

1 A comparative analysis of stably expressed genes across diverse angiosperms exposes flexibility
2 in underlying promoter architecture

3

4 Eric J.Y. Yang, Cassandra J. Maranas, Jennifer L. Nemhauser*

5 University of Washington, Department of Biology, Seattle, WA 98105-1800, USA

6 *email: jn7@uw.edu

7

8 Abstract

9 Promoters regulate both the amplitude and pattern of gene expression—key factors needed for
10 optimization of many synthetic biology applications. Previous work in *Arabidopsis* found that
11 promoters that contain a TATA-box element tend to be expressed only under specific conditions
12 or in particular tissues, while promoters which lack any known promoter elements, thus
13 designated as Coreless, tend to be expressed more ubiquitously. To test whether this trend
14 represents a conserved promoter design rule, we identified stably expressed genes across
15 multiple angiosperm species using publicly available RNA-seq data. Comparisons between core
16 promoter architectures and gene expression stability revealed differences in core promoter usage
17 in monocots and eudicots. Furthermore, when tracing the evolution of a given promoter across
18 species, we found that core promoter type was not a strong predictor of expression stability. Our
19 analysis suggests that core promoter types are correlative rather than causative in promoter
20 expression patterns and highlights the challenges in finding or building constitutive promoters
21 that will work across diverse plant species.

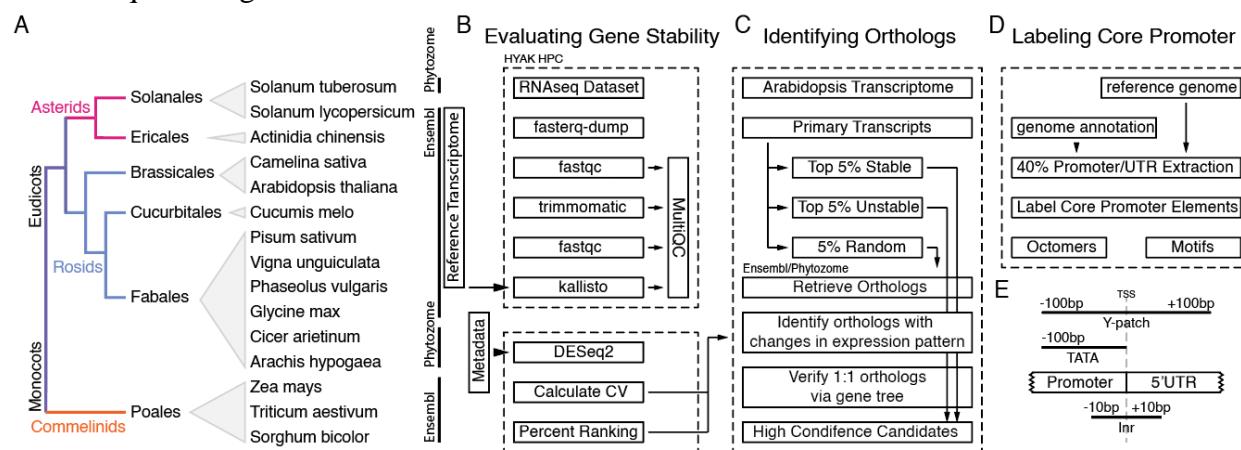
22

23 Introduction

24 Precise control over gene expression is essential for development and survival. One of the first
25 regulatory steps in expression regulation is transcription initiation, which is controlled by DNA
26 regions designated as promoters. Current understanding of eukaryotic promoters is still
27 remarkably limited, and we have difficulty even identifying a precise promoter region given an
28 arbitrary sequence (Donczew & Hahn, 2017). A core promoter region is functionally defined as
29 the minimal region required for transcription initiation, associated with binding of RNA
30 Polymerase II (RNAPII) and General Transcription Factors (GTFs). Proximal and distal cis-
31 regulatory elements contribute to the modulation of the core promoter's activity and give it its
32 characteristic expression profile. A sequence containing the proximal cis-regulatory elements as
33 well as the core promoters is often referred to as the “promoter” region (Andersson & Sandelin,
34 2020; Biłas et al., 2016; Haberle & Stark, 2018; Schmitz et al., 2022). In practice, cloning and
35 analysis projects often pick an arbitrary length (e.g., up to 2000 base pairs or until the next

36 coding sequence) upstream of the transcription start site to define as the promoter region
37 (Andersson & Sandelin, 2020; Schmitz et al., 2022).

38
39 Many core promoter elements have been identified within the core promoter region that are
40 important in directing RNAPII and determining the transcription start site (TSS). The TATA-box
41 motif is the most well-understood of the core promoter elements, yet TATA-box-containing
42 promoters only account for about 20% of eukaryotic promoters and about 30% of *Arabidopsis*
43 promoters (Donczew & Hahn, 2017; Molina & Grotewold, 2005). In plants, additional core
44 promoter types were proposed by Yamamoto and colleagues based on their identification of
45 over-represented motifs around a fixed distance from the transcription start site (Yamamoto et
46 al., 2007, 2009). Y patch, or pyrimidine patch, motifs are C and T rich motifs whose presence
47 had been recently shown experimentally to associate with stronger expression (Jores et al.,
48 2021). CA and GA are additional core promoter elements, represented in approximately 20% and
49 1% of genic promoters, respectively (Yamamoto et al., 2009). Unlike the TATA-box which has a
50 known GTF-binding protein associated with it, the molecular mechanism of the Y patch, CA and
51 GA elements remain largely unknown. Core promoters that do not contain any of the identified
52 core promoter types have been termed Coreless (Yamamoto et al., 2009, 2011). In *Arabidopsis*,
53 Coreless promoters tend to be expressed more weakly but more broadly than those that contain
54 TATA-boxes (Das & Bansal, 2019; Yamamoto et al., 2011).

