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Abstract

Aquaporins provide a new class of genetic tools for imaging molecular activity in deep tissues by
increasing the rate of cellular water diffusion, which generates magnetic resonance contrast.
However, distinguishing aquaporin contrast from the tissue background is challenging because
water diffusion is also influenced by structural factors such as cell size and packing density. Here,
we developed and experimentally validated a Monte Carlo model to analyze how cell radius and
intracellular volume fraction quantitatively affect aquaporin signals. We demonstrated that a
differential imaging approach based on time-dependent changes in diffusivity can improve
specificity by unambiguously isolating aquaporin-driven contrast from the tissue background.
Finally, we used Monte Carlo simulations to analyze the connection between diffusivity and the
percentage of cells engineered to express aquaporin, and established a simple mapping that
accurately determined the volume fraction of aquaporin-expressing cells in mixed populations.
This study creates a framework for broad applications of aquaporins, particularly in biomedicine
and in vivo synthetic biology, where quantitative methods to measure the location and
performance of genetic devices in whole vertebrates are necessary.

INTRODUCTION

Genetically encoded reporters are essential
tools for monitoring molecular signals in
living systems. In synthetic biology, reporters
based on fluorescent and bioluminescent
proteins provide a natural approach for
measuring and optimizing the performance
of genetic systems'. However, optical
reporters are of limited use for tracking
genetically engineered devices in living
animals due to absorption and scattering of
light in thick tissue?#. Unlike optical
methods, magnetic resonance imaging
(MRI) can image deep tissues and generate
volumetric scans with a high spatial
resolution. We recently developed an MRI-

based reporter that enables imaging of
genetic activity in deep tissues®’. This
reporter utilizes aquaporin-1  (Agp1), a
channel that allows water molecules to
diffuse  freely across the plasma
membrane®®. In contrast to wild-type cells,
which restrict water movement owing to the
low permeability of the plasma membrane,
cells engineered to express Agp1 allow the
free exchange of water (Fig. 1a).
Accordingly, Aqp1 expression increases the
molecular diffusivity of water in cells and
tissues, which can be visualized using an
MRI technique known as diffusion-weighted
imaging'®'". In this technique, pulsed
magnetic field gradients create a phase
dispersion in water molecules, producing a
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signal that decays in proportion to water
diffusivity.

Although Aqgp1 provides a promising tool for
monitoring genetic systems using MRI,
variations in tissue microstructure, such as
cell size and intracellular volume fraction,
can affect tissue water diffusion’?>-'7, thereby
making it difficult to unambiguously link
Aqgp1-driven signals with a specific genetic
output or cell-type. For example, a decrease
in intracellular volume fraction as a result of
cell death or apoptotic shrinkage could lead
to an increase in the rate of water diffusion in
tissues independent of Aqp1 expression'8-20,
Conversely, an increase in cell size owing to
swelling or mitotic growth arrest can
decrease the rate of water diffusion'22"22, To
expand Agp1 into a broadly useful reporter
for deep-tissue imaging, we need a
mechanistic framework that predicts how
changes in molecular diffusivity induced by
Aqgp1 expression are affected by cell radius,
packing density, and the volume fraction of
Agp1-expressing cells.

Monte Carlo diffusion simulations, which
compute the Brownian motion of water
molecules in the presence of a dephasing
magnetic field gradient, are widely used to
investigate  the  correlation  between
molecular diffusion of water and tissue
morphology?*-%’. For example, Monte Carlo
simulations have been used to quantify
changes in white matter diffusivity caused by
the swelling and beading of neurites during
ischemic stroke®33, In cancer biology, Monte
Carlo methods have been used to explore
the effects of cell size, packing density, and
compartment volume fractions on tumor
diffusion?”32, We recently applied Monte
Carlo diffusion simulations to generate
ground-truth diffusion datasets, which we
used to compare the accuracies of various
analytical models for estimating tissue
microstructure using diffusion-weighted
MRIZ,

