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21 Abstract

22

23 Background

24 Immune response of triatomines plays an important role in the success or failure of
25 transmission of T. cruzi. Studies on parasite—vector interaction have shown the
26 presence of trypanolytic factors and have been observed to be differentially
27 expressed among triatomines, which affects the transmission of some T. cruzi
28  strains or DTUs (Discrete Typing Units).

29

30 Methodology/Principal Findings

31 Trypanolytic factors were detected in the hemolymph and saliva of R. prolixus
32 against epimastigotes and trypomastigotes of T. cruzi ll. To identify the components
33 of the immune response that could be involved in this lytic activity, a comparative
34 proteomic analysis was carried out, detecting 120 proteins in the hemolymph of R.
35 prolixus and 107 in R. colombiensis. In salivary glands, 1103 proteins were detected
36 in R. prolixus and 853 in R. colombiensis. A higher relative abundance of lysozyme,
37  prolixin, nitrophorins, and serpin as immune response proteins was detected in the
38  hemolymph of R. prolixus. Among the R. prolixus salivary proteins, a higher relative
39  abundance of nitrophorins, lipocalins, and triabins was detected. The higher relative
40 abundance of these immune factors in R. prolixus supports their participation in the
41  lytic activity on T. cruzi Il, but not on T. cruzi |, which is resistant to lysis by
42  hemolymph and salivary proteins of R. prolixus due to mechanisms of evading

43  oxidative stress caused by immune factors.
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44  Conclusions/Significance

45 T. cruzil is a DTU distributed from the southern United States to the center of Chile
46 and Argentina, and its successful spread across this range could be related to
47  resistance to oxidative stress in vectors. Future proteomic and transcriptomic studies
48  on vectors and the interactions of the intestinal microbiota with parasites will help to
49  confirm the determinants of successful or failed vector transmission of T. cruzi DTUs
50 in different parts of the Western Hemisphere.

51

s2  Author summary

53  Some factors can facilitate or prevent T. cruzi transmission, i.e. vector immunity. Our
54  work has managed to detect a stronger immune response against T. cruzi Il in R.
55  prolixus saliva and haemolymph, compared to that of R. colombiensis. Proteins from
56 both species’ saliva and haemolymph were analysed for studying factors which
57 might have been involved in such response; most proteins were detected in both
58 species’ haemolymph, thereby indicating common immune mechanisms. Three
59 proteins having oxidative immune activity were only expressed in R. prolixus.
60 Lipocalin diversity and abundance predominated in R. prolixus saliva; these proteins
61 areinvolved in nitric oxide metabolism and their role in immunity could be key in host
62 defence against T. cruzi. Recognising the components modulating parasite
63 transmission in a vector helps in understanding how such factors act independently
64 and how they would act synergistically against T. cruzi, thereby enabling us to
65 establish tools regarding Chaga’s disease epidemiology, aimed at predicting T. cruzi

66  distribution and creating transmission control mechanisms.
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s7 INTRODUCTION

68

69 In terms of parasite—vector interactions, four determinants of the transmission of
70  Trypanosoma cruzi have been recognized: i) the strain and discrete typing units
71 (DTU) of the parasite, ii) the triatomine species, iii) the cellular and humoral immune
72 response of the vector, and iv) the intestinal microbiota of the insect [1, 2, 3]. Three
73 of these determinants are related to the vector, which has directed special interest
74  to the study of the tissues and mechanisms associated with the insect's immune
75  response, involving the hemolymph, hemocytes, fat bodies, digestive tract, and
76  salivary glands [2, 4]. Vectors have an innate immune system consisting of humoral
77  and cellular components. The humoral system comprises lipid precursors known as
78  eicosanoids, the prophenoloxidase system, antimicrobial peptides (AMPs), the
79  hemolymph coagulation system, reactive oxygen species (ROS), and reactive
80 nitrogen species (RNS). The cellular immune system comprises hemocytes, whose
81 function is to phagocytose microorganisms such as bacteria, fungi, and protozoa.
82 Hemocytes are also involved in wound repair by nodulation, in addition to the
83  production of AMPs, RNS, ROS, and prophenoloxidase [4]. Hemocytes additionally
84  have the capacity to express high levels of nitric oxide synthetase, which translates
85 into the production of nitric oxide (NO), a molecule that is part of the constitutive
86 innate immunity in insects [5].

