

1 **Comparative proteomic analysis of the hemolymph**
2 **and salivary glands of *Rhodnius prolixus* and**
3 ***R. colombiensis* reveals candidates associated with**
4 **differential lytic activity against *Trypanosoma cruzi***
5 **I and *T. cruzi* II**

6
7 Hamilton J. Barbosa^{1*}, Yazmin Suárez Quevedo¹, Arlid Meneses Torres¹, Gustavo A. Gaitán
8 Veloza¹, Julio C. Carranza Martínez¹, Daniel A. Urrea-Montes¹, Carlos Robello-Porto²,
9 Gustavo A. Vallejo^{1*}.

10
11
12 ¹Laboratorio de Investigaciones en Parasitología Tropical (LIPT). Facultad de
13 Ciencias. Universidad del Tolima. Ibagué, Colombia.

14 ²Departamento de Bioquímica, Facultad de Medicina, Universidad de la República,
15 Montevideo, Uruguay.

16

17 *Corresponding author
18 E-mail: hjbarbosav@ut.edu.co (HB), gvallejo@ut.edu.co (GV).

19

20

21 **Abstract**

22

23 **Background**

24 Immune response of triatomines plays an important role in the success or failure of
25 transmission of *T. cruzi*. Studies on parasite–vector interaction have shown the
26 presence of trypanolytic factors and have been observed to be differentially
27 expressed among triatomines, which affects the transmission of some *T. cruzi*
28 strains or DTUs (Discrete Typing Units).

29

30 **Methodology/Principal Findings**

31 Trypanolytic factors were detected in the hemolymph and saliva of *R. prolixus*
32 against epimastigotes and trypomastigotes of *T. cruzi* II. To identify the components
33 of the immune response that could be involved in this lytic activity, a comparative
34 proteomic analysis was carried out, detecting 120 proteins in the hemolymph of *R.*
35 *prolixus* and 107 in *R. colombiensis*. In salivary glands, 1103 proteins were detected
36 in *R. prolixus* and 853 in *R. colombiensis*. A higher relative abundance of lysozyme,
37 prolixin, nitrophorins, and serpin as immune response proteins was detected in the
38 hemolymph of *R. prolixus*. Among the *R. prolixus* salivary proteins, a higher relative
39 abundance of nitrophorins, lipocalins, and triabins was detected. The higher relative
40 abundance of these immune factors in *R. prolixus* supports their participation in the
41 lytic activity on *T. cruzi* II, but not on *T. cruzi* I, which is resistant to lysis by
42 hemolymph and salivary proteins of *R. prolixus* due to mechanisms of evading
43 oxidative stress caused by immune factors.

44 **Conclusions/Significance**

45 *T. cruzi* I is a DTU distributed from the southern United States to the center of Chile
46 and Argentina, and its successful spread across this range could be related to
47 resistance to oxidative stress in vectors. Future proteomic and transcriptomic studies
48 on vectors and the interactions of the intestinal microbiota with parasites will help to
49 confirm the determinants of successful or failed vector transmission of *T. cruzi* DTUs
50 in different parts of the Western Hemisphere.

51

52 **Author summary**

53 Some factors can facilitate or prevent *T. cruzi* transmission, i.e. vector immunity. Our
54 work has managed to detect a stronger immune response against *T. cruzi* II in *R.*
55 *prolixus* saliva and haemolymph, compared to that of *R. colombiensis*. Proteins from
56 both species' saliva and haemolymph were analysed for studying factors which
57 might have been involved in such response; most proteins were detected in both
58 species' haemolymph, thereby indicating common immune mechanisms. Three
59 proteins having oxidative immune activity were only expressed in *R. prolixus*.
60 Lipocalin diversity and abundance predominated in *R. prolixus* saliva; these proteins
61 are involved in nitric oxide metabolism and their role in immunity could be key in host
62 defence against *T. cruzi*. Recognising the components modulating parasite
63 transmission in a vector helps in understanding how such factors act independently
64 and how they would act synergistically against *T. cruzi*, thereby enabling us to
65 establish tools regarding Chaga's disease epidemiology, aimed at predicting *T. cruzi*
66 distribution and creating transmission control mechanisms.

67 INTRODUCTION

68

69 In terms of parasite–vector interactions, four determinants of the transmission of
70 *Trypanosoma cruzi* have been recognized: i) the strain and discrete typing units
71 (DTU) of the parasite, ii) the triatomine species, iii) the cellular and humoral immune
72 response of the vector, and iv) the intestinal microbiota of the insect [1, 2, 3]. Three
73 of these determinants are related to the vector, which has directed special interest
74 to the study of the tissues and mechanisms associated with the insect's immune
75 response, involving the hemolymph, hemocytes, fat bodies, digestive tract, and
76 salivary glands [2, 4]. Vectors have an innate immune system consisting of humoral
77 and cellular components. The humoral system comprises lipid precursors known as
78 eicosanoids, the prophenoloxidase system, antimicrobial peptides (AMPs), the
79 hemolymph coagulation system, reactive oxygen species (ROS), and reactive
80 nitrogen species (RNS). The cellular immune system comprises hemocytes, whose
81 function is to phagocytose microorganisms such as bacteria, fungi, and protozoa.
82 Hemocytes are also involved in wound repair by nodulation, in addition to the
83 production of AMPs, RNS, ROS, and prophenoloxidase [4]. Hemocytes additionally
84 have the capacity to express high levels of nitric oxide synthetase, which translates
85 into the production of nitric oxide (NO), a molecule that is part of the constitutive
86 innate immunity in insects [5].

87

88 Detailed studies on the saliva of hematophagous arthropods have been performed,
89 focusing on the function of salivary proteins and their role as bioactive molecules

90 that facilitate successful blood feeding, counteracting the coagulation cascade and
91 the complement system of vertebrate immune defense. Hematophagous arthropods
92 have a wide arsenal of proteins with redundant functions involving vasodilatory,
93 antihemostatic, anti-inflammatory, and immunomodulatory activities [6, 7].

94

95 In the salivary glands, there are also proteins that can stop the infection of pathogens
96 transmitted by these insects, such as *T. cruzi*. Although *T. cruzi* does not directly
97 interact with the triatomine salivary glands because it restricts its life cycle to the
98 insect's intestine, the saliva components that reach the stomach at feeding time may
99 act to kill some genotypes of the parasites [8].

100

101 Several studies on parasite–vector interaction have shown the presence of
102 trypanolytic factors (TFs) against some *T. cruzi* DTUs in the hemolymph, midgut,
103 and saliva [8, 9, 10, 11]. TFs have been observed to be differentially expressed
104 among triatomines, which affects the transmission of some *T. cruzi* strains or DTUs,
105 supporting the hypothesis that triatomines are biological filters and modulators of
106 trypanosome transmission [1, 10].

107

108 Our understanding of the nature of the TFs that are present in the hemolymph and
109 saliva of some triatomine species is still limited. Therefore, the first objective of this
110 study was to confirm the differential lytic activity in the hemolymph and components
111 of salivary glands of *R. prolixus* and *R. colombiensis* against epimastigotes and
112 trypomastigotes of *T. cruzi* I and *T. cruzi* II. The second objective was to carry out a
113 proteomic analysis of the hemolymph and components of salivary glands of these

114 two *Rhodnius* species to identify the immune response proteins possibly related to
115 the observed lytic activity.

116

117 MATERIALS AND METHODS

118

119 ***Trypanosoma cruzi* strains**

120

121 To evaluate the lytic activity of the hemolymph and saliva of *R. prolixus* and *R.*
122 *colombiensis*, reference strains of *T. cruzi* were used: TcI (Dm28) and TcII (Y). The
123 parasites were maintained in LIT/NNN biphasic culture medium (Liver Infusion
124 Tryptosa 10% SFB/Novy-McNealk Nicoll) with weekly subcultures.

125

126 **Insect colonies**

127

128 Fifth-instar nymphs of *R. prolixus* and *R. colombiensis* were used. The insects were
129 fed once a week with chicken blood and were maintained under a photoperiod of 12
130 h light/12 h dark at an approximate temperature of 28°C and relative humidity of
131 80%.

132

133

134

135

136 **Trypanolytic activity of the hemolymph of *R. prolixus* and *R. colombiensis* on**
137 **cultured epimastigotes of *T. cruzi* I and *T. cruzi* II**

138

139 Following the methodology described by Suarez et al. [10], the insects were fed on
140 chicken blood 8 days before the trypanolytic activity assays were carried out. The
141 hemolymph of 20 insects of each species was collected, mixed, and centrifuged at
142 14,000 rpm for 5 min. The cell-free supernatant was used to detect trypanolytic
143 activity following the methodology described by Pulido et al. [12]. To prevent
144 melanization of hemolymph, 2 μ l of 50 mM phenylthiourea was added to 100 μ l of
145 hemolymph. Cultured *T. cruzi* epimastigotes were washed three times with saline
146 solution, centrifuged at 7000 rpm for 5 min, and resuspended in 10% (v/v) LIT
147 medium. A total of 10 μ l of hemolymph was added to 10 μ l of parasite suspension at
148 a final concentration of $2.5\text{--}3.5 \times 10^7$ parasites/mL. To confirm the lytic activity, live
149 parasites were counted in a Neubauer chamber at 0 and 14 h of incubation. As a
150 negative control, inactivated hemolymph with 10 μ l of pepsin solution (15 mg/mL in
151 1 M HCl) for every 100 μ l of hemolymph was used with subsequent incubation at
152 37°C for 4 h. As a positive control, epimastigotes of strain Y (DTU TcII) were used,
153 which always presented lysis after incubation with the hemolymph of *R. prolixus*.

154

155 **Trypanolytic activity of hemolymph of *R. prolixus* and *R. colombiensis* on**
156 **metacyclic trypomastigotes of *T. cruzi* I and *T. cruzi* II**

157

158 To carry out trypanolytic activity tests on infective forms of the parasite, metacyclic
159 trypomastigotes of strains Dm28 (TcI) and Y (TcII) were purified using ion exchange

160 chromatography with Sepharose-DEAE (diethylethanolamine resin), as
161 standardized by Cruz-Saavedra et al. [13]. To obtain cell-free hemolymph, the
162 methodology described by Suárez et al. [10] and Pulido et al. [12] was used.
163 Evaluation of the resistance or sensitivity of the metacyclic forms of TcI (Dm28) and
164 TcII (Y) was carried out by incubating 10 μ L of trypomastigote suspension at a
165 concentration of $2.5\text{--}3.5 \times 10^7$ per mL and 10 μ L of cell-free hemolymph extract. The
166 resistance or sensitivity of the metacyclic forms was evaluated by estimating the
167 number of parasites by counting in the Neubauer chamber at 0 and 14 h of
168 incubation. All assays were carried out in triplicate.

