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One Sentence Summary: Major cell types distinctively associate with spatial vulnerability to tissue loss 
in thirteen neurodegenerative conditions. 

Abstract: For over a century, brain research narrative has mainly centered on neuron cells. Accordingly, 
most neurodegenerative studies focus on neuronal dysfunction and their selective vulnerability, while we 
lack comprehensive analyses of other major cell types’ contribution. By unifying spatial gene 
expression, structural MRI, and cell deconvolution, here we describe how the human brain distribution 
of canonical cell types extensively predicts tissue damage in thirteen neurodegenerative conditions, 
including early- and late-onset Alzheimer’s disease, Parkinson’s disease, dementia with Lewy bodies, 
amyotrophic lateral sclerosis, mutations in presenilin-1, and three clinical variants of frontotemporal 
lobar degeneration (behavioural variant, semantic and non-fluent primary progressive aphasia) along 
with associated 3-repeat and 4-repeat tauopathies and TDP43 proteinopathies types A and C. We 
reconstructed comprehensive whole-brain reference maps of cellular abundance for six major cell types 
and identified characteristic axes of spatial overlapping with atrophy. Our results support the strong 
mediating role of non-neuronal cells, primarily microglia and astrocytes, in spatial vulnerability to tissue 
loss in neurodegeneration, with distinct and shared across-disorders pathomechanisms. These 
observations provide critical insights into the multicellular pathophysiology underlying spatiotemporal 
advance in neurodegeneration. Notably, they also emphasize the need to exceed the current neuro-centric 
view of brain diseases, supporting the imperative for cell-specific therapeutic targets in 
neurodegeneration. 

Keywords: brain canonical cell types, cellular vulnerability, imaging transcriptomics, structural MRI, 
Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, 
dementia with Lewy bodies. 
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Introduction 

Neurodegenerative diseases are characterised by substantial neuronal loss in both the central and 
peripheral nervous systems1. In dementia-related conditions like Alzheimer’s disease (AD), 
frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB), neurodegeneration can lead to 
progressive damage in brain regions related with memory, behaviour, and cognition2. Other diseases are 
thought to primarily affect the locomotor system, including motor neurons in amyotrophic lateral 
sclerosis (ALS) and nigrostriatal dopaminergic circuitry in Parkinson’s disease (PD)3. Although each 
disorder has its own distinct etiology, progression, affected brain areas, and clinical manifestations, 
recent studies support that most of them share same molecular and cellular mechanisms4-7. 

While research has been mainly focused on neuronal dysfunction, other brain cells such as 
astrocytes, microglia, oligodendrocytes, as well as cells of the vascular and peripheral immune systems, 
are gaining more recognition for their contribution to disease pathology8-10. Depending on the disease 
stage, non-neuronal cells in the brain can play a dual role, with their complex response having both 
protective and detrimental effects on neuronal health and survival11, 12. For instance, such glial cells as 
astrocytes and microglia are involved in neuronal support, maintenance of extracellular homeostasis, and 
immune regulation in response to injury13, 14. Initially, these cells respond to injury by releasing 
neuroprotective neurotrophic factors and antioxidants13, 14. However, under certain conditions, prolonged 
microglial activation can induce reactive astrocytes and together they release neurotoxic pro-
inflammatory cytokines and chemokines, which in turn can lead to metabolic stress and foster the 
accumulation of amyloid-β and tau plaques in AD, ultimately contributing to heightened neuronal 
death15-17. Growing evidence suggests that immune and other cell type-mediated events are a driving 
force behind the wide range of neurodegenerative conditions15, 18-21. Yet, the exact bases behind how 
these processes contribute to selective neuronal loss across brain regions remain unclear. 

Recent studies have suggested that brain spatial patterns in gene expression are associated with 
regional vulnerability to some neurodegenerative disorders and their corresponding tissue atrophy 
distributions22-26. Comparison of transcriptomic patterns in middle temporal gyrus across various brain 
diseases showed cell type expression signature unique for neurodegenerative diseases7. Although single-
cell transcriptomics and multiomics analyses have advanced our knowledge of cell type compositions 
associated with pathology in neurodegeneration27-29, these are invariably restricted to a few isolated brain 
regions, usually needing to be preselected at hand for each specific disease. Due to the invasive nature of 
tissue acquisition/mapping and further technical limitations for covering extended areas30, no whole-
brain maps for the abundance of cell populations in humans are currently available, constraining the 
analysis of large-scale cellular vulnerabilities in neurological diseases. Accordingly, how spatial cell 
types distributions relate to stereotypic regional damages in different neurodegenerative conditions 
remain largely unclear31. 

Here, we extend previous analyses of cellular-based spatiotemporal vulnerability in 
neurodegeneration in three fundamental ways. First, we use transcriptomics, structural magnetic 
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resonance imaging (MRI), and advanced cell deconvolution to construct whole-brain reference maps of 
cellular abundance in healthy humans for six canonical cell types: neurons, astrocytes, oligodendrocytes, 
microglia, endothelial cells, and oligodendrocyte precursors. Second, we describe the spatial associations 
of each healthy level of reference canonical cell types with atrophy in thirteen low-to-high prevalent 
neurodegenerative conditions, including early- and late-onset AD, genetic mutations in presenilin-1 (PS1 
or PSEN1), DLB, ALS, PD, and both clinical and pathological subtypes of frontotemporal lobar 
degeneration (FTLD). Third, we identify distinctive cell-cell and disorder-disorder axes of spatial 
susceptibility in neurodegeneration, obtaining new insights about across-disorders (dis)similarities in 
underlying pathological cellular systems. We confirm that non-neuronal cells express substantial 
vulnerability to tissue loss and spatial brain alterations in most studied neurodegenerative conditions, 
with distinct and shared across-cells and across-disorders mechanisms. This study aids in unraveling the 
commonalities across a myriad of dissimilar neurological conditions, while also revealing cell type 
specific patterns conferring increased vulnerability or resilience to each examined disorder. For further 
translation and validation of our findings, all resulting analytic tools and cells abundance maps are 
shared with the scientific and clinical communities. 