In this study, we developed and
experimentally validated a Monte Carlo
simulator to model water diffusion in cells
engineered to express Agp1. We showed
that Aqp1 operates as an effective reporter

over a wide range of cell sizes and volume
fractions, driving larger changes in molecular
diffusivity than those seen in wild-type (viz.
non-engineered) cells. We also identified the
range of cellular radii and volume fractions
that lead to nonspecific enhancements in
molecular diffusivity, thereby making it
nontrivial to unambiguously discern Agp1-
based MRI signals from the tissue
background. We further show that the time-
dependence of diffusion coefficients can be
exploited to specifically image Agp1-
expression without interference from the
background. Finally, we used Monte Carlo
simulations to analyze the correlation
between diffusivity and the volume fraction of
Aqgp1-expressing cells and demonstrated
that a simple log-linear model was sufficient
to measure Aqp1-expressing cells in mixed-
cell populations, thereby combining cell-type
specificity with quantitative imaging.

RESULTS

Agp1 generates a substantial increase in
diffusivity at long diffusion times. We
designed our computational tissue phantom
to consist of spherical cells (7.6 um radius)
tightly packed to yield an intracellular volume
fraction of 0.65. This configuration mimics
our experimental system comprising lightly
centrifuged pellets of Chinese hamster ovary
(CHO) cells. We wused Monte Carlo
simulations to compute diffusivities for a
range of permeability coefficients and
diffusion times. Consistent with previous
studies of water diffusion in similar
geometries®, the diffusivity increases with
membrane permeability, rising sharply as the
permeability crosses ~1072 pm/ms (Fig.
1b). Longer diffusion times lead to a
decrease in diffusivity as more spins
encounter the plasma membrane, which
restricts water movement (Fig. 1b,c). In
contrast, permeable membranes (e.g., due
to Aqp1 expression) do not substantially
hinder the free movement of water molecules
and thus the time dependence of diffusion
become less pronounced with increasing
permeability (Fig. 1¢). Accordingly, extended
diffusion times are optimal for maximizing
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Figure 1: Monte Carlo simulations of water diffusion in cells with varying plasma membrane
permeability. a, Engineering cells to express Agp1 makes their membrane more permeable to water
molecules than wild-type (viz. non-engineered) cells. b, Molecular diffusivity (D) increases with
membrane permeability. Longer diffusion times lead to a decrease in diffusivity as a larger number of
spins encounter the plasma membrane, which restricts free movement of water molecules. ¢, Diffusivity
decreases more markedly with diffusion time in wild-type cells (less permeable) than in cells engineered
to express Agp1 (more permeable). Therefore, extended diffusion times (~ 100 ms) are required to
maximize Agp1-driven contrast. The solid lines represent the simulated diffusivities for a synthetic
substrate consisting of spherical cells of radius 7.6 pm packed to yield a total intracellular volume fraction
of 0.65. Wild-type and Agp1-expressing cells were modeled using permeability coefficients of 0.012 and
0.138 um/ms, respectively. Circles denote experimental data obtained from pellets of CHO cells at 7
T. Error bars represent the standard deviation (n = 5 biological replicates).

diffusion-weighted contrast induced by Agp1
expression.

Next, we used diffusion-weighted MRI to
measure diffusivities in pellets of both wild-
type cells and cells in which the Aqgp1
reporter was introduced as a transgene
using lentiviral transduction
(Supplementary Fig. 1). Our experimental
estimates agreed with diffusion coefficients
computed from Monte Carlo simulations
where we modeled wild-type and Aqp1-CHO
cells using permeability coefficients of 0.012
and 0.138 um/ms respectively based on
previously published estimates*®#! (Fig. 1c).
Notably, at a diffusion time of 100 ms, Aqp1-
expressing cells showed a 124 + 14 %
(mean % s.d., n = 6) increase in diffusivity
compared to wild-type cells, which aligns
well with the 112 % increase predicted from
our simulations. Longer diffusion times will
further enhance the Aqp1-driven increase in
diffusivity, though this also decreases the
signal-to-noise ratio in diffusion-weighted
images. Accordingly, in the remainder of the
study, we chose 100msas an optimal
diffusion time to characterize the

performance of Aqgp1 in various tissue
configurations.

