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99  Abstract

100  The systematic characterization of cellular heterogeneity among tissues and cell-type-specific
101  regulation underlying complex phenotypes remains elusive in pigs. Within the Pig Genotype-
102 Tissue Expression (PigGTEX) project, we present a single-cell transcriptome atlas of adult pigs
103 encompassing 229,268 high-quality nuclei from 19 tissues, annotated to 67 major cell types.
104  Besides cellular heterogeneity within and across tissues, we further characterize prominent
105  tissue-specific features and functions of muscle, epithelial, and immune cells. Through
106  deconvoluting 3,921 bulk RNA-seq samples from 17 matching tissues, we dissect thousands
107  of genetic variants with cell-type interaction effects on gene expression (ieQTL). By
108  colocalizing these ieQTL with variants associated with 268 complex traits, we provide new
109  insights into the cellular mechanisms behind these traits. Moreover, we highlight that
110  orthologous genes with cell-type-specific regulation in pigs exhibit significant heritability
111  enrichment for some human complex phenotypes. Altogether, our work provides a valuable
112 resource and highlights novel insights in cellular regulation of complex traits for accelerating
113 pig precision breeding and human biomedical research.

114

115 Keywords: PigGTEx; Single-nucleus RNA-seq; Cellular deconvolution; Gene regulation;

116  Cell-type-trait association
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117  Introduction

118  The cell is a fundamental structural, biological, and evolutionary unit of life and plays a key
119  role in orchestrating the development and homeostasis of all living beings through global
120  intercellular interactions. Multicellular organisms, including mammals, are generally
121 composed of over 400 distinct cell types that are distinct in morphology and function (/-35).
122 Genome-wide association studies (GWASs) have revealed that over 90% of phenotype-
123 associated genetic variants lie within non-coding regions, suggesting that these variants might
124 influence complex phenotypes through gene expression modulation (6-8). The limited overlaps
125  between bulk expression quantitative trait loci (eQTL) and GWAS signals suggest that many
126  candidate variants might regulate biological processes and then complex phenotypes through
127  cell-type-specific mechanisms (9-12). Single-cell omics studies have shown that the substantial
128  disorders in cellular activity, identity, and composition play a crucial role in the development
129  of complex traits and diseases, both within and across individuals (5, /3-16), highlighting the
130  importance of constructing a multi-tissue single-cell atlas for functionally understanding
131  genotype-phenotype associations. In addition, a better understanding of molecular and cellular
132 mechanisms underpinning complex phenotypes will be an important initial step in generating
133 new avenues for precision breeding in agriculture and therapeutic solutions for similar human
134 diseases (13, 14, 17).

135

136  As an important farm animal species, the domestic pig (Sus scrofa) is not only an abundant
137  source of animal protein worldwide but also serves as a valuable human biomedical model and
138  an optimal organ donor for xenotransplantation (/8). Numerous studies in pigs have delineated
139  significant QTL underlying complex traits of economic importance (/9, 20), leading to vast
140  improvements in pig breeding programs and production efficiency. However, the systematic
141  interpretation of molecular mechanisms underlying complex phenotypes in pigs lags behind
142 human and mouse research due to limitations in functional data availability. The ongoing
143 Functional Annotation of Animal Genomes (FAANG) and Farm animal Genotype-Tissue
144  Expression projects (FarmGTEx) are global efforts to provide catalogues of functional
145  elements and variants in pigs at tissue level (2/-23). The next step is to explore the cell-type-
146  dependent biological consequences of trait-associated variants as tissues contain numerous cell
147  types (24). Although some studies have conducted single-cell/nucleus RNA-seq (scRNA-seq
148 and snRNA-seq) analyses in pigs, they primarily focused on elucidating the cellular

149  heterogeneity and trajectories of lineage specification in a limited range of tissue types (25-32).
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150  The cell-type-specific biological impacts of genetic variants on complex traits by integrating
151  single-cell RNA-sequencing with large-scale pig genetics data still need to be explored.

152

153 To further fine-map the causative genetic variants and decipher their cellular impacts on both
154  molecular and complex phenotypes in pigs, we first constructed a single-nucleus transcriptome
155 atlas by profiling a total of 319,433 nuclei from 19 major tissue types, representing 261 major
156  cell clusters. Dissection of muscle, epithelial and immune cells depicted the cellular
157  heterogeneity across these tissues and revealed a number of critical master regulators (i.e.,
158 GATA4 and ZBTBI11) driving cell identity. Through cellular deconvolution of PigGTEx
159 tissues, cell-type interaction expression QTL (ieQTL) mapping, and the integrative analysis
160  with GWAS results of 268 complex traits, we pinpoint the cell-type-specific contexts in which
161  trait-associated genetic variants regulate the transcriptional activity and result in phenotypic
162  variation. Moreover, we demonstrate that orthologous genes with cell-type-specific regulation
163  in pigs exhibit significant heritability enrichment for many human complex phenotypes.

164  Overall, this study enriches and enhances rich and open resources (http:/piggtex.farmgtex.org/

165 and https://dreamapp.biomed.au.dk/pigatlas/) for charting the cell-cell transcriptome

166  variability within and across tissues and expands our understanding of the connections between
167  genetic variants and phenotypes at single-cell resolution in pigs. Our results provide relevant
168  information for the development of future precision breeding strategies in pigs and human
169  biomedical research.

170

171  Results

172 Global landscape of single-nucleus transcriptomic reference atlas from 19 pig tissues
173 To generate a comprehensive multi-tissue single-cell transcriptomic reference atlas of pigs, we
174  performed snRNA-seq in 19 tissues/organs from two adult Meishan pigs (one male and one
175  female) using 10 X Genomics technology, including subcutaneous adipose, cerebellum,
176  cerebrum, colon, duodenum, heart, hypothalamus, ileum, jejunum, kidney, liver, lymph node,
177  skeletal muscle, ovary, pancreas, pituitary gland, spleen, testis, and uterus (Fig. 1a). Initially,
178  we profiled 16,812 nuclei and sequenced over 660 million raw reads per tissue on average (Fig.
179  1la). After quality control (see Methods for details), we obtained transcriptomic data for a total
180  of 229,268 high-quality nuclei across all the 19 tissues (Supplementary Fig. 1). We first
181  assessed the transcriptional similarity by comparing our snRNA-seq data with that from a

182  previous study across seven common tissues (27). The Spearman correlation values between
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183  the two pseudo-bulk single-cell transcriptomic profiles were high for all tissues, ranging from
184  0.653 to 0.825 (Supplementary Fig. 2), suggesting globally consistent transcriptional profiles
185  of samples between these two single-cell RN A-seq studies at the bulk tissue level.

186

187  The complete snRNA-seq dataset was grouped into 77 cell clusters and manually annotated as
188 67 major cell types based on the expression of canonical marker genes from the literature (Fig.
189  1b-c, Supplementary Fig. 3, and Supplementary Table 1). All tissues and cell types showed
190  sufficient transcriptional abundance, with a median of 4,008 unique molecular identifiers (UMI)
191 and 2,064 transcribed genes per nucleus, therefore displaying higher expression than the
192  previously reported single-cell data in pigs (27). The global cell atlas revealed that a majority
193  of cell types, like cardiomyocytes, enterocytes, and hepatocytes, exhibited a high tissue
194  specificity regarding gene expression (Fig. 1d), reflecting their specialized functions. Notably,
195  several prevalent cell types, such as immune cells, endothelial cells, and fibroblasts, were
196  commonly shared among tissues. To gain a deeper understanding of cellular heterogeneity
197  within each tissue, we generated individual visualizations in the hierarchy with Uniform
198  Manifold Approximation and Projection (UMAP), resulting in an average of 14 main cell types
199  pertissue (Supplementary Figs. 4-5). Of note, the ileum showed 24 putative cell subpopulations,
200  consistent with its highest cell-type diversity evaluated by the Shannon entropy index (Fig. 1c-
201  d and Supplementary Figs. 4-5). Additionally, we compared cellular signatures of tissues
202  shared by our work and the previous study (27), and in general, found a high consistency in
203 both cell annotation, distribution, and expression (Supplementary Fig. 6). However, some cell
204  types or marker genes, such as ADIPOQ in adipose tissue, DOCK4 in heart, and CD163 in
205  liver, displayed distinct expression levels and patterns between the two studies (Supplementary
206  Fig. 6). This discrepancy might be attributed to differences in tissue sampling regions and
207  experimental protocols. To further probe the intercellular relationships, we conducted an
208  unsupervised hierarchical clustering analysis for all these 67 cell types based on their
209 transcriptomic profiles (Fig. 1e). These cell types could be largely classified into nine different
210  functional groups of cells, including endocrine, endothelial, epithelial, germline, immune, islet,
211  muscle, neural and stromal cells. Remarkably, we observed a higher similarity among cell types
212 within the nine major lineages rather than among tissues, suggesting that cell clustering was
213 primarily driven by cell type and that these neighboring cell types possibly had similar
214  functions (Fig. le). To evaluate the dynamics of cell state in each cell type, we computed the
215  cell cycling index as described previously (3). Germline cells exhibited a greater cell division