 

Results  

Multimodal data origin and unification approach 

We obtained whole-brain voxel-wise atrophy maps for thirteen neurodegenerative conditions, including 
early- and late-onset Alzheimer’s disease (EOAD and LOAD, respectively), Parkinson’s disease (PD), 
amyotrophic lateral sclerosis (ALS), dementia with Lewy bodies (DLB), mutations in presenilin-1 (PS-
1), clinical variants of frontotemporal dementia (the behavioural variant bvFTD and the non-fluent and 
semantic variants of primary progressive aphasia nfvPPA and svPPA), and FTLD-related pathologies  
such as FLTD-TDP (TAR DNA-binding protein) types A and C, 3-repeat tauopathy, and 4-repeat 
tauopathy (see Materials and Methods, Disease-specific atrophy maps subsection)32-35. We use the term 
FTD when addressing the clinical syndromes, and the term FTLD is employed when referencing 
histologically confirmed neurodegenerative pathologies36. Pathological diagnosis confirmation was 
performed for early- and late-onset AD, DLB, PS-1, FTLD-TDP types A and C, 3-repeat tauopathy, and 
4-repeat tauopathy32, while PD, ALS, and variants of FTD were diagnosed based on clinical and/or 
neuroimaging criteria37-39, with some ALS patients being histologically confirmed post-mortem38. 
Changes in tissue density in the atrophy maps were previously measured by voxel- and deformation-
based morphometry (VBM and DBM; Materials and Methods, Disease-specific atrophy maps 
subsection) applied to structural T1-weighted MR images, and expressed as a t-score per voxel 
(relatively low negative values indicate greater GM tissue loss/atrophy; 40, 41). All maps are registered to 
the Montreal Neurological Institute (MNI) brain space42. In addition, we obtained bulk transcriptomic 
data for the adult healthy human brains from the Allen Human Brain Atlas (AHBA)43. This included 
high-resolution coverage of nearly the entire brain, measuring expression levels for over 20,000 genes 
from 3702 distinct tissue samples of six post-mortem specimens, and detailed structural MRI data (see 
Materials and Methods, Mapping gene expression data)43. 
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Using a previously validated approach to infer gene expression levels (in AHBA data) at not-
sampled brain locations with Gaussian process regression44, mRNA expression levels were completed 
for all grey matter (GM) voxels in the standardized MNI brain space42. Gaussian process regression 
allowed predicting gene expression values for unobserved regions based on the mRNA values of 
proximal regions. Next, at each GM location, densities for multiple canonical cell types were estimated 
using the Brain Cell-type Specific Gene Expression Analysis software (BRETIGEA)45. The 
deconvolution method45, 46 (implemented in the BRETIGEA) accurately estimated cell proportions from 
bulk gene expression for six major cell types (Fig. 1C): neurons, astrocytes, oligodendrocytes, microglia, 
endothelial cells, and oligodendrocyte precursor cells (OPCs). Overall, atrophy levels for thirteen 
neurodegenerative conditions and proportion values for six major cell types from healthy brains were 
unified at matched and standardized locations (MNI space), covering the entire grey matter of the brain 
(see Fig. 1 for schematic description). 

We hypothesized (and tested in next subsections) that brain tissue damages in neurodegenerative 
conditions are associated with distinctive patterns of cells distributions, with alterations on major cell 
types playing a key role on the development of each disorder and representing a direct factor 
contributing to brain dysfunction. 
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Figure 1 | Schematic approach for whole-brain cell type proportions vulnerability analysis
neurodegeneration. (A) Microarray bulk gene expression levels in the AHBA were derived from 3
distinct tissue samples of six post-mortem healthy human brains. Missing gene expression data were 
inferred for each unsampled grey matter voxel using Gaussian process regression. When combined w
original AHBA data, they were mapped into volumetric MNI space, resulting in the whole-b
transcriptional atlas. Deconvolution algorithm for bulk RNA expression levels was applied to 
transcriptional atlas with using well-known cell type-specific gene markers to estimate cell t
proportions. Comprehensive volumetric maps showing reconstructed distributions of six canonical 
types across all grey matter voxels in the brain were created (see Materials and Methods, Cell T
proportion estimation subsection). (B) Voxel-wise surface visualization (lateral, dorsal, and ven
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views) of cell abundance maps for neurons, astrocytes, microglia, endothelial cells, oligodendrocytes, 
and OPCs. At each voxel, red and blue colors indicate high and low proportion densities, respectively. 
(C) Associations between cell type proportions from each density map and atrophy values in thirteen 
neurodegenerative conditions were analysed in 118 grey matter regions predefined by the AAL atlas. 
Diagram was created with BioRender.com. 
 

Uncovering spatial associations between cell type abundances and tissue damage in 
neurodegeneration 

First, we investigated whether stereotypic brain atrophy patterns in neurodegenerative conditions show 
systematic associations with the spatial distribution of canonical cell type populations in healthy brains. 
For each condition and cell type pair, the non-linear Spearman’s correlation coefficient was calculated 
with paired atrophy-cell proportion values across 118 cortical and subcortical regions defined by the 
automated anatomical labelling (AAL) atlas (Table S1; 47). The results (Figs. 2A-M and 3A) show clear 
associations for all the studied conditions, suggesting extensive cell types related tissue damage 
vulnerability in neurodegenerative conditions. We confirmed that the observed relationships are 
independent of brain parcellation, obtaining equivalent results for a different brain parcellation (i.e., 
DKT atlas 48; see Fig. S1). 

