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Abstract

Recent evidence suggests brain-behavior predictions may require very large sample sizes.
However, as the sample size increases, the amount of missing data also increases.
Conventional methods, like complete-case analysis, discard useful information and shrink
the sample size. To address the missing data problem, we investigated rescuing these
missing data through imputation. Imputation is the substitution of estimated values for
missing data to be used in downstream analyses. We integrated imputation methods into the
Connectome-based Predictive Modeling (CPM) framework. Utilizing four open-source
datasets—the Human Connectome Project, the Philadelphia Neurodevelopmental Cohort,
the UCLA Consortium for Neuropsychiatric Phenomics, and the Healthy Brain Network
(HBN)—we validated and compared our framework with different imputation methods
against complete-case analysis for both missing connectomes and missing phenotypic
measures scenarios. Imputing connectomes exhibited superior prediction performance on
real and simulated missing data as compared to complete-case analysis. In addition, we
found that imputation accuracy was a good indicator for choosing an imputation method for
missing phenotypic measures but not informative for missing connectomes. In a real-world
example predicting cognition using the HBN, we rescued 628 individuals through imputation,
doubling the complete case sample size and increasing explained variance by 45%.
Together, our results suggest that rescuing data with imputation, as opposed to discarding
subjects with missing information, improves prediction performance.
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1. Introduction

Establishing individual differences in behavior is a goal of modern neuroimaging (Dhamala et
al., 2022; Dubois and Adolphs, 2016; Finn and Rosenberg, 2021; “Revisiting doubt in
neuroimaging research,” 2022). However, reproducible brain-wide associations require
sample sizes on the order of thousands of individuals (Genon et al., 2022; Marek et al.,
2022), due to the small effect sizes of brain-behavior predictions. Using data from multiple
sources increases the effect sizes of brain-behavior predictions (Dubois et al., 2018; Elliott et
al., 2019; Gao et al., 2019; Jiang et al., 2020; Mellem et al., 2020; Ooi et al., 2022; Yu et al.,
2020). For example, supervised learning models combining different multiple task
connectomes outperform those built from a single connectome (Barron et al., 2021; Gao et
al., 2019; Garrison et al., 2023), and latent variables derived from a battery of behavioral
measures are more predictable as compared to a single behavioral measure (Barron et al.,
2021; Dubois et al., 2018; Garrison et al., 2023; Rapuano et al., 2020). These results
suggest that using connectomes and behavioral data from multiple sources is a powerful
approach to characterizing brain-behavior relationships.

Nevertheless, there is a significant tradeoff when using multiple data sources of data. The
amount of missing data increases. Currently, most fMRI studies only consider complete-case
data, meaning that subjects with any missing behavioral or imaging data are removed from
the analysis. Thus, leading to a substantial decrease in sample size. Retaining more
subjects in studies is need to improve power (Genon et al., 2022; Marek et al., 2022). In
addition, discarding subjects with missing data in only a single MRI modality wastes of
resources, given the difficulties and cost of neuroimaging data acquisition, especially for
infants, the elderly, and those with psychiatric disorders (Tejavibulya et al., 2022).

Despite being widespread in many domains of biomedicine, handling missing data is
nascent in supervised learning. Most extant supervised learning studies inadequately report
or handle missing data (Nijman et al., 2022). In addition, most of the literature on missing
data focuses on statistical inference instead of supervised learning (Perez-Lebel et al.,
2022). Only a handful of studies touch upon the theories (Josse et al., 2020) or evaluate
supervised learning with missing values (Batista and Monard, 2003; Perez-Lebel et al.,
2022; Poulos and Valle, 2018; Tresp et al., 1994; Zhang et al., 2010). However, the
systematic evaluation of supervised learning with missing values in predictive modeling of
functional connectivity data is crucial to maximizing the utility of expensive neuroimaging
datasets even in the presence of missing data.

