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Abstract 
Aquaporins provide a new class of genetic tools for imaging molecular activity in deep tissues by 
increasing the rate of cellular water diffusion, which generates magnetic resonance contrast. 
However, distinguishing aquaporin contrast from the tissue background is challenging because 
water diffusion is also influenced by structural factors such as cell size and packing density. Here, 
we developed and experimentally validated a Monte Carlo model to analyze how cell radius and 
intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a 
differential imaging approach based on time-dependent changes in diffusivity can improve 
specificity by unambiguously isolating aquaporin-driven contrast from the tissue background. 
Finally, we used Monte Carlo simulations to analyze the connection between diffusivity and the 
percentage of cells engineered to express aquaporin, and established a simple mapping that 
accurately determined the volume fraction of aquaporin-expressing cells in mixed populations. 
This study creates a framework for broad applications of aquaporins, particularly in biomedicine 
and in vivo synthetic biology, where quantitative methods to measure the location and 
performance of genetic devices in whole vertebrates are necessary.  

INTRODUCTION 
Genetically encoded reporters are essential 
tools for monitoring molecular signals in 
living systems. In synthetic biology, reporters 
based on fluorescent and bioluminescent 
proteins provide a natural approach for 
measuring and optimizing the performance 
of genetic systems1. However, optical 
reporters are of limited use for tracking 
genetically engineered devices in living 
animals due to absorption and scattering of 
light in thick tissue2–4. Unlike optical 
methods, magnetic resonance imaging 
(MRI) can image deep tissues and generate 
volumetric scans with a high spatial 
resolution. We recently developed an MRI- 

based reporter that enables imaging of 
genetic activity in deep tissues5–7. This 
reporter utilizes aquaporin-1 (Aqp1), a 
channel that allows water molecules to 
diffuse freely across the plasma 
membrane8,9. In contrast to wild-type cells, 
which restrict water movement owing to the 
low permeability of the plasma membrane, 
cells engineered to express Aqp1 allow the 
free exchange of water (Fig. 1a). 
Accordingly, Aqp1 expression increases the 
molecular diffusivity of water in cells and 
tissues, which can be visualized using an 
MRI technique known as diffusion-weighted 
imaging10,11. In this technique, pulsed 
magnetic field gradients create a phase 
dispersion in water molecules, producing a 
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signal that decays in proportion to water 
diffusivity.  
Although Aqp1 provides a promising tool for 
monitoring genetic systems using MRI, 
variations in tissue microstructure, such as 
cell size and intracellular volume fraction, 
can affect tissue water diffusion12–17, thereby 
making it difficult to unambiguously link 
Aqp1-driven signals with a specific genetic 
output or cell-type. For example, a decrease 
in intracellular volume fraction as a result of 
cell death or apoptotic shrinkage could lead 
to an increase in the rate of water diffusion in 
tissues independent of Aqp1 expression18–20. 
Conversely, an increase in cell size owing to 
swelling or mitotic growth arrest can 
decrease the rate of water diffusion12,21,22. To 
expand Aqp1 into a broadly useful reporter 
for deep-tissue imaging, we need a 
mechanistic framework that predicts how 
changes in molecular diffusivity induced by 
Aqp1 expression are affected by cell radius, 
packing density, and the volume fraction of 
Aqp1-expressing cells.     
Monte Carlo diffusion simulations, which 
compute the Brownian motion of water 
molecules in the presence of a dephasing 
magnetic field gradient, are widely used to 
investigate the correlation between 
molecular diffusion of water and tissue 
morphology23–37. For example, Monte Carlo 
simulations have been used to quantify 
changes in white matter diffusivity caused by 
the swelling and beading of neurites during 
ischemic stroke33,38. In cancer biology, Monte 
Carlo methods have been used to explore 
the effects of cell size, packing density, and 
compartment volume fractions on tumor 
diffusion27,32. We recently applied Monte 
Carlo diffusion simulations to generate 
ground-truth diffusion datasets, which we 
used to compare the accuracies of various 
analytical models for estimating tissue 
microstructure using diffusion-weighted 
MRI36.  
In this study, we developed and 
experimentally validated a Monte Carlo 
simulator to model water diffusion in cells 
engineered to express Aqp1. We showed 
that Aqp1 operates as an effective reporter 