169

170 **Trypanolytic activity of components of salivary glands of *R. prolixus* and *R.*
171 *colombiensis* on cultured epimastigotes of *T. cruzi* I and *T. cruzi* II**

172

173 To evaluate the lytic activity of components of the salivary glands of *R. prolixus* and
174 *R. colombiensis* against TcII (strain Y) and TcI (strain Dm28) DTUs, salivary glands
175 were obtained 8 days post-feeding by manual extraction from *R. prolixus* and *R.*
176 *colombiensis*. Once the glands had been extracted, they were washed in 0.9% saline
177 solution to avoid contamination with hemolymph. Subsequently, they were
178 perforated to release the saliva, centrifuged at 14,000 rpm for 5 min at 4 °C, and
179 then the supernatant containing the saliva was recovered.

180

181 Incubations were performed with 10 μ L of fresh saliva and 10 μ L of *T. cruzi* culture
182 forms containing a concentration of $2.5\text{--}3.5 \times 10^7$ parasites/mL. To assess the
183 sensitivity of TcI and TcII to lysis, live parasites were counted in the Neubauer

184 chamber at 0 and 10 h post-incubation. Four replicates were performed for each
185 experiment. As a negative control, 10% LIT was used instead of fresh saliva. Counts
186 were subjected to one-way analysis of variance (ANOVA), using Tukey's test.

187

188 **Statistical analysis of trypanolytic activity in hemolymph and saliva**

189

190 Once the normality of the data had been confirmed, one-way ANOVA was
191 performed, using Tukey's test. Differences between treatments and controls were
192 considered statistically significant at $p<0.05$. Graphs were made using the GraphPad
193 Prism 8.0 program.

194

195 **Hemolymph and salivary gland protein sequencing by LC/MS/MS**

196

197 Hemolymph extraction was performed 8 days after feeding the insects with chicken
198 blood. After a cut had been made in the tarsus of the third leg of the insect, the
199 hemolymph was collected with a micropipette in a 1.5 mL tube, kept on ice,
200 centrifuged at 14,000 rpm for 5 min to collect the cell-free supernatant, and then
201 stored at -70°C until use.

202 The salivary glands were extracted 8 days after feeding the insects. They were
203 washed three times in saline solution (0.9% NaCl), collected in a microtube, and
204 resuspended in saline solution at a volume of 2 μL per pair of glands.

205

206 In order to extract the proteins from hemolymph and salivary glands, the tissues

207 were resuspended in lysis buffer (40 mM Tris-Base, 7 M urea, 2 M thiourea, 4%

208 CHAPS, 1 mM PMSF). Subsequently, the samples were incubated on an ice bed for

209 30 min, with vortexing for 1 min every 10 min. Finally, the cell lysis products were

210 centrifuged at 14,000 rpm for 30 min at 4 °C and the supernatant was removed and

211 stored at -80 °C until use.

212

213 The proteins present in the samples were quantified by the Bradford method, using

214 a calibration curve with serial dilutions of bovine serum albumin. Subsequently,

215 polyacrylamide gel electrophoresis was run under denaturing conditions (SDS-

216 PAGE) at 90 V for 10 min in order to use the gel as a storage matrix. These samples

217 were sent to the Proteomics Platform of the CHU Research Center of the University

218 of Laval in Quebec, Canada, where protein digestion and mass spectrometry

219 analysis coupled to high-performance liquid chromatography (LC-MS/MS) were

220 performed.

221

222 **Identification of proteins from hemolymph and salivary glands of *R. prolixus***

223 **and *R. colombiensis***

224

225 For the identification of proteins from the hemolymph and salivary glands, the
226 UniProt Triatominae database was used. The MGF files with the list of peaks were
227 obtained with the software (ABSciex), using the Paragon and Progroup algorithms
228 [14]. Subsequently, these files were analyzed using Mascot (Matrix Science,
229 London, UK; version 2.5.1). A value of 0.1 Da was set for the peptide mass tolerance
230 and for the fragment mass tolerance. As fixed modifications, carbamidomethylation
231 of cysteines was established, while as variable modifications, deamination of
232 asparagine and glutamine and oxidation of methionine were included. The
233 information obtained from the identified proteins was visualized through Scaffold
234 version 4.8.3 software, validating peptides and proteins with a false discovery rate
235 (FDR) of less than 1%.

236

237 **Quantitative analysis of *R. prolixus* and *R. colombiensis* hemolymph and**
238 **salivary proteins involved in the immune response**

239

240 The hemolymph and salivary proteins involved in the immune response were filtered
241 and a semiquantitative profile of the relative abundance of the proteins in both
242 species was created using the label-free method. The normalized spectral
243 abundance factor (NSAF) was used to analyze the spectral count of the three
244 replicates. The calculation obtained with Scaffold is represented by the following
245 expression:

246

247
$$\text{SAF} = \text{Exclusive spectrum number} / \text{Protein length (aa)}$$

248

249 The SAF value is normalized using Scaffold's regular quantitative value
250 normalization scheme which takes into account the sum of the SAF values of the
251 analyzed proteins:

252

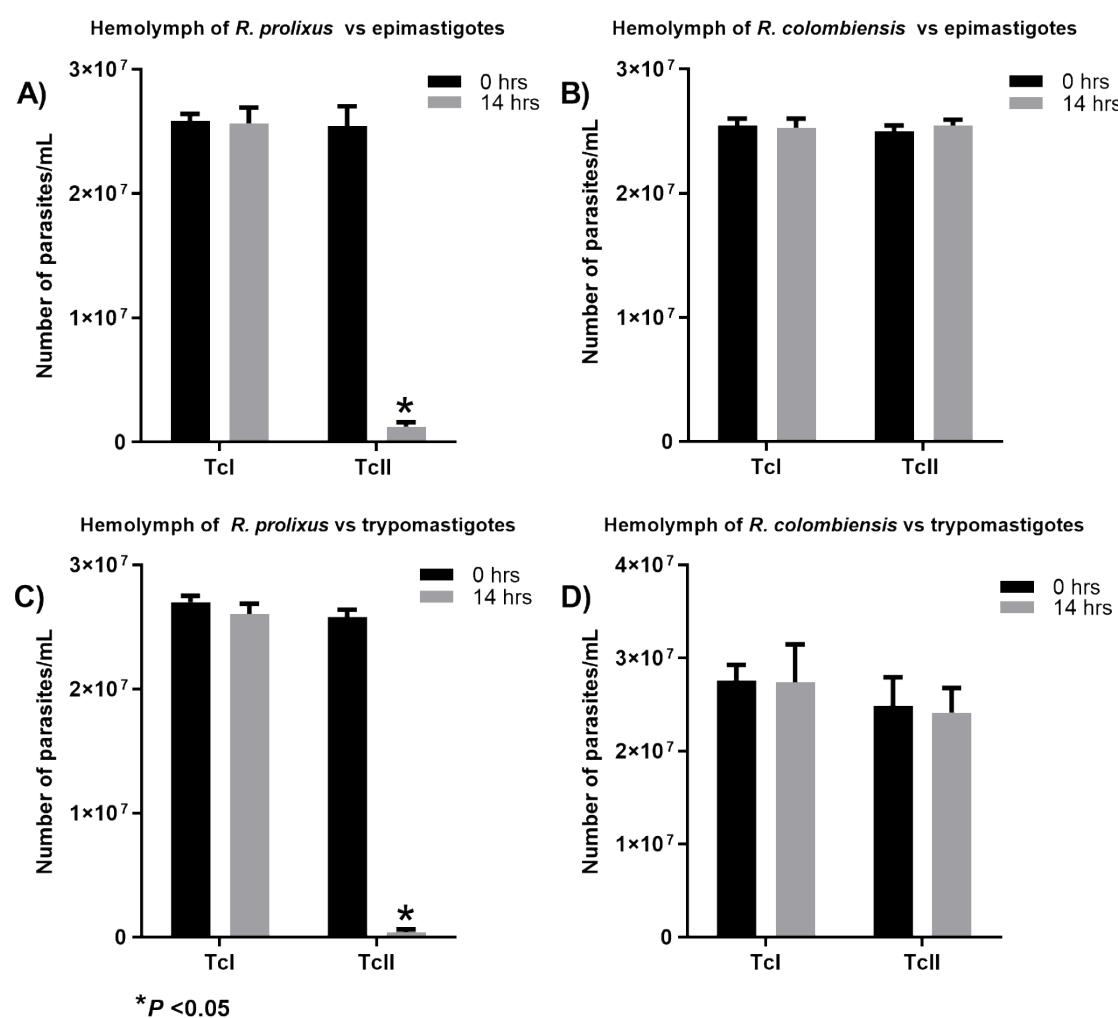
253
$$\text{NSAF} = \text{SAF} / \sum \text{SAF}$$

254 **RESULTS**

255

256 **Effect of incubation with hemolymph of *R. prolixus* and *R. colombiensis* on**
257 **epimastigotes and metacyclic trypomastigotes of *T. cruzi* I and *T. cruzi* II**

258


259 The incubation of the hemolymph of *R. prolixus* with epimastigotes and metacyclic
260 trypomastigotes of *T. cruzi* II showed significant decreases ($p < 0.005$) of the
261 parasites by between 94% and 99% at 14 h post-incubation as a consequence of
262 parasite lysis (Figs 1A and 1C). The incubation of *R. prolixus* hemolymph with TcI
263 metacyclic epimastigotes and trypomastigotes showed no significant decrease or
264 lytic activity of the parasites. The incubation of *R. colombiensis* hemolymph did not
265 show a significant decrease in the number of TcI or TcII metacyclic epimastigotes or
266 trypomastigotes during 14 h of incubation; therefore, this study concluded that there
267 was no lytic activity during this time in this vector (Figs 1B and 1D).

