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Abstract

Plant genotype is recognized to contribute to variations in microbial community structure in the
rhizosphere, soil adherent to roots. However, the extent to which the viral community varies has
remained poorly understood and has the potential to contribute to variation in soil microbial
communities. Here we cultivated replicates of two different genotypes of Zea mays parviglumis
and Z. mays genotype B73 in a greenhouse and harvested the rhizobiome (rhizoplane and
rhizosphere) to identify the abundance of cells and viruses as well as apply 16S rRNA gene
amplicon sequencing and genome resolved metagenomics to identify the rhizobiome microbial
and viral community. Our results demonstrate that viruses exceeded microbial abundance in the
rhizobiome of parviglumis and B73 with a significant variation in both, the microbial and viral
community between the two genotypes. Of the viral contigs identified only 4.5% (n =7) of total
viral contigs were shared between the two genotypes, demonstrating that plants even at the level
of genotype can significantly alter the surrounding soil viral community. An auxiliary metabolic
gene associated with glycoside hydrolase (GH5) degradation was identified in one viral
metagenome-assembled genome (VMAG) identified in the B73 rhizobiome infecting
Propionibacteriaceae (Actinobacteriota) further demonstrating the viral contribution in metabolic
potential for carbohydrate degradation and carbon cycling in the rhizosphere. This variation
demonstrates the potential of plant genotype to contribute to microbial and viral heterogeneity in

soil systems and harbor genes capable of contributing to carbon cycling in the rhizosphere.
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Introduction

Plant roots create a carbon and nutrient-rich environment in soils supporting microbiota in
the zone adjacent to the root epidermis and the soil adhering to plant roots termed the rhizoplane
and rhizosphere or together referred to as the rhizobiome [1]. It is within this region where a
diversity of microbiota including Bacteria, Archaea, Eukarya and viruses are recognized as
members of the rhizobiome contributing to below ground processes [2]. The microbial diversity
of this environment has the potential to be impacted by viral infection where viral mediated cell
lysis is recognized to impact microbial abundance in soils [3]. Viruses are abundant in soils ranging
from 107 to 10° viruses g* of soil [4-6] and virus abundance can often exceed that of microbes [7].
To date a few studies have virus abundance and predation in the rhizosphere [8, 9], but the impact
of these processes in this dynamic region in soils remains poorly studied.

Virus infection can result in host cell lysis through a lytic or lysogenic infection thereby,
reducing host cell abundance. The lysis of these microbes results in the release of cell lysate which
serves as an easily accessible carbon and nutrient source supporting the growth of other microbial
members [10]. Hence, viral infections of microbial host cells can influence the metabolic functions
of the microbial community. This may occur due to shifts in taxonomic composition and change
in metabolic potential caused by differential viral predation or through the acquisition of auxiliary
metabolic genes (AMGSs) [11-15] resulting from viral infection. AMGs are viral acquired genes
from their host, not required in viral replication but allow viruses to directly manipulate host
metabolism [16]. Some well-known examples of AMGs acquired by viruses have been inferred to
play a role carbon [15], sulfur [17], and nitrogen [18] cycling. Together, these changes in relative
abundance of microbial composition and introduction of functional genes like AMGs can alter the

metabolic potential of microbial community by metabolically reprogramming their hosts, and/or
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expression of AMGs [9, 15, 19, 20]. While, the abundance of viruses in the rhizosphere has been
reported before [8, 9, 21], the implication of viral impacts on the host abundance and metabolic
potential remains understudied. Given the absence of universal marker genes across viruses,
metagenomic studies are required to shed light on the role of viruses in rhizobiome and, how
viruses impact the abundance of the host cells, and their potential to reprogram host metabolism
[22].

In the carbon-rich region surrounding the plant root, the rhizobiome community structure
varies between plant species [23] and genotype [24], owing to the influence of the plant, including
variation in root exudate profiles [25]. The variation in root exudate profile secreted by host
genotype and the resulting substrate-driven or bottom-up shifts in the microbial community
structure are based on differential production of root exudates and community utilization [26, 27].
In addition to substrate driven controls on rhizobiome structure, viruses are recognized to infect
microorganisms in the rhizosphere [8, 9]. Viruses require metabolically active hosts for replication
and thus the patterns of viral communities are linked to active host cells [28-31]. While
physiochemical heterogeneity in soils can alter viral abundance where it is recognized that soil
moisture and pH can influence viral community structure [32-34], variation in plant roots also has
the potential to contribute to viral community structure. In soils viruses impact host abundance and
metabolic potential by infecting metabolically active organisms driving carbon-cycling [15, 35],
and play arole in biogeochemical processes in the rhizosphere [9, 36]. The region surrounding the
root is one are where microorganisms are recognized to be metabolically active owing to the

