

1 2 Type 4 pili mediated natural competence in *Fusobacterium* 3 *nucleatum*

4
5 Blake E. Sanders^{1&}, Ariana Umana^{1&}, Tam T.D. Nguyen¹, Kevin J. Williams¹, Christopher C. Yoo¹, Michael A.
6 Casasanta¹, Bryce Wozniak¹, Daniel J. Slade^{1#}

7
8 ¹ Virginia Polytechnic Institute and State University, Department of Biochemistry, Blacksburg, VA, USA.

9 & These authors contributed equally.

10 # To whom correspondence should be addressed: Dr. Daniel J. Slade, Department of Biochemistry, Virginia
11 Polytechnic Institute and State University, Blacksburg, VA 24061. Telephone: +1 (540) 231-2842. Email:
12 dslade@vt.edu

13
14 **KEYWORDS:** *Fusobacterium*, *Fusobacterium nucleatum*, DNA methyltransferase, natural competence, Type IV Pili,
15 transformation, bacterial genetics

16 17 ABSTRACT

18 Many bacterial species naturally take up DNA from their surroundings and recombine it into their chromosome through
19 homologous gene transfer (HGT) to aid in survival and gain advantageous functions. Herein we present the first
20 characterization of Type 4 pili mediated natural competence in *Fusobacterium nucleatum*, which are Gram-negative,
21 anaerobic bacteria that participate in a range of infections and diseases including periodontitis, preterm birth, and
22 cancer. We bioinformatically identified components of the Type 4 conjugal pilus machinery and show this is a conserved
23 system within the *Fusobacterium* genus. We next validate Type 4 pili in natural competence in *F. nucleatum* strain
24 23726 and show that gene deletions in key components of pilus deployment (*pi/Q*) and cytoplasmic DNA import
25 (*comEC*) abolish DNA uptake and chromosomal incorporation. We next show that natural competence may require
26 native *F. nucleatum* DNA methylation to bypass restriction modification systems and allow subsequent genomic
27 homologous recombination. In summary, this proof of principle study provides the first characterization of natural
28 competence in *Fusobacterium nucleatum* and highlights the potential to exploit this DNA import mechanism as a
29 genetic tool to characterize virulence mechanisms of an opportunistic oral pathogen.

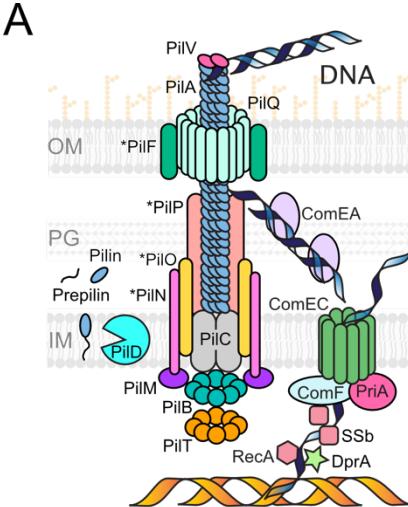
30 31 INTRODUCTION

32 A striking feature of bacteria is their ability to be genomic 'shape-shifters' capable of gaining and losing genes
33 in a systematic and regulated manner, which can drive evolution, adaptation to surroundings, and virulence^{1,2}.
34 Unfortunately, these methods also provide bacteria a way to acquire antibiotic resistance genes; an ever-increasing
35 problem associated with human pathogens³. Bacteria naturally accept DNA using three mechanisms: conjugation,
36 transduction (viral), and natural competence (NC)⁴. NC is a method in which bacteria import DNA from their
37 surroundings through the deployment of a surface exposed protein complex known as the Type 4 competence pilus.
38 Although NC is an important component of bacterial adaptation in native settings, it is often difficult to initiate in
39 laboratory settings and to date only ~80 different strains of bacteria have been confirmed to be naturally competent^{5,6}.
40 However, once harnessed, bacterial NC has proven to be an efficient means of genetic manipulation in the laboratory⁷,
41 especially in situations where the target bacterium has proven recalcitrant to other methods of DNA introduction
42 including chemotransformation, electroporation, sonoporation⁸, and conjugational transfer⁹.

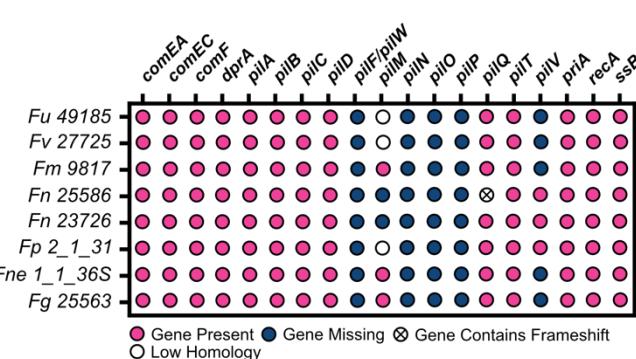
43 NC encompasses three major stages: (i) DNA uptake, (ii) recombination of homologous DNA onto the
44 chromosome, and (iii) expression of acquired genetic material. DNA uptake comprises the binding of external DNA to
45 the pilus through pilin proteins, followed by import of the DNA through a ratcheting mechanism that guides the DNA
46 through the outer membrane and into the periplasm in Gram-negative bacteria where it is unwound into single-stranded
47 DNA (ssDNA) while being delivered to the cytoplasmic membrane¹⁰. The second step of NC involves the translocation
48 of ssDNA across the cytoplasmic membrane. This process is highly conserved among both Gram-negative and Gram-
49 positive bacteria and is mediated by a cytoplasmic membrane channel (ComEC/ComA) and other cytoplasmic proteins
50 found in all known competent bacteria¹¹.