As shown in Figs. 2A-M and 3A, astrocytes and microglia cell occurrences presented the 
strongest spatial associations with atrophy in most neurodegenerative conditions, particularly for EOAD, 
LOAD, DLB, PS1, FTLD-3RTau, FTLD-4Rtau, FTLD-TDP type A, FTLD-TDP type C, bvFTD, 
nfvPPA, and svPPA (all p < 0.001, FDR-corrected). Astrocytes are involved in neuronal support, 
extracellular homeostasis, and inflammatory regulation in response to injury, and show high 
susceptibility to senescence and oxidative damage49, 50. Astrocytes also play an important role in the 
maintenance of the blood-brain barrier (BBB), which regulates the passage of molecules, ions, and cells 
between the blood and the brain51. Recent study suggests reactive astrocytes may promote vascular 
inflammation in the BBB52. Endothelial cells, which comprise the functional component of the BBB, 
also showed strong spatial associations with atrophy in almost all conditions (Fig. 3A). Endothelial cells 
regulate cerebral blood flow and deliver oxygen and nutrients to the brain53. Disruption of the BBB may 
allow harmful substances to enter the brain, including inflammatory molecules and toxic aggregated 
proteins, ultimately exacerbating neuronal damage54, 55. Reduction of cerebral blood flow and vascular 
dysregulation are the earliest and strongest pathologic biomarkers of LOAD, PD and other 
neurodegenerative disorders56-58.  

Similar to astrocytes in their role of supporting neurons, microglial cells are the resident 
macrophages of the central nervous system and key players in the pathology of neurodegenerative 
conditions, including AD, PD, FTD and ALS11, 59, 60. Besides its many critical specializations, microglial 
activation in prolonged neuroinflammation is of particular relevance in neurodegeneration11,61. At earlier 
stages of AD, increased population of microglia and astrocytes (microgliosis and astrogliosis) have been 
observed in diseased regions, due to sustained cellular proliferation in response to disturbances, loss of 
homeostasis or the accumulation of misfolded proteins14, 62, 63. Excessive proliferation may lead to the 
transition of homeostatic microglia to its senescent or disease-associated type, also known as DAM, via 
the processes mediated by TREM2-APOE signalling62, 64, 65. Increased number of dystrophic microglia, a 
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form of cellular senescence characterized as beading and fragmentation of the branches of microglia, has 
been seen in multiple neurodegenerative conditions such as AD, DLB and TDP-43 encephalopathy66. 
The presence of senescent microglia is believed to ultimately contribute to the failure of brain 
homeostasis and to clinical symptomatology21, 65, 67. 

Oligodendrocytes also associated with spatial tissue vulnerability to all conditions aside ALS 
(Fig. 3A). Oligodendrocytes are responsible for the synthesis and maintenance of myelin in the brain68. 
Demyelination produces loss of axonal insulation leading to neuronal dysfunctions68, 69. Myelin 
dysfunction may lead to secondary inflammation and subsequent failure of microglia to clear amyloid-β 
deposition in AD mice models70. Oligodendrocytes were shown to be highly genetically associated with 
PD71-73. In addition, densities of OPCs showed strong correlations with the atrophy patterns of DLB, 
EOAD, PS1, and FTLD-TDP type C. OPCs regulate neural activity and harbor immune-related and 
vascular-related functions74. In response to oligodendrocyte damage, OPCs initiate their proliferation and 
differentiation for the purpose of repairing damaged myelin75. In AD, PD and ALS, the OPCs become 
unable to differentiate and their numbers decrease, leading to a reduction in myelin production and 
subsequent neural damage76, 77.  

We observed (Fig. 3A) that neuronal abundance distribution is also associated with tissue damage 
in many neurodegenerative conditions. However, these associations are less strong than for other cell 
types, except for the ALS case (Fig. 2J). For this disorder, neuron proportions positively correlated with 
tissue integrity (i.e., the higher the neuronal proportion, the less atrophy in a region). This observation 
suggests that increased neuronal presence at brain regions (relative to all considered cell types) may have 
a protective effect in ALS, making neuronal enriched regions less vulnerable to damage in this disorder. 
In addition, we observed particularly weak associations between neuronal proportions and tissue damage 
in all three clinical variants of FTD (bvFTD, nfvPPA, svPPA) and PD (Fig. 3A), suggesting that these 
conditions may be primary associated with supportive cell types (microglia, astrocytes, and 
oligodendrocytes, respectively; Figs. 2I, K-M). 
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Figure 2 | Spatial associations between tissue integrity and cell type proportions for thirteen 
neurodegenerative conditions illustrated in the scatterplots and surface maps (left hemisphere; lateral 
view) of regional measures. (A-M) Strongest Spearman’s correlations for EOAD, LOAD, DLB, PS1, 
FTLD-3Rtau, FTLD-4Rtau, FTLD-TDP43A, FTLD-TDP43C, PD, ALS, bvFTD, nfvPPA, and svPPA, 
respectively. Atrophy and cell type density measures were averaged across 118 grey matter regions and 
projected to the cortical surface of the fsaverage template. Each dot in the scatterplots represents a GM 
region from the AAL atlas (Table S1; see Fig. S1 for equivalent results for the DKT parcellation). Lower 
tissue integrity score in the scatterplots’ x-axis indicates greater GM loss/atrophy. For a better visual 
comparison of patterns in atrophy and cell abundance, the atrophy scale was reversed, with higher t-
statistic values indicating greater atrophy in the surface plots. Thus, the first color bar ranging from 0 is 
universal for all cell maps and pathologically confirmed dementia conditions (A-H). Second color bar 
captures the tissue enlargement in PD, ALS, and variants of FTD (I-M). Notice how astrocyte density 
significantly correlates with increase in tissue loss in EOAD, DLB, PS1, FTLD-TDP43C, and nfvPPA 
(A, C, D, H, L; p < 0.001). Tissue loss was also associated with increase in microglial proportion in 
LOAD, FTLD-3Rtau, FTLD-4Rtau, FTLD-TDP43A, bvFTD, and svPPA (B, E, F, G, K, M; p < 0.001). 
Increased oligodendrocytes associated with PD (I; p < 0.001). Increase in neuronal proportion showed 
association with decrease in atrophy and tissue enrichment in ALS (J; p < 0.001). All p-values were 
FDR-adjusted with the Benjamini-Hochberg procedure (p < 0.05). 
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Spatial cell types grouping exposes distinctive disease-disease similarities. 

