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One Sentence Summary: Mgor cdl types distinctively associate with spatial vulnerability to tissue loss
in thirteen neurodegenerative conditions.

Abstract: For over a century, brain research narrative has mainly centered on neuron cells. Accordingly,
most neurodegenerative studies focus on neuronal dysfunction and their selective vulnerability, while we
lack comprehensive analyses of other major cell types contribution. By unifying spatial gene
expression, structural MRI, and cell deconvolution, here we describe how the human brain distribution
of canonical cell types extensively predicts tissue damage in thirteen neurodegenerative conditions,
including early- and late-onset Alzheimer’s disease, Parkinson’'s disease, dementia with Lewy bodies,
amyotrophic lateral sclerosis, mutations in presenilin-1, and three clinical variants of frontotemporal
lobar degeneration (behavioural variant, semantic and non-fluent primary progressive aphasia) along
with associated 3-repeat and 4-repeat tauopathies and TDP43 proteinopathies types A and C. We
reconstructed comprehensive whole-brain reference maps of cellular abundance for six magjor cell types
and identified characteristic axes of spatial overlapping with atrophy. Our results support the strong
mediating role of non-neuronal cells, primarily microglia and astrocytes, in spatial vulnerability to tissue
loss in neurodegeneration, with distinct and shared across-disorders pathomechanisms. These
observations provide critical insghts into the multicellular pathophysiology underlying spatiotemporal
advance in neurodegeneration. Notably, they also emphasize the need to exceed the current neuro-centric
view of brain diseases, supporting the imperative for cell-specific therapeutic targets in
neurodegeneration.

Keywords: brain canonical cell types, celular vulnerability, imaging transcriptomics, structural MRI,
Alzheimer’s disease, Parkinson’'s disease, amyotrophic lateral sclerosis, frontotemporal dementia,
dementiawith Lewy bodies.
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I ntroduction

Neurodegenerative diseases are characterised by substantial neuronal loss in both the central and
periphera nervous systems’. In dementiarelated conditions like Alzheimer's disease (AD),
frontotemporal dementia (FTD), and dementia with Lewy bodies (DLB), neurodegeneration can lead to
progressive damage in brain regions related with memory, behaviour, and cognition®. Other diseases are
thought to primarily affect the locomotor system, including motor neurons in amyotrophic lateral
sclerosis (ALS) and nigrostriatal dopaminergic circuitry in Parkinson’s disease (PD)°. Although each
disorder has its own distinct etiology, progression, affected brain areas, and clinical manifestations,
recent studies support that most of them share same molecular and cellular mechanisms*”.

While research has been mainly focused on neurona dysfunction, other brain cells such as
astrocytes, microglia, oligodendrocytes, as well as cells of the vascular and peripheral immune systems,
are gaining more recognition for their contribution to disease pathology®'°. Depending on the disease
stage, non-neuronal cells in the brain can play a dual role, with their complex response having both
protective and detrimental effects on neuronal health and survival™ *2. For instance, such glial cells as
astrocytes and microglia are involved in neuronal support, maintenance of extracellular homeostasis, and
immune regulation in response to injury™ . Initialy, these cells respond to injury by releasing
neuroprotective neurotrophic factors and antioxidants™ **. However, under certain conditions, prolonged
microglial activation can induce reactive astrocytes and together they release neurotoxic pro-
inflammatory cytokines and chemokines, which in turn can lead to metabolic stress and foster the
accumulation of amyloid-p and tau plaques in AD, ultimately contributing to heightened neuronal
death™*". Growing evidence suggests that immune and other cell type-mediated events are a driving
force behind the wide range of neurodegenerative conditions™ *2!. Yet, the exact bases behind how
these processes contribute to selective neuronal 10ss across brain regions remain unclear.

Recent studies have suggested that brain spatial patterns in gene expression are associated with
regional vulnerability to some neurodegenerative disorders and their corresponding tissue atrophy
distributions™?. Comparison of transcriptomic patterns in middle temporal gyrus across various brain
diseases showed cell type expression signature unique for neurodegenerative diseases’. Although single-
cell transcriptomics and multiomics analyses have advanced our knowledge of cell type compositions
associated with pathology in neurodegeneration®”?°, these are invariably restricted to afew isolated brain
regions, usually needing to be preselected at hand for each specific disease. Due to the invasive nature of
tissue acquisition/mapping and further technical limitations for covering extended areas®, no whole-
brain maps for the abundance of cell populations in humans are currently available, constraining the
analysis of large-scale cellular vulnerabilities in neurological diseases. Accordingly, how spatial cell
types distributions relate to stereotypic regional damages in different neurodegenerative conditions
remain largely unclear™.

Here, we extend previous analyses of celular-based spatiotemporal vulnerability in
neurodegeneration in three fundamental ways. First, we use transcriptomics, structural magnetic
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resonance imaging (MRI), and advanced cell deconvolution to construct whole-brain reference maps of
cellular abundance in healthy humans for six canonical cell types. neurons, astrocytes, oligodendrocytes,
microglia, endothelial cells, and oligodendrocyte precursors. Second, we describe the spatial associations
of each healthy level of reference canonical cell types with atrophy in thirteen low-to-high prevalent
neurodegenerative conditions, including early- and late-onset AD, genetic mutations in presenilin-1 (PS1
or PSEN1), DLB, ALS, PD, and both clinical and pathological subtypes of frontotemporal |obar
degeneration (FTLD). Third, we identify distinctive cell-cell and disorder-disorder axes of spatial
susceptibility in neurodegeneration, obtaining new insights about across-disorders (dis)similarities in
underlying pathological cellular systems. We confirm that non-neuronal cells express substantial
vulnerability to tissue loss and spatial brain alterations in most studied neurodegenerative conditions,
with distinct and shared across-cells and across-disorders mechanisms. This study aids in unraveling the
commonalities across a myriad of dissimilar neurological conditions, while also revealing cdl type
specific patterns conferring increased vulnerability or resilience to each examined disorder. For further
trandation and validation of our findings, al resulting analytic toolsand cells abundance maps are
shared with the scientific and clinical communities.