Changes in tissue microstructure may
elevate diffusion rates, at times
overlapping with Aqp1-driven changes in
molecular diffusivity. We applied the
Monte Carlo diffusion framework to explore
the effects of tissue microstructure
parameters, namely cell size (r) and
intracellular volume fraction (vy) on the
diffusivities of wild-type and Agp1-
expressing CHO cells. Our specific goal was
to identify cell sizes and volume fractions that
would elevate the rate of water diffusion and
by doing so create the same effect on MRI
readouts as the Agp1 reporter (Fig. 2a). In
practical terms, this parameter space
represents tissue configurations where Aqp1
signals are hard to tell apart from the tissue
background. For a fixed extracellular volume
fraction (vy = 0.65), we found that wild-type
diffusivity was highly sensitive to cell size,
increasing by as much as 122 % as the
radius was varied from 5 um to 25 um (Fig.
2b). Expression of Agp1 reduced the cell size
dependence, producing a 36 % increase in
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Figure 2: Effect of cell size and intracellular volume fraction on diffusivity. a, Changes in tissue
microstructure, such as reduced intracellular volume fraction (v;) or larger cell radius (r), can increase
diffusivity (D) similar to Agp1 expression. b, Simulated diffusivity at a fixed volume fraction (v, = 0.65)
increases with cell radius in both Aqp1-expressing and wild-type cells, but Agp1 expression reduces the
size dependence of diffusivity. ¢, Simulated diffusivity for a given cell size (r = 7.6 pym) shows an inverse
correlation with intracellular volume fraction in Agp1-expressing and wild-type cells. d, Heatmap
showing the combined dependence of diffusivity on cell size and intracellular volume fraction in wild-
type and e, Agp1-expressing cells. In the region marked as 1, Aqp1 signals are difficult to distinguish
from the tissue background because wild-type diffusivities fall within the same range of diffusivities
observed in Agp1-expressing cells. f, Heatmap showing the dependence of differential diffusivity, viz.
AD = D5y ms — Diooms, ON cell size and intracellular volume fraction in wild-type and g, Agp1-expressing
cells. The AD metric significantly reduces the overlap (region of overlap marked as 1 in the heatmap)
between cell populations expressing Aqp1 and wild-type cells, thereby providing a reliable readout of
Aqgp1 expression that is unaffected by tissue microstructure parameters. The color-bars represent
molecular diffusivity of water (D) or differential diffusivity (AD) in units of um?/ms. Wild-type and Aqp1-
expressing cells were modeled with permeability coefficients of 0.012 and 0.138 um/ms, respectively.

diffusivity over the same size range (Fig. 2b).
Wild-type cells were also more sensitive to

diffusivities while simultaneously varying
both the intracellular volume fraction and cell

changes in the intracellular volume fraction
and their diffusivity increased by 177 %
(compared to 80 % for Aqp1 cells) when the
volume fraction was increased over a 5-fold
range, while keeping the cell radius fixed
(Fig. 2c).

To map the parameter space where Agp1
signals are potentially masked by elevations
in background tissue diffusion, we calculated