87

88 Detailed studies on the saliva of hematophagous arthropods have been performed,

89 focusing on the function of salivary proteins and their role as bioactive molecules
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90 that facilitate successful blood feeding, counteracting the coagulation cascade and
91 the complement system of vertebrate immune defense. Hematophagous arthropods
92 have a wide arsenal of proteins with redundant functions involving vasodilatory,
93  antihemostatic, anti-inflammatory, and immunomodulatory activities [6, 7].
94
95 Inthe salivary glands, there are also proteins that can stop the infection of pathogens
96 transmitted by these insects, such as T. cruzi. Although T. cruzi does not directly
97 interact with the triatomine salivary glands because it restricts its life cycle to the
98 insect's intestine, the saliva components that reach the stomach at feeding time may
99 act to kill some genotypes of the parasites [8].
100
101  Several studies on parasite—vector interaction have shown the presence of
102  trypanolytic factors (TFs) against some T. cruzi DTUs in the hemolymph, midgut,
103 and saliva [8, 9, 10, 11]. TFs have been observed to be differentially expressed
104  among triatomines, which affects the transmission of some T. cruzi strains or DTUSs,
105  supporting the hypothesis that triatomines are biological filters and modulators of
106  trypanosome transmission [1, 10].
107
108  Our understanding of the nature of the TFs that are present in the hemolymph and
109  saliva of some triatomine species is still limited. Therefore, the first objective of this
110  study was to confirm the differential lytic activity in the hemolymph and components
111  of salivary glands of R. prolixus and R. colombiensis against epimastigotes and
112 trypomastigotes of T. cruzi | and T. cruzi ll. The second objective was to carry out a

113 proteomic analysis of the hemolymph and components of salivary glands of these
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114  two Rhodnius species to identify the immune response proteins possibly related to
115  the observed lytic activity.

116

117 MATERIALS AND METHODS

118

119  Trypanosoma cruzi strains

120

121 To evaluate the lytic activity of the hemolymph and saliva of R. prolixus and R.
122  colombiensis, reference strains of T. cruzi were used: Tcl (Dm28) and Tcll (Y). The
123  parasites were maintained in LIT/NNN biphasic culture medium (Liver Infusion
124  Tryptosa 10% SFB/Novy-McNealk Nicoll) with weekly subcultures.

125

126  Insect colonies

127

128  Fifth-instar nymphs of R. prolixus and R. colombiensis were used. The insects were
129  fed once a week with chicken blood and were maintained under a photoperiod of 12
130  h light/12 h dark at an approximate temperature of 28°C and relative humidity of
131 80%.

132

133

134

135
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136  Trypanolytic activity of the hemolymph of R. prolixus and R. colombiensis on
137  cultured epimastigotes of T. cruzil and T. cruzi ll

138

139  Following the methodology described by Suarez et al. [10], the insects were fed on
140  chicken blood 8 days before the trypanolytic activity assays were carried out. The
141 hemolymph of 20 insects of each species was collected, mixed, and centrifuged at
142 14,000 rpm for 5 min. The cell-free supernatant was used to detect trypanolytic
143  activity following the methodology described by Pulido et al. [12]. To prevent
144  melanization of hemolymph, 2 pl of 50 mM phenylthiourea was added to 100 pl of
145  hemolymph. Cultured T. cruzi epimastigotes were washed three times with saline
146  solution, centrifuged at 7000 rpm for 5 min, and resuspended in 10% (v/v) LIT
147  medium. A total of 10 ul of hemolymph was added to 10 pl of parasite suspension at
148  a final concentration of 2.5-3.5 x 107 parasites/mL. To confirm the lytic activity, live
149  parasites were counted in a Neubauer chamber at 0 and 14 h of incubation. As a
150  negative control, inactivated hemolymph with 10 yl of pepsin solution (15 mg/mL in
151 1 M HCI) for every 100 pl of hemolymph was used with subsequent incubation at
152  37°C for 4 h. As a positive control, epimastigotes of strain Y (DTU Tcll) were used,
153  which always presented lysis after incubation with the hemolymph of R. prolixus.
154

155  Trypanolytic activity of hemolymph of R. prolixus and R. colombiensis on
156 metacyclic trypomastigotes of T. cruzil and T. cruzill

157

158  To carry out trypanolytic activity tests on infective forms of the parasite, metacyclic

159  trypomastigotes of strains Dm28 (Tcl) and Y (Tcll) were purified using ion exchange
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160 chromatography with Sepharose-DEAE (diethylethanolamine resin), as
161 standardized by Cruz-Saavedra et al. [13]. To obtain cell-free hemolymph, the
162 methodology described by Suarez et al. [10] and Pulido et al. [12] was used.
163  Evaluation of the resistance or sensitivity of the metacyclic forms of Tcl (Dm28) and
164  Tcll (Y) was carried out by incubating 10 pyL of trypomastigote suspension at a
165 concentration of 2.5-3.5 x107 per mL and 10 pL of cell-free hemolymph extract. The
166  resistance or sensitivity of the metacyclic forms was evaluated by estimating the
167 number of parasites by counting in the Neubauer chamber at 0 and 14 h of
168 incubation. All assays were carried out in triplicate.

169

170  Trypanolytic activity of components of salivary glands of R. prolixus and R.
171  colombiensis on cultured epimastigotes of T. cruzil and T. cruzi ll

172

173  To evaluate the lytic activity of components of the salivary glands of R. prolixus and
174  R. colombiensis against Tcll (strain Y) and Tcl (strain Dm28) DTUs, salivary glands
175 were obtained 8 days post-feeding by manual extraction from R. prolixus and R.
176 ~ colombiensis. Once the glands had been extracted, they were washed in 0.9% saline
177  solution to avoid contamination with hemolymph. Subsequently, they were
178  perforated to release the saliva, centrifuged at 14,000 rpm for 5 min at 4 °C, and
179  then the supernatant containing the saliva was recovered.

