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Abstract

Cerebrospinal fluid (CSF) biomarkers reflect brain pathophysiology and are used extensively
in translational research as well as in clinical practice for diagnosis of neurological diseases,
e.g., Alzheimer’s disease (AD). However, CSF biomarker concentrations may be influenced by
non-disease related mechanisms which vary between individuals, such as CSF production and
clearance rates. Here we use a data-driven approach to demonstrate the existence of inter-
individual variability in mean CSF protein levels. We show that these non-disease related
differences cause many commonly reported CSF biomarkers to be highly correlated, thereby
producing misleading results if not accounted for. To adjust for this inter-individual variability,
we identified and evaluated high-performing reference proteins which improved the diagnostic
accuracy of key CSF AD biomarkers. Our novel reference protein method attenuates the risk
for false positive findings, and improves the sensitivity and specificity of CSF biomarkers, with

broad implications for both research and clinical practice.
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Introduction

Neurodegenerative disorders and dementia are common and have increasing prevalence world-
wide.! The need for precise and reliable diagnostic techniques to identify, examine and monitor
these diseases is growing. One informative and cost-effective diagnostic technique is the
measurement of protein concentrations in cerebrospinal fluid (CSF), here referred to as CSF
biomarkers.>? In Alzheimer’s disease (AD), which is the most common neurodegenerative
disease, CSF biomarkers are used in clinical practice as diagnostic tools.? Neuropathologically,
AD is defined by the combined presence of amyloid(A)-f plaques and tau-neurofibrillary
tangles. CSF biomarkers related to these pathologies include AP42 and soluble
phosphorylated(P)-tau.* These CSF markers can substantially improve the diagnostic work-up
of the disease, which is becoming increasingly important due to recent development of effective
disease modifying-treatments for AD.>”’ However, the use of CSF biomarkers may be
complicated by inter-individual variability in certain physiological phenomena, such as rates of
CSF production, and rates of CSF clearance.®!° Such inter-individual differences could lead to
differences in mean CSF protein levels!!, which could impact the overall performance of CSF
biomarkers.!>"!* Hypothetically, adjustment for individual mean CSF protein levels could
optimize the performance of already efficient CSF biomarkers, reduce false positive findings
(by attenuating biomarker associations that are driven by the mean CSF protein level), and
increase the likelihood of making new biologically and clinically relevant discoveries.

In AD research and clinical practice, CSF AP42 and P-tau, together with a CSF
biomarker of neuronal injury (i.e., CSF total-tau or neurofilament light chain), can be used for
AT(N) (amyloid, tau, neurodegeneration) in vivo classification of AD pathology.!>!® This
system makes it possible to categorize a person as biomarker positive or negative, where low
CSF Ap42 levels indicate AP plaque pathology (“A”) and high CSF P-taul81 levels indicate
tau tangle pathology (“T”).1"2* AT(N) grouping is an effective way to differentiate individuals
without AD (A-/T-) from those with AD (A+T+). However, many studies have reported
findings in the group with isolated P-tau pathology (A-T+; i.e., both high AB42 and P-taul81),
which is more controversial.!>>*26 Tt is unclear if this A-T+ definition is biologically relevant
or mainly a result of inter-individual differences in mean CSF levels (leading to more
concentrated CSF in some individuals with higher levels of both AB42 and P-taul81).

Besides well-established CSF biomarkers used in clinical practice, CSF proteins are
often studied to understand underlying disease mechanisms in humans affected by AD or other

neurodegenerative diseases. In such studies, it has been suggested that CSF levels of many
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microglia-related proteins (like STREM2 or TAM receptors [SAXL and sTYRO3]) are strongly
correlated with CSF P-taul81 and increased not only in A+T+ individuals, but also in A-T+
individuals, linking these neuroinflammatory changes more to P-tau pathology than Ap.!%!° In
addition, other CSF markers have been seen to correlate with CSF P-taul81 levels. For
example, we and others have reported that the astrocytic biomarker YKL-40 and the
Parkinson’s disease-related biomarker a-synuclein are strongly associated with P-taul81 in
CSF, which was interpreted as that these brain pathological changes co-vary.2’-%° It is unclear
whether such findings are mainly driven by inter-individual differences in mean CSF protein
levels, or remain robust when accounting for this property. Moreover, the impact of mean CSF
levels might also be of importance in proteomic studies, when identifying subpopulations with
different CSF expression profiles®®, or in genome-wide protein quantitative trait loci (pQTL)
studies, looking at associations between genetic variants and protein levels.'*

One striking example that highlights the potential of adjusting for processes related to
CSF dynamics in the context of AD CSF biomarkers exists. CSF AB42 shows improved
concordance with amyloid positron emission tomography (PET, a well-established
neuroimaging method to make aggregated brain amyloid in AD visible) when normalized for
CSF AB40 levels, where the latter is not affected by the disease process.>!*? AB40 is closely
linked to AB42 since both peptides come from the same proteolytic pathway*3, but Ap40 may
also partly represent an individual’s mean CSF protein level and could potentially improve
performance of other biomarkers as well. This idea has been tested for CSF P-taul81, where
the results suggested that the diagnostic accuracy improved when adjusting for inter-individual
differences in CSF AB40 levels.!? In order to examine AB40’s generalizability as a reference
protein, it needs to be further evaluated. In addition to AB40, other efficient CSF reference
proteins may exist that can improve the clinical performance of key CSF biomarkers.

Consequently, our overarching aim was to establish the concept of inter-individual
differences in mean CSF protein levels, and to search for optimal reference protein candidates
that could be used to account for this CSF dynamic in a robust way. We analyzed 2,944 CSF
proteins (including CSF AB40) from 830 participants in a data-driven manner. We hypothesized
that adjusting for certain reference proteins could improve the diagnostic accuracy of AD CSF
biomarkers, and we evaluated this across a range of outcome measures, biomarkers, and AD
cohorts. We also hypothesized that several previously reported CSF biomarker findings would
be altered or attenuated when biomarkers were normalized to reference proteins. Specifically,

we studied whether several strong and recognized correlations of CSF protein concentrations
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remained robust when normalizing to the identified reference proteins, both in relation to each

other and to genetic variants.