over a wide range of cell sizes and volume 
fractions, driving larger changes in molecular 
diffusivity than those seen in wild-type (viz. 
non-engineered) cells. We also identified the 
range of cellular radii and volume fractions 
that lead to nonspecific enhancements in 
molecular diffusivity, thereby making it 
nontrivial to unambiguously discern Aqp1-
based MRI signals from the tissue 
background. We further show that the time-
dependence of diffusion coefficients can be 
exploited to specifically image Aqp1-
expression without interference from the 
background. Finally, we used Monte Carlo 
simulations to analyze the correlation 
between diffusivity and the volume fraction of 
Aqp1-expressing cells and demonstrated 
that a simple log-linear model was sufficient 
to measure Aqp1-expressing cells in mixed-
cell populations, thereby combining cell-type 
specificity with quantitative imaging.  

RESULTS               
Aqp1 generates a substantial increase in 
diffusivity at long diffusion times. We 
designed our computational tissue phantom 
to consist of spherical cells (7.6 µ𝑚𝑚 radius) 
tightly packed to yield an intracellular volume 
fraction of 0.65. This configuration mimics 
our experimental system comprising lightly 
centrifuged pellets of Chinese hamster ovary 
(CHO) cells. We used Monte Carlo 
simulations to compute diffusivities for a 
range of permeability coefficients and 
diffusion times. Consistent with previous 
studies of water diffusion in similar 
geometries39, the diffusivity increases with 
membrane permeability, rising sharply as the 
permeability crosses ~10−2 µ𝑚𝑚/𝑚𝑚𝑚𝑚 (Fig. 
1b). Longer diffusion times lead to a 
decrease in diffusivity as more spins 
encounter the plasma membrane, which 
restricts water movement (Fig. 1b,c). In 
contrast, permeable membranes (e.g., due 
to Aqp1 expression) do not substantially 
hinder the free movement of water molecules 
and thus the time dependence of diffusion 
become less pronounced with increasing 
permeability (Fig. 1c). Accordingly, extended 
diffusion times are optimal for maximizing 
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diffusion-weighted contrast induced by Aqp1 
expression.  
Next, we used diffusion-weighted MRI to 
measure diffusivities in pellets of both wild-
type cells and cells in which the Aqp1 
reporter was introduced as a transgene 
using lentiviral transduction 
(Supplementary Fig. 1). Our experimental 
estimates agreed with diffusion coefficients 
computed from Monte Carlo simulations 
where we modeled wild-type and Aqp1-CHO 
cells using permeability coefficients of 0.012 
and 0.138 µ𝑚𝑚/𝑚𝑚𝑚𝑚 respectively based on 
previously published estimates40,41 (Fig. 1c). 
Notably, at a diffusion time of 100 𝑚𝑚𝑚𝑚, Aqp1-
expressing cells showed a 124 ±  14 % 
(mean ± s.d., n = 6) increase in diffusivity 
compared to wild-type cells, which aligns 
well with the 112 % increase predicted from 
our simulations. Longer diffusion times will 
further enhance the Aqp1-driven increase in 
diffusivity, though this also decreases the 
signal-to-noise ratio in diffusion-weighted 
images. Accordingly, in the remainder of the 
study, we chose 100 𝑚𝑚𝑚𝑚 as an optimal 
diffusion time to characterize the 