268

269 **Fig 1. Incubation of the hemolymph of *R. prolixus* and *R. colombiensis* with**
270 **epimastigotes and metacyclic trypomastigotes of *T. cruzi* I and *T. cruzi* II.** In
271 each incubation of the hemolymph of *R. prolixus* or *R. colombiensis* with TcI or TcII,

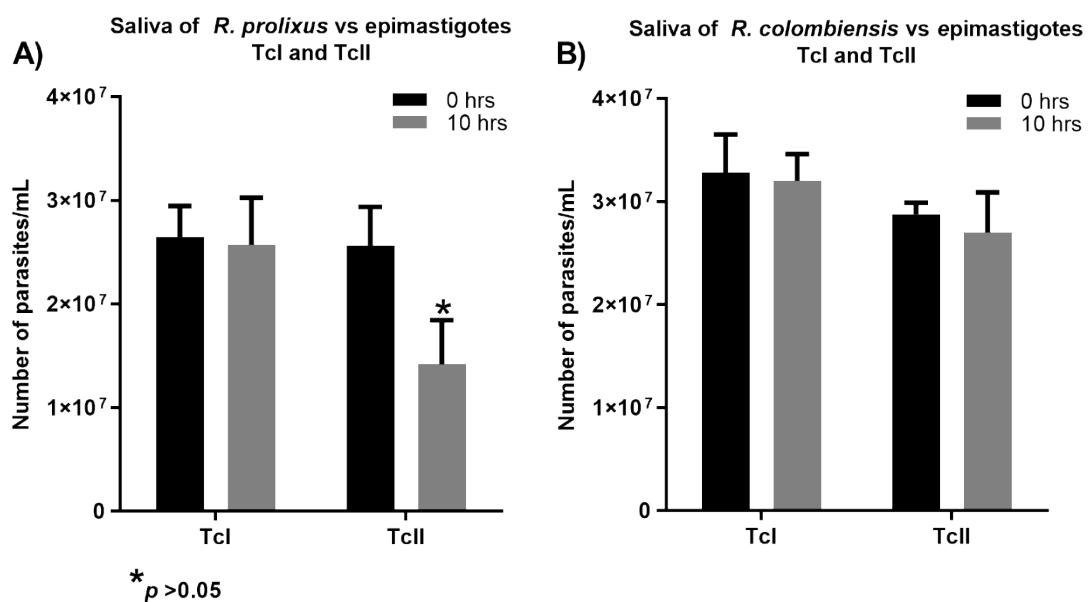
272 a negative lysis control consisting of the hemolymph of each vector treated with
273 pepsin was used, the effect of which is evident in the loss of lysis of *R. prolixus* on
274 metacyclic epimastigotes and trypomastigotes of *T. cruzi* II. Similarly, in each
275 incubation, a positive lysis control was used, consisting of the untreated hemolymph
276 of *R. prolixus* incubated with the Y strain of *T. cruzi* II.

277

278

279

280 **Effect of incubation of *R. prolixus* and *R. colombiensis* components of salivary
281 glands on TcI and TcII epimastigotes**


282

283 The results showed lytic activity of the components of salivary glands of *R. prolixus*
284 against TcII, with the abundance of parasites showing a significant decrease of 45%
285 at 10 h post-incubation ($p > 0.005$), nor was there any lytic effect against the TcI
286 genotype (Fig 2A). The incubations with the saliva of *R. colombiensis* did not show
287 any lytic activity, nor a significant decrease in the number of parasites of the TcI and
288 TcII genotypes during the first 10 h of incubation (Fig 2B).

289

290 **Fig 2. Incubation of *R. prolixus* and *R. colombiensis* components of salivary
291 glands with *T. cruzi* I and *T. cruzi* II epimastigotes.** In each incubation of the saliva
292 of *R. prolixus* or *R. colombiensis* with TcI or TcII, a negative lysis control consisting
293 of a 10% LIT solution with the respective parasites was used. Similarly, in each
294 incubation, a positive lysis control was used, consisting of the untreated hemolymph
295 of *R. prolixus* incubated with the Y strain of *T. cruzi* II.

296

297

298

299

300

301 **Proteomic analysis of the hemolymph of *R. prolixus* and *R. colombiensis***

302

303 A total of 120 proteins were identified in *R. prolixus* hemolymph and 107 in *R.*
304 *colombiensis* hemolymph (S1 Table). These two species shared a total of 92
305 proteins. Additionally, 28 proteins were detected only in *R. prolixus* hemolymph and
306 15 only in *R. colombiensis* (S1 Table).

307

308 Of the total proteins identified in the hemolymph of *R. prolixus* and *R. colombiensis*,
309 40 were associated with an immune response and were grouped into six functional
310 categories that are presented in Fig 3. Quantitative profiling was performed on these
311 proteins involved in the immune response, with their relative abundance based on

312 the normalized spectral abundance factor (NSAF). Most of the proteins shared by *R.*

313 *prolixus* and *R. colombiensis* are involved in carbohydrate and lipid recognition,

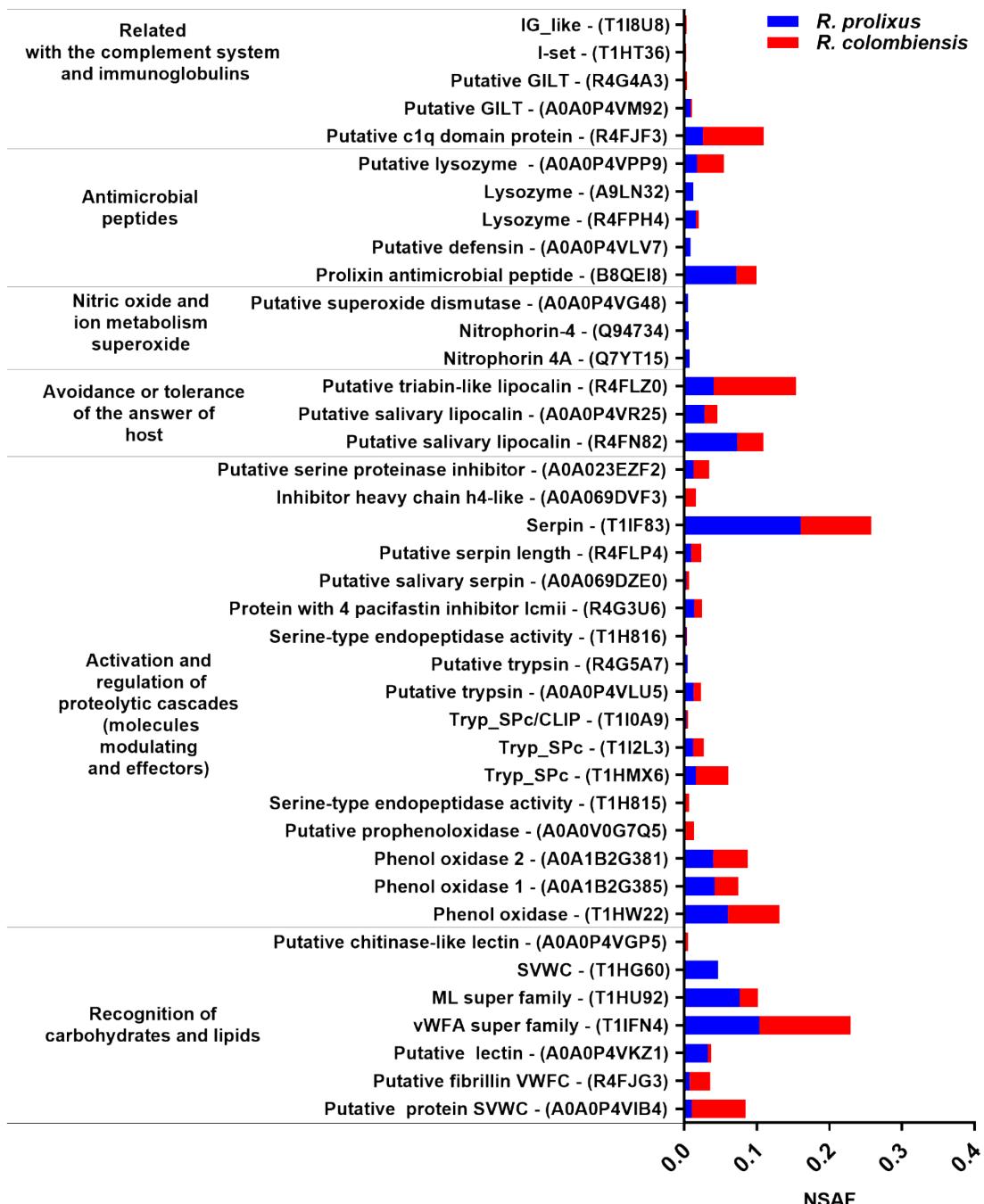
314 activation of proteolytic cascades, indicating the presence of common pathogen

315 recognition mechanisms and its products, and mechanisms of melanization and

316 encapsulation through the activation and regulation of the prophenoloxidase system.

317 The relative abundances of proteins of the prophenoloxidase system (A0A1B2G381,

318 A0A1B2G385, T1HW22) were similar in the two species (Fig 3).


319

320 **Fig 3. Relative abundance of 40 proteins involved in immunity in the**

321 **hemolymph of *R. prolixus* and *R. colombiensis*.** Of these proteins, 32 were

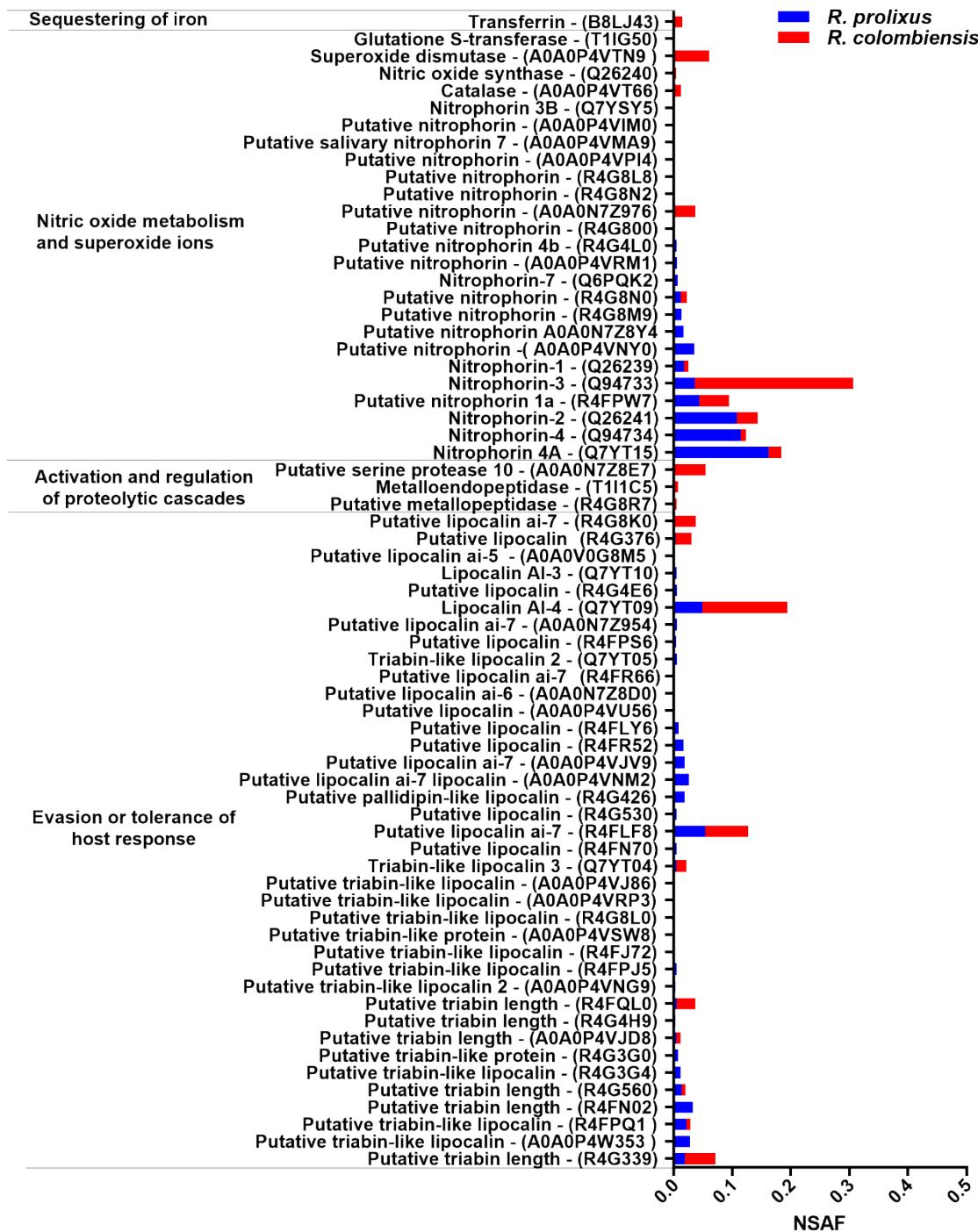
322 shared between the two species, seven were detected only in *R. prolixus*, and one

323 was detected only in *R. colombiensis* (S1 Table).