Results

The study included 830 participants from the Swedish BioFINDER-2 (BF2) cohort and 904
participants from Swedish BioFINDER-1 BF1 cohort, all with complete OLINK CSF protein
and CSF AB40 concentration measures (2,944 in BF2 and 369 in BF1). BF2 was randomly
split into a training set (80%, n=658) and test set (20%, n=172). Throughout this work, the
training dataset of BF2 was used for all exploratory work. The BF2 test dataset was used to
evaluate findings, and BF1 was used for external validation. To find and assess appropriate
reference proteins, their performance was evaluated in three logistic regression models. The
first model predicted tau-PET (a well-established neuroimaging method to demonstrate
fibrillary tau deposition in AD) positivity with CSF P-taul81 (P-taul81—TauPET). The
second predicted AB-PET (a well-established neuroimaging method to demonstrate fibrillary
amyloid deposition in AD) positivity with CSF AB42 (AB42—ABPET). The third predicted
future conversion to AD dementia with CSF P-taul81 (P-taul81—ADDconv). The first two
models were used to search for suitable reference proteins while the third was used for
validation of reference proteins. A flowchart and details of the complete reference
search/evaluation pipeline, together with all data splitting details and demographics, are

presented in Fig. 1 and Tab. 1.

Many CSF proteins vary in concordance with the mean CSF

protein level

We sorted the 2,944 standardized CSF protein concentrations according to their associations
with the individual mean CSF protein level (Supplementary Fig. 1) and visualized the results
in Fig. 2. Fig 2a indicates that, within a random subsample of individuals, there are several
participants that systematically have high or low values across several hundred proteins. This
phenomenon is evident across the full training dataset of 658 participants (Fig 2b), where nearly
half of all proteins measured appear to show highly consistent individual variation. When
removing proteins of low detectability, this pattern becomes even clearer (Supplementary Fig.

2), emphasizing that most proteins that are highly expressed in CSF (and therefore likely to be
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FIGURE 1: Flowchart of reference protein search and evaluation pipeline. BF2 was filtered by
participants with CSF OLINK and CSF AB40 measurements (n=830). Thereafter, the dataset was split into 80%
training (n=658) and 20% testing (n=172). During the exploratory phase, all BF2 training data was used. Next, the
two models P-taul81—TauPET and Ap42—ABPET were used to search for reference proteins in the protein search
phase. The proposed candidates were evaluated in corresponding models for unseen test data, and in a new third
model P-taul81—ADDconv on the training data. The findings were further validated in the independent cohort BF1
(n=904) for the two models Ap42—APPET and P-taul81—ADDconv. The model P-taul81—TauPET was not
evaluated in BF1 as baseline tau-PET data did not exist. Complete data refers to no missing values for any of the
relevant variables and was a filtering step in all models.

nominated in CSF biomarker studies) vary in concordance with the mean CSF protein level.
The AD CSF biomarkers P-taul81 (f=0.34, P<le-20) and AP42 (B=0.24, P<le-10) were
strongly associated with the mean CSF protein level (Fig. 2c). As expected, AP40
(B=0.44, P<le-37) showed a strong association with the mean CSF protein level (Fig. 2c).

To further understand potential underlying mechanisms of mean CSF protein level
differences, we investigated the mean CSF protein level’s association with age, sex, education
level, intracranial volume, gray matter volume and ventricular volume. In a multiple linear
regression model, significant associations with a higher mean CSF protein level were found for
higher age (B=0.544, P=4e-31), male sex (=-0.159, P=2e-4), and lower ventricular volume
(B=-0.321, P=5e-11), see Supplementary Tab. 1. Similar results were seen when evaluating A-

negative cognitively normal participants only.
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TABLE 1: Demographics for all data paths in Fig. 1. Details of all data used for exploration (yellow), protein
search (green) and protein evaluation (blue) in concordance with the different data paths in Fig. 1. The regression
models (gray) all include age, sex and individual reference, but differ by main predictor (italics) and outcome. The
differences generated a variation in number of participants and demographics for each model, depending on the data
available. Exploratory work was only performed on training data in BF2. In BF1, tau-PET data did not exist.
Abbreviations: mini mental state examination (MMSE), positron emission tomography (PET), normal cognition
(NC), subjective cognitive decline (SCD), mild cognitive impairment (MCI).

BioFINDER-2

BioFINDER-1

(n=830%*) (n=904*)
Exploratory
BF2 train BF2 test BF1
n 658 -
Age [years] 68.2 (12.0) -

Sex male (%)

351 (53.3%)

Education [years] 12.4 (3.75) -
MMSE 26.3 (4.23) -
APOE €4 carrier** 319/655 -

P-taul81 ->TauPET

Predictors: CSF P-taul81, age, sex, individual reference

Outcome: Tau-PET Braak I[-IV > 1.36

BF2 train BF2 train BF2 test BF2 test BF1 BF1
positive negative positive negative positive negative
n 170 470 32 131 - -
Age [years] 72.3 (8.20) 66.7 (12.7) 72.9 (8.69) 69.0 (10.7) - -
Sex male (%) 85 (50%) 249 (53%) 14 (44%) 68 (52%) - -
Education [years] 12.8 (4.48) 12.4 (3.51) 12.0 (4.47) 12.7 (3.57) - -
MMSE 22.7 (5.05) 27.6 (2.96) 21.8(5.29) 27.3 (3.31) - -
APOE ¢4 carrier** 123/169 183/469 26/32 55/131 - -
CSF P-taul81 37.5(16.5) 18.8 (8.09) 37.1(19.9) 20.6 (13.3) - -
Tau-PET Braak I-IV | 2.08 (0.602) | 1.15(0.0990) | 2.00 (0.562) | 1.16 (0.0920) - -
AB42—ABPET
Predictors: CSF 442, age, sex, individual reference
Outcome: Amyloid-PET Centiloids > 20
BF2 train BF2 train BF2 test BF2 test BF1 BF1
positive negative positive negative positive negative
n 133 272 40 71 101 144
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Age [years] 71.5 (8.53) 63.3 (14.5) 72.9 (6.91) 65.5 (11.8) 72.5 (4.90) 72.2 (5.82)
Sex male (%) 66 (50%) 138 (51%) 16 (40%) 38 (55%) 54 (53%) 69 (48%)
Education [years] 12.9 (4.43) 12.5 (3.43) 12.1 (3.88) 12.7 (3.04) 11.3 (3.26) 11.6 (3.35)
MMSE 27.3 (2.35) 28.5 (1.77) 27.1(2.26) 28.6 (1.59) 27.5 (1.63) 28.5 (1.54)
APOE &4 carrier** 98/133 89/272 30/40 24/71 71/101 34/142
CSF APB42 [pgml] 972 (275) 1960 (737) 953 (300) 2030 (760) 743 (292) 1586 (625)
Amyloid-PET
[Centiloids| 77.8 (32.1) -6.12 (7.64) 66.6 (30.9) -6.59 (7.42) 82.5(33.6) 2.41 (8.33)
P-taul81—->ADDconv
Predictors: CSF P-taul81, age, sex, individual reference
Outcome: Conversion to AD dementia (if negative, stable cognition for at least 2 years)
BF2 train BF2 train BF2 test BF2 test BF1 BF1
positive negative positive negative positive negative
n 40 292 9 75 145 436
Age [years] 71.7 (8.32) 63.6 (14.5) 73.4 (6.78) 66.2 (11.4) 72.8 (4.80) 71.8 (5.65)
Sex male (%) 14 (40%) 148 (51%) 5 (56%) 34 (45%) 75 (52%) 182 (42%)
Education [years] 14.1 (5.69) 12.5 (3.40) 12.4 (3.05) 12.7 (3.18) 11.4 (3.23) 12.2 (3.57)
MMSE 26.8 (1.85) 28.8 (1.41) 26.2 (1.86) 29.0 (1.27) 27.1 (1.73) 28.9 (1.21)
APOE ¢4 carrier** 34/39 74/198 7/9 32/75 106/145 125/434
CSF P-taul81 36.8 (13.6) 19.1 (8.34) 33.8(6.61) 18.0 (9.33) 354 (15.2) 19.2 (7.44)
NC 1 176 0 52 6 263
SCD 2 93 1 15 35 124
MCI 37 23 8 8 104 49
Conversion time
[years] 1.88 (1.13) - 1.62 (1.05) - 3.31 (2.06) -