51 A barrier to efficient transformation of exogenous DNA is the presence of restriction modification (R-M) systems
52 which consist of strain specific DNA methyltransferases (DMTase) that mark DNA as 'self', as well as nucleases that
53 recognize and cleave entering DNA that has non-native methylation patterns, which is considered foreign and a threat
54 to genome integrity¹². These systems have previously been overcome by using native DMTases to imitate the
55 methylation pattern of the host bacteria, thereby bypassing the R-M system nucleases and continuing on to
56 incorporation into the genome¹³. This approach was recently utilized by our lab to greatly enhance gene knockout and

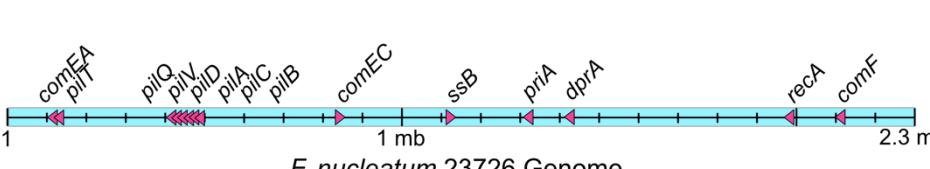
60 complementation in *F. nucleatum*¹⁴. Previous studies have shown that not only must the imported DNA have high
61 homology to the accepting organism for chromosomal incorporation through homologous recombination, but it may
62 also require specific DNA methylation patterns for recognition and import¹⁵, as well as protection from nucleases during
63 and after chromosomal incorporation¹⁶⁻¹⁸.

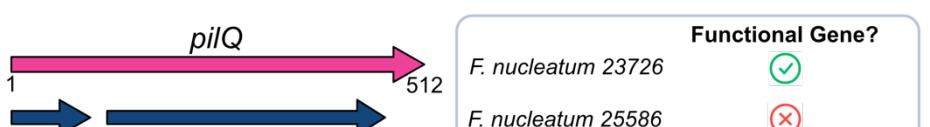

64 Prior to the work presented here, there has been only one report mentioning any prediction of Type 4 pili in
65 *Fusobacterium* by Desvaux et al, which reported the initial identification and investigation into Type 4 pili in
66 *Fusobacterium* through a bioinformatic analysis of the protein secretion systems in *F. nucleatum* subsp. *nucleatum*
67 25586 (*F. nucleatum* 25586)¹⁹. Our bioinformatic analysis expanded upon this investigation to identify a full repertoire
68 of Type 4 pili assembly genes present in multiple *Fusobacterium* species. We next set out to determine if
69 *Fusobacterium* are naturally competent, with a focus on *F. nucleatum* subsp. *nucleatum* 23726 (*F. nucleatum* 23726).
70 Our results show that *F. nucleatum* 23726 is naturally competent and that using native DMTase modification of genomic
71 and plasmid DNA is critical for transformation and incorporation of genetic elements onto the chromosome. We show
72 that this process is Type 4 pili dependent as knocking out genes critical for deployment of the pilus through the outer
73 membrane (*pilQ*) and import of DNA into the cytoplasm (*comEC*) abolishes NC. We show that both chromosomal and
74 plasmid DNA is imported by pili and upon further development and investigation could lead to a new method for genetic
75 manipulation in *F. nucleatum*.

76
77 **RESULTS**


78 **Bioinformatic analysis reveals conservation of natural competence genes in *Fusobacterium*.**

80 Previous genomic analyses of *F. nucleatum* 25586 revealed some of the genes encoding the machinery required for
81 the Type 4
82 pilin/fimbriation
83 secretion system
84 including homologs of
85 *PilD*, *PilC*, *PilB*, *PilQ*,
86 and *PilT*¹⁹. However,
87 questions remained
88 on whether these
89 genes belonged to a
90 Type 4 protein
91 secretion system,
92 Type 4 pili mediated
93 natural competence
94 system, or a Type 2
95 protein secretion
96 system. Using
97 *Fusobacterium*
98 genomes present in
99 the FusoPortal
100 database^{20,21}, we
101 uncovered a repertoire
102 of genes associated
103 with the Type 4
104 pilin/fimbriation
105 system (Fig. 1A,B),
106 and we note their
107 genome location in *F.*
108 *nucleatum* 23726 (Fig.
109 1C). Interestingly, this
110 appears to be a
111 minimalist system that
112 is missing genes that
113 were deemed
114 necessary for the
115 natural competence
116 machinery in other
117 bacteria. For example,
118 the five known
119