324

325 Among the proteins related to the metabolism of NO and superoxide ions, we found
 326 the nitrophorins Q7YT15 and Q94734, and a putative superoxide dismutase protein
 327 (A0A0P4VG48) only in the hemolymph of *R. prolixus*. Nitrophorins are expressed

328 mainly in salivary glands; however, they can be found in other tissues such as
329 testicles, ovary, intestine, Malpighian tubules, and fat bodies [15]. They may also
330 reach other tissues because the hemolymph interacts with all of the organs of the
331 insect due to its open circulatory system. PAMs with higher relative abundance were
332 also detected in *R. prolixus*. These PAMs and proteins such as serine protease with
333 the CLIP domain (T1I0A9), interferon gamma, and superoxide dismutase
334 (A0A0P4VG48) are proteins related to the induced immunity of the insect; that is,
335 they are expressed only after the host has been exposed to infection.


336

337 **Proteomic analysis of salivary glands of *R. prolixus* and *R. colombiensis***

338 A greater number and more diverse functions of proteins were identified in *R.*
339 *prolixus* than in *R. colombiensis*, with totals of 1103 and 853, respectively (S2 Table).
340 In the salivary glands of both species, 748 proteins were shared, while 355 were
341 detected only in *R. prolixus* and 105 in *R. colombiensis* (S2 Table). Overall, 67
342 proteins involved in immune activity in the saliva of these insects were classified into
343 four categories to perform a comparative analysis between the two species. The
344 proteins with the highest relative abundance were the nitrophorins (NPs), with the
345 highest representation in *R. prolixus*. In this species, 21 NPs were quantified,
346 compared with 11 in *R. colombiensis*. In the category of evasion or tolerance of the
347 host response, *R. prolixus* presents relative quantification for 38 proteins compared
348 with 10 for *R. colombiensis* (Fig 4). The results of the proteomic characterization in
349 the present work show a more identified NPs and their higher expression of these
350 proteins in *R. prolixus* from the semiquantitative analysis.

351

352 **Fig 4. Relative abundance of 67 proteins involved in the immune response of**
353 ***R. prolixus* and *R. colombiensis* in the salivary glands.** Of these proteins, 25
354 were shared between the two species, 41 were detected only in *R. prolixus*, and one
355 was detected only in *R. colombiensis* (S2 Table).

356

357

358

359 **DISCUSSION**

360

361 **Lytic activity and proteomic analysis of hemolymph**

362

363 Alvarenga & Bronfen [16] made the first observation of lytic activity against *T. cruzi*
364 in the hemolymph in two triatomine species: *Dipetalogaster maxima* and *Triatoma*
365 *infestans*. These researchers revealed that the parasites inoculated into the
366 hemocoel of the insects did not survive after a few days, evidencing the inability of
367 *T. cruzi* to establish itself in hemolymph. Meanwhile, Mello et al. (1996) [17] showed
368 lytic activity in the hemolymph of *R. prolixus* against strains Dm28 and Y of *T. cruzi*;
369 when these were inoculated in the hemocoel of *R. prolixus*, they were rapidly
370 eliminated. Moreover, via in vitro experiments, Suarez et al. (2020) [10] evidenced
371 TFs at the hemolymph of *R. prolixus* and *R. robustus* against DTUs II, V, VI, Tcbat,
372 and *T. cruzi* marinkellei after 14 h of incubation. However, when evaluating the
373 hemolymphs of six more species (*R. colombiensis*, *R. pallescens*, *R. pictipes*, *T.*
374 *dimidiata*, *T. maculata*, and *P. geniculatus*), none presented in vitro lytic activity
375 against *T. cruzi* DTUs, after 14 h of incubation. In the present work, the hemolymph
376 of *R. prolixus*, in addition to having lytic activity against *T. cruzi* II epimastigotes, was
377 confirmed to also lyse the metacyclic trypomastigotes of *T. cruzi* II, but not those of
378 *T. cruzi* I. Regarding the origin of these TFs, they are considered to be part of the
379 remaining innate immunity generated against the intestinal microbiota that would
380 affect some *T. cruzi* genotypes [1, 10].

381

382 Fig 3 shows the relative abundance of immunity-related proteins detected in the
383 hemolymph of *R. prolixus* and *R. colombiensis*. In accordance with the immune
384 factors previously described in *R. prolixus*, the lytic factors observed against TcII
385 could be associated with AMPs, proteins involved in the metabolism of the
386 prophenoloxidase system, proteins related to hemolymph coagulation, ROS-
387 generating proteins, and protein RNS generators.

388

389 Of the proteins related to the activation and regulation of proteolytic cascades
390 (Fig 3), the prophenoloxidase system stands out for the production of melanin, which
391 functions in tissue repair and the encapsulation of pathogens [2, 4]. Throughout
392 melanin production, a cascade of free radicals such as ROS and RNS are generated,
393 which are highly toxic against pathogens such as trypanosomes [18]. However, in
394 the lytic activity experiments with hemolymph in this study, phenylthiourea was used
395 as an inhibitor of the prophenoloxidase cascade, and thus the lysis observed in our
396 experiments was not related to the prophenoloxidase system. This supported the
397 assertion that other proteins different from those involved in the prophenoloxidase
398 system additionally act as factors with trypanolytic activity.

399

400 Another protein in hemolymph related to the activation and regulation of proteolytic
401 cascades that stands out for its relative abundance is serpin (T1F83). Serpin is
402 responsible for regulating protease activity and therefore oxidative activity because
403 it acts as an inhibitor of proteases, which activate the pathways of the
404 prophenoloxidase system. This function would have a protective role for the insect
405 against an excess of cellular oxidative activity [4, 18].

406

407 Within the category of carbohydrate recognition, some lectins and the A and C
408 domains of von Willebrand factor were identified in both *R. prolixus* and *R.*
409 *colombiensis*. Several lectins are conserved in Hemiptera and participate in the
410 defense against flagellates in triatomines [19, 20], it has been shown that these
411 binding molecules can induce the recruitment of hemocytes for the encapsulation
412 and melanization of pathogens [21]. Otherwise, as some authors have pointed out,
413 the agglutination processes mediated by these proteins could have a protective
414 effect on parasites, promoting their survival and multiplication [20, 22, 23]. Because
415 the agglutinating and protective effects of lectins depend on the affinity for the
416 glycoproteins present in the parasite membrane, the affinity for sugars of the
417 detected lectins needs to be examined to confirm their possible protective effect on
418 the different *T. cruzi* DTUs.

419

420 The role of AMPs such as lysozyme, defensin, and prolixin cannot be ruled out in
421 trypanolytic activity of hemolymph, because they were more abundant in *R. prolixus*
422 than in *R. colombiensis*. AMPs can alter the structure of the cytoplasmic membrane,
423 generating ion channels that increase its permeability and subsequently induce cell
424 death [24]. The composition of amino acids, their net charge (generally cationic), and
425 their amphipathic and size characteristics promote their interaction with lipid bilayers,
426 mainly those that form the cytoplasmic membranes of pathogens (bacteria, fungi,
427 enveloped viruses, and parasites). Although few studies have focused on the effect
428 of antimicrobial peptides on parasites, some have shown that these molecules can
429 affect their development and trigger cell lysis. Magainin 2 was one of the first AMPs

430 described to show antiparasitic activity, specifically against protozoa. Tests carried
431 out with this peptide in *Paramecium caudatum* led to the lysis of this microorganism
432 [25]. In *Phlebotomus duboscqi*, a defensin active against promastigotes of
433 *Leishmania major* was identified [26]. Additionally, a recombinant attacin from
434 *Glossina* was shown to have trypanolytic activity on *T. brucei* blood trypomastigotes
435 and epimastigotes in vitro and in vivo [27]. The negative effect of antimicrobial
436 peptides on *T. cruzi* has also been demonstrated, since Fieck et al. [28] observed
437 trypanocidal activity of four antimicrobial peptides (apidaecin, magainin II, melittin,
438 and cecropin) on *T. cruzi*, even at concentrations where they had no effect on
439 *Rhodococcus rhodnii*. Subsequently, the combined treatment of these peptides
440 increased the toxicity on the parasites.

441

442 An interesting finding in the hemolymph of *R. prolixus* was the detection of NPs and
443 lipocalins which are known to be synthesized in the salivary glands of insects;
444 however, they may reach the hemolymph because it interacts with all of the insect's
445 organs due to its open circulatory system. These proteins are related to the function
446 of facilitating insect feeding when it takes blood from its host because they have
447 vasodilatory and anticoagulatory properties. However, NPs are involved in the
448 metabolism of NO, a free radical that acts in the constitutive innate immunity of the
449 insect; therefore, they could also participate in the lytic activity observed in the
450 hemolymph of *R. prolixus*.