A cluster with superior CSF reference protein qualities

We next examined clustering of the CSF protein concentrations to identify proteins of similar
characteristics. We used t-SNE dimensionality reduction®*, applied to the high dimensional space of
658 participants (Fig. 3a). As the algorithm optimizes to preserve similarity of pairwise points,
proteins of short distance in Fig. 3a can be interpreted as similarly expressed. In Fig. 3¢-3h, clustering
characteristics of the t-SNE space are compared against several metrics relevant in search of reference
proteins. A reference protein should be associated with the mean CSF protein level (Fig. 3c). The

mean CSF protein level was highly associated with ventricular volume when adjusting for age and
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FIGURE 2: Many CSF proteins vary in concordance with an individual protein level. For each
participant (row), the standardized concentration of 2,944 CSF proteins, sorted by increasing absolute association
with the mean CSF protein level (Supplementary Fig. 1), is displayed. Systematic blue horizontal lines can be seen
for individuals with consistently low values across most proteins, and correspondingly red horizontal lines for
individuals with high values across most proteins (all relative to the total sample). a) a subset of 50 randomly selected
participants. b) all 658 participants sorted by mean CSF level. ¢) same as b) but also including biomarkers Ap42 and
P-taul81, which together with AB40 are marked out. The further right the protein is located, the more associated with
the mean CSF level and therefore more strongly confounded by the mean CSF protein level when used as a biomarker.

sex, suggesting that the mean CSF level is partly driven by dilution. Therefore, lower levels of
optimal reference proteins could be associated with larger volume when adjusting for age and
sex, suggesting that the mean CSF level is partly driven by dilution. Therefore, lower levels of
optimal reference proteins could be associated with larger ventricular volumes (Fig. 3d). A
potential reference protein for a given model predictor, that can perform better than simply
using the mean CSF level of all proteins, should co-vary with the main predictor during normal
physiology but not in disease. Therefore, an AD reference protein should likely have a high
correlation with key biomarkers like P-taul81 and AB42 in cognitively unimpaired AB-negative
participants, which are not considered to have the disease (Fig. 3e and 3f). Lastly, a well-
performing reference protein should improve the predictive performance of key biomarkers,
which was evaluated by comparing results of i) using P-taul81 together with a potential
reference protein to predict tau-PET outcome (P-taul81—TauPET) or ii) using AB42 together
with a potential reference protein to predict AB-PET outcome (AB42—ABPET) (Fig. 3g and
3h).
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FIGURE 3: Dimensionality reduction reveals a cluster of CSF proteins with desired reference protein
characteristics. T-distributed stochastic neighbor embedding (t-SNE), reducing the high dimensional space of 658
participants to a two-dimensional one. Each scatter point illustrates one of the 2,944 CSF proteins, with relative
similarity of pairwise proteins aimed to be preserved. In c)-h), min-max scaling for six different criteria has been
performed to visualize relative differences within the space, all plots ranging between 0-1 (dark blue to yellow). In
c¢)-f) associations are analyzed as absolute B-coefficients, all adjusted for age and sex. a) The raw t-SNE map. b)
Semi-supervised K-means (K=20) clustering of t-SNE map, aiming to separate the evident clusters from t-SNE
dimensionality reduction and areas of overlap in c)-h). t-SNE map colored by c¢) absolute association with mean CSF
level; d) absolute association with ventricle volume; e) absolute association with biomarker CSF P-taul81
(cognitively unimpaired Af-negative participants only); f) absolute association with biomarker CSF Ap42
(cognitively unimpaired AB-negative participants only); g) model performance when used as reference protein in P-
taul81—TauPET; h) model performance when used as reference protein in Ap42—ABPET.

A semi-supervised K-means (K=20) clustering algorithm® was utilized to divide the t-
SNE space and identify a subset of potential reference proteins. The supervision was performed

by selecting K and the random initialization so that clear structural clusters were separated and
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areas of overlap in Fig. 3c-3h could be examined in more detail. The resulting K-means
clustering can be seen in Fig. 3b. The clustering was relatively well in line with the OLINK
panel division (see Supplementary Fig. 3), where the area of interest was likely to not benefit a
certain panel.

The AUC of each cluster in the two regression models P-taul81—TauPET and
AP42—ABPET were evaluated in Fig. 4a and 4b. The AUCs without using an individual
reference were 0.865 and 0.934 respectively. By analyzing the performance cluster-wise, we
aimed to target protein expression characteristics rather than single findings and hence remove
top performances biased by data. As seen in both Fig. 4a and 4b, and as expected from the
overlapping areas in Fig. 3, cluster 11 (nproteins=219) stands out as the best performing cluster
(mean AUC =+ std: 0.896 +£0.0187 and 0.947 + 0.00698 for P-taul81—TauPET and
AP42—ABPET respectively).