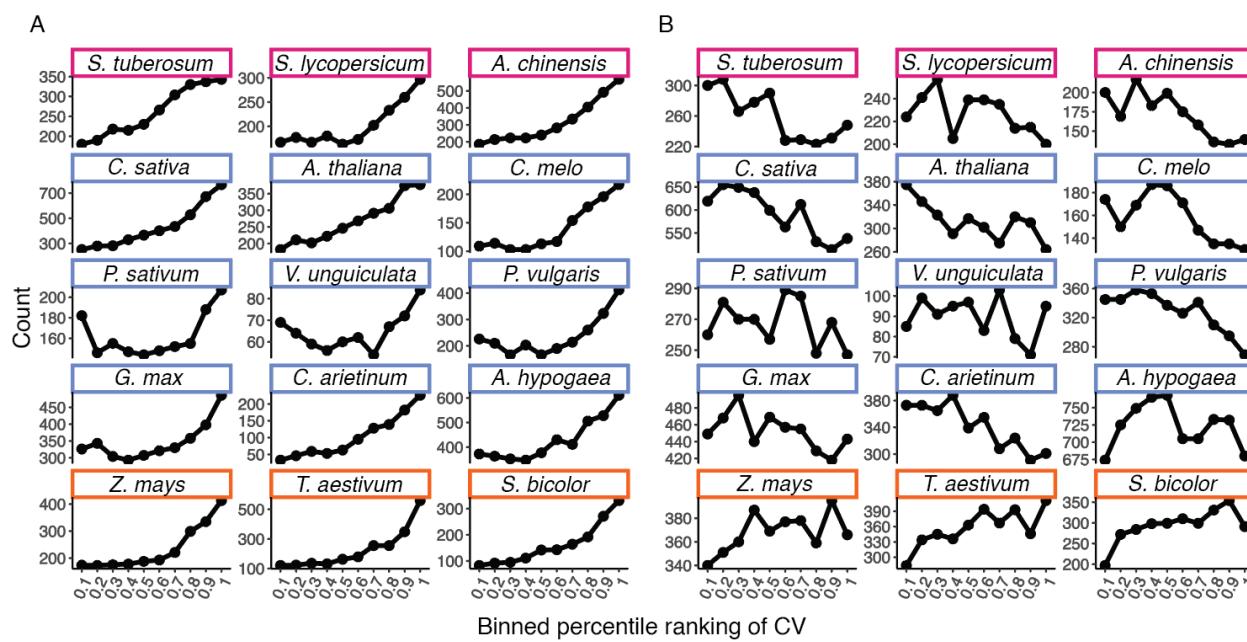

55
56 Constitutive promoters, defined here as promoters that are on in all tissues at all times, are
57 versatile tools in synthetic biology due to their desirable expression pattern (Yang & Nemhauser,
58 2022; Zhou et al., 2023). They are often used to drive expression of components used in
59 synthetic circuits or metabolic engineering (Brophy et al., 2022; Patron, 2020; South et al., 2019;
60 Wu et al., 2014). Core promoter regions of constitutive promoters (such as the Cauliflower
61 Mosaic Virus 35S promoter) have often been used as the starting point to build synthetic
62 promoters by introducing natural cis-elements or synthetic TF-binding sites upstream of these
63 core promoter regions to artificially tune expression strength or confer new expression patterns
64 (Ali & Kim, 2019; Belcher et al., 2020; Brophy et al., 2022; Brückner et al., 2015; Cai et al.,
65 2020; Moreno-Giménez et al., 2022). However, a lack of understanding of the design constraints
66 around promoters had made engineering synthetic promoters challenging. Current approaches
67 often require trial and error or high throughput screening to identify functional synthetic
68 promoters (Belcher et al., 2020; Brophy et al., 2022; Brückner et al., 2015; Cai et al., 2020;
69 Moreno-Giménez et al., 2022). A better understanding of the contributions and limitations of
70 core promoters in controlling expression patterns can therefore be essential in engineering better
71 synthetic promoters.

72
73 Here, by leveraging publicly available RNA-seq atlases of fifteen angiosperms, we were able to
74 map gene expression pattern onto core promoter type in multiple genomic contexts. While
75 TATA-box-containing promoters are over-represented in conditionally-expressed genes in all of
76 the species we examined, the pattern for Coreless promoters was less clear. In most eudicots,

77 Coreless promoters were over-represented in stably expressed genes, but the opposite trend was
78 observed in monocots. Additionally, by identifying orthologous gene groups within these
79 species, we were able to track changes in core promoter type and expression pattern for groups
80 of evolutionarily related promoters. We found that stably expressed genes are also more likely to
81 have orthologs in other species compared to unstably expressed genes, and the orthologs tend to
82 retain similar expression patterns. Lastly, we show that changes in core promoter types do not
83 explain changes in expression pattern. This evolution-guided approach reveals design rules
84 surrounding core promoter architecture and expression patterns.

85 Results:

86 We began this project by identifying species with RNA-seq Atlases, which we defined as
87 datasets containing at least ten different tissue samples and with samples that represented at least
88 two distinct developmental stages. Details regarding the dataset and their references can be found
89 in Supplemental Table S1. Figure 1A shows a phylogenetic tree of the fifteen species that fit our
90 criteria, which spans a range of angiosperms including multiple monocots and eudicots. The
91 datasets were processed through a custom pipeline (Figure 1B-D). In brief, Kallisto was used for
92 RNA-seq quantification and MultiQC was used to summarize all the outputs up till DESeq2
93 (Supplemental Data S7) (Bray et al., 2016; Ewels et al., 2016). For each species, normalized
94 counts from each tissue were then converted to stability information using the coefficient of
95 variation (CV) as a metric. In this analysis, lower CV corresponds to more stable expression,
96 meaning comparable expression in all tissues. Higher CV, on the other hand, means less stable
97 and more tissue-specific expression. To facilitate comparison between species, we used
98 percentile rank of CV as the primary metric, which represents the percentage of CVs that are less
99 than or equal to a given value.



100
101 Figure 1. An outline of the bioinformatics pipelines. A) The fifteen angiosperms included in this study and their
102 phylogenetic relationship. B-D) The three major data processing steps performed in the study. Detailed parameters
103 are included in the Methods section. Reference genomes, transcriptomes and gene orthologs were retrieved via
104 either Ensembl (Cunningham et al., 2021) or Phytozome (Goodstein et al., 2012) databases depending on the
105 species. E) Regions searched for each core promoter motif.