size (Fig. 2d,e). In general, configurations
with large cells and low intracellular volume
fractions had diffusivities high enough to
overlap with Agp1 signals (Fig. 2d,e). We
wondered whether we could use the distinct
time-dependence of diffusivity in wild-type
and Aqgp1-expressing cells (Fig. 1c¢) to
distinguish between signals resulting from
Agp1 expression and nonspecific diffusion
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Figure 3: Imaglng of mlxed-cell populations using Aqp1. a, D|ffu3|V|ty (D) of a mixed-cell population
increases when more Agp1-expressing cells are present. b, The relationship between diffusivity and
volume fraction of Agp1-expressing cells (v44,1) can be modeled by a log-linear function for mixed
populations containing Aqp1-expressing CHO cells and either wild-type CHO or wild-type Jurkat cells.
¢, A representative example of a 24 x 24 voxel mixed-cell mosaic created using randomly chosen
voxels from experimental diffusion maps of cell populations comprising varying fractions of CHO-Aqgp1
cells mixed with wild-type CHO cells. Each voxel in the image corresponds to an experimentally
determined diffusion coefficient. d, The mapping between diffusivity and v,,,, is used to distinguish
voxels into one of four levels reflecting the volume percentage of Aqp1-expression: absent (vyg,1 <
10 %) , low (10 % < vqp1 < 30 %), medium (30 % < V4qp1 < 70 %), and high (vygp1 > 70 %). e,
Voxels that are classified correctly are shown in a lighter shade, whereas those that are classified
incorrectly are shown in black. f, Representative example of a 24 x 24 voxel mixed-cell mosaic created
from diffusion maps of mixed populations comprising varying fractions of CHO-Aqgp1 cells mixed with
wild-type Jurkat cells. g, Each voxel was classified into one of four levels, reflecting the volume
percentage of Agp1-expressing cells. h, Correctly classified voxels are shown in a lighter shade,
whereas those that are classified incorrectly are shown in black. Color-bars in ¢, f: diffusivity (um?/ms).

enhancements caused by changes in tissue type cells changes rapidly with diffusion time
microstructure. Notably, in sharp contrast to (Fig. 1¢). Accordingly, we explored how the
Agp1-expressing cells, the diffusivity of wild- difference in simulated diffusivities between
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20ms and 100ms (AD = D,y — D1g9)
changes as a function of radii and
intracellular volume fractions (Fig. 2f,qg,
Supplementary Fig. 2). Strikingly, the 4D
metric successfully differentiated between
wild-type and Aqgp1-expressing cells for
nearly all combinations of radii and volume
fractions tested (Fig. 2f), indicating that
difference imaging at two diffusion times
provides a unique approach for accurately
identifying expression of the Aqgp1 reporter
regardless of changes in microstructure
parameters.

Monte Carlo simulations allow mapping
of Agqp1 volume percentage in mixed cell
populations. In many applications of
reporter gene technology, such as tracking
cell therapies and monitoring transcriptional
activity, only a subset of cells may express
the reporter at a given time. In these
scenarios, the ability to quantify the fraction
of reporter-expressing cells permits a richer
description of the underlying biological
process. To this end, we hypothesized that
the dependence of molecular diffusivity on
the volume percentage of Aqp1-cells (v44p1)
in a mixed population could be used for
quantitative imaging of reporter gene
expression (Fig. 3a). To test this idea, we
analyzed the relationship between diffusivity
calculated by our Monte Carlo simulations
and v,4p1 in mixed populations comprising
CHO-Aqp1 cells interspersed with wild-type
cells in varying ratios. We found that a simple
log-linear function quantitatively describes
the dependence of molecular diffusivity on
Vagp1 (Fig. 3b, Supplementary Fig. 4).

Next, we constructed a mixed-cell mosaic by
randomly sampling voxels from experimental
diffusion maps of cell populations comprising
varying ratios of Agp1-expressing to wild-
type CHO cells (Fig. 3c). We used the log-
linear mapping between diffusivity and v4,1
(Fig. 3b) to classify each voxel in the mosaic
into one of four groups mirroring the
percentage of Agp1-labeled cells contained
in the voxel (Fig. 3d). Using this approach,
we were able to convert the mixed-cell image
into a 4-level classification of Aqp1 volume
fraction achieving an accuracy of 79.67 % on

entirely unseen experimental data (Fig. 3e,
Table S1). We further tested this approach
on a cell mixture consisting of CHO-Aqp1
cells mixed with a different cell-type, Jurkat
T-cells. We simulated Jurkat cells as spheres
with a radius of 5 ym and validated that the
simulated diffusivity matched with
experimental measurements in cell pellets
(Supplementary Fig. 3). As before, we
generated mixed-cell mosaics from diffusion
maps of pellets comprising CHO-Agp1 cells
mixed with Jurkat cells in varying ratios (Fig.
3f). Finally, we used the log-linear mapping
between simulated diffusivity and v,g,, for
the CHO-Aqp1 and Jurkat mixture (Fig. 3b)
to perform a 4-level classification of all voxels
in the mosaic image, achieving an accuracy
of 78.15 % (Fig. 3g,h, Table S2).