We performed cell type expression and cellular component pathway enrichment
analyses on cluster 11 to further investigate the characteristics of promising reference proteins
from a biological perspective. Cluster 11 had high expression in mainly neuronal cells
(Supplementary Fig. 4) but showed no significant expression difference compared to the other
2,725 OLINK proteins, which was assessed with a bootstrap enrichment test. Cluster 11 was

enriched on cell surfaces and membranes (Supplementary Fig. 5).

Identification of general and biomarker-specific reference proteins

To further validate single robust reference proteins, specific candidates from cluster 11 that
resulted in top AUC scores for the two models P-taul81—TauPET and Ap42—ABPET were
identified (Fig. 4c and 4d). While this extensive dataset of 2,944 proteins allowed for great
exploration possibilities, it also limited the validation opportunities in other cohorts.
Additionally, some cohort-specific biases in our data were still expected, even after adding
robustness by only looking at the subset of proteins from cluster 11. We hence did not expect
small AUC differences between single proteins to be significant. Taking these factors into
account, we selected three reference protein candidates in addition to AB40 (also in cluster 11),
for further examination, based on the following selection criteria:

1. The protein was in cluster 11.

2. The inclusion of the protein led to an increased AUC score for both the P-

taul81—>TauPET and Ap42—ABPET model.

3. The protein was measured in our independent validation cohort (BF1).
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FIGURE 4: Cluster 11 stands out as superior when used as reference in models P-taul81 —-TauPET
and AP42—APBPET. In a) and b) each error bar represents the cluster’s mean performance + one standard
deviation when the proteins of the cluster are used as a participant’s individual reference (one protein at a time, all
proteins evaluated once, adjusting for age and sex). The dashed lines correspond to the models’ AUCs without using
areference (0.865 in a) and 0.934 in b)). Each cluster is colored as in Fig. 3b. For both models, cluster 11 stands out
as the best performing cluster on average. In ¢) and d) every scatter point corresponds to the result when evaluating
that protein as individual reference. Consequently, the top right corner contains proteins of most interest. Proteins in
cluster 11, Ap40 and three other reference protein candidates are highlighted. Note that ¢) and d) are identical apart
from the highlighted markers. a) results for P-taul81—TauPET by cluster. b) results for AB42—ABPET by cluster.
¢) proteins NTRK3, NTRK2 and BLMH selected as general reference proteins, after enforcing the selection criteria.
d) proteins CBLN4, PTPRN2 and PTPRS selected as P-taul81 specific reference proteins, as they improved P-
taul81—TauPET the most. All models were evaluated using 10-fold-cross-validation on the BF2 training dataset.

The resulting three proteins, NTRK3, NTRK2 and BLMH, are marked out in Fig. 4c. See
Supplementary Reference Candidates for a biological description of the three proteins and BF2
data information further confirming the proteins’ potential as suitable references (e.g., high

association with mean CSF level, small concentration differences between diagnostic groups,
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high association with the main predictors and low model performance when used without a
main predictor).

We hypothesized that each main predictor may have one or several optimal reference
candidates. An optimal reference is co-varying to a higher extent with the main predictor during
normal physiology but not in disease. For AB42, a natural biomarker specific reference is Ap40,
as both are generated from the amyloid precursor protein (APP)* and hence largely follow the
same biological pathway. To further evaluate this concept of biomarker-specific reference
proteins, we investigated the possibility of finding exceptionally high-performing references
for CSF P-taul81. There is high relevance in identifying optimal references for CSF P-taul81,
as there is no state-of-the-art way of normalizing this biomarker. Furthermore, as CSF P-taul81
was more correlated with the mean CSF level than AB42, it may have more potential for
improvement when adjusting for a reference protein. This idea was strengthened by the results
shown in Fig. 4, where the AUC improvement was considerably larger for P-taul81—TauPET
than AB42—APPET when adjusting for a reference (max AUC improvement: 0.076 versus
0.031, cluster 11 mean AUC improvement: 0.031 versus 0.013). We therefore identified the
three proteins in cluster 11 that improved P-taul81—TauPET the most: CBLN4, PTPRN2
and PTPRS in Fig. 4d. See Supplementary Reference Candidates for a biological description of
the three proteins and BF2 data information further confirming the proteins’ potential as

suitable references.

Adjusting for reference proteins improves biomarker performance

In accordance with the flowchart in Fig. 1, five combinations of models and datasets were
evaluated. For all models, performance was compared between no reference and AB40, mean
CSF level and the three general reference protein candidates NTRK3, NTRK2, BLMH as
reference. Additionally, as the three candidates were highly correlated (Pearson correlation
0.85-0.91, see Supplementary Fig. 6a), the first component of a singular value decomposition
was also evaluated as a possible reference, created from the three candidates (SVD1). For all
models using BF2 data, the P-taul81-specific reference protein candidates (CBLN4, PTPRN2
and PTPRS, Pearson correlation 0.79-0.89, see Supplementary Fig. 6b) and their corresponding
first component of a singular value decomposition (SVD2) were evaluated as well.

The two models P-taul81—->TauPET and Ap42—ABPET were retrained on the full
BF?2 training dataset and evaluated on the BF2 test dataset (Fig. 5a-5d and Supplementary Tab.

2). For both models and all references, the performance significantly increased (AUC = 0.895-
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0.946 and 0.977-0.992, P<0.05, for P-taul81—>TauPET and AB42—ABPET respectively)
compared to no reference (AUCs = 0.828 and 0.966). Additionally, using a single reference
protein or an SVD of three candidates (AUCs = 0.908-0.946 and 0.982-0.992) also
outperformed using the mean CSF level as reference (AUCs = 0.895 and 0.977). For P-
taul81—TauPET, top performance was reached when adjusting for SVD2 (AUC = 0.946,
P<0.01), closely followed by CBLN4 (AUC = 0.944, P<0.01). For Ap42—ABPET, top
performance was reached when adjusting for AB40 (AUC = 0.992, P<0.05).

