

Saturation Genome Editing Resolves the Functional Spectrum of Pathogenic *VHL* Alleles

AUTHORS AND AFFILIATIONS

Megan Buckley¹, Christina M. Kajba¹, Nicole Forrester¹, Chloé Terwagne¹, Chelsea Sawyer², Scott T.C. Shepherd^{3,4,5}, Joachim De Jonghe¹, Phoebe Dace¹, Samra Turajlic^{3,4,5}, and Gregory M. Findlay¹

¹The Genome Function Laboratory, The Francis Crick Institute, London, United Kingdom, NW1 1AT

²Scientific Computing, The Francis Crick Institute, London, United Kingdom, NW1 1AT

³The Cancer Dynamics Laboratory, The Francis Crick Institute, London, United Kingdom, NW1 1AT

⁴Renal and Skin Units, The Royal Marsden Hospital, London, United Kingdom, SW3 6JJ

⁵Melanoma and Kidney Cancer Team, The Institute of Cancer Research, London, United Kingdom, SW7 3RP

1 ABSTRACT

2

3 To maximize the impact of precision medicine approaches, it is critical to accurately identify
4 genetic variants in cancer-associated genes with functional consequences. Yet, our knowledge
5 of rare variants conferring clinically relevant phenotypes and the mechanisms through which they
6 act remains highly limited. A tumor suppressor gene exemplifying the challenge of variant
7 interpretation is *VHL*. *VHL* encodes an E3 ubiquitin ligase that regulates the cellular response to
8 hypoxia. Germline pathogenic variants in *VHL* predispose patients to tumors including clear cell
9 renal cell carcinoma (ccRCC) and pheochromocytoma, and somatic *VHL* mutations are frequently
10 observed in sporadic renal cancer. Here, we optimize and apply Saturation Genome Editing
11 (SGE) to assay nearly all possible single nucleotide variants (SNVs) across *VHL*'s coding
12 sequence. To delineate mechanisms, we quantify mRNA dosage effects over time and compare
13 effects in isogenic cell lines. Function scores for 2,268 *VHL* SNVs identify a core set of pathogenic
14 alleles driving ccRCC with perfect accuracy, inform differential risk across tumor types, and reveal
15 novel mechanisms by which variants impact function. These results have immediate utility for
16 classifying *VHL* variants encountered in both germline testing and tumor profiling and illustrate
17 how precise functional measurements can resolve pleiotropic and dosage-dependent genotype-
18 phenotype relationships across complete genes.

19

20 KEY WORDS

21

22 von Hippel-Lindau tumor suppressor (VHL), saturation genome editing, renal cell carcinoma,
23 pheochromocytoma, variant effect mapping, precision medicine

24 **INTRODUCTION**

25

26 Delineating rare genetic variants underlying disease phenotypes remains a major challenge in
27 human genetics. Genome-wide association studies and germline DNA sequencing have
28 advanced our knowledge of genes and pathways implicated in cancer predisposition.
29 Concurrently, genomic profiling of tumors has revealed mutations that frequently arise somatically
30 during cancer evolution, indicating their functional importance. Yet, for the majority of cancer-
31 associated genes, more variants of uncertain significance (VUS) have been reported than variants
32 whose phenotypic effects are known¹⁻⁴. In the context of both germline testing and tumor profiling,
33 VUS represent a missed opportunity to improve patient care through precision medicine
34 approaches.

35

36 Most variants are difficult to interpret with high confidence because they are too rare to enable
37 statistically robust genotype-phenotype associations. Computational models of variant effect have
38 improved due to greater availability of training data and the use of machine learning⁵⁻¹⁰. However,
39 such models are not accurate enough to dictate clinical decisions without additional evidence¹¹.
40 Mechanistic knowledge of variants in tumor suppressor genes can lead directly to improved
41 patient care by informing which individuals will benefit from preventative measures and by guiding
42 selection of targeted anticancer therapies¹²⁻¹⁴. There is, however, a scarcity of functional data
43 available for linking variants to phenotypes¹⁵.

44

45 The von Hippel-Lindau tumor suppressor (VHL) is a 213-amino acid (AA) protein encoded on
46 chromosome 3p which functions as an E3 ubiquitin ligase in complex with Cullin-2 (CUL2),
47 Elongins C and B (ELOC, ELOB), and ring-box 1 (RBX1)¹⁶. In normoxic conditions, VHL
48 ubiquitinates the α -subunit of hypoxia-inducible factor (HIF), targeting HIF for proteasomal
49 degradation. In hypoxic conditions, HIF is protected from VHL-mediated degradation and signals
50 to promote glycolysis and angiogenesis. Loss of VHL function due to mutation can lead to
51 constitutive HIF activity and, in certain tissues, tumor development¹⁷.

52

53 Somatic *VHL* mutations are frequently observed in renal cell carcinomas (RCCs), most commonly
54 clear cell RCC (ccRCC). During ccRCC evolution, chromosome 3p deletion typically precedes a
55 loss-of-function (LoF) mutation to the remaining *VHL* allele, resulting in increased HIF activity¹⁸.
56 *VHL* mutations have been observed in other types of RCC, as well as extrarenal cancers, but

57 their functional significance is less certain. Currently, 185 *VHL* variants are reported to be VUS in
58 the cBioPortal database^{1,2}, including 39% of observed missense variants.

59

60 Pathogenic germline variants in *VHL* predispose patients to different neoplasias in an autosomal
61 dominant manner, a rare condition known as VHL disease¹⁹. Affected patients have varying
62 susceptibility to different tumors including ccRCC, pheochromocytoma, and hemangioblastoma.
63 The risk and frequency of each tumor depend largely upon the specific germline mutation.
64 Classically, type 1 VHL disease variants lead to complete loss of VHL function, and include whole-
65 gene deletions, nonsense variants, frameshifting insertions and deletions (indels), as well as
66 certain splice variants. Type 1 variants predispose patients to ccRCC, as well as
67 hemangioblastomas and other neoplasms in a HIF-dependent manner. Type 2 variants, in
68 contrast, are associated with a high risk of pheochromocytoma and are most often missense
69 variants. Attempts have been made to subclassify type 2 VHL disease further; type 2C disease is
70 marked by pheochromocytomas only, type 2A disease includes hemangioblastomas and other
71 benign tumors, and type 2B disease further includes ccRCC²⁰.

72

73 These broad, clinical classifications of VHL disease have helped explain patterns of tumors
74 present in families. However, a complete molecular accounting of how different mutations confer
75 distinct pathologies has remained elusive. In a curated database of *VHL* mutations²¹, many
76 variants have been reported to cause both type 1 and type 2 disease. Other *VHL* variants have
77 been implicated in recessive diseases, such as congenital polycythemia or germline VHL
78 deficiency^{22,23}. Although protein-truncating variants typically cause type 1 disease, in rare
79 instances, patients with nonsense variants have presented with type 2 disease marked by early-
80 onset pheochromocytomas²⁴. Such discrepancies highlight the limitations of observational
81 approaches and the challenge of developing individualized surveillance and therapy plans for
82 patients without mechanistic knowledge of variants' effects.

83

84 In addition to variants known to cause VHL disease, there are over 800 VUS in *VHL* reported in
85 ClinVar³. It is unknown what fraction of these variants cause disease, and likewise how many
86 variants yet to be reported may prove pathogenic. The fact that many variants have been
87 observed repeatedly in unrelated families and across independent cancers suggests genetic
88 evidence may be converging on a near-complete set of pathogenic alleles²¹. Yet, substantially
89 more *VHL* variants are predicted by computational models to be deleterious than have been linked

90 to disease²⁵. It is unclear whether such variants have yet to be encountered due to their rarity,
91 whether they are incompatible with life, or whether they simply do not cause disease.

92

93 For patients harboring *VHL* variants whose phenotypic effects are unknown, well-calibrated
94 functional data may prove useful in aiding diagnosis and management. Furthermore, the recently
95 demonstrated efficacy of HIF2A inhibitors for preventing ccRCC progression¹⁴ suggests
96 quantifying *VHL* variants' precise effects on HIF regulation may prove valuable for guiding
97 therapeutic selection. More broadly, *VHL* serves as a powerful gene model to assess the extent
98 to which functional data can recapitulate genotype-phenotype relationships in humans, owing to
99 the fact it is nearly always mutated during ccRCC development² and the extensive knowledge
100 regarding phenotypic effects of many germline variants²¹.

101

102 Here, we systematically measure the functional consequences of *VHL* variants across the
103 complete gene by employing Saturation Genome Editing (SGE). In total, we score 2,268 SNVs
104 for HIF-dependent effects on cellular fitness, defining LoF variants underlying ccRCC
105 development with 100% accuracy. Our assay captures clinically meaningful differences in the
106 degree of functional impairment among pathogenic alleles and delineates novel mechanisms
107 explaining genotype-phenotype associations in humans, suggesting a role for improving
108 diagnostic and therapeutic precision.

109 **RESULTS**

110

111 **A highly optimized SGE assay to precisely measure effects of *VHL* variants**

112

113 Towards developing a high-throughput assay to study variants in *VHL*, we analyzed data from
114 genome-wide knockout screens to assess the effect of *VHL* loss across cell lines. With the
115 exception of kidney-derived lines, CRISPR-induced knockout of *VHL* almost uniformly reduces
116 cell fitness (**Fig. 1a**)^{26,27}. We reasoned growth defects may, therefore, be a scalable means of
117 assaying *VHL* variants for LoF effects.

118

119 To investigate *VHL*'s essentiality in the haploid human line HAP1, indels in exon 2 were generated
120 with CRISPR and sequenced at multiple timepoints following editing. Robust depletion of
121 frameshifting indels compared to indel-free editing outcomes confirmed the essentiality of *VHL*
122 for normal HAP1 proliferation (**Fig. 1b**). The growth defect upon targeting *VHL* with CRISPR was
123 reduced by simultaneous targeting of *HIF1A* (**Supplementary Fig. 1**), and selection against
124 indels was effectively eliminated by prior knockout of *HIF1A* (**Fig. 1c**). Collectively, these data
125 show *VHL* loss confers a HIF-dependent growth defect in HAP1 cells.

126

127 SGE is a method by which all possible SNVs in a genomic region of up to 150 bp are assayed in
128 multiplex using CRISPR/Cas9 editing²⁸. When SGE is performed in HAP1, a single variant is
129 engineered per haploid cell. This allows variants' effects on growth to be accurately determined
130 by NGS. Seven SGE libraries were made to cover the full coding sequence of *VHL*, as well as
131 exon-proximal regions of introns and a region deep within intron 1 (**Fig. 1d**). Each library consisted
132 of all possible SNVs in a region cloned into vectors with homology arms to facilitate genomic
133 integration (**Fig. 1e**). Sequencing of initial libraries revealed two regions of exon 1 to have skewed
134 variant distributions at sites of repetitive, GC-rich sequence (**Supplementary Fig. 2a-e**).
135 Additional synonymous mutations were therefore engineered in these regions, resulting in
136 improved library uniformity (**Supplementary Fig. 2f-I**).

137

138 With the aim of measuring more subtle effects on growth, SGE experiments were performed using
139 a protocol modified from published work²⁹ featuring optimized transfection efficiency and a longer
140 time course (**Fig. 1e, Methods**). For each region, replicate transfections were performed on day
141 0, and approximately 10 million cells were harvested on days 6, 13, and 20. Amplicon sequencing

142 of genomic DNA (gDNA) from each timepoint was used to calculate a “function score” for each
143 SNV reflective of cellular fitness.

144

145 For four exonic regions initially assayed, only modest growth defects were observed for expected
146 LoF variants (**Fig. 1f, Supplementary Fig. 3**). HAP1 cells can revert to diploidy with prolonged
147 culture³⁰, a phenomenon that could weaken recessive effects measured in multiplex. Recently,
148 10-deacetyl-baccatin-III (DAB) was identified via small molecule screening to select for haploid
149 cells³¹. Therefore, we next performed SGE for all *VHL* regions in media containing 2.5 μ M DAB.
150 This led to a marked improvement in dynamic range (**Fig. 1g, Supplementary Fig. 3**). In exon 2,
151 for example, the median function score of nonsense and canonical splice site SNVs dropped 4-
152 fold, from -0.62 to -2.49.

153

154 We determined SNVs with significantly reduced function scores (i.e. “LoF SNVs”) by defining a
155 null distribution for each SGE region and applying a false discovery rate (FDR) of 0.01. Across
156 SGE regions assayed with and without DAB, there were 39.3% more LoF SNVs identified in DAB-
157 treated cells. After stringent quality filtering, final function scores for $n = 2,268$ SNVs were obtained
158 using data from DAB-treated cells, comprising over 85% of SNVs included in library design
159 (**Supplementary Table 1**).

160

161 **Mapping loss-of-function variants**

162

163 The majority of variants designed but not scored map to the GC-rich 5' region of exon 1, where
164 the rate of CRISPR editing was lowest (**Supplementary Fig. 4a**). In contrast to other coding
165 regions, the 5' region of exon 1 did not harbor significantly depleted SNVs, including nonsense
166 variants (**Supplementary Fig. 4b,c**). These data are consistent with a previously characterized
167 alternative translation initiation site at p.M54 producing a fully functional VHL isoform³², and
168 corroborate the lack of reported pathogenic variants proximal to p.M54 in ClinVar (**Fig. 1d**).

169

170 Moving forward, we restricted analysis to $n = 2,200$ SNVs scored with high reproducibility by
171 excluding SNVs assayed in the 5'-most SGE region of exon 1 (**Fig. 2a,b**). Among $n = 115$
172 remaining SNVs upstream of p.M54, none were classified as LoF (median score = 0.03). Likewise,
173 no SNVs assayed in the 3'-untranslated region (UTR) or the region deep within intron 1 scored
174 as LoF (**Fig. 2b,c**). In contrast, between p.M54 and p.R200, all but one nonsense variant scored

175 as LoF ($n = 43$, median score = -2.4), as did all canonical splice site SNVs ($n = 24$, median score
176 = -2.3) (**Fig. 2b,c**). Most missense variants scored neutrally, though 22.4% were scored as LoF.

177

178 Common mechanisms by which variants can lead to LoF include reducing expression of mRNA
179 (for instance, by disrupting splicing) and altering protein function (for instance, by causing
180 instability or loss of enzymatic activity). To better resolve mechanisms of functional impairment,
181 we derived $n = 1,626$ “RNA scores” for coding variants by performing targeted RNA-sequencing
182 of day 6 and day 20 samples (**Supplementary Fig. 5, Supplementary Table 1**). RNA scores
183 reflect SNVs’ effects on full-length *VHL* mRNA levels.

184

185 Comparison of RNA scores to function scores reveals only large reductions in mRNA confidently
186 predict LoF (**Fig. 3a**). Indeed, 94% of SNVs with RNA scores below -3 scored as LoF ($n = 17$,
187 function scores from -2.9 to -0.38), suggestive of a minimum mRNA dosage required for normal
188 cell growth. Many SNVs with low RNA scores occur near exon-intron junctions, where variants
189 are more likely to disrupt splicing (**Supplementary Fig. 5**). While RNA scores across timepoints
190 were highly correlated, variants strongly depleted in mRNA on day 6 tended to be less depleted
191 in mRNA on day 20, consistent with selective effects on transcript levels (**Supplementary Fig.**
192 **6**).