DISCUSSION

Here, we quantitatively assessed the
performance of Agp1 as a reporter gene in
simulated tissue configurations comprising
cells of different radii, volume fractions, and
proportions of Aqp1-expressing cells. Our
study revealed four major findings that we
anticipate will be used to guide the design
and analysis of future experiments involving
Aqgp1 to track cells, genetic function, and
molecular activity in living organisms. First,
we found that Agp1 is robust to cell size
variations, making it a suitable reporter for
cells of different sizes. This prediction is
reinforced by a growing body of literature
showing that Aqp1 operates as a viable
reporter across distinct cell-types, such as
tumors, neurons, and glial cells*>-4. Second,
this study emphasizes the importance of
accounting for volume fraction when
interpreting MRI signals generated by Aqp1,
especially when a large reduction in cell
density is expected, such as during tumor
therapy. Third, we demonstrate that
subtracting diffusivities at two time points
provides a unique  approach  for
disambiguating Agp1 signals from the
nonspecific effects of tissue microstructure
on water diffusion. Finally, we observed that
diffusivity was quantitatively linked to the
volume fraction of cells expressing Agp1,
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suggesting that Aqp1 can be used as a
genetic indicator to measure the percentage
of reporter-expressing cells in mixed
populations.

The current study has limitations, which
suggest potential avenues for future
research. First, the two-compartment model
employed here, similar to those used in past
diffusion modeling studies?6:3:343% could be
amended to include additional water pools
for subcellular structures such as the nucleus
and extracellular structures such as the
vasculature?’-3245, Such multicompartment
models could help in analyzing how Aqgp1
behaves in systems where nuclear and/or
vascular volume fractions vary, which could
in turn modify intra- and extracellular
diffusion coefficients. Second, our tissue
phantoms can be tailored to accurately
reflect realistic geometries derived from the
histology of engineered tissues expressing
Agp146. Although we expect that the
correlations found in this study will hold for
even more complex tissue morphologies,
histology-derived meshes can be useful for
exploring the context-dependent behavior of
Agp1 in realistic in vivo settings. To this end,
Monte Carlo diffusion simulations are
advantageous due to their ability to integrate
new experimental data, which is expected to
grow owing to advances in diffusion MRI
technology*” and the adoption of Aqp1-
based reporters by the scientific
community*?>#4,  Finally, Monte Carlo
simulations could be used to train learning
algorithms to generate spatial maps of gene
expression and cell density based on Aqp1
reporter signals measured in biological
tissues*6. To do so, the diffusion signal must
be represented by a more comprehensive
feature vector, likely including additional
metrics derived from multishell diffusion-
weighted imaging experiments*®. These
efforts should be bolstered by machine
learning models that use multi-shell diffusion
tensor data to compute tissue microstructure
parameters*9-52,

In summary, this study establishes Aqp1 as

a quantitative tool for biomedical imaging by
bringing together the capabilities of genetic

targeting, diffusion biophysics, and Monte
Carlo simulations. We envision a rapid
expansion of Agp1 applications in the future,
especially with advances in reporter
engineering and diffusion imaging
technology, synergizing with the
computational approach established in this
work.

