

1 **Simultaneous LC-MS determination of glucose regulatory
2 peptides secreted by stem cell-derived islet organoids**

3 Christine Olsen^{1,2}, Chencheng Wang^{2,3}, Aleksandra Aizenshtadt², Shadab
4 Abadpour^{2,3}, Elsa Lundanes¹, Frøydis Sved Skottvoll⁴, Alexey Golovin⁵, Mathias
5 Busek², Stefan Krauss^{2,5}, Hanne Scholz^{2,3}, and Steven Ray Wilson^{2,3*}

6

7 ¹ Department of Chemistry, University of Oslo, Blindern, Oslo, Norway

8 ² Hybrid Technology Hub-Centre of Excellence, Institute of Basic Medical Sciences,
9 Faculty of Medicine, University of Oslo, Oslo, Norway

10 ³ Department of Transplant Medicine and Institute for Surgical Research, Oslo
11 University Hospital, Oslo, Norway

12 ⁴ Department of Smart Sensors and Microsystems, SINTEF Digital, Oslo, Norway

13 ⁵ Department of Immunology and Transfusion Medicine, Oslo University Hospital,
14 Oslo, Norway

15

16 *Correspondence should be addressed to the following author(s):

17 Prof. Steven Ray Wilson

18 Department of Chemistry

19 University of Oslo

20 Postboks 1033, Blindern 0315 Oslo

21 s.r.h.wilson@kjemi.uio.no.

22

23 **Keywords:** *Glucose regulatory hormones, liquid chromatography-tandem mass
24 spectrometry, organ-on-chip, stem cell-derived islet organoids*

25

39 **Abstract**

40 For studying stem cell-derived islet organoids (SC-islets) in an organ-on-chip
41 platform, we have developed a reversed phase liquid chromatography tandem mass
42 spectrometry (RPLC-MS/MS) method allowing for simultaneous determination of
43 insulin, somatostatin-14, and glucagon, with improved matrix robustness compared
44 to earlier methodology. Combining phenyl/hexyl-C18 separations using 2.1 mm inner
45 diameter LC columns and triple quadrupole mass spectrometry, identification and
46 quantification were secured with negligible variance in retention time and
47 quantifier/qualifier ratios, negligible levels of carry-over (< 2%), and sufficient
48 precision ($\pm 10\%$ RSD) and accuracy ($\pm 15\%$ relative error) with and without use of
49 internal standard. The here developed RPLC-MS/MS method showed that the SC-
50 islets have an insulin response dependent on glucose concentration, and the SC-
51 islets produce and release somatostatin-14 and glucagon. The RPLC-MS/MS
52 method for these peptide hormones was compatible with an unfiltered off-line sample
53 collection from SC-islets cultivated on a pump-less, recirculating organ-on-chip
54 (rOoC) platform. The SC-islets background secretion of insulin was not significantly
55 different on the rOoC device compared to a standard cell culture well-plate. Taken
56 together, RPLC-MS/MS is well suited for multi-hormone measurements of SC-islets
57 on an organ-on-chip platform.

58 1 Introduction

59 The development of organoids, i.e. laboratory-grown 3D organ models, is a rapidly
60 growing field with broad implications on biomedical research [1, 2]. By combining
61 organoids with microfluidics in an organ-on-chip (OoC) device, it has been possible
62 to improve aspects of organ functionality *in vitro* compared to static 3D culture
63 systems [3, 4]. Our research group focuses on applying separation science and
64 mass spectrometry technology for studying metabolism of organoids under static
65 conditions and on OoC devices [5, 6].

66 Pancreatic islets are composed of several endocrine cells, the majority of the cells
67 being insulin-producing beta cells, somatostatin-14-producing delta cells, and
68 glucagon-producing alpha cells [7]. The precise regulation of glucose homeostasis is
69 controlled by the hormone secretion from these cells [8]. In type 1 and type 2
70 diabetes mellitus, both insulin secretion and glucagon secretion are impaired [9, 10].
71 Somatostatin-14 is a paracrine inhibitor of the secretion of insulin and glucagon,
72 however, the role of somatostatin-14 in diabetes is not yet fully understood [11].

73 Stem cell-derived pancreatic islet organoids (SC-islets) are an emerging alternative
74 for disease modeling of diabetes and cell replacement therapy [12, 13]. Similar to
75 natural islets, SC-islets differentiated from embryonic stem cells consist of multiple
76 types of endocrine cells [14, 15]. SC-islets should therefore be suitable for disease
77 modeling and may serve as a source for islet transplantation in beta cell replacement
78 therapy for type 1 diabetes patients [13, 15]. Another important hormone produced in
79 the pancreatic islets is urocortin-3, which is a general maturation marker for both
80 alpha and beta cells in humans [16, 17]. Urocortin-3 would also be beneficial to study
81 in disease modelling, as it is a marker for dedifferentiated beta cells under diabetic
82 conditions (i.e. altered phenotype with loss of insulin capabilities) [17].

83 The characterization of SC-islets, both under static conditions and on-chip, would
84 benefit from a sensitive and robust methodology for simultaneous determination of
85 multiple hormones. We have previously developed a sensitive reversed phase liquid
86 chromatography – tandem mass spectrometry (RPLC-MS/MS) method for
87 measuring insulin secreted from SC-islets [18]. However, we experienced limitations
88 regarding sample matrix compatibility, i.e. the method was compatible with Krebs
89 buffer (a balanced salt solution used to mimic physiological conditions), but not
90 compatible with cell medium commonly applied in cultivation of organoids. We

91 hypothesized that, by improving the LC separation, the method could be improved to
92 also include other hormones and be suitable for several biologically relevant sample
93 matrices.

94 We here describe an expanded and more versatile RPLC-MS/MS method for
95 simultaneous determination of insulin, somatostatin-14, and glucagon secreted by
96 SC-islets, and show that the method is compatible with supernatant collected from
97 SC-islets cultivated in a pump-less, recirculating organ-on-chip (rOoC) device [4].
98 We show that the SC-islets display an insulin response that is dependent on glucose
99 concentrations. In addition, we were able to detect and quantify the release of
100 somatostatin-14 and glucagon from the SC-islets, confirming that the SC-islets
101 contain functional beta-, delta-, and alpha cells.

102

103 **2 Materials and methods**

104 **2.1 Chemicals and solutions**

105 Acetonitrile (ACN, LC-MS grade), bovine serum albumin (BSA, \geq 98%), dimethyl
106 sulfoxide (DMSO, \geq 99.7%), formic acid (FA, 98%), insulin from bovine pancreas
107 (HPLC grade), synthetic glucagon (\geq 95%, human HPLC grade), recombinant insulin
108 human (\geq 98%), somatostatin-14 (\geq 97%, human HPLC grade), and urocortin-3 (\geq
109 97%, human HPLC grade) were all purchased from Sigma-Aldrich. Taxonomy will
110 only be indicated for insulin, as all other peptides have human origin. Water (LC-MS
111 grade), and methanol (MeOH, LC-MS grade) were obtained from VWR Chemicals
112 (Radnor, PA, USA). GibcoTM basal cell medium MCDB131, GlutaMAXTM supplement
113 (cat. no. 35050061) and minimum essential medium non-essential amino acids
114 (MEM NEAA) stock solution by GibcoTM was acquired from Thermo Fisher Scientific
115 (Waltham, MA, USA).

116 Krebs buffer was prepared in-house and consists of the following chemicals of
117 analytical grade: 10mM HEPES, 128mM NaCl, 5mM KCl, 2.7mM CaCl₂, 1.2mM
118 MgSO₄, 1mM Na₂HPO₄, 1.2mM KH₂PO₄, 5mM NaHCO₃, and 0.1% BSA.

119 Islet maturation cell medium was prepared in-house by adding 1%
120 Penicillin/Streptavidin, 2% BSA, 10 μ g/mL of heparin, 10 μ M of ZnSO₄, 0.1% of
121 trace elements A and B stock solution, 1% of GlutaMAXTM stock solution and 1% of
122 MEM NEAA stock solution to basal MCDB131 cell medium.

123

124 **2.2 Preparation of individual hormone solutions and calibration
125 solutions**

126 Aqueous water solutions of human insulin, somatostatin-14, glucagon, urocortin-3,
127 and bovine insulin (applied as internal standard for human insulin) were prepared
128 individually by dissolving 1 mg of peptide powder in 1 mL of 0.1% FA in water. The 1
129 mg/mL stock solutions were further diluted to working solutions consisting of 10
130 ng/ μ L of each individual peptide, and divided into 100 μ L aliquots. Aliquots of human
131 and bovine insulin were kept at -20 °C until use or for a maximum of three months.
132 Aliquots of somatostatin-14, glucagon, and urocortin-3 were kept at -80 °C until use.

133 All solutions containing proteins were prepared in protein low binding tubes from
134 Sarstedt (Nümbrecht, Germany).
135 Separate standard solutions of 10 ng/µL of somatostatin-14, glucagon, and urocortin-
136 3 in a 1+1 mixture of ACN and water were prepared for direct injections on the MS.
137 Solutions with human and bovine insulin in Krebs buffer and islet maturation cell
138 medium were prepared in the same manner as described for water-based solutions,
139 with the exception being the amount of FA: 0.5% FA in Krebs buffer and 1% FA in
140 cell medium. Krebs buffer and cell medium solutions were spiked with separate
141 water-based solutions of 10 ng/µL somatostatin-14, glucagon, and urocortin-3 and
142 further diluted with the appropriate matrix to obtain the desired concentrations.
143 For assessment of the LC-MS method and the preparation of calibration solutions,
144 freshly thawed working solutions of the peptides were further diluted to the desired
145 pg/µL concentration with the experiment appropriate matrix, and spiked with bovine
146 insulin to a concentration of 5 pg/µL unless stated otherwise. Quality controls (QC)
147 were prepared in the same manner.
148

149 **2.3 Cell culture, differentiation, and glucose stimulated insulin 150 secretion for stem cell-derived islets**

151 The SC-islets examined in this study, are prepared according to a previously
152 described differentiation protocol [18]. In brief, SC-islets were generated from the
153 human pluripotent cell line H1 (WA01, WiCell, Madison, WI, USA) with a stepwise
154 differentiation protocol. Following the differentiation, the cells were aggregated as
155 spheroids on an orbit-shaker for 7 days prior to analysis. For static conditions in
156 Krebs buffer, batches of 30 SC-islets were placed in 24-well cell culture plates,
157 hormone secretion was assessed by exposure to: 1 mL Krebs buffer with 2 mM
158 glucose for 60 min at 37 °C, 1 mL Krebs buffer with 20 mM glucose for 60 min at 37
159 °C, and 1 mL Krebs buffer containing 20 mM glucose plus 30 mM KCl for 30 min at
160 37 °C. Up to 900 µL of supernatant was collected.
161 Insulin in the supernatant was quantified with human insulin enzyme-linked
162 immunosorbent assay (ELISA) kit (Mercodia, Uppsala, Sweden) and with the LC-
163 MS/MS method described in this study. Prior to injection on the LC-MS/MS system,

164 the collected supernatants were spiked with a total of 5 pg/µL of bovine insulin and
165 100% FA was added to a total of 0.5%.