performance of Aqp1 in various tissue 
configurations. 
Changes in tissue microstructure may 
elevate diffusion rates, at times 
overlapping with Aqp1-driven changes in 
molecular diffusivity. We applied the 
Monte Carlo diffusion framework to explore 
the effects of tissue microstructure 
parameters, namely cell size (𝑟𝑟) and 
intracellular volume fraction (𝑣𝑣𝑓𝑓) on the 
diffusivities of wild-type and Aqp1-
expressing CHO cells. Our specific goal was 
to identify cell sizes and volume fractions that 
would elevate the rate of water diffusion and 
by doing so create the same effect on MRI 
readouts as the Aqp1 reporter (Fig. 2a). In 
practical terms, this parameter space 
represents tissue configurations where Aqp1 
signals are hard to tell apart from the tissue 
background. For a fixed extracellular volume 
fraction (𝑣𝑣𝑓𝑓 = 0.65), we found that wild-type 
diffusivity was highly sensitive to cell size, 
increasing by as much as 122 % as the 
radius was varied from 5 µ𝑚𝑚 to 25 µ𝑚𝑚 (Fig. 
2b). Expression of Aqp1 reduced the cell size 
dependence, producing a 36 % increase in 

Figure 1: Monte Carlo simulations of water diffusion in cells with varying plasma membrane 
permeability. a, Engineering cells to express Aqp1 makes their membrane more permeable to water 
molecules than wild-type (viz. non-engineered) cells. b, Molecular diffusivity (𝐷𝐷) increases with 
membrane permeability. Longer diffusion times lead to a decrease in diffusivity as a larger number of 
spins encounter the plasma membrane, which restricts free movement of water molecules. c, Diffusivity 
decreases more markedly with diffusion time in wild-type cells (less permeable) than in cells engineered 
to express Aqp1 (more permeable). Therefore, extended diffusion times (~ 100 𝑚𝑚𝑚𝑚) are required to 
maximize Aqp1-driven contrast. The solid lines represent the simulated diffusivities for a synthetic 
substrate consisting of spherical cells of radius 7.6 µ𝑚𝑚 packed to yield a total intracellular volume fraction 
of 0.65. Wild-type and Aqp1-expressing cells were modeled using permeability coefficients of 0.012 and 
0.138 µ𝑚𝑚/𝑚𝑚𝑚𝑚, respectively.  Circles denote experimental data obtained from pellets of CHO cells at 7 
T. Error bars represent the standard deviation (n ≥ 5 biological replicates). 
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diffusivity over the same size range (Fig. 2b). 
Wild-type cells were also more sensitive to 
changes in the intracellular volume fraction 
and their diffusivity increased by 177 % 
(compared to 80 % for Aqp1 cells) when the 
volume fraction was increased over a 5-fold 
range, while keeping the cell radius fixed 
(Fig. 2c).  
To map the parameter space where Aqp1 
signals are potentially masked by elevations 
in background tissue diffusion, we calculated 

diffusivities while simultaneously varying 
both the intracellular volume fraction and cell 
size (Fig. 2d,e). In general, configurations 
with large cells and low intracellular volume 
fractions had diffusivities high enough to 
overlap with Aqp1 signals (Fig. 2d,e). We 
wondered whether we could use the distinct 
time-dependence of diffusivity in wild-type 
and Aqp1-expressing cells (Fig. 1c) to 
distinguish between signals resulting from 
Aqp1 expression and nonspecific diffusion 