Data imputation, or the substitution of estimated values for missing data to be used in
downstream analyses, is a standard way to rescue missing data. Due to the specialties of
connectome data, many popular imputation methods—including statistical models like
multiple imputation, maximum likelihood estimation, and fully Bayesian methods (Baraldi and
Enders, 2010)—are not suitable. In connectome-based prediction analysis, the input
features (edges in connectomes) are usually in a high dimension (~30k), but the sample size
is small. Even after feature selection, the dimension is still high relative to the sample size
(Rosenberg et al., 2018). The connectome features are highly correlated and noisy and
encode phenotypic information across many edges (Jiang et al., 2022). Moreover, the
features are missed in a block-wise pattern since a whole connectome is missed. However,
the redundancy in different task connectomes can be leveraged by simple imputation
methods with low computational costs. Unlike connectome data imputation, most state-of-art
imputation methods are suitable for the case of missing phenotypic measures.
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In this work, we incorporated imputation methods into connectome-based predictive
modeling (CPM) to rescue missing data in functional connectomes and behavioral
measures. We investigated the performance of several imputation strategies for predicting
fluid intelligence in four large open-source datasets with multiple fMRI tasks—the Human
Connectome Project (HCP) (Van Essen et al., 2012), the Philadelphia Neurodevelopmental
Cohort (PNC) (Poldrack et al., 2016), the UCLA Consortium for Neuropsychiatric Phenomics
(CNP) (Satterthwaite et al., 2016), and the Healthy Brain Network (Alexander et al., 2017).
All four datasets contain a subset of subjects with missing fMRI data in specific tasks due to
the unavailability or quality of the scans. Based on simulation analysis in HCP, we also
investigated how different missingness rates of connectome data impact the performance of
imputation strategies. For missing behavioral measures, we simulated missing data on ten
cognitive measures and evaluated imputation methods to recover missing fluid intelligence
measures. Finally, we provide a real-world example of our approach and imputed both
connectomic and behavioral data in the HBN, a dataset with a a substantial missing data
rate due to the difficulty in scanning children with mental health conditions. We rescued data
from 628 individuals, doubling the complete case sample size and increasing explained
variance by 45%. Overall, when used appropriately, data imputation is a valuable addition to
neuroimaging-based prediction pipelines.

2. Materials and Methods

2.1. Datasets

Four datasets were used in our study: the Human Connectome Project (HCP) 900 Subject
Release, the UCLA Consortium for Neuropsychiatric Phenomics (CNP), the Philadelphia
Neurodevelopmental Cohort (PNC), and the Healthy Brain Network (HBN). The HCP dataset
was used for the analysis of real missing connectomes and the simulations of missing
connectomes and phenotypic measures. The CNP and PNC were used for only the analysis
of real missing connectomes. The HBN dataset was used for the analysis of real missing
connectomes and phenotypic measures.

HBN subjects. Subjects performed two naturalistic viewing sessions of movie clips from
‘Despicable Me’ and ‘The Present’ in the scanner. Ten cognitive measures were used for
prediction: the Flanker Inhibitory Control and Attention (Flanker), List Sorting Working
Memory (ListSort), Pattern Comparison Processing Speed (ProcSpeed), and Card Sort tests
(CardSort) were selected from the NIH Toolbox; the Math Problem Solving and Numerical
Operations subtests were selected from the Wechsler Individual Achievement Test (WIAT);
the Fluid Reasoning, Visual Spatial Reasoning, Processing Speed, and Working Memory
subtests were selected from the Wechsler Intelligence Scale for Children (WISC-V)
(Alexander et al., 2017).

HCP subjects. Subjects performed seven distinct tasks in the scanner, including gambling,
language, motor, relational, social, working memory, and emotion. The matrix reasoning test
(PMAT)—a measure of fluid intelligence—was used as the phenotypic measure for
prediction. For the simulations of missing phenotypic measures, we used the unadjusted
score of ten cognitive measures from Dubois et al., 2018 (PicVocab, PMAT, ReadEng,
VSPLOT, IWRD, PicSeq, ListSort, Flanker, CardSort, and ProcSpeed).

CNP subjects. Subjects performed six tasks (balloon analog risk task, paired-associative
memory encoding, paired-associative memory retrieval, spatial working memory capacity,
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stop signal, and task switching) in the scanner. Fluid intelligence was assessed by WAIS-IV
matrix reasoning (Poldrack et al., 2016).

PNC subjects. Subjects performed two tasks (working memory and emotion). Fluid
intelligence was assessed by the 24-item version of the Penn Matrix Reasoning Test (Moore
et al., 2015).

2.2. fMRI processing

We followed an established pipeline to create connectomic data (Barron et al., 2021).
Functional images were motion corrected using SPM12. All further analyses were completed
using Biolmage Suites. Several covariates of no interest were regressed from the data
including linear and quadratic drifts, mean cerebral-spinal-fluid (CSF) signal, mean white-
matter signal, and mean gray matter signal. For additional control of possible motion-related
confounds, a 24-parameter motion model (including six rigid-body motion parameters, six
temporal derivatives, and these terms squared) was regressed from the data. The data were
temporally smoothed with a Gaussian filter (approximate cutoff frequency = 0.12 Hz).