METHODS

Monte Carlo diffusion simulations. We
modeled cells as packed spheres and
dispersed N = 10° particles (representing
diffusing water spins) evenly in the intra- and
extracellular compartments, in proportion to
the relative volume of each compartment.
We performed two-compartment diffusion
simulations with a time step (7) of 19.682 us
using the open-source Monte Carlo Diffusion
and Collision Simulator developed in?® and
later extended to permeable substrates3®.
The total number of
particles (N) and step size (r) were chosen
to ensure accuracy and convergence of the
simulation runs?¢. Using these parameters,
the standard deviation of simulated diffusivity
is less than 2 % of its mean across all
simulations. Briefly, at each time step (r =
19 us), we randomly displaced a spin (i) by
a distance (x;) computed from Einstein’s
diffusion equation assuming diffusion
coefficients of 1 um?/ms and 2 pm?/ms for the
intra- and extracellular compartments,
respectively. Upon encountering a cell
membrane, a spin can undergo an elastic
reflection®® or pass through the membrane,
with a probability that depends on the
permeability coefficient (k) of the membrane
and is calculated as described in prior work“6.
At the desired diffusion time (A), we sum the
total phase dispersion of by all spins in the
ensemble to compute the diffusion

ln(e_%zxiz)
-
Here, g represents the diffusion-weighting
defined as ¢ = (ygé)? where y=
42.57 MHz/T, § is the gradient duration, g is
the gradient strength. The values of A, §, and
g were based on the experimentally defined
diffusion-weighted MRI parameters (see

coefficient (D) as follows: D =
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below). We first investigated the change in
diffusivityas a function of membrane
permeability for a fixed cell radius (r =
7.6 um) and volume fraction (v = 0.65). This
radius was chosen to be consistent with the
effective size of CHO cells®® and the volume
fraction approximates lightly centrifuged cell
pellets as well as many physiological tissues.
We investigated three scenarios: (1) vy =
0.65, 5um <r<25um (2) r=7.6um,
0.10 <vf <0.67 (3) concurrently varying
both r and v, within the aforementioned
limits. For each condition, we tested two
permeability coefficients corresponding to
wild-type  (0.012umms™1) and Aqp1-
expressing CHO cells (0.138 um ms™1). The
permeability values are based on previously
published estimates obtained in wild-type
CHO cells and CHO cells stably transfected
to express Aqp14°.

Mixed-cell Monte Carlo simulations were
performed in the same manner as described
above, but by varying the number of Agp1-
expressing and wild-type CHO cells to
achieve a desired Agp1 volume fraction
(Vraqp1)- For mixed-cell  experiments
involving CHO and Jurkat cells, the latter
were modeled as smaller spheres (r =
5um) with k= 0.005um/ms>5%. We
packed spheres of two different radii (rcyo =
7.6 UM, Tjyrkqe = 5pum) to obtain a total
intracellular volume fraction of 0.65, as
described previously®®, while adjusting the
number of bigger spheres to obtain the
desired volume fraction of CHO cells.

Reagents. Dulbecco’s Modified Eagle Media
(DMEM), sodium pyruvate, doxycycline
hyclate, and penicillin-streptomycin (104
units/mL  penicilin  and 10 mg/mL
streptomycin) were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Roswell Park
Memorial Institute media (RPMI 1640),
sterile phosphate buffered saline (PBS),
TrypLE, and Gibco™ fetal bovine serum
(FBS) were purchased from Thermo Fisher
Scientific (Waltham, MA, USA). MycoAlert®
Plus Mycoplasma Detection Assay was
purchased from Lonza.

Cell culture. Chinese hamster ovary (CHO)
cell lines were genetically engineered to
express human aquaporin-1 (hAqp1) exactly
as described in our previous work. Both wild-
type and Agp1-expressing CHO cells were
cultured at 37 °C in a humidified 5 % CO-
incubator using DMEM supplemented with
10 % FBS, 100 U/mL penicillin, and 100
Mg/mL streptomycin. Jurkat cells were grown
as suspension culture using RPMI medium
supplemented as before.