180

181 Incubations were performed with 10 pL of fresh saliva and 10 pL of T. cruzi culture
182 forms containing a concentration of 2.5-3.5 x107 parasites/mL. To assess the

183  sensitivity of Tcl and Tcll to lysis, live parasites were counted in the Neubauer
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184 chamber at 0 and 10 h post-incubation. Four replicates were performed for each
185 experiment. As a negative control, 10% LIT was used instead of fresh saliva. Counts
186  were subjected to one-way analysis of variance (ANOVA), using Tukey's test.

187

188  Statistical analysis of trypanolytic activity in hemolymph and saliva

189

190 Once the normality of the data had been confirmed, one-way ANOVA was
191 performed, using Tukey's test. Differences between treatments and controls were
192  considered statistically significant at p<0.05. Graphs were made using the GraphPad
193  Prism 8.0 program.

194

195 Hemolymph and salivary gland protein sequencing by LC/MS/MS

196

197 Hemolymph extraction was performed 8 days after feeding the insects with chicken

198  blood. After a cut had been made in the tarsus of the third leg of the insect, the

199 hemolymph was collected with a micropipette in a 1.5 mL tube, kept on ice,

200 centrifuged at 14,000 rpm for 5 min to collect the cell-free supernatant, and then

201  stored at —=70°C until use.

202 The salivary glands were extracted 8 days after feeding the insects. They were
203 washed three times in saline solution (0.9% NaCl), collected in a microtube, and

204 resuspended in saline solution at a volume of 2 uL per pair of glands.
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205

206 In order to extract the proteins from hemolymph and salivary glands, the tissues

207  were resuspended in lysis buffer (40 mM Tris-Base, 7 M urea, 2 M thiourea, 4%

208 CHAPS, 1 mM PMSF). Subsequently, the samples were incubated on an ice bed for

209 30 min, with vortexing for 1 min every 10 min. Finally, the cell lysis products were

210 centrifuged at 14,000 rpm for 30 min at 4 °C and the supernatant was removed and

211  stored at —80 °C until use.

212

213 The proteins present in the samples were quantified by the Bradford method, using
214  a calibration curve with serial dilutions of bovine serum albumin. Subsequently,
215  polyacrylamide gel electrophoresis was run under denaturing conditions (SDS-
216 PAGE) at 90 V for 10 min in order to use the gel as a storage matrix. These samples
217  were sent to the Proteomics Platform of the CHU Research Center of the University
218 of Laval in Quebec, Canada, where protein digestion and mass spectrometry
219 analysis coupled to high-performance liquid chromatography (LC-MS/MS) were
220 performed.

221

222 Identification of proteins from hemolymph and salivary glands of R. prolixus
223 and R. colombiensis

224
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225  For the identification of proteins from the hemolymph and salivary glands, the
226  UniProt Triatominae database was used. The MGF files with the list of peaks were
227  obtained with the software (ABSciex), using the Paragon and Progroup algorithms
228 [14]. Subsequently, these files were analyzed using Mascot (Matrix Science,
229  London, UK; version 2.5.1). A value of 0.1 Da was set for the peptide mass tolerance
230 and for the fragment mass tolerance. As fixed modifications, carbamidomethylation
231 of cysteines was established, while as variable modifications, deamination of
232 asparagine and glutamine and oxidation of methionine were included. The
233  information obtained from the identified proteins was visualized through Scaffold
234  version 4.8.3 software, validating peptides and proteins with a false discovery rate
235 (FDR) of less than 1%.

236

237 Quantitative analysis of R. prolixus and R. colombiensis hemolymph and
238 salivary proteins involved in the immune response

239

240 The hemolymph and salivary proteins involved in the immune response were filtered
241  and a semiquantitative profile of the relative abundance of the proteins in both
242  species was created using the label-free method. The normalized spectral
243  abundance factor (NSAF) was used to analyze the spectral count of the three
244  replicates. The calculation obtained with Scaffold is represented by the following
245  expression:

246

247 SAF=Exclusive spectrum number / Protein length (aa)

248
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249 The SAF value is normalized using Scaffold's regular quantitative value
250 normalization scheme which takes into account the sum of the SAF values of the
251  analyzed proteins:

252

253 NSAF=SAF/},SAF

254 RESULTS

255

256 Effect of incubation with hemolymph of R. prolixus and R. colombiensis on
257 epimastigotes and metacyclic trypomastigotes of T. cruzil and T. cruzi ll

258

259  The incubation of the hemolymph of R. prolixus with epimastigotes and metacyclic
260 trypomastigotes of T. cruzi Il showed significant decreases (p<0.005) of the
261 parasites by between 94% and 99% at 14 h post-incubation as a consequence of
262  parasite lysis (Figs 1A and 1C). The incubation of R. prolixus hemolymph with Tcl
263 metacyclic epimastigotes and trypomastigotes showed no significant decrease or
264 lytic activity of the parasites. The incubation of R. colombiensis hemolymph did not
265 show a significant decrease in the number of Tcl or Tcll metacyclic epimastigotes or
266  trypomastigotes during 14 h of incubation; therefore, this study concluded that there
267  was no lytic activity during this time in this vector (Figs 1B and 1D).