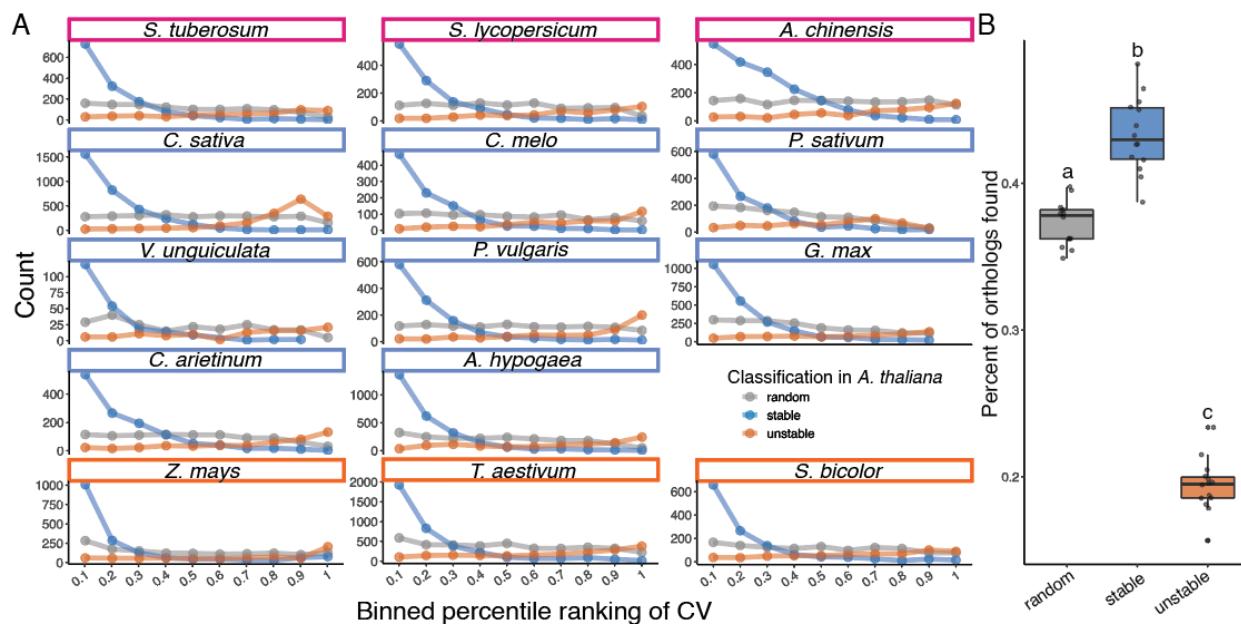
106
107

108 To determine whether the characteristic differences in expression patterns between different core
109 promoter types seen in *Arabidopsis* holds across all the species in our dataset, we extracted the -
110 100bp to +100bp region around the TSS as the “core promoter region” for 40% of all promoters
111 in each species (Figure 1D). TATA box, Y patch, and Inr motifs were screened according to
112 methods detailed in Jores et al. 2021. The regions scanned for each motif are more relaxed than
113 their known regions in *Arabidopsis*, as we applied the scan to multiple species and wanted to
114 avoid falsely labeling promoters as Coreless. Illustration of the regions scanned for each core
115 promoter type are illustrated in Figure 1E.
116

117 Forty percent of all promoters for each species were labeled as either TATA or Y patch. If a
118 promoter did not contain either element, we labeled them as “Coreless”. It is important to note
119 that the definition of Coreless promoters introduced by Yamamoto and colleagues is somewhat
120 more strict than the definition used here, as they also screened for the relatively rare CA and GA
121 core promoter elements (Yamamoto et al., 2009). We then plotted the distribution of CV for each
122 species, broken down by core promoter types (Fig. 2). Similar results for Y patch, Inr and a
123 random set of promoters that serve as a control are in Supplemental Figure S2.
124

125
126
127
128
129
130
131
132

Figure 2. Distribution of relative specificity or uniformity of TATA-box-containing and Coreless promoters. Higher Coefficient of Variation (CV) rankings indicate more specificity, while lower CV rankings indicate more uniformity. A random subsampling of forty percent of promoters from each species are shown here. A) TATA-box containing promoters, and B) Promoters termed Coreless as they lacked both TATA-box and Y-path motifs. Colors correspond to phylogeny shown in Figure 1A.

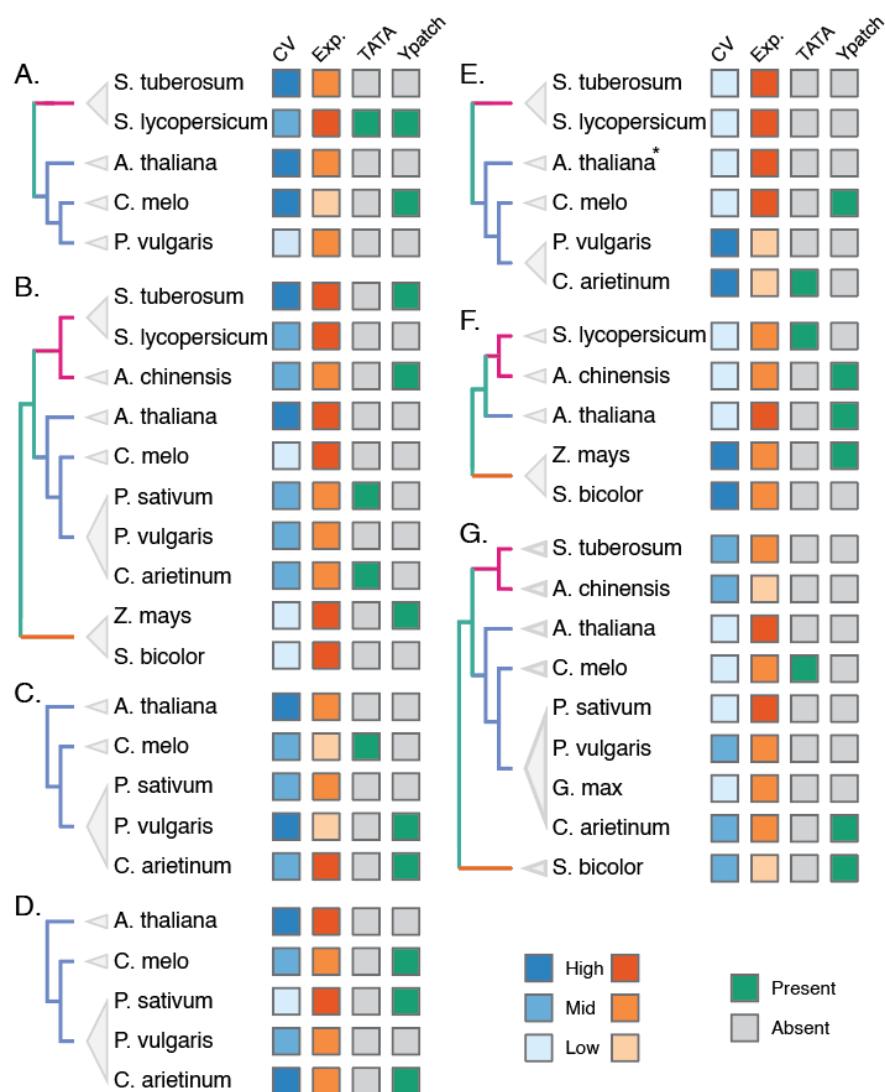

133 Using microarray data, Yamamoto and colleagues had found that Coreless promoters are under-
134 represented in genes that responds to stimulus (i.e. more constitutively expressed) (Yamamoto et
135 al., 2011). However, we did not see the same trend until we removed the lowest expressing
136 transcripts from the analysis (transcripts with an average of less than 1 read). These extremely
137 low read counts are likely to be unreliable and an analysis of the weak-expressing genes that we
138 removed revealed that they bias towards higher CV when compared to the rest of the genes in the
139 dataset (Supplemental Figure S3). This same minimum read number requirement was then
140 applied to the rest of the species.