production of carbon-rich plant root exudates.
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Here we test the hypothesis that the microbial and viral rhizobiome community varies
between two Z. mays genotypes, Z. mays ssp. parviglumis (teosinte) and Z. mays genotype B73
(domesticated corn). Seeds of each genotype were sterilized, germinated under axenic conditions
and transplanted into a homogenized soil matrix and cultivated to the V4-V8 growth stage in a
greenhouse under controlled conditions. Plants were harvested for phenotyping and rhizobiome
samples were collected to enumerate cells and viruses as well as identify microbial community
members using 16S rRNA gene amplicon sequencing and genome resolved metagenomics from
shotgun metagenome sequence data. Variation within the microbial and viral communities
between Z. mays genotypes was statistically determined. The virus linked microbial hosts in the
rhizobiome of the two genotypes rendered differences in host abundance. Assembled and
annotated viral contigs were screened for functional genes defined as AMGs and included the
potential to degrade carbohydrates. Here we report differential microbial and viral community

assemblage in the rhizobiome between two Z. mays genotypes, parviglumis and B73.

Materials and methods

Seed source, germination, and Z. mays growth

Seeds of Z. mays parviglumis and B73 were obtained from the University of Nebraska,
Lincoln in-house collection [37]. Twenty-four parviglumis and B73 seeds were sterilized and
germinated in sterilized petri-plates. From among the 24 seedlings, 12 seedlings were transplanted
into 1.8 L pots containing homogenized sieved prairie soil mixed with autoclaved agricultural-
field sandy-soil (60:40; mass/mass; Supplementary Information) [38]. Plants were cultivated in a

greenhouse with an average 13-hour day length for 22 days at 31°C with relative humidity between
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60.2 - 97.6 %. Every three days plants were watered and fertilized with 25 mL of 25% Hoagland’s
solution [39]. Six biological replicates at the same growth stage (V4-V8) were selected for

harvesting.

Rhizobiome harvesting and sample collection

Plant roots and rhizobiome were harvested by gently cutting the pot to minimize soil and
root disruption and carefully separated from bulk soil as previously described [37]. The roots were
submerged in a known volume of sterile, nucleic acid and enzyme-free 1X phosphate buffered
saline (PBS) and sonicated (Branson 450D, 30% amplitude, 0.3 s duty cycle) for one minute, three
times at 30 seconds intervals [40, 41] to harvest the rhizobiome, rhizoplane and rhizosphere. The
rhizobiome suspension was centrifuged (800 X g). A known volume of the supernatant was filtered
through 0.45 pum PVDF and 0.2 um PVDF membrane, and fixed with formaldehyde (0.5 v/v final
concentration) for cell and virus enumeration [42, 43]. The remaining suspension was centrifuged
(3000 X g for 10 minutes) and supernatant was strained through a 40 mm sterile cell strainer
(Fisherbrand™ product #22363547) to remove plant cells and root debris. The supernatant was
collected on 0.2 um polycarbonate membranes (product #GTTP04700) through vacuum filtration
(< 2.5 bar). The rhizosphere pellet was collected by another round of centrifugation at 10,000 X g
for 20 minutes. The membrane and pellet were flash frozen in liquid nitrogen and stored at -80 °C.
Following rhizobiome collection root phenotype characteristics were determined (Supplementary

Information).
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Nucleic acid extraction, 16S rRNA gene amplicon, and shotgun metagenomic sequence library

preparation

All reagents and materials used in sample processing were treated or prepared in 0.1 %
diethylpyrocarbonate or RNase Away. Nucleic acids were extracted from a known mass of the
rhizosphere pellet (10% w/w of total rhizosphere and rhizoplane) and the membrane collected cells
using a modified Griffith’s method as previously described [43, 44]. DNA was quantified and
purity was checked as previously described (Westrop et al. 2023). A quantified mass of DNA
extracted from the pellet and the filter (2.5 % of total DNA (ng) were proportionally pooled to
represent the total rhizobiome community. The DNA quantity was normalized per gram
rhizosphere and sent for sequencing.

The 16S rRNA gene amplicon sequencing library was prepared by the University of
Minnesota Genomics Center, Minnesota using V4 and V5 regions of the 16S rRNA gene primers
515F and 806R as described [45, 46]. The samples were paired-end sequenced (2 X 300 bp) using
Illumina MiSeq600 cycle v3 kit to a sequencing depth of 72,000 reads per sample. The 16S rRNA
gene amplicon sequence data was analyzed using the DADAZ2 package to obtain amplicon
sequence variants (ASVs) as described [47] and calculate diversity measures (Supplementary
Information). The ASVs were filtered for spurious sequences as described and was analyzed using
Phyloseq [48].