In vitro MRI. Approximately 24 h before
imaging, cells were treated with doxycycline
hyclate (1-10 pg/mL) to activate Aqp1
expression. Adherent CHO cells were
harvested by trypsinization, centrifuged at
350 x g, and resuspended in 200 pL sterile
PBS in 0.2 mL tubes. For the mixed cell
experiments, the two cell types were cultured
separately and 10 pL of the cell suspension
was loaded in a disposable hemocytometer
to count cells using a brightfield microscope.
Based on the cell counts, appropriate
volumes of the two cell types were mixed to
achieve a desired volume fraction of Agp1-
expressing cells. The cells were mixed by
gentle pipetting, centrifuged, and transferred
to 0.2 mL tubes. The 0.2 mL tubes were
centrifuged at a low speed (500 x g for 5 min)
to form compact pellets. The pellet-
containing tubes were housed in a water-
filled agarose (1 % w/v) phantom for imaging.
MR images were acquired using a 66 mm
diameter coil in a Bruker 7T vertical-bore
scanner. Diffusion-weighted images were
acquired in the axial plane using a stimulated
echo sequence with the following
parameters: echo time, Te = 18 ms, repetition
time, Tr = 1000 ms, gradient duration, 8 =5
ms, gradient separation, A = 20, 50, 80, 100,
200, and 300 ms, matrix size = 128 x 128,
field of view (FOV) = 5.08 x 5.08 cm?, slice
thickness = 1-2 mm, number of averages =
5, and 4 nominal b-values: 0, 400, 600, and
800 s/mm?2. Although the same set of
nominal b-values was used at all diffusion
times, the effective b-values changed
substantially owing to the contribution of
imaging gradients to the diffusion weighting
via cross terms®. Diffusion-weighted
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intensity was determined using region of
interest (ROI) analysis in Fiji (NIH) and the
slope of the logarithmic decay in mean
intensity versus effective b-value was used
to calculate the diffusivity. To generate voxel-
wise diffusion maps, a diffusion coefficient
was computed for each voxel. Least-squares
regression fitting was performed using the
fitnm function in Matlab (R2022b).

Voxel-wise classification of mixed-cell
populations based on Aqp1 volume
fraction. We binned individual voxels from
experimental diffusion maps (acquired at A =
100 ms) of mixed-cell pellets into one of nine
groups (0, 10, 20, 30, 40, 50, 60, 80, and 100
%) based on the known Agp1 volume
fraction (v,qpq) Of the pellet. The ensuing
dataset comprises approximately 3744
voxels (4 replicates x 104 voxels per image x
9  wygp1 Values) representing  noisy
experimental data for a range of Aqp1
volume fractions. We denoised diffusivity
values in each bin using a Gaussian filter
(o = 3), similar to how experimental diffusion
maps are commonly smoothed. From each
bin, we sampled 64 voxels with replacement
and distributed them randomly in a 24 x 24
grid to construct a “mixed-cell” ADC image.
We modeled the dependence of the
simulated ADC (A = 100 ms) on 445, UsiNg
a log-linear function of the form log(ADC) =
avaqp1 + b. We used the resulting log-linear
mapping to classify each voxel in the mixed-
cell ADC image into one of four levels:
absent (v4gp1 < 10 %), low (10 % < v44p1 <
30 %), medium (30 % < vyqp1 < 70 %), and
high (v4gp1 > 70 %). This discretized 4-level
classification was deemed appropriate, given
that experimental ADC maps are inherently
noisy, particularly at the long diffusion times
needed to maximize Aqgp1-based contrast.
To evaluate the performance of the model,
we repeated the 4-level classification on 100
randomly generated sets of mixed-cell
images and computed the confusion matrix
using the precision_recall_fscore_support
package from sklearn.metrics in Python.

Statistical analysis. Experimental data are
summarized by their mean and standard

deviation obtained from multiple (n 2 4)
biological replicates defined as
measurements performed with distinct cell
samples. Quality of model-fitting was judged
based on the regression coefficient and
inspection of the 95 % confidence intervals
and coefficients of determination. All tests
are 2-sided and a P value of less than 0.05
taken to indicate statistical significance.
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