141
142 Overall, the expected trend of TATA box-containing promoters being over-represented in
143 unstable genes is observed across all the species analyzed (Fig. 2). In contrast, the trend of
144 Coreless promoters being associated with more stably expressed genes was weaker and only
145 observed in a subset of the eudicots. The monocots (*Zea mays*, *Triticum aestivum*, and *Sorghum*
146 *bicolor*) all exhibited a strong trend of Coreless promoters associating with unstable genes (e.g.,
147 those with higher CV values), along with an enrichment of Y patch-containing promoters being
148 associated with stable expression (Fig. 2 and Supplemental Figure S2). This inverted pattern
149 could be explained in two ways given that a promoter not labeled as containing a TATA box or
150 Y patch is labeled as Coreless. Under this classification scheme, an apparent enrichment by one
151 category of promoters could reflect a surplus of that type of promoter in a particular CV ranking
152 bin or a depletion of the other two promoter categories in that same bin. The latter explanation
153 seems more likely for the Y patch promoters in monocots, but further experimental tests are
154 required to fully resolve this question. The surprising pattern of Coreless genes “flipping” their
155 behavior in monocots might also reflect an as yet undefined promoter element that is lumped into
156 the Coreless category here. For example, there may be slight differences in TATA motif, as has
157 been described for maize (Mejía-Guerra et al., 2015). Accounting for this known source of
158 variation, we did not see any significant decrease in the Coreless trend towards conditionally-
159 expressed genes (Supplemental Figure S2).

160 To determine whether core promoter type is tightly linked to expression stability for a given
161 gene, we identified a set of orthologous genes (Figure 1C). *Arabidopsis thaliana* is the most well-
162 annotated genome, and it has 47,684 transcripts with a non-zero transcript count in at least one of
163 the sampled tissues. Of this total, we retained only the primary transcripts of each non-
164 mitochondrial and non-chloroplast gene, resulting in a final total of 26,842 genes. The top 5%
165 most stable and top 5% least stable genes were selected based on CV, along with a randomly
166 selected control set of equal size (n=1343 genes in each category). The sets of genes were used to
167 query the Ensembl or Phytozome database for orthologs in the rest of the 14 species in our
168 dataset (Cunningham et al., 2021; Goodstein et al., 2012). The orthologs were searched for in the
169 database where their reference transcriptome was downloaded to ensure matching of the target
170 transcript name with the transcript counts. Orthologs of *Arachis hypogaea*, *Cicer arietinum*, and
171 *Solanum tuberosum* were found using Phytozome, and the remaining species were found in
172 Ensembl.

173
174
175
176
177
178
179
180
181
182
183
184
185
186

Orthologous genes tended to retain their expression pattern across species (Fig. 3A). While orthologs corresponding to the random set of *Arabidopsis* genes were spread quite uniformly across distribution of CV rankings, the orthologs of the top 5% stable set of *Arabidopsis* genes were skewed heavily towards the more stable, lower percentage CV rankings. The orthologs of the 5% least stable set of *Arabidopsis* genes showed a more subtle skew towards higher CV ranking. This trend was more visible in some species than others, partially due to the overall lower gene counts. One notable trend was that the least stable gene set retrieved significantly fewer orthologs compared to the random or most stable gene sets (Fig. 3B). This is possibly because stable genes are associated with more fundamental cellular functions, and therefore more likely to be conserved across species (Klepikova et al., 2016). Following a similar logic, unstable genes tend to be more tissue-specific, and therefore are more easily lost during species divergence.



187
188
189
190
191
192
193
194

Figure 3. Genes that show uniform expression in *A. thaliana* tend to behave similarly in other species. A) Distribution of CVs for orthologs of stable (blue), unstable (orange) or random (grey) *A. thaliana* genes. The color of boxes around species names corresponds to Figure 1A. B) Percent of orthologs found for each set of *A. thaliana* genes for each species. Each dot corresponds to a single species. Statistical tests were performed by one-way ANOVA followed by Tukey HSD. All three groups are significantly different from one another.

195 Even when looking at genes that fell at the tail ends of the expression stability distribution from 196 *Arabidopsis*, we could find orthologs positioned across the full range of CV rankings (Fig. 3A). 197 In other words, expression stability of a given gene can vary dramatically across species. To 198 investigate this further, we curated a set of evolutionarily-related genes that showed this type of 199 switching behavior. Starting with the set of all the orthologs retrieved through Ensembl and

200 Phytozome, we first filtered the target orthologs to count only the highest expressing transcript
201 for each gene, thereby limiting each gene to a single representative transcript. We filtered the list
202 of orthologs to include *Arabidopsis* transcripts that had only a single ortholog found in the
203 transcriptome of each other species. We considered any target transcripts that crossed the 50th
204 percentile in CV as “changing expression pattern”, and we limited the *Arabidopsis* transcripts to
205 those where transcripts changed expression pattern in at least two different species. These
206 changes were mapped onto the phylogenetic tree to identify clusters where changes could be
207 associated with a specific node.
208
209 Gene trees were built for the most promising candidates, and when more than one ortholog was
210 found in the target species, those genes were removed from further analysis (Fig. 1C). These
211 stringent parameters maximize the likelihood that the remaining candidates are true orthologs,
212 and that any changes in expression pattern could be biologically significant. Seven high-
213 confidence orthologous gene groups were found with three *Arabidopsis* transcripts
214 (AT3G17020.1, AT3G18215.1, AT4G40045.1) that are from the top 5% stable genes list and
215 four *Arabidopsis* transcripts (AT1G04700.1, AT5G17400.1, AT5G18910.1, AT5G20410.1) from
216 the top 5% unstable genes list. A summary of the filters and numbers of target orthologs as well
217 as *Arabidopsis* query transcripts left after each step can be found in Supplemental Table S4.
218
219 The promoters for these seven sets of orthologs were extracted and TATA, Y patch, Inr motifs
220 were screened for as described above (for clarity, this analysis will be referred to as Motif Scan)
221 (Figure 1D). In parallel, these promoters were also screened for TATA, Y patch, Inr, CA, GA
222 octamers as defined in Yamamoto et al. 2009 (Octamer Scan), and an illustration of the regions
223 scanned for each octamers can be found in Supplemental Figure S5. Comparing the two
224 methods, the Motif Scan resulted in more identified core promoters due to its more relaxed
225 parameters. Only two promoters were labeled as Y patch by the Octamer Scan but not the Motif
226 Scan. A core promoter element was considered present if either method returned a positive result
227 (Supplemental Table S6). Within each orthologous gene group, changes in the presence of
228 TATA or Y patch elements did not appear to correlate with changes in expression patterns (Fig.
229 4). In each group, there are examples of promoters having the same core promoter type but
230 different expression patterns, as well as cases of promoters having the same expression pattern
231 but different core promoter types. Since there were only seven TATA-box-containing promoters
232 (~15.5% of the promoters), we were not able to observe instances where two related TATA-box
233 containing promoters having different expression patterns, but there are multiple instances where
234 changes in presence of TATA motif did not change expression pattern. This result suggests that
235 the presence or absence of a TATA or Y patch is not sufficient to change expression pattern.
236

237
238
239
240
241
242
243
244

Figure 4. Individual gene trees where expression stability changes can be observed. A-D) The gene is unstably expressed in *A. thaliana* but stably expressed in another species. E-G) The gene is stably expressed in *A. thaliana* but unstably expressed in another species. CV and expression strength (Exp.) is grouped by percentile ranking of 0.66~1.00 (High), 0.33~0.66 (Mid), or 0.00~0.33 (Low) and color coded accordingly. Presence (green) or absence (grey) of TATA and Y patch motifs are indicated. **A. thaliana* has no identifiable core promoter identified as the intergenic region is only 8 bp.