The shotgun metagenome sequence library was prepared using the Nextera XT DNA
library kit (Illumina, California, USA) as previously described [43]. The average final library size
was 300 bp with an insert of 180 bp and a read length configuration of 150 PE for 40 M PE reads
per sample (20 M in each direction). Sequence data were quality checked (Supplementary

Information) and clean reads were used to generate de novo co-assemblies using Megahit [49].
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Assembled contigs were binned using MetaBat2 (v2.15) [50], MaxBin2 (v2.2) [51], and
CONCOCT (v1.1) [52] and dereplicated using DAS_Tool (v1.1) [53]. The bins were quality
checked using CheckM (v1.1) [54] and manually curated using Anvi’o (v7.0) [55] as described
[43]. The final set of MAGs were taxonomically identified and used to estimate relative abundance
as described (Supplementary Information).

Putative viral contigs were identified using VirSorter2 (v2.1) [56] and DeepVirFinder [57]
(Supplementary Information). A pairwise comparison with > 95 % average nucleotide identity
(ANI) across > 85 % alignment coverage [58, 59] was used to assess genome similarity in the
viral community of parviglumis and B73. Viral contigs >10 Kbp are described as a VMAG [60].
Viral genome coverage was normalized as performed for MAGs and used as a proxy for relative
abundance as previously described [15, 58, 61].

Virus-host linkages were established utilizing a combination of three different methods,
clustered regularly interspaced short palindromic repeats (CRISPR) sequences [62], genome
similarities [63], and tetranucleotide frequencies (threshold distance < 0.001) between host and
viral contig (Supplementary Information) [15, 63-66]. Host genome metabolic potential
determined using METABOLIC (v4.0) [67], DRAM (v1.2) [68], and FeGenie (v1.0) [69] at the
MAG level. Viral contribution in the host metabolic processes was investigated by screening viral

encoded AMGs in parviglumis and B73 using DRAM-v.

Statistical analyses

All statistical analyses were conducted in R version 4.1.2 (2021-11-01). Differences

between Z. mays genotype in bacterial and virus abundances were tested using t-tests assuming
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unequal variances. The correlation of cells and virus abundances were analyzed using Mantel’s
test and linear regression (Supplementary Information). Relationships between the microbial and
viral community structure were analyzed using principal coordinate analysis (PCoA) with Bray-
Curtis dissimilarities as implemented in the vegan package [70]. Differences between Z. mays
genotypes in the microbial and viral community composition were evaluated using permutational

multivariate analysis of variance (perMANOVA) using adonis2.

Results

Virus to cell ratio in the parviglumis and B73 rhizobiome

Virus abundance exceeded cell abundance in the rhizobiome collected from both parviglumis and
B73 (VCRof 2.24 £0.21 and 1.52 + 0.12, respectively) (Fig. 1) and was positively correlated with
cell abundance (parviglumis p = 0.001; B73 p = 0.008). Cell abundance in the parviglumis and
B73 rhizobiome totaled (1.34 + 0.30) x 107 cells gt and (1.54 £ 0.16) x 107 cells g™* respectively
but was not statistically different between genotypes (p > 0.05, Fig. 1a). Similarly, parviglumis
and B73 rhizobiome virus abundance of parviglumis (2.89 + 0.55) x 107 gt and B73 (2.28 + 0.20)
x 107 gt rhizosphere (Fig. 1b) exceeded cell abundance and was not statistically different between
genotypes (p > 0.05). Cell and virus abundance did not differ significantly between genotypes,
even when standardized by plant phenotypic parameters including root length, surface area,
volume, density, fresh weight, or biomass (Supplementary Fig. S1 and Fig. S2). Cell abundance
gram™ of rhizobiome collected from parviglumis and B73 was positively correlated with the

rhizosphere mass. While cell or virus abundance gram™ of rhizobiome collected was not
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statistically different between genotypes, the VCR significantly varied (p = 0.02) between

genotypes indicating variation between genotypes.

Microbial community composition of parviglumis and B73 rhizobiome

The rhizobiome microbial community collected from parviglumis and B73 revealed 6,317
unique ASVs from clean reads of parviglumis (range 34,397 to 96,390) and B73 (range 29,779 to
75,780). The ASVs were broadly classified into 1 archaeal phylum and 17 bacterial phyla (Fig.
2a). The core rhizobiome consisted of VVerrucomicrobiota, Proteobacteria, and Actinobacteriota
with an abundance in similar proportions accounting for a combined 72.64% and 74.97% of the
rhizobiome community in parviglumis and B73, respectively. The microbial community identified
by 16S rRNA gene amplicon sequencing was statistically different between genotypes. (Fig. 2b;
R? = 0.098, p = 0.001) where Z. mays genotype accounted for 10.8% of the variation in the
microbial community structure (Fig. 2b).