Next, we hypothesized that disorders sharing similar biological mechanisms and clinical 
manifestations present common across-brain patterns of cell type density associations. Fig. 3A shows a 
hierarchical taxonomy dendrogram grouping cell types and conditions according to their common brain-
wide correlation patterns.  

The clustergram analysis revealed distinct grouping patterns among various neurodegenerative 
conditions. All histologically confirmed dementia conditions formed a separate cluster. Notably, EOAD 
and mutations in PS1, a prevalent cause of familial early-onset AD78, grouped together. Interestingly, 
three clinical subtypes of FTD (bvFTD, nfvPPA, and svPPA) displayed similar patterns of cell type 
vulnerabilities and diverged into a discrete cluster with PD, separately from ALS and other dementia 
conditions. However, FTLD-associated pathologies such as TDP-43 proteinopathies (types A and C), as 
well as 3-repeat and 4-repeat tauopathies, showed patterns more similar to those found in DLB and AD-
related conditions (EOAD, LOAD, PS-1) rather than clinical FTD subtypes from a different dataset. 
These differences could be attributed to variations in the source dataset; the atrophy maps were derived 
from different studies and were measured by different techniques, which may have introduced 
discrepancies in results due to different data acquisition tools and protocols (see Methods). Nonetheless, 
all FTLD-related subtypes and conditions showed strongest associations with spatial distributions of glial 
cells, particularly astrocytes and microglia. 

Among all cell types, neurons and OPCs spatial density distributions were least associated with 
tissue atrophy in all thirteen conditions, subsequently clustering together. Astrocytes and microglia 
distributions similarly showed the strongest associations with all neurodegenerative conditions (Fig. 3B), 
and thus formed a separate cluster while still being related with oligodendrocytes and endothelial cells. 
Astrocytes and microglia are known to be intimately related in the pathophysiological processes of 
neurodegenerative disorders14. Both are key regulators of inflammatory responses in the central nervous 
system, and given their role in clearing misfolded proteins, dysfunctions of each of them can result in the 
accumulation of Aβ and tau14, 79. During the progression of AD and PD, microglia’s activation can result 
in an increased capacity to convert resting astrocytes to reactive astrocytes17. 

Patterns in cellular vulnerability in DLB did not strongly resemble PD without dementia (Fig. 
3C), although both conditions involve alpha-synuclein aggregates80. Similar observation can be made for 
ALS and FTLD. Despite the common presence of TDP-43 abnormal accumulations and their strong 
genetical overlap81, ALS did not group together with FTD variants and FTLD-associated pathologies 
(FTLD-TDP type A, FTLD-TDP type C) based on patterns of cells-atrophy associations. All these 
conditions are known to be pathologically linked, often arising from either tau or TDP-43 accumulation; 
for instance, TDP-43 is the usual cause of svPPA and approximately half of bvFTD cases, while the 
other half of bvFTD patients and many nfvPPA cases are associated with tau pathology82. These results 
emphasize the fundamental role of network topology and other factors beyond the presence of toxic 
misfolded proteins in developing characteristic tissue loss and cellular vulnerability in neurodegenerative 
conditions34, 83-85. 
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Figure 3 | Cells and disorders similarities based on shared distributions. (A) Dendrogram 
unsupervised hierarchical clustering heatmap of Spearman’s correlations between cell type proporti
and atrophy patterns across the thirteen neurodegenerative conditions. (B) Cell-cell associations based
regional vulnerabilities to tissue loss across neurodegenerative conditions. (C) Disorder-diso
similarities across cell types. In A), red color corresponds to strong positive correlations between c
and disorders, white to no correlation, and dark blue to strong negative correlations. 
 
 

Discussion  

Previous efforts to describe the composition of the brain’s different cell populations related
neurodegeneration have been limited to a few isolated regions. In the most systematic study of its k
here we characterized large-scale spatial associations between canonical cell types and brain tissue 
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across cortical and subcortical grey matter areas in thirteen neurodegenerative conditions (including 
early- and late-onset AD, PD, DLB, ALS, mutations in PS1, and clinical (bvFTD, nfvPPA, svPPA) and 
pathological (3-repeat and 4-repeat tauopathies and TDPP43 proteinopathies types A and C) subtypes of 
FTLD. Starting from healthy brain levels of gene expression and structural MRI data from the Allen 
Human Brain Atlas43, and extending our analysis with advanced single cell-RNA seq-validated cell 
deconvolution approaches, along with whole-brain atrophy maps from clinically and/or 
neuropathologically confirmed disorders, we determined that (i) the spatial distributions of non-neuronal 
cell types, primarily microglia and astrocytes, are strongly associated with the spread tissue damage 
present in many neurodegenerative conditions; (ii) cells and disorders define major axes that underlie 
spatial vulnerability, aiding in comprehending heterogeneity behind distinct and similar clinical 
manifestations/definitions; (iii) the generated whole-brain maps of cellular abundance can be similarly 
used for studying associations between imaging phenotypes and healthy reference cellular levels in other 
neurological conditions (e.g., neurodevelopmental and neuropsychiatric disorders). Overall, our findings 
stress the critical need to surpass the current neuro-centric view of brain diseases and the imperative for 
identifying cell-specific therapeutic targets in neurodegeneration. For further translation and validation, 
all resulting cells abundance maps and analytic tools are freely shared with the community. 

