodicity depends only on the epoch (fixed effect) and the fly ID (random effect).
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1103  These models were fit using the ‘lmer’ function (‘ImerTest’ package) in R (Kuznetsova, Brockhoff, and
1104  Christensen 2017) and the winning model is identified as the one with the highest log-likelihood by
1105  comparing it with the null model, and performing a likelihood ratio chi-square test (x2). Finally the
1106  winning model was analyzed using the ‘anova’ function (Supplementary Table 2,4,6 - left, right
1107  antenna, proboscis) in R (Fox and Weisberg 2018).

1108 b) Models for spectral analysis.

1109  We defined 4 different multilevel models (Supplementary Table 7) to understand the modulation of
1110  the power spectrum by sleep epoch and channel type. In the null model, the power spectrum depends
1111  only on the mean per fly (fixed effect) and the fly ID (random effect). In the second model (epoch
1112  model), the power spectrum depends only on the LFP epoch type (fixed effect) and the fly ID (random
1113  effect). In the third model (channel model), the power spectrum depends only on the channel type
1114  (fixed effect) and the fly ID (random effect). In the fourth model (epoch-channel model), the power
1115  spectrum depends on a combination of the LFP epoch type and the channel type, both used as fixed
1116  effects, and the fly ID (random effect). These four models were fit using the Imer’ function (ImerTest’
1117  package) in R (Kuznetsova, Brockhoff, and Christensen 2017) and the winning model is identified as
1118  the one with the highest log-likelihood by comparing it with the null model, and performing a
1119  likelihood ratio chi-square test (x2). Finally the top two winning models were compared against each
1120  other using ‘anova’ function in R (Fox and Weisberg 2018), to validate whether the winning model (if
1121  itis more complex) is actually better than the losing model (if it is simpler). The epoch-channel model
1122  emerged as the winning model, indicating an important contribution from different channels. The
1123  epoch-channel was further analyzed with the ‘anova’ function (Supplementary Table 8) in R (Fox and
1124  Weisberg 2018)

1125 ¢) Models for PE event counts.

1126  We defined 2 different multilevel models (Supplementary Table 9) to understand the modulation of PE
1127  event count by sleep epochs. In the null model, the PE event count depends only on the mean per fly
1128  (fixed effect) and the fly ID (random effect). In the second model (time_label model), the PE event
1129  count depends only on the specific temporal sleep stage (fixed effect) and the fly ID (random effect).
1130  These 2 models were fit using the ‘lmer’ function (‘lmerTest’ package) in R (Kuznetsova, Brockhoff,

1131  and Christensen 2017) and the winning model is identified as the one with the highest log-likelihood
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1132 by comparing it with the null model, and performing a likelihood ratio chi-square test (x2). Thus, the
1133  time_label model emerged as the winning model. The time_label model was further analyzed with the
1134  ‘anova’ function (Supplementary Table 10) in R (Fox and Weisberg 2018)
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Model Parameters Log-likelihood Pr(>x2)
Null Fixed: mean, Random: fly ID -106.53 -
epoch Fixed: time_label, Random: fly ID -73.58 <0.001

Suppl Table 2: Type III analysis of variance with Satterthwaite's method of the winning model (Epoch)

- Left antenna

Model elements | Sum Sq MeanSq | NumDF | DenDF | F value Pr(>F)
Epoch 4.5527 1.1382 4 1090 16.985 <0.001

Suppl Table 3: Model comparison - Right antenna
Model Parameters Log-likelihood Pr(>x2)
Null Fixed: mean, Random: fly ID -68.415 -
epoch Fixed: time_label, Random: fly ID -44.468 <0.001

Suppl Table 4: Type III analysis of variance with Satterthwaite's method of the winning model (Epoch)

- Right antenna

Model elements

Sum Sq

Mean Sq

NumDF

DenDF | F value

Pr(>F)