A


B

C

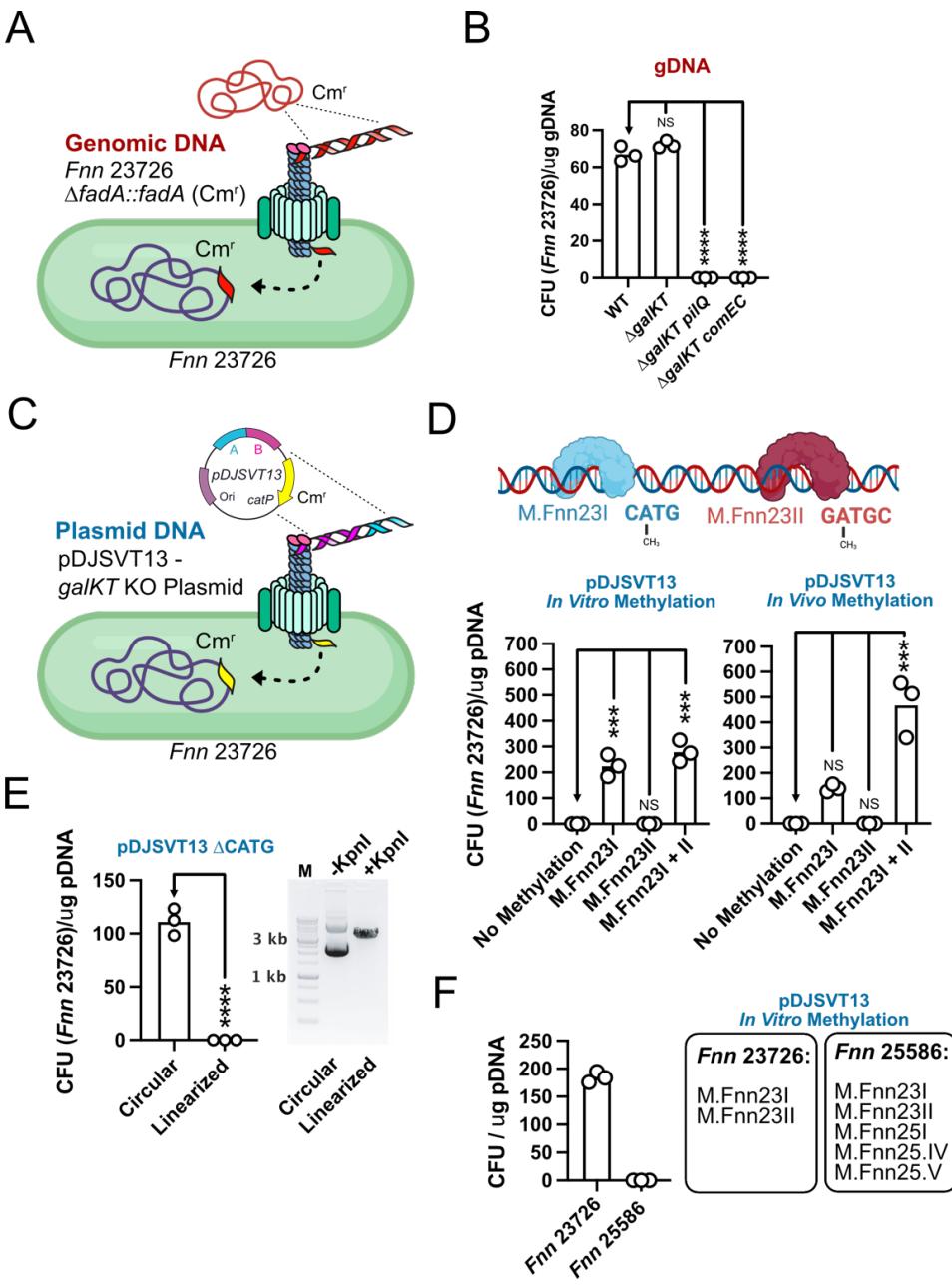

D

Figure 1. Bioinformatic analysis of *Fusobacterium* Type 4 pili components. (A) Schematic of Type 4 pili proteins identified in *F. nucleatum* and their proposed assembly based on the characterization of Type 4 pili in other bacteria. * Stars on proteins in the schematic indicate that *Fusobacterium* do not contain these genes. **(B)** Identification of Type 4 pilus genes in seven species of *Fusobacterium* that covers 8 strains. **(C)** Chromosomal location of pilus genes in the strain *F. nucleatum* subsp. *nucleatum* 23726. **(D)** Analysis of the *pilQ* genes in *F. nucleatum* 23726 and *F. nucleatum* 25586, showing a frame shift creating an inactive pilus protein in *F. nucleatum* 25586. *Fu*: *Fusobacterium ulcerans*; *Fv*: *Fusobacterium varium*; *Fm*: *Fusobacterium mortiferum*; *Fn*: *Fusobacterium nucleatum*; *Fp*: *Fusobacterium periodonticum*; *Fne*: *Fusobacterium necrophorum*; *Fg*: *Fusobacterium gondiiformans*.

120 components of the Type IV pilus
 121 competency machinery that were
 122 lacking in *F. nucleatum* include
 123 PilF, an outer membrane
 124 lipoprotein essential for
 125 biogenesis and localization of the
 126 secretin, and PilM, PilN, PilO, and
 127 PilP; four proteins found to make
 128 up the inner membrane pilus
 129 subcomplex. The functional roles
 130 of the inner membrane
 131 associated proteins of the Type
 132 IV pilus are not as well defined as
 133 other components of the system.
 134 According to co-fractionation
 135 data and protein stability
 136 phenotypes, PilM, PilN, PilO, and
 137 PilP are predicted to form an
 138 inner membrane subcomplex that
 139 could be involved in aligning the
 140 outer membrane secretin with the
 141 pilus assembly machinery²². In
 142 the well-studied Gram-negative
 143 pathogen, *Pseudomonas*
 144 *aeruginosa*, PilP is suggested to
 145 bridge the inner and outer
 146 membrane complexes, forming a
 147 continuous channel across the
 148 periplasm through which the pilus
 149 can efficiently extend and
 150 retract²³. This arrangement would
 151 guarantee that the pore formed
 152 by PilQ, the secretin, is aligned
 153 with the inner membrane
 154 complex and the cytoplasmic
 155 ATPases involved in pilus
 156 movement²³. Although *F.*
 157 *nucleatum* lacks these important
 158 structural components, we show
 159 below that *F. nucleatum* Type IV
 160 pili-mediated NC does not require
 161 these proteins for transfer of
 162 exogenous DNA. Examination of
 163 the other proteins of this
 164 seemingly novel and minimalistic
 165 competence machinery is
 166 warranted to understand their
 167 functions in *Fusobacterium*
 168 horizontal gene transfer.

