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 2 

Abstract 24 

The heterogeneity of cancers are driven by diverse mechanisms underlying oncogenesis such as 25 

differential ‘cell-of-origin’ (COO) progenitors, mutagenesis, and viral infections. Classification of 26 

B-cell lymphomas have been defined by considering these characteristics. However, the 27 

expression and contribution of transposable elements (TEs) to B cell lymphoma oncogenesis or 28 

classification have been overlooked. We hypothesized that incorporating TE signatures would 29 

increase the resolution of B-cell identity during healthy and malignant conditions. Here, we 30 

present the first comprehensive, locus-specific characterization of TE expression in benign 31 

germinal center (GC) B-cells, diffuse large B-cell lymphoma (DLBCL), Epstein-Barr virus (EBV)-32 

positive and EBV-negative Burkitt lymphoma (BL), and follicular lymphoma (FL). Our findings 33 

demonstrate unique human endogenous retrovirus (HERV) signatures in the GC and lymphoma 34 

subtypes whose activity can be used in combination with gene expression to define B-cell lineage 35 

in lymphoid malignancies, highlighting the potential of retrotranscriptomic analyses as a tool in 36 

lymphoma classification, diagnosis, and the identification of novel treatment groups. 37 

 38 

  39 
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Introduction 40 

Transposable elements (TEs) account for roughly 45% of the human genome1,2. They include 41 

retrotransposons3-5, which can be further broken down into short interspersed nuclear elements 42 

(SINEs), long interspersed nuclear elements (LINEs), and human endogenous retroviruses 43 

(HERVs). HERVs are the remains of ancient retroviral infections that integrated within the 44 

germline6,7. Since their integration, HERVs have accumulated mutations and deletions, but some 45 

of them have been co-opted by the host and can mediate key physiological processes8-14. Under 46 

some conditions, the derepression of HERVs can be associated with viral infectivity, pathogenic 47 

inflammation, and oncogenesis15-19. Regulation of their expression is thought to be a driving factor 48 

in the initiation and sustainment of some human diseases20-22.  49 

 50 

While factors underlying the deregulation of HERV expression remain poorly defined23, there is a 51 

strong causal relationship with viral infections co-opting HERV expression or derailing their 52 

regulatory networks15,24. Transactivation of TEs by cancer-associated viruses such as with 53 

Epstein-Barr Virus (EBV)  could help drive the heterogenous development of non-Hodgkin B-cell 54 

lymphomas24-30. This heterogeneity in aggressive B-cell lymphomas may also be driven by other 55 

confounding factors, such as translocations events occurring at immunoglobulin, proto-oncogene, 56 

and tumor suppressor gene loci, somatic mutations, and often, differential ‘cells-of-origin’ (COO) 57 

derived from the germinal center (GC)31-35.  58 

 59 

Characterizing TE activity has posed unique challenges due to their repetitive nature, poor 60 

delineation, non-canonical activity, and low expression36. Recent advancements in computational 61 

biology now permit more accurate depiction of TE activity by next generation sequencing (NGS) 62 

technologies37-42.  When HERVs are transcribed their products can be collected in RNAseq 63 

libraries, and the collective noun for these transcripts, in contrast to the gene derived 64 

transcriptome, is called the “retrotranscriptome”. Oncogenic TE-gene chimeric transcripts have 65 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 8, 2023. ; https://doi.org/10.1101/2023.06.08.544208doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.08.544208
http://creativecommons.org/licenses/by/4.0/


 4 

been identified in a subset of diffuse large B-cell lymphoma (DLBCL) cases27, and HERV 66 

dysregulation has been observed in response to EBV30,43 and human immunodeficiency virus-1 67 

(HIV-1)44-48 infections, both of which are associated with Burkitt lymphoma (BL) and DLBCL. B-68 

cell lymphomas have been subcategorized by classifiers such as LymphGen35 and EcoTyper49 to 69 

aid in treatment selections, these classifications have not included TE expression. Here, we 70 

present a comprehensive, locus-specific analysis of TE expression in germinal Center (GC) B-71 

cells, DLBCL, EBV-positive and negative BL, and follicular lymphoma (FL) to create the first 72 

retrotranscriptomic atlas of GC derived non-Hodgkin’s lymphomas. Our results classify 73 

lymphomas by locus-specific TE expression and identify additional prognostic categories, with the 74 

potential for new approaches to treatments.  75 

 76 

Results 77 

The retrotranscriptomic landscape of B-cell lymphomas and germinal center B-cells: 78 

HERVs distinguish specific B-cell subsets  79 

We obtained RNA-seq data from FACS-sorted B-cell populations from two publicly available 80 

datasets31,50. The Agirre et al.50 (B-AG) B-cell dataset was comprised of dark zone (DZ), light 81 

zone (LZ), naïve B (NB), memory B (MB), plasmablasts (PB), and bone marrow plasma cells 82 

(BMPC) from 35 samples, while the Holmes et al.31 (B-HM) B-cell dataset was comprised of DZ, 83 

LZ, NB, MB, and the whole germinal center (GCB) from 17 samples. RNA-seq reads were 84 

aligned to the human genome (hg38) using a splice-aware aligner, STAR. Quantification of 85 

gene features in the GENCODE (v38) annotation was performed by STAR, while TE expression 86 

of 14,896 HERV and 13,545 LINE elements was quantified with Telescope51. As a filtering 87 

criterion, we included elements with >5 reads in at least 10% of the samples, leaving 1,464 88 

HERVs and 1,939 LINEs in the B-HM dataset, and 1,118 HERVs and 1,520 LINEs in the B-AG 89 

dataset (Supplementary Table 1). 90 

 91 
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The retrotranscriptome of healthy B cells, including GC cells, were used for comparison with B-92 

cell lymphoma retrotranscripts. In both B-HM and B-AG, NB-cells had the highest percentage of 93 

reads assigned to TEs (0.61%, 0.74%), followed by MB-cells in B-HM (0.6%), and by PB (0.88%) 94 

and BMPC (0.86%) in B-AG (Fig. 1A-B). In both datasets, DZ had the lowest TE expression 95 

(0.41% in B-HM and 0.71% in B-AG). Plasmablasts (PBs) and bone marrow derived plasma cells 96 

(BMPCs) had the lowest HERV expression despite having the highest TE expression, indicating 97 

that a larger proportion of their TE fragments came from LINE elements (Fig. 1C-D).  98 

 99 

We performed an unsupervised principal component analysis (PCA) to visualize sample 100 

placement-based gene or HERV expression in B-cell subpopulations in the B-HM (Fig. 1E, F) and 101 

B-AG datasets (Fig. 1G, H). Similar to the gene-driven PCA, the first principal component of a 102 

HERV-driven PCA in the B-HM dataset separated the NB and MB-cells from LZ and DZ cells (Fig. 103 

1F). While the second principal component in the gene driven PCA separated the LZ and DZ, the 104 

HERV expression in LZ and DZ was comparatively similar, leading to closer clustering. In the B-105 

AG dataset, the first principal component segregated the PB and BMPC from LZ, DZ, MB, and 106 

NB, while the second principal component separated the NB, MB, LZ, and DZ (Fig. 1G). 107 

Analogous to the B-HM dataset, HERV expression was more similar between LZ and DZ than 108 

gene expression (Fig. 1H). The GC B retrotranscriptomic landscape changes throughout B-cell 109 

differentiation. 110 

 111 

Next, we identified unique sets of significantly differentially expressed (DE) HERVs in each B-cell 112 

subtype (Supplementary Table 2). The cell subtypes with the highest number of upregulated 113 

HERVs were observed in the BMPC, PB, and DZ subsets in the B-AG dataset (Figure 1I, 114 

Supplementary Fig. 1A-F) and in NB, MB, and GCB in the B-HM dataset (Fig. 1J, Supplementary 115 

Fig. 2A-F). In both datasets, the most DE loci belonged to the ERVLE, HERVH, ERV316A3, 116 