Figure 2: Effect of cell size and intracellular volume fraction on diffusivity. a, Changes in tissue 
microstructure, such as reduced intracellular volume fraction (𝑣𝑣𝑓𝑓)  or larger cell radius (𝑟𝑟), can increase 
diffusivity (𝐷𝐷) similar to Aqp1 expression. b, Simulated diffusivity at a fixed volume fraction (𝑣𝑣𝑓𝑓 = 0.65) 
increases with cell radius in both Aqp1-expressing and wild-type cells, but Aqp1 expression reduces the 
size dependence of diffusivity. c, Simulated diffusivity for a given cell size (𝑟𝑟 = 7.6 µ𝑚𝑚) shows an inverse 
correlation with intracellular volume fraction in Aqp1-expressing and wild-type cells. d, Heatmap 
showing the combined dependence of diffusivity on cell size and intracellular volume fraction in wild-
type and e, Aqp1-expressing cells. In the region marked as 1, Aqp1 signals are difficult to distinguish 
from the tissue background because wild-type diffusivities fall within the same range of diffusivities 
observed in Aqp1-expressing cells. f, Heatmap showing the dependence of differential diffusivity, viz. 
Δ𝐷𝐷 = 𝐷𝐷20 𝑚𝑚𝑚𝑚 − 𝐷𝐷100 𝑚𝑚𝑚𝑚, on cell size and intracellular volume fraction in wild-type and g, Aqp1-expressing 
cells. The Δ𝐷𝐷 metric significantly reduces the overlap (region of overlap marked as 1 in the heatmap) 
between cell populations expressing Aqp1 and wild-type cells, thereby providing a reliable readout of 
Aqp1 expression that is unaffected by tissue microstructure parameters. The color-bars represent 
molecular diffusivity of water (𝐷𝐷) or differential diffusivity (𝛥𝛥𝛥𝛥) in units of 𝑢𝑢𝑚𝑚2/𝑚𝑚𝑚𝑚. Wild-type and Aqp1-
expressing cells were modeled with permeability coefficients of 0.012 and 0.138 µ𝑚𝑚/𝑚𝑚𝑚𝑚, respectively.   
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enhancements caused by changes in tissue 
microstructure. Notably, in sharp contrast to 
Aqp1-expressing cells, the diffusivity of wild-

type cells changes rapidly with diffusion time 
(Fig. 1c). Accordingly, we explored how the 
difference in simulated diffusivities between 

Figure 3: Imaging of mixed-cell populations using Aqp1. a, Diffusivity (𝐷𝐷) of a mixed-cell population 
increases when more Aqp1-expressing cells are present. b, The relationship between diffusivity and 
volume fraction of Aqp1-expressing cells (𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1) can be modeled by a log-linear function for mixed 
populations containing Aqp1-expressing CHO cells and either wild-type CHO or wild-type Jurkat cells. 
c, A representative example of a 24 x 24 voxel mixed-cell mosaic created using randomly chosen 
voxels from experimental diffusion maps of cell populations comprising varying fractions of CHO-Aqp1 
cells mixed with wild-type CHO cells. Each voxel in the image corresponds to an experimentally 
determined diffusion coefficient. d, The mapping between diffusivity and 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 is used to distinguish 
voxels into one of four levels reflecting the volume percentage of Aqp1-expression: absent (𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 <
10 %) , low (10 % ≤ 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 < 30 %), medium (30 % ≤ 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 ≤ 70 %), and high (𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 > 70 %). e, 
Voxels that are classified correctly are shown in a lighter shade, whereas those that are classified 
incorrectly are shown in black. f, Representative example of a 24 x 24 voxel mixed-cell mosaic created 
from diffusion maps of mixed populations comprising varying fractions of CHO-Aqp1 cells mixed with 
wild-type Jurkat cells. g, Each voxel was classified into one of four levels, reflecting the volume 
percentage of Aqp1-expressing cells. h, Correctly classified voxels are shown in a lighter shade, 
whereas those that are classified incorrectly are shown in black. Color-bars in c, f: diffusivity (𝜇𝜇𝑚𝑚2/𝑚𝑚𝑚𝑚). 
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20 𝑚𝑚𝑚𝑚 and 100 𝑚𝑚𝑚𝑚 (𝛥𝛥𝛥𝛥 =  𝐷𝐷20 − 𝐷𝐷100) 
changes as a function of radii and 
intracellular volume fractions (Fig. 2f,g, 
Supplementary Fig. 2). Strikingly, the 𝛥𝛥𝛥𝛥 
metric successfully differentiated between 
wild-type and Aqp1-expressing cells for 
nearly all combinations of radii and volume 
fractions tested (Fig. 2f), indicating that 
difference imaging at two diffusion times 
provides a unique approach for accurately 
identifying expression of the Aqp1 reporter 
regardless of changes in microstructure 
parameters. 
Monte Carlo simulations allow mapping 
of Aqp1 volume percentage in mixed cell 
populations. In many applications of 
reporter gene technology, such as tracking 
cell therapies and monitoring transcriptional 
activity, only a subset of cells may express 
the reporter at a given time. In these 
scenarios, the ability to quantify the fraction 
of reporter-expressing cells permits a richer 
description of the underlying biological 
process. To this end, we hypothesized that 
the dependence of molecular diffusivity on 
the volume percentage of Aqp1-cells (𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1) 
in a mixed population could be used for 
quantitative imaging of reporter gene 
expression (Fig. 3a). To test this idea, we 
analyzed the relationship between diffusivity 
calculated by our Monte Carlo simulations 
and 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 in mixed populations comprising 
CHO-Aqp1 cells interspersed with wild-type 
cells in varying ratios. We found that a simple 
log-linear function quantitatively describes 
the dependence of molecular diffusivity on 
𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 (Fig. 3b, Supplementary Fig. 4).  
Next, we constructed a mixed-cell mosaic by 
randomly sampling voxels from experimental 
diffusion maps of cell populations comprising 
varying ratios of Aqp1-expressing to wild-
type CHO cells (Fig. 3c). We used the log-
linear mapping between diffusivity and 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 
(Fig. 3b) to classify each voxel in the mosaic 
into one of four groups mirroring the 
percentage of Aqp1-labeled cells contained 
in the voxel (Fig. 3d). Using this approach, 
we were able to convert the mixed-cell image 
into a 4-level classification of Aqp1 volume 
fraction achieving an accuracy of 79.67 % on 