Resaults

Multimodal data origin and unification approach

We obtained whole-brain voxel-wise atrophy maps for thirteen neurodegenerative conditions, including
early- and late-onset Alzheimer’s disease (EOAD and LOAD, respectively), Parkinson’s disease (PD),
amyotrophic lateral sclerosis (ALS), dementia with Lewy bodies (DLB), mutations in presenilin-1 (PS-
1), clinical variants of frontotemporal dementia (the behavioural variant bvFTD and the non-fluent and
semantic variants of primary progressive aphasia nfvPPA and svPPA), and FTLD-related pathologies
such as FLTD-TDP (TAR DNA-binding protein) types A and C, 3-repeat tauopathy, and 4-repeat
tauopathy (see Materials and Methods, Disease-specific atrophy maps subsection)®*®. We use the term
FTD when addressing the clinical syndromes, and the term FTLD is employed when referencing
histologically confirmed neurodegenerative pathologies®®. Pathological diagnosis confirmation was
performed for early- and late-onset AD, DLB, PS-1, FTLD-TDP types A and C, 3-repeat tauopathy, and
A-repeat tauopathy®, while PD, ALS, and variants of FTD were diagnosed based on clinical and/or
neuroimaging criteria® >°, with some ALS patients being histologically confirmed post-mortem™.
Changes in tissue density in the atrophy maps were previously measured by voxel- and deformation-
based morphometry (VBM and DBM; Materials and Methods, Disease-specific atrophy maps
subsection) applied to structural T1-weighted MR images, and expressed as a t-score per voxel
(relatively low negative values indicate greater GM tissue loss/atrophy; “> *%). All maps are registered to
the Montreal Neurological Institute (MNI) brain space™. In addition, we obtained bulk transcriptomic
data for the adult healthy human brains from the Allen Human Brain Atlas (AHBA)®. This included
high-resolution coverage of nearly the entire brain, measuring expression levels for over 20,000 genes
from 3702 distinct tissue samples of six post-mortem specimens, and detailed structura MRI data (see
Materials and Methods, Mapping gene expression data)®.
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Using a previously validated approach to infer gene expression levels (in AHBA data) at not-
sampled brain locations with Gaussian process regression®, mMRNA expression levels were completed
for al grey matter (GM) voxels in the standardized MNI brain space®. Gaussian process regression
allowed predicting gene expression values for unobserved regions based on the mRNA values of
proximal regions. Next, at each GM location, dengties for multiple canonical cell types were estimated
using the Brain Cell-type Specific Gene Expression Analysis software (BRETIGEA)*. The
deconvolution method® * (implemented in the BRETIGEA) accurately estimated cell proportions from
bulk gene expression for six major cell types (Fig. 1C): neurons, astrocytes, oligodendrocytes, microglia,
endothelial cells, and oligodendrocyte precursor cells (OPCs). Overal, atrophy levels for thirteen
neurodegenerative conditions and proportion values for six major cell types from healthy brains were
unified at matched and standardized locations (MNI space), covering the entire grey matter of the brain
(see Fig. 1 for schematic description).

We hypothesized (and tested in next subsections) that brain tissue damages in neurodegenerative
conditions are associated with distinctive patterns of cells distributions, with alterations on major cell
types playing a key role on the development of each disorder and representing a direct factor
contributing to brain dysfunction.
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Figure 1 | Schematic approach for whole-brain cell type proportions vulnerability analysis in
neurodegeneration. (A) Microarray bulk gene expression levels in the AHBA were derived from 3072
distinct tissue samples of six post-mortem healthy human brains. Missing gene expression data were then
inferred for each unsampled grey matter voxel using Gaussian process regression. When combined with
origind AHBA data, they were mapped into volumetric MNI space, resulting in the whole-brain
transcriptional atlas. Deconvolution algorithm for bulk RNA expression levels was applied to the
transcriptional atlas with using well-known cell type-specific gene markers to estimate cell type
proportions. Comprehensive volumetric maps showing reconstructed distributions of six canonical cell
types across all grey matter voxels in the brain were created (see Materials and Methods, Cell Type
proportion estimation subsection). (B) Voxe-wise surface visualization (lateral, dorsal, and ventral
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views) of cell abundance maps for neurons, astrocytes, microglia, endothelial cells, oligodendrocytes,
and OPCs. At each voxel, red and blue colors indicate high and low proportion densities, respectively.
(C) Associations between cell type proportions from each density map and atrophy values in thirteen
neurodegenerative conditions were analysed in 118 grey matter regions predefined by the AAL atlas.
Diagram was created with BioRender.com.

Uncovering gpatial associations between cell type abundances and tissue damage in
neurodegeneration

First, we investigated whether stereotypic brain atrophy patterns in neurodegenerative conditions show
systematic associations with the spatial distribution of canonical cell type populations in healthy brains.
For each condition and cell type pair, the non-linear Spearman’s correlation coefficient was calculated
with paired atrophy-cell proportion values across 118 cortical and subcortical regions defined by the
automated anatomical labelling (AAL) atlas (Table S1; *). The results (Figs. 2A-M and 3A) show clear
associations for all the studied conditions, suggesting extensive cell types related tissue damage
vulnerability in neurodegenerative conditions. We confirmed that the observed relationships are
independent of brain parcellation, obtaining equivalent results for a different brain parcellation (i.e.,
DKT atlas“®; see Fig. S1).