We derived, first to our knowledge, high resolution maps of cellular abundance/proportion in 
the adult human healthy brain for six canonical cell types, including astrocytes, neurons, 
oligodendrocytes, microglia, and endothelial cells. As mentioned, previous cellular analyses of 
neurological conditions have been restricted to expert-selected isolated brain areas. The invasive nature 
of expression assays, requiring direct access to neural tissue, and other numerous scaling limitations have 
impeded extensive spatial analyses86. Earlier studies, also using AHBA data, have shown that spatial 
patterns in cell type-specific gene expression are associated with both regional vulnerability to 
neurodegeneration and patterns of atrophy across the brain7, 22-25. Since many neurodegeneration-related 
genes have similar levels of expression in both affected and unaffected brain areas87, characterizing 
changes in tissue loss associated with reference cell type proportions in health may provide a clearer 
perspective on large-scale spatial patterns of cellular vulnerability. Our maps of cells-abundance are 
available for the scientific and clinical community, potentially allowing researchers to further study 
spatial variations in cell type density with macroscale phenotypes. These maps can be used in future 
studies concerning brain structure and function in both health and disease. They can be also explored in 
context of other neurological diseases, including neurodevelopmental and psychiatric conditions. 

Our results demonstrate that all canonical cell types express vulnerability to dementia-related 
atrophy of brain tissue, potentially suggesting the disruption of the molecular pathways involving 
specific cell types can contribute to their observed dysfunctions and subsequent clinical symptamology21. 
Previously, transcriptional profiling of prefrontal cortex in AD showed reduced proportions of neurons, 
astrocytes, oligodendrocytes, and homeostatic microglia88. In contrast, bulk-RNA analysis of diseased 
AD tissues from various human brain regions observed neuronal loss and increased cell abundance of 
microglia, astrocytes, oligodendrocytes, and endothelial cells89, 90. Furthermore, increased microglial, 
endothelial cells, and oligodendrocytes population was observed in PD and other Lewy diseases72, 91. 
Cortical regions exhibiting the most severe atrophy in symptomatic C9orf72, GRN and MAPT mutation 
carriers with FTD showed increased gene expression of astrocytes and endothelial cells25. Cortical 
thinning has been demonstrated to correlate with higher proportions of astrocytes, microglia, 
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oligodendrocytes, oligodendrocyte precursor cells, and endothelial cells in cases of AD compared to 
controls22, 26. In line with these results, we observed that regions with increased cell type proportions, 
particularly for astrocytes and microglia, are strongly associated with gray matter atrophy in almost all 
neurodegenerative conditions. This may partly explain the reported cellular proliferation through 
microglial activation in diseased regions in response to the misfolded protein accumulation or other 
pathobiological processes62, 67. As disease progresses, the release of inflammatory agents by sustained 
microglial activation is believed to be responsible for exacerbating neurodegeneration and clinical 
symptoms15, 18. Microglial activation in pair with grey matter atrophy in frontal cortex were shown to be 
directly associated with cognitive decline in FTD60. 

Our study has several limitations. Firstly, our analyses were focused on stereotypic atrophy 
patterns for each disorder. It is known that neurodegenerative diseases are highly heterogenous, with 
molecular, phenotypic, and clinical subtypes potentially varying in atrophy patterns92, 93. Further 
investigation of cell type signatures across various subtypes not covered in this study and disease stages 
may better characterize each case. Additionally, comparing our findings with neuropathological 
assessments of diseased brain tissues in available regions would be beneficial. While the diagnosis of 
most dementia conditions used in this study has been histologically confirmed, the diagnosis for clinical 
variants of FTD, ALS, and PD patients was based on clinical and neuroimaging assessments. In addition, 
it has been observed that cell type-related transcriptional changes are different between sexes94, making 
future sex-specific analyses indispensable for further understanding of sex-related pathomechanisms. An 
important consideration is that examined atrophy maps were sourced from different studies (Table S2), 
with differences in data acquisition protocols (e.g., spatial resolution) and technical procedures (e.g., 
smoothing level, statistical methods). In complementary analyses, we observed almost identical results 
after smoothing all disorder-specific images with the same kernel size, while they were already mapped 
at the same spatial resolution for this study and statistically adjusted by acquisition parameters (e.g., field 
strength) in original studies. Moreover, cell type deconvolution approaches are varied and limited in their 
precision95. Here, we used a previously validated deconvolution method designed for efficiently 
estimating cell proportions for six major cell types from bulk mRNA expression45. Conveniently, this 
method is freely available for researchers (R package, BRETIGEA), which will facilitate reproducibility 
analyses of our study. Other important considerations are the dynamic nature of gene expression as 
disease progresses96, 97, post-mortem RNA degradation of the used templates98, and the subsequent 
limited ability of bulk RNA sequencing to reflect cell-to-cell variability, which is relevant for 
understanding cell heterogeneity and the roles of specific cell populations in disease 99. Lastly, a 
promising future direction would be to validate our findings with single-cell spatial analyses. 

