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Abstract  
Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively 

in translational research as well as in clinical practice for diagnosis of neurological diseases, 

e.g., Alzheimer’s disease (AD). However, CSF biomarker concentrations may be influenced by 

non-disease related mechanisms which vary between individuals, such as CSF production and 

clearance rates. Here we use a data-driven approach to demonstrate the existence of inter-

individual variability in mean CSF protein levels. We show that these non-disease related 

differences cause many commonly reported CSF biomarkers to be highly correlated, thereby 

producing misleading results if not accounted for. To adjust for this inter-individual variability, 

we identified and evaluated high-performing reference proteins which improved the diagnostic 

accuracy of key CSF AD biomarkers. Our novel reference protein method attenuates the risk 

for false positive findings, and improves the sensitivity and specificity of CSF biomarkers, with 

broad implications for both research and clinical practice.  
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Introduction 
Neurodegenerative disorders and dementia are common and have increasing prevalence world-

wide.1 The need for precise and reliable diagnostic techniques to identify, examine and monitor 

these diseases is growing. One informative and cost-effective diagnostic technique is the 

measurement of protein concentrations in cerebrospinal fluid (CSF), here referred to as CSF 

biomarkers.2,3 In Alzheimer’s disease (AD), which is the most common neurodegenerative 

disease, CSF biomarkers are used in clinical practice as diagnostic tools.2 Neuropathologically, 

AD is defined by the combined presence of amyloid(A)-β plaques and tau-neurofibrillary 

tangles. CSF biomarkers related to these pathologies include Aβ42 and soluble 

phosphorylated(P)-tau.4 These CSF markers can substantially improve the diagnostic work-up 

of the disease, which is becoming increasingly important due to recent development of effective 

disease modifying-treatments for AD.5–7 However, the use of CSF biomarkers may be 

complicated by inter-individual variability in certain physiological phenomena, such as rates of 

CSF production, and rates of CSF clearance.8–10 Such inter-individual differences could lead to 

differences in mean CSF protein levels11, which could impact the overall performance of CSF 

biomarkers.12–14 Hypothetically, adjustment for individual mean CSF protein levels could 

optimize the performance of already efficient CSF biomarkers, reduce false positive findings 

(by attenuating biomarker associations that are driven by the mean CSF protein level), and 

increase the likelihood of making new biologically and clinically relevant discoveries. 

In AD research and clinical practice, CSF Aβ42 and P-tau, together with a CSF 

biomarker of neuronal injury (i.e., CSF total-tau or neurofilament light chain), can be used for 

AT(N) (amyloid, tau, neurodegeneration) in vivo classification of AD pathology.15,16 This 

system makes it possible to categorize a person as biomarker positive or negative, where low 

CSF Aβ42 levels indicate Aβ plaque pathology (“A”) and high CSF P-tau181 levels indicate 

tau tangle pathology (“T”).17–23 AT(N) grouping is an effective way to differentiate individuals 

without AD (A-/T-) from those with AD (A+T+). However, many studies have reported 

findings in the group with isolated P-tau pathology (A-T+; i.e., both high Aβ42 and P-tau181), 

which is more controversial.15,24–26 It is unclear if this A-T+ definition is biologically relevant 

or mainly a result of inter-individual differences in mean CSF levels (leading to more 

concentrated CSF in some individuals with higher levels of both Aβ42 and P-tau181). 

Besides well-established CSF biomarkers used in clinical practice, CSF proteins are 

often studied to understand underlying disease mechanisms in humans affected by AD or other 

neurodegenerative diseases. In such studies, it has been suggested that CSF levels of many 
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microglia-related proteins (like sTREM2 or TAM receptors [sAXL and sTYRO3]) are strongly 

correlated with CSF P-tau181 and increased not only in A+T+ individuals, but also in A-T+ 

individuals, linking these neuroinflammatory changes more to P-tau pathology than Aβ.18,19 In 

addition, other CSF markers have been seen to correlate with CSF P-tau181 levels. For 

example, we and others have reported that the astrocytic biomarker YKL-40 and the 

Parkinson’s disease-related biomarker α-synuclein are strongly associated with P-tau181 in 

CSF, which was interpreted as that these brain pathological changes co-vary.27–29 It is unclear 

whether such findings are mainly driven by inter-individual differences in mean CSF protein 

levels, or remain robust when accounting for this property. Moreover, the impact of mean CSF 

levels might also be of importance in proteomic studies, when identifying subpopulations with 

different CSF expression profiles30, or in genome-wide protein quantitative trait loci (pQTL) 

studies, looking at associations between genetic variants and protein levels.14   

One striking example that highlights the potential of adjusting for processes related to 

CSF dynamics in the context of AD CSF biomarkers exists. CSF Aβ42 shows improved 

concordance with amyloid positron emission tomography (PET, a well-established 

neuroimaging method to make aggregated brain amyloid in AD visible) when normalized for 

CSF Aβ40 levels, where the latter is not affected by the disease process.31,32 Aβ40 is closely 

linked to Aβ42 since both peptides come from the same proteolytic pathway33, but Aβ40 may 

also partly represent an individual’s mean CSF protein level and could potentially improve 

performance of other biomarkers as well. This idea has been tested for CSF P-tau181, where 

the results suggested that the diagnostic accuracy improved when adjusting for inter-individual 

differences in CSF Aβ40 levels.13 In order to examine Aβ40’s generalizability as a reference 

protein, it needs to be further evaluated. In addition to Aβ40, other efficient CSF reference 

proteins may exist that can improve the clinical performance of key CSF biomarkers.  

Consequently, our overarching aim was to establish the concept of inter-individual 

differences in mean CSF protein levels, and to search for optimal reference protein candidates 

that could be used to account for this CSF dynamic in a robust way. We analyzed 2,944 CSF 

proteins (including CSF Aβ40) from 830 participants in a data-driven manner. We hypothesized 

that adjusting for certain reference proteins could improve the diagnostic accuracy of AD CSF 

biomarkers, and we evaluated this across a range of outcome measures, biomarkers, and AD 

cohorts. We also hypothesized that several previously reported CSF biomarker findings would 

be altered or attenuated when biomarkers were normalized to reference proteins. Specifically, 

we studied whether several strong and recognized correlations of CSF protein concentrations 
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remained robust when normalizing to the identified reference proteins, both in relation to each 

other and to genetic variants. 