As shown in Figs. 2A-M and 3A, astrocytes and microglia cell occurrences presented the
strongest spatial associations with atrophy in most neurodegenerative conditions, particularly for EOAD,
LOAD, DLB, PSl, FTLD-3RTau, FTLD-4Rtau, FTLD-TDP type A, FTLD-TDP type C, bvFTD,
nfvPPA, and svPPA (all p < 0.001, FDR-corrected). Astrocytes are involved in neuronal support,
extracellular homeostasis, and inflammatory regulation in response to injury, and show high
susceptibility to senescence and oxidative damage® *°. Astrocytes also play an important role in the
maintenance of the blood-brain barrier (BBB), which regulates the passage of molecules, ions, and cells
between the blood and the brain®. Recent study suggests reactive astrocytes may promote vascular
inflammation in the BBB®. Endothelia cells, which comprise the functional component of the BBB,
also showed strong spatial associations with atrophy in almost all conditions (Fig. 3A). Endothelial cells
regulate cerebral blood flow and deliver oxygen and nutrients to the brain®. Disruption of the BBB may
allow harmful substances to enter the brain, including inflammatory molecules and toxic aggregated
proteins, ultimately exacerbating neuronal damage™ °. Reduction of cerebral blood flow and vascular
dysregulation are the earliest and strongest pathologic biomarkers of LOAD, PD and other

neurodegenerative disorders® .

Similar to astrocytes in their role of supporting neurons, microglial cells are the resident
macrophages of the central nervous system and key players in the pathology of neurodegenerative
conditions, including AD, PD, FTD and ALS™ ** . Besides its many critical specializations, microglial
activation in prolonged neuroinflammation is of particular relevance in neurodegeneration*!. At earlier
stages of AD, increased population of microglia and astrocytes (microgliosis and astrogliosis) have been
observed in diseased regions, due to sustained cellular proliferation in response to disturbances, loss of
homeostasis or the accumulation of misfolded proteins'® ° %, Excessive proliferation may lead to the
transition of homeostatic microglia to its senescent or disease-associated type, also known as DAM, via
the processes mediated by TREM2-APOE signalling®® ® . Increased number of dystrophic microglia, a
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form of cellular senescence characterized as beading and fragmentation of the branches of microglia, has
been seen in multiple neurodegenerative conditions such as AD, DLB and TDP-43 encephal opathy®.
The presence of senescent microglia is believed to ultimately contribute to the failure of brain
homeostasis and to clinical symptomatology® ® ¢’

Oligodendrocytes also associated with spatial tissue vulnerability to all conditions aside ALS
(Fig. 3A). Oligodendrocytes are responsible for the synthesis and maintenance of myelin in the brain®.
Demyelination produces loss of axonal insulation leading to neuronal dysfunctions™ ®. Myelin
dysfunction may lead to secondary inflammation and subsequent failure of microgliato clear amyloid-p
deposition in AD mice models’™. Oligodendrocytes were shown to be highly genetically associated with
PD™>". In addition, densities of OPCs showed strong correlations with the atrophy patterns of DLB,
EOAD, PS1, and FTLD-TDP type C. OPCs regulate neural activity and harbor immune-related and
vascular-related functions™. In response to oligodendrocyte damage, OPCs initiate their proliferation and
differentiation for the purpose of repairing damaged myelin™. In AD, PD and ALS, the OPCs become
unable to differentiate and their numbers decrease, leading to a reduction in myelin production and
subsequent neural damage™ .

We observed (Fig. 3A) that neuronal abundance distribution is also associated with tissue damage
in many neurodegenerative conditions. However, these associations are less strong than for other cell
types, except for the ALS case (Fig. 2J). For this disorder, neuron proportions positively correlated with
tissue integrity (i.e., the higher the neuronal proportion, the less atrophy in a region). This observation
suggests that increased neuronal presence at brain regions (relative to all considered cell types) may have
a protective effect in ALS, making neuronal enriched regions less vulnerable to damage in this disorder.
In addition, we observed particularly weak associations between neuronal proportions and tissue damage
in all three clinical variants of FTD (bvFTD, nfvPPA, svPPA) and PD (Fig. 3A), suggesting that these
conditions may be primary associated with supportive cell types (microglia, astrocytes, and
oligodendrocytes, respectively; Figs. 21, K-M).
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Correspondence between tissue integrity and cell density in 118 grey matter regions
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Figure 2 | Spatial associations between tissue integrity and cell type proportions for thirteen
neurodegenerative conditions illustrated in the scatterplots and surface maps (left hemisphere; lateral
view) of regional measures. (A-M) Strongest Spearman’s correlations for EOAD, LOAD, DLB, PS1,
FTLD-3Rtau, FTLD-4Rtau, FTLD-TDP43A, FTLD-TDP43C, PD, ALS, bvFTD, nfvPPA, and svPPA,
respectively. Atrophy and cell type density measures were averaged across 118 grey matter regions and
projected to the cortical surface of the fsaverage template. Each dot in the scatterplots represents a GM
region from the AAL atlas (Table S1; see Fig. S1 for equivalent results for the DKT parcellation). Lower
tissue integrity score in the scatterplots x-axis indicates greater GM loss/atrophy. For a better visual
comparison of patterns in atrophy and cell abundance, the atrophy scale was reversed, with higher t-
statistic values indicating greater atrophy in the surface plots. Thus, the first color bar ranging from 0 is
universal for all cell maps and pathologically confirmed dementia conditions (A-H). Second color bar
captures the tissue enlargement in PD, ALS, and variants of FTD (I-M). Notice how astrocyte density
significantly correlates with increase in tissue loss in EOAD, DLB, PS1, FTLD-TDP43C, and nfvPPA
(A, C, D, H, L; p<0.001). Tissue loss was also associated with increase in microglial proportion in
LOAD, FTLD-3Rtau, FTLD-4Rtau, FTLD-TDP43A, bvFTD, and svPPA (B, E, F, G, K, M; p < 0.001).
Increased oligodendrocytes associated with PD (I; p < 0.001). Increase in neuronal proportion showed
association with decrease in atrophy and tissue enrichment in ALS (J; p < 0.001). All p-values were
FDR-adjusted with the Benjamini-Hochberg procedure (p < 0.05).
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Spatial cell types grouping exposes distinctive disease-disease similarities.