Genome assembly of metagenomic sequence data resulted in MAGs similar to taxa
identified at ASV level where reads represented more than 2.5% of the microbial community (Fig.
2c). Biological replicates of the shotgun metagenome sequenced data yielded clean reads in the
range of 22.85 to 24.12 million for parviglumis and 23.35 to 27.30 million for B73. These data
rendered 50 and 61 rhizobiome metagenome-assembled genomes (MAGs) for parviglumis and
B73, respectively. The parviglumis rhizobiome MAGs averaged 42.91 + 2.49% completeness,
totaling 15 medium-quality MAGs and 35 low-quality MAGs and B73 MAGs averaged estimated
completeness of 43.60 + 2.23%, comprising one high-quality, 19 medium-quality, and 41 low-
quality MAGs. Nine and 11 phyla in the archaeal and bacterial domains were identified in

parviglumis and B73, respectively (Fig. 3). Similar to 16S rRNA sequencing data, the
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Thermoproteota was the only archaeal MAG constructed from the rhizobiome of both genotypes.
The bacterial MAGs reconstructed from parviglumis rhizobiome were Acidobacteriota,
Actinobacteriota, Bacteroidota, Desulfobacterota, Gemmatimondadota, Patescibacteria,
Planctomycetota, Verrucomicrobiota, and unclassified bacteria. In addition to these taxa, two
additional phyla, Chloroflexota and Desulfobacterota, were also reconstructed from B73
rhizobiome (Fig. 2c and 3).

As observed in 16S rRNA gene sequence data, taxa identified from MAGS revealed
variance in the microbial community structure between genotypes (Fig. 2d; p = 0.001, R?= 0.99).
The PCoA revealed 88.1% and 2.3% of the variance on axis 1 and 2, respectively (Fig. 2d). High
variability of PCoA axis 1 demonstrated the variation in beta diversity between the two genotypes.
This further highlighted the differences in the microbial community structure of Z. mays
genotypes.

Similar to the 16S rRNA gene amplicon sequence data, MAGs also identified
Proteobacteria and Actinobacteriota as the two most abundant rhizobiome phyla of both
parviglumis and B73 rhizobiome (Fig. 3). Analyses of the B73 rhizobiome 16S rRNA gene
amplicon data revealed that in addition to taxa identified in the Proteobacteria and
Actinobacteriota, Verrucomicrobiota taxa were abundant community members (Fig. 2a, 2c, and
3). Within the Proteobacteria, community members in the family Xanthobacteraceae (18.00%)
were the most abundant in the parviglumis rhizobiome. This result is different relative to the most
abundant taxa identified at the family level in the B73 rhizobiome, where taxa within the
Chthoniobacterales UBA10450 in the Verrucomicrobiota (16.39%) were the most abundant in B73

followed by Xanthobacteraceae (13.11%), Chloroflexota CSP1-4 (1.62%) and Binatia UBA 9968
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in Desulfobacterota (1.63%) (Fig. 2c and 3). In addition to microbial taxa, viral contigs were also

identified from the shotgun metagenome sequence data (Fig. 3).

Rhizobiome viral community structure variation between parviglumis and B73

Identification of putative viruses from rhizobiome shotgun metagenome sequence data detected
329 and 488 viral contigs in parviglumis and B73, respectively. Further screening of viral contigs
yielded 67 and 86 contigs with in the rhizobiome of parviglumis and B73, respectively. The
average nucleotide identity (ANI) distribution not only displayed a high level of strain
heterogeneity but also revealed a wide range of viral genome variations. The genome size of
putative viruses identified in the parviglumis rhizobiome ranged from 1.50 — 40.54 Kbp with 5
VMAGs and B73 viral contigs ranged from 1.51 — 31.18 Kbp with only 1 vMAG reconstructed.
Viral contig clustering between two rhizobiomes resulted in the identification of only 7 (4.5%)
viral contigs identified in both parviglumis and B73 (2 clustered > 3 kb and 5 clustered < 3kb)
(Fig. 4a). Rhizobiome viral community structure collected from each genotype was significantly
different (R2 = 0.999, p =0.005) (Fig. 4b).

Taxonomy of rhizobiome viral contigs could be assigned to 38.80% in parviglumis and
30.23% in B73 viral contigs. Putative viruses were taxonomically classified as Caudovirales and
among the annotated viral contigs, the family Siphoviridae (61.53%), Myoviridae (15.38%), and
Podoviridae (11.53%) were the most abundant in the viral community of the parviglumis
rhizobiome. The Siphoviridae (76.92%), Podoviridae (11.53%), and Myoviridae (7.69%) were
prevalent in the B73 rhizobiome. Contigs classified in the families of Ackermannviridae (3.84%),
Autographviridae (3.84%), and Chaseviridae (3.84%) were unique to parviglumis (Fig. 4c). One

unclassified archaeal dsDNA virus, Halovirus (3.84%) was identified in the rhizobiome of B73
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(Fig. 4c) but was not identified in parviglumis rhizobiome. Over two-thirds of the viral contigs

identified remained unclassified and could not be assigned to a specific viral taxa.