 

Materials and Methods 

Disorder-specific atrophy maps. Voxel-wise brain atrophy maps in early- and late-onset Alzheimer’s 
disease (EOAD and LOAD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), dementia 
with Lewy bodies (DLB), mutations carriers in presenilin-1, clinical variants of frontotemporal dementia 
(FTD), and frontotemporal lobar degeneration (FTLD) pathologies (FTLD-TDP types A and C, 3-repeat 
tauopathy, and 4-repeat tauopathy) were adopted from open data repositories and/or requested from 
collaborators32-35, as specified below. Reduction in grey matter (GM) density in diseased atrophy maps 
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relative to controls was measured by voxel- and deformation-based morphometry (VBM and DBM) 
applied to structural T1-weighted MR images, and thus was expressed as t-score per voxel (relatively 
low negative t-scores indicate greater GM tissue loss/atrophy)40, 41. VBM is a hypothesis-free technique 
for analyzing neuroimaging data that characterizes regional tissue concentration differences across the 
whole brain, without the need to predefine regions of interest100. DBM is a similar widely used technique 
to identify structural changes in the brain across participants, which in addition considers anatomical 
differences such as shape and size of brain structures101. See Table S2 for study-origin, sample size and 
imaging technique corresponding to each atrophy map. 

MRI data for neuropathological dementias were collected from 186 individuals with a clinical 
diagnosis of dementia and histopathological (post-mortem or biopsy) confirmation of underlying 
pathology, along with 73 healthy controls32. Data were averaged across participants per condition: 107 
had a primary AD diagnosis (68 early-onset (<65 years at disease onset), 29 late onset (≥65 years at 
disease onset), 10 presenilin-1 mutation carriers), 25 with DLB, 11 with 3-repeat-tauopathy, 17 with 4-
repeat-tauopathy, 12 FTLD-TDP type A, and 14 FTLD-TDP type C)32. Imaging data were collected 
from multiple centres on scanners from three different manufacturers (Philips, GE, Siemens), using a 
variety of different imaging protocols32. Magnetic field strength varied between 1.0 T (n=15 scans), 1.5 
T (n=201 scans) and 3 T (n=43 scans)32. Pathological examination of brain tissue was conducted 
between 1997 and 2015 according to the standard histopathological processes and criteria in use at the 
time of assessment at one of four centres: the Queen Square Brain Bank, London; Kings College 
Hospital, London; VU Medical Centre, Amsterdam and Institute for Ageing and Health, Newcastle32. 
Atrophy maps were statistically adjusted for age, sex, total intracranial volume, and MRI strength field 
and site32. Ethical approval for this retrospective study was obtained from the National Research Ethics 
Service Committee London-Southeast32. 

MRI data for PD, consisted of 3T high-resolution T1-weighted scans, were obtained from the 
Parkinson’s Progression Markers Initiative (PPMI) database (https://www.ppmi-info.org/)37. The PPMI 
is a multi-center international study with approved protocols by the local institutional review boards at 
all 24 sites across the US, Europe, and Australia37. MRI data were acquired in 16 centers participating in 
the PPMI project, using scanners from three different manufacturers (GE medical systems, Siemens, and 
Philips medical systems). 3T high-resolution T1-weighted MRI scans from the initial visit and clinical 
data used in constructing atrophy maps were collected from 232 participants with PD and 118 age-
matched controls34. PD subjects (77 females; age 61.2 ± 9.1) were required to be at least 30 years old or 
older, untreated with PD medications, diagnosed within the last two years, and to exhibit at least two or 
more PD-related motor symptoms, such as asymmetrical resting tremor, uneven bradykinesia, or a 
combination of bradykinesia, resting tremor, and rigidity37. All individuals underwent dopamine 
transporter (DAT) imaging to confirm a DAT deficit as a prerequisite for eligibility37. No significant 
effect of age, gender, or site was found34. 

For ALS, MRI data were collected from 66 patients (24 females; age 57.98 ± 10.84) with both 
sporadic or familial form of disease from centers of the Canadian ALS Neuroimaging Consortium 
(http://calsnic.org/, ClinicalTrials.gov NCT02405182), which included 3T MRI sites in University of 
Alberta, University of Calgary, University of Toronto, and McGill University33, 38. Patients were 
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included if they were diagnosed with sporadic or familial ALS, and meet the revised El Escorial research 
criteria102 for possible, laboratory supported, or definite ALS38. Patients underwent a neurological exam 
administered by a trained neurologist at each participating site38. All participants gave written informed 
consent, and the study was approved by the health research ethics boards at each of the participating 
sites33. Participants were excluded if they had a history of other neurological or psychiatric disorders, 
prior brain injury, or respiratory impairment resulting in an inability to tolerate the MRI protocol33. 
Participants with primary lateral sclerosis, progressive muscular atrophy, or frontotemporal dementia 
were also excluded from the study38. Normative aging as well as sex differences were regressed out from 
data prior the map construction33. 

For clinical subtypes of FTD, atrophy maps were obtained from the open-access database35. 
These maps were derived from MRI data from the Frontotemporal Lobar Degeneration Neuroimaging 
Initiative (FTLDNI AG032306; part of the ALLFTD). As described in separate studies103, 104, the data 
used for constructing these atrophy maps consisted of 136 patients diagnosed with frontotemporal 
dementia, alongside 133 age-matched control participants. Participants were previously stratified into 
groups according to their clinical variant of FTD: 70 patients were diagnosed with the behavioural 
variant, 36 with the semantic primary progressive aphasia, and 30 with the non-fluent primary 
progressive aphasia39, 103. 3T structural images were collected on three following sites: University of 
California San Francisco, Mayo Clinic, and Massachusetts General Hospital39. Patients were referred by 
physicians or self-referred, and all underwent neurological, neuropsychological, and functional 
assessment with informant interview39. All individuals received their diagnoses during a 
multidisciplinary consensus conference using established criteria: Neary criteria105 or, depending on year 
of enrolment, the recently published consensus criteria for bvFTD106 and PPA107. Histological analysis 
was conducted to assess whether patients might have Alzheimer’s disease pathology since both 
conditions presents the overlap of clinical symptoms39. All subjects provided informed consent and the 
protocol was approved by the institutional review board at all sites39. 