Next, we hypothesized that disorders sharing similar biologica mechanisms and clinical
manifestations present common across-brain patterns of cell type density associations. Fig. 3A shows a
hierarchical taxonomy dendrogram grouping cell types and conditions according to their common brain-
wide correlation patterns.

The clustergram analysis revealed distinct grouping patterns among various neurodegenerative
conditions. All histologically confirmed dementia conditions formed a separate cluster. Notably, EOAD
and mutations in PS1, a prevalent cause of familial early-onset AD"®, grouped together. Interestingly,
three clinical subtypes of FTD (bvFTD, nfvPPA, and svPPA) displayed similar patterns of cell type
vulnerabilities and diverged into a discrete cluster with PD, separately from ALS and other dementia
conditions. However, FTLD-associated pathologies such as TDP-43 proteinopathies (types A and C), as
well as 3-repeat and 4-repeat tauopathies, showed patterns more similar to those found in DLB and AD-
related conditions (EOAD, LOAD, PS-1) rather than clinical FTD subtypes from a different dataset.
These differences could be attributed to variations in the source dataset; the atrophy maps were derived
from different studies and were measured by different techniques, which may have introduced
discrepancies in results due to different data acquisition tools and protocols (see Methods). Nonetheless,
all FTLD-related subtypes and conditions showed strongest associations with spatial distributions of glial
cells, particularly astrocytes and microglia.

Among all cell types, neurons and OPCs spatial density distributions were least associated with
tissue atrophy in all thirteen conditions, subsequently clustering together. Astrocytes and microglia
distributions similarly showed the strongest associations with all neurodegenerative conditions (Fig. 3B),
and thus formed a separate cluster while still being related with oligodendrocytes and endothelial cells.
Astrocytes and microglia are known to be intimately related in the pathophysiological processes of
neurodegenerative disorders™. Both are key regulators of inflammatory responses in the central nervous
system, and given their role in clearing misfolded proteins, dysfunctions of each of them can result in the
accumulation of Ap and tau™* ”°. During the progression of AD and PD, microglia’'s activation can result
in an increased capacity to convert resting astrocytes to reactive astrocytes'’.

Patterns in cellular vulnerability in DLB did not strongly resemble PD without dementia (Fig.
3C), although both conditions involve alpha-synuclein aggregates™. Similar observation can be made for
ALS and FTLD. Despite the common presence of TDP-43 abnormal accumulations and their strong
genetical overlap®™, ALS did not group together with FTD variants and FTLD-associated pathologies
(FTLD-TDP type A, FTLD-TDP type C) based on patterns of cells-atrophy associations. All these
conditions are known to be pathologically linked, often arising from either tau or TDP-43 accumulation;
for instance, TDP-43 is the usual cause of svPPA and approximately half of bvFTD cases, while the
other half of bvFTD patients and many nfvPPA cases are associated with tau pathology®?. These results
emphasize the fundamental role of network topology and other factors beyond the presence of toxic
misfolded proteinsin developing characteristic tissue loss and cellular vulnerability in neurodegenerative
conditions™ 5%,
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A. Cell-cell and disorder-disoder axes of spatial vulnerability
in neurodegeneration
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Figure 3 | Cels and disorders similarities based on shared distributions. (A) Dendrogram and
unsupervised hierarchical clustering heatmap of Spearman’s correlations between cell type proportions
and atrophy patterns across the thirteen neurodegenerative conditions. (B) Cell-cell associations based on
regional vulnerabilities to tissue loss across neurodegenerative conditions. (C) Disorder-disorder
similarities across cell types. In A), red color corresponds to strong positive correlations between cells
and disorders, white to no correlation, and dark blue to strong negative correlations.

Discussion

Previous efforts to describe the composition of the brain’s different cell populations related to
neurodegeneration have been limited to a few isolated regions. In the most systematic study of its kind,
here we characterized large-scale spatial associations between canonical cell types and brain tissue loss
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across cortical and subcortical grey matter areas in thirteen neurodegenerative conditions (including
early- and late-onset AD, PD, DLB, ALS, mutations in PS1, and clinical (bvFTD, nfvPPA, svPPA) and
pathological (3-repeat and 4-repeat tauopathies and TDPP43 proteinopathies types A and C) subtypes of
FTLD. Starting from healthy brain levels of gene expression and structural MRI data from the Allen
Human Brain Atlas®, and extending our analysis with advanced single cell-RNA seg-validated cell
deconvolution approaches, aong with whole-brain atrophy maps from clinically and/or
neuropathologically confirmed disorders, we determined that (i) the spatial distributions of non-neuronal
cell types, primarily microglia and astrocytes, are strongly associated with the spread tissue damage
present in many neurodegenerative conditions; (ii) cells and disorders define major axes that underlie
gpatial vulnerability, aiding in comprehending heterogeneity behind distinct and similar clinical
manifestations/definitions; (iii) the generated whole-brain maps of cellular abundance can be similarly
used for studying associations between imaging phenotypes and healthy reference cellular levelsin other
neurological conditions (e.g., neurodevel opmental and neuropsychiatric disorders). Overall, our findings
stress the critical need to surpass the current neuro-centric view of brain diseases and the imperative for
identifying cell-specific therapeutic targets in neurodegeneration. For further translation and validation,
all resulting cells abundance maps and analytic tools are freely shared with the community.