Virus-host linkages

Virus-host linkages could be established for 31.34% of parviglumis and 36.04% of B73
viral contigs. Phyla Thermoproteota, Acidobacteriota, Actinobacteriota, and Patescibacteria were
commonly identified in both genotypes and were associated with the highest number of viral
contigs in parviglumis and B73 rhizobiome. Few viral contigs were coarsely associated with
unclassified bacteria (4.76% in parviglumis and 9.67% in B73). Thermoproteota family
Nitrososphaeraceae was the only archaeal host identified in Z. mays rhizobiome. Of the identified
hosts, 19.04% and 9.67% of viral contigs were linked to Nitrososphaeraceae in parviglumis and
B73, respectively (Fig. 5a). Among the bacterial taxa Vicinamibacterales UBAZ2999,
Micrococcaceae, Saccharimonadaceae, Xanthobacteraceae, and some unclassified bacteria were
identified as common hosts in parviglumis and B73 (Fig. 5a). Viruses linked to Acidobacteriae
UBA2999, Koribacteraceae, and Streptomycetaceae were unique to parviglumis. Rhizobiaceae,
Propionibacteriaceae, Binatia UBA9968, Alphaproteobacteria UBA1301, Sphingomonadaceae,
Chthoniobacterales UBA10450 were unique hosts in the rhizobiome of B73. None of the viral
contigs were found to be infecting more than a single MAG in an established virus-host correlation
indicating the virus host specificity at the MAG level. Although Verrucomicrobiota member
Chthoniobacterales UBA10450 was highly abundant in the rhizobiome of both genotypes, it served
as a virus host only in the B73 rhizobiome. Together these results indicate the variation of the

community in the rhizobiome with host specificity.
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A total of 64 and 98 putative CRISPR spacer regions were detected in parviglumis and B73
infected MAGS, respectively. Among all the identified CRISPR spacer sequences in both
genotypes, only a single CRISPR spacer sequence provided a positive hit to one of B73 MAGs.
This corresponded to B73 MAG Xanthobacteraceae VAZQO1 sp005883115 with a 100%
nucleotide identity match. The direct repeats flanking the CRISPR spacer region compared against
the infected MAGs rendered an e-value < 10° confirming infection in Xanthobacteraceae
VAZQO1 sp005883115 in B73 rhizobiome.

The average virus to host abundance ratio ranged from 0.41 to 8.38 in rhizobiome
parviglumis and B73. Viruses infecting the Micrococcaceae (Actinobacteriota) were lower in
abundance than hosts in rhizobiome collected from both genotypes. Viruses infecting
Koribacteraceae (Acidobacteriota) in parviglumis and Chthoniobacterales UBA10450
(Verrucomicrobiota) in B73 were also lower than host cell. Virus abundance equaled host cell
abundance of Vicinamibacterales UBA2999 (Acidobacteriota) in parviglumis only. Rhizobiome
viruses exceeded the host cells, Nitrososphaeraceae (Thermoproteota), Xanthobacteraceae

(Proteobacteria), and Saccharimonadaceae (Patescibacteria) in both genotypes(Fig. 5b).

Metabolic potential of microbial and viral rhizobiome

The metabolic potential of the microbial community revealed the ability of the community
to degrade carbohydrates as well as short chain fatty acids (Fig. 6). Bacterial hosts such as
Xanthobacteraceae (Proteobacteria) not only showed the capability to degrade polyphenols, starch,
short chain fatty acids, alcohols, chitins, and acetate utilization but were also capable of central
carbon, nitrogen, sulfur, and iron metabolism (Fig. 6).

Host cells Acidobacteriota (Acidobacteriae UBA7541, Vicinamibacterales UBA2999,

Koribacteraceae) and Actinobacteriota (Micrococcaceae, Propionibacteriaceae) harbored genes
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that associated with polysaccharide degradation enabling central carbon metabolisms such as
glycolysis and the Kreb’s cycle. Interestingly, the metabolic potential for CO2 fixation, utilizing
the dicarboxylate-hydroxybutyrate cycle, hydroxypropionate-hydroxybutylate cycle, and
reductive citrate cycle (Arnon-Buchanan cycle) were identified in MAGs corresponding to archaea
Thermoproteota and bacteria Actinobacteriota, Bacteriodota, Proteobacteria, Verrucomicrobiota
in both genotypes. Genes associated with the Calvin Cycle were not identified in any of the MAGs.
The metabolic potential to degrade polyphenol and cleavage of arabinan and fucose cleavage was
restricted to the Koribacteraceae identified in the parviglumis rhizobiome (Fig. 6a). The ability to
degrade chitin was specific to Desulfobacterota (Binatia UBA9968) and Verrucomicrobiota
(Chthoniobacterales UBA10450) with the potential to degrade beta-mannan in the B73 rhizobiome
(Fig. 6b). Archaea Thermoproteota indicated the metabolic potential to convert acetate into
methane, carbohydrate degradation and detoxification of aromatic compounds, and ammonia
oxidation. Additionally, parviglumis MAGs Thermoproteota (Nitrososphaeraceae) and
Proteobacteria (Xanthobacteraceae) were capable of denitrification. No B73 MAGs showed any
role in nitrification and similarly, no parviglumis or B73 viral infected MAGs showed any role in
sulfur metabolism. The microbial community in both the parviglumis and B73 viral infected
MAGs showed a role in siderophore transport to support iron acquisition in soils.