ERVLB4, and MER4 families (Fig. 1K-L). Interestingly, HERVs along the 22q11 locus such as 117 
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HUERSP3B_22q11.22 and ERVLE_22q11.22b were commonly upregulated in the DZ, 118 

suggesting changes in nucleosomal accessibility at this site. HARLEQUIN_1q32.1, which has 119 

previously been found to be differentially expressed in prostate, breast, and colon cancers, was 120 

downregulated in the DZ and upregulated in the PBs and BMPCs compared to other B-cell 121 

subtypes52. PBs, which have been hypothesized to be the COO of ABC-DLBCL, displayed 122 

upregulation in 3 HERVP71A loci among the top DE-HERVs (Supplementary Fig 3, 123 

Supplementary Fig. 4). Collectively, these data suggest significant changes in HERV loci 124 

expression can be correlated to B-cell fate within the GC.  125 

  126 

Lymphoma subtypes have distinct HERV expression landscapes  127 

Since HERV expression profiles are unique to tissue sites8,53,54 and patterns of malignancy, we 128 

hypothesized that different B-cell lymphomas would display unique HERV signatures that could 129 

be used to further classify malignancy subtypes. BL had the highest percentage of reads assigned 130 

to TEs and HERVs (2.27% and 0.65%), followed by FL (0.61% and 0.24%), and DLBCL (0.49% 131 

and 0.2%) (Supplementary Fig. 5).  By conducting unsupervised clustering via PCA-based 132 

metrics, we found that HERVs (Figure 2B) better segregate FL, ABC, EBV+ BL, EBV negative 133 

BL, GCB, and unclassified DLBCL cases than genes (Figure 2A). Further characterizing of 134 

lymphoma types showed that BL had 2910 uniquely upregulated HERV loci compared to DLBCL 135 

and FL, which had 184 and 31, respectively (Fig. 2C-F). Within the lymphoma subtypes, GCB-136 

DLBCL had the highest number of uniquely upregulated HERVs at 511, followed by endemic 137 

EBV+ BL at 456 loci, and sporadic EBV negative BL at 409 loci (Supplementary Fig 6A). When 138 

accounting for shared upregulated loci, BL exhibited broad upregulation of HERVs across all 139 

subtypes when compared to DLBCL and FL (Fig. 2F-H). Similar to benign B-cells, the highest 140 

number of differentially expressed loci belonged to the ERVLE, ERV316A3, HERVH, ERVLB4, 141 

HERVL, HERVFH21, HML3, and HARLEQUIN families, with the highest upregulation of a HERV 142 

family being that of HERVH in GCB-DLBCL (Fig. 2E, Supplementary Fig. 6C). We also observed 143 
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HERV-based DZ markers being broadly upregulated in BL compared to other lymphoma 144 

subtypes, such as MER61_3q13.11, HERV3_14q32.33, and HARLEQUIN_19p12b 145 

(Supplementary Fig 4, Supplementary Fig 7). A key HERV marker of PB and BMPCs, 146 

HARLEQUIN_1q32.1, was significantly upregulated in a subset of ABC-DLBCLs (p<0.001, 147 

Supplementary Fig 8). Collectively, these data demonstrate that HERVs act as novel 148 

retrotranscriptomic markers that can be used to discriminate heterogeneity between B-cell 149 

malignancies.  150 

 151 

A subset of HERV features differentiate lymphoma subtypes and GC-B COO 152 

We next asked whether the HERV-driven B-cell malignancy signatures could complement gene 153 

expression data to best define the GC COO. Our goal was to reduce the large number of DE 154 

HERV features to the lowest possible targets for reliable classification. Including only DE HERVS 155 

with an FDR <0.001 and log2fold >1.5, we used two unsupervised feature selection methods, 1) 156 

the random forest classification with the Boruta algorithm55, and 2) the randomized least absolute 157 

shrinkage and selection operator (LASSO) regression56, identifying just 5 HERVs to differentiate 158 

between DLBCL, BL, and FL (Fig 3A). Out of the 5 HERVs, ERVL_1p34.2 expression 159 

differentiated between BL and FL, while ERLB4_2p16.3 differentiated between DLBCL, and FL 160 

and BL (Fig 3B-3G). We next created feature sets for each B-cell subtype from the B-AG dataset, 161 

using the top 150 upregulated genes and top 25 upregulated HERVs for MB, NB, DZ, LZ, PB, 162 

and BMPC (Supplementary Table 3). To assign COO, we ran a fast HERV and gene-set 163 

enrichment analysis (F-HAGSEA) using an adaptive multilevel split Monte Carlo method57. 164 

Consistent with known literature34, we found that all BL subsets were enriched in DZ signatures, 165 

ABC-DLBCL enriched in PB and MB signatures, GCB-DLBCL in LZ, and, interestingly, FL in NB 166 

and LZ (Fig 3H). Overall, our findings indicate that HERVs are uniquely expressed in healthy B-167 

cells and lymphoma subtypes, and that HERV expression profiles can be further used in 168 

combination with gene expression profiles to best define the COO for B-cell malignancies.  169 
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 170 

Seven distinct HERV signatures categorize diffuse large B-cell lymphoma  171 

Given that ABC-DLBCL and GCB-DLBCL display distinct patterns of HERV expression, we 172 

investigated whether subsets within the COO classes possessed unique HERV signatures that 173 

could further define their characterization. We performed unsupervised consensus clustering with 174 

ConsensusClusterPlus58 based on DE HERVs to identify the number of potential subsets, k, along 175 

with the strength of each sample’s membership in the identified class. While the most stable k 176 

yielded 3 clusters most consistent with current COO classes, we chose a k of 7 to potentially 177 

identify sub-classes of HERV signatures within the ABC, GCB, and unclassified DLBCLs (Fig. 4A-178 

C). When comparing HERV clusters (HCs) to the COO subtypes, the ABC-DLBCL were split 179 

predominantly into HC1 and HC2, while HC4 and HC6 belonged predominantly to the GCB-180 

DLBCL class. HC3 and HC5 were mixed clusters of all three classifications, while HC7 181 

encompassed ABC-DLBCL and the highest number of unclassified samples (Fig 4D, 182 

Supplementary Fig. 9A). When compared to the LymphGen classes, HC2 consisted 183 

predominantly of MCD, HC3 contained the highest number of BN2, and HC4 and HC6 184 

encompassed the highest number of EZB. The N1 subclass was split between HC5 and HC7 185 

(Fig. 4E, Supplementary Fig. 9A). HC6 had the highest number of uniquely upregulated HERVs 186 

at 1,682 loci, while HC7 had the highest number of uniquely downregulated HERVs, at 202 loci 187 

(Fig. 4F-G). Compared to healthy B-cells, loci from the HERVH family represented a higher 188 

proportion of upregulated HERVs (Fig. 4H), with HC7 displaying the highest upregulation of 189 

HERVH transcripts. Four key HERVs that could differentiate the DLBCL clusters (Supplementary 190 

Fig. 10A) were HERVH_16p13.2e, HERVW_2q23.3, HML2_7p22.1, and HERVH_7q11.23a 191 

(Supplementary Fig. 10B-E). HERVH_16p13.2e differentiates HC7 from the remaining clusters, 192 

while HERVH_16p13.2e differentiates HC1 and HC2. HML2_7p22.1 separates HC4 and HC6 193 

from HC3, HC4, and HC7, and then further differentiates within the clusters.  194 

 195 
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To determine potential GC-B COO for the seven DLBCL subsets, we conducted an F-HAGSEA 196 

analysis against the B-cell signatures, using feature ranks derived from DESEq2 differential 197 

testing59 (Fig 4I). HC1 and HC2 were most enriched in NB and PB, and MB and DZ gene-sets 198 

respectively. HC3, which is a mixed subtype, was most enriched in LZ signatures. HC4 and HC6, 199 

which are both predominantly GCB-DLBCLs, were also enriched in LZ signatures. HC5 and HC7 200 

were most enriched for BMPC signatures, with negative enrichment scores for both LZ and DZ. 201 