We derived, first to our knowledge, high resolution maps of cellular abundance/proportion in
the adult human healthy brain for six canonical cell types, including astrocytes, neurons,
oligodendrocytes, microglia, and endothelial cells. As mentioned, previous cellular analyses of
neurological conditions have been restricted to expert-selected isolated brain areas. The invasive nature
of expression assays, requiring direct access to neural tissue, and other numerous scaling limitations have
impeded extensive spatial analyses™. Earlier studies, also using AHBA data, have shown that spatial
patterns in cell type-specific gene expression are associated with both regional vulnerability to
neurodegeneration and patterns of atrophy across the brain” %2, Since many neurodegeneration-related
genes have similar levels of expression in both affected and unaffected brain areas®, characterizing
changes in tissue loss associated with reference cell type proportions in health may provide a clearer
perspective on large-scale spatial patterns of cellular vulnerability. Our maps of cells-abundance are
available for the scientific and clinical community, potentially allowing researchers to further study
gpatial variations in cell type density with macroscale phenotypes. These maps can be used in future
studies concerning brain structure and function in both health and disease. They can be also explored in
context of other neurological diseases, including neurodevel opmental and psychiatric conditions.

Our results demonstrate that all canonical cell types express vulnerability to dementia-related
atrophy of brain tissue, potentially suggesting the disruption of the molecular pathways involving
specific cell types can contribute to their observed dysfunctions and subsequent clinical symptamology?*.
Previoudly, transcriptional profiling of prefrontal cortex in AD showed reduced proportions of neurons,
astrocytes, oligodendrocytes, and homeostatic microglia®. In contrast, bulk-RNA analysis of diseased
AD tissues from various human brain regions observed neuronal loss and increased cell abundance of
microglia, astrocytes, oligodendrocytes, and endothelial cells® *. Furthermore, increased microglial,
endothelial cells, and oligodendrocytes population was observed in PD and other Lewy diseases™ ™.
Cortical regions exhibiting the most severe atrophy in symptomatic C9orf72, GRN and MAPT mutation
carriers with FTD showed increased gene expression of astrocytes and endothelial cells”®. Cortical
thinning has been demonstrated to correlate with higher proportions of astrocytes, microglia,
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oligodendrocytes, oligodendrocyte precursor cells, and endothelial cells in cases of AD compared to
controls?® %, In line with these results, we observed that regions with increased cell type proportions,
particularly for astrocytes and microglia, are strongly associated with gray matter atrophy in almost all
neurodegenerative conditions. This may partly explain the reported cellular proliferation through
microglial activation in diseased regions in response to the misfolded protein accumulation or other
pathobiological processes™ . As disease progresses, the release of inflammatory agents by sustained
microglial activation is believed to be responsible for exacerbating neurodegeneration and clinical
symptoms™ 8. Microglial activation in pair with grey matter atrophy in frontal cortex were shown to be
directly associated with cognitive declinein FTD%.

Our study has several limitations. Firstly, our analyses were focused on stereotypic atrophy
patterns for each disorder. It is known that neurodegenerative diseases are highly heterogenous, with
molecular, phenotypic, and clinical subtypes potentially varying in atrophy patterns™ *. Further
investigation of cell type signatures across various subtypes not covered in this study and disease stages
may better characterize each case. Additionally, comparing our findings with neuropathological
assessments of diseased brain tissues in available regions would be beneficial. While the diagnosis of
most dementia conditions used in this study has been histologically confirmed, the diagnosis for clinical
variants of FTD, ALS, and PD patients was based on clinical and neuroimaging assessments. In addition,
it has been observed that cell type-related transcriptional changes are different between sexes™, making
future sex-specific analyses indispensable for further understanding of sex-related pathomechanisms. An
important consideration is that examined atrophy maps were sourced from different studies (Table S2),
with differences in data acquisition protocols (e.g., spatial resolution) and technical procedures (e.g.,
smoothing level, statistical methods). In complementary analyses, we observed almost identical results
after smoothing all disorder-specific images with the same kernel size, while they were already mapped
at the same spatial resolution for this study and statistically adjusted by acquisition parameters (e.g., field
strength) in original studies. Moreover, cell type deconvolution approaches are varied and limited in their
precision®™. Here, we used a previously validated deconvolution method designed for efficiently
estimating cell proportions for six major cell types from bulk mRNA expression®. Conveniently, this
method is freely available for researchers (R package, BRETIGEA), which will facilitate reproducibility
analyses of our study. Other important considerations are the dynamic nature of gene expression as
disease progresses™ *, post-mortem RNA degradation of the used templates™, and the subsequent
limited ability of bulk RNA sequencing to reflect cell-to-cell variability, which is relevant for
understanding cell heterogeneity and the roles of specific cell populations in disease ®. Lastly, a
promising future direction would be to validate our findings with single-cell spatial analyses.