166 **2.4 Adsorption experiments on a poly(methylmethacrylate)-based**
167 **organ-on-chip platform**

168 Experiments were performed on the poly(methylmethacrylate) (PMMA)-based rOoC
169 platform, which was fabricated in-house using laser-cutting and thermobonding as
170 previously described in [4]. The rOoC platform consists of two nested circuits of
171 perfusion channels separated with two organoids chambers. Channels are separated
172 from the organoid chambers by a step reservoir with a height of 300 µm.

173 To evaluate surface adsorption in the rOoC platform, a solution consisting of 2 ng/µL
174 of human insulin in Krebs buffer was incubated on-chip and in standard cell culture
175 24-wells plate from Corning (Corning, NY, USA) for 20 hours, and compared to an
176 aliquot stored in the freezer.

177

178 **2.5 Background secretion experiments from stem cell-derived**
179 **islets cultivated on-chip and in static system**

180 SC-islets were cultured in islet maturation cell medium in a rOoC platform with a
181 modified design compared to [4], where the chamber for SC-islets was placed under
182 the perfusion channel to facilitate media and oxygen exchange. In the organoids
183 chamber, batches of 3-6 SC-islets were embedded in extracellular matrix (Geltrex,
184 Gibco, cat. n A1569601) and cultured for 7 days under perfusion. The cell medium in
185 the channels was collected after 24 h of incubation on day 5 and day 7. In the off-
186 chip control culture, batches of 14-19 SC-islets were cultured in 24-well plates for 7
187 days, and cell medium was collected after 24 h of incubation on day 5 and day 7.

188

189 **2.6 Gel electrophoresis**

190 A water-based solution consisting of 10 ng/µL human insulin and 10 ng/µL BSA was
191 used as a protein marker during gel electrophoresis. To 30 µL of the sample, 10 µL
192 of Bolt™ LDS sample buffer (4x) was added prior to heating at 70 °C for 10 min on a
193 Thermo-Shaker from Grant instruments (Shepreth, UK). The samples were loaded

194 with ultrafine pipettes, from VWR, onto a Bolt™ 4-12% 2-(bis(2-hydroxyethyl)amino)-
195 2-(hydroxymethyl)propane-1,3-diol (bis-tris) plus gel inserted in a mini gel tank. The
196 chamber was filled with Bolt™ 2-(N-morpholino)ethanesulfonic acid (MES) SDS
197 running buffer (20x), diluted to 1x with water. All Bolt™ products and the mini gel
198 tank were from Thermo Fischer Scientific. For 20 min, a voltage of 200 V was
199 applied to the gel by a power supply from Delta Elektronika (Zierikzee, Netherlands).
200 Subsequently, the gel was washed four times with water for five minutes on a
201 shaker. Following the wash, the gel was covered with Imperial™ protein stain (from
202 Thermo Fischer Scientific) and left on shaking for 15 min. Before photographing the
203 gel using a smartphone camera, the gel was washed with water four times for five
204 minutes, followed by washing with gentle shaking in water overnight (18 hours).

205

206 2.7 Liquid chromatography - mass spectrometry instrumentation

207 The LC-MS system applied in this study has been used for insulin determination
208 previously [18]. In brief, the conventional LC system was a modified Agilent 1100
209 series pump (Santa Clara, CA, USA) employing only shielded fused silica connectors
210 (shielded fused silica nanoViper™ sheated in polyetheretherketone tubing from
211 Thermo Fisher). Injection was achieved by coupling a 6-port-2-position valve, with a
212 50 μ m inner diameter (id) x 550 mm (1.08 μ L) shielded fused silica loop or a 20 μ L
213 shielded fused silica loop. A 250 μ L glass syringe was used for injection, following
214 injection the syringe and the loop was washed by flushing the syringe three times
215 with 50/50 MeOH/water, before washing the loop twice with the MeOH/water
216 solution. Prior to next injection, the syringe was washed once with 0.1% FA in water
217 and the loop was washed twice with 0.1% FA in water. The column set-up consisted
218 of an Accucore™ phenyl/hexyl guard column (2.1 mm id x 10 mm, 2.6 μ m, 80 \AA)
219 attached within a Uniclude drop-in holder to the InfinityLab Poroshell EC-C18
220 separation column (2.1 mm id x 50 mm, 2.7 μ m, 120 \AA).

221 The applied MS was a TSQ Quantiva triple quadrupole MS equipped with a heated
222 electrospray ionization source (H-ESI-II probe) both from Thermo Fisher. The
223 vaporizer temperature was set to 210 °C, and a spray voltage of 3.5 kV was applied
224 to the H-ESI-II probe. Sheath gas was set at 20 Arb (approx. 2.7 L/min), while

225 auxiliary gas was set at 9 Arb (approx. 7.5 L/min), and sweep gas was not applied.
226 The ion transfer tube temperature was kept at 275 °C.

227

228 **2.8 Optimized gradient settings for LC separation**

229 The mobile phase reservoirs contained 0.1% FA in water added 1% DMSO and
230 0.1% FA in ACN added 1% DMSO, respectively. A 150 µL/min solvent gradient was
231 started at 1% B, quickly increased to 25% B in 1 min, then linearly increased to
232 32.5% B in 6 min, and kept at 32.5% B for 4 min. In the following step, the %B was
233 quickly increased to 80% B and kept at 80% for 2 min, before quickly decreased to
234 40% B, and kept at 40% B for 3 min, before being further decreased to 1% B and
235 kept at 1% B for 7 min. The gradient had a total runtime of 23 min, including column
236 re-equilibration for 7 min at 1% B.

237

238 **2.9 Alternative guard and separation column**

239 Other columns examined in this study included an Accucore™ C18 guard column
240 (2.1 mm id x 10 mm, 2.6 µm, 80 Å) from Thermo Fisher, and a Cortecs Premier C18
241 separation column (2.1 mm id x 10 mm, 2.7 µm, 90 Å) from Waters (Milford, MA,
242 USA).

243

244 **2.10 Settings for selected reaction monitoring**

245 The collision energies and radio frequency (RF) lens voltage were optimized using
246 the compound optimization provided in Xcalibur. The transitions, used in selected
247 reaction monitoring (SRM), including collision energies and RF lens voltage, are
248 listed in **Table 1**. The collision gas (argon) pressure in q2 was 4.0 mTorr and the
249 cycle time was set to 1 sec (equal to 77 ms or 91 ms dwell time per transition with
250 and without urocortin-3, respectively).

251

252 **Table 1:** SRM transitions used for human insulin, bovine insulin (internal standard for human
253 insulin), human somatostatin-14, human glucagon, and human urocortin-3 including
254 quantifier/qualifier status, precursor ion, product ion, and collision energy. The settings
255 applied for human urocortin-3 during method development are also included.