 

 

Results 
The study included 830 participants from the Swedish BioFINDER-2 (BF2) cohort and 904 

participants from Swedish BioFINDER-1 BF1 cohort, all with complete OLINK CSF protein 

and CSF Aβ40 concentration measures (2,944 in BF2 and 369 in BF1). BF2 was randomly 

split into a training set (80%, n=658) and test set (20%, n=172). Throughout this work, the 

training dataset of BF2 was used for all exploratory work. The BF2 test dataset was used to 

evaluate findings, and BF1 was used for external validation. To find and assess appropriate 

reference proteins, their performance was evaluated in three logistic regression models. The 

first model predicted tau-PET (a well-established neuroimaging method to demonstrate 

fibrillary tau deposition in AD) positivity with CSF P-tau181 (P-tau181→TauPET). The 

second predicted Aβ-PET (a well-established neuroimaging method to demonstrate fibrillary 

amyloid deposition in AD) positivity with CSF Aβ42 (Aβ42→AβPET). The third predicted 

future conversion to AD dementia with CSF P-tau181 (P-tau181→ADDconv). The first two 

models were used to search for suitable reference proteins while the third was used for 

validation of reference proteins. A flowchart and details of the complete reference 

search/evaluation pipeline, together with all data splitting details and demographics, are 

presented in Fig. 1 and Tab. 1. 

 

Many CSF proteins vary in concordance with the mean CSF 

protein level  
We sorted the 2,944 standardized CSF protein concentrations according to their associations 

with the individual mean CSF protein level (Supplementary Fig. 1) and visualized the results 

in Fig. 2. Fig 2a indicates that, within a random subsample of individuals, there are several 

participants that systematically have high or low values across several hundred proteins. This 

phenomenon is evident across the full training dataset of 658 participants (Fig 2b), where nearly 

half of all proteins measured appear to show highly consistent individual variation. When 

removing proteins of low detectability, this pattern becomes even clearer (Supplementary Fig. 

2), emphasizing that most proteins that are highly expressed in CSF (and therefore likely to be  
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FIGURE 1: Flowchart of reference protein search and evaluation pipeline. BF2 was filtered by 
participants with CSF OLINK and CSF Aβ40 measurements (n=830). Thereafter, the dataset was split into 80% 
training (n=658) and 20% testing (n=172). During the exploratory phase, all BF2 training data was used. Next, the 
two models P-tau181→TauPET and Aβ42→AβPET were used to search for reference proteins in the protein search 
phase. The proposed candidates were evaluated in corresponding models for unseen test data, and in a new third 
model P-tau181→ADDconv on the training data. The findings were further validated in the independent cohort BF1 
(n=904) for the two models Aβ42→AβPET and P-tau181→ADDconv. The model P-tau181→TauPET was not 
evaluated in BF1 as baseline tau-PET data did not exist. Complete data refers to no missing values for any of the 
relevant variables and was a filtering step in all models. 

 

 

nominated in CSF biomarker studies) vary in concordance with the mean CSF protein level. 

The AD CSF biomarkers P-tau181 (β=0.34, P<1e-20) and Aβ42 (β=0.24, P<1e-10) were 

strongly associated with the mean CSF protein level (Fig. 2c). As expected, Aβ40 

(β=0.44, P<1e-37) showed a strong association with the mean CSF protein level (Fig. 2c). 

 To further understand potential underlying mechanisms of mean CSF protein level 

differences, we investigated the mean CSF protein level’s association with age, sex, education 

level, intracranial volume, gray matter volume and ventricular volume. In a multiple linear 

regression model, significant associations with a higher mean CSF protein level were found for 

higher age (β=0.544, P=4e-31), male sex (β=-0.159, P=2e-4), and lower ventricular volume 

(β=-0.321, P=5e-11), see Supplementary Tab. 1. Similar results were seen when evaluating Aβ-

negative cognitively normal participants only.  
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TABLE 1: Demographics for all data paths in Fig. 1. Details of all data used for exploration (yellow), protein 
search (green) and protein evaluation (blue) in concordance with the different data paths in Fig. 1. The regression 
models (gray) all include age, sex and individual reference, but differ by main predictor (italics) and outcome. The 
differences generated a variation in number of participants and demographics for each model, depending on the data 
available. Exploratory work was only performed on training data in BF2. In BF1, tau-PET data did not exist. 
Abbreviations: mini mental state examination (MMSE), positron emission tomography (PET), normal cognition 
(NC), subjective cognitive decline (SCD), mild cognitive impairment (MCI). 
 

 
BioFINDER-2 

(n=830*) 

BioFINDER-1 

(n=904*) 

Exploratory 

 BF2 train BF2 test BF1 

n 658 - - 

Age [years] 68.2 (12.0) - - 

Sex male (%) 351 (53.3%) - - 

Education [years] 12.4 (3.75) - - 

MMSE 26.3 (4.23) - - 

APOE ε4 carrier** 319/655 - - 

P-tau181→TauPET 

Predictors: CSF P-tau181, age, sex, individual reference 

Outcome: Tau-PET Braak I-IV > 1.36 

 
BF2 train 

positive 

BF2 train 

negative 

BF2 test 

positive 

BF2 test 

negative 

BF1  

positive 

BF1  

negative 

n 170 470 32 131 - - 

Age [years] 72.3 (8.20) 66.7 (12.7) 72.9 (8.69) 69.0 (10.7) - - 

Sex male (%) 85 (50%) 249 (53%) 14 (44%) 68 (52%) - - 

Education [years] 12.8 (4.48) 12.4 (3.51) 12.0 (4.47) 12.7 (3.57) - - 

MMSE 22.7 (5.05) 27.6 (2.96) 21.8 (5.29) 27.3 (3.31) - - 

APOE ε4 carrier** 123/169 183/469 26/32 55/131 - - 

CSF P-tau181 37.5 (16.5) 18.8 (8.09) 37.1 (19.9) 20.6 (13.3) - - 

Tau-PET Braak I-IV  2.08 (0.602) 1.15 (0.0990) 2.00 (0.562) 1.16 (0.0920) - - 

Aβ42→AβPET 

Predictors: CSF Aβ42, age, sex, individual reference 

Outcome: Amyloid-PET Centiloids > 20 

 
BF2 train 

positive 

BF2 train 

negative 

BF2 test 

positive 

BF2 test 

negative 

BF1  

positive 

BF1  

negative 

n 133 272  40 71 101 144 
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Age [years] 71.5 (8.53) 63.3 (14.5) 72.9 (6.91) 65.5 (11.8) 72.5 (4.90) 72.2 (5.82) 

Sex male (%) 66 (50%) 138 (51%) 16 (40%) 38 (55%) 54 (53%) 69 (48%) 

Education [years] 12.9 (4.43) 12.5 (3.43) 12.1 (3.88) 12.7 (3.04) 11.3 (3.26) 11.6 (3.35) 

MMSE 27.3 (2.35) 28.5 (1.77) 27.1 (2.26) 28.6 (1.59) 27.5 (1.63) 28.5 (1.54) 