Mapping gene expression data. To construct a comprehensive transcriptome atlas, we used mRNA 
microarray gene expression data from the Allen Human Brain Atlas (AHBA; https://human.brain-
map.org/)43. The AHBA included anatomical and histological data collected from six healthy human 
specimens with no known neurological disease history (one female; age range 24–57 years; mean age 
42.5 ± 13.38 years)43. Two specimens contained data from the entire brain, whereas the remaining four 
included data from the left hemisphere only, with 3702 spatially distinct samples in total43. The samples 
were distributed across cortical, subcortical, brainstem, and cerebellar regions in each brain, and the 
expression levels of more than 20,000 genes were quantified43. mRNA data for specific brain locations 
were accompanied by structural MR data from each individual and were labeled with Talairach native 
coordinates108 and Montreal Neurological Institute (MNI) coordinates42, which allowed us to match 
samples to imaging data.  
 

Following the validated approach in 44, missing data points between samples for each MNI 
coordinate were interpolated using Gaussian-process regression, a widely used method for data 
interpolation in geostatistics. The regression is performed as a weighted linear combination of missing 
mRNA, with the weights decreasing from proximal to distal regions. MNI coordinates for predicting 
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mRNA values were taken from the GM regions of the AAL atlas. Spatial covariance between 
coordinates from the available 3072 AHBA tissue samples and coordinates from the AAL atlas was 
estimated via the quadratic exponential kernel function. mRNA expression at each MNI coordinate was 
then predicted by multiplying AHBA gene express values that corresponded to specific probes to kernel 
covariance matrix divided by the sum of kernels.  

Cell type proportion estimation. Densities for multiple canonical cell types were estimated at the grey 
matter (GM) by applying an R-package Brain Cell-type Specific Gene Expression Analysis 
(BRETIGEA), with known genetic markers to the transcriptome atlas45.  This eigengene decomposition-
based deconvolution method was designed for estimating cell proportions in bulk gene expression data 
for six major cell types: neurons, astrocytes, oligodendrocytes, microglia, endothelial cells, and 
oligodendrocyte precursor cells45, 46. We chose 15 representative gene markers per each cell type (90 in 
total) from the BRETIGEA human brain marker gene set and then selected those genes that were also 
present in the AHBA gene expression database with matching gene probes. This resulted in eighty cell 
type-related gene markers that were used in missing data interpolation and the deconvolution proportion 
estimation analysis (Table S3). For each voxel, each cell type proportion value was normalized relative 
to the sum of all six cell types and the sum was scaled relative to the grey matter density. We then 
registered data into MNI and volumetric space using the ICBM152 template42. 

For the correlation analysis, cell densities were averaged over 118 anatomical regions in grey 
matter defined by the extended automated anatomical labelling atlas (AAL; Table S1)47. We repeated the 
correlation analysis for the 98 regions from the Desikan-Killiany-Tourville atlas (DKT; Fig. S1)48. 

Data analysis. We constructed a 6�×�13 correlation matrix by computing inter-regional Spearman’s 
correlations between spatial distributions of the six canonical cell types and patterns of atrophy in 
thirteen neurodegenerative conditions. Correction for multiple comparisons using the false discovery rate 
(FDR) was conducted using the Benjamini-Hochberg method, with a significance threshold of 0.05. 
Shapiro-Wilk tests were used to examine the normality of data distribution. Hierarchical clustering 
analyses was applied using in-built MATLAB function for data visualization. Cells and conditions were 
clustered together based on estimated averaged linkage Euclidian distance between their correlation 
values. 

Data and materials availability: All data needed to evaluate the conclusions in the paper are present in 
the paper and/or the Supplementary Materials. The BRETIGEA R package can be downloaded from 
https://cran.r-project.org/package=BRETIGEA. The Allen Human Brain Atlas data is available at 
https://human.brain-map.org/static/download. Atrophy maps for pathologically confirmed dementia are 
available at http://neurovault.org/collections/ADHMHOPN/. Raw demographic and MRI data from PD 
and ALS patients can be accessed at https://www.ppmi-info.org/ and http://calsnic.org/ 
(ClinicalTrials.gov NCT02405182), respectively. Atrophy maps for clinical variants of FTD are 
available at  https://zenodo.org/records/10383493. Raw data from the FTLDNI initiative can be 
downloaded from the Laboratory of Neuroimaging (LONI) Image Data Archive at 
https://ida.loni.usc.edu. The cells abundance maps from this study are freely shared with the community 
and can be found at our lab’s GitHub space https://github.com/neuropm-lab/cellmaps. 
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Supplementary Information 

Figure S1. Spatial associations between tissue integrity and cell type proportions for thirt
neurodegenerative conditions in GM regions from the DKT parcellation (equivalent to main results f
the AAL atlas in Fig. 3A).  
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Table S1. Cortical and subcortical regions from the AAL atlas. 