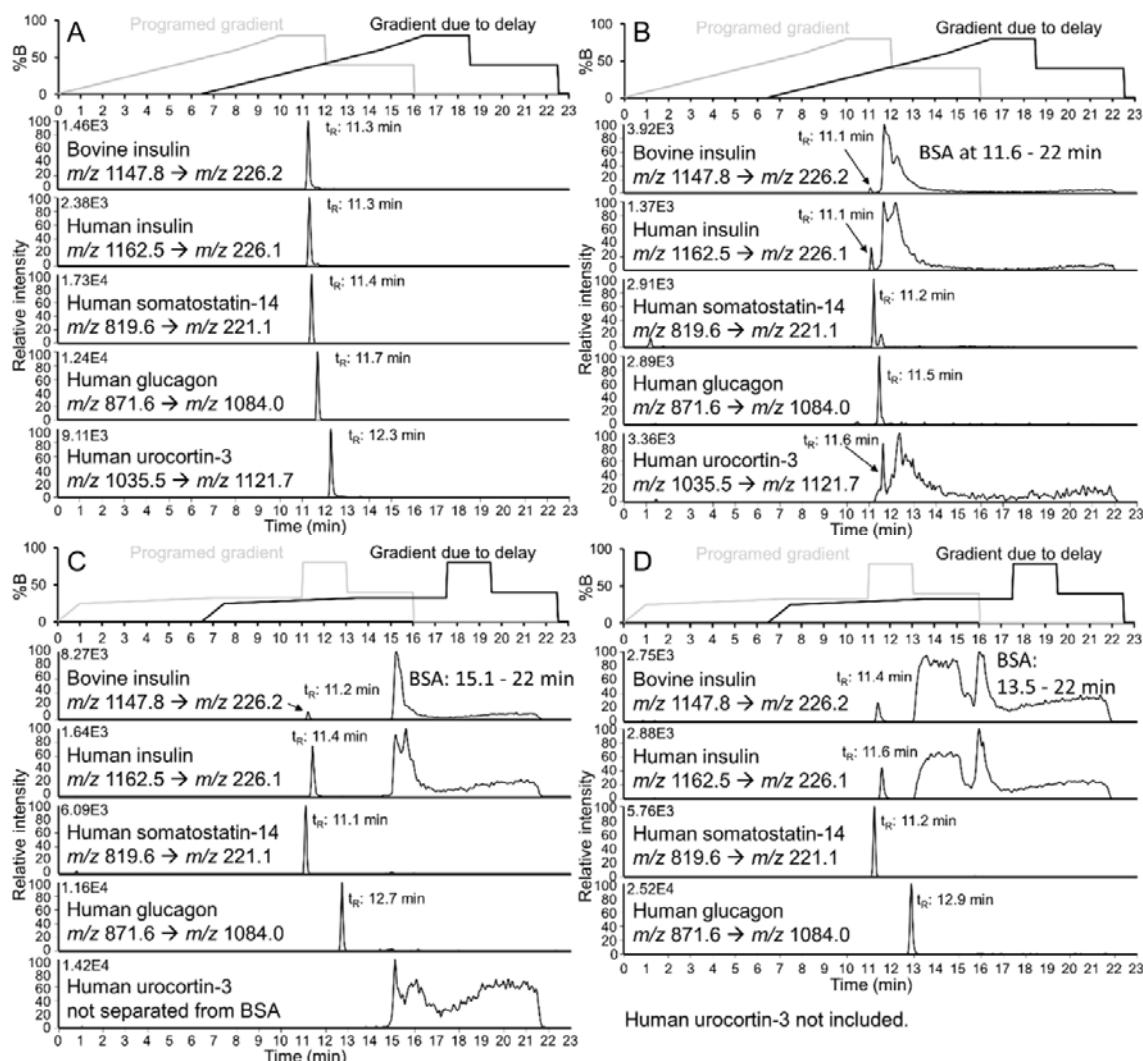
Compound	Identity	Precursor	Product	ion	Collision	RF	lens
		ion (<i>m/z</i>)	(<i>m/z</i>)		energy (V)		(V)
Human insulin	Quantifier	1162.5	226.1	41	210		
	Qualifiers	1162.5	345.1; 1159.0	42; 22	210		
Bovine insulin	Quantifier	1147.8	226.2	41	210		
	Qualifiers	1147.8	315.2; 1144.5	42; 20	210		
Human somatostatin-14	Quantifier	819.6	221.1	40	182		
	Qualifier	819.6	129.1	38	182		
Human glucagon	Quantifier	871.6	1084.0	26	171		
	Qualifiers	871.6	1040.4; 305.1	27; 43	171		
Human Urocortin-3	Method development	1035.5	1121.7; 1193.1	29; 27	174		

256

257 3 Results and discussion

258

259 3.1 Optimized gradient separation allowed for simultaneous 260 determination of insulin, somatostatin-14 and glucagon in 261 bovine serum albumin rich matrices


262 Initial MS/MS settings for somatostatin-14, glucagon, and urocortin-3 were
263 established by direct injection: m/z 819.6 \rightarrow m/z 221.1, 129.1 (somatostatin-14), m/z
264 871.6 \rightarrow m/z 1084.0, 1040.4, 305.1 (glucagon), and m/z 1035.5 \rightarrow m/z 1121.7,
265 1193.1 (urocortin-3). The MS/MS settings for human and bovine insulin were
266 selected previously to be: m/z 1162.5 (+5) \rightarrow m/z 226.1, 345.0, 1159.0 and m/z
267 1147.8 (+5) \rightarrow m/z 226.2, 315.2, 1144.5, respectively [18]. The four analytes and the
268 internal standard were successfully separated in a water-based solution with the
269 originally applied gradient (8 min separation window from 1% B to 60% B [18]),
270 shown in **Figure 1A**. However, when the analytes were dissolved in Krebs buffer, the
271 separation of urocortin-3 from BSA was not possible, see **Figure 1B**. BSA is the
272 main component in both Krebs buffer and in the cell medium that is used for culturing
273 SC-islets, containing 0.1% BSA and 2% BSA, respectively. BSA produces a
274 multitude of interfering peaks in the m/z range from 1000-1500 [18]. Effort was put
275 towards optimization of the gradient, in order to achieve better separation of the
276 peptide hormones from BSA.

277 By applying a shallow gradient from 25% B to 32.5% B, with an 1.25% B increase
278 per minute, followed by an isocratic step at 32.5% B for 4 minutes, the BSA
279 interference was removed from the insulins, somatostatin-14, and glucagon in both
280 Krebs buffer (**Figure 1C**) and cell medium (**Figure 1D**). Urocortin-3 remained
281 impossible to separate from the BSA in the Krebs buffer in the current set-up, as
282 shown in **Figure 1C**, and was not examined further in this study (see Conclusions
283 sections for further discussion). In addition, the collision gas pressure was increased
284 from 2.5 mTorr used in the original method to 4.0 mTorr due to significantly
285 increased peak area for human insulin and glucagon, see **SI-1** for more details.

286 In conclusion, by optimizing the applied gradient in the LC separation, the existing
287 RPLC-MS/MS method could be improved to include three of the main hormones

288 produced in islets: Insulin, somatostatin-14, and glucagon, while not being limited by
289 the sample matrix. However, the current column set-up was not suitable for the
290 inclusion of a more retained hormone, urocortin-3, which was not separated from the
291 matrix components.

292

293

294 **Figure 1:** Separation of a peptide mix consisting of bovine insulin, human insulin,
295 somatostatin-14, glucagon and urocortin-3 in different sample matrices. With the original
296 steep gradient: (A) 1.08 μL injection of 250 pg/μL peptide mix in 0.1% FA in water, and (B)
297 20 μL injection of 2 pg/μL peptide mix in 0.5% FA in Krebs buffer. With an optimized shallow
298 gradient: (C) 20 μL injection of 5 pg/μL peptide mix in 0.5% FA in Krebs buffer, and (D) 20
299 μL injection of 5 pg/μL peptide mix in 1.0% FA in cell medium. The first panel above each
300 separation shows the programmed gradient and the gradient due to system delay. The system

301 delay of 6.5 min in the gradient delivery was estimated by running the analysis under non-
302 retained conditions starting at 60% B, see **SI-2** for more details.

303 **3.1.1 Guard cartridge: not one-size-fits-all for determination of**
304 **intact peptides**

305 In the previous section and in Olsen et al. [18], an Accucore phenyl/hexyl guard
306 cartridge (80 Å, 2.6 µm particles, 2.1 mm inner diameter x 10 mm) combined with a
307 Poroshell EC-C18 separation column (120 Å, 2.6 µm particles, 2.1 mm inner
308 diameter x 50 mm) were applied in the LC-MS system. Traditionally, the guard
309 column is packed with the same particles and stationary phase as the separation
310 column. However, it is commonly accepted that combining different stationary
311 phases on a two-column set-up, with a trapping column and a separation column,
312 can improve the separation [19]. The combination of an Accucore phenyl/hexyl
313 trapping column and Poroshell C18 separation column has previously been
314 successfully applied for determination of insulin in urine matrix [20].

315 To examine in detail if the phenyl/hexyl guard cartridge significantly affected the
316 separation, the separation was compared with and without the phenyl/hexyl guard. In
317 addition, an equivalent Accucore C18 guard cartridge (80 Å, 2.6 µm particles, 2.1
318 mm inner diameter x 10 mm) was assessed as an alternative to the phenyl/hexyl
319 guard. Asymmetry factors and peak areas obtained on different column set-ups for
320 the peptides are summarized in **Table 2**.

321 The asymmetry factor obtained for human insulin increased from 2.3 (N = 3,
322 technical replicates on LC-MS), **Figure 2A**) with the phenyl/hexyl guard to 5.6
323 (**Figure 2B**) on the C18 guard cartridge, and the peak area was reduced from $7.79 \times$
324 10^3 on the phenyl/hexyl to 6.71×10^3 on the C18. Without applying a guard cartridge,
325 the asymmetry factor for human insulin was 1.8 (**Figure 2C**) and the peak area was
326 8.05×10^3 . By one-factor analysis of variance (ANOVA), there was no significant
327 difference in the obtained peak area of human insulin with or without guard cartridge
328 or type of guard. However, the tailing effect for human insulin obtained on the C18
329 guard was significantly larger compared to that on the phenyl/hexyl guard or without
330 applying a guard. Additionally, there was no signal detected of human insulin in a
331 subsequent blank injection on the set-up without guard or with the phenyl/hexyl
332 guard, but the C18 guard contributed to 5% carry-over of human insulin.

333 For bovine insulin, the asymmetry factor was not significantly different for the various
334 column set-ups, however the peak area was significantly higher with the
335 phenyl/hexyl guard compared to the C18 guard. The peak area obtained with the

336 phenyl/hexyl guard was not significantly different to the peak areas obtained without
337 guard.

338 For somatostatin-14, the asymmetry was not significantly different for the different
339 column set-up, however, the peak area was significantly increased without a guard
340 cartridge being applied compared to the phenyl/hexyl guard, information summarized
341 in **Table 2**. There was no significant difference between the C18 and the
342 phenyl/hexyl guard or C18 and without guard applied concerning peak areas
343 obtained for somatostatin-14.

344 For glucagon, the peak areas were significantly higher when applying the
345 phenyl/hexyl guard cartridge compared to no guard cartridge applied or the C18
346 cartridge, while the asymmetry factor was not significantly different for the different
347 column set-ups, summarized in **Table 2**.

348 The differences in the obtained chromatographic performances show that there isn't
349 a "one-size-fits-all" approach when selecting guard cartridge for determination of
350 various intact peptides, and large effects for asymmetry factor and peak areas can
351 be seen based on changing the stationary phase. Based on our findings, it is hard to
352 conclude why the C18 guard cartridge caused dramatic tailing for human and bovine
353 insulin, and if there was an effect of having particles with smaller pore sizes in the
354 guard cartridge compared to the separation column (80 Å vs 120 Å). When
355 considering the use of guard cartridge, the LC-MS method was intended for
356 experiments with supernatant collected directly from SC-islets possibly containing
357 cell debris and particles, which would not be beneficial to inject directly onto the
358 more expensive separation column without the protection from a guard cartridge.