169 Next, we discovered that
 170 the *pilQ* gene in *F. nucleatum*
 171 25586 contains a frameshift that
 172 divides the gene, which would
 173 make it unable to deploy pili for
 174 DNA import (Fig. 1D), rendering
 175 this strain naturally incompetent
 176 as we highlight experimentally.
 177 Genes highlighted in Figure 1B
 178 are detailed in Table S1.
 179

Figure 2. *Fusobacterium nucleatum* utilize Type 4 pili for natural competence of genomic and plasmid DNA. (A) Schematic of genomic DNA uptake of a chloramphenicol marked chromosome from *F. nucleatum* 23726 taken up by the same wild-type strain. (B) *F. nucleatum* 23726 can import and chromosomally incorporate exogenous genomic DNA from the same species. Mutations in *pilQ* and *comEC* abolish natural competence. (C) Schematic of plasmid DNA uptake and chromosomal incorporation by *F. nucleatum* 23726, resulting in chloramphenicol resistant bacteria. (D) Plasmid DNA incorporation onto the chromosome of *F. nucleatum* 23726 is DNA methylation dependent and works by methylating plasmids *in vitro* (purified enzymes *M.Fnn23I*, *M.Fnn23II*) and *in vivo* (*E. coli* expressing *M.Fnn23I*, *M.Fnn23II*, or both). (E) *F. nucleatum* 23726 are naturally competent of the plasmid *pDJSVT13* lacking the sequence CATG, which is methylated by *M.Fnn23I*. Linearization of plasmid abolishes import and/or chromosomal incorporation. (F) *F. nucleatum* 25586 is not naturally competent for plasmid DNA (truncated *pilQ* gene), even after treating with five native DNA methyltransferases that were previously used to enable transformation by electroporation. Statistical values are as follows: ns (not significant), P<0.05,*, P<0.05,**, P<0.01,***, P<0.001,****, P<0.0001. For panels B and D data, we used a two-way ANOVA. Panel E used a one-way ANOVA.

180

181 Type 4 pili mediated import and chromosomal incorporation of *F. nucleatum* genomic DNA.

182

183 Our initial experiment was to determine if chromosomal DNA marked with the chloramphenicol resistance gene *catP*
184 (*F. nucleatum* 23726 $\Delta galKT$ *fadA*::FLAG-*fadA* (Cm^r) could be imported by wild-type *F. nucleatum* 23726 and *F.*
185 *nucleatum* 23726 $\Delta galKT$ and be incorporated into the genome as determined by the presence of new thiamphenicol
186 resistant *F. nucleatum* 23726 (Fig. 2A)²⁴. As shown in Figure 2B, incubating 5 μ g of antibiotically marked chromosomal
187 DNA results in colonies for both *F. nucleatum* 23726 and *F. nucleatum* 23726 $\Delta galKT$, but not strains that lack *pilQ* (*F.*
188 *nucleatum* 23726 $\Delta galKT$ *pilQ*) and *comEC* (*F. nucleatum* 23726 $\Delta galKT$ *comEC*). Details of the gene deletion method
189 for *pilQ* and *comEC* are provided in detail in Figure S1.

190

191 These experiments were first tested with exponential phase bacteria (OD₆₀₀=0.5), which serendipitously proved
192 to be the optimal OD₆₀₀ for natural competence in *F. nucleatum* 23726. We next optimized natural competence
193 parameters for *F. nucleatum* 23726 (Fig. S2) and show that bacteria grown to an OD₆₀₀=0.5 that are incubated with 5
194 μ g of DNA for 4-hours produces the highest efficiency for chromosomal incorporation. These parameters were used
195 for all experiments in this manuscript unless otherwise specified. Worth noting, we did try overnight, stationary phase
196 bacteria for natural competence studies, but did not find this method successful. We highlight in the discussion that we
197 did not exhaust all options for growth conditions and other factors to test natural competence that have proven
198 successful in other bacteria.

199

200 Native *F. nucleatum* methylation is critical for transformation of plasmid DNA.

201

202 Initial NC assays incubated with cloning shuttle vector plasmid DNA (pDJSVT13, homologous regions surrounding the
203 genes *galK* and *galT*) were unsuccessful in uptake and integration (Fig. 2C,D). Since our initial experiment of using
204 genomic DNA for natural competence was successful, and knowing genomic DNA contains native methylation patterns,
205 we hypothesized that DNA import or protection from nuclease digestion could be methylation dependent. Therefore,
206 we methylated pDJSVT13 with the *F. nucleatum* DMTases M.Fnn23I (CA^mTG) and M.Fnn23II (GA^mTGC) and show
207 that this enables natural competence and incorporation of this plasmid onto the chromosome (Fig 2D)¹⁴. As some
208 bacteria require a specific sequence to be methylated for DNA recognition, binding, and uptake (*Campylobacter jejuni*:
209 RAATTY sequence)¹⁵, we deleted the key methylation sequence (CA^mTG) from pDJSVT13 to determine if this
210 sequence was needed for uptake. We prove that this sequence is not required for uptake as the pDJSVT13 Δ CATG
211 plasmid, without *F. nucleatum* methylation is imported and chromosomally integrated (Fig. 2E). As many bacteria can
212 take up linear DNA (Linearized plasmid, PCR products), we linearized pDJSVT13 Δ CATG and show that this abolishes
213 either DNA uptake and/or chromosomal integration. Thus, we hypothesize that the role of DNA methyltransferases in
214 *Fusobacterium*, as with many other bacteria, is to protect DNA to circumvent R-M systems in homologous strains and
215 not for pilus recognition and DNA import.