193

194 The majority of LoF SNVs, however, did not have low RNA scores. This suggests their effects are
195 mediated at the protein level. Of note, nonsense variants as a class were only minimally depleted
196 in mRNA (median RNA score = -0.19, **Supplementary Fig. 5**), indicating minimal nonsense-
197 mediated decay (NMD). Overlaying function scores to the *VHL* structure³³ reveals missense
198 variants that score lowly tend to occur in β -sheets and α -helices (**Fig. 3b**). Residues highly
199 intolerant to missense variation include those forming the substrate recognition site as well as
200 specific contacts with ELOC (**Fig. 3c,d**). Collectively, these findings confirm most LoF variants
201 exert effects by altering function at the protein level, with only large decreases in *VHL* mRNA
202 sufficient to cause functional impairment in the assay.

203

204 **Function scores accurately distinguish *VHL* variants driving human disease**

205

206 To assess whether function scores predict variants driving human disease we performed several
207 analyses. First, using all *VHL* variant annotations in ClinVar meeting assertion criteria (i.e.
208 awarded at least one star), we observed that function scores distinguish “pathogenic” variants

209 from “benign” and “likely benign” variants with 95.2% sensitivity and 97.9% specificity (**Fig. 4a**,
210 **Supplementary Fig. 7a**). Performance is slightly worse upon inclusion of “likely pathogenic”
211 variants (**Supplementary Fig. 7b,c**). Importantly, this broad analysis includes variants with
212 diverse phenotypes described in ClinVar.

213
214 Next, tumor sequencing data from cBioPortal^{1,2} was used to examine the functional effects of *VHL*
215 mutations seen across human cancers. Over 93% of SNVs seen in at least one RCC sample of
216 any type scored as LoF (**Fig. 4b**). This was in contrast to *VHL* variants in other tumor types, which
217 typically scored neutrally, with the exception of variants in pheochromocytomas and pancreatic
218 neuroendocrine tumors (PNETs) – extrarenal tumors also linked to germline *VHL* mutations³⁴.
219 SNVs observed in more individual patients and at higher allele frequencies had significantly lower
220 function scores, confirming LoF variants defined via SGE are likely driving oncogenesis (**Fig.**
221 **4c,d**).
222

223 In contrast to most SNVs observed in tumor profiling, nearly all *VHL* SNVs present in population
224 sequencing databases scored neutrally (**Fig. 4e**). For example, among $n = 119$ SNVs seen at
225 least five times in total across the UK Biobank³⁵, gnomAD³⁶, and TOPMed³⁷ databases, no SNV
226 scored below -0.40 (mean = -0.03, s.d. = 0.14). Likewise, the lowest function score for any SNV
227 seen at least twice was -0.77. The narrow distribution of function scores around zero indicates
228 that the vast majority of *VHL* variants seen repeatedly in population sequencing are unlikely to
229 cause VHL disease.

230
231 Considering the inherent uncertainty in clinical variant classification and the fact that any mutation
232 may arise in a tumor by chance (i.e. be a “passenger”), we defined a “gold-standard” set of $n =$
233 120 ccRCC-associated variants supported by multiple lines of evidence. This set includes variants
234 seen in at least two independent ccRCC samples, as well as variants seen in a single ccRCC
235 sample if also deemed “pathogenic” or “likely pathogenic” in ClinVar. SGE function scores
236 perfectly separate these ccRCC-associated SNVs from $n = 108$ SNVs deemed “benign” or “likely
237 benign” in ClinVar and encountered in population sequencing (**Fig. 4f**). Of note, ClinVar lacks
238 “benign” and “likely benign” missense variants in *VHL*. However, function scores also cleanly
239 separate the $n = 73$ missense SNVs in the gold-standard ccRCC set from $n = 99$ missense SNVs
240 not deemed “Pathogenic” or “Likely pathogenic” in ClinVar and seen in population sequencing at
241 least twice (**Fig. 4g**). Collectively, these analyses indicate SNVs scoring below a threshold of
242 -0.478 likely promote ccRCC development, whereas SNVs scoring above -0.388 likely do not.

243

244 We next applied these thresholds to assess how function scores may aid clinical classification,
245 both in the context of germline testing and tumor profiling. Of $n = 430$ SNVs reported as VUS or
246 with conflicting interpretations in ClinVar, only 32 (7.4%) scored below -0.478 (**Fig. 4h**). A
247 comparable fraction of SNVs absent from ClinVar scored lowly (132 of $n = 1,406$ SNVs, or 9.4%).
248 Notably, many of these variants have been seen in ccRCC samples, some multiple times. Among
249 SNVs absent from ClinVar that scored below -0.478, those observed in ccRCC tended to score
250 more lowly (median score = -2.51 for ccRCC SNVs vs. median score = -1.21 for SNVs not seen
251 in ccRCC; Wilcoxon rank-sum test $P = 7.2 \times 10^{-10}$). This indicates that among low-scoring variants,
252 the degree of functional impairment measured by SGE may predict the likelihood of ccRCC
253 development once a mutation arises.

254

255 Applying the same thresholds to variants observed in cBioPortal reveals 28 of $n = 83$ SNVs not
256 currently deemed “Oncogenic” likely promote cancer development (**Supplementary Fig. 7d**).
257 Most of these 28 were identified in at least one ccRCC sample. Conversely, of $n = 150$ SNVs
258 currently deemed “Oncogenic,” 11.3% scored neutrally. Such SNVs were often identified in
259 tumors not associated with *VHL* mutations, consistent with these variants not driving disease
260 (**Supplementary Fig. 7d**). In light of these findings, SGE data have clear potential for improving
261 interpretation of variants seen in cancer.

262

263 Lastly, we compared function scores for missense variants to outputs from commonly used
264 computational predictors, including CADD²⁵, REVEL⁵, EVE⁷, boostDM⁸, and VARIETY⁹. Overall,
265 SGE scores performed substantially better at predicting pathogenic missense variants in ClinVar,
266 as well as missense variants in the gold-standard ccRCC set (**Supplementary Fig. 8a,b**). Many
267 missense SNVs scored neutrally by SGE are predicted to be deleterious by the models
268 (**Supplementary Fig. 8c,d**). The absence of such discordantly scored variants from the gold-
269 standard ccRCC set indicates the computational models lack specificity for this phenotype.
270 However, there is generally broad agreement across models in support of variants deemed LoF
271 by SGE.

272

273 **A gradient of HIF deregulation implicates novel genetic mechanisms underlying clinical**
274 **phenotypes**

275

276 Frameshifting indels in *VHL* were efficiently selected against in HAP1 cells in a HIF1A-dependent
277 manner (**Fig. 1b,c**). To ask whether function scores for SNVs might partially reflect HIF-
278 independent effects, we repeated SGE experiments for SNVs in exons 2 and 3 in HIF1A-knockout
279 cells ($n = 797$ SNVs). All variant effects were effectively eliminated by loss of HIF1A, with there
280 being no correlation between function scores measured across isogenic lines (**Fig. 5a,b**). This
281 finding indicates function scores specifically reflect effects of *VHL* variants on HIF regulation.
282

283 Previous studies have shown that certain germline variants conferring high pheochromocytoma
284 risk cause less HIF upregulation³⁸. Therefore, we grouped reported pathogenic variants by
285 phenotypic annotations from the VHL Database (VHLdb)²¹. Variants associated only with type 1
286 disease or ccRCC were deemed “type 1” SNVs, whereas variants associated only with type 2
287 disease or predominantly pheochromocytomas were deemed “pheo-predominant” SNVs.
288 Critically, the median function score for type 1 SNVs was 2.9-fold lower than for pheo-predominant
289 SNVs (**Fig. 5c**). Pathogenic variants not classifiable in this manner spanned a range of scores,
290 as did LoF SNVs not deemed pathogenic in ClinVar. This result confirms that variants causing
291 high pheochromocytoma risk typically impair HIF regulation to a lesser extent than variants
292 associated only with features of type 1 disease. More broadly, this illustrates how well-calibrated
293 SGE data can inform differential tumor risk across tissues.
294

295 In light of the SGE data’s high predictive power, we reasoned *VHL* function scores may be
296 valuable for elucidating genetic mechanisms underlying unexplained genotype-phenotype
297 associations. To illustrate this, we highlight two specific examples where SGE data nominate new
298 mechanisms underlying genotype-phenotype relationships observed in humans.
299

300 Firstly, all nonsense SNVs located downstream of the C-terminal-most α -helix (H4) scored
301 neutrally by SGE (**Supplementary Fig. 9**). This suggests the last 12 AA of VHL are dispensable
302 for HIF regulation. However, numerous indels have been identified in ccRCC samples between
303 p.L201 and p.*214, calling the function of the region into question. Mapping indels observed in
304 ccRCC with function scores shows a clear pattern, in which all ccRCC-associated indels
305 downstream of the last LoF nonsense SNV share a common reading frame (**Fig. 5d**). These
306 indels result in a 42-AA C-terminal extension (**Fig. 5e**), which is much longer than extensions
307 created by indels in other reading frames and SNVs disrupting the normal termination codon. To
308 validate this reading-frame specific effect, we analyzed CRISPR-induced indels in this region and
309 confirmed growth defects are specific to indels leading to the 42-AA extension (**Fig. 5f**). This

310 analysis indicates that between p.R200 and p.*214, frameshifting indels promote ccRCC
311 development via a long C-terminal extension which impairs VHL's ability to regulate HIF.

312

313 A second observation concerns c.264G>A (p.W88*). This variant introduces a stop codon
314 downstream of p.M54 and has been shown to segregate with VHL disease in a family²⁴. It is highly
315 unusual among nonsense variants in that it was reported to cause type 2 disease marked by
316 early-onset pheochromocytomas. Interestingly, c.264G>A did not score as LoF in our assay
317 (function score = -0.16), in contrast to all other nonsense variants between p.M54 and p.L198,
318 including c.263G>A, a nonsense variant at the same codon which causes type 1 disease (function
319 score = -2.53; **Supplementary Fig. 9**). c.264G>A is also absent from cBioPortal ccRCCs.
320 Therefore, the clinical evidence and our functional data are consistent in indicating c.264G>A
321 preserves some ability to regulate HIF, despite being a nonsense variant.

322

323 One plausible mechanism is stop-codon readthrough. c.264G>A creates an opal codon, in
324 context: 5'-UGAC. Opal codons followed by pyrimidines have been shown to be the most
325 permissive to stop codon readthrough genome-wide³⁹. In our SGE data, the next two highest
326 scoring nonsense SNVs between p.M54 and p.L198 also created opal codons followed by
327 pyrimidines (**Supplementary Fig. 9**). More functional evidence and clinical data will be needed
328 to fully elucidate these mechanisms and to understand their importance in relation to cancer risk
329 more broadly. Yet, these examples further illustrate how SGE data can resolve complex
330 genotype-phenotype relationships by scoring variants along a spectrum of functional effects.

331

332 DISCUSSION

333

334 Here, we applied a highly optimized SGE protocol to quantify the effects of nearly all SNVs across
335 the coding sequence of *VHL*. Variant effects in the assay were dependent on HIF1A and predicted
336 pathogenicity with high accuracy. Technological advances include i.) key optimizations to the SGE
337 protocol leading to higher precision, ii) measurement of variant effects in isogenic lines to
338 establish genetic dependencies, and iii) serial quantification of variants in mRNA revealing
339 selective effects on expression. Combined with human phenotypic data, the SGE data constitute
340 a mechanistically informative variant effect map of *VHL*.

341

342 Despite substantial improvements to the SGE protocol that reduce noise and promise to make
343 the method applicable to more genes, limitations remain. Even with substantial optimization, we

344 were unable to confidently score many variants introduced to the GC-rich, 5'-region of exon 1
345 where editing rates were lowest. However, the fact no variants tested prior to p.M54 scored as
346 LoF suggests this region harbors few, if any, SNVs of clinical importance, a finding confirmed by
347 the lack of pathogenic variants in this region reported in ClinVar and in ccRCC samples.

348
349 Towards the goal of identifying variants underlying ccRCC development, SGE performs
350 remarkably well. The accuracy with which function scores distinguish pathogenic variants indicate
351 the data may be used as strong evidence to support clinical decision-making.

352
353 Overall, only a small fraction of SNVs deemed 'pathogenic' or 'likely pathogenic' in ClinVar could
354 not be distinguished from neutral variants using SGE data alone. The fact that none of these
355 variants were observed in the ccRCC samples analyzed suggests some fraction may be
356 misclassified. However, type 2 VHL disease variants have also been shown to mediate HIF-
357 independent effects important for pheochromocytoma development^{40,41}. Such effects were not
358 well represented in our HAP1-based assay, as we showed function scores were dependent on
359 HIF1A expression. The fact that most pheo-predominant variants show a lesser degree of
360 functional impairment (**Fig. 5c**) supports the conclusion that alleles leading to complete LoF do
361 not typically manifest as type 2 VHL disease.

362
363 For patients harboring germline VUS in *VHL*, our data may provide valuable evidence in support
364 of definitive classification¹¹. With the recently proven efficacy of the HIF2a-inhibitor belzutifan for
365 treatment of VHL disease¹⁴, accurate classification of pathogenic variants will facilitate access to
366 better care. Going beyond this, we anticipate our function scores may also help stratify patients
367 with VHL disease by risk of specific tumors. Large cohorts of closely monitored patients will be
368 needed to further explore how function scores correlate with clinical features of VHL disease,
369 such as overall disease burden and likelihood of cancer progression. It will be intriguing to ask
370 whether patients with germline variants that score lower via SGE are prone to develop ccRCC
371 earlier, or to develop more distinct tumors.

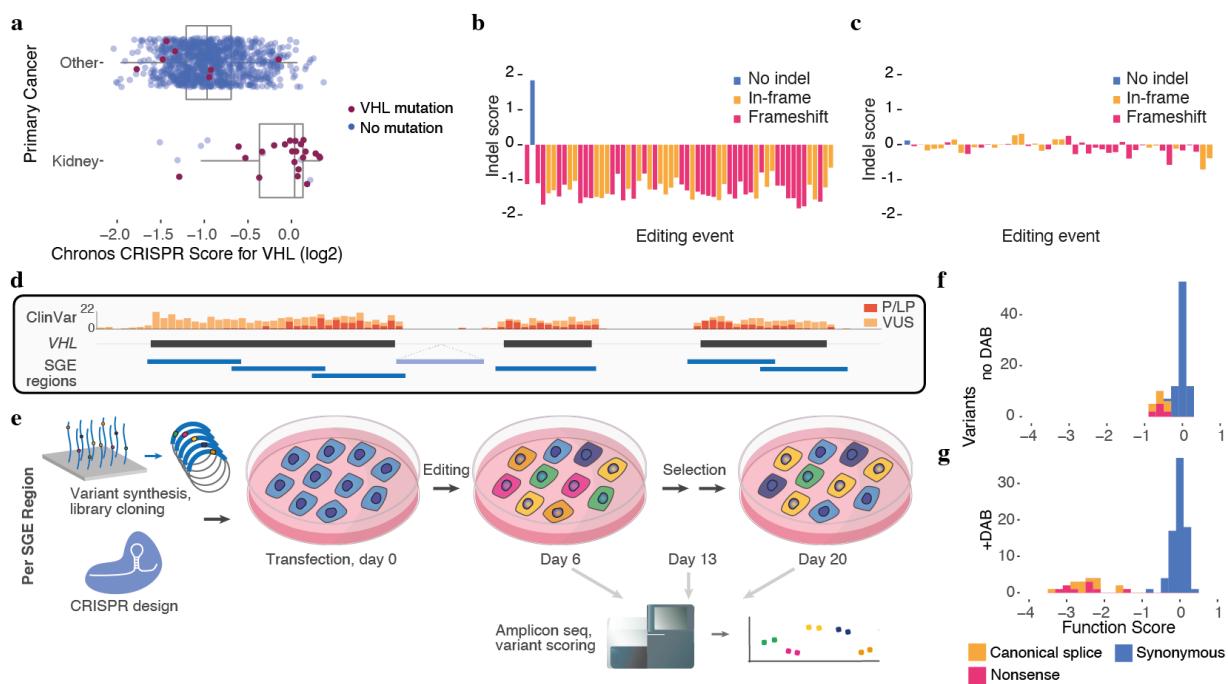
372
373 Likewise, we envision our data being useful for adjudicating somatic *VHL* variants observed in
374 tumor sequencing, especially in light of ongoing trials of belzutifan for sporadic ccRCC⁴². Across
375 all cancers, LoF variants were predominantly seen in tumors previously associated with *VHL*
376 mutations (**Fig. 4b-d**). Although *VHL* mutations occur much less frequently in renal cancers other
377 than ccRCC, our data support their functional significance when present, a finding that suggests

378 molecular profiling may identify additional RCCs that would respond favorably to treatments
379 targeting HIF signaling. Conversely, more than one in ten *VHL* variants deemed “oncogenic” in
380 cBioPortal scored neutrally by SGE, including several SNVs found in ccRCC. In these cases,
381 treatments targeting HIF may provide little or no benefit.