359 In conclusion, we continued to employ a phenyl/hexyl guard cartridge based on the
360 significantly higher peak areas obtained for glucagon and the guard cartridge's
361 protection of the separation column when analyzing unfiltered samples collected
362 directly from SC-islets.

363

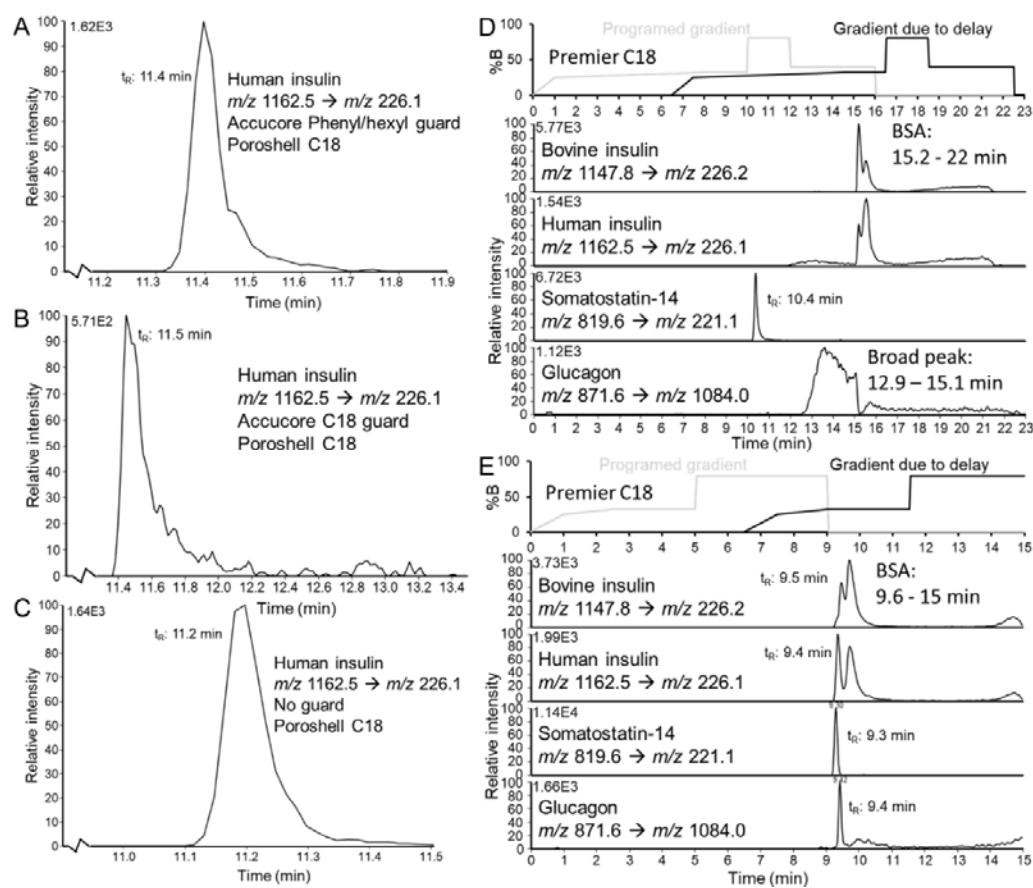
364 **Table 2:** Chromatographic performance by injection of a peptide mix consisting of 5 pg/µL of
365 bovine and human insulin, somatostatin-14, and glucagon. The obtained asymmetry factor
366 (A_s) and peak area of the peptides are shown for the following guard cartridge options:
367 Accucore phenyl/hexyl, Accucore C18, and no guard cartridge, combined with the Poroshell
368 EC-C18 separation column (N = 3).

Columns	Accucore phenyl/hexyl- Poroshell C18	Accucore C18- Poroshell C18	No guard- Poroshell C18
Bovine insulin			
A_s	1.9 (14% RSD)	4.6 (13% RSD)	2.2 (13% RSD)
Peak area	8.64×10^3 (13% RSD)	4.92×10^3 (6% RSD)	5.63×10^3 (6% RSD)
Human insulin			
A_s	2.3 (14% RSD)	5.6 (7% RSD)	1.8 (13% RSD)
Peak area	7.79×10^3 (6% RSD)	6.71×10^3 (3% RSD)	8.05×10^3 (5% RSD)
Somatostatin-14			
A_s	1.5 (2% RSD)	1.7 (19% RSD)	1.4 (4% RSD)
Peak area	1.70×10^4 (10% RSD)	1.99×10^4 (2% RSD)	2.30×10^4 (4% RSD)
Glucagon			
A_s	1.5 (22% RSD)	2.1 (10% RSD)	1.8 (8% RSD)
Peak area	5.97×10^4 (4% RSD)	4.44×10^4 (3% RSD)	4.57×10^4 (1% RSD)

369

370

371 **3.1.2 Success of intact hormone analysis is dependent on type of
372 separation column**


373 All three hormones and the internal standard have a minimum of one sulfur-
374 containing amino acid residue (i.e. cysteine and methionine), which may cause
375 adsorption on stainless steel column housing and contribute to band broadening [21,
376 22]. To see if this was the case in our set-up and if the chromatographic performance
377 could be improved, a Premier column (C18, 2.6 µm, 90 Å) with modified metal
378 surfaces in the column housing and filters to reduce non-defined adsorption was
379 compared to the Poroshell column employed in previous sections [23]. For our
380 particular application, the peaks of insulins and glucagon obtained on the Premier
381 column were broader and not sufficiently separated from BSA or other matrix
382 components in Krebs buffer, **Figure 2D**. The lack of separation indicated that the
383 gradient optimized for the Poroshell column (C18, 2.7 µm, 120 Å) was not suitable

384 for the Premier column. In the attempt to optimize the separation, the peak area of
385 glucagon was greatly reduced for each subsequent injection (from a peak area of
386 approx. 2×10^5 to a peak area $< 1 \times 10^4$, results not shown), and none of the insulins
387 were successfully separated from BSA, **Figure 2E**. On the Accucore phenyl/hexyl-
388 Poroshell C18 column set-up, an equivalent injection would give a stable peak area
389 of glucagon around 250000. For somatostatin-14, the Premier column set-up was
390 able to provide equivalent chromatographic performance as the phenyl/hexyl-
391 Poroshell C18 column set-up.

392 Based on the lack of separation from BSA and the loss of signal for glucagon on the
393 Premier column, the Premier column was not found appropriate for our application
394 and was not examined further. One of the major differences between the Premier
395 column and the Poroshell column is the pore size of the particles of 90 Å and 120 Å,
396 respectively. In the previous **Section 3.1.1**, the guard cartridges with 80 Å particle
397 pore size was sufficient for sample loading. However, from the comparison of the
398 Premier and Poroshell column, it is clear that larger pores in the separation column
399 was necessary to be able to separate the intact hormones from BSA and other
400 matrix components [18, 24].

401 In conclusion: of the columns tested, the originally applied Poroshell C18 separation
402 column was found to be the best option for the simultaneous determination of the
403 three peptide hormones in complex matrices.

404

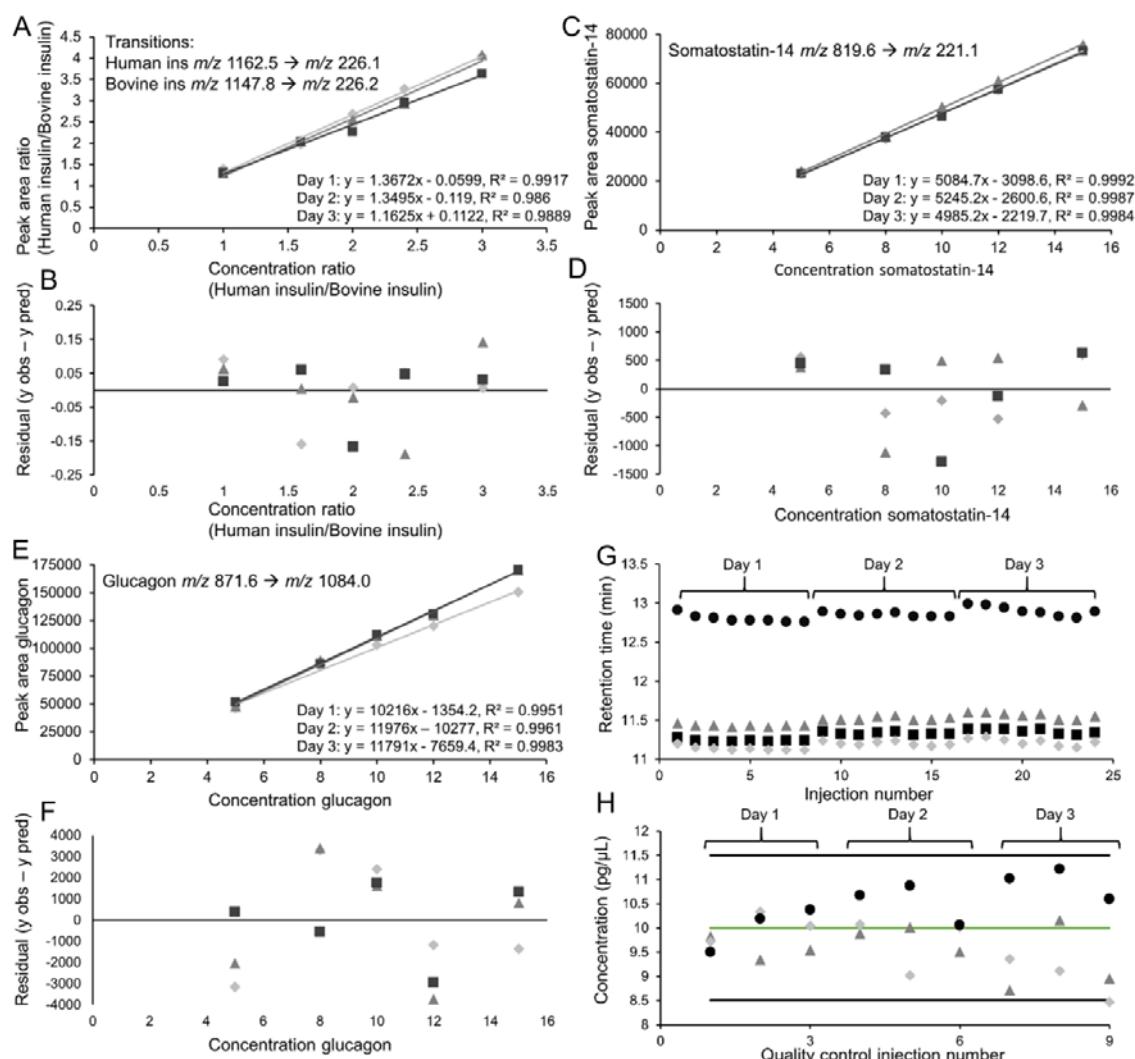
405

406 **Figure 2:** Comparison of peak shape obtained for human insulin on the following column
407 set-ups (A) Accucore phenyl/hexyl guard – Poroshell C18, (B) Accucore C18 guard –
408 Poroshell C18, and (C) only the Poroshell C18 column. Attempted separation of 5 pg/μL
409 peptide mix in 0.5% Krebs buffer on the Premier column with different gradients: (D)
410 Insufficient separation of insulins and glucagon from BSA with the same gradient as applied
411 for the Poroshell Column. (E) Following attempted gradient optimization, still insufficient
412 separation of insulins and BSA, and low signal intensity for glucagon.