One auxiliary metabolic gene was identified in a viral contig collected from the rhizobiome
of B73 whereas AMGs were not identified in viral contigs recovered from parviglumis. Analysis
of the viral encoded AMG identified this gene as a glycoside hydrolase family 5 (GH5) capable of
degrading amorphous cellulose, xyloglucan, xylan, beta-mannan, mixed-linkage glucans backbone

cleavage, and chitin (Fig. 6b). This virus was linked to the host Propionibacteriaceae
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(Actinobacteriota) in the B73 rhizobiome. These results indicate that rhizobiome viruses can

harbor genes with the potential to produce labile mono and oligosaccharides.

Discussion

Here we demonstrated that both microbial and viral community structure varies between
two Z. mays genotypes, parviglumis and B73, cultivated in the same homogenized soil under the
same environmental conditions. While it is recognized the Z. mays genotype influences the
rhizosphere microbial community [71], to our knowledge this is the first study to demonstrate the
variation of the rhizobiome viral community structure between plant genotypes. Plants release root
exudates below ground, creating a diverse chemical milieu that impacts rhizobiome assemblage
and structure [46, 72, 73]. The root exudate composition is also recognized to vary among maize
genotypes [25], thus further promoting variation in the rhizosphere community. Our results are
consistent with prior research demonstrating Z. mays genotype plays a factor influencing the
selection of rhizobiome microbial community [71]. Here we identified Proteobacteria,
Actinobacteriota, and VVerrucomicrobiota constituted the core microbiome of parviglumis and B73
consistent with a prior study [46] and were more abundant relative to the Acidobacteriota and
Desulobacterota. Interestingly, Acidobacteriota were associated with more viral contigs which
suggests an active infection could result in lower cell abundance. The relatively lower abundant
microbial taxa in Z. mays rhizobiome such as Chloroflexota and Desulfobacterota (relative
abundance < 2.5% in 16S rRNA gene data) were reconstructed in B73, but we were unable to
recover MAGs from parviglumis. This could be a result of low relative abundance and/or lysed
host cells not detected in sequencing. Alternatively the result could also be a result of differential
root-exudate production between genotypes [25] and recruitment of these taxa to the root.

Microbial community structure and viral host cells are recognized to influence viral community
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structure [31, 74, 75]. Small but significant differences in rhizobiome microbial community
composition in parviglumis and B73 manifested dramatic differences in the viral community of
these two Z. mays genotypes.

Viruses were abundant in the rhizobiome of parviglumis and B73 rhizobiome
outnumbering cells. The virus to cell ratio resulted in a VCR >1.5, 3 times more than previously
reported in the wheat rhizosphere (VCR = 0.27) [8]. Viral contigs recovered from the shotgun
metagenome sequence data supported variation of the viral community between genotypes
revealing the presence of a distinct viral community in the rhizobiome of parviglumis and B73.
We recognize that members of the viral community composition reported in this study may
represent an underestimate of viral diversity in the Z. mays rhizobiome due to sampling constraints
because reported data in this study are limited to viruses associated with the host genome, adsorbed
to particulate matter, and greater than 0.2 um in size. Prior research has demonstrated significant
variations in both microbial and viral community due to spatial distribution and/or soil
heterogeneity [59, 76, 77], the close clustering of the Z. mays biological replicates on PCoA plot
demonstrated that soil heterogeneity among replicates didn’t contribute to significant differences
in microbial and viral community structure. Rather the genotype of the plant played a significant
role in the pronounced variation in the rhizobiome viral community where only seven viral contigs
were shared between the two plant genotypes. This finding is also supported by pairwise
comparison clustering of viral contigs which yielded only 7 similar viral contigs and validated that
parviglumis and B73 comprised contrastingly different viral communities while grown in the same
conditions using the same soil inoculum. Thus in addition to soil physiochemical factors, plant
species and genotype can further contribute to the spatial variation of viral communities observed

in soils.
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Viral community variation in parviglumis and B73