268

269  Fig 1. Incubation of the hemolymph of R. prolixus and R. colombiensis with
270 epimastigotes and metacyclic trypomastigotes of T. cruzi | and T. cruzi ll. In

271 each incubation of the hemolymph of R. prolixus or R. colombiensis with Tcl or Tcll,
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272 a negative lysis control consisting of the hemolymph of each vector treated with
273 pepsin was used, the effect of which is evident in the loss of lysis of R. prolixus on
274  metacyclic epimastigotes and trypomastigotes of T. cruzi Il. Similarly, in each
275 incubation, a positive lysis control was used, consisting of the untreated hemolymph

276  of R. prolixus incubated with the Y strain of T. cruzi Il.

277
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280 Effect of incubation of R. prolixus and R. colombiensis components of salivary
281 glands on Tcl and Tcll epimastigotes

282

283  The results showed lytic activity of the components of salivary glands of R. prolixus
284  against Tcll, with the abundance of parasites showing a significant decrease of 45%
285 at 10 h post-incubation (p > 0.005), nor was there any lytic effect against the Tcl
286  genotype (Fig 2A). The incubations with the saliva of R. colombiensis did not show
287  any lytic activity, nor a significant decrease in the number of parasites of the Tcl and
288  Tcll genotypes during the first 10 h of incubation (Fig 2B).

289

290 Fig 2. Incubation of R. prolixus and R. colombiensis components of salivary
291  glands with T. cruzil and T. cruzi ll epimastigotes. In each incubation of the saliva
292 of R. prolixus or R. colombiensis with Tcl or Tcll, a negative lysis control consisting
293 of a 10% LIT solution with the respective parasites was used. Similarly, in each
294  incubation, a positive lysis control was used, consisting of the untreated hemolymph
295  of R. prolixus incubated with the Y strain of T. cruzi Il.

296
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298
299
300

301 Proteomic analysis of the hemolymph of R. prolixus and R. colombiensis

302

303 A total of 120 proteins were identified in R. prolixus hemolymph and 107 in R.
304 colombiensis hemolymph (S1 Table). These two species shared a total of 92
305 proteins. Additionally, 28 proteins were detected only in R. prolixus hemolymph and
306 15onlyin R. colombiensis (S1 Table).

307

308 Of the total proteins identified in the hemolymph of R. prolixus and R. colombiensis,
309 40 were associated with an immune response and were grouped into six functional
310 categories that are presented in Fig 3. Quantitative profiling was performed on these

311  proteins involved in the immune response, with their relative abundance based on
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312 the normalized spectral abundance factor (NSAF). Most of the proteins shared by R.
313  prolixus and R. colombiensis are involved in carbohydrate and lipid recognition,
314 activation of proteolytic cascades, indicating the presence of common pathogen
315 recognition mechanisms and its products, and mechanisms of melanization and
316  encapsulation through the activation and regulation of the prophenoloxidase system.
317  The relative abundances of proteins of the prophenoloxidase system (AOA1B2G381,
318  AO0A1B2G385, T1HW22) were similar in the two species (Fig 3).

319

320 Fig 3. Relative abundance of 40 proteins involved in immunity in the
321 hemolymph of R. prolixus and R. colombiensis. Of these proteins, 32 were
322  shared between the two species, seven were detected only in R. prolixus, and one

323  was detected only in R. colombiensis (S1 Table).
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325  Among the proteins related to the metabolism of NO and superoxide ions, we found
326 the nitrophorins Q7YT15 and Q94734, and a putative superoxide dismutase protein

327 (AOAOP4VG48) only in the hemolymph of R. prolixus. Nitrophorins are expressed
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328 mainly in salivary glands; however, they can be found in other tissues such as
329 testicles, ovary, intestine, Malpighian tubules, and fat bodies [15]. They may also
330 reach other tissues because the hemolymph interacts with all of the organs of the
331 insect due to its open circulatory system. PAMs with higher relative abundance were
332 also detected in R. prolixus. These PAMs and proteins such as serine protease with
333 the CLIP domain (T110A9), interferon gamma, and superoxide dismutase
334 (AOAOP4VG48) are proteins related to the induced immunity of the insect; that is,
335 they are expressed only after the host has been exposed to infection.

336

337 Proteomic analysis of salivary glands of R. prolixus and R. colombiensis

338 A greater number and more diverse functions of proteins were identified in R.
339  prolixus than in R. colombiensis, with totals of 1103 and 853, respectively (S2 Table).
340 In the salivary glands of both species, 748 proteins were shared, while 355 were
341 detected only in R. prolixus and 105 in R. colombiensis (S2 Table). Overall, 67
342  proteins involved in immune activity in the saliva of these insects were classified into
343  four categories to perform a comparative analysis between the two species. The
344  proteins with the highest relative abundance were the nitrophorins (NPs), with the
345 highest representation in R. prolixus. In this species, 21 NPs were quantified,
346 compared with 11 in R. colombiensis. In the category of evasion or tolerance of the
347 host response, R. prolixus presents relative quantification for 38 proteins compared
348  with 10 for R. colombiensis (Fig 4). The results of the proteomic characterization in
349 the present work show a more identified NPs and their higher expression of these
350 proteins in R. prolixus from the semiquantitative analysis.

