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Abstract 99 

The systematic characterization of cellular heterogeneity among tissues and cell-type-specific 100 

regulation underlying complex phenotypes remains elusive in pigs. Within the Pig Genotype-101 

Tissue Expression (PigGTEx) project, we present a single-cell transcriptome atlas of adult pigs 102 

encompassing 229,268 high-quality nuclei from 19 tissues, annotated to 67 major cell types. 103 

Besides cellular heterogeneity within and across tissues, we further characterize prominent 104 

tissue-specific features and functions of muscle, epithelial, and immune cells. Through 105 

deconvoluting 3,921 bulk RNA-seq samples from 17 matching tissues, we dissect thousands 106 

of genetic variants with cell-type interaction effects on gene expression (ieQTL). By 107 

colocalizing these ieQTL with variants associated with 268 complex traits, we provide new 108 

insights into the cellular mechanisms behind these traits. Moreover, we highlight that 109 

orthologous genes with cell-type-specific regulation in pigs exhibit significant heritability 110 

enrichment for some human complex phenotypes. Altogether, our work provides a valuable 111 

resource and highlights novel insights in cellular regulation of complex traits for accelerating 112 

pig precision breeding and human biomedical research. 113 

 114 

Keywords: PigGTEx; Single-nucleus RNA-seq; Cellular deconvolution; Gene regulation; 115 

Cell-type-trait association  116 
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Introduction 117 

The cell is a fundamental structural, biological, and evolutionary unit of life and plays a key 118 

role in orchestrating the development and homeostasis of all living beings through global 119 

intercellular interactions. Multicellular organisms, including mammals, are generally 120 

composed of over 400 distinct cell types that are distinct in morphology and function (1-5). 121 

Genome-wide association studies (GWASs) have revealed that over 90% of phenotype-122 

associated genetic variants lie within non-coding regions, suggesting that these variants might 123 

influence complex phenotypes through gene expression modulation (6-8). The limited overlaps 124 

between bulk expression quantitative trait loci (eQTL) and GWAS signals suggest that many 125 

candidate variants might regulate biological processes and then complex phenotypes through 126 

cell-type-specific mechanisms (9-12). Single-cell omics studies have shown that the substantial 127 

disorders in cellular activity, identity, and composition play a crucial role in the development 128 

of complex traits and diseases, both within and across individuals (5, 13-16), highlighting the 129 

importance of constructing a multi-tissue single-cell atlas for functionally understanding 130 

genotype-phenotype associations. In addition, a better understanding of molecular and cellular 131 

mechanisms underpinning complex phenotypes will be an important initial step in generating 132 

new avenues for precision breeding in agriculture and therapeutic solutions for similar human 133 

diseases (13, 14, 17). 134 

 135 

As an important farm animal species, the domestic pig (Sus scrofa) is not only an abundant 136 

source of animal protein worldwide but also serves as a valuable human biomedical model and 137 

an optimal organ donor for xenotransplantation (18). Numerous studies in pigs have delineated 138 

significant QTL underlying complex traits of economic importance (19, 20), leading to vast 139 

improvements in pig breeding programs and production efficiency. However, the systematic 140 

interpretation of molecular mechanisms underlying complex phenotypes in pigs lags behind 141 

human and mouse research due to limitations in functional data availability. The ongoing 142 

Functional Annotation of Animal Genomes (FAANG) and Farm animal Genotype-Tissue 143 

Expression projects (FarmGTEx) are global efforts to provide catalogues of functional 144 

elements and variants in pigs at tissue level (21-23). The next step is to explore the cell-type-145 

dependent biological consequences of trait-associated variants as tissues contain numerous cell 146 

types (24). Although some studies have conducted single-cell/nucleus RNA-seq (scRNA-seq 147 

and snRNA-seq) analyses in pigs, they primarily focused on elucidating the cellular 148 

heterogeneity and trajectories of lineage specification in a limited range of tissue types (25-32). 149 
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The cell-type-specific biological impacts of genetic variants on complex traits by integrating 150 

single-cell RNA-sequencing with large-scale pig genetics data still need to be explored. 151 

 152 

To further fine-map the causative genetic variants and decipher their cellular impacts on both 153 

molecular and complex phenotypes in pigs, we first constructed a single-nucleus transcriptome 154 

atlas by profiling a total of 319,433 nuclei from 19 major tissue types, representing 261 major 155 

cell clusters. Dissection of muscle, epithelial and immune cells depicted the cellular 156 

heterogeneity across these tissues and revealed a number of critical master regulators (i.e., 157 

GATA4 and ZBTB11) driving cell identity. Through cellular deconvolution of PigGTEx 158 

tissues, cell-type interaction expression QTL (ieQTL) mapping, and the integrative analysis 159 

with GWAS results of 268 complex traits, we pinpoint the cell-type-specific contexts in which 160 

trait-associated genetic variants regulate the transcriptional activity and result in phenotypic 161 

variation. Moreover, we demonstrate that orthologous genes with cell-type-specific regulation 162 

in pigs exhibit significant heritability enrichment for many human complex phenotypes. 163 

Overall, this study enriches and enhances rich and open resources (http://piggtex.farmgtex.org/ 164 

and https://dreamapp.biomed.au.dk/pigatlas/) for charting the cell-cell transcriptome 165 

variability within and across tissues and expands our understanding of the connections between 166 

genetic variants and phenotypes at single-cell resolution in pigs. Our results provide relevant 167 

information for the development of future precision breeding strategies in pigs and human 168 

biomedical research. 169 

 170 

Results 171 

Global landscape of single-nucleus transcriptomic reference atlas from 19 pig tissues 172 

To generate a comprehensive multi-tissue single-cell transcriptomic reference atlas of pigs, we 173 

performed snRNA-seq in 19 tissues/organs from two adult Meishan pigs (one male and one 174 

female) using 10 ×  Genomics technology, including subcutaneous adipose, cerebellum, 175 

cerebrum, colon, duodenum, heart, hypothalamus, ileum, jejunum, kidney, liver, lymph node, 176 

skeletal muscle, ovary, pancreas, pituitary gland, spleen, testis, and uterus (Fig. 1a). Initially, 177 

we profiled 16,812 nuclei and sequenced over 660 million raw reads per tissue on average (Fig. 178 

1a). After quality control (see Methods for details), we obtained transcriptomic data for a total 179 

of 229,268 high-quality nuclei across all the 19 tissues (Supplementary Fig. 1). We first 180 

assessed the transcriptional similarity by comparing our snRNA-seq data with that from a 181 

previous study across seven common tissues (27). The Spearman correlation values between 182 
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the two pseudo-bulk single-cell transcriptomic profiles were high for all tissues, ranging from 183 

0.653 to 0.825 (Supplementary Fig. 2), suggesting globally consistent transcriptional profiles 184 

of samples between these two single-cell RNA-seq studies at the bulk tissue level. 185 

 186 

The complete snRNA-seq dataset was grouped into 77 cell clusters and manually annotated as 187 

67 major cell types based on the expression of canonical marker genes from the literature (Fig. 188 

1b-c, Supplementary Fig. 3, and Supplementary Table 1). All tissues and cell types showed 189 

sufficient transcriptional abundance, with a median of 4,008 unique molecular identifiers (UMI) 190 

and 2,064 transcribed genes per nucleus, therefore displaying higher expression than the 191 

previously reported single-cell data in pigs (27). The global cell atlas revealed that a majority 192 

of cell types, like cardiomyocytes, enterocytes, and hepatocytes, exhibited a high tissue 193 

specificity regarding gene expression (Fig. 1d), reflecting their specialized functions. Notably, 194 

several prevalent cell types, such as immune cells, endothelial cells, and fibroblasts, were 195 

commonly shared among tissues. To gain a deeper understanding of cellular heterogeneity 196 

within each tissue, we generated individual visualizations in the hierarchy with Uniform 197 

Manifold Approximation and Projection (UMAP), resulting in an average of 14 main cell types 198 

per tissue (Supplementary Figs. 4-5). Of note, the ileum showed 24 putative cell subpopulations, 199 

consistent with its highest cell-type diversity evaluated by the Shannon entropy index (Fig. 1c-200 

d and Supplementary Figs. 4-5). Additionally, we compared cellular signatures of tissues 201 

shared by our work and the previous study (27), and in general, found a high consistency in 202 

both cell annotation, distribution, and expression (Supplementary Fig. 6). However, some cell 203 

types or marker genes, such as ADIPOQ in adipose tissue, DOCK4 in heart, and CD163 in 204 

liver, displayed distinct expression levels and patterns between the two studies (Supplementary 205 