382
383 Our analysis of both germline and somatic variants highlighted how orthologous lines of evidence
384 can be leveraged to minimize errors in classification. This was evidenced by the perfect
385 concordance between function scores and gold-standard ccRCC classifications supported by
386 multiple data points (**Fig. 4f,g**). Owing to the gene’s compact size and the fact it is nearly always
387 mutated in ccRCC, relatively few LoF variants were identified here that had not been previously
388 observed in some form of clinical sequencing. For instance, among the $n = 238$ lowest scoring
389 variants (function score less than -1.0), only 17 were altogether absent from ClinVar, cBioPortal,
390 and VHLdb. Of these, all but one are created via transversion mutations, suggesting their rarity
391 may be linked to lower mutation rates.

392
393 The RNA scores determined by SGE provide a means of examining the interplay between dosage
394 effects at the mRNA level and functional output. This is an important relationship in the context of
395 VHL disease because variants leading to complete loss of protein activity cause type 1 VHL
396 disease. We show relatively few coding variants reduce mRNA dosage enough to impair VHL
397 function in the assay. While we cannot preclude the clinical significance of variants impacting *VHL*
398 mRNA levels to a lesser extent, particularly as they relate to recessive diseases such as
399 congenital polycythemia^{22,43}, this finding suggests only non-coding variants with large effects on
400 mRNA expression should warrant suspicion for a dominantly inherited cancer predisposition
401 syndrome. Our RNA scores also provide additional value for identifying rare variants contributing
402 to recessive phenotypes, such as c.222C>A. This synonymous SNV linked to recessive VHL
403 deficiency²³ had a marginally low function score of -0.40, but was highly depleted from the mRNA
404 pool (RNA score = -4.5), consistent with its documented effect on splicing.

405
406 Collectively, this study and other recent implementations of SGE^{29,44,45} show how relatively simple
407 assays reflective of cell-intrinsic effects can identify variants driving human disease with
408 accuracies close to 100%. A key advantage of these approaches has been the ability to edit genes
409 in their endogenous context. To date, though, SGE has only been performed in highly amenable
410 cell systems. Therefore, a key challenge going forward will be to extend such approaches to more
411 cell types and assays.

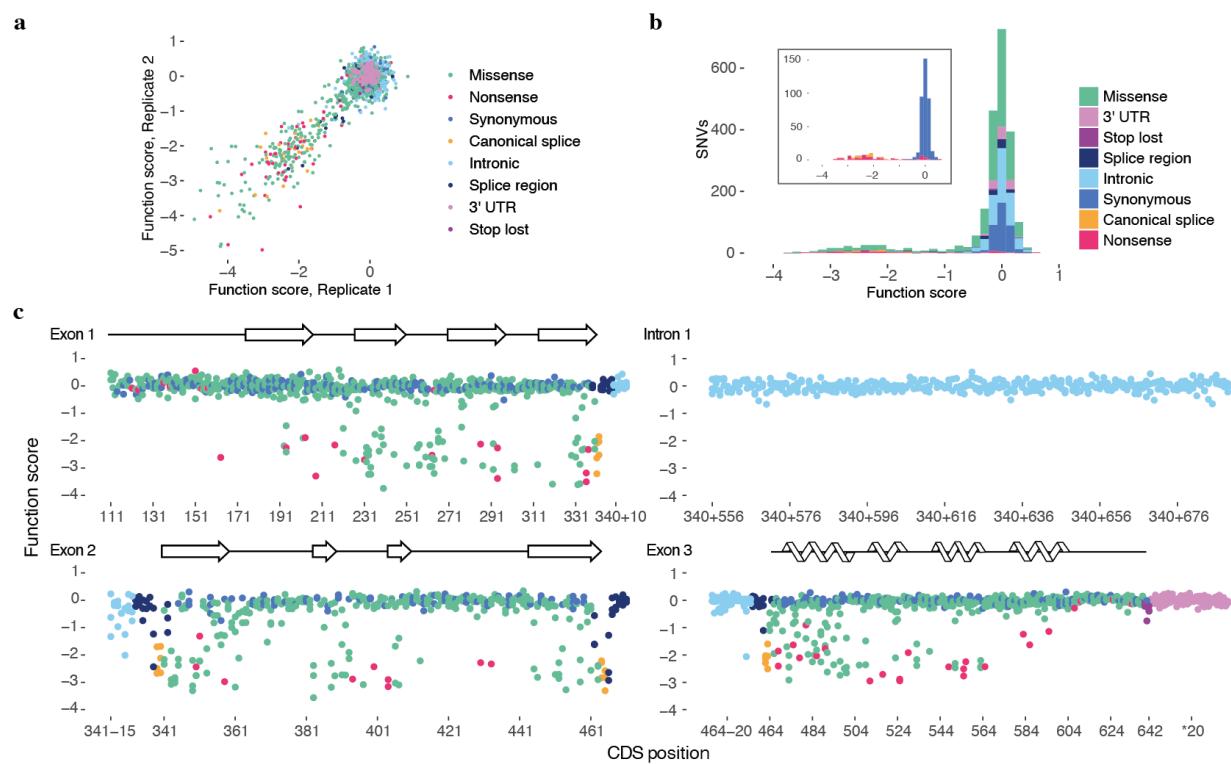

412

413 With continued genomic profiling of patients and tumors and increasing use of multiplex assays
414 to systematically study thousands of variants at once⁴⁶, our ability to map genotypes to
415 phenotypes across a range of functional effects will continue to improve. In this context, we
416 anticipate this analysis of *VHL* will prove highly valuable for clinical variant interpretation while
417 also guiding future efforts to elucidate complex genotype-phenotype relationships across
418 additional genes.

419 **FIGURES AND FIGURE LEGENDS:**

420 **Figure 1**

421

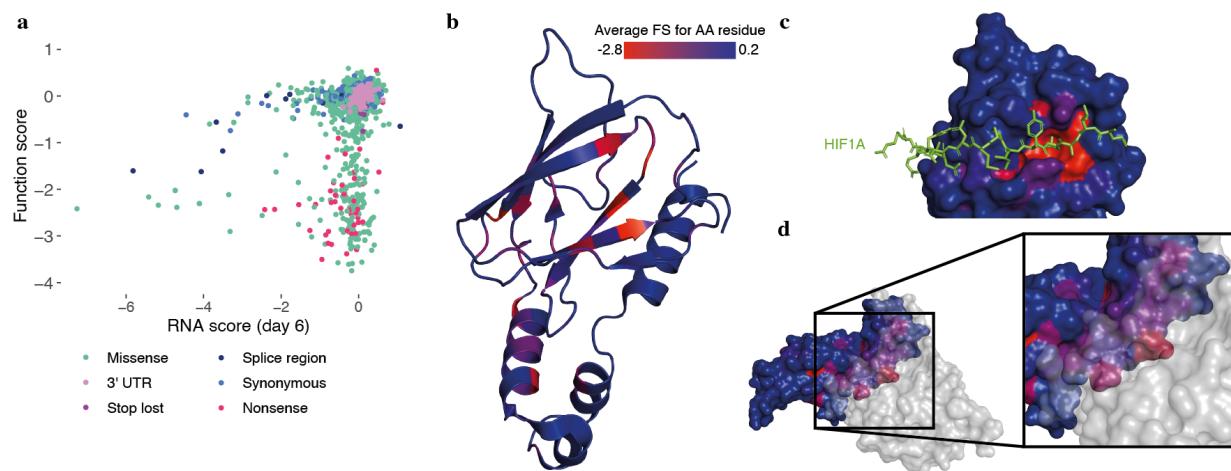


422
423

424 **Fig. 1: A highly optimized SGE protocol to assay *VHL* variants. a,** CRISPR knock-out
425 screening data from the Cancer Dependency Map (DepMap)²⁶ reveal *VHL* loss widely leads to
426 reduced growth in cell lines lacking *VHL* mutations (boxplot: center line, median; box limits, upper
427 and lower quartiles; whiskers, 1.5x interquartile range; all points shown). **b,c,** CRISPR-induced
428 editing of *VHL* was performed in HAP1 cells (day 0) and outcomes were quantified by next-
429 generation sequencing (NGS). Indel scores, calculated for each editing outcome as the log₂-ratio
430 of abundance on day 13 to day 6, are shown, ranked by day 6 frequency. Frameshifting indels
431 are strongly selected against in parental HAP1 (**b**) but not HIF1A-knockout cells (**c**). **d,** The
432 strategy to perform SGE across the complete coding sequence of *VHL* is shown, with ClinVar
433 variant counts for “pathogenic” and “likely pathogenic” variants (red) and VUS (orange) displayed
434 from gnomAD³⁶. SGE regions were designed to tile exons 1-3, as well as a region of intron 1. **e,**
435 For each SGE region, a library of oligos containing all possible SNVs was synthesized and cloned
436 into a vector with homology arms to facilitate genomic integration via CRISPR-induced homology-
437 directed DNA repair (HDR). Variants present in cells were quantified over time via amplicon
438 sequencing and function scores were calculated to reflect variants’ effects on fitness. **f,g,** Function
439 scores for synonymous, nonsense, and canonical splice site SNVs are shown for a single SGE
440 region (exon 2) assayed in normal media (**f**) or media supplemented with 2.5 μM DAB (**g**).

441 **Figure 2**

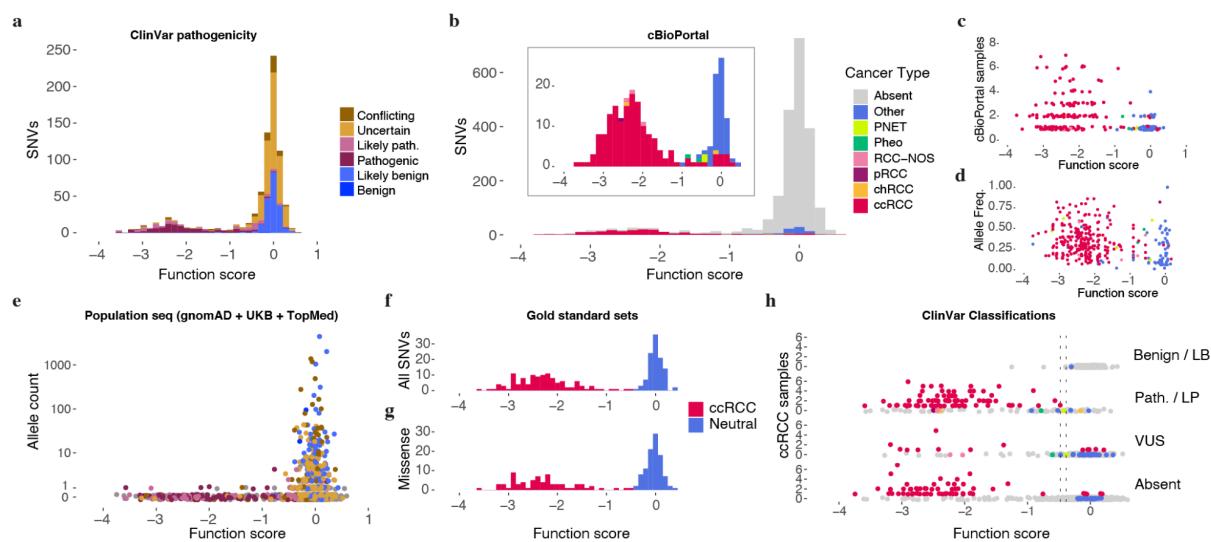
442


443

444

445 **Fig. 2: A complete map of SNV effects across VHL.** **a**, Function scores across transfection
446 replicates are plotted for $n = 2,200$ SNVs (Pearson's $R = 0.90$). **b**, Replicate scores were averaged
447 and normalized to obtain a final function score for each variant. The inset shows only
448 synonymous, nonsense, and canonical splice site SNVs. **c**, Function scores are plotted by
449 genomic position for each coding and intronic region assayed, with β -sheets and α -helices of
450 VHL's secondary structure³³ shown above.

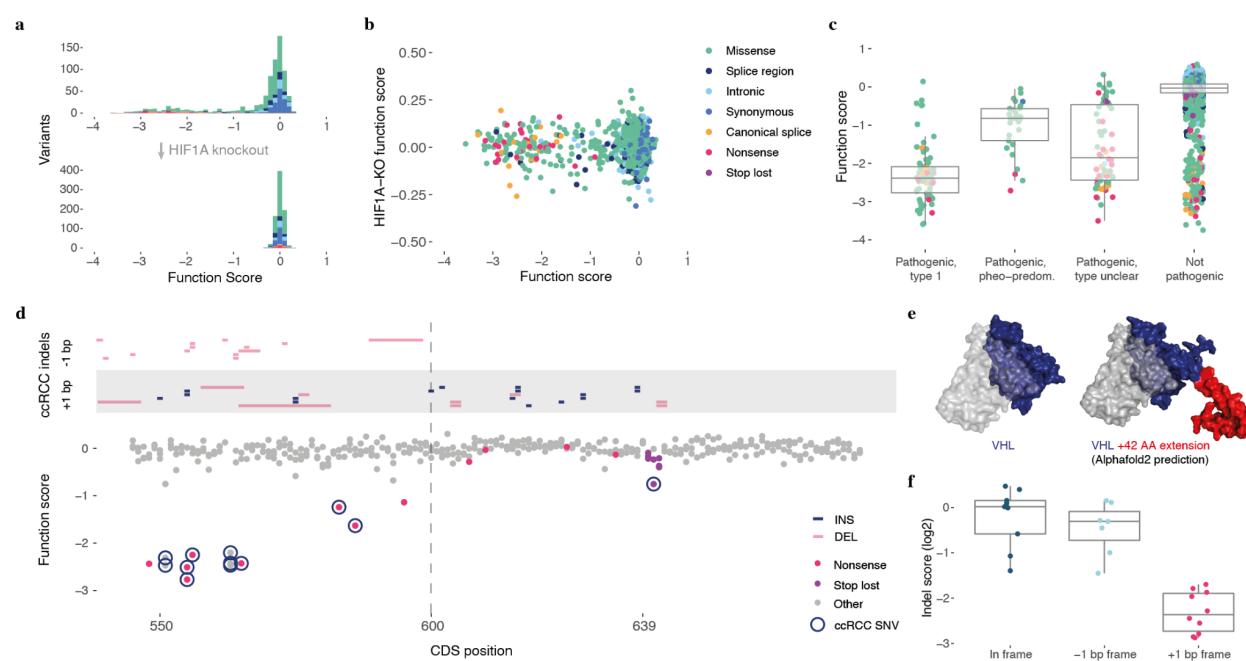
451
452
453


Figure 3

454
455
456 **Fig. 3: Function scores capture fitness effects mediated at both the transcript and protein**
457 **level.** a, Targeted RNA-seq of *VHL* mRNA from edited cells was performed to calculate RNA
458 scores for $n = 1,626$ exonic SNVs. The relationship between RNA scores and function scores
459 reveals most LoF variants are expressed at normal levels in mRNA, and only low RNA scores
460 reliably predict LoF at the cellular level. b-d, The average score of missense variants at each
461 amino acid position is shown on the VHL structure (PDB: 1LM8)⁴⁷. Positions intolerant to variation
462 include residues within β -sheets (b), residues forming the HIF1A recognition site (c), and contacts
463 at the ELOC interface (d).