351
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Fig 4. Relative abundance of 67 proteins involved in the immune response of
R. prolixus and R. colombiensis in the salivary glands. Of these proteins, 25
were shared between the two species, 41 were detected only in R. prolixus, and one

was detected only in R. colombiensis (S2 Table).


https://doi.org/10.1101/2023.06.12.544535
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544535; this version posted June 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Sequestering of iron Transferrin - (B8LJ43) mm R. prolixus
Glutatione S-transferase - (T11G50 B R. colombiensis
Superoxide dismutase - (AOAOP4AVTNY

Nitric oxide synthase - (Q26240)
Catalase - (AOAOP4VT66
Nitrophorin 3B - (Q7YSY5)
Putative nitrophorin - (AOAOP4VIMO) -
Putative salivary nitrophorin 7 - (AOAOP4VMA9) -
Putative nitrophorin - (AOAOP4VPI4)
Putative nitrophorin - (R4G8L8)
p Putative nEropho(r,i.\rB -A(()RN47ng|¥(25} -
. - - utative nitrophorin - -
Nitric oxide metabolism Putative hitrophorin - éR4GSOD 4
and superoxide ions Putative nitrophorin 4b - (R4G4L0) 4
Putative nitrophorin - (AOA0OP4VRM1) <
Nitrophorin-7 - (Q6PQK2)
Putative nitrophorin - (R4G8NO0)
Putative nitrophorin - (R4G8M9)
Putative nitrophorin AOAON7Z8Y4
Putative nitrohsJ_horin ~( _AOAOP4VNYO%
itrophorin-1 - (Q26239
Nitrophorin-3 - (094733;
Putative nitrophorin 1a - (R4FPW7
Nitrophorin-2 - {026241
Nitrophorin-4 - (Q94734
p Dtenss 10 - (AORONTZET)
ot : utative serine protease 10 -
Activation and regulation Metalloendopeptidase - (T111C5
of proteolytic cascades Putative metallopeptidase -} 4G8R7
Putative lipocalin ai-7 - (R4G8KO0
Putative lipocalin (R4G376)
Putative lipocalin ai-5 - (AQAOVOG8MS )
Lipocalin Al-3 - (Q7YT10)
Putative lipocalin - (R4G4E6)
Lirocalin Al-4 - (Q7YT09)
Putative lipocalin ai-7 - (AOAON7Z954)
Putative lipocalin - ER4FPSS
Triabin-like lipocalin 2 - (Q7YTO05
Putative lipocalin ai-7 (R4FR66)
Putative lipocalin ai-6 - (AOAON7Z8D0)
Putative lipocalin - (AOAOP4VU56)
Putative lipocalin - (R4FLY6)
Putative lipocalin - (R4FR52)
Putative lipocalin ai-7 - AOAOP4VJV9;
Putative lipocalin ai-7 lipocalin - (AOAOP4VNM2
Putative pallidlifin-like lipocalin - &R4G426
Putative libocatin ab? - (RAFLED)
utative lipocalin ai-7 -
host response Putative lipocalin - (R4FN70)
Triabin-like lipocalin 3 - QTYT04;
Putative triabin-like lipocalin - (AOAOP4VJ86
Putative triabin-like lipocalin - (AOAOP4VRP3)
Putative triabin-like lipocalin - (R4G8L0)
Putative triabin-like protein - (AOAOP4VSWS8)
Putative triabin-like lipocalin -§R4FJ72
Putative triabin-like lipocalin - (R4FPJ5
Putative triabin-like lipocalin 2 - (AOAOP4VNGY)
Putative triabin length - (R4FQLO0)
Putative triabin length - R4G4H9}
Putative triabin length - (AOAOP4VJD8
Putative triabin-like protein - (R4G3G0
Putative triabin-like lipocalin - (R4G3G4
Putative triabin length - (R4G560)
Putative triabin length - (R4FN02)
Putative triabin-like lipocalin - (R4FPQ1)
Putative triabin-like lipocalin - (AOAOP4W353 )
Putative triabin length - (R4G339)

IN
Q‘Q Q- Q"L Qf‘b Q’h Q?J

Evasion or tolerance of

356

357

358


https://doi.org/10.1101/2023.06.12.544535
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544535; this version posted June 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