Fig. 6). This discrepancy might be attributed to differences in tissue sampling regions and 206 

experimental protocols. To further probe the intercellular relationships, we conducted an 207 

unsupervised hierarchical clustering analysis for all these 67 cell types based on their 208 

transcriptomic profiles (Fig. 1e). These cell types could be largely classified into nine different 209 

functional groups of cells, including endocrine, endothelial, epithelial, germline, immune, islet, 210 

muscle, neural and stromal cells. Remarkably, we observed a higher similarity among cell types 211 

within the nine major lineages rather than among tissues, suggesting that cell clustering was 212 

primarily driven by cell type and that these neighboring cell types possibly had similar 213 

functions (Fig. 1e). To evaluate the dynamics of cell state in each cell type, we computed the 214 

cell cycling index as described previously (3). Germline cells exhibited a greater cell division 215 

capacity than other cells, while the endothelial, stromal, and muscle compartments, which are 216 
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known to be largely quiescent, had low cycling indices (Fig. 1f and Supplementary Fig. 7). 217 

Notably, the epithelial cells presented the highest variations in cell states, suggesting great 218 

functional diversity of epithelial cell subpopulations. 219 

 220 

Distinct transcriptional patterns among three types of muscle cells 221 

The muscular system is a complex collection of organs that allow movement through the 222 

contraction of muscle fibers and is also the main production target of the pig industry, with the 223 

aim to provide high-quality protein in the form of meat. There are three distinct muscle types 224 

in the body, namely skeletal, cardiac, and smooth muscle, each with unique cellular 225 

morphologies and functions (33). We found that skeletal muscle cells and cardiomyocytes 226 

accounted for 66.43% and 25.09% of total cells in muscle and heart, respectively, while smooth 227 

muscle cells could be found in eight tissues with an average proportion of 2.52% 228 

(Supplementary Figs. 4-5). To provide a more detailed view of the three muscle cell types, we 229 

extracted a total of 10,117 muscle cells from corresponding tissues according to cell type 230 

annotations and performed the dimension reduction analysis. As expected, t-SNE inspection 231 

and dendrogram showed a clear separation among the three major muscle cell types, and each 232 

specifically expressed its classical marker genes (Fig. 2a-b), like MYH7, MYBPC2, and TNNT1 233 

for skeletal muscle cells, MYBPC3 and TNNT2 for cardiac muscle cells, and ACTA2, MYH11, 234 

and RYR2 for smooth muscle cells. We observed a preferential grouping of skeletal muscle 235 

cells with cardiac muscle cells since both belong to striated muscle tissue and share similar 236 

structural and functional characteristics (34). In addition, skeletal and smooth muscle cells 237 

could be further partitioned into multiple subclusters in the hierarchy (Fig. 2b), suggesting their 238 

subtle context-dependent functions. To examine global transcriptional differences among the 239 

three muscle cell types, we performed a pair-wise differential gene expression analysis. In total, 240 

we identified 1,250 differentially expressed genes (DEGs) across the three myocyte subtypes 241 

(Fig. 2c). The 343 DEGs in skeletal muscle cells were significantly enriched in striated muscle 242 

contraction, while DEGs in cardiac muscle cells were mainly involved in cardiac muscle tissue 243 

development. Smooth muscle cell-specific genes were enriched in the extracellular matrix 244 

organization (Fig. 2c). Further analysis of transcription factor (TF) activity revealed many 245 

remarkable regulons in the control of muscle cell type specification (Fig. 2d). For example, 246 

MYOD1, MYOG, and FOXO4 served as master TFs responsible for skeletal muscle cell 247 

development, while certain members of the GATA and TBX families showed unique 248 

regulatory roles in the cardiac and smooth muscle cell types, respectively. 249 

 250 
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In addition to characterizing differences across the three main muscle cell types, we further 251 

probed cellular heterogeneity within skeletal and smooth muscle cells separately. Our analysis 252 

of pig myonuclei in skeletal muscle confirmed the presence of MYH7 type I (slow-twitch) and 253 

TNNC2 type II (fast-twitch, IIa/b, and IIx) myofibers (Fig. 2b), consistent with a previous study 254 

in monkeys (5). A pairwise comparison between type I and type II myofibers uncovered 209 255 

DEGs (Fig. 2e). Notably, type I myofiber-specific genes were enriched in several fundamental 256 

pathways related to molecular structure and function like muscle contraction and sarcomere 257 

organization (Supplementary Fig. 8a), while the upregulated genes in type II myofibers were 258 

essential for metabolic pathways such as phosphorylation and glycolysis (Supplementary Fig. 259 

8b). By examining DEGs of these two types of myofibers previously reported in humans (35, 260 

36), we observed a strong positive Pearson correlation of 0.945 regarding fold changes of the 261 

shared genes between pigs and humans (Supplementary Fig. 8c), implying that the process of 262 

muscle fiber specialization might be highly conserved between these two species. Furthermore, 263 

we identified several critical master regulators, including METTL3, MYF6, and SIX4, which 264 

displayed distinct regulatory activities in type I, IIa/b, and IIx myonuclei (Fig. 2f). By 265 

conducting RNA velocity analysis in myofibers together with satellite cells (known as skeletal 266 

muscle stem cells), we further explored the differentiation trajectory of muscle fibers. Our 267 

results revealed clear myogenesis from satellite cells to mature muscle fibers (Fig. 2g), which 268 

were driven by several fundamental genes with dynamic expressions across distinct cell states 269 

such as MYH7 and PRKG1. Interestingly, the type IIa/b fibers displayed intermediate cell states 270 

and characteristics during the fast-to-slow fiber-type switch. In the smooth muscle cell 271 

compartment, we found distinct gene signatures and tissue enrichment among these six cell 272 

subtypes (Fig. 2h-i). For instance, SMC_1, which was preferably located in the intestine, 273 

showed much higher activity of MYH11 and DMD, while SMC_6, mainly from testis, exhibited 274 

exclusively high expression of MYO1B and RGS5. These results suggested that the same cell 275 

types undergo subtle processes of functional differentiation depending on the original tissue 276 

contexts in which they reside. 277 

 278 

About the similarity and heterogeneity of intestinal epithelial cells 279 

Epithelia are sheets of cells that cover most body surfaces, line internal cavities, and compose 280 

certain glands. They perform a wide range of biological functions, including protection, 281 

absorption, and secretion (37). First, we pursued to investigate the primary characteristics and 282 

functions of epithelial cells, given their high abundance and diversity in the different organs. 283 

We obtained a total of 57,049 epithelial cells from eight tissues and identified their tissue-284 
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specific expression patterns and functions through the global t-SNE and hierarchical clustering 285 

(Fig. 3a and Supplementary Fig. 9). Epithelial cells from the duodenum, jejunum, ileum, and 286 

colon, representing the digestive system in the present study, exhibited closer relationships 287 

with other cells from the same digestive system than with cells from other systems. As expected, 288 

epithelial cells from the intestines showed a strong digestive and metabolic capacity, such as 289 

microvillus organization and intestinal absorption, compared to other subtypes (Fig. 3b-c). We 290 

then extracted intestinal stem cells, enterocytes, and enteroendocrine cells for further 291 

exploration, as these cell types might play pivotal roles in feed efficiency traits in pigs (38-40). 292 

Intestinal stem cells expressed high levels of OLFM4 and LGR5 and could be further 293 

subdivided into two subtle subtypes according to the differential expression levels of these two 294 

markers (Fig. 3d). We defined four enterocyte subgroups by the transcriptional patterns of 295 

canonical enterocyte markers (for example, MUC13, SI, FUT8, APOB, and BEST4), including 296 

enterocyte progenitors, immature enterocytes, mature enterocytes, and BEST4+ enterocytes. 297 

Enteroendocrine cells, which are specialized gut epithelial cells that produce and release 298 

hormones in the intestine (40), displayed a higher expression of RAB3C, CHGA, and STXBP5L 299 

when compared to other intestinal epithelial cells. Enrichment analyses of cell types across 300 

tissues revealed that intestinal stem cells were mainly located in the ileum and, to some extent, 301 

in the jejunum and colon, while enterocytes were more abundant in the duodenum and colon 302 