The brain was parcellated into 268 macroscale regions of interest using a whole-brain,
functional atlas defined in a separate sample (Shen et al., 2013). For each subject, the
regional time series were calculated by averaging the voxel-wise fMRI time series in a node.
The pairwise Pearson correlation between all node time series was calculated and Fisher z-
transformed, yielding a 268 by 268 matrix for each scan.

2.3. Missing data

For all datasets, connectomes were classified as missing if the imaging data was unavailable
(such as subject dropouts or unshared data) or failed quality control (such as high motion or
missing brain sections). Scans with a frame-to-frame displacement greater than 0.15 mm
were deemed to have high motion. For analyses that included real missing data, we retained
subjects who had at least one connectome, along with measures of age, sex, and fluid
intelligence. For analyses with simulated missing connectomes, we used the complete-case
data from the HCP dataset. Details of the HCP, CNP, and PNC datasets used in the
experiments are summarized in Table 1, while the missing information for each specific task
in each dataset is summarized in Fig. S1 of the supplementary material.

N Sex (Male: Female) Age range (Years)
HCP | Complete-case | 645 | 296:349 22-37
All data 855 | 379:476 22-37
CNP | Complete-case | 152 | 85:67 21-50
All data 244 | 139:105 21-50
PNC | Complete-case | 682 | 310:372 8-21
All data 813 | 373:440 8-21

Table 1. Summary of datasets (HCP, PNC, CNP) used in missing connectome data analysis.

For analyses involving missing phenotypic data, we retained subjects who had at least one
observed phenotypic variable of interest. For analyses with real missing phenotypic data, we
used subjects with at least one cognitive measure from the HBN dataset. For analyses with
simulated missing phenotypic data, we used subjects with complete connectome data and
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all ten cognitive measures from the HCP dataset. Details of the HBN and HCP datasets
used in these experiments are summarized in Table 2.

N Sex (Male: Female) | Age range (Years)
HBN Complete-case 698 447:251 5-21
Complete connectome data 893 575:318 5-22
All data 1326 | 851:475 5-22
HCP Complete-case 514 240:274 22-37

Table 2. Summary of datasets (HBN, HCP) measures used in missing phenotypic data analysis.

2.4. Predictive modeling using data with missing values

To rescue data with missing connectomes, we modified Connectome-based Predictive

Modeling (CPM) by incorporating imputation methods to fill in the missing values before
models were trained on the completed data. Fig. 1 illustrates the missing data handling

process in predictive modeling.

2.4.1. Missing connectome data (missing X )

Five imputation methods were used to fill in missing values. Except for task average
imputation, all other methods were applied on selected features to reduce the computational
burden. The imputation methods are detailed below:

(1) Task average imputation: For subject i, the mean of all observed task connectomes was
calculated as C;. Then all missing selected features of subject i were replaced with the
corresponding value of C;.

(2) Mean imputation: Each missing value was replaced by the mean of the observed values
along its column. Mean imputation was implemented using the python package scikit-learn
(Pedregosa et al., 2011).

(3) Constant values imputation: All missing values were imputed with a constant value. Here,
we chose the constant value as the mean of all observed entries. Constant value imputation
was implemented using the python package scikit-learn (Pedregosa et al., 2011).

(4) Robust matrix completion: Given the high collinearity of edges in functional connectomes,
we assume the predictive information is encoded into a lower dimensional space. Robust
matrix completion recovers the low-rank matrix when part of the entries is observed and
corrupted by noise (Shang et al., 2014). Robust matrix completion could be formulated as
the following convex optimization problem:

mingg||All, + Af(E),  s.t,A+E=X

Where X is the corrupted input matrix (the selected features in our case), ||4||. is the trace
norm of the desired matrix A (output), 1 is the parameter that controls the level of noise, E is
the noise matrix, f(-) denotes the loss function. We chose the [,-norm loss in this study
because the noises spread across many entries of X. The implementation details of this
algorithm can be found in Liang et al., 2021.