350 DISCUSSION

360

361 Lytic activity and proteomic analysis of hemolymph

362

363 Alvarenga & Bronfen [16] made the first observation of Iytic activity against T. cruzi
364 in the hemolymph in two triatomine species: Dipetalogaster maxima and Triatoma
365 infestans. These researchers revealed that the parasites inoculated into the
366 hemocoel of the insects did not survive after a few days, evidencing the inability of
367 T. cruzito establish itself in hemolymph. Meanwhile, Mello et al. (1996) [17] showed
368 lytic activity in the hemolymph of R. prolixus against strains Dm28 and Y of T. cruzi;
369 when these were inoculated in the hemocoel of R. prolixus, they were rapidly
370 eliminated. Moreover, via in vitro experiments, Suarez et al. (2020) [10] evidenced
371 TFs at the hemolymph of R. prolixus and R. robustus against DTUs I, V, VI, Tcbat,
372 and T. cruzi marinkellei after 14 h of incubation. However, when evaluating the
373  hemolymphs of six more species (R. colombiensis, R. pallescens, R. pictipes, T.
374 dimidiata, T. maculata, and P. geniculatus), none presented in vitro lytic activity
375 against T. cruzi DTUs, after 14 h of incubation. In the present work, the hemolymph
376  of R. prolixus, in addition to having lytic activity against T. cruzi |l epimastigotes, was
377  confirmed to also lyse the metacyclic trypomastigotes of T. cruzi lIl, but not those of
378 T. cruzi |. Regarding the origin of these TFs, they are considered to be part of the
379 remaining innate immunity generated against the intestinal microbiota that would
380 affect some T. cruzi genotypes [1, 10].

381
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382 Fig 3 shows the relative abundance of immunity-related proteins detected in the
383 hemolymph of R. prolixus and R. colombiensis. In accordance with the immune
384 factors previously described in R. prolixus, the lytic factors observed against Tcll
385 could be associated with AMPs, proteins involved in the metabolism of the
386  prophenoloxidase system, proteins related to hemolymph coagulation, ROS-
387 generating proteins, and protein RNS generators.

388

389 Of the proteins related to the activation and regulation of proteolytic cascades
390 (Fig 3), the prophenoloxidase system stands out for the production of melanin, which
391 functions in tissue repair and the encapsulation of pathogens [2, 4]. Throughout
392  melanin production, a cascade of free radicals such as ROS and RNS are generated,
393  which are highly toxic against pathogens such as trypanosomes [18]. However, in
394 the lytic activity experiments with hemolymph in this study, phenylthiourea was used
395 as an inhibitor of the prophenoloxidase cascade, and thus the lysis observed in our
396 experiments was not related to the prophenoloxidase system. This supported the
397 assertion that other proteins different from those involved in the prophenoloxidase
398 system additionally act as factors with trypanolytic activity.

399

400  Another protein in hemolymph related to the activation and regulation of proteolytic
401 cascades that stands out for its relative abundance is serpin (T1F83). Serpin is
402  responsible for regulating protease activity and therefore oxidative activity because
403 it acts as an inhibitor of proteases, which activate the pathways of the
404  prophenoloxidase system. This function would have a protective role for the insect

405 against an excess of cellular oxidative activity [4, 18].
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406

407  Within the category of carbohydrate recognition, some lectins and the A and C
408 domains of von Willebrand factor were identified in both R. prolixus and R.
409 colombiensis. Several lectins are conserved in Hemiptera and participate in the
410 defense against flagellates in triatomines [19, 20], it has been shown that these
411 binding molecules can induce the recruitment of hemocytes for the encapsulation
412  and melanization of pathogens [21]. Otherwise, as some authors have pointed out,
413  the agglutination processes mediated by these proteins could have a protective
414  effect on parasites, promoting their survival and multiplication [20, 22, 23]. Because
415 the agglutinating and protective effects of lectins depend on the affinity for the
416  glycoproteins present in the parasite membrane, the affinity for sugars of the
417 detected lectins needs to be examined to confirm their possible protective effect on
418  the different T. cruzi DTUs.

419

420  The role of AMPs such as lysozyme, defensin, and prolixin cannot be ruled out in
421  trypanolytic activity of hemolymph, because they were more abundant in R. prolixus
422  thanin R. colombiensis. AMPs can alter the structure of the cytoplasmic membrane,
423  generating ion channels that increase its permeability and subsequently induce cell
424  death [24]. The composition of amino acids, their net charge (generally cationic), and
425  their amphipathic and size characteristics promote their interaction with lipid bilayers,
426  mainly those that form the cytoplasmic membranes of pathogens (bacteria, fungi,
427  enveloped viruses, and parasites). Although few studies have focused on the effect
428  of antimicrobial peptides on parasites, some have shown that these molecules can

429  affect their development and trigger cell lysis. Magainin 2 was one of the first AMPs
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430 described to show antiparasitic activity, specifically against protozoa. Tests carried
431  out with this peptide in Paramecium caudatum led to the lysis of this microorganism
432  [25]. In Phlebotomus duboscqi, a defensin active against promastigotes of
433  Leishmania major was identified [26]. Additionally, a recombinant attacin from
434  Glossina was shown to have trypanolytic activity on T. brucei blood trypomastigotes
435 and epimastigotes in vitro and in vivo [27]. The negative effect of antimicrobial
436  peptides on T. cruzi has also been demonstrated, since Fieck et al. [28] observed
437  trypanocidal activity of four antimicrobial peptides (apidaecin, magainin Il, melittin,
438 and cecropin) on T. cruzi, even at concentrations where they had no effect on
439  Rhodococcus rhodnii. Subsequently, the combined treatment of these peptides
440 increased the toxicity on the parasites.