464 **Figure 4**

465


466

467

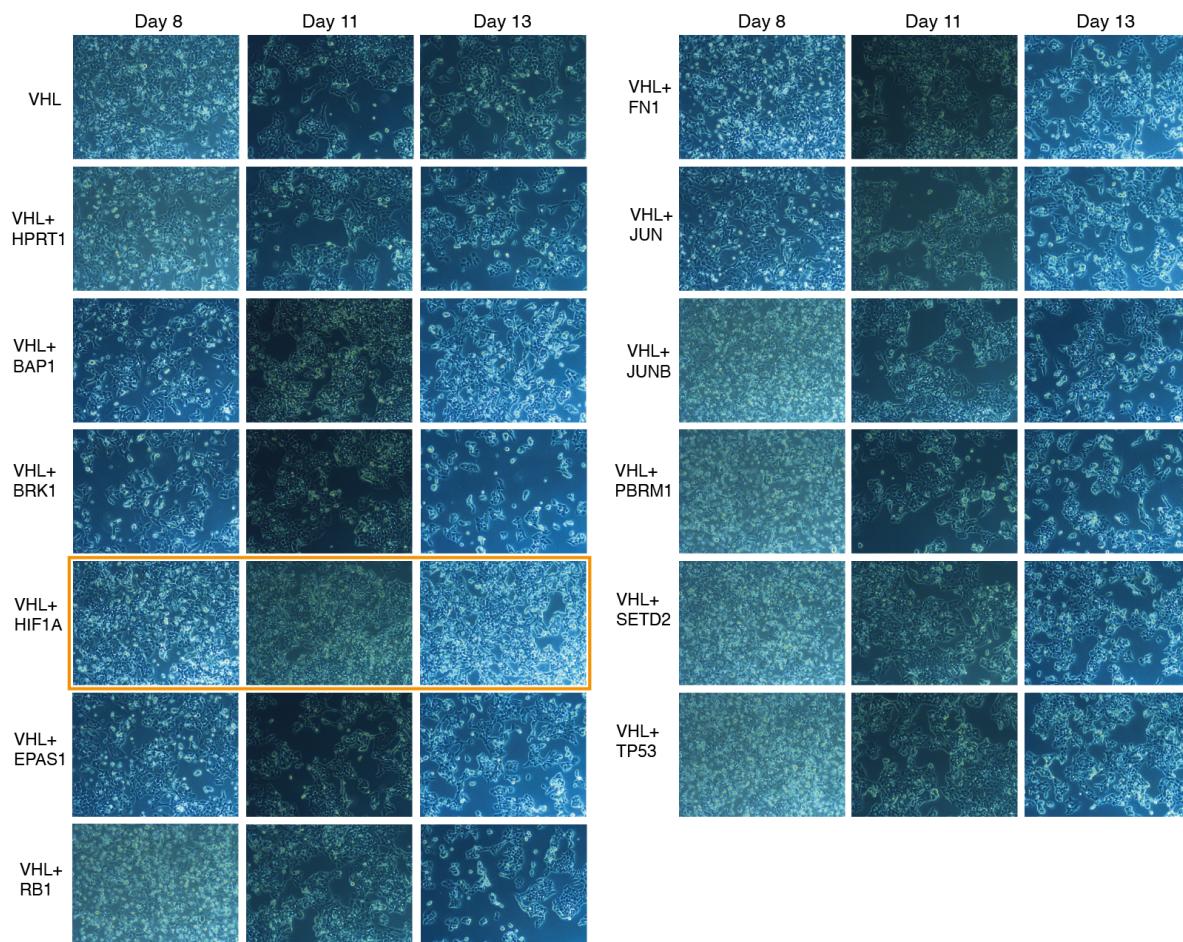
468 **Fig. 4: Highly accurate identification of pathogenic VHL alleles in humans using SGE.** **a,b**
469 The distribution of function scores for VHL SNVs reported in ClinVar³ (**a**) and observed in
470 cBioPortal^{1,2} cancer samples (**b**) are shown. **c,d**, For SNVs observed in tumors, lower function
471 scores correlate with more independent observations in cBioPortal (**c**) ($n = 233$ SNVs,
472 Spearman's $\rho = 0.25$, $P = 9.7 \times 10^{-5}$) and higher allele frequencies within samples (**d**) ($n = 334$
473 samples, $\rho = 0.22$, $P = 3.7 \times 10^{-5}$). **e**, A combined population allele count for each SNV assayed
474 was determined by summing independent observations from gnomAD³⁶, UK Biobank³⁵, and
475 TOPMed³⁷. Variants observed repeatedly in population sequencing nearly always scored
476 neutrally. **f,g**, Gold-standard sets of variants were defined using orthologous data from ClinVar,
477 cBioPortal, and population sequencing. In **f**, all variants with at least 2 cBioPortal ccRCC
478 observations or 1 ccRCC observation and a ClinVar "pathogenic" or "likely pathogenic" annotation
479 ($n = 120$ ccRCC-associated SNVs) are plotted with variants deemed "benign" or "likely benign" in
480 ClinVar and seen at least once in population sequencing ($n = 108$ neutral SNVs). **g**, Due to the
481 lack of missense variants classified as "benign" or "likely benign" in ClinVar, we defined a neutral
482 set to include those present in at least 2 population controls and not deemed "pathogenic" or
483 "likely pathogenic" in ClinVar ($n = 99$ neutral missense SNVs versus $n = 73$ ccRCC missense
484 SNVs). **h**, Function scores are plotted against cBioPortal ccRCC observations for SNVs reported
485 in ClinVar to be "benign" or "likely benign" (LB), "pathogenic" or "likely pathogenic" (LP), or VUS
486 (here, including SNVs with conflicting interpretations), and for SNVs absent from ClinVar. SNVs
487 are colored by cancer type (as in **b**). Lines correspond to thresholds for pathogenicity (-0.479)
488 and benignity (-0.388) that delineate gold-standard ccRCC variants in **f**.

489 **Figure 5**

490

491

492


493 **Fig. 5: New insights into mechanisms underlying genotype-phenotype associations.** a, $n =$
494 797 SNVs in exons 2 and 3 were assayed in HIF1A-KO HAP1 cells. Compared to previous data
495 (top), variants were well-tolerated in HIF1A-KO cells independent of consequence. b, Function
496 scores across isogenic lines showed no significant correlation ($\rho = -0.06$, $P = 0.08$). c, “Pathogenic” and “likely pathogenic” SNVs from ClinVar were grouped based on annotations in
497 VHLdb²¹. SNVs associated only with type 1 VHL disease or ccRCC were deemed “type 1” ($n =$
498 74), whereas SNVs associated only with type 2 disease or predominantly pheochromocytoma
500 were deemed “pheo-predominant” ($n = 29$, excluding SNVs associated with type 2B disease).
501 The remaining pathogenic SNVs lacked unambiguous phenotypic data in VHLdb ($n = 64$, “type
502 unclear”). The boxplot shows function scores for SNVs in each of these categories, as well as for
503 all other SNVs assayed ($n = 2,033$; center line, median; box limits, upper and lower quartiles;
504 whiskers, 1.5x interquartile range; all points shown) d, Frameshifting indels present in cBioPortal
505 ccRCC samples are grouped by reading frame and plotted above SGE function scores in the 3'-
506 most region of exon 3. From p.R200, all frameshifting indels seen in ccRCC result in the same
507 reading frame, which extends the protein by 42 AA. e, The crystal structure of VHL in complex⁴⁷
508 is shown next to an AlphaFold prediction⁴⁸ of the full length VHL protein plus the 42-AA C-terminal
509 extension common to indels observed in ccRCC. f, Indel scores for CRISPR-induced edits located
510 between p.R200 and p.*214 are plotted, with indels grouped by reading frame. Indels resulting in
511 a +1 bp frameshift scored significantly lower than in-frame indels and -1 bp frameshifting indels
512 (1-way ANOVA: $P = 1.0 \times 10^{-7}$ and $P = 2.6 \times 10^{-6}$, respectively; boxplot as above).

513 **Supplementary Figures:**

514

515 **Supplementary Figure 1**

516

517

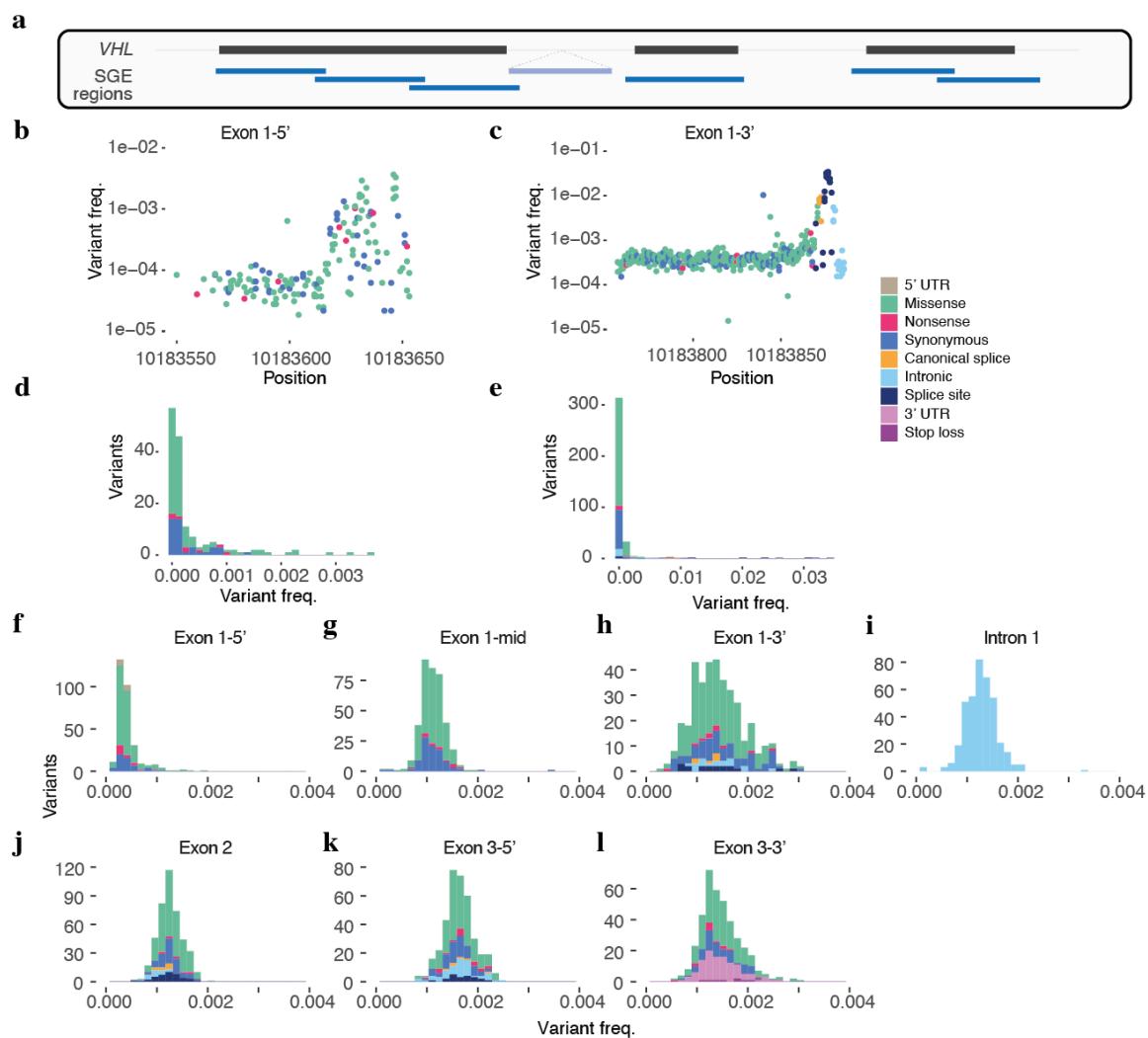
518

519

520

521

522

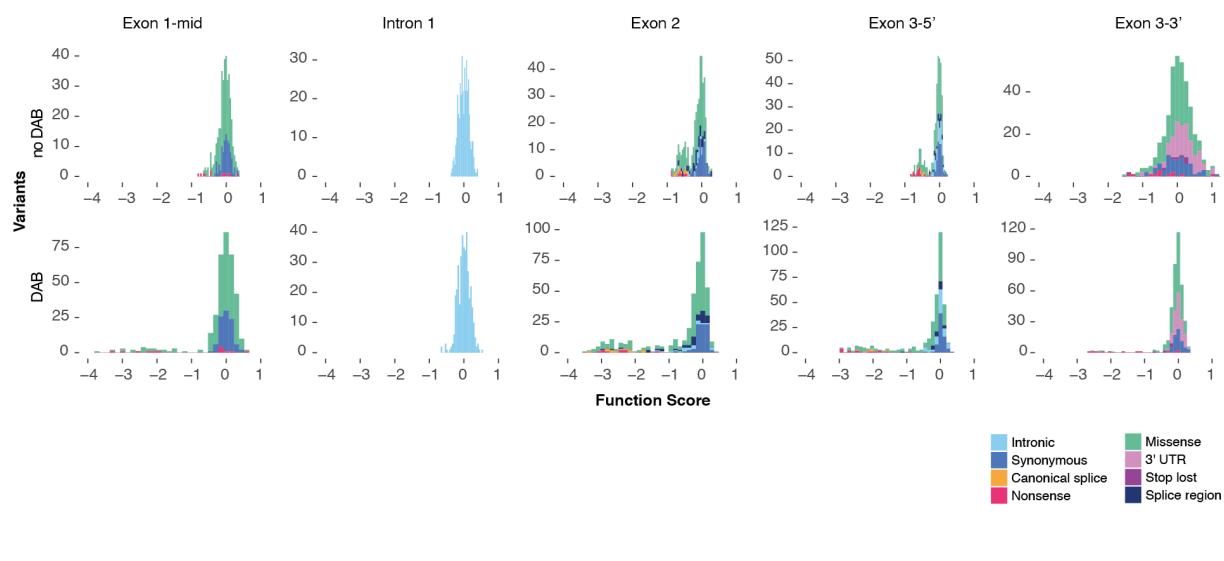

523

524

Supplementary Fig. 1: CRISPR-targeting of *HIF1A* rescues impaired HAP1 growth upon VHL depletion. HAP1 cells were transfected with plasmids expressing Cas9 and guide RNAs (gRNAs) targeting each of the genes indicated. Cell growth was assessed by light microscopy at three timepoints following transfection: day 8, day 11 and day 13. Double gRNA transfections were compared to targeting *VHL* alone or *VHL* plus a control gene (*HPRT1*). Co-targeting of *HIF1A* led to higher cell densities at later time points (orange box) compared to targeting *VHL* alone or *VHL* and other genes.