451

452

453

454 **Lytic activity and proteomic analysis of salivary glands**

455

456 Fig 4 shows the relative abundance of proteins in the salivary glands of *R. prolixus*
457 and *R. colombiensis*. A large number of triabins, lipocalins, and nitrophorins are
458 more abundant in *R. prolixus* than in *R. colombiensis*. The main role of salivary
459 proteins in blood-feeding arthropods is to maintain blood flow in the mouthparts that
460 successfully conduct blood to the digestive tract. This process is successful due to
461 the combination of numerous salivary proteins, in some cases small molecules, that
462 act together to inhibit the coagulatory cascade, limit platelet activation, and prevent
463 vasoconstrictive responses. In triatomine salivary glands, there are still many
464 families of proteins that have not been completely characterized and of which several
465 additional activities could be found. According to Arca & Ribeiro [7], up to 40% of
466 salivary peptides in hematophagous insects have unknown functions. When
467 considering only the 155 described species of triatomines, there is proteomic
468 information for just 16 species, supported by nine annotated sialotranscriptomes, six
469 descriptive sialoproteomes, and seven sialomes [29, 30, 31, 32, 33, 34, 35, 36, 37,
470 38, 39, 40]. Added to this, in each of these studies, a large number of proteins were
471 obtained without being able to characterize them. Within the reports on these
472 studies, transcriptomic and proteomic data for *R. prolixus* are presented [30]. For *R.*
473 *colombiensis*, this report presents the first proteomic data on hemolymph and
474 salivary glands.

475

476 The above-mentioned studies focused almost exclusively on the analysis of salivary
477 proteins related to anticoagulant, antiplatelet, and vasodilatory activities to respond

478 to the hemostasis of their vertebrate host, properties that could have
479 pharmacological potential. The role that these salivary proteins may have in the
480 immunity of triatomines has not been discussed in depth, despite there being
481 evidence of them having antiparasitic, antibacterial, antiviral, and antifungal activities
482 [7, 40].

483

484 The results of the present work on the effect of *R. prolixus* salivary proteins on *T.*
485 *cruzi* epimastigotes and trypomastigotes showed lytic activity against *T. cruzi* II. This
486 effect is similar to that observed in an experiment carried out by Ferreira et al. [8]
487 using the content of the salivary glands of *R. prolixus*, which showed lysis of 20% of
488 the trypomastigote forms of *T. cruzi* (strain CL). The results of these experiments
489 indicate that the proteins present in the salivary glands in *R. prolixus*, in addition to
490 fulfilling the functions that counteract the hemostasis of their vertebrate host, can
491 also modulate the infection and adaptation of pathogens and particularly some DTUs
492 of *T. cruzi* [8, 9]. It might be thought that the effect of these lytic factors would not be
493 relevant to *T. cruzi* due to their absence from salivary glands during their life cycle in
494 the vector. However, part of the saliva that is ingested in the insect's feeding process
495 is known to reach the intestine and thus interacts directly with the parasite. This
496 innate immune response generated in the salivary glands has been reported to affect
497 some genotypes of *T. cruzi* [1].

498

499 The proteins in the salivary glands of triatomines that are related to immune functions
500 against pathogens include antimicrobial peptides, lysozyme, pattern recognition
501 molecules, and serine proteases, which act as activators of the prophenoloxidase

502 system [4, 7, 41]. A pore-forming lytic protein called trialysin was identified in the
503 saliva of *Triatoma infestans*, which lysed the trypomastigote forms of *T. cruzi* II
504 (strain Y) [9]; however, no protein with similar characteristics in the salivary glands
505 of *R. prolixus* has been identified. Although there is evidence of lytic activity against
506 *T. cruzi* in the salivary glands of *R. prolixus*, the factors involved in this lysis have
507 remained unclear. We know that this lytic effect against TcII observed in the salivary
508 glands of *R. prolixus* has also been observed in the hemolymph of *R. prolixus* and
509 *R. robustus*, while being absent from the salivary glands and hemolymph of *R.*
510 *colombiensis* and the hemolymph of *R. pallescens* [10]. In this sense, the question
511 arises about the epidemiological role of this lytic factor, which would only be present
512 in the salivary glands of some *Rhodnius* species.

513

514 In *R. prolixus* and *R. colombiensis*, proteins involved in NO metabolism and therefore
515 in ROS metabolism were found. The NO and ROS molecules are considered to be
516 constitutive immune components conserved in Hemiptera and thus they are relevant
517 factors in the defense of triatomines [5]. Although similar proteins were identified in
518 both species in relation to NO metabolism, such as the enzyme nitric oxide synthase
519 (Q26240), *R. prolixus* presented a greater diversity of lipocalins and nitrophorins that
520 generate a greater machinery of oxidative activity that reinforces its innate immune
521 response [42, 43].

522

523 In different studies on triatomine sialoma, it has been shown to contain a
524 predominance of lipocalins, triabins, and NPs [31, 35, 44]. In *R. prolixus*, the lipocalin
525 family presents a very significant component compared with the rest of the proteins

526 present in saliva [42]. Specifically, reference has been made to the great abundance
527 of NPs in the saliva of *R. prolixus* [42, 45]. NPs have been very well characterized
528 at the structural and biochemical levels. The main function of NPs is related to the
529 transport, storage, and release of NO. These molecules are considered cytotoxic
530 factors against *T. cruzi*, and pathways involving the radical activity of ROS develop
531 around NO metabolism, also act against parasites [6, 46, 47, 48]. Those lipocalins
532 and nitrophorins with higher relative abundance in *R. prolixus* than in *R.*
533 *colombiensis* are candidate factors responsible for the lysis observed against *T. cruzi*
534 II.

535

536 Several studies have indicated that the immune response of triatomines plays an
537 important role in the success or failure of transmission of some *T. cruzi* DTUs. In the
538 hemolymph and saliva of some *Rhodnius* species, there are proteins that activate
539 oxidative mechanisms that can inhibit the infection of some *T. cruzi* DTUs. In this
540 study, a comparative proteomic analysis of the hemolymph and salivary proteins of
541 *R. prolixus* and *R. colombiensis* was performed for the first time. This analysis
542 showed the relative abundance of nitrophorins in *R. prolixus*, which act together with
543 other proteins such as lysozyme, prolixin, lipocalins, and triabins to generate a strong
544 immune response in *R. prolixus*. This response should be responsible for the lytic
545 activity of hemolymph and saliva against epimastigotes and trypomastigotes of *T.*
546 *cruzi* II, detected in vitro. These findings complement the observations of lytic activity
547 of hemolymph on *T. cruzi* V, *T. cruzi* VI, *T. cruzi* bat, and *T. cruzi* marinkellei reported
548 by Suárez et al. [10]. The results of this work, together with those of Suárez et al.
549 [10], show that *T. cruzi* I is resistant to the lysis of the hemolymph and salivary

550 proteins of *R. prolixus*, due to possible mechanisms that allow it to evade oxidative
551 stress. *T. cruzi* I is the DTU with the widest geographical distribution, from the
552 southern United States to the center of Chile and Argentina, a distribution that could
553 be related to the resistance to oxidative stress of the vectors.

554

555 The vigorous immune response observed in *R. prolixus* against *T. cruzi* II was also
556 observed in *R. robustus* [10] and could be a determinant of the vectorial inability of
557 these species to transmit *T. cruzi* II. Studies carried out with *R. robustus* showed its
558 inability to transmit *T. cruzi* II in experimental infections [49]. Meanwhile, studies
559 carried out in Colombia did not detect *T. cruzi* II in the *R. prolixus* specimens
560 examined [50, 51].

561

562 The genus *Rhodnius* is made up of 21 species divided into three groups: the
563 Pallescens group with three species (*R. colombiensis*, *R. ecuadorensis*, *R.
564 pallescens*) [52], in which in vitro assays have not detected trypanolytic factors in
565 hemolymph or saliva; the Pictipes group with seven species (*R. amazonicus*, *R.
566 brethesi*, *R. micki*, *R. paraensis*, *R. pictipes*, *R. stali*, *R. zeledoni*), in which in vitro
567 tests have not been carried out to verify the presence of trypanolytic factors in
568 hemolymph or saliva; and the Prolixus group, with 11 species, of which *R. prolixus*
569 and *R. robustus* present trypanolytic factors in hemolymph and salivary glands.
570 Therefore, new studies are needed to verify the presence of this vigorous immune
571 response in the remaining nine species of the Prolixus group (*R. barretti*, *R.
572 dalessandroi*, *R. domesticus*, *R. milesi*, *R. marabaensis*, *R. montenegrensis*, *R.
573 nasutus*, *R. neglectus*, *R. neivai*).

574 Despite the limitations of proteomic studies, related to reproducibility, analysis, and
575 identification of a high number of proteins, the present work was able to show
576 differences in the relative abundance of proteins involved in the immune response
577 of *R. prolixus* and *R. colombiensis*, which could be associated with the lytic activity
578 observed in the hemolymph and salivary glands of *R. prolixus* against *T. cruzi* II
579 epimastigotes and trypomastigotes, but not against *T. cruzi* I.

580

581 To more precisely identify the proteins involved in this immune response, new
582 comparative transcriptomic studies in triatomine species with and without lytic
583 activity in hemolymph and salivary glands should be carried out, and the expression
584 of proteins possibly involved in this immune response by quantitative PCR needs to
585 be evaluated. Meanwhile, studying the interaction of the intestinal microbiota of the
586 vectors with the parasites and investigating the mechanisms of resistance to
587 oxidative stress in the DTUs of *T. cruzi* (*T. cruzi* I–VI and *T. cruzi* bat) are necessary,
588 to understand innate immunity, parasite–vector interaction, and coevolution of
589 parasites and their vectors. Further study and investigation should then clarify the
590 uneven geographical distribution of DTUs associated with the complex epidemiology
591 of Chagas disease in different parts of the Western Hemisphere.

592

593

594

595

596

597 **Acknowledgments**

598

599 The authors thank to Ministerio de Ciencia, Tecnología e Innovación (Minciencias)
600 and the Department of Tolima for funding the project through national convocation
601 755 of 2016. We thank Edanz Group (<https://www.edanz.com/ac>) for editing a draft
602 of this manuscript.

603

604

605 **Author contributions**

606

607 **Conceptualization:** B.H.J., V.G.A., S.Q.Y., M.T.A. **Data curation and Formal**
608 **analysis:** B.H.J., S.Q.Y., M.T.A., V.G.A. **Funding acquisition:** B.H.J.,
609 S.Q.Y., V.G.A. **Investigation:** B.H.J., S.Q.Y., M.T.A., C.M.J.C., U.M.D.A., G.V.G.A.,
610 G.C.I., R.O.C. **Methodology:** B.H.J., S.Q.Y., M.T.A. **Project administration:**
611 B.H.J., V.G.A., C.M.J.J., U.M.D.A. **Technical and biological resources:** B.H.J.,
612 G.V.G.A., M.T.A., V.G.A. **Supervision:** V.G.A., C.M.J.C., U.M.D.A. **Writing–**
613 **original draft:** B.H.J., V.G.A., S.Q.Y. **Writing–review&editing:** B.H.J., S.Q.Y.,
614 M.T.A., G.V.G.A., C.M.J.J., U.M.D.A., G.C.I., R.P.C., V.G.A.