216  capacity than other cells, while the endothelial, stromal, and muscle compartments, which are
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217  known to be largely quiescent, had low cycling indices (Fig. 1f and Supplementary Fig. 7).
218  Notably, the epithelial cells presented the highest variations in cell states, suggesting great
219  functional diversity of epithelial cell subpopulations.

220

221  Distinct transcriptional patterns among three types of muscle cells

222 The muscular system is a complex collection of organs that allow movement through the
223 contraction of muscle fibers and is also the main production target of the pig industry, with the
224 aim to provide high-quality protein in the form of meat. There are three distinct muscle types
225 in the body, namely skeletal, cardiac, and smooth muscle, each with unique cellular
226  morphologies and functions (33). We found that skeletal muscle cells and cardiomyocytes
227  accounted for 66.43% and 25.09% of total cells in muscle and heart, respectively, while smooth
228 muscle cells could be found in eight tissues with an average proportion of 2.52%
229  (Supplementary Figs. 4-5). To provide a more detailed view of the three muscle cell types, we
230  extracted a total of 10,117 muscle cells from corresponding tissues according to cell type
231  annotations and performed the dimension reduction analysis. As expected, t-SNE inspection
232 and dendrogram showed a clear separation among the three major muscle cell types, and each
233 specifically expressed its classical marker genes (Fig. 2a-b), like MYH7, MYBPC2, and TNNT1
234 for skeletal muscle cells, MYBPC3 and TNNT2 for cardiac muscle cells, and ACTA2, MYH11,
235 and RYR?2 for smooth muscle cells. We observed a preferential grouping of skeletal muscle
236  cells with cardiac muscle cells since both belong to striated muscle tissue and share similar
237  structural and functional characteristics (34). In addition, skeletal and smooth muscle cells
238  could be further partitioned into multiple subclusters in the hierarchy (Fig. 2b), suggesting their
239  subtle context-dependent functions. To examine global transcriptional differences among the
240  three muscle cell types, we performed a pair-wise differential gene expression analysis. In total,
241  we identified 1,250 differentially expressed genes (DEGs) across the three myocyte subtypes
242 (Fig. 2c). The 343 DEGs in skeletal muscle cells were significantly enriched in striated muscle
243 contraction, while DEGs in cardiac muscle cells were mainly involved in cardiac muscle tissue
244  development. Smooth muscle cell-specific genes were enriched in the extracellular matrix
245  organization (Fig. 2c¢). Further analysis of transcription factor (TF) activity revealed many
246  remarkable regulons in the control of muscle cell type specification (Fig. 2d). For example,
247  MYODI, MYOG, and FOX0O4 served as master TFs responsible for skeletal muscle cell
248  development, while certain members of the GATA and TBX families showed unique
249  regulatory roles in the cardiac and smooth muscle cell types, respectively.

250
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251  In addition to characterizing differences across the three main muscle cell types, we further
252 probed cellular heterogeneity within skeletal and smooth muscle cells separately. Our analysis
253  of pig myonuclei in skeletal muscle confirmed the presence of MYH7 type I (slow-twitch) and
254  TNNC2 type I (fast-twitch, I1a/b, and IIx) myofibers (Fig. 2b), consistent with a previous study
255  in monkeys (5). A pairwise comparison between type I and type II myofibers uncovered 209
256  DEGs (Fig. 2e). Notably, type I myofiber-specific genes were enriched in several fundamental
257  pathways related to molecular structure and function like muscle contraction and sarcomere
258  organization (Supplementary Fig. 8a), while the upregulated genes in type II myofibers were
259  essential for metabolic pathways such as phosphorylation and glycolysis (Supplementary Fig.
260  8b). By examining DEGs of these two types of myofibers previously reported in humans (35,
261  36), we observed a strong positive Pearson correlation of 0.945 regarding fold changes of the
262  shared genes between pigs and humans (Supplementary Fig. 8c), implying that the process of
263  muscle fiber specialization might be highly conserved between these two species. Furthermore,
264  we identified several critical master regulators, including METTL3, MYF6, and SIX4, which
265 displayed distinct regulatory activities in type I, Ila/b, and IIx myonuclei (Fig. 2f). By
266  conducting RNA velocity analysis in myofibers together with satellite cells (known as skeletal
267 muscle stem cells), we further explored the differentiation trajectory of muscle fibers. Our
268  results revealed clear myogenesis from satellite cells to mature muscle fibers (Fig. 2g), which
269  were driven by several fundamental genes with dynamic expressions across distinct cell states
270  suchas MYH7 and PRKGI. Interestingly, the type Ila/b fibers displayed intermediate cell states
271  and characteristics during the fast-to-slow fiber-type switch. In the smooth muscle cell
272  compartment, we found distinct gene signatures and tissue enrichment among these six cell
273 subtypes (Fig. 2h-i). For instance, SMC 1, which was preferably located in the intestine,
274  showed much higher activity of MYH 11 and DMD, while SMC_6, mainly from testis, exhibited
275  exclusively high expression of MYOIB and RGSS5. These results suggested that the same cell
276  types undergo subtle processes of functional differentiation depending on the original tissue
277  contexts in which they reside.

278

279  About the similarity and heterogeneity of intestinal epithelial cells

280  Epithelia are sheets of cells that cover most body surfaces, line internal cavities, and compose
281  certain glands. They perform a wide range of biological functions, including protection,
282  absorption, and secretion (37). First, we pursued to investigate the primary characteristics and
283  functions of epithelial cells, given their high abundance and diversity in the different organs.

284  We obtained a total of 57,049 epithelial cells from eight tissues and identified their tissue-
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285  specific expression patterns and functions through the global t-SNE and hierarchical clustering
286  (Fig. 3a and Supplementary Fig. 9). Epithelial cells from the duodenum, jejunum, ileum, and
287  colon, representing the digestive system in the present study, exhibited closer relationships
288  with other cells from the same digestive system than with cells from other systems. As expected,
289  epithelial cells from the intestines showed a strong digestive and metabolic capacity, such as
290  microvillus organization and intestinal absorption, compared to other subtypes (Fig. 3b-c). We
291  then extracted intestinal stem cells, enterocytes, and enteroendocrine cells for further
292  exploration, as these cell types might play pivotal roles in feed efficiency traits in pigs (38-40).
293  Intestinal stem cells expressed high levels of OLFM4 and LGRS5 and could be further
294  subdivided into two subtle subtypes according to the differential expression levels of these two
295  markers (Fig. 3d). We defined four enterocyte subgroups by the transcriptional patterns of
296  canonical enterocyte markers (for example, MUC13, SI, FUTS, APOB, and BEST4), including
297  enterocyte progenitors, immature enterocytes, mature enterocytes, and BEST4" enterocytes.
298  Enteroendocrine cells, which are specialized gut epithelial cells that produce and release
299  hormones in the intestine (40), displayed a higher expression of RAB3C, CHGA, and STXBP5L
300 when compared to other intestinal epithelial cells. Enrichment analyses of cell types across
301 tissues revealed that intestinal stem cells were mainly located in the ileum and, to some extent,
302 in the jejunum and colon, while enterocytes were more abundant in the duodenum and colon
303  (Fig. 3e).