We thus designated HC1 and HC2 with the names “ABC-PB” and “ABC-MB” (Supplementary Fig. 202 

11), HC3, HC4 and HC6 with the names “GCB-LZ”, “GCB-Like”, and “GCB” (Supplementary Fig. 203 

12), HC5 with the name “PB-Like”, and HC7 with “HERVH” (Supplementary Fig. 13). Overall, our 204 

results identified 7 distinct HERV signatures in DLBCL samples which identify novel subclasses 205 

of the currently implemented DLBCL COO classifications. 206 

Two distinct HERV signatures are found in Burkitt lymphoma that are indicative of EBV 207 

status 208 

Since HERVs are transactivated by EBV30, we hypothesized that heterogenous HERV 209 

expression profiles in BL are driven by infection with EBV. We performed unsupervised PCA 210 

clustering of pediatric BL samples based on gene expression (Fig. 5A) and HERV expression 211 

(Fig. 5B) alone. Surprisingly, we found that while the gene-based PCA did not segregate 212 

samples by EBV status, HERV expression separated BL status into EBV+ and EBV- clusters. 213 

To confirm the results of the PCA, we performed consensus clustering of samples based on 214 

HERV expression, finding the most stable clusters with a k of 2 (Fig. 5C-D). The BL cluster 1 215 

(BL-C1) was composed entirely of EBV- samples (13 EBV- endemic BL samples and 3 EBV- 216 

sporadic BL samples) while BL cluster 2 (BL-C2) was composed of primarily EBV positive 217 

samples (4 EBV- endemic BL samples, 4 EBV+ sporadic BL, and 89 EBV+ endemic BL). 218 

Collectively, these separations were driven by an overall upregulation of TEs in BL-C2 (Fig. 5E-219 

G), with 253 uniquely upregulated HERVs in BL-C2, compared to 66 in BL-C1 (Supplementary 220 
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Fig. 14A). We next sought to identify the HERV signatures driving separation of BL-C1 and BL-221 

C2 with the Boruta algorithm, LASSO regression, and the likelihood ratio test (LRT) provided by 222 

DESEQ2. In doing such, we identified a subset of four HERVs that further distinguished 223 

between the BL-C1 and BL-C2 (Fig 6A). Amongst all HERVs, we identified ERVLE_2p25.3c 224 

(Fig 6B), MER61_4p16.3 (Fig 6C), ERV316A3_2q21.2b (Fig 6D), and ERVLE_5p13.2c (Fig. 6E) 225 

as definitive markers that distinguished between the entirely EBV- BL-C1, and the largely EBV+ 226 

BL-C2 (Supplementary Fig 15). We further identified BL-C1 to have a more distinct DZ signature 227 

compared to BL-C2, and additionally found a higher relative upregulation of Hallmark pathways 228 

identified by the Molecular Signatures Database (MsigDB)60,61 when compared to BL-C2 (Fig 229 

6F-G). Collectively, these results demonstrate that EBV status is a major determinant of HERV 230 

expression in BL subtypes, and that the expression of HERVs can be applied to better define 231 

the heterogeneity of pediatric BL.  232 

HERV expression is linked with survival outcomes in DLBCL 233 

Finally, we hypothesized that the seven HERV-driven DLBCL subclasses with distinct predictive 234 

COO would display retrotranscriptomic differences that correlate with their prognostic outcome. 235 

We implemented an FGSEA analysis with the Hallmark pathways collected from MsigDB to 236 

calculate broad phenotypic alterations between our COO subtypes (Fig. 7A). HC1/ABC-PB 237 

displayed an overall downregulation of most Hallmark pathways, although HC2/ABC-MB, which 238 

was enriched for MB and DZ signatures, showed the highest enrichment for the “MYC targets 239 

V1”, “G2M checkpoint”, and “E2F targets” pathways. HC3/GCB-LZ displayed enrichment for 240 

“epithelial mesenchymal transition”, “mitotic spindle”, and a negative enrichment for the “DNA 241 

repair”, “interferon alpha and gamma response”, “MYC targets V1”, “MYC targets V2”, and 242 

“oxidative phosphorylation” pathways. HC4/GCB-like was enriched in “oxidative phosphorylation”, 243 

“MYC targets V1”, “epithelial mesenchymal transition”, and “adipogenesis” pathways, while 244 

HC6/GCB displayed a negative enrichment of “MYC targets V1” and “MYC targets V2” pathways. 245 
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HC7/HERVH displayed an overall negative enrichment for most Hallmark pathways compared to 246 

the other clusters. The HC5/PB-Like showed a highly significant enrichment of the “interferon 247 

gamma and alpha response”, “inflammatory response”, “IL6 JAK STAT3 signaling”, “TNFA 248 

signaling via NFKB”, and “IL2 STAT5 signaling” pathways. Overall, samples from the HC5/PB-249 

Like cluster had the highest enrichment for pathways indicating changes in local immunity 250 

(Supplementary Fig. 16), including “Cytotoxic T-lymphocyte-associated protein 4 (CTLA4)”, 251 

“TCR”, “IL17”, “IL10”, and “IL12”.  252 

We performed a Kaplan-Meier analysis to examine the relationship between HERV 253 

clusters and clinical outcomes, in comparison with previous COO classifications (Fig. 7B-C). 254 

Consistent with previous findings62, ABC-associated groups had the shortest long-term survival. 255 

Groups with the worst prognoses were HC1/ABC-PB (n=39) and HC2/ABC-MB (n=30), followed 256 

by HC5/PB-Like (n=37), HC4/GCB-Like (n=89), HC3/GCB-LZ (n=45), HC6/GCB (n=34), and 257 

HC7/HERVH (n=3) (Fig. 7B).  Importantly, when implemented on the same cases denoted as 258 

ABC-DLBCL, GCB-DLBCL, or unclassified, the HERV-based classifications identified patient 259 

subsets that significantly correlated with prognostic outcomes. Patients in the HC5/PB-Like cluster 260 

(43% ABC, 45% Unclassified, 12% GCB) had a survival outcome much closer to the ABC-like 261 

clusters HC1 and HC2, despite having a large proportion of unclassified and GCB diagnoses. 262 

Similarly, prognostic values of previously unclassified DLBCLs had a significant range of favorable 263 

to unfavorable outcomes (Supplementary Fig. 17). Overall, novel DLBCL subclasses based on 264 

HERV signatures were able to be predictive of prognostic outcomes within the ABC-DLBCL, GCB-265 

DLBCL, and Unclassified-DLBCL cases.  266 

 267 

Discussion 268 

Prior to this study, there was limited data on HERV expression in both healthy and malignant 269 

proliferating B-cells, partly due to the challenges of TE quantification36. In this study, we developed 270 
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the first comprehensive locus-specific atlas of TE expression in human GC B cells and in B-cell 271 

malignancies arising out of the GC. The GC reaction is a focal component of the adaptive immune 272 

response, where NBs travel to the follicles of secondary lymphoid organs to respond to T-cell 273 

dependent antigen challenges63. Through repeated cycling of proliferation and somatic 274 

hypermutation in the DZ and affinity selection in the LZ, B-cells terminally differentiate into either 275 

MBs or PBs63. Following development in the GC, PBs then migrate to the bone marrow to facilitate 276 

long-term humoral immunity by becoming BMPCs64. In malignant transformation events, this 277 

pathway of B-cell development is expropriated and gives rise to lymphomagenesis65. Disease-278 

specific expression of HERVs have been previously noted as diagnostic markers66,67 and further 279 

postulated as therapeutic targets for the treatment of B-cell lymphomas27. By characterizing the 280 

retrotranscriptome in the healthy GC and associated B-cell lymphomas, we identified HERVs 281 

specific to stages of the GC reaction and used them to further classify the COO in B-cell 282 

malignancies.  283 

 284 

Our analyses of GC B-cells have enabled the construction of a reference of normal HERV 285 

expression during the various stages of B-cell maturation. As has been observed in other normal 286 

human tissue8,53,54, we found that HERV expression in B-cell subpopulations is highly specific to 287 

the cell types, including fully mature B-cells. The level of TE expression ranges throughout the 288 