M aterials and M ethods

Disor der -specific atrophy maps. Voxel-wise brain atrophy maps in early- and late-onset Alzheimer’'s
disease (EOAD and LOAD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), dementia
with Lewy bodies (DLB), mutations carriersin presenilin-1, clinical variants of frontotemporal dementia
(FTD), and frontotemporal lobar degeneration (FTLD) pathologies (FTLD-TDP types A and C, 3-repeat
tauopathy, and 4-repeat tauopathy) were adopted from open data repositories and/or requested from
collaborators®®, as specified below. Reduction in grey matter (GM) density in diseased atrophy maps
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relative to controls was measured by voxel- and deformation-based morphometry (VBM and DBM)
applied to structural T1-weighted MR images, and thus was expressed as t-score per voxel (relatively
low negative t-scores indicate greater GM tissue loss/atrophy)™ **. VBM is a hypothesis-free technique
for analyzing neuroimaging data that characterizes regional tissue concentration differences across the
whole brain, without the need to predefine regions of interest'®. DBM is asimilar widely used technique
to identify structural changes in the brain across participants, which in addition considers anatomical
differences such as shape and size of brain structures'. See Table S2 for study-origin, sample size and
Imaging technique corresponding to each atrophy map.

MRI data for neuropathological dementias were collected from 186 individuals with a clinical
diagnosis of dementia and histopathological (post-mortem or biopsy) confirmation of underlying
pathology, along with 73 healthy controls®. Data were averaged across participants per condition: 107
had a primary AD diagnosis (68 early-onset (<65 years at disease onset), 29 late onset (>65 years at
disease onset), 10 presenilin-1 mutation carriers), 25 with DLB, 11 with 3-repest-tauopathy, 17 with 4-
repeat-tauopathy, 12 FTLD-TDP type A, and 14 FTLD-TDP type C)*. Imaging data were collected
from multiple centres on scanners from three different manufacturers (Philips, GE, Siemens), using a
variety of different imaging protocols®. Magnetic field strength varied between 1.0 T (n=15 scans), 1.5
T (n=201 scans) and 3 T (n=43 scans)®. Pathological examination of brain tissue was conducted
between 1997 and 2015 according to the standard histopathological processes and criteria in use at the
time of assessment at one of four centres. the Queen Square Brain Bank, London; Kings College
Hospital, London; VU Medical Centre, Amsterdam and Institute for Ageing and Health, Newcastle®.
Atrophy maps were statistically adjusted for age, sex, total intracranial volume, and MRI strength field
and site®. Ethical approval for this retrospective study was obtained from the National Research Ethics
Service Committee London-Southeast™.

MRI data for PD, consisted of 3T high-resolution T1-weighted scans, were obtained from the
Parkinson’s Progression Markers Initiative (PPM1) database (https.//www.ppmi-info.org/)*’. The PPMI
IS a multi-center international study with approved protocols by the local institutional review boards at
all 24 sites across the US, Europe, and Australia®’. MRI data were acquired in 16 centers participating in
the PPMI project, using scanners from three different manufacturers (GE medical systems, Siemens, and
Philips medical systems). 3T high-resolution T1-weighted MRI scans from the initial visit and clinical
data used in congtructing atrophy maps were collected from 232 participants with PD and 118 age-
matched controls®. PD subjects (77 females; age 61.2 + 9.1) were required to be at least 30 years old or
older, untreated with PD medications, diagnosed within the last two years, and to exhibit at least two or
more PD-related motor symptoms, such as asymmetrical resting tremor, uneven bradykinesia, or a
combination of bradykinesia, resting tremor, and rigidity*’. All individuals underwent dopamine
transporter (DAT) imaging to confirm a DAT deficit as a prerequisite for digibility®’. No significant
effect of age, gender, or site was found®.

For ALS, MRI data were collected from 66 patients (24 females; age 57.98 = 10.84) with both
sporadic or familial form of disease from centers of the Canadian ALS Neuroimaging Consortium
(http://calsnic.org/, ClinicalTrials.gov NCT02405182), which included 3T MRI sites in University of
Alberta, University of Calgary, University of Toronto, and McGill University® . Patients were
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included if they were diagnosed with sporadic or familial ALS, and meet the revised El Escorial research
criteria’® for possible, laboratory supported, or definite ALS®, Patients underwent a neurological exam
administered by a trained neurologist at each participating site®®. All participants gave written informed
consent, and the study was approved by the health research ethics boards at each of the participating
sites®®. Participants were excluded if they had a history of other neurological or psychiatric disorders,
prior brain injury, or respiratory impairment resulting in an inability to tolerate the MRI protocol®.
Participants with primary lateral sclerosis, progressive muscular atrophy, or frontotemporal dementia
were also excluded from the study™. Normative aging as well as sex differences were regressed out from
data prior the map construction®.

For clinical subtypes of FTD, atrophy maps were obtained from the open-access database™.
These maps were derived from MRI data from the Frontotemporal Lobar Degeneration Neuroimaging
Initiative (FTLDNI AG032306; part of the ALLFTD). As described in separate studies'™ '™, the data
used for constructing these atrophy maps consisted of 136 patients diagnosed with frontotemporal
dementia, alongside 133 age-matched control participants. Participants were previously stratified into
groups according to their clinical variant of FTD: 70 patients were diagnosed with the behavioural
variant, 36 with the semantic primary progressive aphasia, and 30 with the non-fluent primary
progressive aphasia® *®. 3T structural images were collected on three following sites: University of
California San Francisco, Mayo Clinic, and Massachusetts General Hospital®. Patients were referred by
physicians or sdf-referred, and all underwent neurological, neuropsychological, and functional
assessment with informant interview®. All individuals received their diagnoses during a
multidisciplinary consensus conference using established criteria: Neary criteria'® or, depending on year
of enrolment, the recently published consensus criteria for bvFTD'® and PPA'Y’. Histological analysis
was conducted to assess whether patients might have Alzheimer's disease pathology since both
conditions presents the overlap of clinical symptoms®. All subjects provided informed consent and the
protocol was approved by the institutional review board at all sites™.