APOE ε4 carrier** 98/133 89/272 30/40 24/71 71/101 34/142 

CSF Aβ42 [pgml] 972 (275) 1960 (737) 953 (300) 2030 (760) 743 (292) 1586 (625) 

Amyloid-PET 

[Centiloids] 
77.8 (32.1) -6.12 (7.64) 66.6 (30.9) -6.59 (7.42) 82.5 (33.6) 2.41 (8.33) 

P-tau181→ADDconv  

Predictors: CSF P-tau181, age, sex, individual reference  

Outcome: Conversion to AD dementia (if negative, stable cognition for at least 2 years) 

 
BF2 train 

positive 

BF2 train 

negative 

BF2 test 

positive 

BF2 test 

negative 

BF1  

positive 

BF1  

negative 

n 40 292 9 75 145 436 

Age [years] 71.7 (8.32) 63.6 (14.5) 73.4 (6.78) 66.2 (11.4) 72.8 (4.80) 71.8 (5.65) 

Sex male (%) 14 (40%) 148 (51%) 5 (56%) 34 (45%) 75 (52%) 182 (42%) 

Education [years] 14.1 (5.69) 12.5 (3.40) 12.4 (3.05) 12.7 (3.18) 11.4 (3.23) 12.2 (3.57) 

MMSE 26.8 (1.85) 28.8 (1.41) 26.2 (1.86) 29.0 (1.27) 27.1 (1.73) 28.9 (1.21) 

APOE ε4 carrier** 34/39 74/198 7/9 32/75 106/145 125/434 

CSF P-tau181 36.8 (13.6) 19.1 (8.34) 33.8 (6.61) 18.0 (9.33) 35.4 (15.2) 19.2 (7.44) 

NC  1 176 0 52 6 263 

SCD 2 93 1 15 35 124 

MCI 37 23 8 8 104 49 

Conversion time 

[years] 
1.88 (1.13) - 1.62 (1.05) - 3.31 (2.06) - 

 

 

A cluster with superior CSF reference protein qualities 
We next examined clustering of the CSF protein concentrations to identify proteins of similar 

characteristics. We used t-SNE dimensionality reduction34, applied to the high dimensional space of 

658 participants (Fig. 3a). As the algorithm optimizes to preserve similarity of pairwise points, 

proteins of short distance in Fig. 3a can be interpreted as similarly expressed. In Fig. 3c-3h, clustering 

characteristics of the t-SNE space are compared against several metrics relevant in search of reference 

proteins. A reference protein should be associated with the mean CSF protein level (Fig. 3c). The 

mean CSF protein level was highly associated with ventricular volume when adjusting for age and  
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FIGURE 2: Many CSF proteins vary in concordance with an individual protein level. For each 
participant (row), the standardized concentration of 2,944 CSF proteins, sorted by increasing absolute association 
with the mean CSF protein level (Supplementary Fig. 1), is displayed. Systematic blue horizontal lines can be seen 
for individuals with consistently low values across most proteins, and correspondingly red horizontal lines for 
individuals with high values across most proteins (all relative to the total sample). a) a subset of 50 randomly selected 
participants. b) all 658 participants sorted by mean CSF level. c) same as b) but also including biomarkers Aβ42 and 
P-tau181, which together with Aβ40 are marked out. The further right the protein is located, the more associated with 
the mean CSF level and therefore more strongly confounded by the mean CSF protein level when used as a biomarker. 

 

 

sex, suggesting that the mean CSF level is partly driven by dilution. Therefore, lower levels of 

optimal reference proteins could be associated with larger volume when adjusting for age and 

sex, suggesting that the mean CSF level is partly driven by dilution. Therefore, lower levels of 

optimal reference proteins could be associated with larger ventricular volumes (Fig. 3d). A 

potential reference protein for a given model predictor, that can perform better than simply 

using the mean CSF level of all proteins, should co-vary with the main predictor during normal 

physiology but not in disease. Therefore, an AD reference protein should likely have a high 

correlation with key biomarkers like P-tau181 and Aβ42 in cognitively unimpaired Aβ-negative 

participants, which are not considered to have the disease (Fig. 3e and 3f). Lastly, a well-

performing reference protein should improve the predictive performance of key biomarkers, 

which was evaluated by comparing results of i) using P-tau181 together with a potential 

reference protein to predict tau-PET outcome (P-tau181→TauPET) or ii) using Aβ42 together 

with a potential reference protein to predict Aβ-PET outcome (Aβ42→AβPET) (Fig. 3g and 

3h). 
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FIGURE 3: Dimensionality reduction reveals a cluster of CSF proteins with desired reference protein 
characteristics. T-distributed stochastic neighbor embedding (t-SNE), reducing the high dimensional space of 658 
participants to a two-dimensional one. Each scatter point illustrates one of the 2,944 CSF proteins, with relative 
similarity of pairwise proteins aimed to be preserved. In c)-h), min-max scaling for six different criteria has been 
performed to visualize relative differences within the space, all plots ranging between 0-1 (dark blue to yellow). In 
c)-f) associations are analyzed as absolute β-coefficients, all adjusted for age and sex. a) The raw t-SNE map. b) 
Semi-supervised K-means (K=20) clustering of t-SNE map, aiming to separate the evident clusters from t-SNE 
dimensionality reduction and areas of overlap in c)-h). t-SNE map colored by c) absolute association with mean CSF 
level; d) absolute association with ventricle volume; e) absolute association with biomarker CSF P-tau181 
(cognitively unimpaired Aβ-negative participants only); f) absolute association with biomarker CSF Aβ42 
(cognitively unimpaired Aβ-negative participants only); g) model performance when used as reference protein in P-
tau181→TauPET; h) model performance when used as reference protein in Aβ42→AβPET. 
 

 

 A semi-supervised K-means (K=20) clustering algorithm35 was utilized to divide the t-

SNE space and identify a subset of potential reference proteins. The supervision was performed 

by selecting K and the random initialization so that clear structural clusters were separated and 
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areas of overlap in Fig. 3c-3h could be examined in more detail. The resulting K-means 

clustering can be seen in Fig. 3b. The clustering was relatively well in line with the OLINK 

panel division (see Supplementary Fig. 3), where the area of interest was likely to not benefit a 

certain panel.  