615

616 **Conflicts of interest**

617 The authors declare that there are no conflicts of interest.

618 **References**

- 619 1. Vallejo GA, Suárez Y, Olaya JL, Gutiérrez SA, Carranza JC. *Trypanosoma*
620 *rangeli*: un protozoo infectivo y no patógeno para el humano que contribuye
621 al entendimiento de la transmisión vectorial and la infección por *Trypanosoma*
622 *cruzi*, agente causal de la Chagas. *Rev. Acad. Col. Cienc. Exac. Fís. Nat.*
623 2015. 39 (150): 111-122. <https://doi.org/10.18257/raccefyn.143>
- 624
- 625 2. Salcedo-Porras N & Lowenberger C. The innate immune system of kissing
626 bugs vectors of chagas disease. *Developmental & Comparative*
627 *Immunology*. 2019. 98, 119-128. <https://doi.org/10.1016/j.dci.2019.04.007>
628 PMID: 31014953
- 629
- 630 3. Schaub GA. An Update on the Knowledge of Parasite–Vector Interactions of
631 Chagas Disease. *Research and reports in tropical medicine*. 2021. 12, 63.
632 <https://doi.org/10.2147/RRTM.S274681> PMID: PMC8169816
- 633
- 634 4. Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS,
635 Mello CB, Castro DP, Ratcliffe NA. *Rhodnius prolixus*: from physiology by
636 Wigglesworth to recent studies of immune system modulation by
637 *Trypanosoma cruzi* and *Trypanosoma rangeli*. *Journal of insect physiology*.
638 2017. 97, 45-65. <https://doi.org/10.1016/j.jinsphys.2016.11.006> PMID:
639 27866813
- 640

641 5. Zumaya FA, Martínez J, Lavore A, Rivera R, Rodríguez MH. Comparative
642 genomics analysis of triatomines reveals common first line and inducible
643 immunity-related genes and the absence of Imd canonical components
644 among hemimetabolous arthropods. *Parasites & vectors*. 2018. 11(1), 1-16.
645 <https://doi.org/10.1186/s13071-017-2561-2> PMID: 29357911
646

647 6. Araújo CN, Bussacos AC, Sousa AO, Hecht M, Teixeira A. Interactome: smart
648 hematophagous triatomine salivary gland molecules counteract human
649 hemostasis during meal acquisition. *Journal of proteomics*. 2012. 75(13),
650 3829-3841. <https://doi.org/10.1016/j.jprot.2012.05.001> PMID: 22579750
651

652 7. Arcà B & Ribeiro JM. Saliva of hematophagous insects: a multifaceted
653 toolkit. *Current opinion in insect science*. 2018. 29, 102-109.
654 <https://doi.org/10.1016/j.cois.2018.07.012> PMID: 30551815
655

656 8. Ferreira R, Kessler RL, Lorenzo MG, Paim R, Ferreira DL, Probst CM, Alves
657 J, Guarneri A. Colonization of *Rhodnius prolixus* gut by *Trypanosoma cruzi*
658 involves an extensive parasite killing. *Parasitology*. 2016. 143(4), 434-443.
659 <https://doi.org/10.1017/S0031182015001857> PMID: 26818093
660

661 9. Amino R, Martins RM, Procopio J, Hirata IY, Juliano MA, Schenkman S.
662 Trialysin, a novel pore-forming protein from Saliva of haematophagous
663 insects activated by limited proteolysis. *Journal of Biological Chemistry*. 2002.

664 277(8), 6207-6213. <https://doi.org/10.1074/jbc.M109874200> PMID:
665 11751887
666
667 10. Suárez Y, Barbosa HJ, Gutiérrez SA, Olaya JL, Zabala D, Carranza JC, Guhl
668 F, Cantillo O, Vallejo GA. Innate trypanolytic factors in triatomine hemolymph
669 against *Trypanosoma rangeli* and *T. cruzi*: A comparative study in eight
670 Chagas disease vectors. *Rev.de la Acad. Colombiana de Ciencias Exactas,*
671 *Físicas y Naturales.* 2020. 44(170), 88-104.
672 <https://doi.org/10.18257/raccefyn.1097>
673
674 11. Carmona SP, Contreras J, Castro DP, Manjarrez J, Vázquez JC. The innate
675 immune response of triatomines against *Trypanosoma cruzi* and
676 *Trypanosoma rangeli* with an unresolved question: Do triatomines have
677 immunememory? *Acta Tropica.* 2021. 224: 106108
678 <https://doi.org/10.1016/j.actatropica.2021.106108>
679
680 12. Pulido XC, Pérez G, Vallejo GA. Preliminary characterization of a *Rhodnius*
681 *prolixus* hemolymph trypanolytic protein, this being a determinant of
682 *Trypanosoma rangeli* KP1(+) and KP1(-) subpopulations' vectorial ability.
683 *Mem Inst Oswaldo Cruz.* 2008. 103 (2): 172-179.
684 <https://doi.org/10.1590/S0074-02762008000200008> PMID: 18425269
685
686 13. Cruz-Saavedra L, Muñoz M, León C, Patarroyo MA, Arévalo G, Pavia P,
687 Vallejo GA, Carranza J, Ramírez JD. Purification of *Trypanosoma cruzi*

688 metacyclic trypomastigotes by ion exchange chromatography in sepharose-
689 DEAE, a novel methodology for host-pathogen interaction studies. *Journal of*
690 *Microbiological Methods.* 2017. 142, 27-32.
691 <https://doi.org/10.1016/j.mimet.2017.08.021> PMID: 28865682
692

693 14. Shilov, I, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter
694 CL, Nuwaysir LM, Schaeffer DA. The Paragon Algorithm, a Next Generation
695 Search Engine That Uses Sequence Temperature Values and Feature
696 Probabilities to Identify Peptides from Tandem Mass Spectra. *Mol Cell*
697 *Proteomics.* 2007. 6 1638-1655 <https://doi.org/10.1074/mcp.T600050-MCP200> PMID: 17533153
698

699

700 15. Santos DV, Gontijo NF, Pessoa G, Sant'Anna M, Araujo RN, Pereira MH,
701 Koerich LB. An updated catalog of lipocalins of the chagas disease vector
702 *Rhodnius prolixus* (Hemiptera, Reduviidae). *Insect Biochemistry and*
703 *Molecular Biology.* 2022. 146, 103797.
704 <https://doi.org/10.1016/j.ibmb.2022.103797> PMID: 35640811
705

706 16. Alvarenga NJ & Bronfen E. Incapacity of the evolution of *Trypanosoma cruzi*
707 in the hemocele of triatomids. *Mem Inst Oswaldo Cruz.* 1982. 77(4): 431-6.
708 <https://doi.org/10.1590/S0074-02761982000400010> PMID: 6764520
709

710 17. Mello CB, Azambuja P, Garcia ES, Ratcliffe NA. Differential *in vitro* and *in*
711 *vivo* behavior of three strains of *Trypanosoma cruzi* in the gut and hemolymph

712 of *Rhodnius prolixus*. Exp. Parasitol. 1996. 82: 112-121

713 <https://doi.org/10.1006/expr.1996.0015> PMID: 8617337

714

715 18. Whitten MA, Mello CB, Gomes SA, Nigam Y, Azambuja P, Garcia ES,

716 Ratcliffe NA. Role of superoxide and reactive nitrogen intermediates in

717 *Rhodnius prolixus* (Reduviidae)/*Trypanosoma rangeli*

718 interactions. *Experimental Parasitology*. 2001.98(1), 44-57.

719 <https://doi.org/10.1006/expr.2001.4615> PMID: 11426951

720

721 19. Garcia ES, Castro DP, Figueiredo MB, Azambuja P. Parasite-mediated

722 interactions within the insect vector: *Trypanosoma rangeli* strategies.

723 *Parasites & Vectors*. 2012. 5:105. <https://doi.org/10.1186/1756-3305-5-105>

724 PMID: 22647620

725

726 20. Mello CB, Nigam Y, Garcia ES, Azambuja P, Newton RP, Ratcliffe NA.

727 Studies on a haemolymph lectin isolated from *Rhodnius prolixus* and

728 its interaction with *Trypanosoma rangeli*. Exp. Parasitol. 1999. 91, 289-296.

729 <http://dx.doi.org/10.1006/expr.1998.4385> PMID: 10092472

730

731 21. Azambuja PM, Mello CB, Feder D, Garcia ES. Influence of the triatominae

732 cellular and humoral defense system on the development of

733 trypanosomatids. *Atlas of Chagas disease vectors in the Americas*. Rio de

734 Janeiro: Editora Fiocruz. 1997. 709-33.

735

736 22. Ratcliffe NA & Gagen SJ. Studies on the in vivo cellular reactions of insects:
737 an ultrastructural analysis of nodule formation in *Galleria mellonella*. *Tissue*
738 *and Cell*. 1977. 9(1), 73-85 [https://doi.org/10.1016/0040-8166\(77\)90050-7](https://doi.org/10.1016/0040-8166(77)90050-7)
739 PMID: 408940

740

741 23. Welburn SU & Maudlin I. Haemolymph lectin and the maturation of
742 trypanosome infections in tsetse. *Medical and veterinary entomology*.
743 1990. 4(1), 43-48. <https://doi.org/10.1111/j.1365-2915.1990.tb00258.x> PMID:
744 2132968

745

746 24. Zhang L, Scott MG, Yan H, Mayer LD, Hancock RE. Interaction of
747 polyphemusin I and structural analogs with bacterial membranes,
748 lipopolysaccharide, and lipid monolayers. *Biochemistry*. 2000. 39(47), 14504-
749 14514. <https://doi.org/10.1021/bi0011173> PMID: 11087404

750

751 25. Zanetti M. Cathelicidins, multifunctional peptides of the innate
752 immunity. *Journal of leukocyte biology*. 2004. 75(1), 39-48
753 <https://doi.org/10.1189/jlb.0403147> PMID: 12960280

754

755 26. Boulanger N, Lowenberger C, Volf P, Ursic R, Sigutova L, Sabatier L,
756 Svobodova M, Beverley S, Spath G, Brun R, Pesson B, Bulet P.
757 Characterization of a defensin from the sand fly *Phlebotomus duboscqi*
758 induced by challenge with bacteria or the protozoan parasite *Leishmania*

759 *major. Infection and Immunity.* 2004. 72(12), 7140-7146.

760 <https://doi.org/10.1128/iai.72.12.7140-7146.2004> PMID: 15557638

761

762 27. Hu Y, Aksoy S. An antimicrobial peptide with trypanocidal activity
763 characterized from *Glossina morsitans morsitans*. *Insect biochemistry and*
764 *molecular biology* 2005; 35(2): 105-115.