(Fig. 3e). 303 

 304 

To further characterize the lineage relationships and cell states among intestinal stem cells, 305 

enterocytes, and enteroendocrine cells, we conducted the pseudotime analysis and cell cycling 306 

index prediction (3, 41). Both analyses revealed that intestinal stem cells and enterocyte 307 

progenitors exhibited a great capacity for differentiation into enterocytes and enteroendocrine 308 

cells, as evidenced by their high proliferative states (Fig. 3f and Supplementary Fig. 10a-b). 309 

The differentiation trajectory of these intestinal epithelial cells was highly similar among the 310 

four individual intestine segments (Supplementary Fig. 10c-f). Functional annotation analyses 311 

based on the Gene Ontology (GO) database demonstrated that gene signatures of each cell 312 

subgroup in intestinal stem cells were mainly enriched in cell cycle-related biological processes 313 

as expected (Fig. 3g). The highly expressed genes in BEST4+ enterocytes were over-314 

represented in cell development and morphogenesis, which was highly different from the 315 

functions of immature and mature enterocytes. The gene sets restricted in enteroendocrine cells 316 

were significantly enriched in signal release and protein secretion (Fig. 3g). The distinct 317 

transcriptional profiles and functions of these cell types can be attributed to their diverse gene 318 
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regulatory programs (Supplementary Fig. 11). By inferring the TF activity across the trajectory, 319 

we found that three master regulators, NFIB, STAT1, and ZBTB11, play essential roles in 320 

enterocyte lineage specification by a coordinated sequential activation (Fig. 3h and 321 

Supplementary Fig. 12). To compare the structures and intensities of cell-cell communication 322 

across the four gut segments, we employed CellChat (42) to identify potential ligand-receptor 323 

pairs among the major cell types. Our results revealed that EGF, PDGF, and BMP signaling 324 

pathways were major communicating pathways in the porcine intestine segments (Fig. 3i and 325 

Supplementary Fig. 13). Although the global interaction patterns were similar, the strength of 326 

intercellular interactions was different across intestine segments. For instance, compared with 327 

the colon, we observed stronger intercellular interactions among enterocytes, epithelial cells, 328 

and intestinal stem cells in small intestine tissues. We further mapped ligand-receptor pairs in 329 

specified cell subpopulations across different organs to understand the rewiring of molecular 330 

interactions regulating cell-cell interactions. Notably, the “NAMPT-INSR” and “GHRL-331 

GHSR” ligand-receptor pairs were specific in interactions between enterocytes. Overall, our 332 

findings highlight the importance of dynamic information exchange between different cells in 333 

contributing to the diverse digestive functions of different intestine sections. 334 

 335 

A cross-tissue reference of immune cell types and states 336 

The immune system is a complex network of cell types distributed throughout the whole body 337 

and provides protection against bacteria, viruses, and other pathogens. Understanding the 338 

specific and shared features of tissue-resident immune cells is crucial for deciphering the 339 

molecular mechanisms underlying immune responses and ultimately for accelerating precision 340 

breeding of disease resistance in pigs. We identified a total of 45,491 immune cells prevailing 341 

in 17 tissues, including T cells, B cells, natural killer cells (NK), macrophages, and other tissue-342 

resident immune cells (Fig. 4a and Supplementary Fig. 14). Hierarchical clustering analysis 343 

revealed three main branches of immune cells: myeloid and lymphoid lineages, as well as 344 

microglia, which are brain-resident macrophages (Fig. 4b). As expected, each tissue has its 345 

own immune compartments, with specific immune cell compositions. For example, the four 346 

major parts of the brain exclusively contain microglia cells. A large population of B cells was 347 

evident in the spleen, whereas lymph nodes were enriched for multiple T cell types. We next 348 

subdivided and reanalyzed the immune dataset to explore further heterogeneity within 349 

macrophages and T cells, which were abundantly present across tissues. All tissue-resident 350 

macrophages, together with monocytes, were divided into 13 more granular subsets, which 351 

were supported by the expression of well-established marker genes (Fig. 4c). These 352 
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macrophage subgroups exhibited clear tissue-type separation and preference, although certain 353 

subsets were shared by multiple tissues (Fig. 4b). For instance, the M1 macrophage subgroups 354 

were enriched in muscle and liver, while M2 macrophages were mainly located in ileum and 355 

ovary. To further dissect cell-type-specific transcriptional profiling, we performed pair-wise 356 

differential expression analyses and identified 2,903 genes with restricted expression in one or 357 

a few cell types (Supplementary Fig. 15a). Functional enrichment analysis evidenced the 358 

presence of overrepresented biological processes for each macrophage subtype, which 359 

recapitulated cell-type-specific functions regarding resident tissues and niches as well as 360 

putative cellular states (Fig. 4d-f and Supplementary Fig. 15b). Furthermore, cell-type-specific 361 

transcriptional programs were combinatorially controlled by several TFs with overlapping 362 

expression patterns. The regulons KLF3 and CEBPB were exclusively expressed in monocyte 363 

subsets and showed a gradual decrease in expression levels across the monocyte-to-364 

macrophage differentiation trajectory (Fig. 4g). 365 

 366 

T cells play a crucial role in elicitating and controlling the adaptive immune response (43). We 367 

identified seven T cell clusters based on known gene signatures, with CD4+ and CD8+ T cells 368 

showing a distinct separation, while the remaining clusters were designated as general T cells 369 

due to the absence of significant CD4 or CD8 surface molecules (Fig. 4h). CD4+ and CD8+ T 370 

cells in our data were further divided into two subtle clusters, respectively, based on the 371 

transcriptional differences of several classical markers like CD3E and NCALD. While these 372 

annotated T cell clusters were observed in 14 organs, their relative proportion and enrichment 373 

varied greatly across different organs (Fig. 4b). CD4+ T cells were primarily located in lymph 374 

nodes and jejunum, whereas CD8+ T and NK cells were more abundant in heart and ovary. To 375 

understand their potential diverse biological functions, we identified DEGs among these T cell 376 

subtypes and then carried out a functional annotation. The majority of T cells shared several 377 

enriched GO terms, like T cell activation and T cell receptor signaling pathway, suggesting 378 

their shared immune functions regardless of tissue origins. Specifically, signatures of CD4+ T 379 

cells were enriched for cell-cell adhesion, whereas CD8+ T cells had enhanced biological 380 

functions in nuclear division and regulation of antigen receptor-mediated signaling pathway 381 

(Fig. 4i and Supplementary Fig. 16). The distinct transcriptional profiles and molecular 382 

functions were attributed mainly to the specific TF network (Fig. 4j). Overall, our study 383 

provides valuable insights into the diversity and complexity of T cell populations across 384 

different organs and sheds light on their roles in regulating the immune response. 385 

 386 
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Genetic mapping and functional implications of cell-type-specific eQTL 387 

Bulk tissue samples often contain a high degree of cellular heterogeneity, which can mask 388 

genetic effects that are active only in specific cell types within the sampled tissue. To address 389 

this, we explored ieQTL by performing the cell-type deconvolution analysis of 3,921 bulk 390 

RNA-seq samples in the PigGTEx project via this newly built cross-tissue cell atlas. First, we 391 

tested the cell estimation performance of the CIBERSORT algorithm (44) in pigs by 392 

deconvoluting pseudo-bulk samples generated from simulation studies using the SCDC 393 

software (45). By employing the gene signature matrix built from our liver snRNA-seq data, 394 

we observed that the estimated cell proportions from pseudo-bulk samples were highly 395 

correlated with the putative cell populations identified in the liver snRNA-seq, with the highest 396 

correlation in Hepatocyte_1 subtype (Pearson’s r = 0.841, p-value < 2.2	×10-16, Supplementary 397 

Fig. 17a-d). This result indicated the feasibility and accuracy of our cellular deconvolution 398 

pipeline in pigs. To identify cell-type-specific eQTL in an unbiased manner, we performed 399 

eQTL deconvolution analysis by integrating our cross-tissue snRNA-seq data with the large-400 

scale bulk RNA-seq collections from the PigGTEx project. 401 

 402 

The pseudo-bulk gene expressions of our snRNA-seq data were significantly correlated with 403 

those of PigGTEx bulk samples across all the 17 matching tissues, with correlation coefficients 404 

ranging from 0.498 (colon) to 0.745 (spleen), implying sufficient concordance for the 405 

subsequent integration (Supplementary Fig. 17e). We thus estimated the relative cell fractions 406 

of these 17 PigGTEx tissues using the snRNA-seq signature matrix of the respective tissues, 407 

where sample sizes of PigGTEx tissues varied from 44 (kidney) to 1,321 (muscle). Overall, 408 

most samples were well-deconvoluted (p-value < 0.05, 1,000-times permutations) and revealed 409 

a striking variability in cellular composition across the PigGTEx samples (Fig. 5a and 410 