GC reaction, with higher expression in NB cells, moderately high in the LZ, lower in the DZ, and 289 

higher again in MB, PB, and BMPC. Despite having relatively high TE transcription, PB and BMPC 290 

had the lowest percent of HERV fragments, and contradictorily, the highest number of uniquely 291 

upregulated HERV loci. Loci belonging to the HERVP71A family were highly expressed in the PB, 292 

potentially indicating the importance of this HERV family’s expression in PB cell fate. Importantly, 293 

despite HERV expression representing under 1% of the coding and non-coding transcriptome, 294 

our analysis demonstrates that HERV expression alone is able to independently distinguish GC 295 

cell types. We identified a signature based on 11 HERV markers to classify GC B-cells.  296 
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 297 

It is generally accepted that the COO for many of the non-Hodgkin B-cell lymphomas is a 298 

germinal center B cell, as indicated by the detection of somatically mutated immunoglobulin genes 299 

in their genomes. BLs are thought to be derived from the DZ, while FL and GCB-DLBCL resemble 300 

LZ cells, and ABC-DLBCLs are broadly derived from GC cells arrested during plasma cell 301 

differentiation34,65. To further define these transformation events, we combined the HERV 302 

signature with gene expression data in these cell types to define their B-cell lineage. In doing this, 303 

we were able to confirm that HERV expression in these non-Hodgkin B-cell lymphomas 304 

corresponded with their previously identified GC COO. Like for the case of GC B-cells, HERV 305 

transcripts were again able to better distinguish lymphoma types than by analyzing gene 306 

expression alone, particularly between DLBCL and FL. In accordance with previous findings, BL 307 

samples most closely resembled the DZ, GCB-DLBCL resembled the LZ, ABC-DLBCL 308 

corresponded with MBs, PBs, and BMPCs, and FL corresponded with the LZ and NBs.  We also 309 

found specific HERV markers of GC B-cell types upregulated in their associated B-cell 310 

lymphomas, including the DZ-associated element HARLEQUIN_19p12.b as a key marker of BL. 311 

Similarly, HARLEQUIN_1q32.1, which is a PB-associated HERV, is a key marker of ABC-DLBCL 312 

and has been previously implicated in prostate, breast, and colon cancers52.  313 

 314 

We also used HERV signatures to expand the current COO classifications from three 315 

subsets into seven subsets, with each corresponding to single or mixed B-cell subtypes from the 316 

GC. Together, the two ABC-like clusters represented precursors to PBs and MBs. Recent findings 317 

have reported intermediate phases of the GC between the LZ and DZ compartmentalization31, in 318 

addition to MB precursors which are reflected in a fraction of DLBCLs68. These studies are 319 

consistent with our findings of “mixed” DLBCLs with competing gene and HERV signatures, 320 

particularly HC2/ABC-MB, which had an MB-like signature and encompassed a large number of 321 

MCD-DLBCL cases. The HC2/ABC-MB cases were most enriched in “MYC targets v1” and “MYC 322 
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targets v2” pathways, both of which have been associated with tumor aggressiveness and 323 

proliferation68. The HC2/ABC-MB cases also had a significant upregulation of FABP7, a gene that 324 

is known to form TE chimeric transcripts and is upregulated in a subset of DLBCL cases27. 325 

HC1/ABC-PB and HC2/ABC-MB also showed increased expression of PRMD15, which is known 326 

to regulate multiple oncogenic pathways69.  327 

 328 

One of the key features differentiating between our classification system for DLBCLs was 329 

HML2_7p22.1, a largely intact HERV provirus which contains an open reading frame (ORF) for a 330 

fusogenic retroviral envelope gene53,70,71.  HML2_7p22.1 is one of two HERVs from the HML2 331 

family that possess an intact envelope53. While HML2_7p22.1 is expressed in 15 different human 332 

tissue types53, it has also been implicated for its fusogenic activity in melanoma cell lines72 and 333 

may be immunosuppressive in nature73.  334 

 335 

 In the retrotranscriptome, BL had a threefold higher proportion of HERV transcription 336 

compared to DLBCL and FL, and significant upregulation in the number of DE HERVs. These 337 

data suggest aberrant overexpression of HERVs in BL, and further demonstrate the importance 338 

of their investigation in lymphomagenesis. The entirely EBV- BL-C2 cluster displayed a broad 339 

upregulation of HERVs in comparison to the largely EBV+ BL-C1 cluster, which was conversely 340 

associated with a stronger DZ signature. This suggests separate mechanisms of HERV-mediated 341 

malignancy in our two clusters of BL.   342 

 343 

  To test the clinical significance of our HERV-based clustering technique, we assessed 344 

the prognostic outcomes of the individually classified subgroups. Our HERV-based clustering 345 

identified additional sub-clusters within the GCB-like and unclassified DLBCL cases that 346 

demonstrate distinct survival outcomes. Briefly, the ABC-like clusters predictably had the least 347 

favorable prognostic outcomes. The GCB-like clusters displayed greater range than what would 348 
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have been defined as a single class, with the HC3/GCB-Like cases having worse survival 349 

outcomes compared to HC4/GCB-LZ and HC6/GCB. Cases from the HC5/PB-Like cluster, which 350 

is likely to originate from intermediate phases of the GC reaction, had the least favorable 351 

outcomes, second only to the ABC-like clusters. This difference in clinical outcome may be 352 

attributed to the drastic changes observed in immune signatures within this cluster. The 353 

HC7/HERVH cluster lacked survival data to draw definitive conclusions, and therefore requires 354 

further investigation. However, this cluster demonstrated a clear downregulation of most Hallmark 355 

pathways expressed in the majority of our DLBCL clusters and is likely phenotypically distinct.  356 

 357 

Taken together, our current analysis of healthy GC-B cells and B cell lymphomas suggests 358 

that malignant cells may retain both transcriptomic and retrotranscriptomic signatures from their 359 

COO. The observed increase in HERV transcripts in cancerous tissue, particularly BL, suggests 360 

a change in the epigenetic state of the B-cell derived COO in relation with infection status. This is 361 

relevant for other EBV and HIV-1 associated B cell lymphomas as well, where infection status 362 

may promote differential patterns of HERV expression. The identification of overexpressed HERV 363 

ORFs in cancer is of great interest for the pharmacological intervention of human malignancies 364 

due to the specificity of TE-derived tumor specific antigens42. Notably, these TE antigens are 365 

overexpressed under malignant conditions due to changes in the retrotranscriptome and have 366 

improved upon existing immunotherapies as novel targets39,40,74-76,78–82. Overall, the predictive 367 

capabilities of the HERV-driven lymphoma clustering suggest a further need to understand the 368 

regulatory, transcriptional, and post-transcriptional activity of these endogenous retroelements in 369 

both healthy tissues and in malignant states.  The characterization of HERV expression in the 370 

healthy GC and B cell lymphomas should therefore serve as a resource for the diagnostic and 371 

therapeutic potential of these elements in malignancies. 372 

 373 

 374 
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Methods 375 

 376 

Data Availability  377 

 378 

All samples were obtained from previously published studies31,32,50,76,77. Samples belonging to the 379 

B-AG (n=35) and B-HM (n=17) datasets were downloaded as FASTQ files using fasterq-dump 380 

from the SRA toolkit. RNA-seq data from the HIV- DLBCL samples (n=529) belonging to the 381 

TCGA and NCICCR research programs were obtained via the Genome Data Commons (dbGaP). 382 

Samples datasets were downloaded as FASTQ files using fasterq-dump from the SRA toolkit. 383 