 The AUC of each cluster in the two regression models P-tau181→TauPET and 

Aβ42→AβPET were evaluated in Fig. 4a and 4b. The AUCs without using an individual 

reference were 0.865 and 0.934 respectively. By analyzing the performance cluster-wise, we 

aimed to target protein expression characteristics rather than single findings and hence remove 

top performances biased by data. As seen in both Fig. 4a and 4b, and as expected from the 

overlapping areas in Fig. 3, cluster 11 (nproteins=219) stands out as the best performing cluster 

(mean AUC ± std: 0.896 ± 0.0187 and 0.947 ± 0.00698 for P-tau181→TauPET and 

Aβ42→AβPET respectively).  

We performed cell type expression and cellular component pathway enrichment 

analyses on cluster 11 to further investigate the characteristics of promising reference proteins 

from a biological perspective. Cluster 11 had high expression in mainly neuronal cells 

(Supplementary Fig. 4) but showed no significant expression difference compared to the other 

2,725 OLINK proteins, which was assessed with a bootstrap enrichment test. Cluster 11 was 

enriched on cell surfaces and membranes (Supplementary Fig. 5). 

 

Identification of general and biomarker-specific reference proteins 
To further validate single robust reference proteins, specific candidates from cluster 11 that 

resulted in top AUC scores for the two models P-tau181→TauPET and Aβ42→AβPET were 

identified (Fig. 4c and 4d). While this extensive dataset of 2,944 proteins allowed for great 

exploration possibilities, it also limited the validation opportunities in other cohorts. 

Additionally, some cohort-specific biases in our data were still expected, even after adding 

robustness by only looking at the subset of proteins from cluster 11. We hence did not expect 

small AUC differences between single proteins to be significant. Taking these factors into 

account, we selected three reference protein candidates in addition to Aβ40 (also in cluster 11), 

for further examination, based on the following selection criteria: 

1. The protein was in cluster 11. 

2. The inclusion of the protein led to an increased AUC score for both the P-

tau181→TauPET and Aβ42→AβPET model. 

3. The protein was measured in our independent validation cohort (BF1). 
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FIGURE 4: Cluster 11 stands out as superior when used as reference in models P-tau181→TauPET 
and Aβ42→AβPET. In a) and b) each error bar represents the cluster’s mean performance ± one standard 
deviation when the proteins of the cluster are used as a participant’s individual reference (one protein at a time, all 
proteins evaluated once, adjusting for age and sex). The dashed lines correspond to the models’ AUCs without using 
a reference (0.865 in a) and 0.934 in b)). Each cluster is colored as in Fig. 3b. For both models, cluster 11 stands out 
as the best performing cluster on average. In c) and d) every scatter point corresponds to the result when evaluating 
that protein as individual reference. Consequently, the top right corner contains proteins of most interest. Proteins in 
cluster 11, Aβ40 and three other reference protein candidates are highlighted. Note that c) and d) are identical apart 
from the highlighted markers. a) results for P-tau181→TauPET by cluster. b) results for Aβ42→AβPET by cluster. 
c) proteins NTRK3, NTRK2 and BLMH selected as general reference proteins, after enforcing the selection criteria. 
d) proteins CBLN4, PTPRN2 and PTPRS selected as P-tau181 specific reference proteins, as they improved P-
tau181→TauPET the most. All models were evaluated using 10-fold-cross-validation on the BF2 training dataset.  

 

 

The resulting three proteins, NTRK3, NTRK2 and BLMH, are marked out in Fig. 4c. See 

Supplementary Reference Candidates for a biological description of the three proteins and BF2 

data information further confirming the proteins’ potential as suitable references (e.g., high 

association with mean CSF level, small concentration differences between diagnostic groups, 
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high association with the main predictors and low model performance when used without a 

main predictor). 

We hypothesized that each main predictor may have one or several optimal reference 

candidates. An optimal reference is co-varying to a higher extent with the main predictor during 

normal physiology but not in disease. For Aβ42, a natural biomarker specific reference is Aβ40, 

as both are generated from the amyloid precursor protein (APP)33 and hence largely follow the 

same biological pathway. To further evaluate this concept of biomarker-specific reference 

proteins, we investigated the possibility of finding exceptionally high-performing references 

for CSF P-tau181. There is high relevance in identifying optimal references for CSF P-tau181, 

as there is no state-of-the-art way of normalizing this biomarker. Furthermore, as CSF P-tau181 

was more correlated with the mean CSF level than Aβ42, it may have more potential for 

improvement when adjusting for a reference protein. This idea was strengthened by the results 

shown in Fig. 4, where the AUC improvement was considerably larger for P-tau181→TauPET 

than Aβ42→AβPET when adjusting for a reference (max AUC improvement: 0.076 versus 

0.031, cluster 11 mean AUC improvement: 0.031 versus 0.013). We therefore identified the 

three proteins in cluster 11 that improved P-tau181→TauPET the most: CBLN4, PTPRN2 

and PTPRS in Fig. 4d. See Supplementary Reference Candidates for a biological description of 

the three proteins and BF2 data information further confirming the proteins’ potential as 

suitable references. 

 

Adjusting for reference proteins improves biomarker performance  
In accordance with the flowchart in Fig. 1, five combinations of models and datasets were 

evaluated. For all models, performance was compared between no reference and Aβ40, mean 

CSF level and the three general reference protein candidates NTRK3, NTRK2, BLMH as 

reference. Additionally, as the three candidates were highly correlated (Pearson correlation 

0.85-0.91, see Supplementary Fig. 6a), the first component of a singular value decomposition 

was also evaluated as a possible reference, created from the three candidates (SVD1). For all 

models using BF2 data, the P-tau181-specific reference protein candidates (CBLN4, PTPRN2 

and PTPRS, Pearson correlation 0.79-0.89, see Supplementary Fig. 6b) and their corresponding 

first component of a singular value decomposition (SVD2) were evaluated as well. 

 The two models P-tau181→TauPET and Aβ42→AβPET were retrained on the full 

BF2 training dataset and evaluated on the BF2 test dataset (Fig. 5a-5d and Supplementary Tab. 

2). For both models and all references, the performance significantly increased (AUC = 0.895-
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0.946 and 0.977-0.992, P<0.05, for P-tau181→TauPET and Aβ42→AβPET respectively) 

compared to no reference (AUCs = 0.828 and 0.966). Additionally, using a single reference 

protein or an SVD of three candidates (AUCs = 0.908-0.946 and 0.982-0.992) also 

outperformed using the mean CSF level as reference (AUCs = 0.895 and 0.977). For P-

tau181→TauPET, top performance was reached when adjusting for SVD2 (AUC = 0.946, 

P<0.01), closely followed by CBLN4 (AUC = 0.944, P<0.01). For Aβ42→AβPET, top 

performance was reached when adjusting for Aβ40 (AUC = 0.992, P<0.05).  