Supplementary Fig. 18). The number of putative cell types detected in deconvoluted samples 411 

ranged from six (uterus) to 23 (ileum) (Supplementary Fig. 17f). In particular, the predicted 412 

abundance of cell types in muscle and heart displayed considerable inter-individual variations, 413 

with certain cell types in some samples even being totally missing, while colon and 414 

hypothalamus showed less heterogeneous cell fractions across samples (Supplementary Fig. 415 

18). To map ieQTL, we performed a linear regression analysis that models an interaction term 416 

between estimated cell fractions and genotypes (46). We detected a total of 5,168 protein-417 

coding genes with at least one significant ieQTL (ieGenes) across cell types and tissues (Fig. 418 

5b), with around a third of these ieQTL validated using the allele-specific expression approach. 419 

Of note, muscle exhibited the highest number of significant ieGenes, followed by cerebrum, 420 
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testis, liver, and adipose tissues (Fig. 5c). The discovery power of ieGenes in tissue was 421 

significantly correlated with its sample size (Fig. 5b). We detected an average of 114 ieGenes 422 

across 79 cell types from 14 tissues. Among them, type IIx myonuclei had the largest number 423 

of ieGenes (n = 797), whereas ileum Paneth cells only had one ieGene. For instance, the effects 424 

of rs3472489394 and rs330736093 on MANBA and SKOR2 significantly interacted with the 425 

enrichment of type IIx myonuclei in muscle and Leydig cells in the testis, respectively (Fig. 426 

5d-e and Supplementary Fig. 19a). 427 

 428 

Furthermore, to explore the cellular effects of trait-associated variants, we performed a 429 

colocalization analysis between ieQTL and GWAS hits of 268 complex traits in pigs 430 

(Supplementary Table 2). Of the putative ieQTL, 305 loci colocalized with at least one pig 431 

GWAS hit (Fig. 5f), indicating a potential involvement in the genetic control of complex traits. 432 

By comparing GWAS colocalization results between standard PigGTEx eQTL and the newly 433 

detected ieQTL, we found that a substantial proportion of GWAS signals (> 81.96%) could be 434 

colocalized by both ieQTL and eQTL (Fig. 5f-h, Supplementary Fig. 19b, and Supplementary 435 

Table 3). For example, we found a promising colocalization between the MANBA gene in 436 

muscle and loin muscle depth (Fig. 5g), which was supported by both ieQTL (posterior 437 

probability of colocalization (PP4) = 0.88) and standard eQTL (PP4 = 0.82). Of note, there 438 

were 37 ieQTL-specific GWAS colocalizations (Supplementary Table 3), representing 19 439 

complex traits, which indicated the cell-specific regulation of these traits and their potential 440 

cellular origin. We also discovered that some GWAS hits missed by bulk eQTL could be 441 

retrieved by ieQTL. A noteworthy example was the Leydig cell ieQTL of SKOR2 in testis (Fig. 442 

5h), which colocalized with the GWAS signal for the number of born alive at birth (PP4 = 443 

0.78), whereas the standard eQTL from bulk testis tissues did not (PP4 = 0.34). These results 444 

together showcased the substantial potential of our cell atlas in dissecting the genetic control 445 

of the transcriptome and complex phenotypes at single-cell resolution in pigs. 446 

 447 

Association of cell types with complex traits and diseases in pigs and humans 448 

Although ieQTL have provided new potential target genes and variants potentially underlying 449 

GWAS loci, the causal cell types of complex phenotypes are yet to be fully understood. To 450 

systematically infer the relevance of cell types with complex traits and diseases, we conducted 451 

the GWAS signal enrichment analyses using the signature genes of each cell type. The complex 452 

traits collected in the PigGTEx project (Supplementary Table 2) were grouped into five main 453 

categories, including reproduction traits (n = 71), health traits (n = 61), meat and carcass traits 454 
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(n = 50), production traits (n = 19), and exterior traits (n = 6). Of the 263 high-resolution cell 455 

clusters in all 19 tissues, 222 (84.41%) showed significant enrichments for at least one 456 

phenotype category after multiple testing correction (Supplementary Fig. 20). For instance, the 457 

litter size relevant traits were maximally enriched in the immune cell cluster, implying the 458 

existence of critical relationships between immune function and piglet survival 459 

(Supplementary Fig. 21). Notably, many reproduction traits, such as total number born alive 460 

(NBA), total number of piglets born (TNB), and the number of stillborn pigs (NBS), showed a 461 

significant enrichments in neuronal cell types such as oligodendrocyte in cerebrum and 462 

cerebellum, in addition to Leydig cells in testis, endothelial cells in ovary and lumen cells in 463 

uterus (Fig. 6a and Supplementary Fig. 22). Moreover, several production and growth traits, 464 

including average daily gain (ADG), backfat thickness (BFT), and loin muscle area (LMA), 465 

were enriched not only in three skeletal myocytes but also in pituitary somatotropes, intestine 466 

enterocytes, and pancreatic acinar cells (Fig. 6a). However, we did not find any significant 467 

enrichment for health and exterior traits, possibly due to their relatively low GWAS power. To 468 

validate the results, we partitioned the heritability of two production traits, backfat thickness, 469 

and loin muscle depth, by cell types in a large population of over 26,000 genotyped individuals 470 

(Fig. 6b-c). As expected, we observed the enriched heritability of muscle depth trait in type IIx 471 

myonuclei. Likewise, backfat thickness showed a remarkable enrichment for enterocytes in the 472 

duodenum and enteroendocrine cells in the jejunum and colon. Although both results were 473 

obtained from two datasets with different sample sizes and distinct enrichment approaches, 474 

they showed to some extent consistency (Fig. 6a-c). Furthermore, through examining the gene-475 

traits/disorders from Online Mendelian Inheritance in Animals database (OMIA, 476 

https://omia.org/), we identified notable cell-type-specific expression programs of many 477 

essential genes. For example, APOE, a major risk factor gene for Alzheimer's disease (47), 478 

showed higher transcription levels in the pig astrocyte and microglia subtypes compared to 479 

other cell types. High levels of CD163 expression (an essential receptor for the porcine 480 

reproductive and respiratory syndrome (48)) were mainly observed in the Kupffer cells and 481 

other macrophages. 482 

 483 

To explore whether our pig cell atlas could help to understand the cellular mechanisms of 484 

complex traits and diseases in humans, we quantified the heritability enrichment of 137 human 485 

complex phenotypes (Supplementary Table 4) across the 261 annotated cell types (two cell 486 

clusters defined as unknown types were discarded) via the stratified linkage disequilibrium 487 

score regression analysis (LDSC). We retrieved 15,354 one-to-one pig-human orthologous 488 
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protein-coding genes from the Ensembl dataset (version 104) for the following analyses. Our 489 

results revealed a total of 1,547 significant associations (the corrected enrichment p-value < 490 

0.05) between pig cell types and human complex phenotypes (Fig. 6g, Supplementary Fig. 23, 491 

and Supplementary Table 5). As expected, we observed significant enrichments of several 492 

neurological and psychiatric phenotypes, such as multiple sclerosis, schizophrenia, and bipolar 493 

disorder, in neural cell types, including excitatory neurons and neural progenitor cells from the 494 

cerebrum, as well as in certain immune cell clusters such as microglia from cerebrum and 495 

macrophages from pituitary. Additionally, metabolic traits, including type 2 diabetes and 496 

cholesterol-related phenotypes, showed expected associations with hepatocytes, pancreatic 497 

duct cells, and ileum goblet cells, as well as interesting associations with several skeletal 498 

muscle and intestine cell populations. Moreover, our analysis revealed some novel 499 

relationships between GWAS traits and cell types. For instance, we found enriched heritability 500 

of several intestine diseases, such as Crohn's disease and diverticular disease, in cell clusters 501 

corresponding to brain-resident immune cells (5, 15), in addition to enterocytes and immune 502 

cells from the four intestine segments. For fasting insulin and glucose traits, we found 503 

significant enrichments in adipocytes from adipose and skeletal muscle cells and enterocytes 504 

from the intestines. Similarly, we observed striking enrichments of anthropometric traits, 505 

including height, waist-hip ratio, and body fat percentage, not only in intestinal stem cells, 506 

fibro-adipogenic progenitor cells from skeletal muscle, and adipocyte from adipose but also in 507 

multiple cell populations from testis and ovary. Overall, our pig snRNA-seq data provided new 508 

comprehensive insights into trait-relevant cell types in both pigs and humans, which will boost 509 

the unraveling of molecular and cellular mechanisms underlying complex phenotypes and the 510 

potential utilization of pigs as human biomedical models for certain diseases. 511 