Mapping gene expression data. To construct a comprehensive transcriptome atlas, we used mRNA
microarray gene expression data from the Allen Human Brain Atlas (AHBA; https://human.brain-
map.org/)*™. The AHBA included anatomical and histological data collected from six healthy human
specimens with no known neurological disease history (one female, age range 24-57 years, mean age
42.5 + 13.38 years)®. Two specimens contained data from the entire brain, whereas the remaining four
included data from the |eft hemisphere only, with 3702 spatially distinct samples in total*’. The samples
were distributed across cortical, subcortical, brainstem, and cerebellar regions in each brain, and the
expression levels of more than 20,000 genes were quantified”. mRNA data for specific brain locations
were accompanied by structural MR data from each individual and were labeled with Talairach native
coordinates™® and Montreal Neurological Institute (MNI) coordinates”, which alowed us to match
samples to imaging data.

Following the validated approach in *, missing data points between samples for each MNI
coordinate were interpolated using Gaussian-process regression, a widely used method for data
interpolation in geostatistics. The regression is performed as a weighted linear combination of missing
MRNA, with the weights decreasing from proximal to distal regions. MNI coordinates for predicting
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MRNA values were taken from the GM regions of the AAL atlas. Spatial covariance between
coordinates from the available 3072 AHBA tissue samples and coordinates from the AAL atlas was
estimated via the quadratic exponential kernel function. mMRNA expression at each MNI coordinate was
then predicted by multiplying AHBA gene express values that corresponded to specific probes to kernel
covariance matrix divided by the sum of kernels.

Cell type proportion estimation. Densities for multiple canonical cell types were estimated at the grey
matter (GM) by applying an R-package Brain Cell-type Specific Gene Expression Analysis
(BRETIGEA), with known genetic markers to the transcriptome atlas™. This eigengene decomposition-
based deconvolution method was designed for estimating cell proportions in bulk gene expression data
for six mgor cell types. neurons, astrocytes, oligodendrocytes, microglia, endothelial cells, and
oligodendrocyte precursor cells™ %, We chose 15 representative gene markers per each cell type (90 in
total) from the BRETIGEA human brain marker gene set and then selected those genes that were also
present in the AHBA gene expression database with matching gene probes. This resulted in eighty cell
type-related gene markers that were used in missing data interpolation and the deconvolution proportion
estimation analysis (Table S3). For each voxel, each cell type proportion value was normalized relative
to the sum of all six cell types and the sum was scaled relative to the grey matter density. We then
registered datainto MNI and volumetric space using the ICBM 152 template™.

For the corrdation analysis, cell densities were averaged over 118 anatomical regions in grey
matter defined by the extended automated anatomical labelling atlas (AAL; Table S1)*. We repeated the
correlation analysis for the 98 regions from the Desikan-Killiany-Tourville atlas (DKT; Fig. S1)*®.

Data analysis. We constructed a 6/'1x7113 correlation matrix by computing inter-regional Spearman’s
correlations between spatial distributions of the six canonical cell types and patterns of atrophy in
thirteen neurodegenerative conditions. Correction for multiple comparisons using the false discovery rate
(FDR) was conducted using the Benjamini-Hochberg method, with a significance threshold of 0.05.
Shapiro-Wilk tests were used to examine the normality of data distribution. Hierarchical clustering
analyses was applied using in-built MATLAB function for data visualization. Cells and conditions were
clustered together based on estimated averaged linkage Euclidian distance between their correlation
values.

Data and materials availability: All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary Materials. The BRETIGEA R package can be downloaded from
https.//cran.r-project.org/package=BRETIGEA. The Allen Human Brain Atlas data is avalable at
https://human.brain-map.org/static/download. Atrophy maps for pathologically confirmed dementia are
available at http://neurovault.org/collection ADHMHOPN/. Raw demographic and MRI data from PD
and ALS patients can be accessed at https.//www.ppmi-info.org/ and http://calsnic.org/
(Clinical Trials.gov NCT02405182), respectively. Atrophy maps for clinical variants of FTD are
available at https://zenodo.org/records/10383493. Raw data from the FTLDNI initiative can be
downloaded from the Laboratory of Neuroimaging (LONI) Image Data Archive at
https://ida.loni.usc.edu. The cells abundance maps from this study are freely shared with the community
and can be found at our lab’s GitHub space https.//github.com/neuropm-lab/cellmaps.
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Figure S1. Spatial associations between tissue integrity and cell type proportions for thirteen
neurodegenerative conditionsin GM regions from the DKT parcellation (equivalent to main results from

the AAL atlasin Fig. 3A).
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Table S1. Cortical and subcortical regions from the AAL atlas.

# | Region name

1 | Precentral_L 41 | Amygdala L 81 | Tempora_Sup L

2 | Precentra_R 42 | Amygdala R 82 | Temporal_Sup R

3 | Fronta_Sup L 43 | Calcarine L 83 | Tempora _Pole Sup L
4 | Fronta_Sup R 44 | Cdcarine R 84 | Tempora _Pole Sup R
5 | Fronta_Sup Orb L 45 | Cuneus L 85 | Tempora Mid L

6 | Fronta_Sup Orb R 46 | Cuneus R 86 | Temporad Mid R

7 | Fronta_Mid_L 47 | Lingual_L 87 | Tempora_Pole Mid_L
8 | Fronta_Mid R 48 | Lingua_R 88 | Temporal_Pole Mid R
9 | Fronta_Mid_Orb L 49 | Occipital_Sup_L 89 | Temporal_Inf_L