To validate the generalizability of the reference candidates, Aβ42→AβPET was applied 

in BF1 and the new model P-tau181→ADDconv was applied in both BF2 and BF1 (Fig. 5e-

5g and Supplementary Tab. 2). Note that measurements of CBLN4, PTPRN2 and PTPRS were 

not available in BF1. Again, using no reference consistently resulted in the lowest performance 

(AUCs = 0.866, 0.880 and 0.916 for P-tau181→ADDconv in BF2, P-tau181→ADDconv in 

BF1, and Aβ42→AβPET in BF1 respectively). For P-tau181→ADDconv in BF2 (Fig. 5e), no 

significant improvements were achieved, most likely due to the small sample size (npos=40, 

nneg=292). However, the same trends as in Fig. 5c were seen, where the proposed P-tau181-

specific reference candidates again achieved top performance, together with corresponding 

SVD2 (AUCs = 0.922-0.930). For the same model P-tau181→ADDconv in BF1 (Fig. 5f), the 

available data was larger (npos=145, nneg=436), and several significant improvements were 

achieved both compared to no reference and mean CSF level as reference, with NTRK3 

showing best performance (AUC = 0.935, P<0.01). For Aβ42→AβPET in BF1 (Fig. 5g), a 

significant improvement was only achieved with Aβ40 (AUC=0.970, P<0.05), which was 

clearly superior to all other tested references.  

 

Reference proteins explain discordance between CSF and PET tau 

positivity 
We investigated how adjusting for an individual reference protein affected concordance 

between AT(N) grouping for CSF P-tau181 and tau-PET (Fig. 6). For this analysis, all 

participants from the BF2 training dataset with tau-PET data were included (n=640). A-

grouping was performed with CSF Aβ42/Aβ40 (cutoff 0.0836). T-grouping was made using 1) 

no reference (Fig. 6a, CSF cutoff of P-tau181>21.8 pg/ml, as in e.g. Suárez-Calvet, M. et al18) 

and 2) the reference protein candidate CBLN4 (Fig. 6c, CSF cutoff of P-tau181 > 39.0 + 

10.1cCBLN4, adapted from a logistic regression model). In addition, the grouping methods were  
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FIGURE 5: Performance evaluation of all models with and without references. ROC curves in a) and 
b), and corresponding AUCs in c) and d), for the two models P-tau181→TauPET and Aβ42→AβPET, evaluated 
on the BF2 test dataset. AUCs for e) model P-tau181→ADDconv on the training dataset BF2, f) model P-
tau181→ADDconv on BF1 and g) model Aβ42→AβPET on BF1. No reference corresponds to the model without 
use of a reference protein, consistently outperformed by all tested references: Aβ40, mean CSF level, NTRK3, 
NTRK2, BLMH, SVD1, CBLN4, PTPRN2, PTPRS and SVD2. Quantitative details can be found in Supplementary 
Tab. 2. For visualization purposes, the ROC curves do not show all protein candidates but solely the corresponding 
SVDs. 
*P < 0.05, **P < 0.01 compared to the bar of same color as asterisk. 
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compared against 3) tau-PET grouping (Fig. 6b and Fig. 6d). The concordance between CSF 

and PET grouping increased both visually and quantitively when not requiring a cutoff based 

on CSF P-tau181 only, but also accounting for the reference protein. The accuracy increased 

from 76% to 89% (Fig. 6e). Particularly notable is that the A-T+ group was reduced from n=37 

to n=10 when using a reference protein. Among the ten CSF A-T+, most were close to the 

decision boundary of being A-T- and only one was classified as A-T+ by PET, indicating that 

this group could be even further reduced. 

Examples of how previously published research results of P-tau18118,19 were affected 

by this CSF AT(N) grouping improvement can be seen in Fig. 7a and Supplementary Results: 

Adjusting for a Reference in P-tau181 Applications. Fig. 7a and Supplementary Fig. 7-9 show 

how concentrations of sTREM2, sAXL and sTyro3 turned out to be substantially less 

differentiable between AT(N) groups when adjusting for a reference protein during grouping. 

These latter results were clearly more similar to results obtained when using PET (instead of 

CSF) to define AT(N) groups, indicating that the reported relations between AT(N) and these 

microglia-related proteins were strongly driven by the mean CSF protein level. Further 

examples of this effect can be seen in Supplementary Tab. 3 and 4, where correlations between 

P-tau181 and sTREM2, sAXL, sTyro3 and α-synuclein were clearly attenuated when adjusting 

for a reference protein. 

 

Reference proteins often attenuate CSF biomarker associations  
Examples of how other CSF proteins are affected by adjusting for a reference protein are seen 

in Fig. 7b-7c and Supplementary Results: Change in Results when Adjusting for Reference 

Proteins. In Fig 7b and Supplementary Fig. 10, partial correlations between ten established 

biomarkers from the NeuroToolKit assay panel proteins with and without adjusting for a 

reference are given. In general, correlations decreased when adjusting for a reference. This 

was seen most evidently for the cognitively unimpaired Aβ-negative participants and for 

proteins highly associated with the mean CSF level, such as CSF levels of sTREM2, YKL-40 

and tau. Additionally, examples of reference proteins’ impact on associations between certain 

CSF proteins and genetic variants are presented. This includes strengthened associations of 

apolipoprotein E (APOE) ε4 alleles with protein levels of ApoE4 and reduced/disappeared 

associations of trans-protein quantitative trait loci (pQTL) with genes from the GMNC-OSTN 

region (previously shown to be associated with variations in ventricular volume and suggested  
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FIGURE 6: Adjusting for an individual reference protein (here CBLN4) results in a better AT(N) 
grouping concordance between CSF P-tau181 and tau-PET. In a)-d), the x-axis is a participant’s CSF P-
tau181 concentrations, and the y-axis the suggested reference protein CBLN4. In a) and c), CSF P-tau181 and CSF 
Aβ42/Aβ40 (cutoff 0.08) has been used to group participants. In b) and d), a tau-PET composite corresponding to 
Braak I-IV with ROIs > 1.36 and CSF Aβ42/Aβ40 was used to group participants. To create a cutoff for CSF P-
tau181 (black line), the reference protein CBLN4 was adjusted for in c) and d) (cutoff: CSF P-tau181 > 39.0 + 
10.1cCBLN4) but not in a) and b) (cutoff: CSF P-tau181 > 21.8). The concordance between CSF P-tau181 and tau-
PET grouping increased when not requiring a vertical cutoff line but allowing for it to have a slope. In e) 
corresponding concordance matrices of PET and CSF with and without using a reference for CSF P-tau181 can be 
seen. The concordance increased from 76% to 89% when adjusting for the reference protein. Particularly notable is 
that the A-T+ group (which is pathophysiologically difficult to explain) was reduced from n=37 to n=10 when using 
a reference protein, again in higher concordance with grouping with PET.  
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to be linked to both CSF P-tau and several other CSF proteins14,37), Fig 7c and Supplementary 

Tab. 5-7. 