304

305  To further characterize the lineage relationships and cell states among intestinal stem cells,
306  enterocytes, and enteroendocrine cells, we conducted the pseudotime analysis and cell cycling
307 index prediction (3, 47). Both analyses revealed that intestinal stem cells and enterocyte
308  progenitors exhibited a great capacity for differentiation into enterocytes and enteroendocrine
309 cells, as evidenced by their high proliferative states (Fig. 3f and Supplementary Fig. 10a-b).
310  The differentiation trajectory of these intestinal epithelial cells was highly similar among the
311  four individual intestine segments (Supplementary Fig. 10c-f). Functional annotation analyses
312 based on the Gene Ontology (GO) database demonstrated that gene signatures of each cell
313  subgroup in intestinal stem cells were mainly enriched in cell cycle-related biological processes
314 as expected (Fig. 3g). The highly expressed genes in BEST4' enterocytes were over-
315  represented in cell development and morphogenesis, which was highly different from the
316  functions of immature and mature enterocytes. The gene sets restricted in enteroendocrine cells
317  were significantly enriched in signal release and protein secretion (Fig. 3g). The distinct

318 transcriptional profiles and functions of these cell types can be attributed to their diverse gene


https://doi.org/10.1101/2023.06.12.544530
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.12.544530; this version posted June 13, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC-ND 4.0 International license.

319  regulatory programs (Supplementary Fig. 11). By inferring the TF activity across the trajectory,
320  we found that three master regulators, NFIB, STATI1, and ZBTBI11, play essential roles in
321  enterocyte lineage specification by a coordinated sequential activation (Fig. 3h and
322 Supplementary Fig. 12). To compare the structures and intensities of cell-cell communication
323 across the four gut segments, we employed CellChat (42) to identify potential ligand-receptor
324  pairs among the major cell types. Our results revealed that EGF, PDGF, and BMP signaling
325  pathways were major communicating pathways in the porcine intestine segments (Fig. 31 and
326  Supplementary Fig. 13). Although the global interaction patterns were similar, the strength of
327  intercellular interactions was different across intestine segments. For instance, compared with
328  the colon, we observed stronger intercellular interactions among enterocytes, epithelial cells,
329  and intestinal stem cells in small intestine tissues. We further mapped ligand-receptor pairs in
330  specified cell subpopulations across different organs to understand the rewiring of molecular
331 interactions regulating cell-cell interactions. Notably, the “NAMPT-INSR” and “GHRL-
332  GHSR” ligand-receptor pairs were specific in interactions between enterocytes. Overall, our
333 findings highlight the importance of dynamic information exchange between different cells in
334  contributing to the diverse digestive functions of different intestine sections.

335

336 A cross-tissue reference of immune cell types and states

337  The immune system is a complex network of cell types distributed throughout the whole body
338 and provides protection against bacteria, viruses, and other pathogens. Understanding the
339  specific and shared features of tissue-resident immune cells is crucial for deciphering the
340  molecular mechanisms underlying immune responses and ultimately for accelerating precision
341  breeding of disease resistance in pigs. We identified a total of 45,491 immune cells prevailing
342  in 17 tissues, including T cells, B cells, natural killer cells (NK), macrophages, and other tissue-
343  resident immune cells (Fig. 4a and Supplementary Fig. 14). Hierarchical clustering analysis
344  revealed three main branches of immune cells: myeloid and lymphoid lineages, as well as
345  microglia, which are brain-resident macrophages (Fig. 4b). As expected, each tissue has its
346  own immune compartments, with specific immune cell compositions. For example, the four
347  major parts of the brain exclusively contain microglia cells. A large population of B cells was
348  evident in the spleen, whereas lymph nodes were enriched for multiple T cell types. We next
349  subdivided and reanalyzed the immune dataset to explore further heterogeneity within
350  macrophages and T cells, which were abundantly present across tissues. All tissue-resident
351  macrophages, together with monocytes, were divided into 13 more granular subsets, which

352  were supported by the expression of well-established marker genes (Fig. 4c). These
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353  macrophage subgroups exhibited clear tissue-type separation and preference, although certain
354  subsets were shared by multiple tissues (Fig. 4b). For instance, the M1 macrophage subgroups
355  were enriched in muscle and liver, while M2 macrophages were mainly located in ileum and
356  ovary. To further dissect cell-type-specific transcriptional profiling, we performed pair-wise
357  differential expression analyses and identified 2,903 genes with restricted expression in one or
358 a few cell types (Supplementary Fig. 15a). Functional enrichment analysis evidenced the
359 presence of overrepresented biological processes for each macrophage subtype, which
360 recapitulated cell-type-specific functions regarding resident tissues and niches as well as
361  putative cellular states (Fig. 4d-f and Supplementary Fig. 15b). Furthermore, cell-type-specific
362  transcriptional programs were combinatorially controlled by several TFs with overlapping
363  expression patterns. The regulons KLF3 and CEBPB were exclusively expressed in monocyte
364  subsets and showed a gradual decrease in expression levels across the monocyte-to-
365 macrophage differentiation trajectory (Fig. 4g).

366

367 T cells play a crucial role in elicitating and controlling the adaptive immune response (43). We
368 identified seven T cell clusters based on known gene signatures, with CD4" and CD8" T cells
369  showing a distinct separation, while the remaining clusters were designated as general T cells
370  due to the absence of significant CD4 or CD8 surface molecules (Fig. 4h). CD4" and CD8" T
371  cells in our data were further divided into two subtle clusters, respectively, based on the
372  transcriptional differences of several classical markers like CD3E and NCALD. While these
373  annotated T cell clusters were observed in 14 organs, their relative proportion and enrichment
374  varied greatly across different organs (Fig. 4b). CD4" T cells were primarily located in lymph
375  nodes and jejunum, whereas CD8" T and NK cells were more abundant in heart and ovary. To
376  understand their potential diverse biological functions, we identified DEGs among these T cell
377  subtypes and then carried out a functional annotation. The majority of T cells shared several
378  enriched GO terms, like T cell activation and T cell receptor signaling pathway, suggesting
379  their shared immune functions regardless of tissue origins. Specifically, signatures of CD4" T
380  cells were enriched for cell-cell adhesion, whereas CD8" T cells had enhanced biological
381  functions in nuclear division and regulation of antigen receptor-mediated signaling pathway
382  (Fig. 4i and Supplementary Fig. 16). The distinct transcriptional profiles and molecular
383  functions were attributed mainly to the specific TF network (Fig. 4j). Overall, our study
384  provides valuable insights into the diversity and complexity of T cell populations across
385  different organs and sheds light on their roles in regulating the immune response.

386
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387  Genetic mapping and functional implications of cell-type-specific eQTL

388  Bulk tissue samples often contain a high degree of cellular heterogeneity, which can mask
389  genetic effects that are active only in specific cell types within the sampled tissue. To address
390 this, we explored ieQTL by performing the cell-type deconvolution analysis of 3,921 bulk
391 RNA-seq samples in the PigGTEX project via this newly built cross-tissue cell atlas. First, we
392 tested the cell estimation performance of the CIBERSORT algorithm (44) in pigs by
393  deconvoluting pseudo-bulk samples generated from simulation studies using the SCDC
394  software (45). By employing the gene signature matrix built from our liver snRNA-seq data,
395 we observed that the estimated cell proportions from pseudo-bulk samples were highly
396  correlated with the putative cell populations identified in the liver snRNA-seq, with the highest
397  correlation in Hepatocyte 1 subtype (Pearson’s = 0.841, p-value <2.2 x107'®, Supplementary
398  Fig. 17a-d). This result indicated the feasibility and accuracy of our cellular deconvolution
399  pipeline in pigs. To identify cell-type-specific eQTL in an unbiased manner, we performed
400  eQTL deconvolution analysis by integrating our cross-tissue snRNA-seq data with the large-
401  scale bulk RNA-seq collections from the PigGTEx project.