413

414 **3.2 Satisfactory accuracy and precision in determining**
415 **concentration of insulin, somatostatin-14, and glucagon in**
416 **quality controls in Krebs buffer**

417 Glucose stimulated insulin secretion is a standard characterization experiment of
418 insulin response in SC-islets using Krebs buffer [25, 26]. The experiments require
419 highly accurate determinations of hormone concentrations in Krebs buffer.
420 Therefore, the method's repeatability concerning linearity, precision, and accuracy in
421 determination of the concentration of the three hormones was examined by
422 establishing a linearity curve in the range from 5 pg/µL to 15 pg/µL in Krebs buffer
423 over three days. The precision and accuracy for determination of hormone
424 concentrations were evaluated based on concentration found in QCs containing 10
425 pg/µL of each analyte.


426 The established linearity curves for human insulin (with bovine insulin as internal
427 standard, see **Figure 3A**), somatostatin-14 (**Figure 3C**), and glucagon (**Figure 3E**)
428 did not show sign of heteroscedasticity (i.e. difference in variation of the response
429 depending on the concentration level) as the residuals appear to fall randomly
430 around the x-axis in the residual vs concentration plots in **Figure 3B**, **Figure 3D**, and
431 **Figure 3F**, respectively [27]. The hypothesis of homoscedasticity was confirmed with
432 an F-test comparing the variance in the response of the standard with the lowest and
433 highest concentration levels for each of the analytes.

434 Bovine insulin was a suitable internal standard for human insulin due to similar
435 structures, similar retention time and the variation of the peak area of bovine insulin
436 was 4% RSD (N = 5) on day 1, 3% RSD (N = 5) on day 2, and 3% RSD (N = 5) on
437 day 3. The variation in the peak area of bovine insulin was much smaller during
438 these examinations compared to the examination done in **Section 3.1.1**, as changes
439 to the system was not done between injections allowing for a better stability.
440 Determination of somatostatin-14 and glucagon was done without use of bovine
441 insulin as internal standard, due to large differences in the structures of the analytes
442 compared to bovine insulin, and different retention time. These differences indicates
443 that bovine insulin is not a suitable internal standard as it cannot compensate for
444 differences in matrix effect (different retention time) nor the transfer from ions in
445 solution into gas phase occurring during the ESI process (different structures).
446 Bovine insulin could compensate for differences in injection volume, however, there

447 is relatively small variation between repeated injections that such compensation was
448 not deemed necessary. The retention time variance over the three days was $\leq 0.5\%$
449 RSD (N = 24) for all of the hormones, see **Figure 3G**.

450 In determination of QC analyte concentration using the same standard solutions to
451 establish a calibration curve, the accuracy was within $\pm 10\%$ relative error (N = 3, per
452 day), $\pm 10\%$ RSD (N = 3) intra-day precision and $\pm 10\%$ RSD (N = 9) inter-day
453 precision. Determination based on a single injection of the QC, only somatostatin-14
454 was not determined with an accuracy within $\pm 15\%$ relative error, as shown in **Figure**
455 **3H** for injection number nine. The average concentration of each analyte found in the
456 QCs on the three separate days was not significantly different determined with one-
457 way ANOVA.

458 To summarize, the RPLC-MS/MS method, featuring a phenyl/hexyl guard and
459 Poroshell C18 separation column combined with triple quadrupole mass
460 spectrometry, was successful in simultaneous determination of the three analytes;
461 human insulin (including bovine insulin as internal standard), somatostatin-14, and
462 glucagon in Krebs buffer with sufficient accuracy, precision, and repeatability.

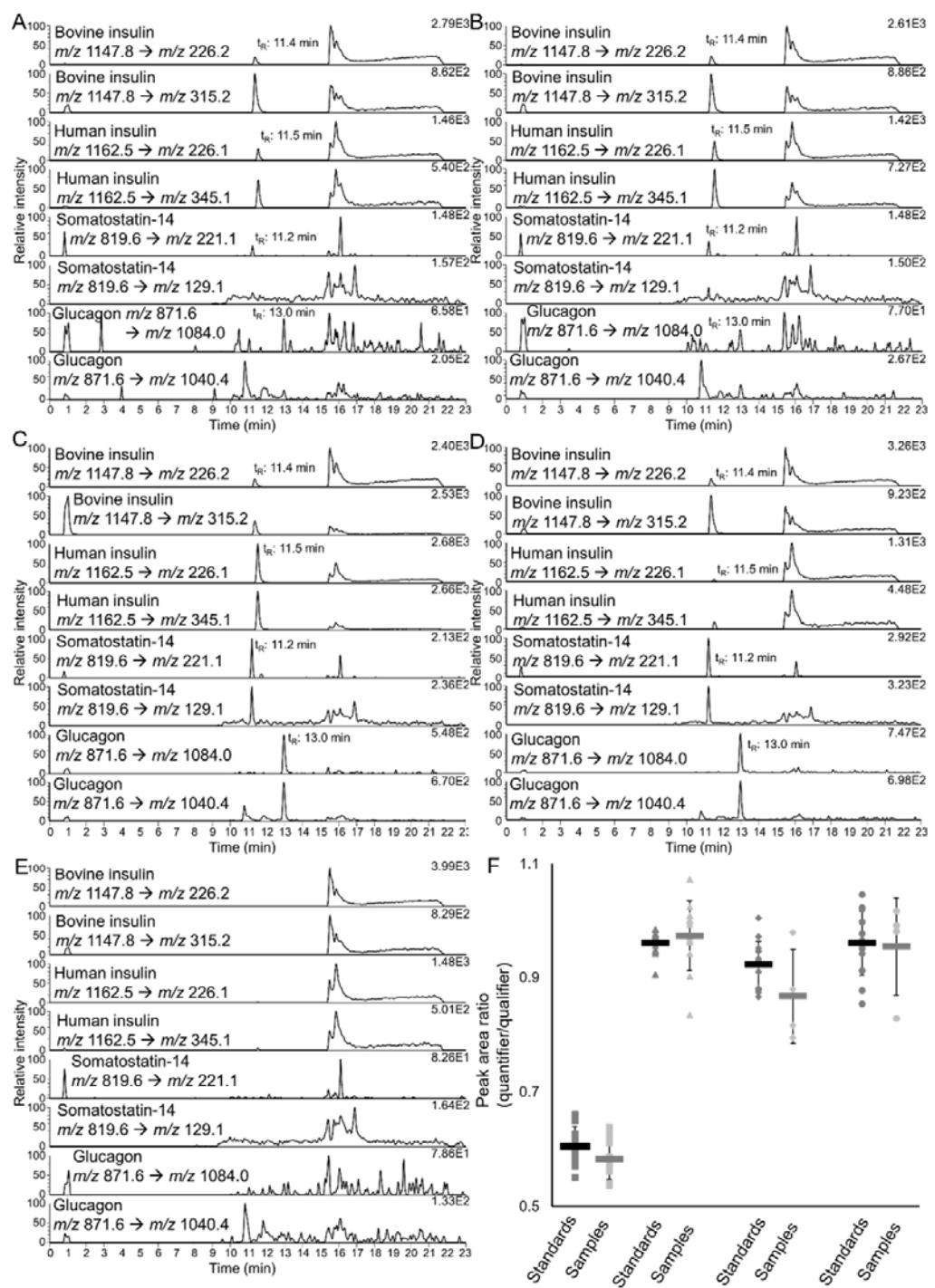
463

464

Figure 3: Established linearity curves in the range from 5 pg/μL to 15 pg/μL for (A) human insulin with bovine insulin as internal standard, (C) somatostatin-14, and (E) glucagon, where day 1 is represented with diamonds, triangles for day 2 and squares for day 3. Residual vs concentration plots for each curve belonging to (B) human insulin, (D) somatostatin-14, and (F) glucagon, where day 1 is represented with diamonds, triangles for day 2 and squares for day 3. (G) The retention time for bovine insulin (squares), human insulin (triangles), somatostatin-14 (diamonds), and glucagon (circles) over the 24 injections of calibration standards and QCs. (H) Determined concentration in QCs for human insulin (triangles), somatostatin-14 (diamonds), and glucagon (circles) in the nine injections.