 

Discussion 
We establish the existence of individual mean CSF protein levels, which explain a considerable 

part of variation in CSF biomarkers. We conclude that many proteins are affected by individual 

mean CSF levels, including proteins relevant in AD, and may benefit from adjusting for this 

when used as biomarkers. We identify a robust subset of potential reference proteins (“cluster 

11”) from which we further characterize six specific reference protein candidates (NTRK3, 

NTRK2, BLMH, CBLN4, PTPRN2 and PTPRS) that can significantly improve the accuracy 

of key AD biomarkers. The results are validated on unseen test data and in an independent 

cohort. We also provide evidence that Aβ40 works well as a reference protein, not only for 

Aβ42, but for P-tau181 and other CSF biomarkers as well. Further, we show that several 

previously reported CSF biomarker classifications and associations were greatly diminished 

when adjusting for reference proteins. This implies that future studies should account for a 

reference protein to ensure that observed CSF biomarker relationships are not mainly driven by 

differences in mean CSF protein levels. Our work focuses on biomarkers in AD, but since the 

issue of mean CSF protein levels is not AD specific, this concept likely has broad relevance 

across all neurological and psychiatric conditions where CSF biomarkers are used. The 

existence of individual variation in mean CSF protein levels provides valuable insights on a 

CSF characteristic that must be acknowledged and further explored by the field of CSF 

biomarkers. When investigating potential biological mechanisms driving the mean CSF protein  

level differences, we found that an increased mean CSF protein level was seen in males and 

was strongly associated with higher age. This may be connected to other sex and age-related 

CSF dynamics, like differences in CSF pressure and CSF production and clearance rates. These 

dynamical differences have previously been observed in both human and animal studies.38–41 A 

reduced CSF production and clearance rate, as seen during aging, may for example contribute 

to longer accumulation time of CSF proteins, resulting in an increased individual mean CSF 

protein level. Additionally, as the mean CSF protein level was strongly associated with 

ventricular volume (but not intracranial volume) when adjusting for age and sex, we believe 

that CSF dilution is an important factor explaining why these individual differences exist. As 

CSF fills the ventricles, it is reasonable that the size of the ventricles affects the produced CSF 

volume independently of CSF protein secretion, leading to these CSF dilution differences. 
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FIGURE 7: Several CSF proteins are affected by adjusting for a reference protein. Further details of 
these results and extensive analyses on similar findings can be found in the Supplementary. a) During AT(N) 
grouping assessed by CSF, adjusting for a reference protein created a better concordance with PET when comparing 
concentration differences of CSF sTREM2. The significant findings from not using a reference protein during 
grouping most likely appeared due to mean CSF protein level differences between groups. This analysis included 
NC, SCD and MCI BF2 participants. P-values (adjusted for multiple comparisons) were assessed by a one-way 
ANCOVA adjusted for age and sex. b) Partial correlation matrices for ten NeuroToolKit proteins in BF2 cognitively 
unimpaired Aβ-negative participants with and without adjusting for a reference protein, always adjusting for age and 
sex. Proteins were sorted according to decreasing association with mean CSF level (see Supplementary Tab. 9). 
Almost all correlations were severely reduced when adjusting for a reference protein, most clearly seen for proteins 
highly associated with the mean CSF level (top rows). c) Results from protein quantitative trait loci (pQTL) analyses 
where associations between certain CSF proteins and genetic variants have been identified. Several CSF trans-pQTL 
associations of the GMNC-OSTN region showed severely weakened relationships when adjusting for a reference 
protein. For details, see Supplementary Results: CSF pQTL Analysis and Supplementary Tab. 7. These models 
included BF1 participants (n=1445) and were adjusted for age, sex, dementia diagnosis and ten genetic principal 
components. 

 

 

Supporting this hypothesis is that individuals with idiopathic normal pressure hydrocephalus 

(iNPH), characterized by an abnormal buildup of CSF resulting in enlarged ventricles, also 

show substantially low (diluted) CSF AD biomarker levels compared to healthy subjects.42  

 The results of our study challenge previously held notions of strong relationships 

between several CSF biomarkers in AD. We show that many of these correlations were mainly 
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driven by differences in mean CSF protein levels, as they did not remain robust when 

accounting for a reference protein. Associations were markedly reduced for P-tau181 versus 

microglia-related proteins (e.g. sTREM2 or TAM receptors [sAXL and sTYRO3]), astrocytic 

biomarker YKL-40 and the Parkinson’s disease-related biomarker α-synuclein, indicating that 

these biological processes/pathologies may not be as related to tau-pathology as both we and 

others have previously suggested.18,19,27–29  

Our findings provide important insight of how biased intercorrelations between CSF 

biomarkers and biomarker groups can appear when not accounting for non-disease related 

differences in mean CSF protein levels. Specifically highlighting this was how the use of a 

reference protein for P-tau181 in the AT(N) grouping context (Fig. 6e) showed that the A-T+ 

group (which is pathophysiologically difficult to explain15) was reduced from n=37 to n=10 

when using a reference protein. This result is more in line with studies using PET to classify 

individuals according to the AT(N) system.43 The characteristics of A-T+ is highly researched 

and discussed23–26,44–46. We show that this group largely consists of individuals with high overall 

mean CSF protein levels (rather than any specific disease marker), which may explain why 

many A-T+ individuals have high CSF concentrations of other proteins than P-tau18118,19,25. 

Other conclusions from results in the CSF-based A-T+ group, like hypotheses about tauopathy 

(T+) not affecting cognition 47, can be highly influenced by erroneous classification of 

individuals with high overall CSF levels into an A-T+ group. 

Throughout the evaluation, three general reference proteins (NTRK3, NTRK2 and 

BLMH) and Aβ40 were examined. For all P-tau181 associations, NTRK3, NTRK2 and Aβ40 

performed similarly, while BLMH performed slightly inferior. As reference to Aβ42, Aβ40 was 

superior. Aβ40 consistently provided improved accuracy and top performance when used as 

reference for P-tau181 as well, congruent with Guo et al.13 As Aβ40 is already often measured 

in CSF studies, the performance of Aβ40 as a reference can easily be further validated for other 

biomarkers and cohorts. Aβ40 could be a suitable first individual reference to adjust for when 

working with CSF AD biomarkers. 