525 **Supplementary Figure 2**

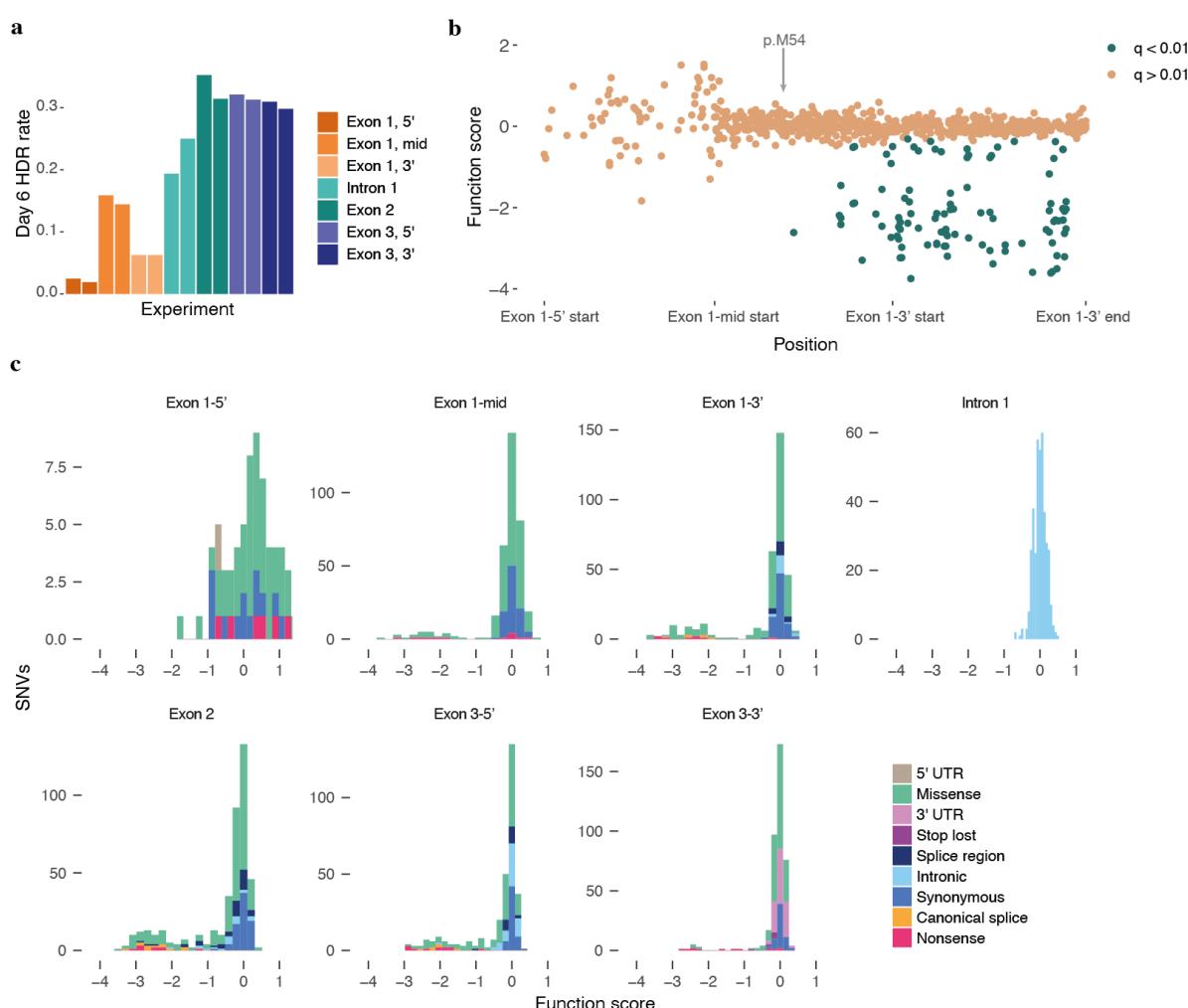
526



527

528 **Supplementary Fig. 2: Optimizing SGE libraries to tile the complete *VHL* coding sequence.**

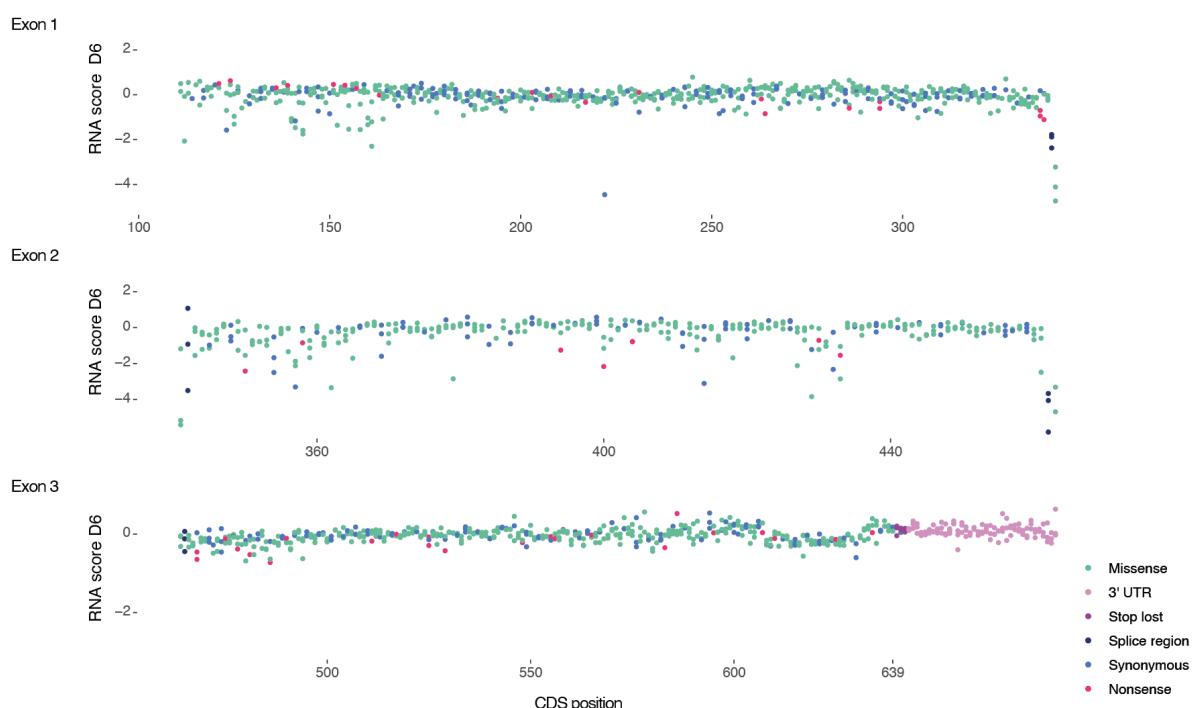
529 **a**, A schematic showing the seven SGE regions tiling across *VHL*. **b,c**, Frequency of SNVs plotted
530 by position in the initial libraries for exon 1-5' (**b**) and exon 1-3' (**c**). **d,e**, Histograms of variant
531 frequency for the initial libraries for exon 1-5' (**d**) and exon 1-3' (**e**). Based on these distributions,
532 additional synonymous SNVs were added to final library designs. **f-l**, Frequency of SNVs in the
533 final SGE libraries used for each region.


534 **Supplementary Figure 3**
535

536
537
538 **Supplementary Fig. 3: Addition of DAB to SGE experiments improves data quality.**
539 Histograms of function scores for regions where SGE was performed in normal HAP1 growth
540 media (top) and media supplemented with 2.5 μ M DAB (bottom). Function scores span a greater
541 range when derived using DAB.

542 **Supplementary Figure 4**

543


544

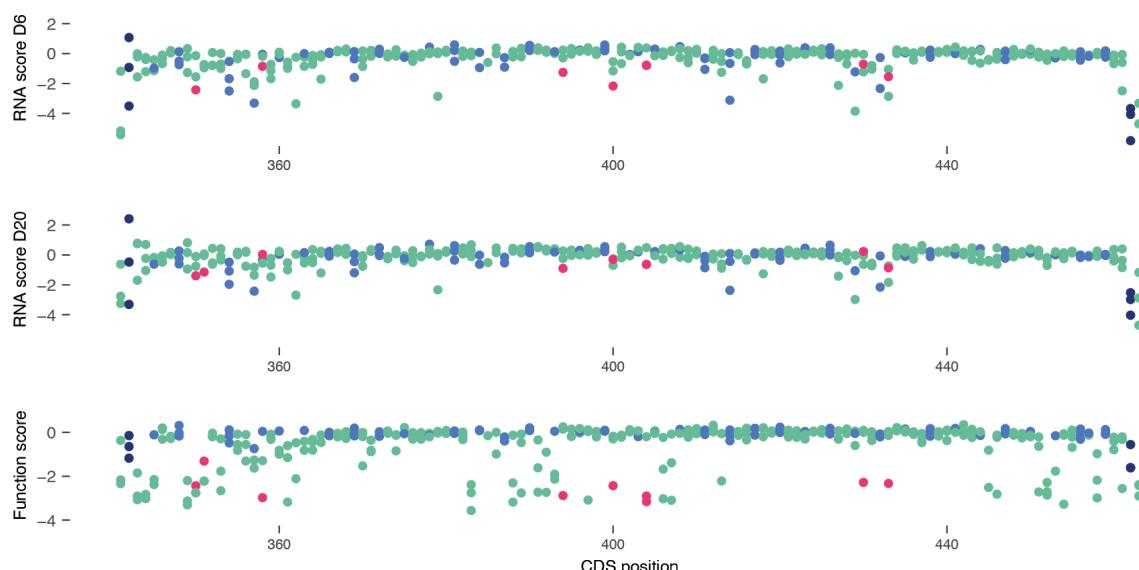
545

546 **Supplementary Fig. 4: An absence of LoF variants in the 5' coding region of exon 1. a**, The
547 rate of editing by HDR as measured by NGS is plotted for each replicate SGE experiment,
548 sampled on day 6 post-transfection. **b**, Function scores for variants in exon 1 are plotted by
549 genomic position and colored by q-value. Positions of the three different SGE regions tiling exon
550 1 are indicated on the x-axis. **c**, Histograms of function scores colored by mutation consequence
551 are shown for each SGE region. Nonsense variants consistently score lowly across SGE regions,
552 with the exception of the exon 1-5' region.

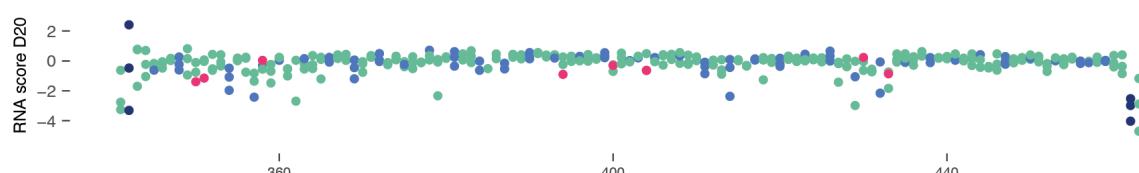
553 **Supplementary Figure 5**

554

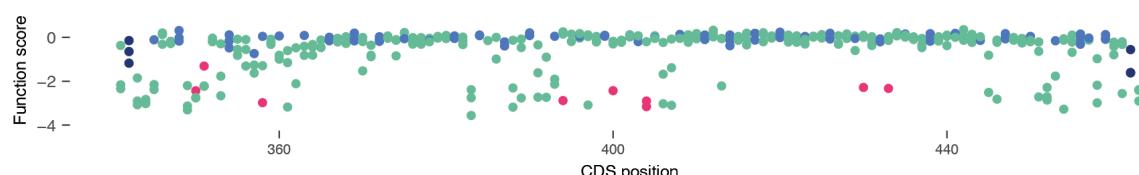
555

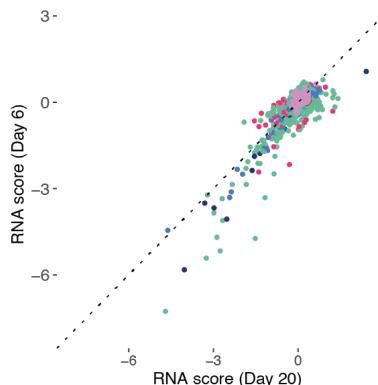

556

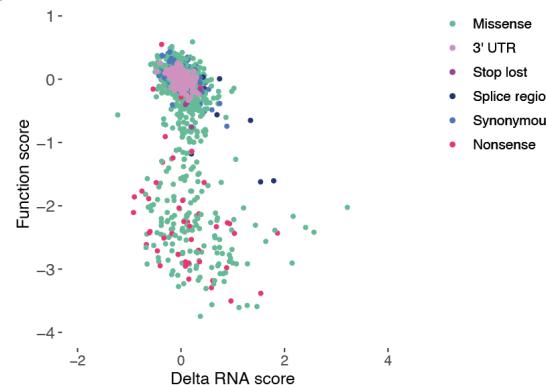
557 **Supplementary Fig. 5: A map of RNA scores for $n = 1,626$ SNVs in VHL.** RNA scores, defined
558 as each SNV's abundance in cDNA normalized to its abundance in gDNA, are plotted by transcript
559 position. RNA scores shown are from samples harvested 6 days post-transfection.


560
561
562

Supplementary Figure 6


a

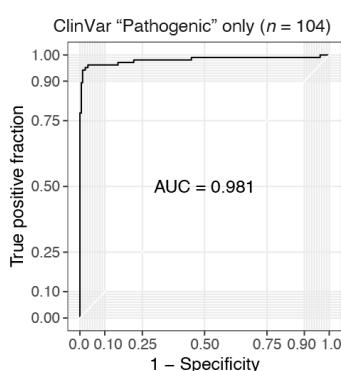

b


c

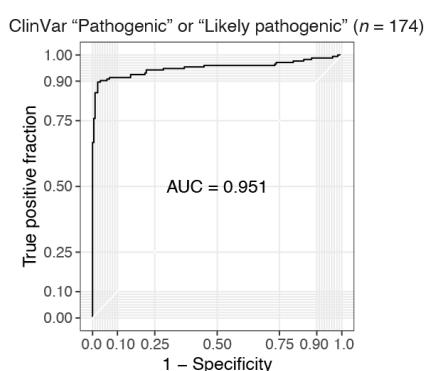
d

e

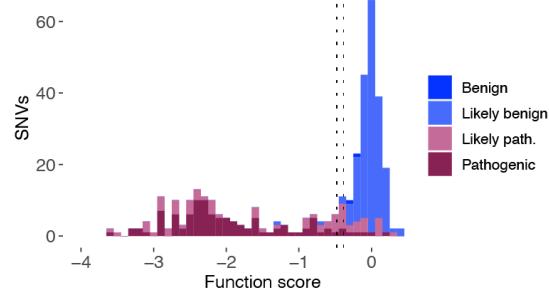
● Missense
● 3' UTR
● Stop lost
● Splice region
● Synonymous
● Nonsense

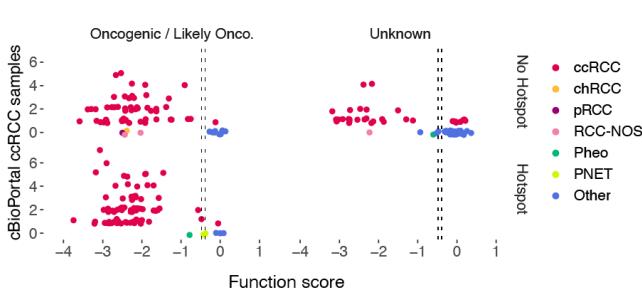

563
564

565 **Supplementary Fig. 6: Comparing RNA scores across timepoints.** a-c, Scores for $n = 356$ SNVs analyzed in exon 2 are plotted by transcript position. RNA scores are plotted for samples harvested 6 days post-transfection (a) and 20 days post-transfection (b). Function scores are plotted for the same set of exon 2 variants (c). d, RNA scores for all exonic variants ($n = 1,626$ SNVs) correlate broadly across timepoints (Pearson's $R = 0.86$). Many variants with low RNA scores on day 6 have relatively higher RNA scores on day 20. ($y = x$ plotted as a dashed line for reference.) e, The change in RNA score between day 6 and day 20 (delta RNA score) is plotted versus function score for the same set of SNVs. A subset of SNVs with low function scores have high delta RNA scores, indicating these variants were expressed in cells at higher levels on day 20 compared to day 6.