entirely unseen experimental data (Fig. 3e, 
Table S1). We further tested this approach 
on a cell mixture consisting of CHO-Aqp1 
cells mixed with a different cell-type, Jurkat 
T-cells. We simulated Jurkat cells as spheres 
with a radius of 5 µ𝑚𝑚 and validated that the 
simulated diffusivity matched with 
experimental measurements in cell pellets 
(Supplementary Fig. 3). As before, we 
generated mixed-cell mosaics from diffusion 
maps of pellets comprising CHO-Aqp1 cells 
mixed with Jurkat cells in varying ratios (Fig. 
3f). Finally, we used the log-linear mapping 
between simulated diffusivity and 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 for 
the CHO-Aqp1 and Jurkat mixture (Fig. 3b) 
to perform a 4-level classification of all voxels 
in the mosaic image, achieving an accuracy 
of 78.15 % (Fig. 3g,h, Table S2).          

DISCUSSION 
Here, we quantitatively assessed the 
performance of Aqp1 as a reporter gene in 
simulated tissue configurations comprising 
cells of different radii, volume fractions, and 
proportions of Aqp1-expressing cells. Our 
study revealed four major findings that we 
anticipate will be used to guide the design 
and analysis of future experiments involving 
Aqp1 to track cells, genetic function, and 
molecular activity in living organisms. First, 
we found that Aqp1 is robust to cell size 
variations, making it a suitable reporter for 
cells of different sizes. This prediction is 
reinforced by a growing body of literature 
showing that Aqp1 operates as a viable 
reporter across distinct cell-types, such as 
tumors, neurons, and glial cells42–44. Second, 
this study emphasizes the importance of 
accounting for volume fraction when 
interpreting MRI signals generated by Aqp1, 
especially when a large reduction in cell 
density is expected, such as during tumor 
therapy. Third, we demonstrate that 
subtracting diffusivities at two time points 
provides a unique approach for 
disambiguating Aqp1 signals from the 
nonspecific effects of tissue microstructure 
on water diffusion. Finally, we observed that 
diffusivity was quantitatively linked to the 
volume fraction of cells expressing Aqp1, 
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suggesting that Aqp1 can be used as a 
genetic indicator to measure the percentage 
of reporter-expressing cells in mixed 
populations.  
The current study has limitations, which 
suggest potential avenues for future 
research. First, the two-compartment model 
employed here, similar to those used in past 
diffusion modeling studies26,31,34,39, could be 
amended to include additional water pools 
for subcellular structures such as the nucleus 
and extracellular structures such as the 
vasculature27,32,45. Such multicompartment 
models could help in analyzing how Aqp1 
behaves in systems where nuclear and/or 
vascular volume fractions vary, which could 
in turn modify intra- and extracellular 
diffusion coefficients. Second, our tissue 
phantoms can be tailored to accurately 
reflect realistic geometries derived from the 
histology of engineered tissues expressing 
Aqp146. Although we expect that the 
correlations found in this study will hold for 
even more complex tissue morphologies, 
histology-derived meshes can be useful for 
exploring the context-dependent behavior of 
Aqp1 in realistic in vivo settings. To this end, 
Monte Carlo diffusion simulations are 
advantageous due to their ability to integrate 
new experimental data, which is expected to 
grow owing to advances in diffusion MRI 
technology47 and the adoption of Aqp1-
based reporters by the scientific 
community42–44. Finally, Monte Carlo 
simulations could be used to train learning 
algorithms to generate spatial maps of gene 
expression and cell density based on Aqp1 
reporter signals measured in biological 
tissues46. To do so, the diffusion signal must 
be represented by a more comprehensive 
feature vector, likely including additional 
metrics derived from multishell diffusion-
weighted imaging experiments48. These 
efforts should be bolstered by machine 
learning models that use multi-shell diffusion 
tensor data to compute tissue microstructure 
parameters49–52.  
In summary, this study establishes Aqp1 as 
a quantitative tool for biomedical imaging by 
bringing together the capabilities of genetic 