Virus-host specificity and host range abundance play an important role in viral selection in
the rhizosphere [8]. The viral contigs recovered from the parviglumis and B73 rhizobiome revealed
host specificity. All viral contigs recovered were found infect a unigue MAG. The strong
correlation between cell and virus abundance is interconnected through prey-predator interactions.
Repeated viral infections and host cell lysis give rise to virus-defense through immunity systems
including the CRISPR-cas system found within some bacterial and archaeal lineages, thus,
avoiding future viral infections [78]. The presence and 100% identity match to the CRISPR
sequence in B73 MAG suggested the adaptation of a defense mechanism against viral infection by
Xanthobacteraceae. This active defense mechanism of bacteria exploiting CRISPR sequences
could be a possible explanation for the lower number of viral contigs in Xanthobacteraceae MAGs
hence, the high abundance of Xanthobacteraceae in rhizobiome. The small genome size of the
ultra-small bacteria Saccharimonadaceae (Patescibacteria) may not be able to comprise CRISPR
sequences thus rendering the cell more susceptible to viral infection [79, 80]. However, the
Patescibacteria adopted the strategy to evade viral infection by deleting common membrane phage
protein receptors [81]. Additionally, the choice of viral reproduction strategy between lytic and
lysogeny can affect the host community dynamics resulting in distinct fates of host cells [4, 82,
83]. Viral host specificity can thus play a role influencing microbial diversity [75]. Viral predation
results in altered community structure [84], can increase the release biologically available
nutrients, and can consequently impact ecosystem productivity [85]. Here we observed rhizobiome
viral contigs linked to the host cells which demonstrated host preference which could subsequently

impact host abundance as demonstrated by the variation in the ration of viruses abundance to host
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abundance. Viral infection found to be impacting host metabolic output not only by impacting host
abundance but also through acquiring glycoside hydrolases AMG capable of complex

polysaccharide degradation [15, 86].

Impact of virus-host interactions on metabolic potential

Viruses that exhibit a lytic life cycle cause cell-mediated cell lysis liberating labile sources
of carbon and nutrients [87] which can stimulate microbial population growth from the bottom up
potentially altering community diversity and metabolic output [88, 89]. In a stable isotope probing
(SIP) study performed in soils, the phyla Acidobacteriota, Actinobacteriota, Chloroflexota,
Proteobacteria, Patescibacteria, Verrucomicrobiota were identified as active viral hosts involved
in soil carbon cycling [80]. Taxa identified in our study were also identified to harbor the metabolic
potential to drive carbon cycling near plant roots. Acidobacteriota (Acidobacteriae UBA7541,
Vicinamibacterales UBA2999, Koribacteraceae),  Actinobacteriota  (Micrococcaceae,
Propionibacteriaceae, Streptomycetaceae), Patescibacteria (Saccharimonadaceae), Proteobacteria
(Alphaproteobacteria UBA1301, Sphingomonadaceae, Rhizobiaceae, Xanthobacteraceae),
Verrucomicrbiota (Chthoniobacterales UBA10450), with the addition archaeon Thermoproteota
(Nitrososphaeraceae) are involved in central carbon metabolism. In addition to carbon
biogeochemical cycling, members of the rhizobiome of both parviglumis and B73 had the potential
for siderophore transport to support iron acquisition in soils. We did not detect the metabolic
potential for nitrification and sulfur metabolism within taxa that were infected by viruses.

Viral encoded glycoside hydrolases AMGs have the potential to contribute to carbon
metabolism in Z. mays rhizobiome through expression within the host cells. Here we observed the

unclassified VMAG in the B73 rhizosphere that contained a glycoside hydrolase (GH5) which is
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recognized to degrade amorphous cellulose, beta-mannan, chitin, mixed-linkage glucans, xylans,
and xyloglucan. The acquisition of this AMG, glycoside hydrolases responsible for carbohydrate
hydrolysis, by soil viruses is consistent with prior studies [15, 35, 80, 90] and demonstrates the
potential within the rhizobiome. This VMAG that was linked to host Propionibacteriaceae
(Actinobacteriota) that respond to a variety of carbon sources by secreting extracellular enzymes
such as cellulases, amylases, and chitinases were found to be regulating carbohydrate catabolic
pathways [91, 92]. These results indicate that virus-encoded glycoside hydrolases have the
potential to contribute to the production of labile mono and oligosaccharides which can further

serve as a carbon source for the host and other rhizobiome community members.

Conclusion

Together these results indicated that plant genotype plays a role in microbial assemblage
in rhizobiome and viral community parallelly shifts in response to microbial community selection.
Viral community structure is linked to compositional patterns of microbial communities based on
plant genotypes. Thus, variation in below ground plant roots has the potential significantly
influence heterogeneity of viruses within soils. The virus-host interaction showed differences in
host abundance between two genotypes which has the capability to influence the metabolic
potential of the rhizobiome. Viral AMGs are capable of carbohydrate degradation which have the
potential to produce labile mono and oligosaccharides in the rhizosphere. These labile carbon
sources could further promote microbial community proliferation. Therefore, to extent to which
host-virus interaction alters host abundance, microbial community structure, and functions remains

a critical question in rhizosphere microbial ecology and soil biogeochemical cycling.
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Figure legends

Fig. 1 Cell and virus abundance in the parviglumis and B73 rhizobiome. (a) Cell abundance
per gram of soil in the rhizoplane and rhizosphere referred to a rhizobiome of biological replicates
of parviglumis (n=5) and B73 (n=6). (b) Virus abundance per gram of the rhizobiome soil. (c)
Virus to cell ratio (VCR) between parviglumis and B73. The brackets indicated a non-parametric
unpaired t-test with Welch’s correction assuming unequal variances. The asterisk denoted a p-
value < 0.05 as statistically significant whereas ns denoted that the result was not significant.