216

217 To round out the study, we show that *F. nucleatum* 25586, which contains a frameshift in *pilQ* (Fig. 1D), is not
218 naturally competent (Fig 2F). This experiment methylated pDJSVT13 with five *F. nucleatum* DNA methyltransferases
219 (M.Fnn23I, M.Fnn23II, M.Fnn25I, M.Fnn25IV, M.Fnn25V) that were previously shown to be necessary for plasmid
220 protection during electroporation and development of a genetic system in *F. nucleatum* 25586^{14,24}. Nevertheless, this
221 did not make *F. nucleatum* 25586 take up the DNA, supporting our hypothesis that this strain is not naturally competent
222 because it cannot deploy a functional pilus to bind and import DNA in the absence of the outer membrane channel
223 formed by PilQ.

224

225 DISCUSSION

226

227 In this study we show that *Fusobacterium nucleatum* uses Type IV pili mediated natural competence for DNA import
228 and horizontal gene transfer. We bioinformatically identified components of the DNA uptake machinery and discovered
229 that *F. nucleatum* 23726 was able to take up genomic DNA containing a *catP* gene (chloramphenicol resistance), and
230 subsequently induce horizontally transfer of this gene to the chromosome of the wild-type strain. We next show that
231 native DNA methylation is critical, potentially even necessary, to bypass R-M system cleavage of entering DNA during
232 homologous recombination onto the chromosome. We finally show that DNA methylation is not necessary for pilus
233 recognition and DNA import as deletion of the dominant methylation sequence (CA^mTG) from our knockout plasmid
234 allowed horizontal gene transfer in the absence of DNA methylation. As the importance of DNA methylation for NC
235 was previously reported for *Helicobacter pylori*, *Pseudomonas stutzeri*, *C. jejuni*, *Neisseria meningitis*, and most
236 recently the ESKAPE pathogen *Acinetobacter baumannii*²⁵, this could indicate that horizontal gene transfer in
237 *Fusobacterium* will likely only occur between bacteria that share similar methylation patterns, making epigenomic
238 homology a key future direction to study to utilize natural competence for molecular genetic applications across
239 *Fusobacterium* species.

240

241 To prove this natural competence was Type 4 pili mediated, we show that the pilus proteins PilQ and ComEC
242 are essential for import and translocation of DNA as gene deletions rendered these strains incapable of DNA import.

240 Since the Type 4 pilus in *Fusobacterium* appears to be a minimalist system that lacks key proteins involved in pilus
241 formation, it presents a future direction to study the mechanisms of natural competence in an emerging 'oncomicrobe'.
242 Interestingly, as *Fusobacterium* is a non-motile bacterium²⁶, the lack of the PilMNOPQ complex within the Type 4 pilus
243 could explain why *Fusobacterium* do not display twitching motility, which is attributed to these proteins in *Pseudomonas*
244 *aeruginosa*²². Another component of the *Fusobacterium* Type IV pilus system that is of interest is the minor pilin subunit,
245 PilV. Our bioinformatic analysis revealed that only *F. nucleatum* 23726, *F. nucleatum* 25586, and *F. periodonticum*
246 2_1_31 contained the minor pilin subunit. Minor pilins have been shown to play crucial roles in the uptake process of
247 exogenous DNA. The minor pilin of *N. meningitidis*, ComP, has been shown to mediate DNA binding to pili, by
248 recognizing a specific DNA uptake sequence (DUS)²⁷. In addition, recent structural studies of *T. thermophilus* minor
249 pilin, ComZ, revealed two major domains, where one showed involvement in DNA binding²⁸. Future studies
250 characterizing strains of *Fusobacterium* that lack minor pilin genes will be critical to determine the role of minor pilins
251 in DNA uptake during NC.

252 The repertoire of NC genes are often not constitutively expressed but rather only switched on during certain
253 growth phases or in response to environmental stimuli²⁵. Known inducers of competence in other bacteria include high
254 cell density, antibiotic stress, DNA damage, and starvation²⁵. We show that *F. nucleatum* NC to be most efficient during
255 exponential phase growth. However, future studies investigating induction of NC in *F. nucleatum* during different growth
256 phases, including adding DNA directly to colonies on a plate, could be beneficial for increasing NC efficiency if the
257 development of molecular genetic tools is desired. Finally, considering the vast differences in *Fusobacterium* genotypes
258 and phenotypes, it may be that each species, subspecies, or even strains of bacteria could have specific requirements
259 for the induction of natural competence.

260 In conclusion, we report the first characterization of Type 4 pili mediated natural competence in *F. nucleatum*
261 and show conservation of this system among the *Fusobacterium* genus. This proof of principle study provides a starting
262 foundation for further exploitation of NC as genetic tool for investigating the role of virulence in *F. nucleatum*.
263
264

265 MATERIALS AND METHODS

266 Bacterial Strains and Growth Conditions

267 *F. nucleatum* strains ATCC 23726 and 25586 were cultured on solid agar plates made with Columbia Broth (Gibco)
268 substituted with hemin (5 µg/mL) and menadione (0.5 µg/mL) (CBHK) under anaerobic conditions (90% N₂, 5% H₂, 5%
269 CO₂) at 37 °C. Liquid cultures started from single colonies were grown in CBHK media under the same conditions. For
270 plasmid DNA production, *E. coli* strains were grown aerobically overnight at 37 °C in LB (15 g/L NaCl, 15 g/L tryptone,
271 10 g/L yeast extract). Antibiotics were used where appropriate in the following concentrations: chloramphenicol
272 10 µg/mL, carbenicillin 100 µg/mL, thiampenicol 5 µg/mL (CBHK plates) and 2.5 µg/mL (CBHK broth). All bacteria
273 strains and plasmids used in these studies are presented in **Table S2** and **S4**, respectively.