245 Discussion:

246 Understanding the rules that govern the performance of natural promoters could inspire the
247 construction of synthetic promoters that are able to retain their behavior over multiple
248 generations in transgenic plants. Here, we mined RNA-seq atlases from fifteen different
249 angiosperms to extract patterns connected to the relative specificity or uniformity of gene
250 expression across developmental stages and tissue types. We found that the previously observed

251 trend that TATA-box-containing promoters are over-represented in conditionally expressed
252 genes is highly conserved. In contrast, the relative uniformity versus specificity of expression
253 from Coreless promoters is not as well conserved. Coreless promoters from eudicots analyzed in
254 this study were, in general, more highly associated with stable expression patterns. Coreless
255 promoters from monocot species, however, exhibited the opposite trend. In addition, we found
256 that promoters tend to maintain their expression pattern across species, with the caveat that
257 stably expressed genes are more likely to have identifiable orthologs when compared to unstably
258 expressed genes. Lastly, by tracking expression pattern and promoter type within the
259 evolutionary trajectory of individual genes, we could test the hypothesis that promoter
260 architecture is responsible for the level and pattern of gene expression. We found that none of the
261 core promoter types screened for in this work are consistently associated with changes in
262 expression pattern or strength. This suggests that while there may be a correlation between
263 promoter architecture and transcription parameters, the underlying molecular mechanism that
264 determines whether a gene is conditionally or specifically expressed remains unknown.
265

266 While the general trend that TATA-box-containing promoters are found in genes that are only
267 expressed in specific times and/or locations was highly conserved, close study of single gene
268 phylogenies reveals that the TATA-box is not the determinant of this expression pattern. The
269 overall lack of pattern for TATA and Y patch motifs on the phylogenetic tree also suggest that
270 the gain and loss of these promoter elements, at least in the genes studied here, are sporadic
271 events that do not experience strong positive selection for maintenance. In the future, it would be
272 interesting to add the additional dimension of tracking the relative conservation versus
273 divergence of the coding regions of the genes associated with each promoter type; however, the
274 small number of promoters in each category would likely limit the potential to detect a clear
275 pattern.
276

277 From a synthetic biology perspective, there are two major implications from the analysis
278 described here. First, the hope of finding strong, constitutive natural promoters that work across
279 diverse species may be even more challenging than we originally thought. For example, it is
280 unlikely that there are natural promoter architectures that will work equally well as constitutive
281 promoters in monocot and eudicot crops. Second, and more hopefully, our analysis suggests that
282 the approach currently being taken by multiple labs for engineering synthetic promoters is likely
283 to find solutions that work well across species (Belcher et al., 2020; Brophy et al., 2022; Cai et
284 al., 2020; Moreno-Giménez et al., 2022). The overall scheme of many of these groups is to take a
285 core promoter region containing a TATA-box, and then add natural cis-elements or synthetic
286 transcription factor target sequences. We found that the same core promoter could support
287 widely varied expression patterns. This is consistent with the emerging hypothesis that cis-
288 elements contribute more to expression pattern than the core promoter itself (Cai et al., 2020),
289 and that any desired expression pattern can be achieved regardless of core promoter type. Why
290 Coreless promoters are enriched in constitutively expressed genes in eudicots, and whether this

291 mode of regulation leads to greater robustness of expression pattern over time, will require a
292 more detailed understanding of transcription initiation events at a range of promoters in multiple
293 species.
294

295 Methods

296 *Phylogenetic tree*

297 A phylogenetic tree was constructed referencing NCBI's Taxonomy Brower and Li et al. 2021.

298

299 *RNA-seq dataset processing*

300 RNA-seq atlases were located in the NCBI Sequence Read Archive (SRA) database. The
301 references for the datasets can be found in Supplemental Table S1. The individual datasets were
302 retrieved using sratoolkit-3.0.1 prefetch followed by fasterq-dump functions. Fastqc-0.11.9 were
303 used to generate a QC report for each dataset. Trimmomatic-0.39 were used for adaptor and low
304 quality ends trimming using the following settings: 'SLIDINGWINDOW:4:20 MINLEN:36'.
305 ILLUMINA CLIP files TruSEq3-PE-2.fa was supplied for paired end data and TruSEq3-SE.fa
306 were supplied for single end data. Reference transcriptome were downloaded from the Ensembl
307 Plants (<http://plants.ensembl.org/index.html>) for *Arabidopsis thaliana*, *Camelina sativa*, *Cucumis*
308 *melo*, *Glycine max*, *Phaseolus vulgaris*, *Pisum sativum*, *Vigna unguiculata*, *Sorghum bicolor*,
309 *Zea mays*, *Solanum lycopersicum*, *Actinidia chinensis*, *Triticum aestivum*. and Phytozome
310 (<https://phytozome-next.jgi.doe.gov>) for *Arachis hypogaea*, *Cicer arietinum*, and *Solanum*
311 *tuberosum* (Cunningham et al., 2021; Goodstein et al., 2012). An index file was generated and
312 the reads aligned and counted using Kallisto-0.44.0 with '-o counts -b 500'. For single end data,
313 Fragment Length and Standard Deviation were required, but the information is difficult to locate,
314 and so a default value of '-l 200 -s 20' were used across the board.

315 Another Fastqc was performed on the trimmed files, and a final MultiQC-1.13 were run on the
316 entire folder encompassing all the log files that Fastqc, Trimmomatic, and Kallisto generated.
317 The MultiQC report was inspected to ensure the trimming step improved read quality and there
318 were no major warnings.

319

320 *Normalizing count, Calculating CV and Percent Ranking*

321 (*Relevant files: 1_Metadata_from_RUNselector.Rmd, 2_MOR_Normalization.Rmd*)

322 Using an R script, the raw counts for each species were normalized using the DESeq2 package
323 using a metadata file curated from the original study for the RNA-seq datasets. The coefficient of
324 variation across all samples for a given atlas was used as a metric for stability for each gene, and
325 the percentile ranking for each gene was calculated. The geometric mean for each gene was also
326 calculated across all samples.

327

328 *Extracting intergenic region and 5'UTR*

329 (*Relevant files: 3_ExtractPromUTR(ALL_Transcripts).ipynb,*
330 *8_ExtractPromUTR(Orthologs).ipynb*)

331 Gff3 annotation files and reference genomes were downloaded from Ensembl or Phytozome
332 depending on where the reference transcriptomes were retrieved from. 40% of transcripts were
333 selected from the total transcriptome and their intergenic region and 5'UTR were extracted from

334 the Gff3 annotation. Intergenic region and 5'UTRs of identified orthologs were extracted in a
335 similar manner.