473

474 **3.3 Stem cell-derived islet organoids show glucose concentration**
475 **dependent insulin response and potassium dependent release**
476 **of somatostatin-14 and glucagon in Krebs buffer**


477 As mentioned in the previous section, the secretion of peptide hormones in SC-islets
478 can be examined by exposing the SC-islets to Krebs buffer containing various
479 amounts of glucose. It has also been shown that the three major cell types found in
480 islets, beta-, delta-, and alpha cells, release a large pool of stored hormones when
481 exposed to high levels of potassium due to direct membrane depolarization [11, 28,
482 29]. Hence, to show compatibility between supernatant collected from SC-islets in
483 Krebs buffer and RPLC-MS/MS, we attempted to measure the three hormones in
484 Krebs buffer collected from SC-islets exposed to: (1) low amount of glucose (2 mM),
485 (2) high amount of glucose (20 mM) and (3) a combination of 20 mM glucose and 30
486 mM KCl.

487 The concentration of insulin determined with RPLC-MS/MS in the supernatant
488 collected from SC-islets challenged with low glucose (**Figure 4A**) was on average
489 2.2 pg/µL (RSD = 13%, n = 4 batches of SC-islets, N = 1), while there was 4.1 pg/µL
490 insulin (RSD = 10%, n = 4, N = 1) secreted by SC-islets challenged with high glucose
491 (**Figure 4B**). The stimulation index of insulin secretion during the glucose challenge
492 was 1.86 (RSD = 5%, n = 4, N = 1). The amount of insulin determined in the samples
493 collected with 20 mM glucose and 30 mM KCl (**Figure 4C**) was 18 pg/µL (RSD =
494 14%, n = 4, N = 1), which was eight times higher than the response in low glucose.
495 Simultaneously, the reliability of the determination of insulin using the RPLC-MS/MS
496 method was supervised by QCs, to see if the reported concentrations was within
497 15% relative error. QCs were included at 2 pg/µL (N = 2), 8 pg/µL (N = 3) and 18
498 pg/µL (N = 2), and the insulin concentration was determined within 15% relative error
499 for each injection.

500 The insulin concentration in the supernatant collected from the SC-islets was also
501 determined with an established ELISA method, which found the following insulin
502 concentrations: 2.6 pg/µL (low glucose, RSD = 5%, n = 4, N = 1), 4.5 pg/µL (high
503 glucose, RSD = 13%, n = 4, N = 1), and 20 pg/µL (KCl, RSD = 13%, n = 4, N = 1).
504 An independent two sample t-test, at 95% confidence, showed that the
505 concentrations determined by LC-MS/MS were not significantly different from the
506 concentrations determined with ELISA.

507 The same samples were also simultaneously examined for somatostatin-14 and
508 glucagon. Neither the quantifier nor the quantifier transition of somatostatin-14 and
509 glucagon was detected in the supernatant from SC-islets exposed to low (**Figure 4A**)
510 or high glucose (**Figure 4B**), however, in supernatant collected after exposure to
511 KCl, detectable signals were obtained for both hormones and transitions (**Figure**
512 **4C**). For somatostatin-14, the average peak area was 1.3×10^3 (RSD = 7%, n = 4, N
513 = 1) after KCl exposure, which was lower than the peak area of 1.9×10^3 obtained
514 for the calibration standard with the least amount of somatostatin-14 of 0.25 pg/μL
515 (**Figure 4D**). For glucagon, the concentration was determined to be 0.28 pg/μL (RSD
516 = 18%, n = 4, N = 1) after KCl exposure. The QCs examined for somatostatin-14 and
517 glucagon at 2 pg/μL and 8 pg/μL were determined within 11% relative error (RSD <
518 10 %), showing that the RPLC-MS/MS method for somatostatin-14 and glucagon
519 has sufficient precision and accuracy without use of an internal standard.
520 For insulin, it was beneficial that the samples had been examined by a clinically
521 approved ELISA kit prior to being analyzed by the LC-MS method [30], as a suitable
522 calibration concentration range could easily be selected. For the other hormones,
523 somatostatin-14 and glucagon, a gold standard for determination of the
524 concentrations have not yet been established [31-33]. A calibration concentration
525 range was selected without prior information about expected concentration of
526 analytes in the sample, the concentration in the samples were found to be below or
527 around the lowest concentration calibration standard (0.25 pg/μL). Therefore, the
528 samples collected with 20 mM glucose and 30 mM KCl were reexamined with a
529 calibration from 0.1 pg/μL to 3 pg/ μL for stomatostatin-14, and 0.05 pg/μL to 3 pg/μL
530 for glucagon, including QCs at 0.4 pg/μL. The concentration for somatostatin-14
531 could now be determined and was found to be 0.27 pg/μL (RSD = 20%, n = 4, N = 1)
532 in the samples collected with KCl. For glucagon, the concentration was determined
533 with the new calibration curve to be 0.31 pg/μL (RSD = 18%, n = 4, N = 1), which
534 was not significantly different form the concentration determined with the first
535 calibration curve based on an independent two sample t-test (95 % confidence). The
536 QCs examined at 0.4 pg/μL was all within 10% relative error for somatostatin-14 (N =
537 3), and 11% relative error for glucagon (N = 3).
538 The carry-over was less than 1% for all of the analytes and the internal standard,
539 shown in a representative chromatogram from a blank injection of 0.5% FA in Krebs

540 buffer following injections of the standards used to establish the curve in **Figure 4E**.
541 In addition, the carry-over was equal to less than 20% of the peak area obtained in
542 the calibration standard with the smallest concentration of the analytes, giving a
543 lower limit of quantification of 0.2 pg/µL for human insulin, 0.1 pg/µL for
544 somatostatin-14, and 0.05 pg/µL for glucagon. The retention time variation was less
545 than 0.2% RSD (N = 26) for all of the analytes and the internal standard.
546 A challenge when examining supernatant collected from SC-islets after exposure to
547 different levels of glucose and KCl, is the change in the sample matrix. In this study,
548 Krebs buffer without glucose or KCl was used as the solution for preparation of the
549 calibration standards. Possible effects of glucose and KCl in the samples has not
550 been examined. The ratio of the quantifier and qualifier transitions obtained for each
551 hormone is shown in **Figure 4F**. For bovine and human insulin, the
552 quantifier/qualifier ratio was not significantly different in samples with different
553 amounts of glucose or KCl (determined with one-way ANOVA). In addition, for all
554 analytes and bovine insulin, an independent two sample t-test, at 95% confidence,
555 confirmed there was no significant difference in the quantifier/qualifier ratio obtained
556 in the samples compared with the quantifier/qualifier ratio obtained in the calibration
557 standards and QCs. The identification and quantification in the RPLC-MS/MS
558 method is secured by negligible variance in retention time and quantifier/qualifier
559 ratios, negligible levels of carry-over (< 1%), and sufficient precision and accuracy.
560 In conclusion, the RPLC-MS/MS method demonstrates sufficient detection limits for
561 determination of insulin secretion in the supernatant of SC-islets (n = 30). In addition,
562 we show that the SC-islets obtained through our differentiation protocol [18], have
563 obtained a glucose dependent insulin secretion in response to 2 mM and 20 mM
564 glucose. The method can also determine the production of somatostatin-14 and
565 glucagon in 20 mM glucose and 30 mM KCl. However, better sensitivity is needed to
566 determine secretion of somatostatin-14 and glucagon in SC-islets (n = 30) stimulated
567 by glucose alone.

568

569 **Figure 4:** Representative chromatograms obtained in SRM mode of: Supernatant from SC-
 570 islets exposed to **(A)** 2 mM glucose, **(B)**, 20 mM glucose, and **(C)** 20 mM glucose with 30
 571 mM KCl. **(D)** Calibration standard with 0.25 pg/ μ L human insulin, somatostatin-14, and
 572 glucagon with 5 pg/ μ L bovine insulin in 0.5% FA in Krebs buffer and **(E)** blank injection of
 573 0.5% FA in Krebs buffer. The first transition for each hormone is the quantifier, while the
 574 second transition is the qualifier. **(F)** The ratio of quantifier/qualifier transitions for bovine

575 insulin (squares), human insulin (triangles), somatostatin-14 (diamonds), and glucagon
576 (circle) obtained for calibration standards and QCs (dark grey), and samples (light grey).

577

578 **3.4 Insulin could be determined in background secretion from a**
579 **small number of stem cell-derived islet organoids cultivated in**
580 **a pump-less, recirculating organ-on-a-chip device**

581 Hormone secretion from isolated mouse or human islets-on-chip has been
582 determined with the use of e.g. luminescent immunoassay (AlphaLISA) [34], or
583 ELISA [35]. However, to the authors' knowledge, the combination of human SC-
584 islets, organ-on-a-chip device, and hormone secretion determination with LC-MS has
585 not been previously reported. As a proof-of-concept for combining RPLC-MS/MS
586 determination of intact hormones from SC-islets cultured on an organ-on-chip
587 device, we wanted to examine background secretion of the hormones. In addition,
588 we wanted to show that the RPLC-MS/MS method was versatile concerning the
589 applied sample matrix and therefore did not change the islet maturation cell medium
590 (will be referred to as cell medium) with Krebs buffer for this experiment.

591 The background secretion over 24 h (in cell medium containing 5.5 mM glucose),
592 from 3-6 SC-islets cultivated on-chip in a rOoC device was compared to 14-19 SC-
593 islets cultivated in a standard cell culture well-plate.

594 To avoid introducing variation in the quantification, bovine insulin was not applied as
595 an internal standard during the determination of human insulin in cell medium, due to
596 a higher variation in the peak area (RSD > 7 %, N = 6) in cell medium compared to
597 Krebs buffer (RSD < 5%, see **Section 3.2**). At day 5 on the rOoC, an average of 5
598 pg/µL of insulin was secreted per SC-islet (RSD = 52%, n = 4, N = 1), while on day 7
599 an average of 3 pg/µL of insulin was secreted per SC-islet (RSD = 30%, n = 4, N =
600 1). Similarly, on the well-plate at day 5, an average of 7 pg/µL of insulin was secreted
601 per SC-islet (RSD = 24%, n = 4, N = 1), while on day 7 an average of 3.9 pg/µL of
602 insulin was secreted per SC-islet (RSD = 7%, n = 4, N = 1). An independent two
603 sample t-test, at 95% confidence, confirmed there was no significant difference in
604 insulin secretion per SC-islet on the rOoC compared to the cell culture well-plate.
605 The high variation in the determination of insulin secretion per SC-islet on the rOoC
606 device (54% on day 5 and 30% on day 7) compared to the 24 well-plate (24% on day

607 5 and 7% on day 7), can be explained by the number of SC-islets included on the
608 different devices. There was 3-6 SC-islets on the rOoC, while there was 14-19 SC-
609 islets included on the well-plate. Individual differences in the SC-islets may affect the
610 reliability of the measurements when examining a small batch of SC-islets, and that
611 the lower RSD values on the 24 well-plate indicates that a representative batch of
612 SC-islets should be closer to 20 individual SC-islets.