 We hypothesized that each CSF biomarker might have one or several optimal reference 

proteins that co-vary highly with the main predictor during normal physiology but not in 

disease, in addition to representing an individual mean CSF protein level. This idea is 

strengthened by the fact that the top reference protein candidates showed high correlation with 

the main predictors in cognitively unimpaired Aβ-negative participants but were not predictive 

of the outcome when applied in models alone. Additionally, simply adjusting for the mean CSF 

level never resulted in best performance. For Aβ42, a reference that will outperform Aβ40 is 
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unlikely to emerge, as this peptide so closely follows the same biological pathway as Aβ42. 

Previous work has shown the benefit of adjusting Aβ42 levels with Aβ4031,32, and in extension, 

our results confirm that Aβ40 performed best as reference for Aβ42 when compared to other 

possible CSF references. For P-tau181, no such optimal reference has previously been 

suggested, but three possible candidates (CBLN4, PTPRN2 and PTPRS) were evaluated in this 

paper. The candidates performed best for two P-tau181 models, but these candidates were only 

evaluated in BF2 and did not significantly outperform other suggested candidates. Additionally, 

none of them are as obviously associated with P-tau181 in regards to biological pathway as 

Aβ40 is with Aβ42, which further decreases their probability of being optimal P-tau181 specific 

references. However, other factors could make CSF protein concentrations co-vary, such as 

cellular localization as well as protein size, charge, and solubility. The properties and 

generalizability of these candidates should be further examined before they can be claimed 

optimal or non-optimal reference proteins for P-tau181. 

As seen in Supplementary Reference Candidates, the six novel reference protein 

candidates (NTRK3, NTRK2, BLMH, CBLN4, PTPRN2 and PTPRS) all had higher 

association with the mean CSF protein level (partial correlations 0.62-0.80) than Aβ40 (partial 

correlation 0.48). Many of them were cell surface receptors and involved in cell survival and 

differentiation. Most had enhanced brain specificity, but low regional brain specificity. From 

their performance as reference proteins in BF2, we cannot conclude that these specific six 

candidates were significantly superior reference proteins. On the contrary, several proteins 

shared similar expression characteristics that were beneficial for a reference protein. We 

therefore presented a subset of many such proteins by using a data-driven approach to group 

them into the cluster referred to as “cluster 11”. From the cell type expression analysis, we 

found that cluster 11 was representative of the entire set of 2,944 proteins with majority of 

proteins highly expressed in neuronal cells. The proteins of cluster 11 were enriched on cell 

surfaces and membranes and are therefore probably constantly shedded into the CSF during 

normal physiology, which can explain why they maintain a relatively consistent concentration 

level representative of the mean CSF protein level.  

A potential limitation of the study was that we only had the possibility to validate parts 

of the results in an independent cohort. While being a key asset for the data driven approach in 

the BioFINDER-2 study, the extensive CSF measurements of 2,944 proteins also limited the 

validation possibilities of the findings. Other cohorts with such extensive CSF measurements 

are difficult to reproduce and access due to financial and technical constraints. Additionally, 

the biological and technical variability of the suggested reference protein candidates should be 
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further examined to ensure robustness of longitudinal measurements in participants. 

Nevertheless, this work supports the proof-of-principle that adjustment for inter-individual 

differences in mean CSF protein levels will likely be highly useful in future studies aiming to 

understand associations between different CSF proteins or using key CSF proteins as diagnostic 

or prognostic biomarkers. 

 

Conclusion 
We show that inter-individual differences in mean CSF protein levels confounds diagnostic and 

prognostic performance for several CSF biomarkers. These differences can also result in false 

conclusions regarding associations between different CSF proteins or their relations to genetic 

variations. The issue can be addressed by using certain CSF reference proteins to represent the 

non-disease related concentration of the protein studied. Aβ40 is one of several promising 

general reference proteins (not just for Aβ42) and may be a suitable reference option due to its 

frequent availability in AD cohorts. Accounting for a CSF reference protein in future studies 

may help ensure that reported correlations between CSF proteins are not mainly due to mean 

CSF protein level differences. Our novel reference protein method improves the accuracy of 

CSF biomarkers, and reduces the risk for false positive findings, with broad implications for 

both research and clinical practice. 

 

 

Methods 
Participants 
Two study cohorts were included: the Swedish BioFINDER-2 (BF2) cohort (enrollment from 

2017 and still enrolling, n=982, NCT03174938) and the Swedish BioFINDER-1 (BF1) cohort 

(enrollment between 2010 and 2015, n=1571, NCT01208675). All participants were recruited 

at Skåne University Hospital and the Hospital of Ängelholm, Sweden. BF2 and BF1 consisted 

of individuals with either normal cognition (NC), subjective cognitive decline (SCD), mild 

cognitive impairment (MCI), dementia or another neurodegenerative disease. Conversion to 

AD dementia was determined during follow-up based on the treating physician’s assessments.48 

Participants labeled as “non-converted” remained NC, SCD or MCI stable for at least two years. 

Further details about BF2 and BF1 can be found in 49 and 50 respectively, or at 

www.biofinder.se.  
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 Only BF2 participants with complete CSF measures of 2,944 proteins were included for 

analyses. No other exclusion criteria were implemented, but further filtering was later 

performed depending on the variables included in the statistical model. In BF1, the participants 

with complete CSF measures of 369 proteins were included in a similar manner.  

 

Ethics 
The studies were approved by the Swedish Ethical Review Authority, and all participants gave 

written informed consent to participate. 

 

CSF Collection and Analysis 
CSF samples were collected close in time after baseline examination (first visit) and handled 

according to established preanalytical protocols.49,51 CSF samples were analyzed with 

validated, highly sensitive and specific Proximity Extension Assay (PEA) developed by 

OLINK Proteomics (Uppsala, Sweden). For BF2, the full OLINK Explore 3072 library was 

used, resulting in eight Proseek Multiplex panels (Oncology I and II, Neurology I and II, 

Cardiometabolic I and II, Inflammation I and II) to measure the concentration of 2,943 CSF 

proteins. Each panel contained 367-369 proteins. For BF1, four panels (Neurology-exploratory, 

Neurology-I, Inflammation-I and Cardiovascular-III) were used to measure the concentration 

of 368 CSF proteins. Each panel contained 92 proteins. All 368 proteins from the BF1 panels 

were also included in the BF2 Explore 3072 panels. Protein concentrations were provided as 

log2 scale of Normalized Protein eXpression (NPX) values. High NPX values correspond to 

high protein concentrations. Details of OLINK quality control and protein detectability are 

included in Supplementary Methods. 