RNA-seq data from the HIV- DLBCL samples (n=529) belonging to the TCGA and NCICCR 384 

research programs were obtained via the dbGaP accession “phs001444.v2.p1”. The BL samples 385 

(n=113) were obtained as part of CGCI’s Burkitt Lymphoma Genome Sequencing Project 386 

(BLGSP), and accessed via dbGaP accession “phs000235.v16.p4”. The FL samples (n=12) were 387 

obtained as part of CGCI’s Non-Hodgkin Lymphoma - Follicular Lymphoma (NHL - FL) initiative 388 

and accessed through SRA toolkit via the dbGaP accession “phs000235.v7.p2”. Clinical, 389 

demographic, and survival metadata was obtained via the TCGABiolinks R package (v2.18.0). 390 

LymphGen35, EcoTyper49, Chapuy et al.78, and Holmes et al.31 DLBCL classification calls were 391 

obtained from the respective publications.  392 

 393 

Data processing pipelines and code availability  394 

 395 

Custom and reproducible Snakemake (v7.14.0) pipelines were created for the DLBCL, 396 

(https://github.com/nixonlab/DLBCL_HERV_atlas_GDC), BL 397 

(https://github.com/nixonlab/burkitt_lymphoma_TE_atlas),  FL 398 

(https://github.com/nixonlab/follicular_lymphoma_TE_atlas), and healthy B-cell datasets 399 

(https://github.com/nixonlab/HERV_GCB_Bulk), separated by the source of data access. Input 400 
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samples were supplied through the config.yaml file for each pipeline, which also contained 401 

consistent parameters for data processing. The same package versions were used for gene and 402 

TE quantification in each Snakemake pipeline79. All downstream analysis was conducted in R 403 

(v4.0.2), and can be accessed on GitHub 404 

(https://github.com/singhbhavya/hematological_malignancies_te_analysis).   405 

 406 

Transcriptomic profiling and locus-specific HERV prediction 407 

 408 

For DLBCL and BL, downloaded BAM files were converted to FASTQ using picard-slim (v2.25). 409 

FASTQ files for all samples were then aligned to Hg38 using STAR (v2.7.9a), with parameters “-410 

-outSAMattributes NH HI NM MD AS XS --outSAMtype BAM Unsorted --quantMode GeneCounts 411 

--outSAMstrandField intronMotif --outFilterMultimapNmax 200 --winAnchorMultimapNmax 200 --412 

outSAMunmapped Within KeepPairs”. We used Telescope (v1.0.3) for retrotranscriptomic 413 

profiling, which allows for the locus-specific identification of TEs using expectation maximization 414 

algorithm. The Telescope assign module was used with the parameters “--theta_prior 200000 --415 

max_iter 200”, along with a custom transposable element annotation (retro.hg38.v1), accessible 416 

at https://github.com/mlbendall/telescope_annotation_db. Meta annotations for TEs with the 417 

nearest genes, gene overlaps, and the TE status of intronic, exonic, or intergenic, were obtained 418 

from https://github.com/liniguez/Telescope_MetaAnnotations.  419 

 420 

Unsupervised clustering 421 

 422 

Gene and TE counts were first filtered, such that only features with more than 5 observations 423 

within a minimum sample threshold (5 samples for the 529 DLBCLs, 5 samples for 113 BLs, 2 424 

samples for 12 FLs, 2 samples for 17 B-HM, and 4 samples for 35 B-AG) were retained. 425 

Normalized counts were calculated using the estimated size factors within DESeq2 (v1.30.1), and 426 
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subsequently transformed using variance-stabilizing transformation61. PCA was carried out on the 427 

transformed counts, and then visualized using PCATools (v2.2.0). Clustering on DLBCL and BL 428 

samples was performed using ConsensusClusterPlus (v1.54.0), with 1000 repetitions. Clusters 429 

were calculated for k=2 through k=9, and assessed through the calculated consensus matrices, 430 

silhouette statistics, molecular and clinical indicators, and agreement with previously-described 431 

classifications. Final clusters of k=7 for DLBCL and k=2 for BL were chosen based on the 432 

aforementioned statistical and clinical indicators. Fisher’s exact test was used to test each cluster 433 

against categorical variables and previous classifications. Alluvial plots comparing HERV clusters 434 

to previous DLBCL and Bl classifications were created using ggalluvial (v0.12.3).  435 

 436 

Differential expression analysis 437 

 438 

DE testing was performed between and within lymphoma subtypes, and separately within B-cell 439 

subtypes for the B-AG and B-HM datasets. A negative binomial model was used for DE testing, 440 

with a significance cutoff of p=0.001, and a log2fold change cutoff of >1.5. B-cell subtypes were 441 

compared individually within the B-AG and B-Hm datasets, with a design of ~cell_type + 0. To 442 

compare between lymphoma types, two DE models were created, with the broad lymphoma type 443 

(~ cancer_type + 0, where cancer_type refers to DLBCL, BL, or FL), and a narrower lymphoma 444 

subtype (~ subtype + 0, where the subtypes included ABC-DLBCL, GCB-DLBCL, Unclassified, 445 

EBV+/- Sporadic and Endemic BL, and FL). Differential expression testing was also performed 446 

within DLBCL (~COO + 0), BL (~ebv_status + 0), and the unsupervised HERV clusters for DLBCL 447 

(~ clust.retro.k7 + 0) and BL ( clust.retro.k2 + 0) respectively. Results were extracted as 448 

DESeqResults objects, with a numbered contrast of each group compared against all others. 449 

HERVs that were uniquely upregulated and downregulated per group were visualized with UpsetR 450 

(1.4.0) and ComplexUpset (1.3.3). The top n differentially expressed genes and HERVs were 451 
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visualized with pheatmap (1.0.12). The significance and effect size of DE genes and HERVs were 452 

calculated and visualized with EnhancedVolcano (1.8.0).  453 

 454 

HERV-based feature selection and model 455 

 456 

Supervised learning and HERV-based feature selection was implemented as previously 457 

described80. Briefly, pre-filtered HERV matrices were used for DESeq2’s likelihood ratio test 458 

(LRT), which was used to create a model of the HERV clusters for DLBCL (~clust.retro.k7 + 1). 459 

BL (~clust.retro.k2 + 1), and healthy B-cells from the B-AG dataset (~cell_type +1), with a 460 

significance cutoff of FDR < 0.001. Variance transformed counts from DESeq2 were extracted for 461 

feature selection with the Boruta random forest algorithm and the randomized LASSO regression. 462 

LASSO regression with stability selection was used to find the minimum optimal numbers of 463 

features defining each group, using the glmnet (v4.1-6) and c060 (v0.2-9) packages. LASSO was 464 

implemented with multinomial logistic regression with a grouped penalty, ensuring that each 465 

selected feature had multinomial coefficients of either all non-0 or all 0. Stability selection was 466 

performed with 200 subsamples, and a proportion threshold of 0.6. For a less stringent feature 467 

selection of all relevant features, we used the Boruta (v8.0.0) algorithm and the randomForest 468 

package (v4.6-12) for random classification, with ntree = 1000 and maxRuns = 1000. Final 469 

features were selected using an intersection of the three methods and visualized with UpsetR. 470 

The LASSO signature was used to create a final classification tree, with recursive partitioning 471 

implemented in rpart (v4.1.19) and rpart.plot (v3.1.1).  472 

 473 

HERV- and gene-set enrichment analyses  474 

 475 

Preranked gene-set enrichment analysis (GSEA) was performed using the fgsea package 476 

(v1.16.0), which uses an adaptive multilevel split Monte Carlo method. Fold change statistics and 477 
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p-values from DESEq2 differential testing were used to estimate gene and HERV ranks. Overall 478 

biological signatures in BL and DLBCL HERV clusters were calculated using the Hallmark and 479 