575 **Supplementary Figure 7**

576


a


b

c

d

577

578

579 **Supplementary Fig. 7: Function scores accurately predict pathogenicity of germline and**

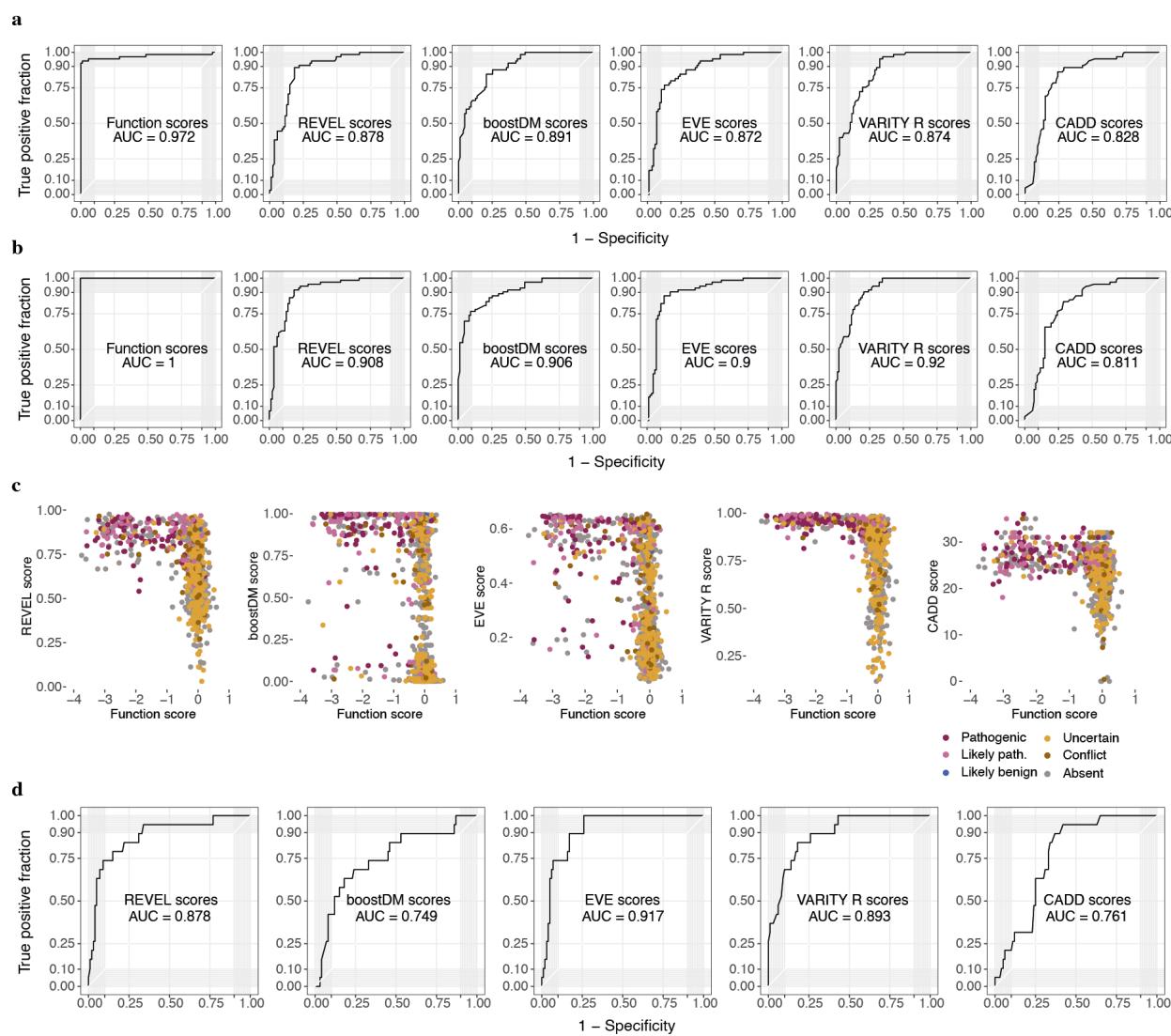
580 **somatic variants. a,b,** Receiver operating characteristic (ROC) curves are shown for the

581 classification of ClinVar variants using SGE function scores. "Pathogenic" SNVs (a) or

582 "pathogenic" and "likely pathogenic" SNVs (b) were distinguished from $n = 190$ "Benign" or "Likely

583 Benign" SNVs. c, The distribution of function scores is shown for ClinVar pathogenic and benign

584 variants ($n = 364$ SNVs), with dashed lines indicating thresholds that distinguish the gold-standard


585 ccRCC variants and neutral variants plotted in Fig. 4f. d, For each unique VHL SNV in cBioPortal

586 ($n = 233$ SNVs), the function score is plotted versus the number of ccRCC samples in which the

587 SNV was observed. Variants are split into separate plots by OncoKB annotation and mutational

588 hotspot status, as reported in cBioPortal, with thresholds indicated as in (c).

589 **Supplementary Figure 8**

590

591

592

593

594

595

596

597

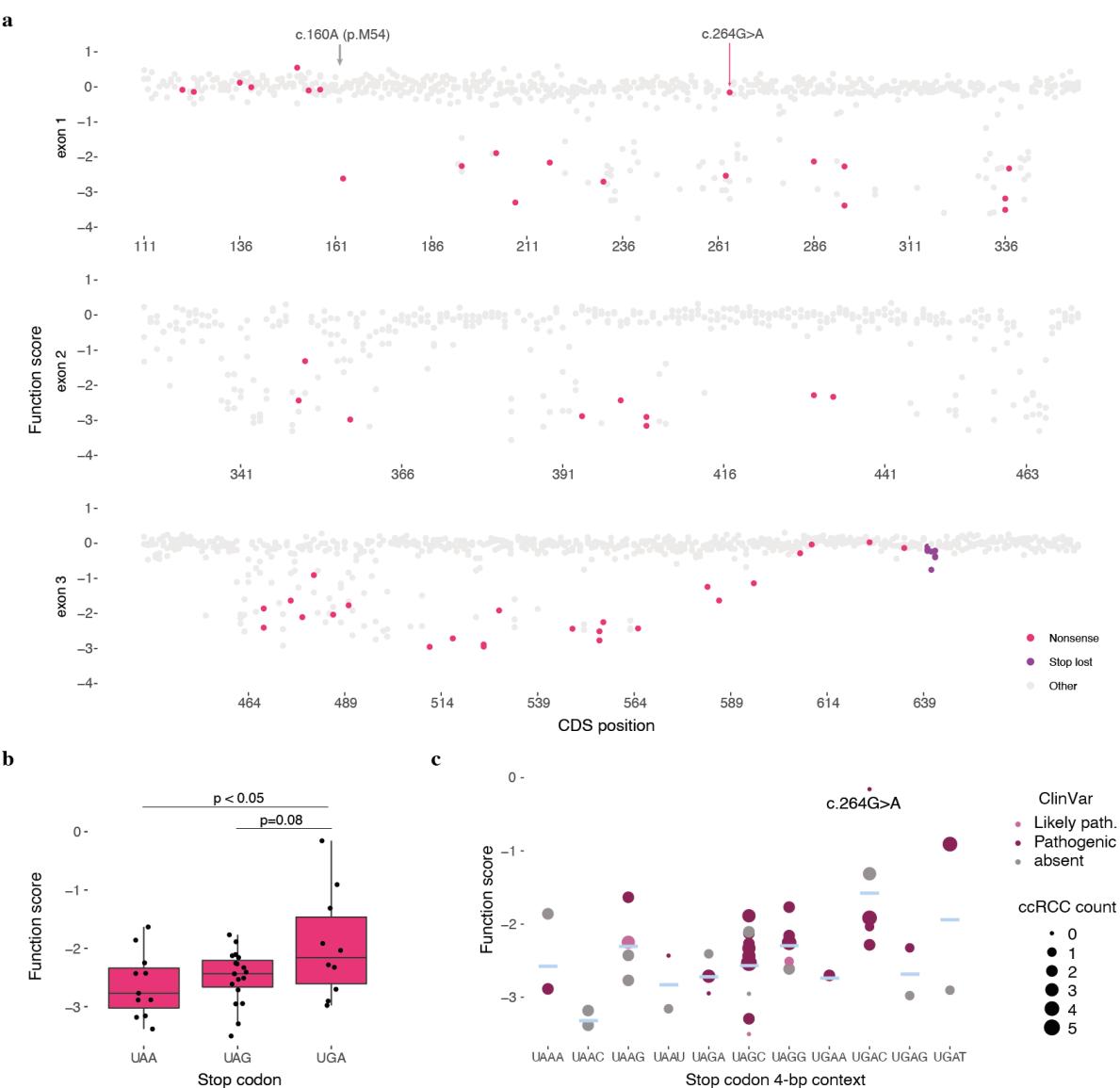
598

599

600

601

602


603

604

Supplementary Fig. 8: Function scores for missense variants outperform predictions from computational models. **a,b**, ROC curves indicate the performance of different metrics at distinguishing disease-associated missense variants in *VHL*. The metrics evaluated were SGE function scores, REVEL scores⁵, boostDM scores from the VHL-ccRCC model⁸, EVE scores⁷, VARIETY R scores⁹, and CADD scores²⁵. Missense SNVs were included if scored by all metrics (i.e. those present in SGE data from p.M54 to p.A207). In **a**, $n = 65$ missense variants deemed 'pathogenic' in ClinVar were distinguished from $n = 87$ missense SNVs deemed neutral (as in Fig. 4g). In **b**, missense variants present in the gold-standard set of ccRCC-associated SNVs ($n = 73$) were classified against the same neutral set of variants as in **(a)**. **c**, Function scores for $n = 953$ missense SNVs are plotted versus scores from each computational predictor, colored by ClinVar status. **d**, Function scores were used to define two sets of unseen variants (i.e. those absent from ClinVar, cBioPortal, population sequencing, and VHLdb). Each metric was assessed on its ability to distinguish unseen missense SNVs with function scores below -0.479 ($n = 19$) from the set of missense SNVs with function scores closest to 0 ($n = 100$).

605 **Supplementary Figure 9**

606

607

608

609

610

611

612

613

614

615

616

617

Supplementary Fig. 9: Functional effects of nonsense variants in relation to position and stop codon context. **a**, Function scores are plotted by position in *VHL* and colored to highlight nonsense variants. All nonsense SNVs tested between c.160A and c.601C scored as LoF, except for c.264G>A, a variant associated with type 2 VHL disease²⁴. **b,c**, Function scores for nonsense variants between c.160 and c.601 are plotted by termination codon (**b**) and 4-bp termination codon context (**c**). Differences between function scores by termination codon were tested using a one-way ANOVA. (Boxplot: center line, median; box limits, upper and lower quartiles; whiskers, 1.5x interquartile range; all points shown.) In **c**, the blue line indicates the mean score for each stop codon context and the size of each dot corresponds to the number of times the SNV has been reported in cBioPortal ccRCC samples.

618 **METHODS**

619

620 **HDR library design and cloning**

621

622 SGE experiments were designed as described previously²⁹ using the full-length *VHL* transcript
623 (ENTS00000256474, CCDS2597). Six SGE regions of length 128-146 bp were designed to
624 cover the entire coding sequence of *VHL*. Regions for mutagenesis included all exonic
625 sequences, as well as exon-proximal regions of introns, extending up to 27 bp. An additional SGE
626 region was designed in intron 1 to cover positions previously associated with splicing alterations⁴³.

627 Oligonucleotide libraries were designed for each SGE region. First, synonymous substitutions
628 were designed at each of two CRISPR protospacer adjacent motif (PAM) sequences in the region.
629 The purpose of these synonymous PAM edits was to prevent Cas9 from re-cutting the genome
630 following the HDR and to distinguish true HDR-derived SNVs in NGS analysis. These
631 substitutions were included in the template sequence to which all possible SNVs were introduced
632 to make the SGE library (**Supplementary Table 2**).

633 Sequences were generated for every possible single nucleotide substitution within each SGE
634 region. Unedited genomic sequence was appended to ends of each oligo to facilitate region-
635 specific PCR amplification and cloning into homology vectors. The final designed oligonucleotide
636 libraries contained molecules representing all possible SNVs within each SGE region.

637 For two of the SGE regions (exon 1-5' and exon 1-3'), additional synonymous substitutions were
638 added in a second library design round to reduce repeats and high-GC sequence content, thereby
639 improving uniformity. All oligonucleotide libraries were synthesized (Twist Bioscience) as a single
640 oligonucleotide pool and resuspended at 5 ng/µL. Primers complementary to the adapter
641 sequences in the oligonucleotide libraries were designed to amplify variant libraries from the
642 oligonucleotide pool for each SGE region. KAPA HiFi ReadyMix (Roche) was used to perform
643 PCRs to amplify libraries in 25 µL reactions, using 500 pg of oligonucleotide pool as DNA template
644 for each reaction. All PCR reactions were monitored with real-time (RT-)PCR by spiking SYBR
645 green (Thermo Fisher) into the reactions at 0.4x final concentration. Cycling was stopped upon
646 completion of amplification.

647 For each SGE region, a vector containing homology arms was generated by PCR-amplification
648 of HAP1 gDNA and cloning of products into a linearized pUC19 backbone (InFusion, Takara
649 Bioscience). Primers for these PCRs were designed such that homology arms would be between

650 200 bp and 1300 bp. The homology arm plasmids were subsequently linearized by inverse PCR
651 using primers with 15-20 bp of overlap with the corresponding adapter primers used to amplify
652 the oligo libraries. In the linearization PCRs, 10 pg of each plasmid containing unedited gDNA
653 was used as template in each 50 μ L reaction, and the resulting products were subject to DpnI
654 digestion for 1 hour at 37 °C.

655 Amplified oligo pools and PCR-linearized homology arm vectors were purified using AMPure XP
656 beads (Beckman Coulter). To generate final HDR libraries, the amplified oligo libraries were
657 cloned into the linearized pUC19-homology arm vectors. In each cloning reaction, approximately
658 50 ng of insert and 65 ng of vector were used. The resulting products were transformed into Stellar
659 Competent *E. coli* (Takara Bioscience). 1% of the transformed cells were plated on ampicillin-
660 agar plates to ensure adequate transformation efficiency (at least 10-fold library coverage), and
661 the remaining cells were cultured overnight at 37 °C in 150 mL of LB with carbenicillin (100 ug/ml).