336

337 *Labeling core promoter types*

338 (*Relevant files: 4_Label_Promoters.Rmd, 9_Motif_Scan.Rmd, 10_Octamer_Scan.ipynb*)

339 Motif Scan: Intergenic regions and 5'UTR sequences are trimmed to only regions to be scanned
340 for each core promoter types: TATA box (-100 to TSS), Y patch (-100 to +100), and Inr (-10 to
341 +10). Intergenic regions shorter than 100bps were excluded from analysis. Each regions were
342 scanned for their respective motifs according using motif files as well as methods outlined in
343 (Jores et al., 2021). A motif is considered to be present when the relative motif scores are above
344 0.85.

345

346 Octamer Scan: Intergenic regions and 5'UTR sequences were trimmed based on the positions
347 relative to the TSS outlined in Yamamoto et al. 2009 (TATA, -45 to -18; Y Patch, -50 to +50;
348 CA, -35 to -1; GA, -35 to +75). Each region was scanned for the presence of octamer motifs
349 from the TATA, Y patch, GA, and CA lists outlined in Yamamoto et al. 2009. If the specified
350 region contained at least one motif for a given promoter type, it was labeled as positive.

351

352 *Ortholog Analysis*

353 (*Relevant files: 5_At_gene_ranking.Rmd, 6_Identifying_orthologs.Rmd,*

354 *7_Processing_orthologs.Rmd*)

355 The *Arabidopsis* transcriptome was filtered to only include primary transcripts, and mitochondria
356 as well as chloroplast transcripts were removed. Top 5% stable genes by CV, bottom 5% stable
357 genes by CV and a random set of 1343 genes (5%) were randomly selected.

358 Using biomaRt in R, the Ensembl and Phytozome databases were queried for orthologs for the
359 selected set of *Arabidopsis* genes for each species (Durinck et al., 2009). Orthologs from *Arachis*
360 *hypogaea*, *Cicer arietinum*, and *Solanum tuberosum* were retrieved from Phytozome, and the rest
361 of the species from Ensembl. For analysis in Figure3B, significance test of done by ANOVA
362 followed by Tukey's HSD. For each target gene that matched to an *Arabidopsis* transcript, only
363 the highest expressing transcript was kept. If an *Arabidopsis* transcript retrieved more than one
364 orthologs from a target species, these pairs of orthologs were removed from analysis. We only
365 kept orthologous gene groups that had a “change” in expression pattern, defined as crossing the
366 50th percentile CV, in two target species, and the remaining candidates were manually mapped
367 onto the phylogenetic tree to identify gene groups that had changes in expression pattern that are
368 consistent with the tree. This means having changes in expression pattern that are mostly found
369 in the same clade. Gene trees were built for these candidates using blast-align-tree
370 (<https://github.com/steinbrennerlab/blast-align-tree>) and the candidate lists were further trimmed
371 based on the gene trees to ensure a 1:1 relationship between all members in the gene group.

372

373 *Data availability*

374 All scripts and datasets necessary to perform the analysis in the article are available at
375 <https://doi.org/10.5061/dryad.9w0vt4bmk>
376

377 Acknowledgements

378 We thank Dr. Alexander Leydon, and Janet Solano Sanchez for careful reading of the
379 manuscript, and Dr. Adam Steinbrenner for advice on identifying orthologs. We also thank other
380 members of the Di Stilio, Imaizumi, Steinbrenner, and Nemhauser lab for their feedback on this
381 project. This work was supported by the National Science Foundation (IOS-1546873), the
382 National Institute of Health (R01-GM107084) and the Howard Hughes Medical Institute Faculty
383 Scholar Award.

384

385 Author Contributions

386 Experimental design and analysis by EJYY, CJM and JLN. Research performed by EJYY and
387 CJM. Manuscript written by EJYY, CJM and JLN.

388

389 References

390 Ali, S., & Kim, W.-C. (2019). A Fruitful Decade Using Synthetic Promoters in the Improvement
391 of Transgenic Plants. *Frontiers in Plant Science*, 10.
392 <https://doi.org/10.3389/fpls.2019.01433>

393 Andersson, R., & Sandelin, A. (2020). Determinants of enhancer and promoter activities of
394 regulatory elements. *Nature Reviews Genetics*, 21(2), Article 2.
395 <https://doi.org/10.1038/s41576-019-0173-8>

396 Belcher, M. S., Vu, K. M., Zhou, A., Mansoori, N., Agosto Ramos, A., Thompson, M. G.,
397 Scheller, H. V., Loqué, D., & Shih, P. M. (2020). Design of orthogonal regulatory
398 systems for modulating gene expression in plants. *Nature Chemical Biology*, 16(8), 857–
399 865. <https://doi.org/10.1038/s41589-020-0547-4>

400 Biłas, R., Szafran, K., Hnatuszko-Konka, K., & Kononowicz, A. K. (2016). Cis-regulatory
401 elements used to control gene expression in plants. *Plant Cell, Tissue and Organ Culture*
402 (PCTOC), 127(2), 269–287. <https://doi.org/10.1007/s11240-016-1057-7>

403 Bray, N. L., Pimentel, H., Melsted, P., & Pachter, L. (2016). Near-optimal probabilistic RNA-seq
404 quantification. *Nature Biotechnology*, 34(5), Article 5. <https://doi.org/10.1038/nbt.3519>

405 Brian, L., Warren, B., McAtee, P., Rodrigues, J., Nieuwenhuizen, N., Pasha, A., David, K. M.,
406 Richardson, A., Provart, N. J., Allan, A. C., Varkonyi-Gasic, E., & Schaffer, R. J. (2021).
407 A gene expression atlas for kiwifruit (*Actinidia chinensis*) and network analysis of
408 transcription factors. *BMC Plant Biology*, 21(1), 121. <https://doi.org/10.1186/s12870-021-02894-x>

409 Brophy, J. A. N., Magallon, K. J., Duan, L., Zhong, V., Ramachandran, P., Kniazev, K., &
410 Dinneny, J. R. (2022). Synthetic genetic circuits as a means of reprogramming plant
411 roots. *Science*, 377(6607), 747–751. <https://doi.org/10.1126/science.abo4326>

412 Brückner, K., Schäfer, P., Weber, E., Grützner, R., Marillonnet, S., & Tissier, A. (2015). A
413 library of synthetic transcription activator-like effector-activated promoters for
414 coordinated orthogonal gene expression in plants. *The Plant Journal*, 82(4), 707–716.
415 <https://doi.org/10.1111/tpj.12843>

416 Cai, Y.-M., Kallam, K., Tidd, H., Gendarini, G., Salzman, A., & Patron, N. J. (2020). Rational
417 design of minimal synthetic promoters for plants. *Nucleic Acids Research*, 48(21),
418 11845–11856. <https://doi.org/10.1093/nar/gkaa682>