targeting, diffusion biophysics, and Monte 
Carlo simulations. We envision a rapid 
expansion of Aqp1 applications in the future, 
especially with advances in reporter 
engineering and diffusion imaging 
technology, synergizing with the 
computational approach established in this 
work.  

METHODS 
Monte Carlo diffusion simulations. We 
modeled cells as packed spheres and 
dispersed 𝑁𝑁 =  105  particles (representing 
diffusing water spins) evenly in the intra- and 
extracellular compartments, in proportion to 
the relative volume of each compartment. 
We performed two-compartment diffusion 
simulations with a time step (𝜏𝜏) of 19.682 𝜇𝜇𝜇𝜇 
using the open-source Monte Carlo Diffusion 
and Collision Simulator developed in26 and 
later extended to permeable substrates36. 
The total number of 
particles (𝑁𝑁) and step size (𝜏𝜏) were chosen 
to ensure accuracy and convergence of the 
simulation runs26. Using these parameters, 
the standard deviation of simulated diffusivity 
is less than 2 % of its mean across all 
simulations. Briefly, at each time step (𝜏𝜏 =
19 𝜇𝜇𝜇𝜇), we randomly displaced a spin (𝑖𝑖) by 
a distance (𝑥𝑥𝑖𝑖) computed from Einstein’s 
diffusion equation assuming diffusion 
coefficients of 1 µm2/ms and 2 µm2/ms for the 
intra- and extracellular compartments, 
respectively. Upon encountering a cell 
membrane, a spin can undergo an elastic 
reflection25 or pass through the membrane, 
with a probability that depends on the 
permeability coefficient (𝜅𝜅) of the membrane 
and is calculated as described in prior work46. 
At the desired diffusion time (Δ), we sum the 
total phase dispersion of by all spins in the 
ensemble to compute the diffusion 

coefficient (𝐷𝐷) as follows: 𝐷𝐷 = − ln (𝑒𝑒−
𝑞𝑞
2∑𝑥𝑥𝑖𝑖

2
)

𝑞𝑞∆
. 