613 Concerning background secretion of somatostatin-14 and glucagon in 3-6 SC-islets
614 cultivated on rOoC device, the detection limits was not sufficient for quantification of
615 secretion from limited number of SC-islets stimulated by only glucose, for details see
616 **SI-3**. We were able to determine secretion of glucagon in the samples collected from
617 14-19 SC-islets on the cell culture well-plate.

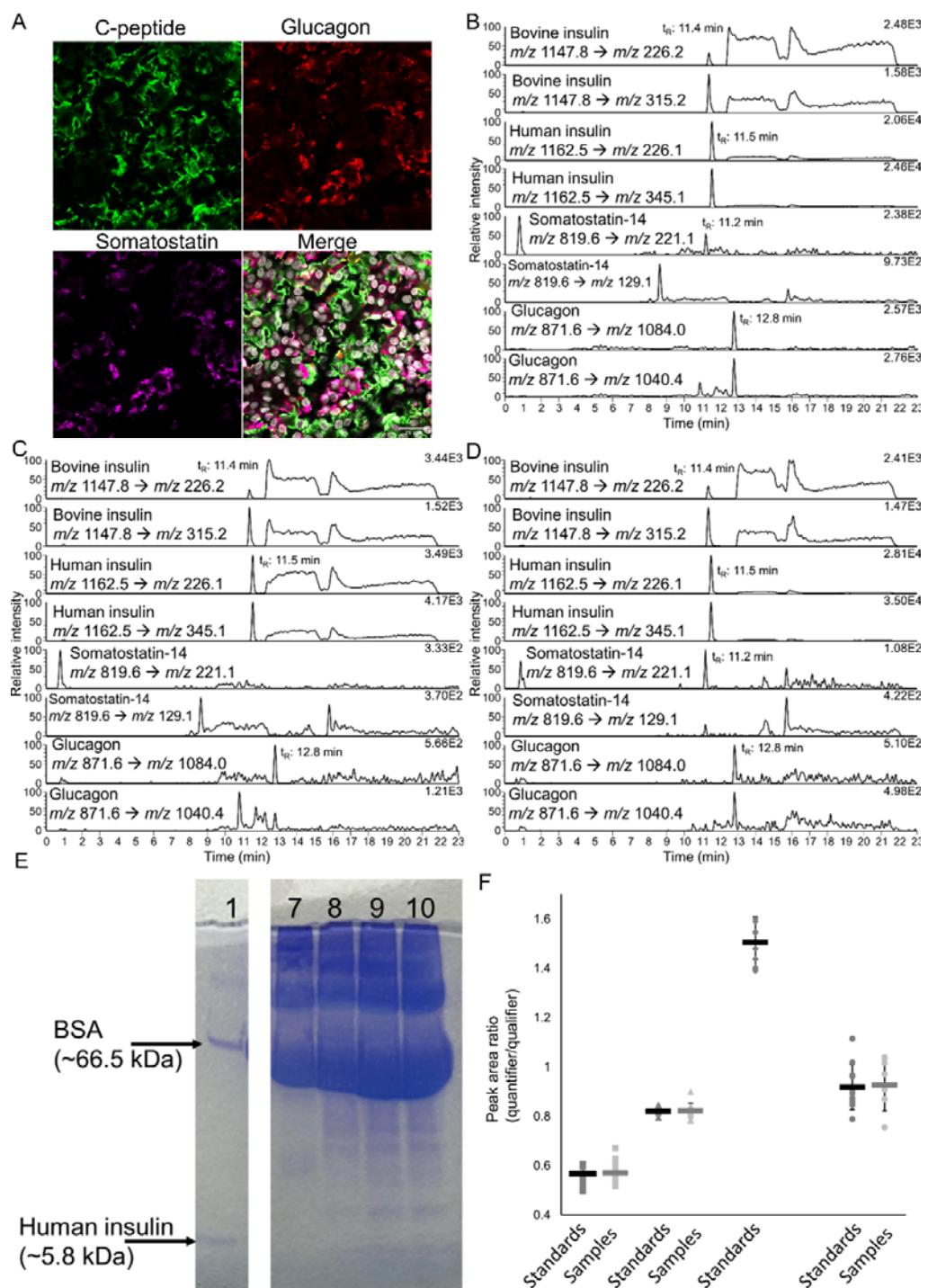
618 The composition of the SC-islets was confirmed with flow cytometry quantification
619 and immunostaining (**Figure 5A**), for details see **SI-4**. The SC-islets consisted of
620 >66% insulin-positive cells, >17% somatostatin-positive cells, and >22% glucagon-
621 positive cells, where >95% of the cells were endocrine cells (i.e. cells which can
622 secrete hormones). The multicellular SC-islets have a composition, which is similar
623 to the distribution of the cell types in human islets [13, 15].

624 To summarize, determination of secreted insulin from limited number SC-islets (n <
625 6) cultivated in cell medium on a rOoC device was possible with the applied RPLC-
626 MS/MS method. It was found that the insulin secretion in the SC-islets was not
627 significantly different on the rOoC device compared to the secretion occurring on a
628 standard cell culture well-plate.

629

630 **3.4.1 Discussion: concerning challenges with cell medium, the 631 organ-on-chip device, and the applied liquid chromatography 632 mass spectrometry method**

633 In the present method an interfering peak (eluting after 13 min in standard solutions
634 in cell medium) is eluting closer to the analytes and co-elute with glucagon in cell
635 medium incubated with SC-islets on well-plate (**Figure 5B**) and on rOoC device
636 (**Figure 5C**). In comparison, there is a baseline separation of the analytes and the
637 interfering peak in the standard solution prepared with fresh cell medium spiked with
638 the analytes and internal standard (**Figure 5D**). The separation in the samples may


639 be affected by other sample matrix components introduced following incubation of
640 the SC-islets on the 24 well-plate or in the rOoC device. By gel electrophoresis, it
641 was possible to confirm the presence of varius proteins in the size range between
642 human insulin and BSA (See Lane 1, **Figure 5E**) in supernatant collected from SC-
643 islets that were either cultivated in a 24 well-plate (Lane 8) or in the rOoC device
644 (Lane 9 and 10). The observations suggest that the extra sample matrix components
645 are released into the cell medium by the SC-islets or the extracellular matrix used for
646 embedding the SC-islets on the two devices. Indeed, in cell medium neither
647 incubated with SC-islets nor been in contact on either of the devices, significantly
648 less protein bands were visible in the same size range. Gel electrophoresis was also
649 used to compare cell medium with Krebs buffer concerning protein content, showing
650 that there were more sample matrix components present in cell medium compared to
651 Krebs buffer, see **SI-5** for more details.

652 It is worth noting that during preliminary examination of the rOoC device with Krebs
653 buffer, there was a significant loss of human insulin following incubation on the rOoC
654 device compared to standard cell culture well-plates, see details in **SI-6**.

655 In the current experiment, the reliability of the determination of hormones with the
656 RPLC-MS/MS method was not affected by the changes to the separation due to the
657 presence of additional sample matrix components. The identification was secured by
658 a stable ratio of the quantifier and qualifier transitions obtained for each hormone in
659 calibration standards and sample is shown in **Figure 5F**, as there was no significant
660 difference in the ratio obtained in calibration standards and samples. In addition, the
661 retention time of each hormone varied $\leq 0.5\%$ RSD ($N = 30$) and the carry-over was
662 $< 2\%$ for glucagon, $< 0.5\%$ for human insulin, and $< 0.1\%$ carry-over for bovine
663 insulin and somatostatin-14. Additionally, all QCs (examined before, within and after
664 the sample-set) at 25 pg/ μ L of human insulin, and 0.8 pg/ μ L of somatostatin-14 and
665 glucagon were determined within ± 15 relative error ($N = 5$). The only exception was
666 for the determination of glucagon, where the relative error was 17% in the second
667 replicate of the QC.

668 To summarize, the RPLC-MS/MS offers reliable determination of insulin,
669 somatostatin-14 and glucagon in a complex matrix (cell culture supernatant in this
670 study) without use of internal standard, with negligible variation in retention time,
671 repeatable quantifier/qualifier transition ratios, and negligible levels of carry-over.

672 With the growing complexity of the cell medium samples following incubation with the
673 SC-islets embedded with extracellular matrix on the 24 well-plate and in the rOoC
674 device, we are approaching a limit where the RPLC-MS/MS method alone is not
675 sufficient for reliable determination. In the case of even more complex samples, the
676 inclusion of sample preparation steps might become necessary.

678 **Figure 5:** (A) Representative immunostaining images of SC-islets stained for C-peptide
679 (green), glucagon (red), somatostatin-14 (magenta), and for cell nuclei with Hoechst 333242
680 (white). Scale bar = 25 μ m. Representative chromatograms obtained in SRM mode of:
681 Supernatant from SC-islets cultivated (B) in a 24 well-plate and (C) on the rOoC device, and
682 (D) calibration standard with 100 pg/ μ L human insulin, 0.1 pg/ μ L somatostatin-14, and 0.1
683 pg/ μ L glucagon with 5 pg/ μ L bovine insulin in 1.0% FA in cell medium. The first transition for
684 each hormone is the quantifier, while the second transition is the qualifier. (E) Coomassie
685 blue stained protein bands found by gel electrophoresis in the following samples: (1) 10
686 ng/ μ L of human insulin and 10 ng/ μ L of BSA in water, (7) 1.0% FA in cell medium, (8)
687 pooled supernatant collected on day 5 from SC-islets cultured in a 24 well-plate, (9-10) two
688 replicates of supernatant from SC-islets incubated on rOoC collected on day 5. The picture
689 of the gel has been cropped, where Lane 2-6 is not included, however, the picture of the gel
690 is provided in raw format in **SI-5**. (F) The ratio of quantifier/qualifier transitions for bovine
691 insulin (squares), human insulin (triangles), somatostatin-14 (diamonds), and glucagon
692 (circle) obtained for calibration standards and QCs (dark grey), and samples (light grey).
693 Both transitions of somatostatin-14 were not detected in any of the examined sample.