274 Construction of Δ pilQ and Δ comEC Mutants

275 A galactose-selectable gene deletion system developed in our lab was utilized to create markerless gene knockouts
276 of *pilQ* and *comEC* (**Fig. S1**). Briefly, 750 bp directly upstream and downstream of *pilQ* and *comEC* were amplified by
277 PCR, making complementary fragments fused by OLE-PCR. This product was ligated into a cloning shuttle vector
278 using KpnI/MluI restriction sites. This vector was then electroporated (2.5 kV, 50 µF capacitance, 360 OHMS
279 resistance) into competent *F. nucleatum* 23726 Δ galKT and selected on thiampenicol (single-crossover homologous
280 recombination), followed by selection on solid media containing 3% galactose which produces either complete gene
281 deletions or wild-type bacteria revertants through double-crossover homologous recombination. Gene deletions were
282 verified by PCR, RT-PCR, and sequencing (**Figure S1**). All primers were ordered from IDT DNA (**Table S3**).
283
284

285 RNA Extraction and RT-PCR

286 *F. nucleatum* cultures were grown to stationary phase and pelleted by high-speed centrifugation (12,000 x g, for 3
287 minutes at room temperature). TRIzol Extraction Isolation of total RNA was performed following manufacturer's
288 instructions (Invitrogen). Briefly, cell pellets were resuspended in 1 mL of TRIzol reagent (Invitrogen) and 0.2 mL of
289 chloroform was added. Solution was centrifuged for 15 minutes at 12,000 x g, at 4 °C. The RNA-containing aqueous
290 phase was collected, and the RNA precipitated after 500 µL of isopropanol had been added. The RNA pellet was then
291 washed with 75% ethanol and centrifuged at 10,000 x g, for 5 minutes at 4°C. After drying at room temperature for 10
292 minutes, the RNA pellet was resuspended in 30 µL sterile RNase-free water and solubilized by incubating in a water
293 bath at 55 °C for 10 minutes. Total RNA was quantified using Qubit™ RNA HS Assay Kit (ThermoFisher). Before
294 reverse transcriptase (RT)-PCR, RNA samples were subjected to DNase treatment. Briefly, 500 ng of total RNA was
295 incubated with DNase I (Invitrogen) for 2 hours at 37 °C. Following treatment, DNase I was inactivated using EDTA
296 and heating mixture for 5 minutes at 65 °C. (RT)-PCR was performed using the Takara PrimeScript™ One Step RT-
297 PCR Kit according to the manufacturer's instructions. The PCR conditions consisted of reverse transcription for 30
298 minutes at 50°C, initial denaturation for 2 minutes at 94 °C, followed by 30 cycles (30 sec at 94 °C, 30 sec at 50-62 °C,
299

300 and 30 sec at 68 °C) and elongation at 68 °C for 1 minutes. The expected bands around 250 bp was confirmed on a
301 1.5% agarose gel. Specific primers to detect knockout of gene and validate intact genes upstream and downstream of
302 the gene of interest (**Table S3**) were used to amplify from RNA extracts.
303

304 **DNA extraction**

305 Genomic DNA was purified from 3 mL of stationary phase *F. nucleatum* $\Delta fadA::fadA$ Cm^r cultures using Wizard®
306 Genomic DNA Purification Kit (Promega) and quantified using a Nanodrop spectrophotometer. Plasmid pDJSVT13
307 (*galKT* gene deletion plasmid) was purified from overnight co-expression of in *E. coli* TOP10 cells containing pDJSVT26
308 that expresses the Type II methyltransferases M.Fnn23I and M.Fnn23II. Both methylated plasmids were purified
309 together using EZ-10 Spin Column Plasmid Miniprep Kit (BioBasic). The pDJSVT26 plasmid, which confers ampicillin
310 resistance, was not separated from pDJSVT13 before adding to *F. nucleatum* 23726 for NC assays.
311

312 ***In vitro* plasmid methylation with M.Fnn25I, M.Fnn25IV, and M.Fnn25V**

313 For studies involving the strain *F. nucleatum* 25586, pDJSVT13, which was previously methylated *in vivo* in *E. coli* by
314 enzymes M.Fnn23I and M.Fnn23II, was incubated with 1 μ M each of purified M.Fnn25I, M.Fnn25IV, and M.Fnn25V
315 for two hours at 37 °C in CutSmart buffer (NEB) containing 160 μ M S-adenosylmethionine (SAM: NEB). This five-
316 enzyme methylation cocktail was previously necessary to achieve genetic alteration in the strain as described in Umaña
317 et al¹⁴.
318

319 **Linearization of plasmid DNA**

320 Miniprep plasmid DNA was digested with restriction enzyme KpnI following manufacturer's instructions (New England
321 Biolabs). After two hours at 37 °C, miniprep plasmid DNA was subjected to heat inactivation at 80 °C for 20 minutes.
322 Plasmid DNA digests were run on 1% agarose gel at 105V for 50 minutes to determine successful digestion (**Fig. 2E**)
323 before continuing to natural competence experiments with *F. nucleatum* 23726.
324