441

442  An interesting finding in the hemolymph of R. prolixus was the detection of NPs and
443  lipocalins which are known to be synthesized in the salivary glands of insects;
444  however, they may reach the hemolymph because it interacts with all of the insect's
445  organs due to its open circulatory system. These proteins are related to the function
446  of facilitating insect feeding when it takes blood from its host because they have
447  vasodilatory and anticoagulatory properties. However, NPs are involved in the
448  metabolism of NO, a free radical that acts in the constitutive innate immunity of the
449 insect; therefore, they could also participate in the lytic activity observed in the
450  hemolymph of R. prolixus.

451

452

453
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454  Lytic activity and proteomic analysis of salivary glands

455

456  Fig 4 shows the relative abundance of proteins in the salivary glands of R. prolixus
457 and R. colombiensis. A large number of triabins, lipocalins, and nitrophorins are
458 more abundant in R. prolixus than in R. colombiensis. The main role of salivary
459  proteins in blood-feeding arthropods is to maintain blood flow in the mouthparts that
460  successfully conduct blood to the digestive tract. This process is successful due to
461 the combination of numerous salivary proteins, in some cases small molecules, that
462  act together to inhibit the coagulatory cascade, limit platelet activation, and prevent
463  vasoconstrictive responses. In triatomine salivary glands, there are still many
464  families of proteins that have not been completely characterized and of which several
465 additional activities could be found. According to Arca & Ribeiro [7], up to 40% of
466  salivary peptides in hematophagous insects have unknown functions. When
467  considering only the 155 described species of triatomines, there is proteomic
468 information for just 16 species, supported by nine annotated sialotranscriptomes, six
469  descriptive sialoproteomes, and seven sialomes [29, 30, 31, 32, 33, 34, 35, 36, 37,
470 38,39, 40]. Added to this, in each of these studies, a large number of proteins were
471  obtained without being able to characterize them. Within the reports on these
472  studies, transcriptomic and proteomic data for R. prolixus are presented [30]. For R.
473  colombiensis, this report presents the first proteomic data on hemolymph and
474  salivary glands.

475

476  The above-mentioned studies focused almost exclusively on the analysis of salivary

477  proteins related to anticoagulant, antiplatelet, and vasodilatory activities to respond


https://doi.org/10.1101/2023.06.12.544535
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544535; this version posted June 12, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

478 to the hemostasis of their vertebrate host, properties that could have
479  pharmacological potential. The role that these salivary proteins may have in the
480 immunity of triatomines has not been discussed in depth, despite there being
481  evidence of them having antiparasitic, antibacterial, antiviral, and antifungal activities
482  [7,40].

483

484  The results of the present work on the effect of R. prolixus salivary proteins on T.
485  cruzi epimastigotes and trypomastigotes showed lytic activity against T. cruzi ll. This
486 effect is similar to that observed in an experiment carried out by Ferreira et al. [8]
487  using the content of the salivary glands of R. prolixus, which showed lysis of 20% of
488  the trypomastigote forms of T. cruzi (strain CL). The results of these experiments
489 indicate that the proteins present in the salivary glands in R. prolixus, in addition to
490 fulfilling the functions that counteract the hemostasis of their vertebrate host, can
491  also modulate the infection and adaptation of pathogens and particularly some DTUs
492  of T. cruzi [8, 9]. It might be thought that the effect of these lytic factors would not be
493  relevant to T. cruzi due to their absence from salivary glands during their life cycle in
494  the vector. However, part of the saliva that is ingested in the insect's feeding process
495 is known to reach the intestine and thus interacts directly with the parasite. This
496 innate immune response generated in the salivary glands has been reported to affect
497  some genotypes of T. cruzi [1].

498

499  The proteins in the salivary glands of triatomines that are related to immune functions
500 against pathogens include antimicrobial peptides, lysozyme, pattern recognition

501 molecules, and serine proteases, which act as activators of the prophenoloxidase
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502 system [4, 7, 41]. A pore-forming lytic protein called trialysin was identified in the
503 saliva of Triatoma infestans, which lysed the trypomastigote forms of T. cruzi Il
504 (strain Y) [9]; however, no protein with similar characteristics in the salivary glands
505 of R. prolixus has been identified. Although there is evidence of lytic activity against
506 T. cruzi in the salivary glands of R. prolixus, the factors involved in this lysis have
507 remained unclear. We know that this lytic effect against Tcll observed in the salivary
508 glands of R. prolixus has also been observed in the hemolymph of R. prolixus and
509 R. robustus, while being absent from the salivary glands and hemolymph of R.
510 colombiensis and the hemolymph of R. pallescens [10]. In this sense, the question
511 arises about the epidemiological role of this lytic factor, which would only be present
512 in the salivary glands of some Rhodnius species.

513

514 In R. prolixus and R. colombiensis, proteins involved in NO metabolism and therefore
515 in ROS metabolism were found. The NO and ROS molecules are considered to be
516  constitutive immune components conserved in Hemiptera and thus they are relevant
517 factors in the defense of triatomines [5]. Although similar proteins were identified in
518 both species in relation to NO metabolism, such as the enzyme nitric oxide synthase
519 (Q26240), R. prolixus presented a greater diversity of lipocalins and nitrophorins that
520 generate a greater machinery of oxidative activity that reinforces its innate immune
521 response [42, 43].