Here, 𝑞𝑞 represents the diffusion-weighting 
defined as 𝑞𝑞 =  (𝛾𝛾𝛾𝛾𝛾𝛾)2 where 𝛾𝛾 =
 42.57 𝑀𝑀𝑀𝑀𝑀𝑀/𝑇𝑇, 𝛿𝛿 is the gradient duration, 𝑔𝑔 is 
the gradient strength. The values of ∆, 𝛿𝛿, and 
𝑔𝑔 were based on the experimentally defined 
diffusion-weighted MRI parameters (see 
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below). We first investigated the change in 
diffusivity as a function of membrane 
permeability for a fixed cell radius (𝑟𝑟 =
7.6 𝜇𝜇𝜇𝜇) and volume fraction (𝑣𝑣𝑓𝑓 = 0.65). This 
radius was chosen to be consistent with the 
effective size of CHO cells53 and the volume 
fraction approximates lightly centrifuged cell 
pellets as well as many physiological tissues. 
We investigated three scenarios: (1) 𝑣𝑣𝑓𝑓 =
0.65, 5 𝜇𝜇𝜇𝜇 ≤ 𝑟𝑟 ≤ 25 𝜇𝜇𝜇𝜇 (2) 𝑟𝑟 = 7.6 𝜇𝜇𝜇𝜇, 
0.10 ≤ 𝑣𝑣𝑓𝑓 ≤ 0.67 (3) concurrently varying 
both 𝑟𝑟 and 𝑣𝑣𝑓𝑓 within the aforementioned 
limits. For each condition, we tested two 
permeability coefficients corresponding to 
wild-type (0.012 𝜇𝜇𝜇𝜇 𝑚𝑚𝑠𝑠−1) and Aqp1-
expressing CHO cells (0.138 𝜇𝜇𝜇𝜇 𝑚𝑚𝑠𝑠−1). The 
permeability values are based on previously 
published estimates obtained in wild-type 
CHO cells and CHO cells stably transfected 
to express Aqp140.  
Mixed-cell Monte Carlo simulations were 
performed in the same manner as described 
above, but by varying the number of Aqp1-
expressing and wild-type CHO cells to 
achieve a desired Aqp1 volume fraction 
(𝑣𝑣𝑓𝑓,𝐴𝐴𝐴𝐴𝐴𝐴1). For mixed-cell experiments 
involving CHO and Jurkat cells, the latter 
were modeled as smaller spheres (𝑟𝑟 =
 5 𝜇𝜇𝜇𝜇) with 𝜅𝜅 =  0.005 𝜇𝜇𝜇𝜇/𝑚𝑚𝑚𝑚54,55. We 
packed spheres of two different radii (𝑟𝑟𝐶𝐶𝐶𝐶𝐶𝐶  =
 7.6 𝜇𝜇𝜇𝜇, 𝑟𝑟𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽𝐽  =  5 𝜇𝜇𝜇𝜇) to obtain a total 
intracellular volume fraction of 0.65, as 
described previously56, while adjusting the 
number of bigger spheres to obtain the 
desired volume fraction of CHO cells.   
Reagents. Dulbecco’s Modified Eagle Media 
(DMEM), sodium pyruvate, doxycycline 
hyclate, and penicillin-streptomycin (104 
units/mL penicillin and 10 mg/mL 
streptomycin) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Roswell Park 
Memorial Institute media (RPMI 1640), 
sterile phosphate buffered saline (PBS), 
TrypLE, and Gibco™ fetal bovine serum 
(FBS) were purchased from Thermo Fisher 
Scientific (Waltham, MA, USA). MycoAlert® 
Plus Mycoplasma Detection Assay was 
purchased from Lonza.  