 512 

Discussion 513 

The domestic pig (Sus scrofa) is a valuable livestock species that contributes significantly to 514 

both agricultural and biomedical research. Recent studies, including our PigGTEx project, have 515 

revealed that many traits-associated variants are located in non-coding regions and affect the 516 

spatiotemporal expression of candidate genes in a context-specific (tissue- or cell-type-specific) 517 

fashion. However, the impacts of genetic variations on these regulatory pathways and how they 518 

vary across trait-relevant cell types have not been explored in pigs. To bridge the gaps between 519 

genetic variants and phenotypes at single-cell resolution, we performed a comprehensive 520 

analysis by integrating a cross-tissue snRNA-seq atlas with the large-scale PigGTEx datasets. 521 

This work not only establishes a comprehensive single-cell reference map as a baseline for 522 
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dissecting cellular heterogeneity within and across tissues but also highlights a more powerful 523 

strategy for identifying trait-critical cellular signatures and cell-type-specific eQTL in pigs. 524 

 525 
The present study employed single-nucleus RNA-seq to profile gene expression in 229,268 526 

high-quality cells from 19 tissues in pigs, similar to a recent study (27) which constructed the 527 

first single-cell transcriptomic atlas of 222,526 cells across 20 swine tissues. Compared with 528 

that work, our dataset represents a broader range of pig organ sources covering nine major 529 

body systems and especially comprises several highly important tissues in pig production 530 

performance, such as skeletal muscle, four intestine segments, and three reproductive organs. 531 

Given the large diversity in the chosen tissues, the two studies demonstrate a good complement 532 

and represent very significant contributions to the efforts of the pig single-cell consortium. In 533 

line with single-cell landscapes in other species (1, 2, 4, 5, 49-51), we identified primary cell 534 

classes based on known canonical marker genes and captured a few rare cell types like Purkinje 535 

cells from the brain and enteroendocrine cells from the intestine, which may facilitate our 536 

understanding of cell lineage trajectory and tissue homeostasis. Our pig cross-tissue cell atlases 537 

clarify the heterogeneous characteristics in cellular compositions and molecular properties 538 

within and across tissues. For example, we delineated the global transcriptional divergence and 539 

transition pattern among three dominant myofiber types (type I, IIa/b, and IIx) and revealed 540 

evolutionarily conserved similarity in pivotal genes specializing myofiber, such as MYH7 and 541 

MYBPC2 across mammals (35, 36, 52). This finding may have important implications for 542 

improving meat quality and quantity, which are largely affected by myofiber characteristics 543 

and proportions in pigs (53, 54). Type II myonuclei exhibited a notable enrichment in metabolic 544 

processes, indicating their crucial involvement in metabolic traits and syndromes, i.e., meat 545 

production and fat deposition in pigs and type 2 diabetes and obesity in humans (35, 55-57). 546 

Our data also demonstrate the prevalence of epithelial and immune cells across different tissue 547 

contexts and offer a more detailed understanding of cell compartments. Although some cells 548 

of a common type are shared across tissues, subpopulations are specifically enriched in 549 

particular tissues. These tissue-resident epithelial and immune subsets are specialized to fulfill 550 

the specific functional demands of different tissues, probably owing to unique local 551 

environments or niches (50, 58). 552 

 553 

Although our PigGTEx project has provided a compendium of genetic regulatory effects across 554 

pig tissues and functional variants underlying complex traits (24), a comprehensive 555 

understanding of gene regulation at the single-cell resolution for most non-coding loci is still 556 
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lacking. To address this issue, emerging approaches such as single-cell eQTL and heritability 557 

enrichment analyses have been extensively used in deciphering complex human traits and 558 

diseases (14-17, 46) but have yet to be systematically applied in pig studies. As a critical 559 

component of the PigGTEx project, our work offers an in-depth dissection of the genetic effects 560 

of trait-critical cellular signatures and cell-type-specific eQTL, in addition to the 561 

comprehensive pig cell reference map, setting it apart from other recent single-cell studies (27). 562 

We revealed that around 15% of the loci that co-localized with GWAS traits showed significant 563 

cell-type specificity, underscoring the advantages of single-cell eQTL analysis over the 564 

standard bulk eQTL approach. The proportion missed by bulk studies is slightly lower than 565 

what has been described in humans (46), which might be attributed to the limited sample size 566 

in our work. By linking individual cell types to complex traits, we identified substantial cell-567 

type-trait associations that are consistent with previous studies (5, 15, 16, 35), suggesting high 568 

functional conservation of major cell types among mammal species (52). Furthermore, we 569 

mapped several unique associations between cell types and important phenotypes in pigs, such 570 

as the driving roles of myofiber cell types for meat production traits and Leydig cells from the 571 

testis for reproduction traits. Overall, our results provide meaningful insights into previously 572 

cryptic molecular and cellular mechanisms behind traits of economic importance and offer new 573 

opportunities for precision breeding in pigs. 574 

 575 

Despite the significant findings of our study, several limitations must be noted. Firstly, the 576 

current dataset comprises only one male and one female pig and is not an exhaustive 577 

characterization of all pig organs. As such, we cannot fully capture the complete single-cell 578 

picture and inter-individual variation in cellular composition, potentially limiting our ability to 579 

explore rare cell types and map entire trait-associated cellular signatures. Secondly, compared 580 

with single-cell RNA-seq, our single-nucleus RNA-seq can only profile nuclear transcripts and 581 

not cytoplasmic transcripts. Different library preparation protocols may result in a reasonable 582 

proportion difference in specific cell types, such as muscle, neural, and immune cells, despite 583 

globally consistent detection performance in gene number and cell type diversity between them 584 

(59, 60). Lastly, the sample size of certain tissues used in cellular deconvolution and heritability 585 

partitioning analyses is relatively small, limiting the statistical power to detect causative trait-586 

associated cell types and single-cell eQTL. Therefore, future studies that incorporate larger 587 

sample sizes, a broader range of tissues, and multiple complementary single-cell approaches 588 

will be required to provide robust evidence and facilitate a more comprehensive interpretation 589 

of our findings. 590 
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 591 

In summary, this study presents a compendium of high-resolution body-wide single-cell 592 

transcriptional landscape, provides a deeper understanding of the expression patterns and 593 

functions of tissue-specific and shared cell types, and illuminates the intricate cell-cell 594 

interactions governing tissue homeostasis. Through pioneering single-cell eQTL and 595 

colocalization analyses in pigs, we pinpointed the likely causative cell-type-associated variants 596 

and genes underlying traits of economic importance. Additionally, thousands of cell-type-trait 597 

associations were discovered, and previously unexplored biological mechanisms were 598 

explicated using heritability enrichment analysis. Collectively, these findings will significantly 599 

enhance our understanding of cross-tissue and cross-individual variations of cellular 600 

phenotypes and highlight promising trait-associated determinants (variants and cell types) for 601 

advancing the fields of future pig breeding and human biomedical research. 602 

 603 

Methods 604 

Ethics statement 605 

All animal protocols and procedures were implemented in compliance with the Guide for the 606 

Care and Use of Experimental Animals established by the Ministry of Agriculture and Rural 607 

Affairs (Beijing, China) and were approved by the Institutional Animal Care and Use 608 

Committee of the Chinese Academy of Agricultural Sciences. Prior to tissue sampling, the pigs 609 

were humanely euthanized as necessary to minimize their suffering. 610 

 611 

Tissue collection and single-nucleus suspension 612 

One male and one female Meishan pig, aged 180 days, were obtained from a commercial pig 613 

farming company managed under the same conditions (Nantong, Jiangsu). Nineteen tissues, 614 

including adipose, cerebellum, cerebrum, colon, duodenum, heart, hypothalamus, ileum, 615 

jejunum, kidney, liver, lymph, muscle, ovary, pancreas, pituitary, spleen, testis, and uterus, 616 

were freshly harvested from postmortem samples. Each tissue was kept on ice and minced into 617 

5-10 pieces weighing approximately 50-100 mg each on ice with sterilized scissors. Tissue 618 

samples were then snap-frozen in liquid nitrogen and stored at -80℃ until nuclear extraction 619 

was performed. Single-nucleus isolation was conducted as previously described (28, 59). 620 