To validate the generalizability of the reference candidates, AB42—ABPET was applied
in BF1 and the new model P-taul81—ADDconv was applied in both BF2 and BF1 (Fig. Se-
5g and Supplementary Tab. 2). Note that measurements of CBLN4, PTPRN2 and PTPRS were
not available in BF1. Again, using no reference consistently resulted in the lowest performance
(AUCs = 0.866, 0.880 and 0.916 for P-taul81—-ADDconv in BF2, P-taul8§1—-ADDconv in
BF1, and Ap42—ABPET in BF1 respectively). For P-taul81—ADDconv in BF2 (Fig. 5e), no
significant improvements were achieved, most likely due to the small sample size (npos=40,
Nnee=292). However, the same trends as in Fig. 5S¢ were seen, where the proposed P-taul81-
specific reference candidates again achieved top performance, together with corresponding
SVD2 (AUCs = 0.922-0.930). For the same model P-taul81—-ADDconv in BF1 (Fig. 5f), the
available data was larger (npos=145, nneg=436), and several significant improvements were
achieved both compared to no reference and mean CSF level as reference, with NTRK3
showing best performance (AUC = 0.935, P<0.01). For AB42—ABPET in BF1 (Fig. 5g), a
significant improvement was only achieved with AB40 (AUC=0.970, P<0.05), which was

clearly superior to all other tested references.

Reference proteins explain discordance between CSF and PET tau
positivity

We investigated how adjusting for an individual reference protein affected concordance
between AT(N) grouping for CSF P-taul81 and tau-PET (Fig. 6). For this analysis, all
participants from the BF2 training dataset with tau-PET data were included (n=640). A-
grouping was performed with CSF AB42/AB40 (cutoff 0.083¢). T-grouping was made using 1)
no reference (Fig. 6a, CSF cutoff of P-taul81>21.8 pg/ml, as in e.g. Suarez-Calvet, M. et al'®)
and 2) the reference protein candidate CBLN4 (Fig. 6¢, CSF cutoff of P-taul81 > 39.0 +

10.1ccBng, adapted from a logistic regression model). In addition, the grouping methods were
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FIGURE 5: Performance evaluation of all models with and without references. ROC curves in a) and
b), and corresponding AUCs in ¢) and d), for the two models P-taul81—TauPET and AB42—ABPET, evaluated
on the BF2 test dataset. AUCs for e) model P-taul81—ADDconv on the training dataset BF2, f) model P-
taul81—ADDconv on BF1 and g) model AB42—ABPET on BF1. No reference corresponds to the model without
use of a reference protein, consistently outperformed by all tested references: AP40, mean CSF level, NTRK3,
NTRK2, BLMH, SVD1, CBLN4, PTPRN2, PTPRS and SVD2. Quantitative details can be found in Supplementary
Tab. 2. For visualization purposes, the ROC curves do not show all protein candidates but solely the corresponding
SVDs.

*P <0.05, **P < 0.01 compared to the bar of same color as asterisk.


https://doi.org/10.1101/2023.06.08.544222
http://creativecommons.org/licenses/by-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.08.544222; this version posted June 9, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-ND 4.0 International license.

compared against 3) tau-PET grouping (Fig. 6b and Fig. 6d). The concordance between CSF
and PET grouping increased both visually and quantitively when not requiring a cutoff based
on CSF P-taul81 only, but also accounting for the reference protein. The accuracy increased
from 76% to 89% (Fig. 6¢). Particularly notable is that the A-T+ group was reduced from n=37
to n=10 when using a reference protein. Among the ten CSF A-T+, most were close to the
decision boundary of being A-T- and only one was classified as A-T+ by PET, indicating that
this group could be even further reduced.

Examples of how previously published research results of P-taul81!%!° were affected
by this CSF AT(N) grouping improvement can be seen in Fig. 7a and Supplementary Results:
Adjusting for a Reference in P-taul81 Applications. Fig. 7a and Supplementary Fig. 7-9 show
how concentrations of sTREM2, sAXL and sTyro3 turned out to be substantially less
differentiable between AT(N) groups when adjusting for a reference protein during grouping.
These latter results were clearly more similar to results obtained when using PET (instead of
CSF) to define AT(N) groups, indicating that the reported relations between AT(N) and these
microglia-related proteins were strongly driven by the mean CSF protein level. Further
examples of this effect can be seen in Supplementary Tab. 3 and 4, where correlations between
P-taul81 and sTREM2, sAXL, sTyro3 and a-synuclein were clearly attenuated when adjusting

for a reference protein.

Reference proteins often attenuate CSF biomarker associations

Examples of how other CSF proteins are affected by adjusting for a reference protein are seen
in Fig. 7b-7c and Supplementary Results: Change in Results when Adjusting for Reference
Proteins. In Fig 7b and Supplementary Fig. 10, partial correlations between ten established
biomarkers from the NeuroToolKit assay panel proteins with and without adjusting for a
reference are given. In general, correlations decreased when adjusting for a reference. This
was seen most evidently for the cognitively unimpaired AB-negative participants and for
proteins highly associated with the mean CSF level, such as CSF levels of sSTREM2, YKL-40
and tau. Additionally, examples of reference proteins’ impact on associations between certain
CSF proteins and genetic variants are presented. This includes strengthened associations of
apolipoprotein E (APOE) €4 alleles with protein levels of ApoE4 and reduced/disappeared
associations of trans-protein quantitative trait loci (pQTL) with genes from the GMNC-OSTN

region (previously shown to be associated with variations in ventricular volume and suggested
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FIGURE 6: Adjusting for an individual reference protein (here CBLN4) results in a better AT(N)
grouping concordance between CSF P-taul81 and tau-PET. In a)-d), the x-axis is a participant’s CSF P-
taul81 concentrations, and the y-axis the suggested reference protein CBLN4. In a) and ¢), CSF P-taul81 and CSF
AP42/AB40 (cutoff 0.08) has been used to group participants. In b) and d), a tau-PET composite corresponding to
Braak I-IV with ROIs > 1.36 and CSF AB42/AB40 was used to group participants. To create a cutoff for CSF P-
taul81 (black line), the reference protein CBLN4 was adjusted for in ¢) and d) (cutoff: CSF P-taul81 > 39.0 +
10.1ccprng) but not in a) and b) (cutoff: CSF P-taul81 > 21.8). The concordance between CSF P-taul81 and tau-
PET grouping increased when not requiring a vertical cutoff line but allowing for it to have a slope. In e)
corresponding concordance matrices of PET and CSF with and without using a reference for CSF P-taul81 can be
seen. The concordance increased from 76% to 89% when adjusting for the reference protein. Particularly notable is
that the A-T+ group (which is pathophysiologically difficult to explain) was reduced from n=37 to n=10 when using
a reference protein, again in higher concordance with grouping with PET.
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to be linked to both CSF P-tau and several other CSF proteins!*37), Fig 7¢c and Supplementary
Tab. 5-7.