 CSF biomarkers from the NeuroToolKit assay panel (P-tau181, Aβ42, Aβ40, sTREM2, 

YKL-40, GFAP, neurogranin, T-tau, S100, alpha synuclein and NfL) were measured in both 

cohorts using Elecsys assays in accordance with the manufacturer’s instructions (Roche 

Diagnostics International Ltd).52 CSF analyses were performed by technicians blinded to all 

clinical and imaging data. CSF amyloid positivity was defined based on CSF Aβ42/Aβ40 that 

was dichotomized using the previously established cutoff of < 0.08.36 

 

PET imaging 
In both BF1 and BF2, amyloid-PET imaging was performed using [18F]flutemetamol. 

Standardized uptake value ratio (SUVR) images were created for the 90–110 min post-injection 
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interval with whole cerebellum as reference region. A global neocortical composite region 

(volume of interest) corresponding to a set of cortical regions was used to summarize 

[18F]flutemetamol data, as described in 43. SUVR values were transformed into centiloids. The 

composite was used as a dichotomous variable with centiloids >20 regarded as amyloid 

positivity.53 In BF2, tau-PET was correspondingly performed using [18F]RO948. SUVR images 

were created for the 70-90 min post-injection interval using the inferior cerebellar cortex as 

reference region. A composite corresponding to Braak I-IV regions54 was used to represent AD-

related tau pathology in the brain. The composite was used as a dichotomous variable with 

SUVR > 1.36 regarded as tau positivity.55 

 

Statistical Analysis  
All analyses were implemented using Python version 3.9 or R version 4.2. When searching for 

reference proteins, all exploratory evaluations were performed using 10-fold-cross-validation 

within the BF2 training dataset. When evaluating results on the BF2 test dataset, the models 

were first refit on the full training dataset and thereafter evaluated once on the test dataset. 

When evaluating results on the BF1 dataset or a new model on the BF2 training dataset, 

bootstrap-resampling with replacement (niter = 2,000) was performed such that a resampled 

training set of same size as the full dataset was created. Thereafter, a validation dataset was 

created from the participants that were never selected into the training set, which consequently 

varied in size between runs. This methodology was used to gain higher diversity between runs 

so that uncertainty estimations within a model could be performed with high reliability. 

All protein concentrations were z-scored to allow for comparisons between measures in 

different units. Standardization was performed within each cohort and always fitted to training 

data. For every participant, a mean CSF level was computed as the average z-score over all 

2,943 OLINK proteins + Aβ40 for BF2, and all 368 OLINK proteins + Aβ40 for BF1.  

For data exploration and visualization purposes, t-distributed stochastic neighbor embedding 

(t-SNE)34 was applied. t-SNE is formulated as a non-linear optimization problem, aimed to 

preserve relative similarity of pairwise points in a high dimensional space when projected to a 

lower one.34 The t-SNE results were combined with a semi-supervised K-means clustering35 

algorithm (K=20) to sufficiently create subsets of data. The supervised part was performed by 

adjusting K and the random initialization seed so that clear structural clusters were separated 

and areas with characteristics relevant to a reference protein were joined. This was not a unique 

nor mathematically optimized way of dividing the t-SNE space. It was solely used due to its 
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efficiency in this application as it enabled a more robust examination of subsets of similarly 

expressed proteins. To provide evidence that the results were not heavily dependent on the 

selection of K or random initialization, a robustness analysis is provided, see Supplementary 

Methods: K-means Robustness Analysis and Supplementary Fig. 11-13. Additionally, a 

sensitivity analysis when only using proteins with missing frequency <75% can be seen in 

Supplementary Methods: LOD Sensitivity Analysis and Supplementary Fig. 14-17, resulting in 

similar findings as when using all 2,944 proteins. 

To analyze associations with a continuous dependent variable, linear regression models 

were applied. In addition, partial correlation coefficients (Pearson) were computed to study 

correlation matrices between continuous variables. To predict a dichotomous variable, logistic 

regression models were applied. As dichotomous data for most models was unbalanced, 

receiver operating characteristic (ROC) curve and Area under the ROC curve (AUC) were used 

to evaluate performance. AUCs were compared with a one-tailed ROC test using bootstrapping 

(niter = 2,000). To compare AT(N)-groups, one-way ANCOVA was applied. P-values were 

adjusted for multiple comparisons by Benjamini–Hochberg method. All models were adjusted 

for age and sex. 

Main models  
To search for appropriate reference proteins, performance was evaluated in three logistic 

regression models. In each model, a well-established AD CSF biomarker (P-tau181 or Aβ42) 

was used as main predictor of either PET images or conversion to AD dementia. The three 

models were: 

1. P-tau181→TauPET. Predicting tau-PET positivity with CSF P-tau181 as main 

predictor. 

2. Aβ42→AβPET. Predicting Aβ-PET positivity with CSF Aβ42 as main predictor. 

3. P-tau181→ADDconv. Predicting conversion to AD dementia versus remained stable 

for at least 2 years with CSF P-tau181 as main predictor. 

The first two models were used to search for suitable reference proteins, the third was solely 

used for validation. The change in overall model performance when adjusting for different 

individual references was the measure of interest. A flowchart describing the pre-processing 

steps after split into training/test data for all models can be seen in Supplementary Fig. 18. 
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Cell type expression and pathway enrichment analyses 
To investigate properties of a cluster of proteins, we performed pathway enrichment and cell 

type expression analyses. For pathway enrichment, we used the WEB-based Gene SeT 

AnaLysis Toolkit (WebGestalt).56 We performed a human over-representation analysis (ORA) 

on cellular components, defining the background set as the 2943 OLINK proteins. For cell type 

expression, we used Seurat version 4.3.0 to analyze the open-access Human MTG 10x SEA-

AD Allen Brain data from 2022.57 This dataset includes single-nucleus transcriptomes from 

166,868 total nuclei derived from the middle temporal gyrus (MTG) from five post-mortem 

human brain specimens. We used the class and subclass annotation available from the Allen 

Institute and applied the function AverageExpression (after removing all “None” annotations). 

From the average expression we then calculated a percentage expression across all cell types. 

A bootstrap enrichment test (n=10,000) was used to compare significant (Benjamini–Hochberg 

corrected q-values <0.05) cell type expression differences between a subset of proteins and all 

other proteins. 

 

Data Availability  
Anonymized data can be shared to qualified academic researchers after request for the purpose 

of replicating procedures and results presented in the study. Data transfer must be performed in 

agreement with EU legislation regarding general data protection regulation and decisions by 

the Ethical Review Board of Sweden and Region Skåne. 

 

Code Availability  
Code for the analyses can be found in the following GIT repository: 

https://github.com/karlssonlinda/reference_protein_project. Python dependencies include 

NumPy58, pandas59, Matplotlib60, Scikit-learn61, Statsmodels62 and Pingouin63. R dependencies 

include Tidyverse64 and pROC65.  
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