325 **Natural Competence Assays**

326 A single colony was used to start overnight cultures of *F. nucleatum*. Stationary phase cultures were back diluted to
327 OD₆₀₀= 0.1 in 3 mL of Columbia Broth supplemented with hemin and vitamin K (CBHK) and grown to exponential phase
328 (OD₆₀₀= 0.5). 200 μ L of cells were then transferred to 1.7mL microcentrifuge tubes. Unless indicated otherwise, 5 μ g
329 of DNA (genomic or plasmid) was added to the tubes, and the cultures were incubated for 4 hours at 37 °C under
330 anaerobic conditions (90% N₂, 5% CO₂, 5% H₂). The number of transformants was determined through plating on
331 CBHK plates supplemented with 5 μ g/mL thiamphenicol. Colony counts were analyzed after 48 hours of growth on
332 selection media. As labeled on the Y-axis of **Figure 2**, we report the number of transformants per microgram of DNA
333 from each 200 μ L reaction.
334

335 **Statistics**

336

337 All statistical analyses were performed in GraphPad Prism version 9. For single analysis, one-way analysis of variance
338 (ANOVA) was used. For grouped analyses, two-way analysis of variance (ANOVA) was used. In each case, the
339 following P values correspond to symbols in figures: ns (not significant), P > 0.05, *, P < 0.05; **, P < 0.01; ***, P < 0.001;
340 ****, P < 0.0001. To obtain statistics, all studies were performed as three independent biological experiments. For all
341 experiments in which statistical analysis was applied, an n= 3 of independent experiments was used.
342

343 **Data Availability**

344

345 Data is available upon reasonable request.
346

347

348 **Acknowledgements**

349 We would like to thank the Fralin Life Science Institute at Virginia Tech (Slade), and the USDA National Institute of
350 Food and Agriculture (Slade) for funding. We thank the following individuals for help and guidance with these studies:
351 Dr. Vic DiRita for critical insights into natural competency.
352

353 **Declaration of Interests**

354 The authors declare that they have no conflicts of interest with the contents of this article.
355

356

357 **Author Contributions**

358 Blake E. Sanders; data curation, methodology, formal analysis, writing-original draft, review and editing: Ariana Umana;
359 data curation, methodology, formal analysis, writing-original draft, review and editing: Tam T.D. Nguyen; data curation,
methodology, formal analysis, review and editing: Kevin J. Williams; data curation, writing-review and editing:

360 Christopher C. Yoo: data curation, writing-review and editing: Michael A. Casasanta; data curation, writing-review and
361 editing: Bryce Wozniak; data curation, writing-review and editing: Daniel J. Slade: conceptualization, data curation,
362 formal analysis, supervision, funding acquisition, validation, methodology, project administration, writing-original draft,
363 review and editing.

364

365 **Author ORCIDs**

366 Blake E. Sanders: <https://orcid.org/0000-0002-5841-122X>
367 Ariana Umana: <https://orcid.org/0000-0002-1941-8656>
368 Tam T.D. Nguyen: <https://orcid.org/0000-0002-2507-8678>
369 Kevin J. Williams: <https://orcid.org/0000-0002-1713-4297>
370 Christopher C. Yoo: <https://orcid.org/0000-0003-0274-7960>
371 Michael A. Casasanta: <https://orcid.org/0000-0001-6614-9623>
372 Bryce Wozniak: <https://orcid.org/0000-0001-7229-3365>
373 Daniel J. Slade: <https://orcid.org/0000-0001-5634-7220>

374

375

376 **Supplemental Material**

377 Available online as a dedicated file.

378

379 **REFERENCES**

380

- 381 1 Redfield, R. J. Genes for breakfast: the have-your-cake-and-eat-it-too of bacterial transformation. *J Hered* **84**, 400-404 (1993). <https://doi.org/10.1093/oxfordjournals.jhered.a111361>
- 382 2 Michod, R. E., Bernstein, H. & Nedelcu, A. M. Adaptive value of sex in microbial pathogens. *Infect Genet Evol* **8**, 267-285 (2008). <https://doi.org/10.1016/j.meegid.2008.01.002>
- 383 3 Darby, E. M. *et al.* Molecular mechanisms of antibiotic resistance revisited. *Nat Rev Microbiol* **21**, 280-295 (2023). <https://doi.org/10.1038/s41579-022-00820-y>
- 384 4 Sun, D. Pull in and Push Out: Mechanisms of Horizontal Gene Transfer in Bacteria. *Front Microbiol* **9**, 2154 (2018). <https://doi.org/10.3389/fmicb.2018.02154>
- 385 5 Johnston, C., Martin, B., Fichant, G., Polard, P. & Claverys, J. P. Bacterial transformation: distribution, shared mechanisms and divergent control. *Nat Rev Microbiol* **12**, 181-196 (2014). <https://doi.org/10.1038/nrmicro3199>
- 386 6 Dubnau, D. Genetic competence in *Bacillus subtilis*. *Microbiol Rev* **55**, 395-424 (1991). <https://doi.org/10.1128/mr.55.3.395-424.1991>
- 387 7 Marvig, R. L. & Blokesch, M. Natural transformation of *Vibrio cholerae* as a tool--optimizing the procedure. *BMC Microbiol* **10**, 155 (2010). <https://doi.org/10.1186/1471-2180-10-155>
- 388 8 Han, Y. W., Ikegami, A., Chung, P., Zhang, L. & Deng, C. X. Sonoporation is an efficient tool for intracellular fluorescent dextran delivery and one-step double-crossover mutant construction in *Fusobacterium nucleatum*. *Appl Environ Microbiol* **73**, 3677-3683 (2007). <https://doi.org/10.1128/AEM.00428-07>
- 389 9 Aune, T. E. & Aachmann, F. L. Methodologies to increase the transformation efficiencies and the range of bacteria that can be transformed. *Appl Microbiol Biotechnol* **85**, 1301-1313 (2010). <https://doi.org/10.1007/s00253-009-2349-1>
- 390 10 Matthey, N. & Blokesch, M. The DNA-Uptake Process of Naturally Competent *Vibrio cholerae*. *Trends Microbiol* **24**, 98-110 (2016). <https://doi.org/10.1016/j.tim.2015.10.008>
- 391 11 Kruger, N. J. & Stingl, K. Two steps away from novelty--principles of bacterial DNA uptake. *Mol Microbiol* **80**, 860-867 (2011). <https://doi.org/10.1111/j.1365-2958.2011.07647.x>
- 392 12 Koonin, E. V., Makarova, K. S. & Wolf, Y. I. Evolutionary Genomics of Defense Systems in Archaea and Bacteria. *Annu Rev Microbiol* **71**, 233-261 (2017). <https://doi.org/10.1146/annurev-micro-090816-093830>
- 393 13 Zhang, G. *et al.* A mimicking-of-DNA-methylation-patterns pipeline for overcoming the restriction barrier of bacteria. *PLoS Genet* **8**, e1002987 (2012). <https://doi.org/10.1371/journal.pgen.1002987>
- 394 14 Umana, A. *et al.* Enhanced *Fusobacterium nucleatum* Genetics Using Host DNA Methyltransferases To Bypass Restriction-Modification Systems. *J Bacteriol* **204**, e0027922 (2022). <https://doi.org/10.1128/jb.00279-22>