402

403  The pseudo-bulk gene expressions of our snRNA-seq data were significantly correlated with
404  those of PigGTEx bulk samples across all the 17 matching tissues, with correlation coefficients
405 ranging from 0.498 (colon) to 0.745 (spleen), implying sufficient concordance for the
406  subsequent integration (Supplementary Fig. 17¢). We thus estimated the relative cell fractions
407  of these 17 PigGTEX tissues using the snRNA-seq signature matrix of the respective tissues,
408  where sample sizes of PigGTEx tissues varied from 44 (kidney) to 1,321 (muscle). Overall,
409  most samples were well-deconvoluted (p-value < 0.05, 1,000-times permutations) and revealed
410 a striking variability in cellular composition across the PigGTEx samples (Fig. 5a and
411  Supplementary Fig. 18). The number of putative cell types detected in deconvoluted samples
412 ranged from six (uterus) to 23 (ileum) (Supplementary Fig. 17f). In particular, the predicted
413 abundance of cell types in muscle and heart displayed considerable inter-individual variations,
414  with certain cell types in some samples even being totally missing, while colon and
415  hypothalamus showed less heterogeneous cell fractions across samples (Supplementary Fig.
416  18). To map ieQTL, we performed a linear regression analysis that models an interaction term
417  between estimated cell fractions and genotypes (46). We detected a total of 5,168 protein-
418  coding genes with at least one significant ieQTL (ieGenes) across cell types and tissues (Fig.
419  5b), with around a third of these ieQTL validated using the allele-specific expression approach.

420  Of note, muscle exhibited the highest number of significant ieGenes, followed by cerebrum,
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421  testis, liver, and adipose tissues (Fig. 5c¢). The discovery power of ieGenes in tissue was
422  significantly correlated with its sample size (Fig. 5b). We detected an average of 114 ieGenes
423 across 79 cell types from 14 tissues. Among them, type IIx myonuclei had the largest number
424  ofieGenes (n =797), whereas ileum Paneth cells only had one ieGene. For instance, the effects
425  of rs3472489394 and rs330736093 on MANBA and SKOR? significantly interacted with the
426  enrichment of type IIx myonuclei in muscle and Leydig cells in the testis, respectively (Fig.
427  5d-e and Supplementary Fig. 19a).

428

429  Furthermore, to explore the cellular effects of trait-associated variants, we performed a
430  colocalization analysis between ieQTL and GWAS hits of 268 complex traits in pigs
431  (Supplementary Table 2). Of the putative ieQTL, 305 loci colocalized with at least one pig
432  GWAS hit (Fig. 5f), indicating a potential involvement in the genetic control of complex traits.
433 By comparing GWAS colocalization results between standard PigGTEx eQTL and the newly
434  detected ieQTL, we found that a substantial proportion of GWAS signals (> 81.96%) could be
435  colocalized by both i1eQTL and eQTL (Fig. 5f-h, Supplementary Fig. 19b, and Supplementary
436  Table 3). For example, we found a promising colocalization between the MANBA gene in
437  muscle and loin muscle depth (Fig. 5g), which was supported by both ieQTL (posterior
438  probability of colocalization (PP4) = 0.88) and standard eQTL (PP4 = 0.82). Of note, there
439  were 37 ieQTL-specific GWAS colocalizations (Supplementary Table 3), representing 19
440  complex traits, which indicated the cell-specific regulation of these traits and their potential
441  cellular origin. We also discovered that some GWAS hits missed by bulk eQTL could be
442  retrieved by ieQTL. A noteworthy example was the Leydig cell ieQTL of SKOR? in testis (Fig.
443  5h), which colocalized with the GWAS signal for the number of born alive at birth (PP4 =
444  0.78), whereas the standard eQTL from bulk testis tissues did not (PP4 = 0.34). These results
445  together showcased the substantial potential of our cell atlas in dissecting the genetic control
446  of the transcriptome and complex phenotypes at single-cell resolution in pigs.

447

448  Association of cell types with complex traits and diseases in pigs and humans

449  Although ieQTL have provided new potential target genes and variants potentially underlying
450  GWAS loci, the causal cell types of complex phenotypes are yet to be fully understood. To
451  systematically infer the relevance of cell types with complex traits and diseases, we conducted
452  the GWAS signal enrichment analyses using the signature genes of each cell type. The complex
453  traits collected in the PigGTEX project (Supplementary Table 2) were grouped into five main

454  categories, including reproduction traits (n = 71), health traits (n = 61), meat and carcass traits
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455  (n=50), production traits (n = 19), and exterior traits (n = 6). Of the 263 high-resolution cell
456  clusters in all 19 tissues, 222 (84.41%) showed significant enrichments for at least one
457  phenotype category after multiple testing correction (Supplementary Fig. 20). For instance, the
458  litter size relevant traits were maximally enriched in the immune cell cluster, implying the
459  existence of critical relationships between immune function and piglet survival
460  (Supplementary Fig. 21). Notably, many reproduction traits, such as total number born alive
461  (NBA), total number of piglets born (TNB), and the number of stillborn pigs (NBS), showed a
462  significant enrichments in neuronal cell types such as oligodendrocyte in cerebrum and
463  cerebellum, in addition to Leydig cells in testis, endothelial cells in ovary and lumen cells in
464  uterus (Fig. 6a and Supplementary Fig. 22). Moreover, several production and growth traits,
465 including average daily gain (ADG), backfat thickness (BFT), and loin muscle area (LMA),
466  were enriched not only in three skeletal myocytes but also in pituitary somatotropes, intestine
467  enterocytes, and pancreatic acinar cells (Fig. 6a). However, we did not find any significant
468  enrichment for health and exterior traits, possibly due to their relatively low GWAS power. To
469  validate the results, we partitioned the heritability of two production traits, backfat thickness,
470  and loin muscle depth, by cell types in a large population of over 26,000 genotyped individuals
471  (Fig. 6b-c). As expected, we observed the enriched heritability of muscle depth trait in type IIx
472  myonuclei. Likewise, backfat thickness showed a remarkable enrichment for enterocytes in the
473  duodenum and enteroendocrine cells in the jejunum and colon. Although both results were
474  obtained from two datasets with different sample sizes and distinct enrichment approaches,
475  they showed to some extent consistency (Fig. 6a-c). Furthermore, through examining the gene-
476  traits/disorders from Online Mendelian Inheritance in Animals database (OMIA,

477  https://omia.org/), we identified notable cell-type-specific expression programs of many

478  essential genes. For example, APOE, a major risk factor gene for Alzheimer's disease (47),
479  showed higher transcription levels in the pig astrocyte and microglia subtypes compared to
480  other cell types. High levels of CDI63 expression (an essential receptor for the porcine
481  reproductive and respiratory syndrome (48)) were mainly observed in the Kupffer cells and
482  other macrophages.

483

484  To explore whether our pig cell atlas could help to understand the cellular mechanisms of
485  complex traits and diseases in humans, we quantified the heritability enrichment of 137 human
486  complex phenotypes (Supplementary Table 4) across the 261 annotated cell types (two cell
487  clusters defined as unknown types were discarded) via the stratified linkage disequilibrium

488  score regression analysis (LDSC). We retrieved 15,354 one-to-one pig-human orthologous
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489  protein-coding genes from the Ensembl dataset (version 104) for the following analyses. Our
490 results revealed a total of 1,547 significant associations (the corrected enrichment p-value <
491  0.05) between pig cell types and human complex phenotypes (Fig. 6g, Supplementary Fig. 23,
492  and Supplementary Table 5). As expected, we observed significant enrichments of several
493  neurological and psychiatric phenotypes, such as multiple sclerosis, schizophrenia, and bipolar
494  disorder, in neural cell types, including excitatory neurons and neural progenitor cells from the
495  cerebrum, as well as in certain immune cell clusters such as microglia from cerebrum and
496  macrophages from pituitary. Additionally, metabolic traits, including type 2 diabetes and
497  cholesterol-related phenotypes, showed expected associations with hepatocytes, pancreatic
498  duct cells, and ileum goblet cells, as well as interesting associations with several skeletal
499  muscle and intestine cell populations. Moreover, our analysis revealed some novel
500 relationships between GWAS traits and cell types. For instance, we found enriched heritability
501  of several intestine diseases, such as Crohn's disease and diverticular disease, in cell clusters
502  corresponding to brain-resident immune cells (5, /5), in addition to enterocytes and immune
503 cells from the four intestine segments. For fasting insulin and glucose traits, we found
504  significant enrichments in adipocytes from adipose and skeletal muscle cells and enterocytes
505  from the intestines. Similarly, we observed striking enrichments of anthropometric traits,
506 including height, waist-hip ratio, and body fat percentage, not only in intestinal stem cells,
507  fibro-adipogenic progenitor cells from skeletal muscle, and adipocyte from adipose but also in
508  multiple cell populations from testis and ovary. Overall, our pig snRNA-seq data provided new
509  comprehensive insights into trait-relevant cell types in both pigs and humans, which will boost
510  the unraveling of molecular and cellular mechanisms underlying complex phenotypes and the
511  potential utilization of pigs as human biomedical models for certain diseases.