662

663 CRISPR gRNA design and cloning

664

665 Target sites for *S. pyogenes* Cas9 were designed such that DNA cleavage would occur within
666 coding sequences of *VHL* and such that synonymous substitutions could be used to disrupt the
667 target PAM sequence, where possible. When multiple gRNAs were suitable for a given SGE
668 region, gRNAs were chosen to have minimal predicted off-target activity (Benchling).

669 To anneal and clone the gRNAs, a previously described procedure was followed, including
670 treatment of the ligation reaction with PlasmidSafe DNase (Lucigen)⁴⁹. Briefly, annealing and
671 phosphorylation of gRNA-specific oligonucleotides was carried out in a thermocycler as follows:
672 phosphorylate oligonucleotides with polynucleotide kinase at 37 °C for 30 minutes, denature at 95
673 °C for 5 minutes, slowly cool to 25 °C at 5 °C per minute. Digested plasmid to co-express a gRNA
674 and Cas9 with a puromycin resistance cassette (pX459; Addgene) was purified from a 1%
675 agarose gel using a Gel and PCR Clean-up Kit (Macherey-Nagel) according to the manufacturer's
676 protocol. The ligated reactions were transformed into Stellar Competent *E. coli* cells (Takara
677 Bioscience). Sanger sequencing (Genewiz) was used to confirm correct gRNA sequences.
678 Sequence-verified plasmids were purified with the ZymoPure Maxiprep kit (ZymoResearch) and
679 eluted in nuclease-free water (Invitrogen).

680

681 **Tissue culture: Subculture routine**

682

683 To perform SGE, HAP1 cells with a *L/G4* frameshifting deletion (HAP1-LIG4-KO) were used as
684 described²⁹. Cells were cultured with Iscove's Modified Dulbecco's Medium (IMDM) containing L-
685 glutamine and 25 nM HEPES (Gibco) supplemented with 10% FBS (Gibco) and 1% Pen/Strep
686 (Gibco). Cells were thawed one week prior to transfection to allow for recovery and expansion
687 and maintained at under 80% confluency. Each passage, cells were washed twice with 1X DPBS
688 (Gibco), trypsinized with 0.25% trypsin-EDTA (Gibco), resuspended in media, centrifuged at 300
689 x g for 5 minutes, and resuspended. No fewer than 6 million cells were re-plated, splitting either
690 1:5 across 2 days or 1:10 across 3 days. Apart from initial SGE experiments performed without
691 DAB, DAB (Stratech) was freshly added to the media each passage at 2.5 uM.

692

693 **Tissue culture: SGE experiments**

694

695 One day prior to transfection, 15 million cells were seeded on a 10-cm dish in 10 mL of media.
696 For each SGE region, cells were co-transfected with 30 µg of pX459 plasmid expressing a region-
697 specific gRNA and 10 µg of the corresponding HDR library. Xfect (Takara Bioscience) transfection
698 reagent was used, and the manufacturer's protocol was followed with the following modifications:
699

700 1. On the day of transfection (day 0), cells were 80-90% confluent.
701 2. 0.6 µL of Xfect polymer was used for each µg of DNA.
702 3. 40 µg of total plasmid DNA was added per transfection of each 10-cm dish.
703 4. The final volume of transfection buffer, DNA, and Xfect polymer added to cells was 800 µL.

704

705 Two replicate transfections were performed for each SGE region, with plates incubated overnight.
706 On day 1, cells were washed and transferred to a 15-cm dish and resuspended in fresh media.
707 Puromycin (Cayman Chemical) was added to a final concentration of 1 µg/mL to select for
708 transfected cells. During puromycin selection, DAB was not added to media. On day 4, the cells
709 were passaged to fresh media supplemented with DAB, without puromycin. Cells were harvested
710 on days 6, 13 and 20. At each time point, 10 million cells were collected as cell pellets and stored
711 at -80 °C.

712

713 Negative control samples for each SGE region were co-transfected with the HDR library and a
714 pX459 plasmid containing a gRNA targeting *HPRT1*. The same transfection conditions were used

715 but scaled proportionally to a single well of a 6-well plate. Negative control samples were
716 harvested on day 6.

717

718 **Tissue culture: Generation of monoclonal cell lines**

719

720 HAP1-LIG4-KO cells were transfected with a pX459 plasmid targeting *HIF1A* as described above.
721 Cells were counted with the Vi-Cell XR Analyzer (Beckman) and diluted to 0.8 cells per 100 μ L.
722 100 μ L were aliquoted into each well of a 96-well plate. After one week, light microscopy was
723 used to identify wells with a single growing clone. 10 single-cell clones were expanded and
724 maintained. gDNA was extracted from each line (DNeasy Blood & Tissue Mini kit, Qiagen), PCR-
725 amplified, and Sanger sequenced. A *HIF1A*-knockout clone containing a 7-bp deletion and a
726 single base substitution was selected for use as the *HIF1A*-knockout line.

727

728 **Tissue culture: Essentiality testing**

729

730 To test the essentiality of *VHL* in HAP1, a pX459 vector expressing a gRNA to target exon 2 of
731 *VHL* was transfected alone (day 0). Transfections were performed as described above,
732 transfecting cells with 5 μ g of DNA in a single well of a 6-well plate, in replicate. Samples were
733 harvested on day 6 and day 13 to analyze selection on editing outcomes.

734

735 **gDNA and RNA extraction**

736

737 Harvested cells were stored as pellets at -80 °C until ready to proceed. QIAshredder columns
738 (Qiagen) were used to homogenize cells and the AllPrep DNA/RNA kit (Qiagen) was used to
739 purify RNA and gDNA. Procedures were followed as per the manufacturer's protocol.
740 Concentrations were measured using Nanodrop UV spectrometry for RNA, and the Qubit BR Kit
741 for gDNA (Thermo Fisher).

742

743 **RNA preparation for sequencing**

744

745 cDNA was generated from 5 μ g of RNA per sample using the SuperScript IV First-Strand
746 Synthesis System (Invitrogen). A *VHL*-specific primer complementary to the gene's 3' UTR was
747 used for priming the reaction, and the manufacturer's protocol followed. cDNA samples were
748 subsequently prepared for sequencing starting with PCR 2 below.

749

750 **PCR 1: amplifying gDNA**

751

752 All primers used are provided in **Supplementary Table 2**. For each reaction, 2 µg of gDNA was
753 PCR-amplified using at least one primer to target gDNA outside of the homology arms included
754 in HDR libraries, therefore making the reaction specific to gDNA. Annealing temperatures and
755 cycling times were optimized for each SGE region in advance using gDNA from unedited HAP1
756 cells. Up to eight 100 µL reactions were carried out for each sample, or fewer depending on gDNA
757 yield. Magnesium chloride was added to a final concentration of 5 mM and KAPA HiFi 2x
758 ReadyMix (Roche) was used. The reactions for each sample were pooled together and correct
759 products were confirmed using gel electrophoresis. PCR products were purified using AMPure
760 XP (Beckman Coulter) according to protocol. The same procedure was carried out for negative
761 control transfections and SGE gDNA samples from each timepoint (days 6, 13, and 20).

762

763 **PCR 2: adding Nextera adapters**

764

765 A second, nested PCR for each sample was carried out using 1 µL of the purified product from
766 PCR 1. For this reaction, primers were designed for each SGE region to produce amplicons
767 compatible with Illumina-based NGS sequencing, such that 300-cycle kits would provide end-to-
768 end coverage of amplicons. Primers added Nextera sequencing adapters to the amplicons to
769 enable paired-end sequencing. Products were verified using gel electrophoresis and purified
770 using AMPure XP (Beckman Coulter). The same reaction was also performed to prepare each
771 HDR library for sequencing. cDNA samples were similarly amplified using cDNA-specific primers
772 designed to yield amplicons spanning SGE regions in coding sequence, as well as at least 1 exon
773 junction.

774

775 **Indexing and sequencing**

776

777 Each sample was dual-indexed by PCR using custom indexes and purified using AMPure XP.
778 Samples were quantified using the Qubit HS kit (Invitrogen). Illumina guidelines were followed to
779 dilute and denature samples before sequencing using an Illumina NextSeq (mid- or high- output
780 300 cycle kits). Approximately 5 million reads were allocated for each SGE gDNA sample, except
781 for samples from high-GC regions (exon 1-5' and exon 1-3'), which were allocated 10 million

782 reads. 1 million, 2 million, and 3 million reads were allocated for the negative control, library, and
783 RNA samples, respectively. 20-30% PhiX control (Illumina) was included in each sequencing run.

784

785 **Processing SGE sequencing data**

786

787 A custom pipeline was used to process all sequencing data to variant counts. Bcl2fastq2 (Illumina)
788 was used to create demultiplexed fastq files. Paired-end reads were then adapter-trimmed and
789 merged if the overlapping sequence between reads matched perfectly (SeqPrep). Merged reads
790 containing N bases were removed, prior to performing global alignment with needle-all (EMBOSS
791 package) against a reference amplicon for each SGE region. Resulting sam files were processed
792 using a series of custom scripts to analyze indel events from CIGAR strings, to count SNV
793 frequencies across samples, and to annotate variants by genomic position with data from CADD
794 v1.6 (hg19)²⁵. For calculating function scores, reads for each variant were only included if at least
795 1 silent PAM edit in the HDR library design was present in the read and no other variants were
796 seen. This filter is designed to remove reads resulting from 1-bp substitutions to unedited
797 templates arising via error during PCR or sequencing.

798

799 **Deriving function scores for SNVs**

800

801 In a series of quality filters, SNVs were removed from analysis if:

802

- 803 1. The variant's frequency in the HDR library was less than 1.0×10^{-4} .
- 804 2. The variant's day 6 frequency in either replicate was less than 1.0×10^{-5} .
- 805 3. The day 20 to day 6 ratio was highly discordant across replicates (i.e. a difference in \log_2 ratio
806 greater than 1.5, unless both ratios were less than -1.0).
- 807 4. The day 13 to day 6 ratio was markedly different from the day 20 to day 13 ratio (i.e. a difference
808 in \log_2 ratio greater than 2.0, unless both ratios were less than -0.5).
- 809 5. Estimates of sequencing error from negative control samples suggested the ratio of SNV
810 observations arising from sequencing error to be greater than 0.5.
- 811 6. In instances where a variant was engineered in the same codon as a synonymous PAM edit,
812 the variant was excluded if the resulting amino acid change was different from what it would be
813 without the PAM edit also present.

814

815 To calculate function scores, the mean \log_2 day 20 to day 6 ratio for each variant across replicates
816 was normalized to the median synonymous variant in the sample. Final function scores were then
817 normalized across exons using the range of effect sizes observed for synonymous and nonsense
818 variants. Explicitly, scores for each SGE region were scaled linearly such that the median
819 nonsense variant for the region equaled the global median nonsense variant and the median
820 synonymous variant scaled to 0. Only nonsense variants between p.54 and p.198 were used to
821 perform this scaling (i.e. those expected to result in LoF).

822

823 **Calculating RNA scores**

824

825 RNA scores were determined for exonic variants by using variant frequencies in targeted
826 sequencing of *VHL* cDNA. Similar to variant frequencies derived from gDNA, variant frequencies
827 were calculated only from reads in which both the variant and at least one PAM edit indicative of
828 HDR was present. RNA reads were only included in scoring if the sequence on either side of the
829 target exon matched the reference transcript perfectly (i.e. reads from canonically spliced
830 transcripts). RNA scores for day 6 and day 20 were derived by normalizing each coding SNV's
831 frequency in RNA to its frequency in the gDNA sampled from the same time point. Non-coding
832 variants were not assigned RNA scores because such variants are not detectable in amplicon
833 sequencing of mRNA. RNA scores were also not generated for variants in the exon 1-5' SGE
834 region.

835

836 **Producing a single set of scores**

837

838 For variants covered in multiple experiments (e.g. by overlapping SGE regions), final function
839 scores and RNA scores were determined as follows:

- 840 1. For variants scored in both SGE regions exon 1-5' and exon 1-mid, the scores from the
841 exon 1-mid experiment were used.
- 842 2. For variants scored in both SGE regions exon 1-mid and exon 1-3', the mean of the scores
843 was used as the final score.
- 844 3. For variants scored in both SGE regions exon 3-5' and exon 3-3', the mean of the scores
845 was used as the final score.

846

847 **Analysis of indels**

848

849 To analyze selection on indel events, CIGAR strings from each timepoint sampled were generated
850 via global alignment. Similar to function scores for SNVs, “indel scores” for each unique editing
851 outcome (i.e. CIGAR string) were derived by dividing its day 13 frequency by its day 6 frequency.
852 Scores were log2-normalized and averaged across replicates. Only editing outcomes with no
853 more than a single indel and at least 100 bp of matching sequence on the 5’ end of the alignment
854 were included. Analysis was restricted to outcomes observed in more than 0.1% of reads.

855

856 **Statistical testing**

857

858 Statistical tests were performed in R. Unless otherwise indicated, all tests were two-sided.

859

860 To determine whether a given function score was significant, a null model was fit for each SGE
861 region using all synonymous variants. In regions where RNA scores were included, synonymous
862 variants were excluded from the null group if they had RNA scores (day 6) less than -1.0
863 (corresponding to a 50% reduction in mRNA levels). For experiments in which RNA scores were
864 not derived (those without DAB, those performed in HIF1A-KO cells, and those performed in the
865 exon 1-5’ SGE region), all synonymous SNVs were included in null models. For the intron 1 SGE
866 region, all SNVs were included in the null model due to the lack of synonymous SNVs. P-values
867 were calculated using the ‘pnorm’ function in R, and adjusted using ‘p.adjust’ (Benjamini-
868 Hochberg method) to produce q-values. A false discovery rate of 0.01 was used as a cut-off for
869 defining LoF SNVs.

870

871 **DepMap analysis**

872

873 DepMap CRISPR screening data for *VHL* was downloaded via <https://depmap.org/portal/>. The
874 “Primary.Disease” classification was used to define lines of kidney origin, and lines with a *VHL*
875 mutation defined as either “Hotspot”, “Damaging”, or “Other non-conserving” were labeled mutant
876 for *VHL*.

877

878 **Mapping variant effects to the VHL structure**

879

880 The crystal structure of VHL in complex with ELOC, ELOB, and the HIF1A target peptide (PDB:
881 1LM8)⁴⁷ was imported to PyMol. Average function scores of missense SNVs at each residue

882 from p.M54 were calculated, excluding variants with RNA scores below -2.0. The VHL structure
883 was colored by average function score to identify positions intolerant to missense mutations.

884

885 AlphaFold's colab notebook was used to model a structure for VHL with the 42-AA extension at
886 the C-terminus:

887 <https://colab.research.google.com/github/deepmind/alphafold/blob/main/notebooks/AlphaFold.ipynb>.

889

890 **ClinVar and cBioPortal analyses**

891

892 *VHL* entries with at least a 1-star assertion criteria rating in ClinVar were obtained on 04 May
893 2023. ClinVar annotations were simplified such that variants classified as both "pathogenic" and
894 "likely pathogenic" by separate contributors were labeled "likely pathogenic" and variants deemed
895 both "benign" and "likely benign" were labeled "likely benign".