415 15 Beauchamp, J. M., Leveque, R. M., Dawid, S. & DiRita, V. J. Methylation-dependent DNA
416 discrimination in natural transformation of *Campylobacter jejuni*. *Proc Natl Acad Sci U S A* **114**,
417 E8053-E8061 (2017). <https://doi.org/10.1073/pnas.1703331114>

418 16 Humbert, O. & Salama, N. R. The *Helicobacter pylori* HpyAXII restriction-modification system limits
419 exogenous DNA uptake by targeting GTAC sites but shows asymmetric conservation of the DNA
420 methyltransferase and restriction endonuclease components. *Nucleic Acids Res* **36**, 6893-6906
421 (2008). <https://doi.org/10.1093/nar/gkn718>

422 17 Holt, J. P., Grant, A. J., Coward, C., Maskell, D. J. & Quinlan, J. J. Identification of Cj1051c as a
423 major determinant for the restriction barrier of *Campylobacter jejuni* strain NCTC11168. *Appl Environ
424 Microbiol* **78**, 7841-7848 (2012). <https://doi.org/10.1128/AEM.01799-12>

425 18 Berndt, C., Meier, P. & Wackernagel, W. DNA restriction is a barrier to natural transformation in
426 *Pseudomonas stutzeri* JM300. *Microbiology (Reading)* **149**, 895-901 (2003).
427 <https://doi.org/10.1099/mic.0.26033-0>

428 19 Desvaux, M., Khan, A., Beatson, S. A., Scott-Tucker, A. & Henderson, I. R. Protein secretion systems
429 in *Fusobacterium nucleatum*: genomic identification of Type 4 piliation and complete Type V
430 pathways brings new insight into mechanisms of pathogenesis. *Biochim Biophys Acta* **1713**, 92-112
431 (2005). <https://doi.org/10.1016/j.bbamem.2005.05.002>

432 20 Sanders, B. E., Umana, A., Lemkul, J. A. & Slade, D. J. FusoPortal: an Interactive Repository of
433 Hybrid MinION-Sequenced *Fusobacterium* Genomes Improves Gene Identification and
434 Characterization. *mSphere* **3** (2018). <https://doi.org/10.1128/mSphere.00228-18>

435 21 Todd, S. M., Settlage, R. E., Lahmers, K. K. & Slade, D. J. *Fusobacterium* Genomics Using MinION
436 and Illumina Sequencing Enables Genome Completion and Correction. *mSphere* **3** (2018).
437 <https://doi.org/10.1128/mSphere.00269-18>

438 22 Ayers, M. *et al.* PilM/N/O/P proteins form an inner membrane complex that affects the stability of the
439 *Pseudomonas aeruginosa* type IV pilus secretin. *J Mol Biol* **394**, 128-142 (2009).
440 <https://doi.org/10.1016/j.jmb.2009.09.034>

441 23 Tammam, S. *et al.* Characterization of the PilN, PilO and PilP type IVa pilus subcomplex. *Mol
442 Microbiol* **82**, 1496-1514 (2011). <https://doi.org/10.1111/j.1365-2958.2011.07903.x>

443 24 Casasanta, M. A. *et al.* *Fusobacterium nucleatum* host-cell binding and invasion induces IL-8 and
444 CXCL1 secretion that drives colorectal cancer cell migration. *Sci Signal* **13** (2020).
445 <https://doi.org/10.1126/scisignal.aba9157>

446 25 Vesel, N., Iseli, C., Guex, N., Lemopoulos, A. & Blokesch, M. DNA modifications impact natural
447 transformation of *Acinetobacter baumannii*. *Nucleic Acids Res* (2023).
448 <https://doi.org/10.1093/nar/gkad377>

449 26 Ang, M. Y. *et al.* Comparative Genome Analysis of *Fusobacterium nucleatum*. *Genome Biol Evol* **8**,
450 2928-2938 (2016). <https://doi.org/10.1093/gbe/evw199>

451 27 Cehovin, A. *et al.* Specific DNA recognition mediated by a type IV pilin. *Proc Natl Acad Sci U S A*
452 **110**, 3065-3070 (2013). <https://doi.org/10.1073/pnas.1218832110>

453 28 Salleh, M. Z. *et al.* Structure and Properties of a Natural Competence-Associated Pilin Suggest a
454 Unique Pilus Tip-Associated DNA Receptor. *mBio* **10** (2019). <https://doi.org/10.1128/mBio.00614-19>

455