512

513  Discussion

514  The domestic pig (Sus scrofa) is a valuable livestock species that contributes significantly to
515  both agricultural and biomedical research. Recent studies, including our PigGTEx project, have
516  revealed that many traits-associated variants are located in non-coding regions and affect the
517  spatiotemporal expression of candidate genes in a context-specific (tissue- or cell-type-specific)
518  fashion. However, the impacts of genetic variations on these regulatory pathways and how they
519  vary across trait-relevant cell types have not been explored in pigs. To bridge the gaps between
520  genetic variants and phenotypes at single-cell resolution, we performed a comprehensive
521 analysis by integrating a cross-tissue snRNA-seq atlas with the large-scale PigGTEx datasets.

522 This work not only establishes a comprehensive single-cell reference map as a baseline for
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523  dissecting cellular heterogeneity within and across tissues but also highlights a more powerful

524  strategy for identifying trait-critical cellular signatures and cell-type-specific eQTL in pigs.

525
526  The present study employed single-nucleus RNA-seq to profile gene expression in 229,268

527  high-quality cells from 19 tissues in pigs, similar to a recent study (27) which constructed the
528  first single-cell transcriptomic atlas of 222,526 cells across 20 swine tissues. Compared with
529  that work, our dataset represents a broader range of pig organ sources covering nine major
530  body systems and especially comprises several highly important tissues in pig production
531  performance, such as skeletal muscle, four intestine segments, and three reproductive organs.
532 Given the large diversity in the chosen tissues, the two studies demonstrate a good complement
533  and represent very significant contributions to the efforts of the pig single-cell consortium. In
534  line with single-cell landscapes in other species (/, 2, 4, 5, 49-51), we identified primary cell
535  classes based on known canonical marker genes and captured a few rare cell types like Purkinje
536  cells from the brain and enteroendocrine cells from the intestine, which may facilitate our
537  understanding of cell lineage trajectory and tissue homeostasis. Our pig cross-tissue cell atlases
538  clarify the heterogeneous characteristics in cellular compositions and molecular properties
539  within and across tissues. For example, we delineated the global transcriptional divergence and
540 transition pattern among three dominant myofiber types (type I, Ila/b, and IIx) and revealed
541  evolutionarily conserved similarity in pivotal genes specializing myofiber, such as MYH7 and
542 MYBPC2 across mammals (35, 36, 52). This finding may have important implications for
543  improving meat quality and quantity, which are largely affected by myofiber characteristics
544 and proportions in pigs (53, 54). Type Il myonuclei exhibited a notable enrichment in metabolic
545  processes, indicating their crucial involvement in metabolic traits and syndromes, i.e., meat
546  production and fat deposition in pigs and type 2 diabetes and obesity in humans (35, 55-57).
547  Our data also demonstrate the prevalence of epithelial and immune cells across different tissue
548  contexts and offer a more detailed understanding of cell compartments. Although some cells
549  of a common type are shared across tissues, subpopulations are specifically enriched in
550  particular tissues. These tissue-resident epithelial and immune subsets are specialized to fulfill
551  the specific functional demands of different tissues, probably owing to unique local
552 environments or niches (50, 58).

553

554  Although our PigGTEx project has provided a compendium of genetic regulatory effects across
555 pig tissues and functional variants underlying complex traits (24), a comprehensive

556  understanding of gene regulation at the single-cell resolution for most non-coding loci is still
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557  lacking. To address this issue, emerging approaches such as single-cell eQTL and heritability
558  enrichment analyses have been extensively used in deciphering complex human traits and
559  diseases (/4-17, 46) but have yet to be systematically applied in pig studies. As a critical
560  component of the PigGTEx project, our work offers an in-depth dissection of the genetic effects
561  of trait-critical cellular signatures and cell-type-specific eQTL, in addition to the
562  comprehensive pig cell reference map, setting it apart from other recent single-cell studies (27).
563  Werevealed that around 15% of the loci that co-localized with GWAS traits showed significant
564  cell-type specificity, underscoring the advantages of single-cell eQTL analysis over the
565  standard bulk eQTL approach. The proportion missed by bulk studies is slightly lower than
566  what has been described in humans (46), which might be attributed to the limited sample size
567  in our work. By linking individual cell types to complex traits, we identified substantial cell-
568  type-trait associations that are consistent with previous studies (5, 15, 16, 35), suggesting high
569  functional conservation of major cell types among mammal species (52). Furthermore, we
570  mapped several unique associations between cell types and important phenotypes in pigs, such
571  as the driving roles of myofiber cell types for meat production traits and Leydig cells from the
572 testis for reproduction traits. Overall, our results provide meaningful insights into previously
573  cryptic molecular and cellular mechanisms behind traits of economic importance and offer new
574  opportunities for precision breeding in pigs.

575

576  Despite the significant findings of our study, several limitations must be noted. Firstly, the
577  current dataset comprises only one male and one female pig and is not an exhaustive
578  characterization of all pig organs. As such, we cannot fully capture the complete single-cell
579  picture and inter-individual variation in cellular composition, potentially limiting our ability to
580  explore rare cell types and map entire trait-associated cellular signatures. Secondly, compared
581  with single-cell RNA-seq, our single-nucleus RNA-seq can only profile nuclear transcripts and
582  not cytoplasmic transcripts. Different library preparation protocols may result in a reasonable
583  proportion difference in specific cell types, such as muscle, neural, and immune cells, despite
584  globally consistent detection performance in gene number and cell type diversity between them
585 (39, 60). Lastly, the sample size of certain tissues used in cellular deconvolution and heritability
586  partitioning analyses is relatively small, limiting the statistical power to detect causative trait-
587  associated cell types and single-cell eQTL. Therefore, future studies that incorporate larger
588  sample sizes, a broader range of tissues, and multiple complementary single-cell approaches
589  will be required to provide robust evidence and facilitate a more comprehensive interpretation

590  of our findings.
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591

592  In summary, this study presents a compendium of high-resolution body-wide single-cell
593  transcriptional landscape, provides a deeper understanding of the expression patterns and
594  functions of tissue-specific and shared cell types, and illuminates the intricate cell-cell
595 interactions governing tissue homeostasis. Through pioneering single-cell eQTL and
596  colocalization analyses in pigs, we pinpointed the likely causative cell-type-associated variants
597  and genes underlying traits of economic importance. Additionally, thousands of cell-type-trait
598 associations were discovered, and previously unexplored biological mechanisms were
599  explicated using heritability enrichment analysis. Collectively, these findings will significantly
600 enhance our understanding of cross-tissue and cross-individual variations of cellular
601  phenotypes and highlight promising trait-associated determinants (variants and cell types) for
602  advancing the fields of future pig breeding and human biomedical research.

603

604  Methods

605  Ethics statement

606  All animal protocols and procedures were implemented in compliance with the Guide for the
607  Care and Use of Experimental Animals established by the Ministry of Agriculture and Rural
608  Affairs (Beijing, China) and were approved by the Institutional Animal Care and Use
609  Committee of the Chinese Academy of Agricultural Sciences. Prior to tissue sampling, the pigs
610  were humanely euthanized as necessary to minimize their suffering.