(5) Nearest neighbors imputation: Nearest neighbors imputation was performed by
computing the Euclidean distance metric that supports missing values to find the nearest
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neighbors for each subject. For each missing value, values from the k nearest neighbors
that have a value for the same feature were used to impute the missing value. The values of
the neighbors were either averaged uniformly or weighted by the distance to each neighbor.
If a subject had more than one missing feature, then the neighbors for that subject could be
different depending on the feature being imputed. In this study, we chose k = 5 and used a
uniform weight for each neighbor. The implementation of nearest neighbors imputation was
carried out using the python package scikit-learn (Pedregosa et al., 2011).

2.4.2. Missing phenotypic data (missing y )

When a single phenotypic measure y was to be predicted, we utilized a set of auxiliary
variables Z = (z4,z,, ... , z;) that were correlated with y and could also contain missing data,
to impute y. When the first principal component of the variables of interest Y = (y4,v,, ..., V&)
was to be predicted, we imputed all missing values in Y and applied principal component
analysis (PCA) to obtain the first principal component. The PCA coefficients were then
applied to the testing set. The imputation methods are detailed below:

(1) Mean imputation: Each missing value was replaced by the mean of the observed values
along its column.

(2) Random forest algorithm for missing data imputation (MissForest): MissForest is a non-
parametric imputation method for mixed-type data. For each variable in the dataset,
MissForest fits a random forest on the observed part and then predicts the missing part (the
predicted values were later used in training models of other variables). The algorithm
repeats these two steps until a stopping criterion (accuracy of fitting the observed part) is
met. The algorithm was implemented in the R package “missForest”.

(3) Regularized iterative principal component analysis (ImputePCA): Iterative Principal
Component Analysis (PCA) algorithm, also known as the Expectation-maximization PCA
(EMPCA) algorithm, is an expectation-maximization algorithm for a PCA fixed-effects model,
where data is generated as a fixed structure having a low-rank representation corrupted by
noise (Josse and Husson, 2016). Regularized iterative Principal Component Analysis uses
regularized methods to tackle the overfitting problems when data is noisy, and there are
many missing values. The algorithm was implemented in the function imputePCA in the R
package “missMDA”.

(4) Predictive mean matching (PMM): Multiple imputation by chained equations (White et al.,
2011) is a robust, informative method of dealing with missing data in datasets. The
procedure imputes missing data in a dataset through an iterative series of predictive models.
In each iteration, each specified variable in the dataset is imputed using the other variables.
These iterations should be run until it appears that convergence has been achieved. PMM
selects non-missing samples with predictive values close to the predictive value of the
missing sample. The closest N values are chosen as candidates, from which a value is
chosen randomly. M imputation values are generated using different random initializations,
and the mean value is taken to fill in the missing entries for predictive modeling. The
algorithm was implemented using the R package “mice” (Buuren and Groothuis-Oudshoorn,
2011).
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2.4.3. Validation methods

Prediction performance of the models was evaluated using 10-fold cross-validation.
Complete-case analysis served as the baseline. Subjects with missing data (X or y) were
included only in the training set. The testing set consisted only of subjects with complete
data. Additionally, we assessed the prediction performance of the models on subjects with
missing X by randomly splitting all subjects into training and testing sets.

It is worth noting that missing data from the training and testing sets were imputed
independently to prevent data leakage. A feature selection threshold of p<0.01 was used to
select features in the training set. The ridge regression hyper-parameter was determined by
grid searching using nested 5-fold cross-validation within the training set. For the regression
task, the model performance was evaluated by the cross-validated R?, R?,, = 1 —

Y =9 /XM, (vi — ¥)?. R?y, can be negative, which suggests the predictive model
performs worse than simply guessing the mean of the phenotypic measure. In this case, we
set R%., to 0 (Scheinost et al., 2019). For the classification task, the model performance was
evaluated by the average of Area Under the Receiver Operating Characteristic Curve (ROC
AUC) of each fold.

1) Task average
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Fig. 1. Predictive modeling framework for handling missing data. Missing connectomes are rescued using 1)
Task average replacement, 2) Mean imputation, 3) Constant value imputation, 4) Robust Matrix Completion, or 5)
Nearest Neighbors imputation. Missing phenotypic measures are imputed with auxiliary variables using 1)
Predictive mean matching (PMM), 2) ImputePCA, 3) MissForest, or 4) Mean imputation. The phenotypic and
connectivity data are then used in standardized predictive models such as ridge regression or support vector
machine. The black squares represent missing data.
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2.5. Analyses with real missing connectomes

We utilized our pipeline to analyze the HCP, CNP, and PNC datasets, and performed 100
iterations of 10-fold cross-validation to predict fluid intelligence, age, and sex. The
performance of each imputation method, as well as a complete-case analysis, was
calculated and reported.