896

897 cBioPortal data was accessed on 02 October 2022 via <https://www.cbiportal.org/>. Mutation data
898 from the "curated set of non-redundant studies" was exported by querying for samples with *VHL*
899 mutations by gene symbol. Data were parsed using a custom script to sum the number of times
900 each variant was seen across each cancer type. For analyses involving allele frequencies in
901 tumors, each independent sample was plotted (i.e. a single variant present in multiple
902 independent samples was represented multiple times). ccRCC samples "with sarcomatoid
903 features" were grouped with all ccRCC samples. To assign a single cancer type to color variants
904 seen in multiple cancers, preference was given to cancer types associated with *VHL* mutations,
905 by order of priority: ccRCC, pheochromocytoma, PNET, chromophobe RCC, papillary RCC, RCC
906 not otherwise specified, and other). Using this logic, variants were only colored "other" if they were
907 not seen in tumors associated with *VHL* mutations.

908

909 **Population sequencing analysis**

910

911 UK Biobank variants in *VHL* were ascertained via GeneBass (<https://app.genebass.org/>), which
912 includes data from whole exome sequencing of 394,841 individuals (7 June 2022 data release).
913 TOPMed (freeze 8) *VHL* variants were obtained (<https://bravo.sph.umich.edu/freeze8/hg38/>), as
914 were non-overlapping gnomAD v2 and v3 data sets (<https://gnomad.broadinstitute.org/>). A

915 combined population allele count was defined as the sum of gnomAD v2 and v3 allele counts,
916 TOPMed heterozygous allele counts, and UK Biobank allele counts.

917

918 **VHLdb analysis**

919

920 Mutation data from VHLdb²¹ was downloaded on 28 July 2022 and parsed using a custom python
921 script to count features of entries for each variant. Where there was only 1 possible match to the
922 SGE data set, the nucleotide change of an entry was inferred from the amino acid substitution if
923 only the latter was provided. When the provided nucleotide and protein changes were discordant,
924 the entry was removed, as were entries flagged “needs revision”. The disease descriptor “Von
925 Hippel-Lindau syndrome: Pheochromocytoma phenotype not described” was replaced with “Von
926 Hippel-Lindau syndrome: phenotype not described”, and the descriptor “absence of
927 pheochromocytoma” was ignored in order to quantify pheochromocytoma reports.

928

929 “Pathogenic” and “likely pathogenic” variants in ClinVar, excluding variants with recessive
930 phenotypes and those seen in two or more population control individuals, were assigned to
931 categories of “type 1”, “pheo-predominant”, or “type unclear” by searching VHLdb for indicators
932 of disease type and tumor type. Variants only associated with type 1 disease or ccRCC (without
933 pheochromocytoma) were deemed “type 1”. Variants associated only with type 2 disease or with
934 more pheochromocytoma entries than ccRCC entries were deemed “pheo-predominant”. The
935 remaining “pathogenic” and “likely pathogenic” variants either had mixed associations, lacked
936 phenotypic information, or were explicitly type 2B variants associated with high risk for both
937 ccRCC and pheochromocytoma. All were deemed “type unclear”.

938

939 **Comparisons to computational predictions**

940

941 CADD scores (v1.6)²⁵ and annotations were obtained for all SNVs assayed
942 (<https://cadd.gs.washington.edu/download>). The following scores were obtained for missense
943 variants: REVEL scores⁵ were obtained on 01 September 2022
944 (<https://sites.google.com/site/revelgenomics/downloads>); scores from the boostDM model for
945 VHL variants in “Renal Clear Cell Carcinoma” were obtained on 12 Aug 2022
946 (<https://www.intogen.org/boostdm/search?ttype=RCCC&gene=VHL>); EVE scores were obtained
947 on 15 Aug 2022 (<https://evemodel.org/>); VARIETY scores were obtained on 16 Aug 2022
948 (<http://varity.varianteffect.org/>).

949
950 For comparisons of missense variant effects, only variants for which all metrics provided a score
951 were used. This excluded variants prior to p.M54 and variants after p.A207 due to an absence of
952 EVE scores. ROC curves were generated in R using the 'geom_roc' function.

953 **DATA AVAILABILITY**

954

955 All function scores and RNA scores derived are included in Supplementary Table 1, as well as
956 raw NGS read counts per variant. Function scores will be made publicly available and deposited
957 to MAVE-DB⁵⁰ at time of publication. Fastq files will be made publicly available at time of
958 publication (European Nucleotide Archive accession: PRJEB62650).

959

960 **CODE AVAILABILITY**

961

962 All code used in this study is available on GitHub at <https://github.com/TheGenomeLab/VHL->
963 SGE.

964

965 **ACKNOWLEDGEMENTS AND FUNDING**

966

967 We thank Robert Goldstone and Mike Gavieldes for assisting with data access, Jerome Nicod,
968 Marg Crawford, and the Advanced Sequencing STP for performing sequencing, Erik Sahai and
969 David Balchin for helpful insights and feedback on the manuscript, Andrew Waters and David
970 Adams for experimental advice, Peter Radcliffe and lab for discussion of VHL-related research,
971 and the Cell Services STP for maintenance of cell lines.

972

973 This work was supported by the Francis Crick Institute which receives its core funding from
974 Cancer Research UK (CC2190), the UK Medical Research Council (CC2190), and the
975 Wellcome Trust (CC2190), and by funding from the VHL Foundation UK/Ireland (PRJ20071).
976 For the purpose of Open Access, the authors have applied a CC BY public copyright license to
977 any Author Accepted Manuscript version arising from this submission.

978

979 **SUPPLEMENTARY INFORMATION**

980

981 **Supplementary Table 1. SGE function scores and RNA scores for 2,268 VHL SNVs.**

982 **Supplementary Table 2. Oligonucleotides used to perform SGE of VHL.**

983 **REFERENCES**

- 984 1. Cerami, E. *et al.* The cBio cancer genomics portal: an open platform for exploring
985 multidimensional cancer genomics data. *Cancer Discov.* **2**, 401–404 (2012).
- 986 2. Gao, J. *et al.* Integrative analysis of complex cancer genomics and clinical profiles using the
987 cBioPortal. *Sci. Signal.* **6**, l1 (2013).
- 988 3. Landrum, M. J. *et al.* ClinVar: public archive of interpretations of clinically relevant variants.
989 *Nucleic Acids Res.* **44**, D862–8 (2016).
- 990 4. Kuang, D. *et al.* Prioritizing genes for systematic variant effect mapping. *Bioinformatics* **36**,
991 5448–5455 (2021).
- 992 5. Ioannidis, N. M. *et al.* REVEL: An Ensemble Method for Predicting the Pathogenicity of
993 Rare Missense Variants. *Am. J. Hum. Genet.* **99**, 877–885 (2016).
- 994 6. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: predicting the
995 deleteriousness of variants throughout the human genome. *Nucleic Acids Res.* **47**, D886–
996 D894 (2019).
- 997 7. Frazer, J. *et al.* Disease variant prediction with deep generative models of evolutionary
998 data. *Nature* **599**, 91–95 (2021).
- 999 8. Muiños, F., Martínez-Jiménez, F., Pich, O., Gonzalez-Perez, A. & Lopez-Bigas, N. In silico
1000 saturation mutagenesis of cancer genes. *Nature* **596**, 428–432 (2021).
- 1001 9. Wu, Y., Li, R., Sun, S., Weile, J. & Roth, F. P. Improved pathogenicity prediction for rare
1002 human missense variants. *Am. J. Hum. Genet.* **108**, 1891–1906 (2021).
- 1003 10. Jaganathan, K. *et al.* Predicting Splicing from Primary Sequence with Deep Learning. *Cell*
1004 **176**, 535–548.e24 (2019).
- 1005 11. Richards, S. *et al.* Standards and guidelines for the interpretation of sequence variants: a
1006 joint consensus recommendation of the American College of Medical Genetics and
1007 Genomics and the Association for Molecular Pathology. *Genet. Med.* **17**, 405–424 (2015).
- 1008 12. Ludwig, K. K., Neuner, J., Butler, A., Geurts, J. L. & Kong, A. L. Risk reduction and survival

1009 benefit of prophylactic surgery in BRCA mutation carriers, a systematic review. *Am. J. Surg.*
1010 **212**, 660–669 (2016).

1011 13. Rose, M., Burgess, J. T., O'Byrne, K., Richard, D. J. & Bolderson, E. PARP Inhibitors:
1012 Clinical Relevance, Mechanisms of Action and Tumor Resistance. *Front Cell Dev Biol* **8**,
1013 564601 (2020).

1014 14. Jonasch, E. *et al.* Belzutifan for Renal Cell Carcinoma in von Hippel–Lindau Disease. *N.*
1015 *Engl. J. Med.* **385**, 2036–2046 (2021).

1016 15. Findlay, G. M. Linking genome variants to disease: scalable approaches to test the
1017 functional impact of human mutations. *Hum. Mol. Genet.* **30**, R187–R197 (2021).

1018 16. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. *Nat.*
1019 *Rev. Cancer* **15**, 55–64 (2015).

1020 17. Ohh, M. *et al.* Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-
1021 domain of the von Hippel-Lindau protein. *Nat. Cell Biol.* **2**, 423–427 (2000).

1022 18. Tippu, Z., Au, L. & Turajlic, S. Evolution of Renal Cell Carcinoma. *Eur Urol Focus* **7**, 148–
1023 151 (2021).

1024 19. Varshney, N. *et al.* A Review of Von Hippel-Lindau Syndrome. *J Kidney Cancer VHL* **4**, 20–
1025 29 (2017).

1026 20. Maher, E. R., Neumann, H. P. & Richard, S. von Hippel-Lindau disease: a clinical and
1027 scientific review. *Eur. J. Hum. Genet.* **19**, 617–623 (2011).

1028 21. Tabaro, F. *et al.* VHLdb: A database of von Hippel-Lindau protein interactors and
1029 mutations. *Sci. Rep.* **6**, 31128 (2016).

1030 22. Gordeuk, V. R. *et al.* Congenital disorder of oxygen sensing: association of the
1031 homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular
1032 abnormalities but not tumors. *Blood* **103**, 3924–3932 (2004).

1033 23. Perrotta, S. *et al.* Effects of Germline VHL Deficiency on Growth, Metabolism, and
1034 Mitochondria. *N. Engl. J. Med.* **382**, 835–844 (2020).

1035 24. Zhang, M. *et al.* Von Hippel-Lindau disease type 2 in a Chinese family with a VHL p.W88X
1036 truncation. *Endocrine* **48**, 83–88 (2015).

1037 25. Rentzsch, P., Schubach, M., Shendure, J. & Kircher, M. CADD-Splice-improving genome-
1038 wide variant effect prediction using deep learning-derived splice scores. *Genome Med.* **13**,
1039 31 (2021).

1040 26. Tsherniak, A. *et al.* Defining a Cancer Dependency Map. *Cell* **170**, 564–576.e16 (2017).

1041 27. Blomen, V. A. *et al.* Gene essentiality and synthetic lethality in haploid human cells.
1042 *Science* **350**, 1092–1096 (2015).

1043 28. Findlay, G. M., Boyle, E. A., Hause, R. J., Klein, J. C. & Shendure, J. Saturation editing of
1044 genomic regions by multiplex homology-directed repair. *Nature* **513**, 120–123 (2014).

1045 29. Findlay, G. M. *et al.* Accurate classification of BRCA1 variants with saturation genome
1046 editing. *Nature* **562**, 217–222 (2018).

1047 30. Beigl, T. B., Kjosås, I., Seljeseth, E., Glomnes, N. & Aksnes, H. Efficient and crucial quality
1048 control of HAP1 cell ploidy status. *Biol. Open* **9**, (2020).

1049 31. Olbrich, T. *et al.* A Chemical Screen Identifies Compounds Capable of Selecting for
1050 Haploidy in Mammalian Cells. *Cell Rep.* **28**, 597–604.e4 (2019).

1051 32. Schoenfeld, A., Davidowitz, E. J. & Burk, R. D. A second major native von Hippel-Lindau
1052 gene product, initiated from an internal translation start site, functions as a tumor
1053 suppressor. *Proc. Natl. Acad. Sci. U. S. A.* **95**, 8817–8822 (1998).

1054 33. Stebbins, C. E., Kaelin, W. G., Jr & Pavletich, N. P. Structure of the VHL-ElonginC-
1055 ElonginB complex: implications for VHL tumor suppressor function. *Science* **284**, 455–461
1056 (1999).

1057 34. Tirosh, A. *et al.* Association of VHL Genotype With Pancreatic Neuroendocrine Tumor
1058 Phenotype in Patients With von Hippel-Lindau Disease. *JAMA Oncol* **4**, 124–126 (2018).

1059 35. Karczewski, K. J. *et al.* Systematic single-variant and gene-based association testing of
1060 thousands of phenotypes in 394,841 UK Biobank exomes. *Cell Genom* **2**, 100168 (2022).

1061 36. Karczewski, K. J. *et al.* The mutational constraint spectrum quantified from variation in
1062 141,456 humans. *Nature* **581**, 434–443 (2020).

1063 37. Taliun, D. *et al.* Sequencing of 53,831 diverse genomes from the NHLBI TOPMed Program.
1064 *Nature* **590**, 290–299 (2021).

1065 38. Clifford, S. C. *et al.* Contrasting effects on HIF-1alpha regulation by disease-causing pVHL
1066 mutations correlate with patterns of tumourigenesis in von Hippel-Lindau disease. *Hum.*
1067 *Mol. Genet.* **10**, 1029–1038 (2001).

1068 39. Wangen, J. R. & Green, R. Stop codon context influences genome-wide stimulation of
1069 termination codon readthrough by aminoglycosides. *Elife* **9**, (2020).

1070 40. Lee, S. *et al.* Neuronal apoptosis linked to EglN3 prolyl hydroxylase and familial
1071 pheochromocytoma genes: developmental culling and cancer. *Cancer Cell* **8**, 155–167
1072 (2005).

1073 41. Li, S. *et al.* EglN3 hydroxylase stabilizes BIM-EL linking VHL type 2C mutations to
1074 pheochromocytoma pathogenesis and chemotherapy resistance. *Proc. Natl. Acad. Sci. U.*
1075 *S. A.* **116**, 16997–17006 (2019).

1076 42. Choueiri, T. K. *et al.* Inhibition of hypoxia-inducible factor-2α in renal cell carcinoma with
1077 belzutifan: a phase 1 trial and biomarker analysis. *Nat. Med.* **27**, 802–805 (2021).

1078 43. Lenglet, M. *et al.* Identification of a new VHL exon and complex splicing alterations in
1079 familial erythrocytosis or von Hippel-Lindau disease. *Blood* **132**, 469–483 (2018).

1080 44. Erwood, S. *et al.* Saturation variant interpretation using CRISPR prime editing. *Nat.*
1081 *Biotechnol.* **40**, 885–895 (2022).

1082 45. Radford, E. J. *et al.* Saturation genome editing of DDX3X clarifies pathogenicity of germline
1083 and somatic variation. *bioRxiv* (2022) doi:10.1101/2022.06.10.22276179.

1084 46. Da Kuang *et al.* MaveRegistry: a collaboration platform for multiplexed assays of variant
1085 effect. *Bioinformatics* (2021) doi:10.1093/bioinformatics/btab215.

1086 47. Min, J.-H. *et al.* Structure of an HIF-1alpha -pVHL complex: hydroxyproline recognition in

1087 signaling. *Science* **296**, 1886–1889 (2002).

1088 48. Jumper, J. *et al.* Highly accurate protein structure prediction with AlphaFold. *Nature* **596**,
1089 583–589 (2021).

1090 49. Ran, F. A. *et al.* Genome engineering using the CRISPR-Cas9 system. *Nat. Protoc.* **8**,
1091 2281–2308 (2013).

1092 50. Esposito, D. *et al.* MaveDB: an open-source platform to distribute and interpret data from
1093 multiplexed assays of variant effect. *Genome Biol.* **20**, 223 (2019).