611

612  Tissue collection and single-nucleus suspension

613  One male and one female Meishan pig, aged 180 days, were obtained from a commercial pig
614  farming company managed under the same conditions (Nantong, Jiangsu). Nineteen tissues,
615 including adipose, cerebellum, cerebrum, colon, duodenum, heart, hypothalamus, ileum,
616  jejunum, kidney, liver, lymph, muscle, ovary, pancreas, pituitary, spleen, testis, and uterus,
617  were freshly harvested from postmortem samples. Each tissue was kept on ice and minced into
618  5-10 pieces weighing approximately 50-100 mg each on ice with sterilized scissors. Tissue
619  samples were then snap-frozen in liquid nitrogen and stored at -80°C until nuclear extraction
620  was performed. Single-nucleus isolation was conducted as previously described (28, 59).
621  Briefly, tissue samples were homogenized using the Dounce homogenizer with 25 strokes of
622  the loose pestle A and then 25 strokes of the tight pestle B in 1 ml of ice-cold homogenization
623  buffer. After this, the mixture was filtered through a 40-um cell strainer into a 1.5-ml tube. To

624  collect dissociated single nuclei, the sample was centrifuged at 500g for 5 min at 4°C, and the
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625  supernatant was discarded. After centrifugation, the nuclear pellet was resuspended using an
626  appropriate amount of 1X PBS/0.5% BSA with RNase inhibitor, filtered through a 40-pum cell
627  strainer, and counted. A final concentration of 1,000 nuclei per pl was used for library
628  preparation.

629

630  Single-nucleus RNA-seq library preparation and sequencing

631  The single-nucleus RNA-seq libraries were prepared following the standard protocol supplied
632 by 10X Genomics (Berry Genomics, Beijing, China). In brief, isolated nuclei were captured in
633  droplets with gel beads in the Chromium Controller. Following the RNA reverse transcription
634  step, emulsions were broken, and barcoded cDNA was purified with Dynabeads, after which
635  PCR amplification was performed. The amplified cDNA was then used for 3’ gene expression
636  library construction. Then, indexed libraries were constructed according to the manufacturer’s
637  recommendations. After quality control, eligible libraries were sequenced on the Novaseq 6000
638  platform (Illumina) in a 150 bp paired-end manner. The first 28 bp in read 1 captured both the
639 16 bp 10X barcode and the 12 bp UMI.

640

641  Preprocessing of snRNA-seq data

642  The Sscrofall.1 reference assembly (67) in FASTA format and annotated gene model in GTF

643  format were downloaded from the Ensembl database (ftp:/ftp.ensembl.org/pub/release-101/).
644  Raw snRNA-seq data were aligned to the pig reference genome and subjected to barcode
645  assignment and unique molecular identifier (UMI) counting using the commands
646  recommended by the CellRanger pipeline (10X Genomics, CA, USA). Given that snRNA-seq
647  captures both unspliced pre-mRNA and mature mRNA, we used the include-introns option for
648  counting exonic and intronic reads together. The filtered gene expression matrix was used for
649  further analysis with the Seurat package (62). To ensure the accuracy and robustness of our
650 results, we removed ambient RNA and potential doublets using DecontX (63) and
651  DoubletFinder (64) with default settings. We also filtered out low-quality nuclei expressing
652  less than 200 genes or more than 5,000 genes, and less than 500 UMIs or more than 15,000
653  UMIs, as well as those exceeding 5% of mitochondrial content. During the gene filter step, all
654  genes not expressed in at least three nuclei were removed. In addition, to balance our dataset
655  in subsequent analyses, we randomly selected 20,000 nuclei from the spleen, as it had a much
656  higher number (n = 53,444) of captured nuclei compared to other tissues.

657
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658  Cell clustering and cell type annotation

659  After filtering, the remaining high-quality data were log-normalized and scaled to account for
660  cell-to-cell variation with regression on the number of UMIs and percentage of mitochondrial
661  genes. Subsequently, PCA linear dimensionality reduction analysis was performed, followed
662 by t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold
663  Approximation and Projection (UMAP) visualization approaches using the Scanorama tool
664  (65), to capture the global cell type landscapes across tissues. For individual clustering, each
665 tissue dataset was visualized using the Seurat package (62). Parameters used in each function
666  were manually curated to obtain the optimal clustering of cells by adjusting the number of
667  principal components and resolutions on a per-dataset basis. We employed the FindAlIMarkers
668  or FindMarkers function with default parameters to identify marker genes of each cluster and
669  annotated each cell type based on known classical markers from extensive published literature.
670  The Pearson or Spearman correlation coefficients among cell types were calculated using the
671  average expression of the top 1,000 highly variable features, and we used the pheatmap
672  package (https://github.com/raivokolde/pheatmap) to visualize the results. Besides, the
673  expression of marker genes in different cell types was visualized with the ggplot2 R package.

674

675  Cell type diversity estimation

676  Shannon entropy was calculated to evaluate cell type diversity in each tissue with a previously
677  published method (/4) according to the formula — ), (p, X log,(px)), where p, is the
678  proportion of each cell type x in a tissue. The entropy value per tissue was plotted using the
679  ggplot2 R package.

680

681  Pseudotime trajectory inference and RNA velocity analysis

682  The cell lineage trajectory was inferred using Monocle 3 (47) according to the standard tutorial.
683  We used the built-in DDRTree algorithm for dimensional reduction and visualization after
684  constructing the cell trajectory. Notably, the root state of the inferred trajectory was specified
685  based on existing biological knowledge. Furthermore, we predicted the velocity streams and
686  latent time assignments from sorted bam files using the dynamical model implemented in
687  scVelo (66).

688

689  Cell cycle index estimation

690  To further infer dynamic information about cell state, we calculated a cell cycle index for each

691  cell type with a previously published method (3). Typically, progenitor cells with rapidly
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692  dividing capacity display higher cycling indices, whereas cell types that are known to be largely
693  quiescent exhibit lower values.

694

695  Cell-cell interaction analysis

696  To investigate cellular communication patterns between different cell types, we used the
697  CellChat package (42) with default parameters, which is a manually curated database of
698 literature-supported ligand-receptor interactions in humans and mice. To run CellChat analysis
699 in pig datasets, we mapped pig gene symbols to human orthologs. Ligand-receptor pairs with
700  p-value < 0.05 were considered to be significant.

701

702 Tissue enrichment of clusters

703  We estimated the enrichment of each cell cluster across tissues, as previously described (67).
704  In brief, we calculated the observed and expected cell numbers in each cell cluster to compute
705  the ratio (Ror) between the two values using the epitools R package. We considered a cluster
706  to be enriched in a specific tissue if Roe > 1.

707

708  Gene ontology (GO) enrichment analysis

709  Gene Ontology (GO) analysis was performed using the clusterProfiler 4.0 (68) and
710  org.Hs.eg.db annotation package, considering that genome-wide annotation is incomplete in
711  pigs. The Benjamini-Hochberg (BH) procedure was used for the multiple testing corrections,
712 and only GO terms with an adjusted p-value smaller than 0.05 were retained.

713

714  Single-cell regulatory network analysis

715  To uncover cell-type-specific transcription regulons and construct gene regulation networks
716  (GRNs), we conducted single-cell regulatory network inference and clustering analysis using
717  the SCENIC suite (69) with the default parameters. The original expression matrix was
718  normalized with Seurat and fed into SCENIC to build a coexpression network using the built-
719  in GRNBoost2 algorithm. The activity of regulons in each cell was calculated by the AUCell
720  algorithm.