2.6. Analyses with simulated missing connectomes

We conducted simulation tests to investigate the impact of different missingness rates and
missing data mechanisms on the performance of imputation strategies. Three ypes of
missingness mechanisms exist, namely missing completely at random (MCAR), missing at
random (MAR), and missing not at random (MNAR) (Little and Rubin, 2019). For our
experiment, we simulated two missing data scenarios. In the first scenario, we randomly
deleted connectomes (MCAR). In the second scenario, we deleted connectomes with a
probability proportional to the motion of the original scan, making the data missing not at
random (MNAR) as the missingness was related to the data itself. We tested missingness
rates ranging from 0% to 80%, averaged across the entire dataset. We performed the
simulation study on the complete-case of the HCP dataset, as it has the largest amount of
complete-case data. For each missingness rate, we generated 500 missingness patterns
using different random seeds. For each missingness pattern, we conducted 10-fold cross-
validation with a random data partition to evaluate the performance of CPM, and since the
ground truth of the missing values, x;,,., was known, we also calculated the imputation
accuracy of each imputation method. We assessed the accuracy of the different imputation

methods using the normalized-root-mean-square error (NRMSE) between the ground truth
RMSE

and the imputed values x;;,pyte. NRMSE = , Where the root-mean-square error (RMSE)

— 2
is calculated as /M (N is the number of entries in x;,,.) and o is the standard

deviation of x¢ye-

2.7. Analyses with real missing phenotypic data

We applied our pipeline to the HBN datasets with 100 iterations of 10-fold cross-validation.
Subjects with complete connectome data and missing executive function were used for
predicting Flanker, ProcSpeed, and CardSort. For predicting a latent factor of cognition, we
examined the performance of the models imputing cognitive measures and models imputing
both cognitive measures and connectomes. Model performance of each imputation method
and a complete-case study were calculated and reported.

2.8. Analyses with simulated missing phenotypic data

We generated 100 missingness patterns in the ten cognitive measures of the complete-case
HCP data by deleting values completely at random (MCAR). Missingness rates ranged from
0 to 40%. Fluid intelligence was used as the target variable to predict, while the other nine
were used as auxiliary variables. Ten iterations of CPM were run for each missingness
pattern to calculate the model performance and imputation accuracy as described above.
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2.9. Data availability statement

The data used in this study for inference and benchmarking are open-source: HCP
(https://db.humanconnectome.org), CNP
(https://openneuro.org/datasets/ds000030/versions/00016), and PNC
(https://www.ncbi.nIm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000607.v3.p2).
Imputation methods are available from R or scikit-learn. The CPM code can be found at
https://github.com/YaleMRRC/CPM.

3. Results
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Fig. 2. Prediction performance of models built on datasets with missing connectome data. The testing set
only includes subjects with complete data. Prediction performance of sex, age and fluid intelligence based on
data imputed using multiple imputation strategies in three datasets, including CNP, PNC and HCP. Stars above
the boxplots indicate a significantly higher prediction performance relative to complete-case analysis (p < 0.001).

3.1. Imputing missing connectomes improves prediction performance

Using real missing data, we investigated if imputing missing connectomes improves
prediction performance. Fig. 2 presents the prediction performance of phenotypic measures
(sex, age, 1Q) based on complete-case data and data imputed using multiple methods. Our
results demonstrate that imputing missing data can significantly improve prediction accuracy
compared to models built on complete data, in most cases. For sex classification, all models
achieved high accuracy (>0.9) across all three datasets. Imputation improved model
performance most significantly on CNP, where complete-case analysis had relatively low
accuracy (0.900+£0.008). However, for PNC and HCP datasets, where complete-case
analysis already achieved very high accuracy, data imputation only had a marginal effect on
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prediction. For age and fluid intelligence (IQ) prediction, imputation led to improved
performance in most cases, except for the HCP dataset. Task average imputation was found
to achieve the best performance among all imputation methods. However, the relative
performance of different imputation methods varies across datasets and prediction tasks.
Additionally, the impact of the feature selection threshold on different models is shown in Fig.
S2. Results indicated that after selecting enough features, the performance of models was
relatively stable across different methods. Notably, the results presented here were derived
from models where only subjects with complete data were included in the testing set. Our
sensitivity analysis including subjects with incomplete data yields similar findings (Fig. S3). In
some cases, the performance decline in comparison to complete-case analysis may be
attributed to the disproportionate missing of critical information in the subjects added to the
training set (Fig. S4).
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Fig. 3. Prediction performance of models built with subjects of simulated missing connectomes.