Kyoto Encyclopedia of Genes and Genomes81gene sets from MSigDB61. We created custom B-480 

cell signature gene sets, using the top 150 genes and top 25 HERVs upregulated in each B-cell 481 

subtype in the B-AG dataset, and performed a combined HAGSEA to determine potential COO 482 

of our DLBCL and BL HERV clusters. Effect size and p-values were visualized for the GSEA and 483 

HAGSEA using corrplot (v0.92) in R.  484 

 485 

Survival analysis 486 

 487 

Survival analysis was conducted using the survival R package (v3.1-12), using the log-rank test 488 

for group-level comparisons (rho=0). Kaplan-Meier survival plots were drawn using survminer 489 

(v0.4.9) and ggplot2 (v3.3.6). 490 

 491 

Statistical analyses   492 

 493 

All analyses were performed in Bash, R (v4.0.2), and the BioConductor package manager 494 

(v1.30.19). Significance values for all DE analyses were calculated with the Wald test, with the 495 

Benjamini and Hochberg method for multiple testing correction. Comparisons between mean 496 

HERV and gene expression were conducted with the t-test, on normalized counts from DESeq2.  497 

Feature selection was performed using the multiple likelihood ratio test in DESeq2, the Boruta 498 

random forest algorithm, and the randomized LASSO regression.  499 

 500 
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 530 

Figure Legends 531 

 532 

Figure 1: HERVs distinguish specific B cell subsets. A. TE reads, and B. HERV reads as a 533 

percent of all filtered sequencing reads per cell-type in the B-HM dataset. C. TE reads, and D. 534 

HERV reads as a percent of all filtered sequencing reads per cell-type in the B-AG dataset E. 535 

PCA plot of germinal center B cells from the Holmes dataset (NB, MB, DZ, LZ, and whole GCB), 536 

clustered by genes from the hg38 human genome annotation. F. PCA plot of germinal center B 537 

cells from the Holmes dataset, clustered by HERV expression using the Telescope annotation. 538 

HERV expression uniquely distinguishes B cell subsets compared to genes, with HERVs in the 539 

light zone and dark zone following similar patterns of expression. G. PCA plot of germinal center 540 

B cells from the Agirre dataset (NB, MB, DZ, LZ, PB, and BMPB), clustered by genes from the 541 

hg38 human genome annotation. H. PCA plot of germinal center B cells from the Agirre dataset, 542 

clustered by HERV expression using the Telescope annotation. I. Heatmap of top upregulated 543 

HERVs by cell-type in the Holmes dataset (p-value < 0.001, log2fold change > 1.5). Light zone 544 

and dark zone display downregulation of HERVs that are most highly expressed in other cell-545 

types. J. Heatmap of top upregulated HERVs by cell-type in the Agirre dataset (p-value < 0.001, 546 

log2fold change > 1.5). Light zone and dark zone display downregulation of HERVs that are most 547 

highly expressed in other cell-types, with plasmablasts and bone marrow plasma cells displaying 548 

the highest number of differentially expressed HERVs. K-L. Relative abundance of HERV families 549 

upregulated and downregulated per cell-type in the Holmes and Agirre datasets, displaying a high 550 

number of loci assigned to ERVLE, HERVH, ERV316A3, HARLEQUIN, ERVLB4,and 551 

HERVFH21. M. Number of upregulated HERVs in cell-types in the B-AG dataset, colored by the 552 

location of HERVs in relation to nearby genes (exonic, intergenic, intronic).  553 

 554 
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Figure 2: HERV expression is specific to lymphoma subtypes. A. PCA plot of 529 DLBCL 555 

samples from the TCGA and NCICCR datasets, 113 BL samples from CGCI, and 12 FL samples, 556 

clustered by genes from the hg38 human genome annotation. B. PCA plot of 529 DLBCL samples 557 

from the TCGA and NCICCR datasets, 113 BL samples from CGCI, and 12 FL samples, clustered 558 

by HERV expression from the Telescope annotation. C. Upset plot of the number of unique and 559 

shared HERVs upregulated in each cancer type (p < 0.001, log2fold change > 1.5). Within the 560 

three non-Hodgkin’s B cell lymphomas, Burkitt lymphoma displays the highest HERV 561 

upregulation. D. Upset plot of the number of unique and shared HERVs upregulated in each 562 

cancer sub-type, including ABC, GCB, and unclassified DLBCL, sporadic and endemic BL by 563 

EBV status, and follicular lymphoma. E. Relative abundance of HERV families per lymphoma 564 

type, displaying a high number of loci assigned to ERVLE, HERVH, ERV316A3, HERVL, 565 

ERVLB4,and HERVFH21 F. Heatmap of upregulated HERVs in each lymphoma subtype (p < 566 

0.001, log2fold change > 1.5), showcasing a remarkable upregulation of HERVs in BL compared 567 

to DLBCL and FL. G. Volcano plot of differentially-expressed HERVs in DLBCL and BL (p-value 568 

< 0.001, log2fold change > 1.5. H. Volcano plot of differentially-expressed HERVs in FL and 569 

DLBCL (p-value < 0.001, log2fold change > 1.5.  570 

 571 

Figure 3: HERV expression aids in identifying lymphoma subtypes and potential GC B 572 

COO. A. UpsetR plot displaying the number of features selected by DESeq2 lowest likelihood 573 

ratio (LTR), the random forest classification with the Boruta algorithm, and the randomized least 574 

absolute shrinkage and selection operator (LASSO) regression, with 5 features being selected by 575 

all three methods. B. A subset of four HERVs can independently categorize lymphoma subtypes, 576 

with C. ERVL_1p34.2 expression differentiating between BL and FL, and D. ERLB4_2p16.3 577 

differentiating between DLBCL, and FL and BL, in addition to E. ERVL_Xq21.1b, F. 578 

MER4B_10q21.3, and G. ERVLE_14q23.2. H. Correlation plot of lymphoma sub-types with gene 579 

and HERV- based B-cell-of-origin signatures. Signature gene sets were created using a subset 580 
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of the top 150 and top 25 upregulated genes and HERVs per cell-type from the Agirre 2019 B cell 581 

dataset.  582 

 583 

Figure 4: Seven distinct HERV signatures in diffuse large B-cell lymphoma. A. Consensus 584 

clustering of TCGA and NCICCR DLBCL samples find seven distinct sample clusters, based on 585 

expression values of the top 10% of most variable HERVs. B. PCA of DLBCL samples, colored 586 

by HERV clusters. C. Alluvial diagram showcasing HERV cluster assignment in comparison with 587 

recent DLBCL classification paradigms, including the LymphGen, EcoTyper, DBL Hit presence, 588 

and classic cell-of-origin classifications. When comparing HERV clusters to the COO subtypes, 589 

HC1 and HC2 belong predominantly to the ABC-DLBCL class, while HC4 and HC6 belong 590 

predominantly to the GCB-DLBCL class. HC3 and HC5 are mixed clusters of all three 591 

classifications, while HC7 encompasses ABC-DLBCL, with the highest number of unclassified 592 

samples. D.  When comparing HERV clusters to the LymphGen classes, HC2 consists 593 

predominantly of MCD, HC3 consists of the highest number of BN2, and HC4 and HC6 594 

encompass the highest number of EZB. The N1 subclass is split between HC5 and HC7. E. 595 

Heatmap of the top 50 upregulated genes and HERVs per DLBCL cluster (p < 0.001, log2fold 596 

change > 1.5). F. Upset plot of the uniquely upregulated HERVS per cluster, and G. Upset plot of 597 

the uniquely downregulated HERVs per cluster, finding the highest number of unique genes in 598 

C6. H. Relative abundance of HERV families per DLBCL type. I. Gene and HERV-driven B-cell-599 

of-origin classification of each HERV-driven DLBCL cluster. Signature gene sets were created 600 

using a subset of the top 150 and top 25 upregulated genes and HERVs per cell-type from the 601 