765 <https://doi.org/10.1016/j.ijbmb.2004.10.007> PMID: 15681221

766

767 28. Fieck A, Hurwitz I, Kang AS, Durvasula R. *Trypanosoma cruzi*: synergistic
768 cytotoxicity of multiple amphipathic anti-microbial peptides to *T. cruzi* and
769 potential bacterial hosts. *Experimental parasitology*. 2010; 125(4): 342-347

770 <https://doi.org/10.1016/j.exppara.2010.02.016> PMID: 20206169

771

772 29. Sant-Anna MR, Araújo J, Pereira M, Pesquero JL, Diotaiuti L, Lehane SM,
773 Lehane MJ. Molecular cloning and sequencing of salivary gland-specific
774 cDNAs of the blood-sucking bug *Triatoma brasiliensis* (Hemiptera:
775 Reduviidae). *Insect molecular biology*. 2002. 11(6). 585-593.

776 <https://doi.org/10.1046/j.1365-2583.2002.00369.x> PMID: 12421416

777

778 30. Ribeiro JM, Andersen J, Silva-Neto M, Pham VM, Garfield MK, Valenzuela
779 JG. Exploring the sialome of the blood-sucking bug *Rhodnius prolixus*. *Insect
780 biochemistry and molecular biology*. 2004;34(1): 61-79.
781 <https://doi.org/10.1016/j.ibmb.2003.09.00> PMID: 14976983

782

783 31. Santos A, Ribeiro JM, Lehane MJ, Gontijo NF, Veloso AB, Sant'Anna MR, et
784 al. The sialotranscriptome of the blood-sucking bug *Triatoma brasiliensis*
785 (Hemiptera, Triatominae). *Insect biochemistry and molecular biology*.
786 2007. 37(7), 702-712. <https://doi.org/10.1016/j.ibmb.2007.04.004> PMID:
787 17550826

788

789 32. Assumpção TC, Francischetti IM, Andersen JF, Schwarz A, Santana JM,
790 Ribeiro JM. An insight into the sialome of the blood-sucking bug *Triatoma*
791 *infestans*, a vector of Chagas' disease. *Insect biochemistry and molecular*
792 *biology*. 2008. 38(2), 213-232. <https://doi.org/10.1016/j.ibmb.2007.11.001>
793 PMID: 18207082

794

795 33. Kato H, Jochim RC, Gomez EA, Sakoda R, Iwata H, Valenzuela JG,
796 Hashiguchi Y. A repertoire of the dominant transcripts from the salivary glands
797 of the blood-sucking bug, *Triatoma dimidiata*, a vector of Chagas
798 disease. *Infection, Genetics and Evolution*. 2010. 10(2), 184-191.
799 <https://doi.org/10.1016/j.meegid.2009.10.012> PMID: 19900580

800

801 34. Costa CM, Sousa MV, Ricart CA, Santana JM, Teixeira AR, Roepstorff P,
802 Charneau S. 2-DE-based proteomic investigation of the saliva of the
803 Amazonian triatomine vectors of Chagas disease: *Rhodnius brethesi* and
804 *Rhodnius robustus*. *Journal of proteomics*. 2011. 74(9), 1652-1663.
805 <https://doi.org/10.1016/j.jprot.2011.02.022> PMID: 21362504

806

807 35. Assumpção TC, Charneau S, Santiago PB, Francischetti IM, Meng Z, Araújo
808 CN, Ribeiro JM. Insight into the salivary transcriptome and proteome of
809 *Dipetalogaster maxima*. *Journal of proteome research*. 2011. 10(2), 669-679.
810 <https://doi.org/10.1021/pr100866h> PMID: 21058630
811

812 36. Bussacos AC, Nakayasu ES, Hecht MM, Assumpção TC, Parente JA, Soares
813 CM, et al. Redundancy of proteins in the salivary glands of *Panstrongylus*
814 *megistus* secures prolonged procurement for blood meals. *Journal of*
815 *proteomics*. 2011. 74(9), 1693-1700.
816 <https://doi.org/10.1016/j.jprot.2011.04.028> PMID: 21601023
817

818 37. Assumpção TC, Eaton DP, Pham VM, Francischetti IM, Aoki V, Hans-Filho
819 G, Ribeiro JM. An insight into the sialotranscriptome of *Triatoma*
820 *matogrossensis*, a kissing bug associated with fogo selvagem in South
821 America. *The American journal of tropical medicine and hygiene*. 2012. 86(6),
822 1005-1014. <https://doi.org/10.4269/ajtmh.2012.11-0690> PMID: 22665609
823

824 38. Schwarz A, Medrano-Mercado N, Schaub GA, Struchiner CJ, Bargues MD,
825 Levy MZ, Ribeiro JM. An updated insight into the sialotranscriptome of
826 *Triatoma infestans*: developmental stage and geographic variations. *PLoS*
827 *neglected tropical diseases*. 2014. 8(12), e3372.
828 <https://doi.org/10.1371/journal.pntd.0003372> PMID: 25474469
829

830 39. Kato H, Jochim RC, Gomez EA, Tsunekawa S, Valenzuela JG, Hashiguchi
831 Y. Salivary gland transcripts of the kissing bug, *Panstrongylus chinai*, a vector
832 of Chagas disease. *Acta tropica*. 2017. 174, 122-129.
833 <https://doi.org/10.1016/j.actatropica.2017.06.022> PMID: 28690145
834

835 40. Santiago PB, de Araújo CN, Charneau S, Praça YR, Bastos IM, Ribeiro JM,
836 Santana JM. The pharmacopea within triatomine salivary glands. *Trends in*
837 *parasitology*. 2020. 36(3), 250-265. <https://doi.org/10.1016/j.pt.2> PMID:
838 32007395
839

840 41. Ribeiro JM & Arca B. From sialomes to the sialoverse: an insight into salivary
841 potion of blood-feeding insects. *Advances in Insect Physiology*. 2009. 37, 59-
842 118. [https://doi.org/10.1016/S0065-2806\(09\)37002-2](https://doi.org/10.1016/S0065-2806(09)37002-2)
843

844 42. Andersen JF, Guddera NP, Francischetti IM, Ribeiro JM. The role of salivary
845 lipocalins in blood feeding by *Rhodnius prolixus*. *Archives of Insect*
846 *Biochemistry and Physiology*: Published in Collaboration with the
847 Entomological Society of America. 2005. 58(2), 97-105.
848 <https://doi.org/10.1002/arch.20032> PMID: 15660358
849

850 43. Mesquita RD, Vionette-Amaral RJ, Lowenberger C, Rivera-Pomar R,
851 Monteiro FA, Minx P, et al. Genome of *Rhodnius prolixus*, an insect vector of
852 Chagas disease, reveals unique adaptations to hematophagy and parasite

853 infection. *Proceedings of the National Academy of Sciences*. 2015. 112(48),
854 14936-14941. <https://doi.org/10.1073/pnas.1506226112> PMID: 26627243

855

856 44. Ribeiro JM, Assumpção TC, Van-Pham M, Francischetti IM, Reisenman CE.
857 An insight into the sialotranscriptome of *Triatoma rubida* (Hemiptera:
858 Heteroptera). *Journal of medical entomology*. 2012. 49(3), 563-572.
859 <https://doi.org/10.1603/ME11243> PMID: 22679863

860

861 45. Montandon CE, Barros E, Vidigal PM, Mendes MT, Anhŕ AC, de Oliveira HJ,
862 et al. Comparative proteomic analysis of the saliva of the *Rhodnius prolixus*,
863 *Triatoma lecticularia* and *Panstrongylus herreri* triatomines reveals a high
864 interespecific functional biodiversity. *Insect biochemistry and molecular
865 biology*. 2016. 71, 83-90. <https://doi.org/10.1016/j.ibmb.2016.02.009> PMID:
866 26940473

867

868 46. Knipp M & He C. Nitrophorins: Nitrite disproportionation reaction and other
869 novel functionalities of insect heme-based nitric oxide transport
870 proteins. *Iubmb Life*. 2011. 63(5), 304-312. <https://doi.org/10.1002/iub.451>
871 PMID: 21491557

872

873 47. Knipp M, Ogata H, Soavi G, Cerullo G, Allegri A, Abbruzzetti S, et al. Structure
874 and dynamics of the membrane attaching nitric oxide transporter nitrophorin
875 7. *F1000Research*. 2015. Vol 4.
876 <https://doi.org/10.12688/f1000research.6060.2> PMID: 26167269

877 48. de Simone G, Ascenzi P, di Masi A, Polticelli F. Nitrophorins and nitrobindins:
878 Structure and function. *Biomolecular concepts*. 2017. 8(2), 105-118
879 <https://doi.org/10.1515/bmc-2017-0013> PMID: 28574374

880

881 49. de Abreu AP, da Silva HF, Sarto MPM, Lunklaus GF, Trovo JV, de Souza N,
882 Teston AP, Toledo MJ. Infection susceptibility and vector competence of
883 *Rhodnius robustus* Larrousse, 1927 and *R. pictipes* Stal, 1872 (Hemiptera,
884 Reduviidae, Triatominae) for strains of *Trypanosoma cruzi* (Chagas, 1909)
885 (Kinetoplastida, Trypanosomatidae) I, II and IV. *Parasit Vectors*. 2022 Jun
886 30;15(1):239. <https://doi.org/10.1186/s13071-022-05350-3> PMID: 35773725