721

722 Cellular deconvolution analysis using CIBERSORT

723 For each tissue, we first identified differentially expressed genes specific to each cell type using
724  the Findmarkers function in the Seurat package. We then selected the top 50 genes with the

725  most significant overexpression, based on adjusted p-value (< 0.05) and average log, fold
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726  change (> 0.5), to build the gene expression signature matrix for the cell-type reference set. To
727  predict the abundances of cell types in a mixed cell population for each tissue, we collected the
728  RNA-seq expression matrix of 17 matching bulk tissues with our snRNA-seq data from the
729  PigGTEx database (http://piggtex.farmgtex.org/). Subsequently, the CIBERSORT tool (44)
730  was selected for cellular deconvolution analysis, given its great resolving power (70). To test
731  the robustness of cellular deconvolution, we first used the generateBulk norep function in the
732 SCDC package (45) to obtain the transcript per million (TPM) matrix of 1,000 pseudo bulk
733 samples (default parameters) with known cell type distribution based on our liver snRNA-seq
734 data. Then we used CIBERSORT to perform deconvolution on these samples using the TPM
735  matrix of signature genes from each cell type in pig liver. The number of permutation tests was
736  setto 1,000 times to determine the significance level, and p < 0.05 was regarded as statistical
737  significance. Finally, we calculated the Spearman correlation coefficient between the known
738  and predicted cell type distribution of hepatocyte cells to assess the accuracy of CIBERSORT
739  deconvolution in our pig dataset.

740

741  Cell type interaction cis-eQTL mapping

742 To detect whether a cis-eQTL explicitly affects gene expression in a given cell type, we
743 performed cell type interaction cis-eQTL (ieQTL) mapping for 17 bulk tissues of PigGTEXx.
744 We used the cell type composition (i.e., enrichment score) estimated from CIBERSORTX as
745  above and only considered cell types with an enrichment score > 0 in at least 20 samples and/or
746  20% of samples within a tissue. For each tissue-cell type pair, we performed ieQTL mapping
747  via a linear regression model implemented in TensorQTL (v1.0.3) (7/), which included an
748  interaction term between genotype and cell type enrichment score:

749 y~g+b+gxb+A

750  where y is the vector of gene expression values (i.e., the inverse normal transformed TMM)),
751 g is the genotype dosage (i.e., 0/1/2) vector of the tested SNP from PigGTEx samples, b is the
752  enrichment score of a given cell type predicted from snRNA-seq data, g X b is the interaction
753  term between genotype and enrichment score, and A represents the covariates (i.e., genotype
754  PCs and PEER factors, detailed in PigGTEx pilot phase). For the ieQTL mapping, we only
755  considered SNPs within +£1 Mb of transcription start sites (TSS) of each gene. We eliminated
756  those SNPs with minor allele frequency (MAF) < 0.05 in the top and/or bottom 50% of samples
757  sorted by the enrichment score of each cell type, using TensorQTL (v1.0.3) with parameter: --

758  maf threshold interaction 0.05. To correct for the multiple testing at the gene level, we used
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759  eigenMT (72) in TensorQTL for calculating the top nominal p-value of each gene. We then
760  computed the genome-wide significance of genes using the Benjamini-Hochberg FDR
761  correction on the eigenMT-corrected p-values and defined as ieGene that with at least one
762  significant ieQTL (i.e., FDR-corrected p-value < 0.05).

763

764  Allele-specific expression validation of ieQTL

765  Weused allele-specific expression (ASE) data at the individual level to validate the discovered
766  ieQTL. We first estimated the effect size (i.e., allelic fold change, aFC) of the top i1eQTL for
767  each ieGene from ASE data using the script phaser cis var.py in phASER (v1.1.1) (73) and
768  considered only ieQTL with nominally significant ASE (p-value < 0.05) data in more than ten
769  heterozygous individuals with more than eight reads for a gene. To filter out outlier samples in

770  ASE data, we applied the median absolute deviation (MAD) based on Hampel’s test to the

Reference reads

771  allelic imbalance (Al) ratio values (| — 0.5]) across samples (46, 74). When a

Total reads

772 sample had |Al; — median (AI)| > 4.5 x MAD, where MAD = median(|Al; — median(AI)|)
773  and Al, is the allelic imbalance ratio value for the ith individual, we defined it as an outlier and
774  eliminated it in the validation process. Within a given tissue, we determined that an ieQTL was
775  validated by ASE data if it presented a nominally significant (p-value < 0.05) Pearson’s
776  correlation between allelic fold change (aFC) of an ASE locus and cell type enrichment score
777  across samples.

778

779  Colocalization between ieQTL and GWAS loci

780  To identify shared association variants between the ieQTL and GWAS loci retrieved from the
781  PigGTEx project, we performed colocalization analysis using the Bayesian statistical
782  procedure implemented in Coloc (v5.1) (75). Briefly, we used the summary statistics of ieQTL
783  for each ieGene and its matched GWAS loci as input for Coloc. We only considered the GWAS
784 loci with at least one SNP with a p-value < 1x10-°. We obtained posterior probabilities PP4
785  from the coloc.abf function with default parameters, where PP4 represents the probabilities of
786  ashared variant affecting both the gene expression of a given cell type and the complex trait.
787  We defined ieGene-trait pairs with PP4 > 0.5 as significant colocalization. In addition, to
788  compare whether eQTL differ from ieQTL in terms of colocalization with GWAS loci, we used
789  the same pipeline employed for ieQTL scanning to perform the colocalization analysis for
790  eQTL for each ieGene and its matched GWAS loci as well.

791
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792  Genetic mapping of cell type specificity for complex traits in pigs and humans

793  To uncover associations of traits with cell types, we performed an enrichment analysis of
794  significant GWAS loci and cell-type-specific genes using the LOLA (v1.22.0) R package (76).
795  Specifically, we extracted the top 200 cell-type-specific genes sorted in ascending order by the
796  p-value for each of the 19 available tissues and created an annotation based on the genomic
797  regions of these candidate genes for each cell type-tissue pair. We then examined the GWAS
798  summary statistics of 268 pig complex traits and selected significant genetic variants with p <
799 5% 10% for each trait (24), using all tested SNPs of the 268 GWAS summaries as the
800  background set. Finally, we calculated the significance level (p-value) of the enrichment fold
801  using Fisher’s exact test with FDR correction and defined trait-tissue-cell type trios with p-
802  value < 0.05 as significant enrichment. Furthermore, we expanded our enrichment analysis to
803  a larger Duroc population (> 26,000 individuals) from a commercial company, given that the
804  current GWAS dataset is relatively small. We performed heritability enrichment analysis for
805  backfat thickness and loin muscle depth traits with genomic partitioning of quantitative genetic
806  variance similar to (77). A total of 11.7 M imputed variants that had been quality-controlled
807  were grouped into two sets: one containing variants within =10 Kb of the top genes specific to
808  each cell type, and the other containing the remaining variants. Per-variant heritability
809  enrichment was calculated for each cell type-specific variant set.

810

811  To test the enrichment of genes associated with human traits and diseases for each specific pig
812  cell type, we collected the GWAS summary statistics of 137 human complex traits from the
813 UK Biobank and public literature (Supplementary Table 4). We converted cell-type-specific
814  genes in pigs to the corresponding human orthologous genes with one-to-one mapping with the
815  Ensembl database. Finally, we employed linkage disequilibrium (LD) score regression analysis
816  (https://github.com/bulik/ldsc) (78, 79) to partition the heritability based on 262 annotations,
817  including 261 cell-type-specific gene lists and one base annotation including all SNPs.
818  Heritability enrichment was calculated as the proportion of trait heritability contributed by
819  SNPs in the annotation over the total proportion of SNPs in that annotation. We reported the
820  coefficient p-value as a measure of the association of each cell type with the traits. All plots
821  showed the predicted z-score of partitioned LD score regression.

822

823  Statistics and reproducibility

824  If not specified, all statistical analyses and data visualization were performed in the R

825  environment. No statistical method was used to predetermine sample size, no data were
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826  excluded from the analyses, and all analyses were not randomized, ensuring maximum
827  reproducibility.

828

829  Data availability

830 Raw sequencing reads generated by this work were deposited in the National Center for
831  Biotechnology Information database under the accession number GSE233285. Analysis codes
832  in this work are available at https://github.com/chenlijuan009/PigCellAtlas.
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Fig. 1 | Single-nucleus transcriptomic landscape across 19 frozen tissues in adult pigs.

a, Schematic diagram showing 19 primary pig tissues collected for snRNA-seq in this study.

The cartoons used to generate this illustration were purchased from BioRender.com. The

number of nuclei profiled per tissue is denoted in parentheses.

b, t-SNE visualization of single-nucleus profiles (dots) colored by tissues.

¢, Bar plot displaying the number and diversity of cell types identified in each of the 19 tissues.