419 Cunningham, F., Allen, J. E., Allen, J., Alvarez-Jarreta, J., Amode, M. R., Armean, I. M.,
420 Austine-Orimoloye, O., Azov, A. G., Barnes, I., Bennett, R., Berry, A., Bhai, J., Bignell,
421 A., Billis, K., Boddu, S., Brooks, L., Charkhchi, M., Cummins, C., Da Rin Fioretto,
422 L., ... Flieck, P. (2021). Ensembl 2022. *Nucleic Acids Research*, 50(D1), D988–D995.
423 <https://doi.org/10.1093/nar/gkab1049>

424 Das, S., & Bansal, M. (2019). Variation of gene expression in plants is influenced by gene
425 architecture and structural properties of promoters. *PLOS ONE*, 14(3), e0212678.
426 <https://doi.org/10.1371/journal.pone.0212678>

427 Donczew, R., & Hahn, S. (2017). Mechanistic Differences in Transcription Initiation at TATA-
428 Less and TATA-Containing Promoters. *Molecular and Cellular Biology*, 38(1), e00448-
429 17. <https://doi.org/10.1128/MCB.00448-17>

430 Durinck, S., Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for the
431 integration of genomic datasets with the R/Bioconductor package biomaRt. *Nature
432 Protocols*, 4(8), Article 8. <https://doi.org/10.1038/nprot.2009.97>

433

434 Ewels, P., Magnusson, M., Lundin, S., & Käller, M. (2016). MultiQC: Summarize analysis
435 results for multiple tools and samples in a single report. *Bioinformatics*, 32(19), 3047–
436 3048. <https://doi.org/10.1093/bioinformatics/btw354>

437 Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros, T., Dirks,
438 W., Hellsten, U., Putnam, N., & Rokhsar, D. S. (2012). Phytozome: A comparative
439 platform for green plant genomics. *Nucleic Acids Research*, 40(D1), D1178–D1186.
440 <https://doi.org/10.1093/nar/gkr944>

441 Haberle, V., & Stark, A. (2018). Eukaryotic core promoters and the functional basis of
442 transcription initiation. *Nature Reviews Molecular Cell Biology*, 19(10), Article 10.
443 <https://doi.org/10.1038/s41580-018-0028-8>

444 Jores, T., Tonnies, J., Wrightsman, T., Buckler, E. S., Cuperus, J. T., Fields, S., & Queitsch, C.
445 (2021). Synthetic promoter designs enabled by a comprehensive analysis of plant core
446 promoters. *Nature Plants*, 7(6), 842–855. <https://doi.org/10.1038/s41477-021-00932-y>

447 Kagale, S., Koh, C., Nixon, J., Bollina, V., Clarke, W. E., Tuteja, R., Spillane, C., Robinson, S.
448 J., Links, M. G., Clarke, C., Higgins, E. E., Huebert, T., Sharpe, A. G., & Parkin, I. A. P.
449 (2014). The emerging biofuel crop *Camelina sativa* retains a highly undifferentiated
450 hexaploid genome structure. *Nature Communications*, 5, 3706.
451 <https://doi.org/10.1038/ncomms4706>

452 Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., Logacheva, M. D., & Penin, A. A. (2016).
453 A high resolution map of the *Arabidopsis thaliana* developmental transcriptome based on
454 RNA-seq profiling. *The Plant Journal*, 88(6), 1058–1070.
455 <https://doi.org/10.1111/tpj.13312>

456 Kudapa, H., Garg, V., Chitikineni, A., & Varshney, R. K. (2018). The RNA-Seq-based high
457 resolution gene expression atlas of chickpea (*Cicer arietinum* L.) reveals dynamic spatio-
458 temporal changes associated with growth and development. *Plant, Cell & Environment*,
459 41(9), 2209–2225. <https://doi.org/10.1111/pce.13210>

460 Li, H.-T., Luo, Y., Gan, L., Ma, P.-F., Gao, L.-M., Yang, J.-B., Cai, J., Gitzendanner, M. A.,
461 Fritsch, P. W., Zhang, T., Jin, J.-J., Zeng, C.-X., Wang, H., Yu, W.-B., Zhang, R., van der
462 Bank, M., Olmstead, R. G., Hollingsworth, P. M., Chase, M. W., ... Li, D.-Z. (2021).
463 Plastid phylogenomic insights into relationships of all flowering plant families. *BMC
464 Biology*, 19(1), 232. <https://doi.org/10.1186/s12915-021-01166-2>

465 Libault, M., Farmer, A., Joshi, T., Takahashi, K., Langley, R. J., Franklin, L. D., He, J., Xu, D.,
466 May, G., & Stacey, G. (2010). An integrated transcriptome atlas of the crop model
467 *Glycine max*, and its use in comparative analyses in plants. *The Plant Journal*, 63(1), 86–
468 99. <https://doi.org/10.1111/j.1365-313X.2010.04222.x>

469 Loraine, A. E., McCormick, S., Estrada, A., Patel, K., & Qin, P. (2013). RNA-Seq of
470 *Arabidopsis* Pollen Uncovers Novel Transcription and Alternative Splicing1[C][W][OA].
471 *Plant Physiology*, 162(2), 1092–1109. <https://doi.org/10.1104/pp.112.211441>

472 McCormick, R. F., Truong, S. K., Sreedasyam, A., Jenkins, J., Shu, S., Sims, D., Kennedy, M.,
473 Amirebrahimi, M., Weers, B. D., McKinley, B., Mattison, A., Morishige, D. T.,
474 Grimwood, J., Schmutz, J., & Mullet, J. E. (2018). The *Sorghum bicolor* reference
475 genome: Improved assembly, gene annotations, a transcriptome atlas, and signatures of
476 genome organization. *The Plant Journal*, 93(2), 338–354.
477 <https://doi.org/10.1111/tpj.13781>

478 Mejía-Guerra, M. K., Li, W., Galeano, N. F., Vidal, M., Gray, J., Doseff, A. I., & Grotewold, E.
479 (2015). Core Promoter Plasticity Between Maize Tissues and Genotypes Contrasts with

480 Predominance of Sharp Transcription Initiation Sites[OPEN]. *The Plant Cell*, 27(12),
481 3309–3320. <https://doi.org/10.1105/tpc.15.00630>

482 Molina, C., & Grotewold, E. (2005). Genome wide analysis of Arabidopsis core promoters. *BMC*
483 *Genomics*, 6, 25. <https://doi.org/10.1186/1471-2164-6-25>

484 Moreno-Giménez, E., Selma, S., Calvache, C., & Orzáez, D. (2022). *GB_SynP: A modular*
485 *dCas9-regulated synthetic promoter collection for fine-tuned recombinant gene*
486 *expression in plants* (p. 2022.04.28.489949). bioRxiv.
487 <https://doi.org/10.1101/2022.04.28.489949>

488 Patron, N. J. (2020). Beyond natural: Synthetic expansions of botanical form and function. *New*
489 *Phytologist*, 227(2), 295–310. <https://doi.org/10.1111/nph.16562>