Discussion

We establish the existence of individual mean CSF protein levels, which explain a considerable
part of variation in CSF biomarkers. We conclude that many proteins are affected by individual
mean CSF levels, including proteins relevant in AD, and may benefit from adjusting for this
when used as biomarkers. We identify a robust subset of potential reference proteins (“cluster
11”) from which we further characterize six specific reference protein candidates (NTRK3,
NTRK2, BLMH, CBLN4, PTPRN2 and PTPRS) that can significantly improve the accuracy
of key AD biomarkers. The results are validated on unseen test data and in an independent
cohort. We also provide evidence that AB40 works well as a reference protein, not only for
AB42, but for P-taul81 and other CSF biomarkers as well. Further, we show that several
previously reported CSF biomarker classifications and associations were greatly diminished
when adjusting for reference proteins. This implies that future studies should account for a
reference protein to ensure that observed CSF biomarker relationships are not mainly driven by
differences in mean CSF protein levels. Our work focuses on biomarkers in AD, but since the
issue of mean CSF protein levels is not AD specific, this concept likely has broad relevance
across all neurological and psychiatric conditions where CSF biomarkers are used. The
existence of individual variation in mean CSF protein levels provides valuable insights on a
CSF characteristic that must be acknowledged and further explored by the field of CSF
biomarkers. When investigating potential biological mechanisms driving the mean CSF protein
level differences, we found that an increased mean CSF protein level was seen in males and
was strongly associated with higher age. This may be connected to other sex and age-related
CSF dynamics, like differences in CSF pressure and CSF production and clearance rates. These
dynamical differences have previously been observed in both human and animal studies.’8#! A
reduced CSF production and clearance rate, as seen during aging, may for example contribute
to longer accumulation time of CSF proteins, resulting in an increased individual mean CSF
protein level. Additionally, as the mean CSF protein level was strongly associated with
ventricular volume (but not intracranial volume) when adjusting for age and sex, we believe
that CSF dilution is an important factor explaining why these individual differences exist. As
CSF fills the ventricles, it is reasonable that the size of the ventricles affects the produced CSF

volume independently of CSF protein secretion, leading to these CSF dilution differences.
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Significant CSF protein concentration differences between AT(N) groups disappear when grouping using a reference protein or PET.
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FIGURE 7: Several CSF proteins are affected by adjusting for a reference protein. Further details of
these results and extensive analyses on similar findings can be found in the Supplementary. a) During AT(N)
grouping assessed by CSF, adjusting for a reference protein created a better concordance with PET when comparing
concentration differences of CSF sTREM2. The significant findings from not using a reference protein during
grouping most likely appeared due to mean CSF protein level differences between groups. This analysis included
NC, SCD and MCI BF2 participants. P-values (adjusted for multiple comparisons) were assessed by a one-way
ANCOVA adjusted for age and sex. b) Partial correlation matrices for ten NeuroToolKit proteins in BF2 cognitively
unimpaired AP-negative participants with and without adjusting for a reference protein, always adjusting for age and
sex. Proteins were sorted according to decreasing association with mean CSF level (see Supplementary Tab. 9).
Almost all correlations were severely reduced when adjusting for a reference protein, most clearly seen for proteins
highly associated with the mean CSF level (top rows). ¢) Results from protein quantitative trait loci (pQTL) analyses
where associations between certain CSF proteins and genetic variants have been identified. Several CSF trans-pQTL
associations of the GMNC-OSTN region showed severely weakened relationships when adjusting for a reference
protein. For details, see Supplementary Results: CSF pQTL Analysis and Supplementary Tab. 7. These models

included BF1 participants (n=1445) and were adjusted for age, sex, dementia diagnosis and ten genetic principal
components.

Supporting this hypothesis is that individuals with idiopathic normal pressure hydrocephalus

(iNPH), characterized by an abnormal buildup of CSF resulting in enlarged ventricles, also

show substantially low (diluted) CSF AD biomarker levels compared to healthy subjects.*?
The results of our study challenge previously held notions of strong relationships

between several CSF biomarkers in AD. We show that many of these correlations were mainly
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driven by differences in mean CSF protein levels, as they did not remain robust when
accounting for a reference protein. Associations were markedly reduced for P-taul81 versus
microglia-related proteins (e.g. STREM2 or TAM receptors [sAXL and sTYRO3]), astrocytic
biomarker YKL-40 and the Parkinson’s disease-related biomarker a-synuclein, indicating that
these biological processes/pathologies may not be as related to tau-pathology as both we and
others have previously suggested.!'®!927-2°

Our findings provide important insight of how biased intercorrelations between CSF
biomarkers and biomarker groups can appear when not accounting for non-disease related
differences in mean CSF protein levels. Specifically highlighting this was how the use of a
reference protein for P-taul81 in the AT(N) grouping context (Fig. 6e) showed that the A-T+
group (which is pathophysiologically difficult to explain'®) was reduced from n=37 to n=10
when using a reference protein. This result is more in line with studies using PET to classify
individuals according to the AT(N) system.* The characteristics of A-T+ is highly researched
and discussed? 24446, We show that this group largely consists of individuals with high overall
mean CSF protein levels (rather than any specific disease marker), which may explain why
many A-T+ individuals have high CSF concentrations of other proteins than P-taul81!3:19:25,
Other conclusions from results in the CSF-based A-T+ group, like hypotheses about tauopathy

(T+) not affecting cognition 4/

, can be highly influenced by erroneous classification of
individuals with high overall CSF levels into an A-T+ group.

Throughout the evaluation, three general reference proteins (NTRK3, NTRK2 and
BLMH) and AB40 were examined. For all P-taul81 associations, NTRK3, NTRK2 and AB40
performed similarly, while BLMH performed slightly inferior. As reference to AB42, AB40 was
superior. AB40 consistently provided improved accuracy and top performance when used as
reference for P-taul81 as well, congruent with Guo et al.'* As AB40 is already often measured
in CSF studies, the performance of AB40 as a reference can easily be further validated for other
biomarkers and cohorts. AB40 could be a suitable first individual reference to adjust for when
working with CSF AD biomarkers.