Briefly, tissue samples were homogenized using the Dounce homogenizer with 25 strokes of 621 

the loose pestle A and then 25 strokes of the tight pestle B in 1 ml of ice-cold homogenization 622 

buffer. After this, the mixture was filtered through a 40-μm cell strainer into a 1.5-ml tube. To 623 

collect dissociated single nuclei, the sample was centrifuged at 500g for 5 min at 4℃, and the 624 
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supernatant was discarded. After centrifugation, the nuclear pellet was resuspended using an 625 

appropriate amount of 1×	PBS/0.5% BSA with RNase inhibitor, filtered through a 40-μm cell 626 

strainer, and counted. A final concentration of 1,000 nuclei per µl was used for library 627 

preparation. 628 

 629 

Single-nucleus RNA-seq library preparation and sequencing 630 

The single-nucleus RNA-seq libraries were prepared following the standard protocol supplied 631 

by 10× Genomics (Berry Genomics, Beijing, China). In brief, isolated nuclei were captured in 632 

droplets with gel beads in the Chromium Controller. Following the RNA reverse transcription 633 

step, emulsions were broken, and barcoded cDNA was purified with Dynabeads, after which 634 

PCR amplification was performed. The amplified cDNA was then used for 3’ gene expression 635 

library construction. Then, indexed libraries were constructed according to the manufacturer’s 636 

recommendations. After quality control, eligible libraries were sequenced on the Novaseq 6000 637 

platform (Illumina) in a 150 bp paired-end manner. The first 28 bp in read 1 captured both the 638 

16 bp 10× barcode and the 12 bp UMI. 639 

 640 

Preprocessing of snRNA-seq data 641 

The Sscrofa11.1 reference assembly (61) in FASTA format and annotated gene model in GTF 642 

format were downloaded from the Ensembl database (ftp://ftp.ensembl.org/pub/release-101/). 643 

Raw snRNA-seq data were aligned to the pig reference genome and subjected to barcode 644 

assignment and unique molecular identifier (UMI) counting using the commands 645 

recommended by the CellRanger pipeline (10× Genomics, CA, USA). Given that snRNA-seq 646 

captures both unspliced pre-mRNA and mature mRNA, we used the include-introns option for 647 

counting exonic and intronic reads together. The filtered gene expression matrix was used for 648 

further analysis with the Seurat package (62). To ensure the accuracy and robustness of our 649 

results, we removed ambient RNA and potential doublets using DecontX (63) and 650 

DoubletFinder (64) with default settings. We also filtered out low-quality nuclei expressing 651 

less than 200 genes or more than 5,000 genes, and less than 500 UMIs or more than 15,000 652 

UMIs, as well as those exceeding 5% of mitochondrial content. During the gene filter step, all 653 

genes not expressed in at least three nuclei were removed. In addition, to balance our dataset 654 

in subsequent analyses, we randomly selected 20,000 nuclei from the spleen, as it had a much 655 

higher number (n = 53,444) of captured nuclei compared to other tissues. 656 

 657 
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Cell clustering and cell type annotation 658 

After filtering, the remaining high-quality data were log-normalized and scaled to account for 659 

cell-to-cell variation with regression on the number of UMIs and percentage of mitochondrial 660 

genes. Subsequently, PCA linear dimensionality reduction analysis was performed, followed 661 

by t-Distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold 662 

Approximation and Projection (UMAP) visualization approaches using the Scanorama tool 663 

(65), to capture the global cell type landscapes across tissues. For individual clustering, each 664 

tissue dataset was visualized using the Seurat package (62). Parameters used in each function 665 

were manually curated to obtain the optimal clustering of cells by adjusting the number of 666 

principal components and resolutions on a per-dataset basis. We employed the FindAllMarkers 667 

or FindMarkers function with default parameters to identify marker genes of each cluster and 668 

annotated each cell type based on known classical markers from extensive published literature. 669 

The Pearson or Spearman correlation coefficients among cell types were calculated using the 670 

average expression of the top 1,000 highly variable features, and we used the pheatmap 671 

package (https://github.com/raivokolde/pheatmap) to visualize the results. Besides, the 672 

expression of marker genes in different cell types was visualized with the ggplot2 R package. 673 

 674 

Cell type diversity estimation 675 

Shannon entropy was calculated to evaluate cell type diversity in each tissue with a previously 676 

published method (14) according to the formula −∑ (𝑝!! × 𝑙𝑜𝑔"(𝑝!)) , where 𝑝!  is the 677 

proportion of each cell type 𝑥 in a tissue. The entropy value per tissue was plotted using the 678 

ggplot2 R package. 679 

 680 

Pseudotime trajectory inference and RNA velocity analysis 681 

The cell lineage trajectory was inferred using Monocle 3 (41) according to the standard tutorial. 682 

We used the built-in DDRTree algorithm for dimensional reduction and visualization after 683 

constructing the cell trajectory. Notably, the root state of the inferred trajectory was specified 684 

based on existing biological knowledge. Furthermore, we predicted the velocity streams and 685 

latent time assignments from sorted bam files using the dynamical model implemented in 686 

scVelo (66). 687 

 688 

Cell cycle index estimation 689 

To further infer dynamic information about cell state, we calculated a cell cycle index for each 690 

cell type with a previously published method (3). Typically, progenitor cells with rapidly 691 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544530doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544530
http://creativecommons.org/licenses/by-nc-nd/4.0/


dividing capacity display higher cycling indices, whereas cell types that are known to be largely 692 

quiescent exhibit lower values. 693 

 694 

Cell-cell interaction analysis 695 

To investigate cellular communication patterns between different cell types, we used the 696 

CellChat package (42) with default parameters, which is a manually curated database of 697 

literature-supported ligand-receptor interactions in humans and mice. To run CellChat analysis 698 

in pig datasets, we mapped pig gene symbols to human orthologs. Ligand-receptor pairs with 699 

p-value < 0.05 were considered to be significant. 700 

 701 

Tissue enrichment of clusters 702 

We estimated the enrichment of each cell cluster across tissues, as previously described (67). 703 

In brief, we calculated the observed and expected cell numbers in each cell cluster to compute 704 

the ratio (Ro/e) between the two values using the epitools R package. We considered a cluster 705 

to be enriched in a specific tissue if Ro/e > 1. 706 

 707 

Gene ontology (GO) enrichment analysis 708 

Gene Ontology (GO) analysis was performed using the clusterProfiler 4.0 (68) and 709 

org.Hs.eg.db annotation package, considering that genome-wide annotation is incomplete in 710 

pigs. The Benjamini-Hochberg (BH) procedure was used for the multiple testing corrections, 711 

and only GO terms with an adjusted p-value smaller than 0.05 were retained. 712 

 713 

Single-cell regulatory network analysis 714 

To uncover cell-type-specific transcription regulons and construct gene regulation networks 715 

(GRNs), we conducted single-cell regulatory network inference and clustering analysis using 716 

the SCENIC suite (69) with the default parameters. The original expression matrix was 717 

normalized with Seurat and fed into SCENIC to build a coexpression network using the built-718 

in GRNBoost2 algorithm. The activity of regulons in each cell was calculated by the AUCell 719 

algorithm. 720 

 721 

Cellular deconvolution analysis using CIBERSORT 722 

For each tissue, we first identified differentially expressed genes specific to each cell type using 723 

the Findmarkers function in the Seurat package. We then selected the top 50 genes with the 724 

most significant overexpression, based on adjusted p-value (< 0.05) and average log2 fold 725 
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change (> 0.5), to build the gene expression signature matrix for the cell-type reference set. To 726 

predict the abundances of cell types in a mixed cell population for each tissue, we collected the 727 

RNA-seq expression matrix of 17 matching bulk tissues with our snRNA-seq data from the 728 

PigGTEx database (http://piggtex.farmgtex.org/). Subsequently, the CIBERSORT tool (44) 729 

was selected for cellular deconvolution analysis, given its great resolving power (70). To test 730 

the robustness of cellular deconvolution, we first used the generateBulk_norep function in the 731 

SCDC package (45) to obtain the transcript per million (TPM) matrix of 1,000 pseudo bulk 732 

samples (default parameters) with known cell type distribution based on our liver snRNA-seq 733 

data. Then we used CIBERSORT to perform deconvolution on these samples using the TPM 734 

matrix of signature genes from each cell type in pig liver. The number of permutation tests was 735 

set to 1,000 times to determine the significance level, and p < 0.05 was regarded as statistical 736 

significance. Finally, we calculated the Spearman correlation coefficient between the known 737 

and predicted cell type distribution of hepatocyte cells to assess the accuracy of CIBERSORT 738 

deconvolution in our pig dataset. 739 

 740 

Cell type interaction cis-eQTL mapping 741 

To detect whether a cis-eQTL explicitly affects gene expression in a given cell type, we 742 

performed cell type interaction cis-eQTL (ieQTL) mapping for 17 bulk tissues of PigGTEx. 743 