490 Penin, A. A., Klepikova, A. V., Kasianov, A. S., Gerasimov, E. S., & Logacheva, M. D. (2019).
491 Comparative Analysis of Developmental Transcriptome Maps of *Arabidopsis thaliana*
492 and *Solanum lycopersicum*. *Genes*, 10(1), 50. <https://doi.org/10.3390/genes10010050>

493 Potato Genome Sequencing Consortium, Xu, X., Pan, S., Cheng, S., Zhang, B., Mu, D., Ni, P.,
494 Zhang, G., Yang, S., Li, R., Wang, J., Orjeda, G., Guzman, F., Torres, M., Lozano, R.,
495 Ponce, O., Martinez, D., De la Cruz, G., Chakrabarti, S. K., ... Visser, R. G. F. (2011).
496 Genome sequence and analysis of the tuber crop potato. *Nature*, 475(7355), 189–195.
497 <https://doi.org/10.1038/nature10158>

498 Ramírez-González, R. H., Borrill, P., Lang, D., Harrington, S. A., Brinton, J., Venturini, L.,
499 Davey, M., Jacobs, J., van Ex, F., Pasha, A., Khedikar, Y., Robinson, S. J., Cory, A. T.,
500 Florio, T., Concia, L., Juery, C., Schoonbeek, H., Steuernagel, B., Xiang, D., ... Uauy, C.
501 (2018). The transcriptional landscape of polyploid wheat. *Science (New York, N.Y.)*,
502 361(6403), eaar6089. <https://doi.org/10.1126/science.aar6089>

503 Schmitz, R. J., Grotewold, E., & Stam, M. (2022). Cis-regulatory sequences in plants: Their
504 importance, discovery, and future challenges. *The Plant Cell*, 34(2), 718–741.
505 <https://doi.org/10.1093/plcell/koab281>

506 South, P. F., Cavanagh, A. P., Liu, H. W., & Ort, D. R. (2019). Synthetic glycolate metabolism
507 pathways stimulate crop growth and productivity in the field. *Science*, 363(6422).
508 <https://doi.org/10.1126/science.aat9077>

509 Stelpflug, S. C., Sekhon, R. S., Vaillancourt, B., Hirsch, C. N., Buell, C. R., de Leon, N., &
510 Kaepller, S. M. (2016). An Expanded Maize Gene Expression Atlas based on RNA
511 Sequencing and its Use to Explore Root Development. *The Plant Genome*, 9(1),
512 plantgenome2015.04.0025. <https://doi.org/10.3835/plantgenome2015.04.0025>

513 Sudheesh, S., Sawbridge, T. I., Cogan, N. O., Kennedy, P., Forster, J. W., & Kaur, S. (2015). De
514 novo assembly and characterisation of the field pea transcriptome using RNA-Seq. *BMC*
515 *Genomics*, 16(1), 611. <https://doi.org/10.1186/s12864-015-1815-7>

516 Vlasova, A., Capella-Gutiérrez, S., Rendón-Anaya, M., Hernández-Oñate, M., Minoche, A. E.,
517 Erb, I., Câmara, F., Prieto-Barja, P., Corvelo, A., Sanseverino, W., Westergaard, G.,
518 Dohm, J. C., Pappas, G. J., Saburido-Alvarez, S., Kedra, D., Gonzalez, I., Cozzuto, L.,
519 Gómez-Garrido, J., Aguilar-Morón, M. A., ... Guigó, R. (2016). Genome and
520 transcriptome analysis of the Mesoamerican common bean and the role of gene
521 duplications in establishing tissue and temporal specialization of genes. *Genome Biology*,
522 17(1), 32. <https://doi.org/10.1186/s13059-016-0883-6>

523 Wu, Y., Wang, Y., Li, J., Li, W., Zhang, L., Li, Y., Li, X., Li, J., Zhu, L., & Wu, G. (2014).
524 Development of a general method for detection and quantification of the P35S promoter

525 based on assessment of existing methods. *Scientific Reports*, 4(1), Article 1.
526 <https://doi.org/10.1038/srep07358>

527 Yamamoto, Y. Y., Ichida, H., Matsui, M., Obokata, J., Sakurai, T., Satou, M., Seki, M.,
528 Shinozaki, K., & Abe, T. (2007). Identification of plant promoter constituents by analysis
529 of local distribution of short sequences. *BMC Genomics*, 8(1), 67.
530 <https://doi.org/10.1186/1471-2164-8-67>

531 Yamamoto, Y. Y., Yoshioka, Y., Hyakumachi, M., & Obokata, J. (2011). Characteristics of Core
532 Promoter Types with respect to Gene Structure and Expression in *Arabidopsis thaliana*.
533 *DNA Research: An International Journal for Rapid Publication of Reports on Genes and*
534 *Genomes*, 18(5), 333–342. <https://doi.org/10.1093/dnare/dsr020>

535 Yamamoto, Y. Y., Yoshitsugu, T., Sakurai, T., Seki, M., Shinozaki, K., & Obokata, J. (2009).
536 Heterogeneity of *Arabidopsis* core promoters revealed by high-density TSS analysis. *The*
537 *Plant Journal: For Cell and Molecular Biology*, 60(2), 350–362.
538 <https://doi.org/10.1111/j.1365-313X.2009.03958.x>

539 Yang, E. J. Y., & Nemhauser, J. L. (2022). *Expanding the synthetic biology toolbox with a*
540 *library of constitutive and repressible promoters* (p. 2022.10.10.511673). bioRxiv.
541 <https://doi.org/10.1101/2022.10.10.511673>

542 Yano, R., Nonaka, S., & Ezura, H. (2018). Melonet-DB, a Grand RNA-Seq Gene Expression
543 Atlas in Melon (*Cucumis melo* L.). *Plant and Cell Physiology*, 59(1), e4.
544 <https://doi.org/10.1093/pcp/pcx193>

545 Yao, S., Jiang, C., Huang, Z., Torres-Jerez, I., Chang, J., Zhang, H., Udvardi, M., Liu, R., &
546 Verdier, J. (2016). The *Vigna unguiculata* Gene Expression Atlas (VuGEA) from de
547 novo assembly and quantification of RNA-seq data provides insights into seed maturation
548 mechanisms. *The Plant Journal: For Cell and Molecular Biology*, 88(2), 318–327.
549 <https://doi.org/10.1111/tpj.13279>

550 Zhou, A., Kirkpatrick, L. D., Ornelas, I. J., Washington, L. J., Hummel, N. F. C., Gee, C. W.,
551 Tang, S. N., Barnum, C. R., Scheller, H. V., & Shih, P. M. (2023). A Suite of
552 Constitutive Promoters for Tuning Gene Expression in Plants. *ACS Synthetic Biology*,
553 12(5), 1533–1545. <https://doi.org/10.1021/acssynbio.3c00075>

554

555