We hypothesized that each CSF biomarker might have one or several optimal reference
proteins that co-vary highly with the main predictor during normal physiology but not in
disease, in addition to representing an individual mean CSF protein level. This idea is
strengthened by the fact that the top reference protein candidates showed high correlation with
the main predictors in cognitively unimpaired AB-negative participants but were not predictive
of the outcome when applied in models alone. Additionally, simply adjusting for the mean CSF

level never resulted in best performance. For AB42, a reference that will outperform AB40 is
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unlikely to emerge, as this peptide so closely follows the same biological pathway as AP42.
Previous work has shown the benefit of adjusting AB42 levels with AB403!-*2, and in extension,
our results confirm that AB40 performed best as reference for AB42 when compared to other
possible CSF references. For P-taul81, no such optimal reference has previously been
suggested, but three possible candidates (CBLN4, PTPRN2 and PTPRS) were evaluated in this
paper. The candidates performed best for two P-taul81 models, but these candidates were only
evaluated in BF2 and did not significantly outperform other suggested candidates. Additionally,
none of them are as obviously associated with P-taul81 in regards to biological pathway as
APB40 is with AB42, which further decreases their probability of being optimal P-taul81 specific
references. However, other factors could make CSF protein concentrations co-vary, such as
cellular localization as well as protein size, charge, and solubility. The properties and
generalizability of these candidates should be further examined before they can be claimed
optimal or non-optimal reference proteins for P-taul81.

As seen in Supplementary Reference Candidates, the six novel reference protein
candidates (NTRK3, NTRK2, BLMH, CBLN4, PTPRN2 and PTPRS) all had higher
association with the mean CSF protein level (partial correlations 0.62-0.80) than AB40 (partial
correlation 0.48). Many of them were cell surface receptors and involved in cell survival and
differentiation. Most had enhanced brain specificity, but low regional brain specificity. From
their performance as reference proteins in BF2, we cannot conclude that these specific six
candidates were significantly superior reference proteins. On the contrary, several proteins
shared similar expression characteristics that were beneficial for a reference protein. We
therefore presented a subset of many such proteins by using a data-driven approach to group
them into the cluster referred to as “cluster 11”. From the cell type expression analysis, we
found that cluster 11 was representative of the entire set of 2,944 proteins with majority of
proteins highly expressed in neuronal cells. The proteins of cluster 11 were enriched on cell
surfaces and membranes and are therefore probably constantly shedded into the CSF during
normal physiology, which can explain why they maintain a relatively consistent concentration
level representative of the mean CSF protein level.

A potential limitation of the study was that we only had the possibility to validate parts
of the results in an independent cohort. While being a key asset for the data driven approach in
the BioFINDER-2 study, the extensive CSF measurements of 2,944 proteins also limited the
validation possibilities of the findings. Other cohorts with such extensive CSF measurements
are difficult to reproduce and access due to financial and technical constraints. Additionally,

the biological and technical variability of the suggested reference protein candidates should be
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further examined to ensure robustness of longitudinal measurements in participants.
Nevertheless, this work supports the proof-of-principle that adjustment for inter-individual
differences in mean CSF protein levels will likely be highly useful in future studies aiming to
understand associations between different CSF proteins or using key CSF proteins as diagnostic

or prognostic biomarkers.

Conclusion

We show that inter-individual differences in mean CSF protein levels confounds diagnostic and
prognostic performance for several CSF biomarkers. These differences can also result in false
conclusions regarding associations between different CSF proteins or their relations to genetic
variations. The issue can be addressed by using certain CSF reference proteins to represent the
non-disease related concentration of the protein studied. AB40 is one of several promising
general reference proteins (not just for AB42) and may be a suitable reference option due to its
frequent availability in AD cohorts. Accounting for a CSF reference protein in future studies
may help ensure that reported correlations between CSF proteins are not mainly due to mean
CSF protein level differences. Our novel reference protein method improves the accuracy of
CSF biomarkers, and reduces the risk for false positive findings, with broad implications for

both research and clinical practice.

Methods

Participants

Two study cohorts were included: the Swedish BioFINDER-2 (BF2) cohort (enrollment from
2017 and still enrolling, n=982, NCT03174938) and the Swedish BioFINDER-1 (BF1) cohort
(enrollment between 2010 and 2015, n=1571, NCT01208675). All participants were recruited
at Skane University Hospital and the Hospital of Angelholm, Sweden. BF2 and BF1 consisted
of individuals with either normal cognition (NC), subjective cognitive decline (SCD), mild
cognitive impairment (MCI), dementia or another neurodegenerative disease. Conversion to
AD dementia was determined during follow-up based on the treating physician’s assessments.*®
Participants labeled as “non-converted” remained NC, SCD or MClI stable for at least two years.
Further details about BF2 and BF1 can be found in % and *° respectively, or at

www.biofinder.se.
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Only BF2 participants with complete CSF measures of 2,944 proteins were included for
analyses. No other exclusion criteria were implemented, but further filtering was later
performed depending on the variables included in the statistical model. In BF1, the participants

with complete CSF measures of 369 proteins were included in a similar manner.

Ethics

The studies were approved by the Swedish Ethical Review Authority, and all participants gave

written informed consent to participate.

CSF Collection and Analysis

CSF samples were collected close in time after baseline examination (first visit) and handled

4951 CSF samples were analyzed with

according to established preanalytical protocols.
validated, highly sensitive and specific Proximity Extension Assay (PEA) developed by
OLINK Proteomics (Uppsala, Sweden). For BF2, the full OLINK Explore 3072 library was
used, resulting in eight Proseek Multiplex panels (Oncology I and II, Neurology I and II,
Cardiometabolic I and II, Inflammation I and II) to measure the concentration of 2,943 CSF
proteins. Each panel contained 367-369 proteins. For BF1, four panels (Neurology-exploratory,
Neurology-I, Inflammation-I and Cardiovascular-1II) were used to measure the concentration
of 368 CSF proteins. Each panel contained 92 proteins. All 368 proteins from the BF1 panels
were also included in the BF2 Explore 3072 panels. Protein concentrations were provided as
log> scale of Normalized Protein eXpression (NPX) values. High NPX values correspond to
high protein concentrations. Details of OLINK quality control and protein detectability are
included in Supplementary Methods.