We used the cell type composition (i.e., enrichment score) estimated from CIBERSORTx as 744 

above and only considered cell types with an enrichment score > 0 in at least 20 samples and/or 745 

20% of samples within a tissue. For each tissue-cell type pair, we performed ieQTL mapping 746 

via a linear regression model implemented in TensorQTL (v1.0.3) (71), which included an 747 

interaction term between genotype and cell type enrichment score: 748 

𝒚~𝒈 + 𝒃 + 𝒈 × 𝒃 + 𝑨 749 

where 𝒚 is the vector of gene expression values (i.e., the inverse normal transformed TMM), 750 

𝒈 is the genotype dosage (i.e., 0/1/2) vector of the tested SNP from PigGTEx samples, 𝒃 is the 751 

enrichment score of a given cell type predicted from snRNA-seq data, 𝒈 × 𝒃 is the interaction 752 

term between genotype and enrichment score, and A represents the covariates (i.e., genotype 753 

PCs and PEER factors, detailed in PigGTEx pilot phase). For the ieQTL mapping, we only 754 

considered SNPs within ±1 Mb of transcription start sites (TSS) of each gene. We eliminated 755 

those SNPs with minor allele frequency (MAF) < 0.05 in the top and/or bottom 50% of samples 756 

sorted by the enrichment score of each cell type, using TensorQTL (v1.0.3) with parameter: --757 

maf_threshold_interaction 0.05. To correct for the multiple testing at the gene level, we used 758 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544530doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544530
http://creativecommons.org/licenses/by-nc-nd/4.0/


eigenMT (72) in TensorQTL for calculating the top nominal p-value of each gene. We then 759 

computed the genome-wide significance of genes using the Benjamini-Hochberg FDR 760 

correction on the eigenMT-corrected p-values and defined as ieGene that with at least one 761 

significant ieQTL (i.e., FDR-corrected p-value < 0.05). 762 

 763 

Allele-specific expression validation of ieQTL 764 

We used allele-specific expression (ASE) data at the individual level to validate the discovered 765 

ieQTL. We first estimated the effect size (i.e., allelic fold change, aFC) of the top ieQTL for 766 

each ieGene from ASE data using the script phaser_cis_var.py in phASER (v1.1.1) (73) and 767 

considered only ieQTL with nominally significant ASE (p-value < 0.05) data in more than ten 768 

heterozygous individuals with more than eight reads for a gene. To filter out outlier samples in 769 

ASE data, we applied the median absolute deviation (MAD) based on Hampel’s test to the 770 

allelic imbalance (AI) ratio values (| Reference reads
Total reads

− 0.5|) across samples (46, 74). When a 771 

sample had |AIi −median (AI)| ≥ 4.5 × MAD , where MAD = median(|AIi −median(AI)|) 772 

and AI# is the allelic imbalance ratio value for the ith individual, we defined it as an outlier and 773 

eliminated it in the validation process. Within a given tissue, we determined that an ieQTL was 774 

validated by ASE data if it presented a nominally significant (p-value < 0.05) Pearson’s 775 

correlation between allelic fold change (aFC) of an ASE locus and cell type enrichment score 776 

across samples. 777 

 778 

Colocalization between ieQTL and GWAS loci 779 

To identify shared association variants between the ieQTL and GWAS loci retrieved from the 780 

PigGTEx project, we performed colocalization analysis using the Bayesian statistical 781 

procedure implemented in Coloc (v5.1) (75). Briefly, we used the summary statistics of ieQTL 782 

for each ieGene and its matched GWAS loci as input for Coloc. We only considered the GWAS 783 

loci with at least one SNP with a p-value < 1×10-5. We obtained posterior probabilities PP4 784 

from the coloc.abf function with default parameters, where PP4 represents the probabilities of 785 

a shared variant affecting both the gene expression of a given cell type and the complex trait. 786 

We defined ieGene-trait pairs with PP4 > 0.5 as significant colocalization. In addition, to 787 

compare whether eQTL differ from ieQTL in terms of colocalization with GWAS loci, we used 788 

the same pipeline employed for ieQTL scanning to perform the colocalization analysis for 789 

eQTL for each ieGene and its matched GWAS loci as well. 790 

 791 
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Genetic mapping of cell type specificity for complex traits in pigs and humans 792 

To uncover associations of traits with cell types, we performed an enrichment analysis of 793 

significant GWAS loci and cell-type-specific genes using the LOLA (v1.22.0) R package (76). 794 

Specifically, we extracted the top 200 cell-type-specific genes sorted in ascending order by the 795 

p-value for each of the 19 available tissues and created an annotation based on the genomic 796 

regions of these candidate genes for each cell type-tissue pair. We then examined the GWAS 797 

summary statistics of 268 pig complex traits and selected significant genetic variants with p < 798 

5×10-8 for each trait (24), using all tested SNPs of the 268 GWAS summaries as the 799 

background set. Finally, we calculated the significance level (p-value) of the enrichment fold 800 

using Fisher’s exact test with FDR correction and defined trait-tissue-cell type trios with p-801 

value < 0.05 as significant enrichment. Furthermore, we expanded our enrichment analysis to 802 

a larger Duroc population (> 26,000 individuals) from a commercial company, given that the 803 

current GWAS dataset is relatively small. We performed heritability enrichment analysis for 804 

backfat thickness and loin muscle depth traits with genomic partitioning of quantitative genetic 805 

variance similar to (77). A total of 11.7 M imputed variants that had been quality-controlled 806 

were grouped into two sets: one containing variants within ±10 Kb of the top genes specific to 807 

each cell type, and the other containing the remaining variants. Per-variant heritability 808 

enrichment was calculated for each cell type-specific variant set. 809 

 810 

To test the enrichment of genes associated with human traits and diseases for each specific pig 811 

cell type, we collected the GWAS summary statistics of 137 human complex traits from the 812 

UK Biobank and public literature (Supplementary Table 4). We converted cell-type-specific 813 

genes in pigs to the corresponding human orthologous genes with one-to-one mapping with the 814 

Ensembl database. Finally, we employed linkage disequilibrium (LD) score regression analysis 815 

(https://github.com/bulik/ldsc) (78, 79) to partition the heritability based on 262 annotations, 816 

including 261 cell-type-specific gene lists and one base annotation including all SNPs. 817 

Heritability enrichment was calculated as the proportion of trait heritability contributed by 818 

SNPs in the annotation over the total proportion of SNPs in that annotation. We reported the 819 

coefficient p-value as a measure of the association of each cell type with the traits. All plots 820 

showed the predicted z-score of partitioned LD score regression. 821 

 822 

Statistics and reproducibility 823 

If not specified, all statistical analyses and data visualization were performed in the R 824 

environment. No statistical method was used to predetermine sample size, no data were 825 
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excluded from the analyses, and all analyses were not randomized, ensuring maximum 826 

reproducibility. 827 

 828 

Data availability  829 

Raw sequencing reads generated by this work were deposited in the National Center for 830 

Biotechnology Information database under the accession number GSE233285. Analysis codes 831 

in this work are available at https://github.com/chenlijuan009/PigCellAtlas. 832 
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Figures 1316 

 1317 
Fig. 1 | Single-nucleus transcriptomic landscape across 19 frozen tissues in adult pigs. 1318 

a, Schematic diagram showing 19 primary pig tissues collected for snRNA-seq in this study. 1319 

The cartoons used to generate this illustration were purchased from BioRender.com. The 1320 

number of nuclei profiled per tissue is denoted in parentheses. 1321 

b, t-SNE visualization of single-nucleus profiles (dots) colored by tissues. 1322 

c, Bar plot displaying the number and diversity of cell types identified in each of the 19 tissues. 1323 