Agirre 2019 B cell dataset. HC1 and HC2, which belong predominantly to the ABC-DLBCL 602 

subclass, are enriched in NB and PB, and MB and DZ gene-sets respectively. HC3, which is a 603 

mixed subtype, is most enriched in LZ signatures. HC4 and HC6, which are both predominantly 604 

GCB-DLBCLs, are enriched in LZ signatures. HC5 and HC7, which are mixed subtypes containing 605 
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ABC-DLBCL and unclassified samples, are most enriched for BMPC signatures, with negative 606 

enrichment scores for both LZ and DZ.  607 

 608 

Figure 5: Two distinct HERV signatures are found in Burkitt lymphoma independent of EBV 609 

status. A. PCA plot of 113 BL samples from CGCI datasets, 113 BL samples from CGCI, 610 

clustered by genes from the hg38 human genome annotation. B. PCA plot of BL samples, 611 

clustered by HERV expression from the Telescope annotation. HERV-only clustering reliably 612 

separates the EBV-positive and EBV-negative samples, showcasing distinct expression patterns 613 

in the HERVs that are not captured with gene-only clustering. C-D. Consensus clustering of BL 614 

samples find two distinct sample clusters, with BL-C1 containing all EBV-positive endemic and 615 

sporadic BL samples, along with three EBV-negative endemic BL samples. BL-C2 consists of all 616 

EBV negative sporadic BL samples, along with three EBV-negative endemic BL samples E. BL-617 

C2, which predominantly contains EBV negative sporadic BL samples, contains 253 uniquely 618 

upregulated HERVs, compared to 66 in BL-C1. F. When comparing within subtypes, EBV- 619 

sporadic BL has the most number of uniquely upregulated HERVs, followed by EBV+ endemic 620 

BL. G. Heatmap of the top 50 upregulated genes and HERVs per DLBCL cluster (p < 0.001, 621 

log2fold change > 1.5). 622 

 623 

Figure 6: BL subtypes and EBV status have distinct biological and HERV signatures. A. 624 

Feature selection of differentially-expressed HERVs per cluster using DESeq2 LRT, Boruta, and 625 

Lasso find 4 HERVs sufficient to distinguish between BL-C1 and BL-C2, including B. 626 

ERVLE_2p25.3c, C. MER61_4p16.3, D. ERV316A3_2q21.2b, and E. ERVLE_5p13.2c. F. Gene 627 

and HERV-driven B-cell-of-origin classification of each HERV-driven BL cluster. Signature gene 628 

sets were created using a subset of the top 150 and top 25 upregulated genes and HERVs per 629 

cell-type from the Agirre 2019 B cell dataset. BL-C1 displays an enrichment of DZ gene-sets 630 

compared to BL-C2. G. Enrichment of hallmark pathways for the two HERV clusters, showcasing 631 
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an overall upregulation in BL-C1 compared to BL-C2 for MYC targets, E2F targets, and epithelial 632 

mesenchymal transition.  633 

 634 

 635 

Figure 7: HERV-driven DLBCL subtypes have distinct biological properties and survival 636 

outcomes. A. Enrichment of hallmark pathways for the seven HERV clusters, showcasing distinct 637 

enrichment patterns for each cluster. HC1, which contains predominantly ABC-DLBCL and is 638 

enriched for NB, PB, and BMPC signatures, displays an overall downregulation of most hallmark 639 

pathways. HC2, which contains predominantly ABC-DLBCL and is enriched for MB and DZ 640 

signatures, shows the highest enrichment for MYC targets V1, G2M checkpoint, and E2F targets. 641 

HC3, which is a mixed cluster with LZ signatures, shows enrichment for epithelial mesenchymal 642 

transition, mitotic spindle, and a negative enrichment for DNA repair, interferon alpha and gamma 643 

response, MYC targets, and oxidative phosphorylation. HC4, which consists predominantly of 644 

GCB-DLBCL and displays LZ and DZ signatures, is enriched in oxidative phosphorylation, MYC 645 

targets V1, epithelial mesenchymal transition, and adipogenesis. HC5, which is another mixed 646 

cluster with BMPC signatures, shows a highly significant enrichment of interferon gamma and 647 

alpha response, inflammatory response, IL6 JAK STAT3 signaling, TNFA signaling via NFKB, 648 

and IL2 STAT5 signaling. HC6 shows a negative enrichment of MYC targets V2. HC7 displays an 649 

overall negative enrichment for most pathways compared to the other clusters. B. Survival plot of 650 

the seven DLBCL clusters, showcasing the worst prognosis for HC1/ABC-PB (n=39) and 651 

HC2/ABC-MB (n=31), followed by HC5/PB-Like (n=38), HC4/GCB-Like (n=92), HC3/GCB-LZ 652 

(n=45) and HC6/GCB (n=34), and HC7/HERVH (n=3). C. Survival plot of the original DLBCL cell-653 

of-origin classifications, showing the worst prognosis for ABC-DLBCL, followed by Unclassified-654 

DLBCL, and GCB-DLBCL. 655 

 656 
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Supplementary Figure 1: Unique and differentially expressed HERV loci in the B-HM 657 

dataset. A. Upset plot of the number of unique and shared HERVs upregulated in each B cell 658 

type (p < 0.001, log2fold change > 1.5).  B. Upset plot of the number of unique and shared 659 

HERVs downregulated in each B cell type (p < 0.001, log2fold change > 1.5). C. Volcano plot of 660 

differentially expressed HERVs in all cell types versus DZ, D. all versus LZ, E. all versus MB, 661 

and F. all versus NB.  662 

 663 

Supplementary Figure 2: Unique and differentially expressed HERV loci in the B-AG 664 

dataset. A. Upset plot of the number of unique and shared HERVs upregulated in each B cell 665 

type (p < 0.001, log2fold change > 1.5).  B. Upset plot of the number of unique and shared 666 

HERVs downregulated in each B cell type (p < 0.001, log2fold change > 1.5). C. Volcano plot of 667 

differentially expressed HERVs in all cell types versus DZ, D. all versus LZ, E. all versus MB, 668 

and F. all versus NB.  669 

 670 

Supplementary Figure 3: Plasmablasts and bone marrow plasma cells express distinct 671 

HERV profiles compared to GC B cells in the B-AG dataset. A. Volcano plot of differentially 672 

expressed HERVs in all cell types versus BMPC, B. all versus PB. C. Heatmap of the top 75 673 

upregulated genes and HERVs in PB (p < 0.001, log2fold change > 1.5), and D. BMPC.   674 

 675 

Supplementary Figure 4: Key features differentiating B-AG B cell subsets based on 676 

feature selection with DESeq2 LRT, Boruta, and Lasso. A. UpsetR plot displaying the 677 

number of features selected by DESeq2 lowest likelihood ratio (LTR), the random forest 678 

classification with the Boruta algorithm, and the randomized least absolute shrinkage and 679 

selection operator (LASSO) regression, with 11 features being selected by all three methods. B. 680 

Rpart decision tree, displaying that HERVP71A_8q24.13 differentiates plasma cells (PB and 681 

BMPC) from the rest of the B cells. HERVL_2p12a differentiates DZ from the remaining cell 682 
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types, while HUERSP2_6p22.3 differentiates LZ from MB and NB. C. Normalized counts plotted 683 

for the 11 HERV features differentiating the B cell subtypes: ERVLB4_14q23.3, HERVL_2p12a, 684 

HERVP71A_8q24.13, MER61_19p12c, HARLEQUIN_19p12b, HERVFRD_2p12a, 685 

PABLB_7q11.21, HERVL_1q23.3a, HERVP71A_15q24.2, HUERSP2_6p22.3, 686 

ERVLE_6p25.1b. 687 

 688 

Supplementary Figure 5: Total % of reads assigned to TEs and HERVs by lymphoma type 689 

and sub-type. A. Mean of the percentage (%) of reads assigned to TEs in BL, DLBCL, and FL, 690 

and B. their respective subtypes. C. Mean of the percentage (%) of reads assigned to HERVs in 691 