Epoch

3.1004

0.7751

1125 12.232

<0.001
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Suppl Table 5: Model comparison - PEs
Model Parameters Log-likelihood Pr(>x2)
Null Fixed: mean, Random: fly ID -301.09 -
epoch Fixed: time_label, Random: fly ID -207.25 <0.001
Suppl Table 6: Type III analysis of variance with Satterthwaite's method of the winning model (Epoch)
- PEs
Model elements | Sum Sq MeanSq | NumDF | DenDF | F value Pr(>F)
Epoch 20.877 5.2192 4 795 52.923 <0.001
Suppl Table 7: Model comparison - LFP power spectrum
Model Parameters Log-likelihood Pr(>x2)
Null Fixed: mean, Random: fly ID -68117 -
Epoch Fixed: epoch, Random: fly ID -67941 <0.001
Channel Fixed: channel, Random: fly ID -52391 <0.001
Epoch-Channel | Fixed: epoch*channel, Random: fly ID -51593 <0.001
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1372

1373

1374

1375

1376  Suppl Table 8: Type III analysis of variance with Satterthwaite's method of the winning model (Epoch-
1377  Channel) - LFP power spectrum

Model elements Sum Sq MeanSq | NumDF | DenDF | F value Pr(>F)

Epoch 8476 2119 4 22582 378.025 <0.001
Channel 112004 56002 2 22580 | 9990.441 | <0.001
Epoch:Channel 796 100 8 22580 17.756 <0.001

1378

1379  Suppl Table 9: Model comparison - PEs LFP dataset

Model Parameters Log-likelihood Pr(>x2)
Null Fixed: mean, Random: fly ID -4.5588 -
time_label Fixed: time_label, Random: fly ID 15.0632 <0.001

1380

1381  Suppl Table 10: Type III analysis of variance with Satterthwaite's method of the winning model

1382  (time_label) - PEs LFP dataset

Model elements | Sum Sq MeanSq | NumDF | DenDF | F value Pr(>F)

time_label 1.2145 0.20241 6 41 9.6039 <0.001
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Supplementary Figure 1: Additional metrics of proboscis activity during sleep and wake. A) Representation of
the distribution of sleep (Blue) and wake (Red) across N=11 recorded individuals over the course of time. B)
Averaged timecourse of proboscis extension distance from resting during a single event for sleep (Blue) and wake
(Red). C) Comparison of proboscis extension rates during sleep and wake (n.s. ; Student’s T-test). D) Histogram
of the distribution of times between PEs during sleep (Blue) and wake (Red). E) Comparison of the fraction of
PEs that were periodic versus isolated for sleep and wake (p < 0.05; Student’s T-test). F) Comparison of the average
frequency of PE periodicity across sleep and wake (n.s.; Student’s T-test). G) As with F, for antennal periodicity

(p < 0.05; Student’s T-test).
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Supplementary Figure 2: Electrode insertion depth was controlled by using a polarity reversal method. In this
example fly, the change in LED stimulation (OFF to ON) stage, coincides with a LFP deflection. The LFP
deflection changes from positive (12th channel) to negative (11th channel). The LFP amplitude depicted here is

based on an average of 5 trials, with the shaded region representing the standard error.
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Supplementary Figure 3: Electrode locations were determined using a dye based localisation method. Neuropil
stain (A) and electrode dye locations (B) were registered to JFRC2 space (D) via non-rigid registration. Further
Bridging registration was used to register to FAFB space (F), the registration templates were applied on electrode

dye locations (B) to produce co-localisation (H).
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Supplementary Figure 4: Electrode locations were determined using a dye based localisation method. Neuropil
stain (A) and electrode dye locations (B) were registered to JFRC2 space (D) via non-rigid registration. Further
Bridging registration was used to register to FAFB space (F), the registration templates were applied on electrode

dye locations (B) to produce co-localisation (H).
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1427  Supplementary Figure 5: Power differences across central, middle, peripheral channels in the frequency bands of
1428  7-10 Hz.
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1443  Supplementary Figure 6: Spectral differences in thermogenetically induced sleep recorded using full brain probe.
1444
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1447
1448  Supplementary Figure 7: A) Schematic indicating the optimal separation of awake and sleep classes using
1449  classifiers based on support vector machines. B) SVM based classifier performance across different metrics based
1450  on 5 different train/test data splits.
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Supplementary Figure 8: A) Feature importance of the multiclass classifier (reduced to awake vs sleep) indicates
an ROI across all channels and almost all frequency bands as critically important. This cross validates the
differences in the power spectrum across awake and sleep as shown in Figure 4D. B,C,D,E) Feature importance

of multiclass classifier for the other categories.
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