Prediction performance (\/@ ) of models predicting IQ using different missing data handling strategies as a
function of missingness rates p. Imputation accuracy (NRMSE) as a function of missingness rates p. The shadow
areas were 95% confidence intervals. The missing data were generated on the complete data in HCP through
random sampling (MCAR) or sampling.

3.2. Simulation to investigate the impact of missingness rates and mechanisms

We investigated the impact of missingness rates and mechanisms on imputation accuracy
and prediction performance using the HCP complete-case data. As shown in Fig. 3, all
imputation strategies demonstrate impaired prediction of IQ as missingness rates increase.
For MCAR, task average imputation outperformed other methods at high missingness rates,
while all methods had a similar performance at low rates. For MNAR, robust matrix
completion had the highest performance, while task average imputation performed the worst.
There was no significant difference in terms of imputation accuracy between the two missing
mechanisms. The accuracy of imputation methods in recovering connectome data
decreased with increasing missingness rates. Notably, task average imputation showed the
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worst performance in recovering connectome data. Robust matrix completion was the best
method for recovering connectome data for missingness rates below 0.4. However, it
showed impaired performance for missingness rates above 0.4.
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Fig. 4. Prediction performance of models built with HBN subjects with missing phenotypic measures. a)
Performance of predicting a single cognitive measure. b) Performance of predicting the first principal component
of ten cognitive measures.

3.3. Imputing missing phenotypic data improves prediction performance

In the HBN dataset, a substantial number of subjects have missing connectomes and
cognitive measures. Through imputation, we were able to rescue a number of subjects: 33
for CardSort, 34 for Flanker, and 42 for ProcSpeed. For predicting the first principal
component of ten cognitive measures, 195 subjects were rescued by imputing the missing
cognitive measures. Only subjects with missing data were included in the training set, and
the prediction performance was evaluated on the same testing set used for complete-case
analysis.

As depicted in Fig. 4a and b, imputing missing cognitive measures significantly improved the
prediction performance compared to complete-case analysis. Among the four imputation
methods used, mean imputation yielded the lowest prediction performance.
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Prediction performance (y/R2, ) of models using different missing data handling strategies as a function of
missingness rates p. Imputation accuracy (NRMSE) as a function of missingness rates p. The shadow areas
were 95% confidence intervals.

3.4. Simulation to investigate the impact of missingness rates in phenotypic measures

Using the 1Q data from the HCP, we conducted a simulation analysis to investigate the
impact of missingness rates on prediction performance. We observed a decrease in
prediction performance for all models as the missingness rate increased (Fig. 5). However,
three imputation methods, namely MissForest, ImputePCA, and PMM, outperformed the
complete-case analysis data, while mean imputation harmed prediction performance.
Notably, ImputePCA consistently achieved the highest imputation accuracy across all
missingness rates, followed by PMM and MissForest, whereas mean imputation had the
lowest imputation accuracy (Fig. 5). Unlike missing connectomes, we observed that methods
with higher imputation accuracy achieved better prediction performance simultaneously for
missing cognitive measures.
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Fig. 6. Prediction performance of models built with HBN subjects with both missing connectomes and
missing phenotypic measures. Missing connectomes were imputed using mean imputation and task average
imputation. Missing cognitive measures were imputed using MissForest, ImputePCA, and PMM. In this example,
we predicted the first principal component of ten cognitive measures from the HBN dataset.
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3.5. Imputing missing connectomes and missing phenotypic data to rescue the maximum
amount of data

Finally, we present a real-world example of the benefits of data imputation in predicting
cognition in the HBN dataset. In this example, we predicted the first principal component of
ten cognitive measures. The prediction performance in the complete case was 0.295+0.024.
628 subjects were rescued by imputing both the missing cognitive measures and
connectomes. For imputing missing connectome data, we employed two simple methods:
mean imputation and task average imputation. However, due to its inferior performance,
meaning imputation was not used for imputing missing cognitive measures. The prediction
performance was significantly greater when including the imputed data in the training set
(Fig. 6). The combination of task average imputation and MissForest achieved the highest
prediction performance (0.347+0.018). Overall, correlation between observed and predicted
was ~20% greater and explained variance was ~45% greater after including imputed data in
the training set.