Entropy shown by dotted line was calculated as described in Methods.
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d, t-SNE visualization of single-nucleus profiles (dots) colored by major cell types. All cell
types are categorized into nine top-level cell lineages, and cell type annotation is provided in
the legend to the right.

e, Cellular relationship and composition across tissues. The dendrogram was created by
hierarchical clustering based on the transcriptional levels of each cell type. The bar chart
represents the relative contributions of tissues to each cell type.

f, Cell state prediction of nine top-level cell lineages. Cells with higher cell cycling index are
more proliferative. The horizontal line in the boxplots corresponds to the median, the box
bounds indicate the 25th and 75th percentiles and the whiskers represent 1.5 times the

interquartile range. Values outside the whiskers are displayed as points.
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1337  Fig. 2 | Identification and characterization of three muscle cell types.

1338  a, UMAP visualization of all muscle cells from eight tissues. Each dot represents one nucleus,
1339  with colors coded according to manually annotated cell types. CMC, cardiac muscle cell; SMC,
1340  smooth muscle cell.

1341 b, Violin plots showing the normalized expression levels of marker genes for three major
1342 muscle cell types.

1343 ¢, Significantly enriched biological process terms of specific gene signatures in three major
1344  muscle cell types. Numbers between parentheses represent significance expressed as -logio
1345  (adjusted p-value).

1346  d, Transcription factors with different activity scores among three major muscle cell types.
1347 e, Volcano plot displaying differentially expressed genes between type I and type Il myonuclei.
1348  f, Four candidate transcription factors with distinct activity scores in type I, Ila/b, and IIx

1349  myonuclei.
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1350 g, RNA velocity analysis demonstrating state transition from satellite cells to myofiber in the
1351  skeletal muscle tissue. The arrows represent a flow derived from the ratio of unspliced to
1352 spliced transcripts, which in turn predicts dynamic changes in cell identity. Heatmap on the
1353 right demonstrates stereotyped changes in gene expression trajectory.

1354 h, Dot plot showing the expression levels of selected marker genes for each smooth cell cluster.
1355 i, Heatmap indicating the tissue preference of each cell population across different tissues

1356  revealed by Ry (ratio of observed cell number to expected cell number).
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Fig. 3 | Shared and tissue-specific molecular features for epithelial cell compartments.

a, Heatmap showing Spearman correlation coefficient between 25 epithelial cell subtypes

which could be broadly classified into digestive and non-digestive groups.

b, Volcano plot displaying differentially expressed genes between the digestive and non-

digestive clusters. Dots in the volcano plot highlight up-regulated genes in each group.
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1364 ¢, Functional annotation of up-regulated genes in each group. Top enriched biological
1365  processes terms are listed.

1366  d, Violin plots showing the normalized expression levels of marker genes for each cell subtype.
1367 e, Heatmap indicating the tissue preference of each cell population across four intestinal
1368  segments revealed by R (ratio of observed cell number to expected cell number).

1369 f, UMAPs showing the pseudotime differentiation trajectories of intestinal stem cells,
1370  enterocytes, and enteroendocrine cells, respectively.

1371 g, Heatmap representing the enrichment of biological process terms in epithelial cell subtypes.
1372 h, Scatter plots showing the top 100 regulons of the three major epithelial cell subtypes. Each
1373 regulon is ordered by activity score, and the top five regulons with high activity are highlighted
1374  inred.

1375 i, The inferred EGF signalling pathway network among the major cell types in four intestinal
1376  segments. The edge width represents the communication probability, and a thicker edge line

1377  indicates a stronger signal.
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1380  Fig. 4 | Immune cell heterogeneity across tissues in pigs.

1381 a, UMAP visualization of immune cell types across different tissues. Each dot represents one
1382 cell, with colors coded according to manually annotated cell types.

1383 b, Heatmap indicating the tissue preference of annotated immune cell types across different
1384  tissues revealed by Ro. (ratio of observed cell number to expected cell number).

1385 ¢, Dot plot showing the expression levels of selected marker genes for each cell cluster.

1386  d, Heatmap representing the enrichment of biological process terms for monocyte and
1387  macrophage lineages residing in different tissues.

1388 e, UMAP showing the pseudotime differentiation trajectories of monocyte and macrophage

1389  lineages.
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f, Box plots denoting the distribution of estimated pesudotime value for each cell type by
Monocle3.

g, Heatmap showing transcription factors with distinct activity scores in six major myeloid cell
compartments.

h, Violin plots showing the normalized expression levels of marker genes for T cell populations.
i, Heatmap representing the enrichment of biological process terms for T cell subtypes in
different tissues.

j» Heatmap showing transcription factors with different activity scores among different T cell

subtypes.
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Fig. 5| Cell-type-dependent activities of genetic variants on gene expression and pig traits.
a, Stacked bar plots showing the fraction of cell types estimated in PigGTEx RNA-seq samples
based on our snRNA-seq reference matrix in muscle tissue.
b, Scatter plot showing the estimated number of ieGenes versus sample sizes for 17 tissues
estimated using public bulk RNA-seq datasets.

Number of cell type interaction QTL (ieQTL) discovered in each cell type-tissue
combination at FDR < 5%.
d, An ieQTL of MANBA showing cell-type-specific effects in type IIx myonuclei from muscle.

Each point represents an individual and is colored by three genotypes. Both gene expression
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1410  levels and cell type enrichment values are inverse normal transformed across samples. The
1411  lines are fitted by a linear regression model using the geom smooth function from ggplot2
1412 (v3.3.2) in R (v4.0.2).

1413 e, AnieQTL of SKOR2 showing cell-type-specific effects in type IIx myonuclei from muscle.
1414  Each point represents an individual and is colored by three genotypes. Both gene expression
1415  levels and cell type enrichment values are inverse normal transformed across samples. The
1416  lines are fitted by a linear regression model using the geom smooth function from ggplot2
1417  (v3.3.2) in R (v4.0.2).

1418  f, Overlaps between ieQTL and eQTL detected by traditional bulk RNA-seq.

1419 g, Aligned Manhattan plots of pig GWAS, ieQTL, and eQTL at the MANBA locus for loin
1420  muscle depth trait (LMDEP). SNPs are colored according to the magnitude of linkage
1421  disequilibrium (r?) between adjacent SNPs pairs.

1422 h, Aligned Manhattan plots of pig GWAS, ieQTL, and eQTL at the SKOR2 locus for number
1423 born alive trait (NBA). SNPs are colored according to the magnitude of linkage disequilibrium
1424 () between adjacent SNPs pairs.
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Fig. 6 | Association of single-cell transcriptomic profiles with complex traits in pigs and
humans.
a, Heatmap showing representative significant associations between cell types and traits in pigs.

Definitions for abbreviations and complete results are provided in Supplementary Table 2.
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1430 b, Evaluation of the enrichment of backfat thickness trait in putative cell types by scRNA-seq
1431  data. Each circle represents a cell-type-trait association from a large-scale population dataset.
1432 ¢, Evaluation of the enrichment of loin muscle depth trait in putative cell types by scRNA-seq
1433 data. Each circle represents a cell-type-trait association from a large-scale population dataset.
1434  d, Cell-type-specific expression patterns of APOE in the cerebellum, cerebrum, and
1435  hypothalamus. The APOE gene is a key candidate associated with
1436  hyperlipidemia/atherosclerosis from the OMIA database.

1437 e, Cell-type-specific expression patterns of CD163 in the liver, muscle, and ovary. The CD163
1438  gene is an essential receptor linked to resistance/susceptibility to the porcine reproductive and
1439  respiratory syndrome (PRRS) virus from the OMIA database.

1440  f, Cell-type-specific expression patterns of DMD in the adipose, heart, and muscle. The DMD
1441  gene plays a vital role in muscular dystrophy from the OMIA database.

1442 g, Heatmap showing enrichment of pig cell types (indicated on the right) associated with
1443  selected human traits and diseases (indicated at the bottom). The colored boxes indicate
1444  selected enriched patterns. Definitions for abbreviations and complete results are provided in

1445  Supplementary Tables 4 and 5.
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