10 | Frontal_Mid Orb R 50 | Occipita_Sup R 90 | Tempora_Inf R

11 | Frontal_Inf_Oper L 51 | Occipital_Mid_L 91 | Cerebelum Crusl L
12 | Frontal_Inf_Oper_R 52 | Occipita_Mid R 92 | Cerebelum Crusl R
13 | Frontal_Inf Tri L 53 | Occipital_Inf_L 93 | Cerebelum Crus2 L
14 | Frontal_Inf Tri R 54 | Occipital_Inf_R 94 | Cerebelum Crus2 R
15 | Frontal_Inf_Orb L 55 | Fusiform L 95 | Cerebelum 3 L

16 | Frontal_Inf Orb R 56 | Fusiform R 96 | Cerebelum 3 R

17 | Rolandic_Oper_L 57 | Postcentral L 97 | Cerebelum 4 5 L
18 | Rolandic_Oper R 58 | Postcentra R 98 | Cerebelum 4 5 R
19 | Supp_Motor_Area L 59 | Parietal_Sup L 99 | Cerebelum 6 L

20 | Supp_Motor_Area R 60 | Parietal_Sup R 100 | Cerebelum 6 R

21 | Olfactory L 61 | Parietal_Inf L 101 | Cerebelum 7b L

22 | Olfactory R 62 | Parietal_Inf R 102 | Cerebelum 7b R
23 | Frontal_Sup_Media L | 63 | SupraMargina_L 103 | Cerebelum 8 L

24 | Frontal_Sup_Media R | 64 | SupraMargina_R 104 | Cerebelum 8 R

25 | Fronta_Med Orb L 65 | Angular_L 105 | Cerebelum 9 L

26 | Frontal_Med Orb R 66 | Angular_R 106 | Cerebelum 9 R

27 | Rectus L 67 | Precuneus L 107 | Cerebelum 10 L

28 | Rectus R 68 | Precuneus R 108 | Cerebelum 10 R
29 | Insula L 69 | Paracentral Lobule L | 109 | Vermis 1 2

30 | Insula R 70 | Paracentral_Lobule R | 110 | Vermis 3

31 | Cingulum_Ant_L 71 | Caudate L 111 | Vermis 4 &

32 | Cingulum_Ant_R 72 | Caudate R 112 | Vermis 6

33 | Cingulum_Mid_L 73 | Putamen L 113 | Vermis 7

34 | Cingulum_Mid R 74 | Putamen_R 114 | Vermis 8

35 | Cingulum_Post_L 75 | Pallidum_L 115 | Vermis 9

36 | Cingulum_Post R 76 | Palidum R 116 | Vermis 10

37 | Hippocampus L 77 | Thalamus L 117 | Dentate L

38 | Hippocampus R 78 | Thalamus R 118 | Dentate R

39 | ParaHippocampal L 79 | Heschl L

40 | ParaHippocampa R 80 | Heschl_ R
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Table S2. Origin of each disorder-associated t-statistic map.

Disease Study Y ear of Journal / Diseased Controls(n) | Method Pathol ogy
publication | Database participants (n) confirmed
LOAD Harper et a 2017 Neurol Neurosurg 68 73 VBM yes
Psychiatry
EOCAD Harper et a 2017 Neurol Neurosurg 29 73 VBM yes
Psychiatry
Ps-1 Harper et a 2017 Neurol Neurosurg 10 73 VBM yes
Psychiatry
DLB Harper et a 2017 Neurol Neurosurg 25 73 VBM yes
Psychiatry
FTLD- Harper et a 2017 Neurol Neurosurg 11 73 VBM yes
3RTau Psychiatry
FTLD- Harper et a 2017 Neurol Neurosurg 17 73 VBM yes
4RTau Psychiatry
FTLD- Harper et a 2017 Neurol Neurosurg 12 73 VBM yes
TDP43A Psychiatry
FTLD- Harper et a 2017 Neurol Neurosurg 14 73 VBM yes
TDP43C Psychiatry
PD Zeighami et 2015 eLife 232 117 DBM + no
a ICA*
bvFTD Dadar and 2023 Zenodo 70 133 DBM no
Metz
nfvPPA Dadar and 2023 Zenodo 36 133 DBM no
Metz
svPPA Dadar and 2023 Zenoda 30 133 DBM no
Metz
ALS Dadar et al. 2020 Brain 66 42 DBM Some

Communications

ICA* = tensor probabilistic independent component analysis
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Table S3. Eighty cell type related gene markers provided by the BRETIGEA R package.

Gene marker name

Cdl type

AQP4, BMPR1B, EDNRB, FGFR3, GFAP, GJA1, SDC4, | Astrocyte
SLC1A2, GJB6, ALDH1L1, SLC25A18
C1QB, CD74, CXCR4, FOLR2, ITGAX, P2RX4, CCL3, | Microglia

CCL4, SLA, TLR1, TNFSF18, ARHGAP25, DHRSS,
KBTBD8

ANXA3, CD34, CFH, IF27, TM4SF1, SELE, TGM2,
VWF, SDPR, IFITM1, ITIH5 APOLD1, TM4SF18,
GPR116

Endothelial cell

CHGB, CNR1, GABRA1l, GABRB2, GAD2, KCNC2,
OPRK1, RELN, SYT1, MYT1L, RIMBP2, ZMAT4,
RAB3C, SYNPR, DLX6-AS1

Neuron

FOLH1, MAG, MOBP, CLDN11, PLP1, KLK6, CNTN2,
TF, UGT8, ST18, ERMN, XYLT1, SH3TC2, CNDP1,
TMEM64

Oligodendrocyte

GALR1, HAS2, NFYA, RGS13, TGFA, TNR, FPGT,
MMRN1, CDH19, CA10, CRISPLD1

Oligodendrocyte precursor cell
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