4. Discussion

In this study, we investigated rescuing missing connectomes and behavioral measures in
connectome-based predictive modeling using data imputation. Rescued, imputed data were
used to increase the size of the training data. For missing connectomes, we evaluated the
effects of data imputation for predicting sex, age, fluid intelligence, and executive function on
three independent data sets with missing connectomes. Results show that imputing missing
data improved prediction performance over complete-case analysis. Moreover, simulation
analyses showed that imputation strategies that best recover missing data do not
necessarily signify better prediction performance, and the missing data mechanism affects
the performance of different imputation methods differently. For missing phenotypic
measures, improved performance over complete-case analysis was also achieved by most
imputation methods. Contrary to missing connectomes, imputation strategies with higher
accuracy achieved better model performance. In a real-world example, we show that
including imputed connectomes and cognitive data to increase training sample sizes can
significantly increase prediction performance for difficult to collect samples. Overall, our
results show the potential of imputation methods to address incomplete data for predictive
modeling.

4.1. Data imputation improves prediction performance

The contribution of our study is demonstrating that rescuing missing data with imputation
significantly improves model performance. In the case of missing connectomes, most
models built with incomplete data outperformed complete-case analysis. The improvement in
prediction performance scales with the proportion of data rescued. In the CNP and HBN
datasets, the prediction performance showed a more significant increase compared to PNC
and HCP, as the rescued data is relatively larger compared to the complete data. However,
the gains of including more subjects will be saturated when the prediction performance
reaches a certain level. Notably, simple imputation methods such as task average imputation
achieved the highest prediction performance in real missing data analysis. However, when
connectomes are deleted with a probability proportional to motion, task average imputation
failed to work. This result is because subjects with high motion tend to lose more
connectomes, which hinders the efficacy of imputation with the average across tasks.
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Our results have implications for connectome-based prediction research that integrates
multi-source information from distinct fMRI tasks. We showed that even leveraging simple
imputation strategies can significantly improve prediction performance. A possible
explanation for this result is that the intrinsic network structure, which is task-independent,
contributes the most predictive information (Cole et al., 2014; Fox et al., 2005; Geerligs et
al., 2015; Mill et al., 2017; Vincent et al., 2007). Moreover, recent years have witnessed the
increasing availability of large-scale open data cohorts such as UK Biobank (Sudlow et al.,
2015) and the Adolescent Brain Cognitive Development (ABCD) (Karcher and Barch, 2021),
which collected multimodal MRI data from tens of thousands of participants. In this context,
applying imputation strategies can facilitate the use of neuroimaging data to the greatest
extent possible and further accelerate the pace of establishing robust and generalizable
prediction models.

Robust matrix completion, which works by representing the original high-dimensional data
using low-rank approximation, ranks highest among all tested methods in PNC and second
in HCP and CNP for predicting fluid intelligence. This result lends support to the existence of
a low dimensional space across cognitive tasks (intrinsic brain information) that is
representative of the general information encoded in distinct fMRI tasks but highly
informative in characterizing individual differences in cognition and behavior (Breakspear,
2017; Fox and Raichle, 2007; Gao et al., 2021; Krienen et al., 2014; Mennes et al., 2013;
Shine et al., 2019).

All methods except mean imputation, which diminishes individual differences, outperformed
complete-case analysis in imputing missing behavioral measures. The auxiliary variables
used in the experiments are all cognitive ability measures that are correlated with each other
(Dubois et al., 2018). The effectiveness of using multiple cognitive measures accords with
the hypothesis that a general factor of intelligence could be derived from several cognitive
tasks through factor analysis (de la Fuente et al., 2021). It is also worth noting some similar
observations in meta-matching methods (He et al., 2022), which translate predictive models
from large-scale datasets to new unseen phenotypes in small-scale studies. In meta-
matching, prediction improvements were driven by correlations between training and test
meta-set phenotypes. In our case, the imputation accuracy of the target variable—in other
words, how well the target variable could be predicted by auxiliary variables—was highly
correlated with prediction improvements. The similarity is not surprising given that both
methods aim to include subjects with phenotypes correlated with the target phenotype for
model training.