522

523 In different studies on triatomine sialoma, it has been shown to contain a
524  predominance of lipocalins, triabins, and NPs [31, 35, 44]. In R. prolixus, the lipocalin

525 family presents a very significant component compared with the rest of the proteins
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526  presentin saliva [42]. Specifically, reference has been made to the great abundance
527 of NPs in the saliva of R. prolixus [42, 45]. NPs have been very well characterized
528  at the structural and biochemical levels. The main function of NPs is related to the
529 transport, storage, and release of NO. These molecules are considered cytotoxic
530 factors against T. cruzi, and pathways involving the radical activity of ROS develop
531 around NO metabolism, also act against parasites [6, 46, 47, 48]. Those lipocalins
532 and nitrophorins with higher relative abundance in R. prolixus than in R.
533  colombiensis are candidate factors responsible for the lysis observed against T. cruzi
534 .

535

536  Several studies have indicated that the immune response of triatomines plays an
537 important role in the success or failure of transmission of some T. cruzi DTUs. In the
538 hemolymph and saliva of some Rhodnius species, there are proteins that activate
539  oxidative mechanisms that can inhibit the infection of some T. cruzi DTUs. In this
540 study, a comparative proteomic analysis of the hemolymph and salivary proteins of
541 R. prolixus and R. colombiensis was performed for the first time. This analysis
542  showed the relative abundance of nitrophorins in R. prolixus, which act together with
543  other proteins such as lysozyme, prolixin, lipocalins, and triabins to generate a strong
544  immune response in R. prolixus. This response should be responsible for the lytic
545  activity of hemolymph and saliva against epimastigotes and trypomastigotes of T.
546  cruzill, detected in vitro. These findings complement the observations of lytic activity
547  of hemolymphon T. cruziV, T. cruzi VI, T. cruzi bat, and T. cruzi marinkellei reported
548 by Suarez et al. [10]. The results of this work, together with those of Suarez et al.

549  [10], show that T. cruzi | is resistant to the lysis of the hemolymph and salivary
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550 proteins of R. prolixus, due to possible mechanisms that allow it to evade oxidative
551 stress. T. cruzi | is the DTU with the widest geographical distribution, from the
552 southern United States to the center of Chile and Argentina, a distribution that could
553  be related to the resistance to oxidative stress of the vectors.

554

555  The vigorous immune response observed in R. prolixus against T. cruzi |l was also
556  observed in R. robustus [10] and could be a determinant of the vectorial inability of
557 these species to transmit T. cruzi Il. Studies carried out with R. robustus showed its
558 inability to transmit T. cruzi Il in experimental infections [49]. Meanwhile, studies
559 carried out in Colombia did not detect T. cruzi Il in the R. prolixus specimens
560 examined [50, 51].

561

562 The genus Rhodnius is made up of 21 species divided into three groups: the
563 Pallescens group with three species (R. colombiensis, R. ecuadoriensis, R.
564  pallescens) [52], in which in vitro assays have not detected trypanolytic factors in
565 hemolymph or saliva; the Pictipes group with seven species (R. amazonicus, R.
566  brethesi, R. micki, R. paraensis, R. pictipes, R. stali, R. zeledoni), in which in vitro
567 tests have not been carried out to verify the presence of trypanolytic factors in
568 hemolymph or saliva; and the Prolixus group, with 11 species, of which R. prolixus
569 and R. robustus present trypanolytic factors in hemolymph and salivary glands.
570 Therefore, new studies are needed to verify the presence of this vigorous immune
571 response in the remaining nine species of the Prolixus group (R. barretti, R.
572  dalessandroi, R. domesticus, R. milesi, R. marabaensis, R. montenegrensis, R.

573  nasutus, R. neglectus, R. neivai).
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574  Despite the limitations of proteomic studies, related to reproducibility, analysis, and
575 identification of a high number of proteins, the present work was able to show
576 differences in the relative abundance of proteins involved in the immune response
577  of R. prolixus and R. colombiensis, which could be associated with the lytic activity
578 observed in the hemolymph and salivary glands of R. prolixus against T. cruzi |l
579  epimastigotes and trypomastigotes, but not against T. cruzi I.

580

581 To more precisely identify the proteins involved in this immune response, new
582 comparative transcriptomic studies in triatomine species with and without lytic
583  activity in hemolymph and salivary glands should be carried out, and the expression
584  of proteins possibly involved in this immune response by quantitative PCR needs to
585 be evaluated. Meanwhile, studying the interaction of the intestinal microbiota of the
586 vectors with the parasites and investigating the mechanisms of resistance to
587  oxidative stress in the DTUs of T. cruzi (T. cruzi 1-V1 and T. cruzi bat) are necessary,
588 to understand innate immunity, parasite—vector interaction, and coevolution of
589 parasites and their vectors. Further study and investigation should then clarify the
590 uneven geographical distribution of DTUs associated with the complex epidemiology
591  of Chagas disease in different parts of of the Western Hemisphere.

592

593

594

595
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