Values reported are the mean of replicates and error bars represent the standard error of measure.

Fig. 2 Microbial community composition of Z. mays parviglumis and B73 identified by 16S
rRNA gene amplicon sequence variants (ASVs) and metagenome-assembled genomes
(MAGS). The microbial community of parviglumis and B73 represented (a) a percentage of the
relative abundance of the microbial community identified by ASV. (b) PCoA of ASV identified
rhizobiome from parviglumis (blue) and B73 (red) in biological and technical replicates with the
Bray-Curtis distance matrix. The variance of 56.1% on PCoA1 and 17.4% on PCoA2 (R?=0.1089,
p-value 0.047) as determined by perMANOVA. Ellipses denote 95% confidence interval. (c)
Relative abundance of MAGs determined using normalized genome coverage (d) PCoA of MAG
identified rhizobiome from parviglumis (blue) and B73 (red) with Bray-Curtis dissimilarities with
88.1% variance on PCoA1 and 2.3% variance on PCoA2 (R? =0.999, p = 0.001). The box plot
represents the interquartile range with whiskers = 1.5 times of interquartile range and the center

depicts the median.
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Fig. 3 Metagenome assembled genomes (MAGs) and viral contigs from the Z. mays
parviglumis and B73 rhizobiome. MAGs were reconstructed and viral contigs were identified
from three biological replicates from each genotype, parviglumis and B73 rhizobiome. The
number of genomes corresponding to the archaeal and bacterial taxa classified by the GTDB
database and clustered to the family level when possible is denoted in red and the relative
abundance of genomes is denoted in blue. The mean coverage depth of MAGs normalized against

the number of reads in the sample to calculate the relative abundance of the MAGs.

Fig. 4 Identification of viral contigs within the parviglumis and B73 rhizobiome. To assess the
similarities/differences of viral contigs in the parviglumis and B73 rhizobiome, pairwise
comparison with average nucleotide identity (ANI) > 95% with coverage > 85% of the viral
contigs of the shorter sequence was performed where (a) only 7 viral contigs were clustered >
95% ANI showing heterogeneity in identified viral contigs. (b) Ordination conducted with Bray-
Curtis dissimilarity on the relative abundance of the viral contigs explained 91.9% variance on
PCoAl and 3.6% variance of PCoA2 (R? = 0.999 p = 0.005) as analyzed by permutational
multivariate analysis of variance (perMANOVA) conducted utilizing adonis2. (c) Taxonomic
classification of identified viral contigs comprised 6 different families of Caudovirales in
parviglumis and 3 families in B73 with an unclassified archaeal virus. The relative abundance of
the classified viral contigs was calculated as the proportion of the corresponding viral family

divided by the total classified viral contigs multiplied by 100.

Fig. 5 Virus-host linkages identified in the parviglumis and B73 rhizobiome. (a) Viral contigs

were linked to the hosts utilizing genome similarities, CRISPR sequences, and tetranucleotide
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frequencies between the metagenome-assembled genomes (MAGS) and viral contigs. While the
hosts identified for the parviglumis and B73 viral contigs showed differences in the host
preferences, hosts couldn’t be identified for more than 60% of viral contigs in both genotypes and
are identified in gray. (b) Virus to host abundance ratio was divided into 3 categories; less than 1,
approximately 1, and greater than 1 demonstrated variation in viral genome copy number to their
host in parviglumis and B73.The black vertical line separates the Z. mays genotypes, parviglumis
and B73. The viral contigs are color-coded according to the identified potential host. The host
taxonomy is identified at the family level (or lowest level of classification). Error bars represent

the standard error of measure.

Fig. 6. Metabolic potential of the microbial community identified from the annotation of
MAGs and virus contigs in the parviglumis and B73 rhizobiome. The rhizobiome metabolic
potential was determined using DRAM, METABOLIC, and FeGenie. The heatmap represents the
metabolic potential of the total metagenome-assembled genomes (MAGS) (top), viral infected
MAGs (middle), and contribution of viral auxiliary metabolic genes (AMGSs) (bottom) of (a)
parviglumis and (b) B73 rhizobiome, respectively. Percentage of genomes were determined at the

family level.
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