4.2. Higher imputation accuracy does not guarantee higher prediction performance.

Imputation accuracy, the accuracy of estimating missing data, was generally considered the
gold standard for evaluating imputation methods (Lin and Tsai, 2020). However, our results
indicate that imputation strategies that can effectively estimate missing data do not
necessarily signify better prediction performance. Interestingly, our missing connectome
simulation achieved the highest prediction accuracy using the average connectome across
tasks. Nevertheless, this imputation strategy had the worst performance in recovering
connectome data. These findings gain support from other studies investigating the
relationship between imputation accuracy and prediction performance (Perez-Lebel et al.,
2022). They can be partially attributed to the fact that the information recovered by
imputation methods is not the most informative for prediction. In the case of connectomes
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with low signal-to-noise ratios (Vizioli et al., 2021), the methods with high imputation
accuracy might recover noise that harms the modeling building. However, in the case of
missing behavioral values (missing y), higher imputation accuracy corresponds to higher
prediction performance because noisy labels severely degrade the generalization
performance of machine learning models, especially when the sample size is small (Song et
al., 2022).

4 .3. Limitations and future directions

Several potential limitations should be acknowledged when interpreting the current findings.
First, we could not draw any clear conclusion about which imputation strategy is best for
recovering incomplete data for prediction. Indeed, given the complexities of the problem,
each method may only work for some conditions. However, our study provides preliminary
insight that even a simple imputation strategy can significantly improve prediction
performance and open up opportunities for future studies to integrate other imputation
methods into connectome-based prediction. Second, the impact of missingness mechanisms
was not considered in this pipeline. In neuroimaging studies, data are usually not missing
completely at random. The imputation process could also lead to bias toward a certain
subgroup of subjects (Groenwold and Dekkers, 2020; Jakobsen et al., 2017). For example,
head motion can sometimes predict certain phenotypes (Zeng et al., 2014), in which case
the missingness indicator provides predictive modeling information (Donders et al., 2006). A
crucial next step for research will be examining the potential impact of missing data
mechanisms and imputation methods on datasets with larger sample sizes like the UK
Biobank and ABCD. Third, the current study was performed in a functional connectome with
a high-dimension and multicollinear nature. It remains unclear to what extent the imputation
strategies work for other imaging modalities like structural MRI and DTI. In the next step of
our research, imputation methods for other imaging modalities will be developed and
examined. Finally, in neuroimaging studies, missing phenotypic measures are less common
since the cost of labeling data is much lower than that of acquiring imaging data. The
missingness could be caused by combining data from different studies. Typically, cases with
imputed y contain no information about the regression of y on X (Von Hippel, 2007).
Imputation is only worthwhile when there are auxiliary variables available.

5. Conclusion

In summary, we proposed a framework for CPM that rescues missing values in the imaging
data and behavioral measures with imputation techniques. The proposed method enables us
to harness the information of samples with missing data and achieve higher prediction
performance compared to complete-case analysis. Moreover, we aim to raise awareness of
the missing data problem in the neuroimaging community. Overall, our results suggest that
subjects with incomplete data are valuable for predictive modeling in neuroimaging studies
which are usually limited by the sample size.
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Fig. S1. Missingness of connectomes in the experimental datasets (HCP, PNC, CNP, HBN). The first row
shows the number of subjects that had missing connectome data for each task. The second row summarizes the
counts of subjects by the number of missing connectomes.
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Fig. S2. Prediction performance of IQ models built with subjects of missing connectomes given different
feature selection percentages.
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Fig. S3. Prediction performance of models built on datasets with missing connectome data. The testing
set includes subjects with missing connectome data. Prediction performance of sex, age and fluid intelligence
based on data imputed using multiple imputation strategies in three datasets, including CNP, PNC and HCP.
Stars above the boxplots indicate a significantly higher prediction performance relative to complete-case analysis
(p <0.001).
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Fig. S4. Effect of including more subjects with higher missingness on prediction performance (validated
using all data). We iteratively added subjects with higher missing connectome rates to investigate the impact of
including subjects with different missingness rates. a) The plots show the prediction performance as the function
of the number of subjects. Subjects with a higher rate of missing connectomes were incrementally added to the
complete-case data. The shaded areas were 95% confidence intervals. To investigate the reason for the initial
prediction performance decline in HCP dataset, we showed: b) The missingness pattern for subjects who missed
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one connectome. The bars show the counts of missing connectomes of each task. c) Prediction performance for
fluid intelligence using connectome data from each single fMRI task in HCP shown in boxplots. The model was
built using the complete-case data.
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