BL, DLBCL, and FL, and D. their respective subtypes.  692 

 693 

Supplementary Figure 6: HERV upregulation and downregulation in lymphoma subtypes. 694 

A. Upset plot of the number of unique and shared HERVs upregulated in each cancer sub-type, 695 

including ABC, GCB, and unclassified DLBCL, sporadic and endemic BL by EBV status, and 696 

follicular lymphoma. B. Upset plot of the number of unique and shared HERVs downregulated in 697 

each cancer sub-type. C. Relative abundance of HERV families per lymphoma sub-type. GCB-698 

DLBCL contains the highest number of upregulated HERV loci. 699 

 700 

Supplementary Figure 7: Upregulation of DZ-associated HERVs in BL compared to 701 

DLBCL and FL. Four DZ-associated HERVs are significantly upregulated in BL compared to 702 

DLBCL and FL, as determined by a t-test to compare the means (p < 0.05). A. 703 

MER61_3q13.11, B. HML5_1q22, C. HERV3_14q32.33, D. HARLEQUIN_19p12b. 704 

 705 

Supplementary Figure 8: Upregulation of PB-associated HARLEQUIN_1q32.1 in ABC-706 

DLBCL compared to other lymphoma subtypes. HARLEQUIN_1q32.1, which is A. 707 
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associated with BMPC and PB, is significantly upregulated in B. ABC-DLBCL compared to 708 

GCB-DLBCL and unclassified-DLBCL and BL (t-test, p < 0.005). 709 

 710 

Supplementary Figure 9: Unsupervised HERV-based classification of DLBCL samples 711 

compared to previous classifications. A. Alluvial plot of 529 DLBCL samples, and their 712 

respective class calls for the COO classifications, DBL Hit status, scCOO group, Chapuy group, 713 

EcoTyper class, and Lymphgen class, compared to the HERV-based clusters. Transcriptomic 714 

and retrotranscriptome signatures do not clearly segregate the samples based on previous 715 

classification, as observed in B. Gene-based PCA plot of 529 DLBCL samples, colored by COO 716 

classification, C. HERV-based PCA plot of 529 DLBCL samples, colored by COO classification, 717 

D. Gene-based PCA plot of 529 DLBCL samples, colored by EcoTyper classes, E. HERV-based 718 

PCA plot of 529 DLBCL samples, colored by EcoTyper classes, F. Gene-based PCA plot of 529 719 

DLBCL samples, colored by LymphGen classifications, and G. HERV-based PCA plot of 529 720 

DLBCL samples, colored by LymphGen classifications.  721 

 722 

Supplementary Figure 10: Key features differentiating B-AG B cell subsets based on 723 

feature selection with DESeq2 LRT, Boruta, and Lasso. A. UpsetR plot displaying the 724 

number of features selected by DESeq2 lowest likelihood ratio (LTR), the random forest 725 

classification with the Boruta algorithm, and the randomized least absolute shrinkage and 726 

selection operator (LASSO) regression, with 3 features being selected by all three methods, and 727 

4 by both LASSO and Boruta. B Normalized counts plotted for the 4 HERV features 728 

differentiating the B cell subtypes: B. HML2_7p22.1, C. HERVH_16p13.2e , D. 729 

HERVW_2q23.3, and E. HERVH_7q11.23a. F. Rpart decision tree, displaying that 730 

HERVH_16p13.2e differentiates HC7 from the remaining clusters. HERVW_2q23.3 731 

differentiates HC1 and HC2 from the remaining clusters, and then further differentiates HC2 732 

from HC1, where its expression is the highest. HML2_7p22.1 separates HC4 and HC6 from 733 
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HC3, HC4, and HC7, and then further differentiates within the clusters. HERVH_7q11.23a 734 

differentiates HC2 from HC3, HC4 from HC6, and HC7 from HC3 and HC5.  735 

 736 

Supplementary Figure 11: ABC-like DLBCL clusters with unique HERV signatures. HC1 737 

and HC2 clusters contained the highest number of ABC-DLBCL samples. Top 75 differentially 738 

expressed genes and HERVs (p < 0.001, log2fold change > 1.5) in A. HC1, and B. HC2.  739 

 740 

Supplementary Figure 12: GCB-like DLBCL clusters with unique HERV signatures. HC3 741 

and HC4 clusters contained the highest number of GCB-DLBCL samples. Top 75 differentially 742 

expressed genes and HERVs (p < 0.001, log2fold change > 1.5) in A. HC3, and B. HC4.  743 

 744 

Supplementary Figure 13: PB-like and Post-GCB DLBCL clusters with unique HERV 745 

signatures. Top 75 differentially expressed genes and HERVs (p < 0.001, log2fold change > 746 

1.5) in A. The HC5 cluster, which was most associated with the PB cell-of-origin, and B. HC7 747 

cluster, which was enriched in PB, BMPC, and MB. 748 

 749 

Supplementary Figure 14: HERV upregulation and downregulation in BL HERV clusters 750 

and clinical subtypes. A. Volcano plot of differentially expressed HERVs in BL-C1 vs BL-C2 (p 751 

< 0.001, log2fold change > 1.5), B. EBV- versus EBV+. C. Relative abundance of loci assigned 752 

to HERV families the HERV-driven BL-C1 and BL-C2 clusters, and D. Comparing between all 753 

EBV negative, EBV positive, Endemic, Endemic EBV negative, Endemic EBV positive, 754 

Sporadic, Sporadic EBV negative.  755 

 756 

Supplementary Figure 15: Expression of selected BL features in other lymphoma 757 

subtypes. Feature selection of differentially expressed HERVs in the two BL clusters found 4 758 

HERVs sufficient to distinguish between BL-C1 and BL-C2. The same HERVs are also 759 
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expressed in DLBCL and FL, but at different levels. A. ERVLE_2p25.3c is expressed most in 760 

Sporadic BL EBV negative, B. MER61_4p16.3 is expressed across lymphoma types, C.  761 

ERV316A3_2q21.2b has the highest expression in sporadic BL EBV negative, and D.  762 

ERVLE_5p13.2c is expressed in all lymphoma types, but with highest expression in BL.  763 

 764 

Supplementary Figure 16: Top enriched MSigDB gene sets and pathways in DLBCL 765 

HERV clusters. A. Enrichment of Gene Ontology Biological Processes pathways for the seven 766 

HERV clusters, showcasing distinct enrichment patterns for each cluster. The most enriched 767 

pathways for HC1 were chromosome organization, chromatin remodeling, positive regulation of 768 

RNA metabolic process, ncRNA processes, mRNA metabolic process, and cellular response to 769 

DNA damage stimulus. The pathways most enriched in HC2 were rRNA processing, RNA 770 

processing, ribosome biogenesis, ribonucleoprotein complex biogenesis, ncRNA processing, 771 

ncRNA metabolic process, along with DNA metabolic process and chromosome organization. 772 

The pathways most enriched in HC3 were cell motility, cell adhesion, locomotion, epithelium 773 

development, response to endogenous stimulus. The pathways most enriched in HC4 were 774 

small molecule metabolic process, peptide and organonitrogen compound biosynthetic process, 775 

generation of precursor metabolites and energy, cytoplasmic translation, and amide metabolic 776 

processes. HC5 had an overall enrichment of immune response signatures. HC6 and HC7 did 777 

not have any positive enrichment. B. Enrichment of BioCarta pathways for the seven HERV 778 

clusters. Similar to the GO BP pathways, HC5 had the most striking enrichment of immune and 779 

inflammatory pathways.  780 

 781 

Supplementary Figure 17: HERV-driven DLBCL subtypes have distinct biological 782 

properties and survival outcomes for unclassified DLBCL samples. Survival plot of five 783 

DLBCL clusters containing unclassified cases. HC3 and HC6 contained only one unclassified 784 
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case each, and were thus omitted. HERV classes with the worst prognosis are HC2 and HC5, 785 

followed by HC1, HC4, and HC7.  786 

 787 
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