CSF biomarkers from the NeuroToolKit assay panel (P-taul81, Ap42, AB40, sSTREM2,
YKL-40, GFAP, neurogranin, T-tau, S100, alpha synuclein and NfL) were measured in both
cohorts using Elecsys assays in accordance with the manufacturer’s instructions (Roche

).>2 CSF analyses were performed by technicians blinded to all

Diagnostics International Ltd
clinical and imaging data. CSF amyloid positivity was defined based on CSF AB42/AB40 that

was dichotomized using the previously established cutoff of < 0.08.3¢

PET imaging
In both BFI and BF2, amyloid-PET imaging was performed using [!®F]flutemetamol.

Standardized uptake value ratio (SUVR) images were created for the 90—110 min post-injection
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interval with whole cerebellum as reference region. A global neocortical composite region
(volume of interest) corresponding to a set of cortical regions was used to summarize
['8F]flutemetamol data, as described in **. SUVR values were transformed into centiloids. The
composite was used as a dichotomous variable with centiloids >20 regarded as amyloid
positivity.> In BF2, tau-PET was correspondingly performed using [!*FJR0O948. SUVR images
were created for the 70-90 min post-injection interval using the inferior cerebellar cortex as
reference region. A composite corresponding to Braak I-IV regions>* was used to represent AD-
related tau pathology in the brain. The composite was used as a dichotomous variable with

SUVR > 1.36 regarded as tau positivity.>>

Statistical Analysis

All analyses were implemented using Python version 3.9 or R version 4.2. When searching for
reference proteins, all exploratory evaluations were performed using 10-fold-cross-validation
within the BF2 training dataset. When evaluating results on the BF2 test dataset, the models
were first refit on the full training dataset and thereafter evaluated once on the test dataset.
When evaluating results on the BF1 dataset or a new model on the BF2 training dataset,
bootstrap-resampling with replacement (nier = 2,000) was performed such that a resampled
training set of same size as the full dataset was created. Thereafter, a validation dataset was
created from the participants that were never selected into the training set, which consequently
varied in size between runs. This methodology was used to gain higher diversity between runs
so that uncertainty estimations within a model could be performed with high reliability.

All protein concentrations were z-scored to allow for comparisons between measures in
different units. Standardization was performed within each cohort and always fitted to training
data. For every participant, a mean CSF level was computed as the average z-score over all
2,943 OLINK proteins + AB40 for BF2, and all 368 OLINK proteins + AB40 for BF1.

For data exploration and visualization purposes, t-distributed stochastic neighbor embedding
(t-SNE)** was applied. t-SNE is formulated as a non-linear optimization problem, aimed to
preserve relative similarity of pairwise points in a high dimensional space when projected to a
lower one.** The t-SNE results were combined with a semi-supervised K-means clustering®
algorithm (K=20) to sufficiently create subsets of data. The supervised part was performed by
adjusting K and the random initialization seed so that clear structural clusters were separated
and areas with characteristics relevant to a reference protein were joined. This was not a unique

nor mathematically optimized way of dividing the t-SNE space. It was solely used due to its
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efficiency in this application as it enabled a more robust examination of subsets of similarly
expressed proteins. To provide evidence that the results were not heavily dependent on the
selection of K or random initialization, a robustness analysis is provided, see Supplementary
Methods: K-means Robustness Analysis and Supplementary Fig. 11-13. Additionally, a
sensitivity analysis when only using proteins with missing frequency <75% can be seen in
Supplementary Methods: LOD Sensitivity Analysis and Supplementary Fig. 14-17, resulting in
similar findings as when using all 2,944 proteins.

To analyze associations with a continuous dependent variable, linear regression models
were applied. In addition, partial correlation coefficients (Pearson) were computed to study
correlation matrices between continuous variables. To predict a dichotomous variable, logistic
regression models were applied. As dichotomous data for most models was unbalanced,
receiver operating characteristic (ROC) curve and Area under the ROC curve (AUC) were used
to evaluate performance. AUCs were compared with a one-tailed ROC test using bootstrapping
(niter = 2,000). To compare AT(N)-groups, one-way ANCOVA was applied. P-values were
adjusted for multiple comparisons by Benjamini—-Hochberg method. All models were adjusted

for age and sex.

Main models

To search for appropriate reference proteins, performance was evaluated in three logistic
regression models. In each model, a well-established AD CSF biomarker (P-taul81 or AB42)
was used as main predictor of either PET images or conversion to AD dementia. The three
models were:

1. P-taul81—TauPET. Predicting tau-PET positivity with CSF P-taul81 as main

predictor.
2. AP42—ABPET. Predicting AB-PET positivity with CSF AB42 as main predictor.
3. P-taul81—ADDconv. Predicting conversion to AD dementia versus remained stable

for at least 2 years with CSF P-taul81 as main predictor.

The first two models were used to search for suitable reference proteins, the third was solely
used for validation. The change in overall model performance when adjusting for different
individual references was the measure of interest. A flowchart describing the pre-processing

steps after split into training/test data for all models can be seen in Supplementary Fig. 18.
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Cell type expression and pathway enrichment analyses

To investigate properties of a cluster of proteins, we performed pathway enrichment and cell
type expression analyses. For pathway enrichment, we used the WEB-based Gene SeT
AnaLysis Toolkit (WebGestalt).’® We performed a human over-representation analysis (ORA)
on cellular components, defining the background set as the 2943 OLINK proteins. For cell type
expression, we used Seurat version 4.3.0 to analyze the open-access Human MTG 10x SEA-
AD Allen Brain data from 2022.57 This dataset includes single-nucleus transcriptomes from
166,868 total nuclei derived from the middle temporal gyrus (MTG) from five post-mortem
human brain specimens. We used the class and subclass annotation available from the Allen
Institute and applied the function AverageExpression (after removing all “None” annotations).
From the average expression we then calculated a percentage expression across all cell types.
A bootstrap enrichment test (n=10,000) was used to compare significant (Benjamini—Hochberg
corrected g-values <0.05) cell type expression differences between a subset of proteins and all

other proteins.

Data Availability

Anonymized data can be shared to qualified academic researchers after request for the purpose
of replicating procedures and results presented in the study. Data transfer must be performed in
agreement with EU legislation regarding general data protection regulation and decisions by

the Ethical Review Board of Sweden and Region Skane.

Code Availability

Code for the analyses can be found in the following GIT repository:
https://github.com/karlssonlinda/reference protein project. Python dependencies include
NumPy>®, pandas>®, Matplotlib®, Scikit-learn®!, Statsmodels®? and Pingouin®. R dependencies

include Tidyverse® and pROC®.
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