Entropy shown by dotted line was calculated as described in Methods. 1324 
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d, t-SNE visualization of single-nucleus profiles (dots) colored by major cell types. All cell 1325 

types are categorized into nine top-level cell lineages, and cell type annotation is provided in 1326 

the legend to the right. 1327 

e, Cellular relationship and composition across tissues. The dendrogram was created by 1328 

hierarchical clustering based on the transcriptional levels of each cell type. The bar chart 1329 

represents the relative contributions of tissues to each cell type. 1330 

f, Cell state prediction of nine top-level cell lineages. Cells with higher cell cycling index are 1331 

more proliferative. The horizontal line in the boxplots corresponds to the median, the box 1332 

bounds indicate the 25th and 75th percentiles and the whiskers represent 1.5 times the 1333 

interquartile range. Values outside the whiskers are displayed as points.  1334 
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 1335 

 1336 
Fig. 2 | Identification and characterization of three muscle cell types. 1337 

a, UMAP visualization of all muscle cells from eight tissues. Each dot represents one nucleus, 1338 

with colors coded according to manually annotated cell types. CMC, cardiac muscle cell; SMC, 1339 

smooth muscle cell. 1340 

b, Violin plots showing the normalized expression levels of marker genes for three major 1341 

muscle cell types. 1342 

c, Significantly enriched biological process terms of specific gene signatures in three major 1343 

muscle cell types. Numbers between parentheses represent significance expressed as -log10 1344 

(adjusted p-value). 1345 

d, Transcription factors with different activity scores among three major muscle cell types. 1346 

e, Volcano plot displaying differentially expressed genes between type I and type II myonuclei. 1347 

f, Four candidate transcription factors with distinct activity scores in type I, IIa/b, and IIx 1348 

myonuclei. 1349 
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g, RNA velocity analysis demonstrating state transition from satellite cells to myofiber in the 1350 

skeletal muscle tissue. The arrows represent a flow derived from the ratio of unspliced to 1351 

spliced transcripts, which in turn predicts dynamic changes in cell identity. Heatmap on the 1352 

right demonstrates stereotyped changes in gene expression trajectory. 1353 

h, Dot plot showing the expression levels of selected marker genes for each smooth cell cluster. 1354 

i, Heatmap indicating the tissue preference of each cell population across different tissues 1355 

revealed by Ro/e (ratio of observed cell number to expected cell number).  1356 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 13, 2023. ; https://doi.org/10.1101/2023.06.12.544530doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.12.544530
http://creativecommons.org/licenses/by-nc-nd/4.0/


 1357 

 1358 
Fig. 3 | Shared and tissue-specific molecular features for epithelial cell compartments. 1359 

a, Heatmap showing Spearman correlation coefficient between 25 epithelial cell subtypes 1360 

which could be broadly classified into digestive and non-digestive groups. 1361 

b, Volcano plot displaying differentially expressed genes between the digestive and non-1362 

digestive clusters. Dots in the volcano plot highlight up-regulated genes in each group. 1363 
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c, Functional annotation of up-regulated genes in each group. Top enriched biological 1364 

processes terms are listed. 1365 

d, Violin plots showing the normalized expression levels of marker genes for each cell subtype. 1366 

e, Heatmap indicating the tissue preference of each cell population across four intestinal 1367 

segments revealed by Ro/e (ratio of observed cell number to expected cell number). 1368 

f, UMAPs showing the pseudotime differentiation trajectories of intestinal stem cells, 1369 

enterocytes, and enteroendocrine cells, respectively. 1370 

g, Heatmap representing the enrichment of biological process terms in epithelial cell subtypes. 1371 

h, Scatter plots showing the top 100 regulons of the three major epithelial cell subtypes. Each 1372 

regulon is ordered by activity score, and the top five regulons with high activity are highlighted 1373 

in red. 1374 

i, The inferred EGF signalling pathway network among the major cell types in four intestinal 1375 

segments. The edge width represents the communication probability, and a thicker edge line 1376 

indicates a stronger signal.  1377 
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 1379 
Fig. 4 | Immune cell heterogeneity across tissues in pigs. 1380 

a, UMAP visualization of immune cell types across different tissues. Each dot represents one 1381 

cell, with colors coded according to manually annotated cell types. 1382 

b, Heatmap indicating the tissue preference of annotated immune cell types across different 1383 

tissues revealed by Ro/e (ratio of observed cell number to expected cell number). 1384 

c, Dot plot showing the expression levels of selected marker genes for each cell cluster. 1385 

d, Heatmap representing the enrichment of biological process terms for monocyte and 1386 

macrophage lineages residing in different tissues. 1387 

e, UMAP showing the pseudotime differentiation trajectories of monocyte and macrophage 1388 

lineages. 1389 
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f, Box plots denoting the distribution of estimated pesudotime value for each cell type by 1390 

Monocle3. 1391 

g, Heatmap showing transcription factors with distinct activity scores in six major myeloid cell 1392 

compartments. 1393 

h, Violin plots showing the normalized expression levels of marker genes for T cell populations. 1394 

i, Heatmap representing the enrichment of biological process terms for T cell subtypes in 1395 

different tissues. 1396 

j, Heatmap showing transcription factors with different activity scores among different T cell 1397 

subtypes.  1398 
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 1399 

 1400 
Fig. 5 | Cell-type-dependent activities of genetic variants on gene expression and pig traits. 1401 

a, Stacked bar plots showing the fraction of cell types estimated in PigGTEx RNA-seq samples 1402 

based on our snRNA-seq reference matrix in muscle tissue. 1403 

b, Scatter plot showing the estimated number of ieGenes versus sample sizes for 17 tissues 1404 

estimated using public bulk RNA-seq datasets. 1405 

c, Number of cell type interaction QTL (ieQTL) discovered in each cell type-tissue 1406 

combination at FDR < 5%. 1407 

d, An ieQTL of MANBA showing cell-type-specific effects in type IIx myonuclei from muscle. 1408 

Each point represents an individual and is colored by three genotypes. Both gene expression 1409 
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levels and cell type enrichment values are inverse normal transformed across samples. The 1410 

lines are fitted by a linear regression model using the geom_smooth function from ggplot2 1411 

(v3.3.2) in R (v4.0.2). 1412 

e, An ieQTL of SKOR2 showing cell-type-specific effects in type IIx myonuclei from muscle. 1413 

Each point represents an individual and is colored by three genotypes. Both gene expression 1414 

levels and cell type enrichment values are inverse normal transformed across samples. The 1415 

lines are fitted by a linear regression model using the geom_smooth function from ggplot2 1416 

(v3.3.2) in R (v4.0.2). 1417 

f, Overlaps between ieQTL and eQTL detected by traditional bulk RNA-seq. 1418 

g, Aligned Manhattan plots of pig GWAS, ieQTL, and eQTL at the MANBA locus for loin 1419 

muscle depth trait (LMDEP). SNPs are colored according to the magnitude of linkage 1420 

disequilibrium (r2) between adjacent SNPs pairs. 1421 

h, Aligned Manhattan plots of pig GWAS, ieQTL, and eQTL at the SKOR2 locus for number 1422 

born alive trait (NBA). SNPs are colored according to the magnitude of linkage disequilibrium 1423 

(r2) between adjacent SNPs pairs.  1424 
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 1425 
Fig. 6 | Association of single-cell transcriptomic profiles with complex traits in pigs and 1426 

humans. 1427 

a, Heatmap showing representative significant associations between cell types and traits in pigs. 1428 

Definitions for abbreviations and complete results are provided in Supplementary Table 2. 1429 
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b, Evaluation of the enrichment of backfat thickness trait in putative cell types by scRNA-seq 1430 

data. Each circle represents a cell-type-trait association from a large-scale population dataset. 1431 

c, Evaluation of the enrichment of loin muscle depth trait in putative cell types by scRNA-seq 1432 

data. Each circle represents a cell-type-trait association from a large-scale population dataset. 1433 

d, Cell-type-specific expression patterns of APOE in the cerebellum, cerebrum, and 1434 

hypothalamus. The APOE gene is a key candidate associated with 1435 

hyperlipidemia/atherosclerosis from the OMIA database. 1436 

e, Cell-type-specific expression patterns of CD163 in the liver, muscle, and ovary. The CD163 1437 

gene is an essential receptor linked to resistance/susceptibility to the porcine reproductive and 1438 

respiratory syndrome (PRRS) virus from the OMIA database. 1439 

f, Cell-type-specific expression patterns of DMD in the adipose, heart, and muscle. The DMD 1440 

gene plays a vital role in muscular dystrophy from the OMIA database. 1441 

g, Heatmap showing enrichment of pig cell types (indicated on the right) associated with 1442 

selected human traits and diseases (indicated at the bottom). The colored boxes indicate 1443 

selected enriched patterns. Definitions for abbreviations and complete results are provided in 1444 

Supplementary Tables 4 and 5. 1445 
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