# Region name 
1 Precentral_L 41 Amygdala_L 81 Temporal_Sup_L 
2 Precentral_R 42 Amygdala_R 82 Temporal_Sup_R 
3 Frontal_Sup_L 43 Calcarine_L 83 Temporal_Pole_Sup_L 
4 Frontal_Sup_R 44 Calcarine_R 84 Temporal_Pole_Sup_R 
5 Frontal_Sup_Orb_L 45 Cuneus_L 85 Temporal_Mid_L 
6 Frontal_Sup_Orb_R 46 Cuneus_R 86 Temporal_Mid_R 
7 Frontal_Mid_L 47 Lingual_L 87 Temporal_Pole_Mid_L 
8 Frontal_Mid_R 48 Lingual_R 88 Temporal_Pole_Mid_R 
9 Frontal_Mid_Orb_L 49 Occipital_Sup_L 89 Temporal_Inf_L 
10 Frontal_Mid_Orb_R 50 Occipital_Sup_R 90 Temporal_Inf_R 
11 Frontal_Inf_Oper_L 51 Occipital_Mid_L 91 Cerebelum_Crus1_L 
12 Frontal_Inf_Oper_R 52 Occipital_Mid_R 92 Cerebelum_Crus1_R 
13 Frontal_Inf_Tri_L 53 Occipital_Inf_L 93 Cerebelum_Crus2_L 
14 Frontal_Inf_Tri_R 54 Occipital_Inf_R 94 Cerebelum_Crus2_R 
15 Frontal_Inf_Orb_L 55 Fusiform_L 95 Cerebelum_3_L 
16 Frontal_Inf_Orb_R 56 Fusiform_R 96 Cerebelum_3_R 
17 Rolandic_Oper_L 57 Postcentral_L 97 Cerebelum_4_5_L 
18 Rolandic_Oper_R 58 Postcentral_R 98 Cerebelum_4_5_R 
19 Supp_Motor_Area_L 59 Parietal_Sup_L 99 Cerebelum_6_L 
20 Supp_Motor_Area_R 60 Parietal_Sup_R 100 Cerebelum_6_R 
21 Olfactory_L 61 Parietal_Inf_L 101 Cerebelum_7b_L 
22 Olfactory_R 62 Parietal_Inf_R 102 Cerebelum_7b_R 
23 Frontal_Sup_Medial_L 63 SupraMarginal_L 103 Cerebelum_8_L 
24 Frontal_Sup_Medial_R 64 SupraMarginal_R 104 Cerebelum_8_R 
25 Frontal_Med_Orb_L 65 Angular_L 105 Cerebelum_9_L 
26 Frontal_Med_Orb_R 66 Angular_R 106 Cerebelum_9_R 
27 Rectus_L 67 Precuneus_L 107 Cerebelum_10_L 
28 Rectus_R 68 Precuneus_R 108 Cerebelum_10_R 
29 Insula_L 69 Paracentral_Lobule_L 109 Vermis_1_2 
30 Insula_R 70 Paracentral_Lobule_R 110 Vermis_3 
31 Cingulum_Ant_L 71 Caudate_L 111 Vermis_4_5 
32 Cingulum_Ant_R 72 Caudate_R 112 Vermis_6 
33 Cingulum_Mid_L 73 Putamen_L 113 Vermis_7 
34 Cingulum_Mid_R 74 Putamen_R 114 Vermis_8 
35 Cingulum_Post_L 75 Pallidum_L 115 Vermis_9 
36 Cingulum_Post_R 76 Pallidum_R 116 Vermis_10 
37 Hippocampus_L 77 Thalamus_L 117 Dentate_L 
38 Hippocampus_R 78 Thalamus_R 118 Dentate_R 
39 ParaHippocampal_L 79 Heschl_L   
40 ParaHippocampal_R 80 Heschl_R   
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Table S2. Origin of each disorder-associated t-statistic map. 
Disease Study Year of 

publication 
Journal / 
Database 

Diseased 
participants (n) 

Controls (n) Method Pathology 
confirmed 

LOAD Harper et al 2017 Neurol Neurosurg 
Psychiatry 

68 73 VBM yes 

EOAD Harper et al 2017 Neurol Neurosurg 
Psychiatry 

29 73 VBM yes 

PS-1 Harper et al 2017 Neurol Neurosurg 
Psychiatry 

10 73 VBM yes 

DLB Harper et al 2017 Neurol Neurosurg 
Psychiatry 

25 73 VBM yes 

FTLD-
3RTau 

Harper et al 2017 Neurol Neurosurg 
Psychiatry 

11 73 VBM yes 

FTLD-
4RTau 

Harper et al 2017 Neurol Neurosurg 
Psychiatry 

17 73 VBM yes 

FTLD-
TDP43A 

Harper et al 2017 Neurol Neurosurg 
Psychiatry 

12 73 VBM yes 

FTLD-
TDP43C 

Harper et al 2017 Neurol Neurosurg 
Psychiatry 

14 73 VBM yes 

PD Zeighami et 
al 

2015 eLife 232 117 DBM + 
ICA* 

no 

bvFTD Dadar and 
Metz 

2023 Zenodo 70 133 DBM no 

nfvPPA Dadar and 
Metz 

2023 Zenodo 36 133 DBM no 

svPPA Dadar and 
Metz 

2023 Zenodo 30 133 DBM no 

ALS Dadar et al. 2020 Brain 
Communications 

66 42 DBM some 

ICA* = tensor probabilistic independent component analysis  
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Table S3. Eighty cell type related gene markers provided by the BRETIGEA R package. 

Gene marker name Cell type 
AQP4, BMPR1B, EDNRB, FGFR3, GFAP, GJA1, SDC4, 
SLC1A2, GJB6, ALDH1L1, SLC25A18 

Astrocyte 

C1QB, CD74, CXCR4, FOLR2, ITGAX, P2RX4, CCL3, 
CCL4, SLA, TLR1, TNFSF18, ARHGAP25, DHRS9, 
KBTBD8 

Microglia 

ANXA3, CD34, CFH, IFI27, TM4SF1, SELE, TGM2, 
VWF, SDPR, IFITM1, ITIH5, APOLD1, TM4SF18, 
GPR116 

Endothelial cell 

CHGB, CNR1, GABRA1, GABRB2, GAD2, KCNC2, 
OPRK1, RELN, SYT1, MYT1L, RIMBP2, ZMAT4, 
RAB3C, SYNPR, DLX6-AS1 

Neuron 

FOLH1, MAG, MOBP, CLDN11, PLP1, KLK6, CNTN2, 
TF, UGT8, ST18, ERMN, XYLT1, SH3TC2, CNDP1, 
TMEM64 

Oligodendrocyte 

GALR1, HAS2, NFYA, RGS13, TGFA, TNR, FPGT, 
MMRN1, CDH19, CA10, CRISPLD1 

Oligodendrocyte precursor cell 
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