694 **4 Concluding remarks**

695 The study was dedicated to combining the determination of multiple peptide
696 hormones with liquid chromatography-mass spectrometry and SC-islets-on-a-chip. It
697 has been shown that liquid chromatography is needed to separate the target
698 peptides from interferences in the sample matrices. However, when the complexity
699 of the samples grows and large amounts of proteins are present, chromatography
700 and mass spectrometry may not be enough for successful peptide determination
701 (e.g. urocortin-3 co-elutes with BSA), pointing to the need for the inclusion of sample
702 preparation steps, e.g. electromembrane extraction of target peptides.

703 **Acknowledgements**

704 Financial support was obtained from the Research Council of Norway through its
705 Centres of Excellence funding scheme, project number 262613 and partly from the
706 UiO:Life Science convergence environment funding scheme. S.R.W. is a member of
707 the National Network of Advanced Proteomics Infrastructure (NAPI), which is funded
708 by the Research Council of Norway INFRASTRUKTUR-program (project number:
709 295910).

710 **Conflict of interest**

711 The authors declare no conflict of interest.

712 **Data Availability Statement**

713 The data that support the findings of this study are available from the corresponding
714 author upon reasonable request.

715 **5 References**

- 716 [1] Tang X-Y, Wu S, Wang D, Chu C, Hong Y, Tao M, et al. Human organoids in basic research
717 and clinical applications. *Signal Transduction Targeted Ther.* 2022;7(1):168.
- 718 [2] Kim J, Koo B-K, Knoblich JA. Human organoids: Model systems for human biology and
719 medicine. *Nat Rev Mol Cell Biol.* 2020;21(10):571-84.
- 720 [3] Ingber DE. Human organs-on-chips for disease modelling, drug development and
721 personalized medicine. *Nat Rev Genet.* 2022;23(8):467-91.
- 722 [4] Busek M, Aizenshtadt A, Koch T, Frank A, Delon L, Martinez MA, et al. Pump-less,
723 recirculating organ-on-a-chip (rOoC) platform. *Lab Chip.* 2023.
- 724 [5] Lin A, Sved Skottvoll F, Rayner S, Pedersen-Bjergaard S, Sullivan G, Krauss S, et al. 3D cell
725 culture models and organ-on-a-chip: Meet separation science and mass spectrometry.
726 *Electrophoresis.* 2020;41(1-2):56-64.
- 727 [6] Kogler S, Kømstrup KS, Olsen C, Shoji J-y, Skottvoll FS, Krauss S, et al. Organoids, organ-
728 on-a-chip, separation science and mass spectrometry: An update. *TrAC, Trend Anal Chem.*
729 2023:116996.
- 730 [7] Cabrera O, Berman DM, Kenyon NS, Ricordi C, Berggren P-O, Caicedo A. The unique
731 cytoarchitecture of human pancreatic islets has implications for islet cell function. *Proc Natl
732 Acad Sci U S A.* 2006;103(7):2334-9.
- 733 [8] Ishihara H, Maechler P, Gjinovci A, Herrera P-L, Wollheim CB. Islet β -cell secretion
734 determines glucagon release from neighbouring α -cells. *Nat Cell Biol.* 2003;5(4):330-5.
- 735 [9] Henquin J-C, Ibrahim MM, Rahier J. Insulin, glucagon and somatostatin stores in the
736 pancreas of subjects with type-2 diabetes and their lean and obese non-diabetic controls.
737 *Sci Rep.* 2017;7(1):11015.
- 738 [10] Rorsman P, Braun M. Regulation of Insulin Secretion in Human Pancreatic Islets. *Annu
739 Rev Physiol.* 2013;75(1):155-79.
- 740 [11] Rorsman P, Huisings MO. The somatostatin-secreting pancreatic δ -cell in health and
741 disease. *Nat Rev Endocrinol.* 2018;14(7):404-14.
- 742 [12] Zhang X, Ma Z, Song E, Xu T. Islet organoid as a promising model for diabetes. *Protein
743 Cell.* 2022;13(4):239-57.
- 744 [13] Jiang L, Shen Y, Liu Y, Zhang L, Jiang W. Making human pancreatic islet organoids:
745 Progresses on the cell origins, biomaterials and three-dimensional technologies.
746 *Theranostics.* 2022;12(4):1537-56.

747 [14] Bi H, Ye K, Jin S. Proteomic analysis of decellularized pancreatic matrix identifies
748 collagen V as a critical regulator for islet organogenesis from human pluripotent stem cells.
749 *Biomaterials*. 2020;233:119673.

750 [15] Heaton ES, Jin S. Importance of multiple endocrine cell types in islet organoids for type
751 1 diabetes treatment. *Transl Res*. 2022;250:68-83.

752 [16] van der Meulen T, Xie R, Kelly OG, Vale WW, Sander M, Huisng MO. Urocortin 3 Marks
753 Mature Human Primary and Embryonic Stem Cell-Derived Pancreatic Alpha and Beta Cells.
754 *PloS one*. 2012;7(12):e52181.

755 [17] Flisher MF, Shin D, Huisng MO. Urocortin3: Local inducer of somatostatin release and
756 bellwether of beta cell maturity. *Peptides*. 2022;151:170748.

757 [18] Olsen C, Wang C, Abadpour S, Lundanes E, Hansen AS, Skottvoll FS, et al. Determination
758 of insulin secretion from stem cell-derived islet organoids with liquid chromatography-
759 tandem mass spectrometry. *J Chromatogr B*. 2023;1215:123577.

760 [19] Rogeberg M, Malerod H, Roberg-Larsen H, Aass C, Wilson SR. On-line solid phase
761 extraction-liquid chromatography, with emphasis on modern bioanalysis and miniaturized
762 systems. *J Pharm Biomed Anal*. 2014;87:120-9.

763 [20] Thomas A, Benzenberg L, Bally L, Thevis M. Facilitated qualitative determination of
764 insulin, its synthetic analogs, and C-peptide in human urine by means of LC-HRMS.
765 *Metabolites*. 2021;11(5):309.

766 [21] Yang J, Wilson I, Rainville P. Evaluation of hybrid surface technology for the analysis of
767 the B-group vitamins by LC-ESI-MS/MS. *J Chromatogr B*. 2022;1204:123336.

768 [22] van Midwoud PM, Rieux L, Bischoff R, Verpoorte E, Niederländer HAG. Improvement of
769 Recovery and Repeatability in Liquid Chromatography-Mass Spectrometry Analysis of
770 Peptides. *J Proteome Res*. 2007;6(2):781-91.

771 [23] Lauber M, Walter T, Gilar M, DeLano M, Boissel C, Smith K, et al. Low adsorption HPLC
772 columns based on MaxPeak high performance surfaces. Waters White Paper 720006930EN.
773 2020.

774 [24] Gritti F, Horvath K, Guiochon G. How changing the particle structure can speed up
775 protein mass transfer kinetics in liquid chromatography. *J Chromatogr A*. 2012;1263:84-98.

776 [25] Davis JC, Alves TC, Helman A, Chen JC, Kenty JH, Cardone RL, et al. Glucose response by
777 stem cell-derived β cells in vitro is inhibited by a bottleneck in glycolysis. *Cell Rep*.
778 2020;31(6):107623.

779 [26] Barsby T, Otonkoski T. Maturation of beta cells: lessons from in vivo and in vitro
780 models. *Diabetologia*. 2022;65(6):917-30.

781 [27] Almeida AM, Castel-Branco MM, Falcão AC. Linear regression for calibration lines
782 revisited: weighting schemes for bioanalytical methods. *J Chromatogr B*. 2002;774(2):215-
783 22.

784 [28] Omar-Hmeadi M, Lund P-E, Gandasi NR, Tengholm A, Barg S. Paracrine control of α -cell
785 glucagon exocytosis is compromised in human type-2 diabetes. *Nat Commun*.
786 2020;11(1):1896.

787 [29] Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in
788 insulin secretion. *Nat Rev Mol Cell Biol*. 2021;22(2):142-58.

789 [30] Rosli N, Kwon H-J, Lim J, Yoon YA, Jeong J-S. Measurement comparability of insulin
790 assays using conventional immunoassay kits. *J Clin Lab Anal*. 2022;36(7):e24521.

791 [31] Hædersdal S, Andersen A, Knop FK, Vilsbøll T. Revisiting the role of glucagon in health,
792 diabetes mellitus and other metabolic diseases. *Nat Rev Endocrinol*. 2023.

793 [32] Kothegeala L, Miranda C, Singh M, Krieger J-P, Gandasi NR. Somatostatin containing δ -
794 cell number is reduced in type-2 diabetes. *Int J Mol Sci.* 2023;24(4):3449.

795 [33] Farré-Segura J, Fabregat-Cabello N, Calaprice C, Nyssen L, Peeters S, Le Goff C, et al.
796 Development and validation of a fast and reliable method for the quantification of glucagon
797 by liquid chromatography and tandem mass spectrometry. *Clin Chim Acta.* 2021;512:156-65.

798 [34] Lenhart AE, Kennedy RT. Monitoring hormone and small molecule secretion dynamics
799 from islets-on-chip. *Anal Bioanal Chem.* 2023;415(4):533-44.

800 [35] Quintard C, Tubbs E, Achard J-L, Navarro F, Gidrol X, Fouillet Y. Microfluidic device
801 integrating a network of hyper-elastic valves for automated glucose stimulation and insulin
802 secretion collection from a single pancreatic islet. *Biosens Bioelectron.* 2022;202:113967.

803