887

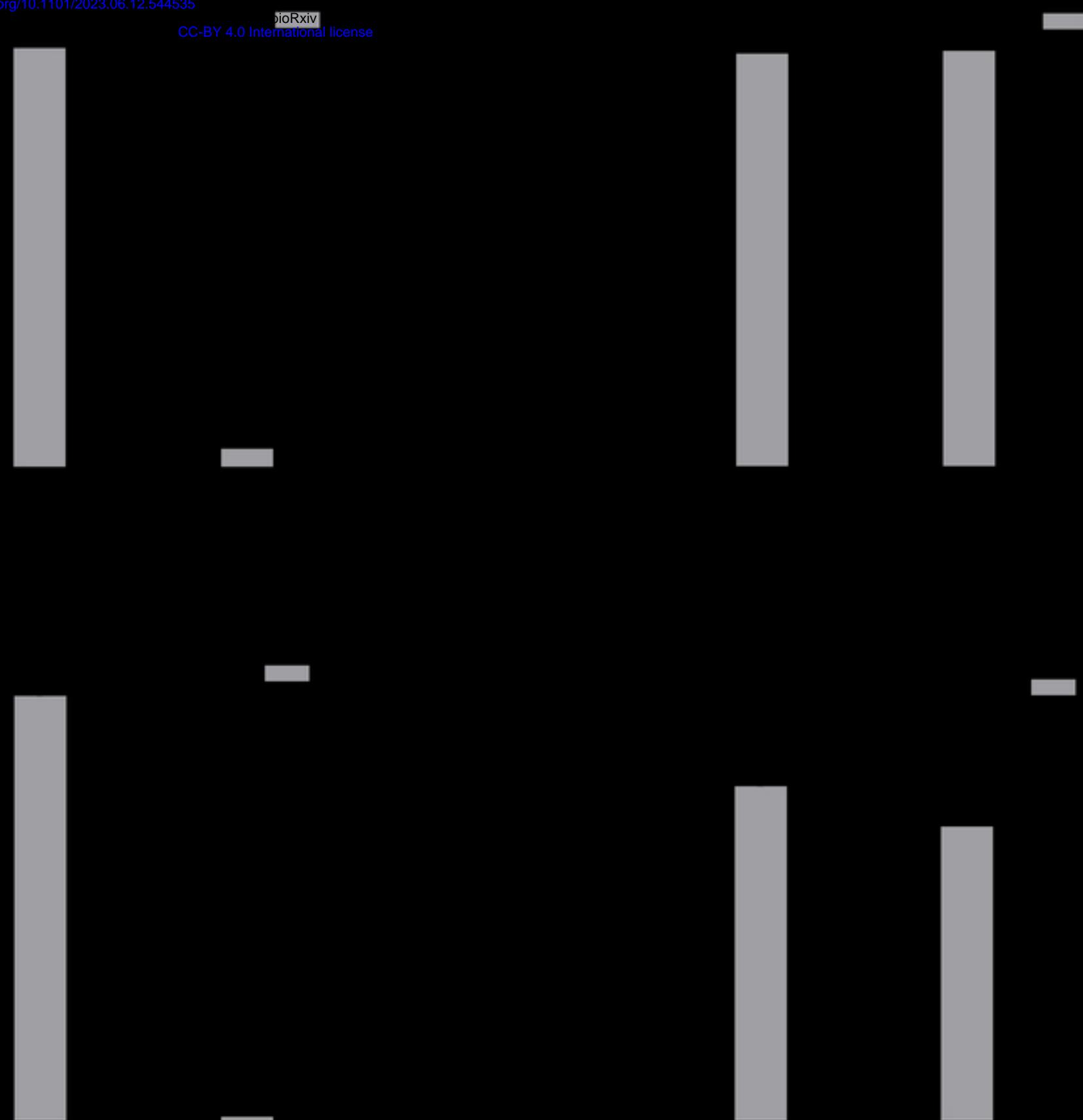
888 50. Mejía-Jaramillo AM, Peña VH, Triana-Chávez O. *Trypanosoma cruzi*:
889 Biological characterization of lineages I and II supports the predominance of
890 lineage I in Colombia. *Exp Parasitol*. 2009 Jan;121(1):83-91.
891 <https://doi.org/10.1016/j.exppara.2008.10.002> PMID: 18950627.

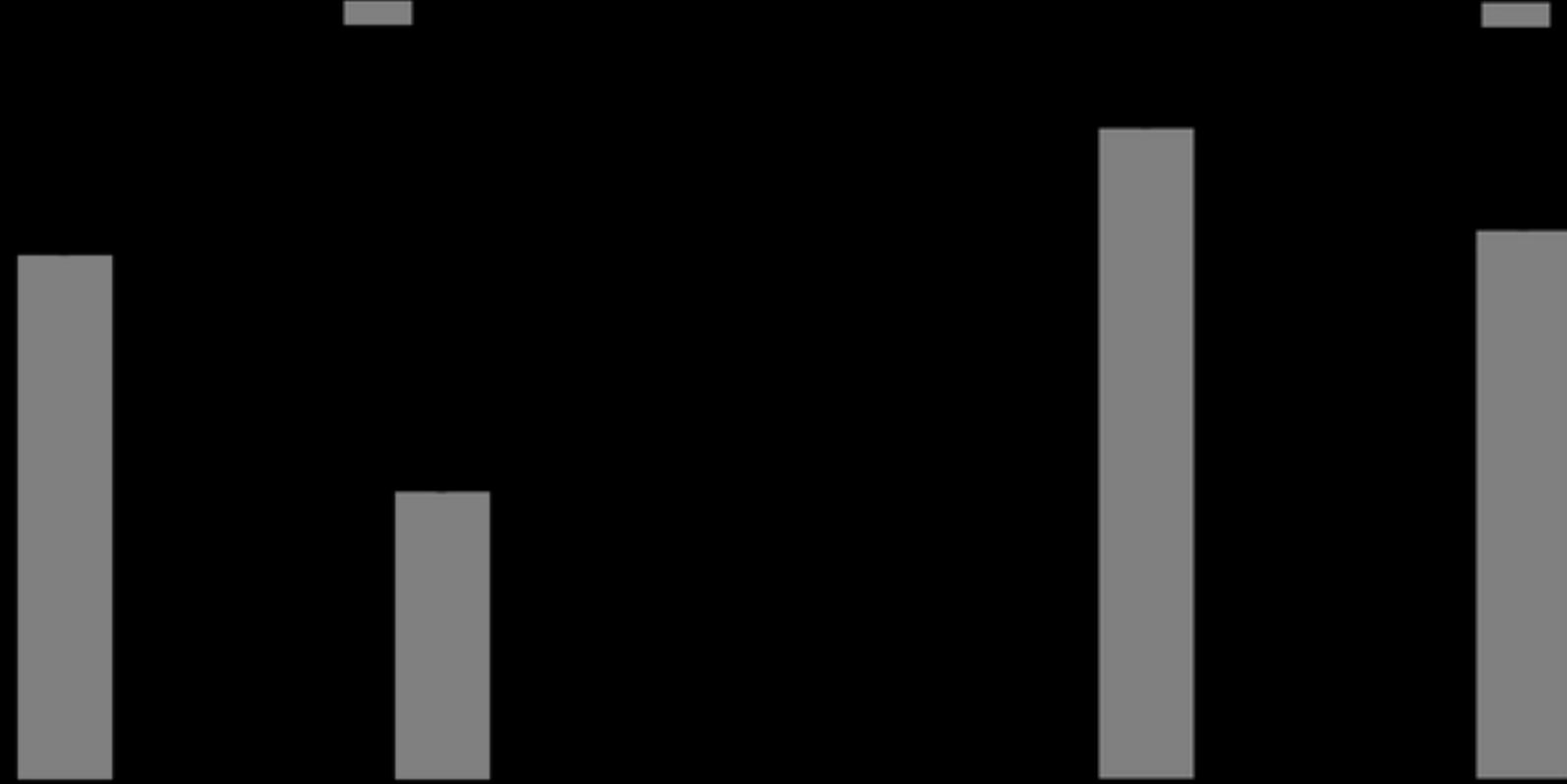
892

893 51. Velásquez-Ortiz N, Hernández C, Cantillo-Barraza O, Ballesteros N, Cruz-
894 Saavedra L, Herrera G, Buitrago LS, Soto H, Medina M, Palacio J, González
895 MS, Cuervo A, Vallejo G, Zuleta L, Urbano P, Muñoz M, Ramírez
896 JD. *Trypanosoma cruzi* Parasite Burdens of Several Triatomine Species in
897 Colombia. *Trop Med Infect Dis*. 2022 Dec; 19;7(12):445.
898 <https://doi.org/10.3390/tropicalmed7120445> PMID: 36548700

899 52. Galvão C. Taxonomy. In: Guarneri A, Lorenzo M (Eds) *Triatominae – The*
900 *Biology of Chagas Disease Vectores, Entomology in Focus 5*. Springer,
901 Cham. 2021. 15–38. https://doi.org/10.1007/978-3-030-64548-9_2

902

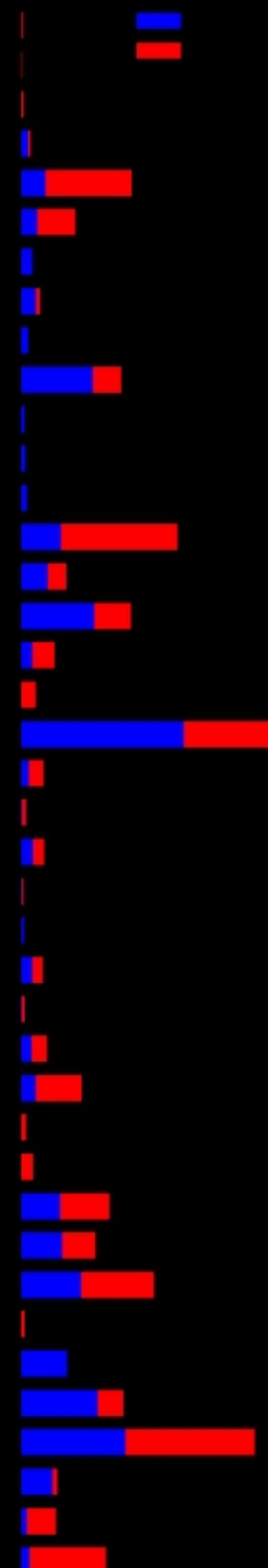

903 **Supporting information**


904 **S1 Table.** Common proteins detected of *R. prolixus* and *R. colombiensis*
905 hemolymph, detected only in *R. prolixus* hemolymph, or detected only in
906 *R. colombiensis*.

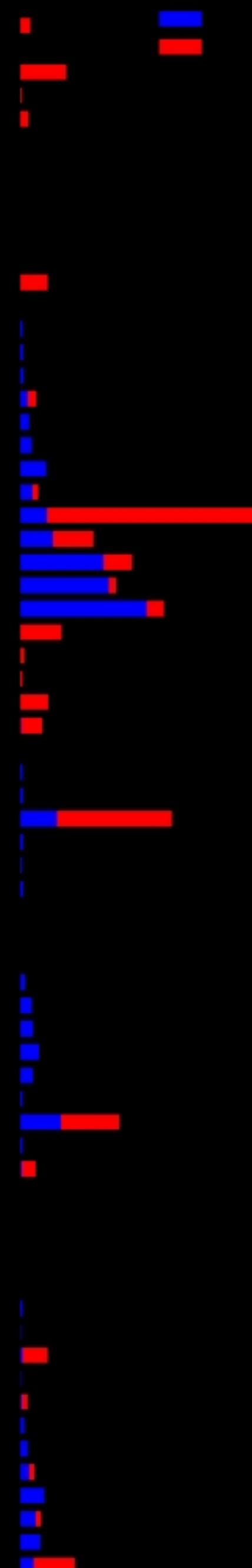
907 (DOC)

908 **S2 Table.** Common proteins detected of *R. prolixus* and *R. colombiensis* salivary
909 glands, detected only in *R. prolixus* salivary glands, or detected only in
910 *R. colombiensis*.

911 (DOC)



Figure


<https://doi.org/10.1101/2023.06.12.544535>

CC-BY 4.0 International license

<https://doi.org/10.1101/2023.06.12.544535>

CC-BY 4.0 International license