Cell culture. Chinese hamster ovary (CHO) 
cell lines were genetically engineered to 
express human aquaporin-1 (hAqp1) exactly 
as described in our previous work. Both wild-
type and Aqp1-expressing CHO cells were 
cultured at 37 °C in a humidified 5 % CO2 
incubator using DMEM supplemented with 
10 % FBS, 100 U/mL penicillin, and 100 
µg/mL streptomycin. Jurkat cells were grown 
as suspension culture using RPMI medium 
supplemented as before.  
In vitro MRI. Approximately 24 h before 
imaging, cells were treated with doxycycline 
hyclate (1-10 µg/mL)  to activate Aqp1 
expression. Adherent CHO cells were 
harvested by trypsinization, centrifuged at 
350 x g, and resuspended in 200 µL sterile 
PBS in 0.2 mL tubes. For the mixed cell 
experiments, the two cell types were cultured 
separately and 10 µL of the cell suspension 
was loaded in a disposable hemocytometer 
to count cells using a brightfield microscope. 
Based on the cell counts, appropriate 
volumes of the two cell types were mixed to 
achieve a desired volume fraction of Aqp1-
expressing cells. The cells were mixed by 
gentle pipetting, centrifuged, and transferred 
to 0.2 mL tubes. The 0.2 mL tubes were 
centrifuged at a low speed (500 x g for 5 min) 
to form compact pellets. The pellet-
containing tubes were housed in a water-
filled agarose (1 % w/v) phantom for imaging. 
MR images were acquired using a 66 mm 
diameter coil in a Bruker 7T vertical-bore 
scanner. Diffusion-weighted images were 
acquired in the axial plane using a stimulated 
echo sequence with the following 
parameters: echo time, TE = 18 ms, repetition 
time, TR = 1000 ms, gradient duration, δ = 5 
ms, gradient separation, Δ = 20, 50, 80, 100, 
200, and 300 ms, matrix size = 128 x 128, 
field of view (FOV) = 5.08 x 5.08 cm2, slice 
thickness = 1-2 mm, number of averages = 
5, and 4 nominal b-values: 0, 400, 600, and 
800 s/mm2. Although the same set of 
nominal b-values was used at all diffusion 
times, the effective b-values changed 
substantially owing to the contribution of 
imaging gradients to the diffusion weighting 
via cross terms57. Diffusion-weighted 
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intensity was determined using region of 
interest (ROI) analysis in Fiji (NIH) and the 
slope of the logarithmic decay in mean 
intensity versus effective b-value was used 
to calculate the diffusivity. To generate voxel-
wise diffusion maps, a diffusion coefficient 
was computed for each voxel. Least-squares 
regression fitting was performed using the 
fitnlm function in Matlab (R2022b).  
Voxel-wise classification of mixed-cell 
populations based on Aqp1 volume 
fraction. We binned individual voxels from 
experimental diffusion maps (acquired at Δ = 
100 ms) of mixed-cell pellets into one of nine 
groups (0, 10, 20, 30, 40, 50, 60, 80, and 100 
%) based on the known Aqp1 volume 
fraction (𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1) of the pellet. The ensuing 
dataset comprises approximately 3744 
voxels (4 replicates x 104 voxels per image x 
9 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 values) representing noisy 
experimental data for a range of Aqp1 
volume fractions. We denoised diffusivity 
values in each bin using a Gaussian filter 
(𝜎𝜎 = 3), similar to how experimental diffusion 
maps are commonly smoothed.  From each 
bin, we sampled 64 voxels with replacement 
and distributed them randomly in a 24 x 24 
grid to construct a “mixed-cell” ADC image. 
We modeled the dependence of the 
simulated ADC (Δ = 100 ms) on 𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 using 
a log-linear function of the form 𝑙𝑙𝑙𝑙𝑙𝑙(𝐴𝐴𝐴𝐴𝐴𝐴)  =
𝑎𝑎𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 + 𝑏𝑏. We used the resulting log-linear 
mapping to classify each voxel in the mixed-
cell ADC image into one of four levels: 
absent (𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 < 10 %) , low (10 % ≤  𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 <
30 %), medium (30 % ≤  𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 ≤ 70 %), and 
high (𝑣𝑣𝐴𝐴𝐴𝐴𝐴𝐴1 > 70 %). This discretized 4-level 
classification was deemed appropriate, given 
that experimental ADC maps are inherently 
noisy, particularly at the long diffusion times 
needed to maximize Aqp1-based contrast. 
To evaluate the performance of the model, 
we repeated the 4-level classification on 100 
randomly generated sets of mixed-cell 
images and computed the confusion matrix 
using the precision_recall_fscore_support 
package from sklearn.metrics in Python.  
Statistical analysis. Experimental data are 
summarized by their mean and standard 

deviation obtained from multiple (n ≥ 4) 
biological replicates defined as 
measurements performed with distinct cell 
samples. Quality of model-fitting was judged 
based on the regression coefficient and 
inspection of the 95 % confidence intervals 
and coefficients of determination. All tests 
are 2-sided and a P value of less than 0.05 
taken to indicate statistical significance.  
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