

1 **A conserved and druggable pocket in class B G protein coupled receptors for**
2 **orally active small molecule agonists**

3
4

5 Li-Hua Zhao^{1,2##*}, Qian He^{1,2#}, Qingning Yuan^{1#}, Yimin Gu^{1,2}, Xinheng He^{1,2}, Junrui
6 Li², Kai Wang², Yang Li^{1,2}, Jianhua Shen^{1,2}, H. Eric Xu^{1,2*}

7

8 ¹State Key Laboratory of Drug Research, Center for Structure and Function of Drug
9 Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences,
10 Shanghai 201203, China

11 ²University of Chinese Academy of Sciences, Beijing 100049, China

12

13 [#]These authors contributed equally: Li-Hua Zhao, Qian He, Qingning Yuan

14

15

16 *Correspondence: zhaoliuhuawendy@simm.ac.cn (Li-Hua Zhao); eric.xu@simm.ac.cn
17 (H. Eric Xu)

18

19 **Abstract**

20 **Class B G protein-coupled receptors (GPCRs), including glucagon-like receptor 1
21 (GLP-1R) and parathyroid hormone receptor 1 (PTH1R), are peptide hormone
22 receptors and important drug targets. Injectable peptide drugs targeting class B
23 GPCRs have been developed for the treatment of many diseases, including type 2
24 diabetes, obesity, and osteoporosis, but orally available small molecule drugs are
25 hotly pursued in the field, especially small molecule agonists of GLP-1R and
26 PTH1R. Here we report the first high-resolution structure of the human PTH1R
27 in complex with the stimulatory G protein (G_s) and a small molecule agonist,
28 PCO371, which reveals an unexpected binding mode of PCO371 at the interface
29 of PTH1R and G_s. The binding site of PCO371 is totally different from all binding
30 sites previously reported for small molecules or peptide ligands in GPCRs.
31 Residues that make up the PCO371 binding pocket are mostly conserved in class
32 B GPCRs and a single mutation in PTH type 2 receptor (PTH2R) and two residue
33 mutations in GLP-1R convert these receptors to respond to PCO371 activation.
34 Functional assays reveal that PCO371 is a G-protein biased agonist that is
35 defective in promoting PTH1R-mediated arrestin signaling. Together, these results
36 uncover a distinct binding site for designing small molecule agonists for PTH1R
37 and possible other members of class B GPCRs and define a receptor conformation
38 that is only specific for G protein activation but not arrestin signaling. These
39 insights should facilitate the design of distinct types of class B GPCR small
40 molecule agonists for various therapeutic indications.**

41

42 **Introduction**

43 Class B G protein-coupled receptors (GPCRs) are peptide hormone receptors that are
44 drug targets for many diseases, including osteoporosis, type 2 diabetes, obesity, bone
45 metabolism diseases, cardiovascular disease, migraine, and depression¹⁻⁴. Structures of
46 all 15 members of class B GPCRs with peptide agonists have been determined in recent
47 years², providing important molecular mechanisms of hormone recognition and
48 receptor activation for the whole class B GPCRs and rational templates for designing
49 better peptidic and small-molecule drugs². Class B GPCRs are different from class A
50 GPCRs because many therapeutic small molecule agonist drugs have been developed
51 for class A but not for class B GPCRs⁵. For class B GPCRs, despite great efforts toward
52 discovering orally available non-peptidic agonists, few small molecule agonists of class
53 B GPCRs are known^{6,7}. This is a difficult problem in class B GPCRs, because their
54 natural ligands are peptide hormones, which activate the receptor through peptide
55 binding to a large open pocket within the receptor transmembrane domain (TMD) and
56 the high affinity binding of peptide hormones requires the interaction with the receptor
57 extracellular domain (ECD)⁸. To date, only a few small molecule agonists of GLP-1R
58 and PTH1R have been reported⁹⁻¹⁷. Several structures of GLP-1R with a partial or full
59 non-peptidic small molecule agonist have also been reported^{9,13,18-20}, which reveals that
60 they bind to the same binding site of peptide hormones or to an allosteric site at the
61 cytoplasmic end of TM6^{9,11,13,18,21}. Nonetheless, there is no orally available small
62 molecule drugs of class B GPCRs. It is challenging but remains a long-term goal to
63 replace the injectable peptide drugs with oral drugs, with aims to improve the quality
64 of life of patients, the profiles of side-effects, and the costs of peptide drugs.

65
66 Parathyroid hormone receptor 1 (PTH1R) is a classic member of class B GPCRs that
67 regulates calcium homeostasis and skeleton development through activation by two
68 endogenous peptide hormones, parathyroid hormone (PTH) and PTH-related peptide
69 (PThrP)^{8,22,23}. PTH1R is a clinically proven target for hypoparathyroidism and
70 osteoporosis, which can be treated with injections of PTH or PThrP analogs^{8,17}.

71 Recently Nishimura et al²⁴ reported a human PTH1R agonist, PCO371, as a potent and
72 orally available small molecule agonist that is currently being evaluated in a phase 1
73 clinical study for the treatment of hypoparathyroidism^{17,25}. However, the molecular
74 mechanism of PTH1R activation by PCO371 remains unknown. In this paper, we report
75 the structure of PTH1R bound to PCO371 and its functional characterization as a G-
76 protein biased agonist. To our surprise, the structure reveals that PCO371 binds to an
77 unexpected site at the interface between PTH1R and G-protein, distinct from all other
78 sites known for GPCR ligands. Importantly, the PCO371 pocket is mostly conserved in
79 class B GPCRs, thus opening a new avenue for designing small drug molecules
80 targeting specifically to this pocket.

81

82 **Results**

83 **Characterization of PCO371 and structure determination**

84 PCO371 is a potent and orally available small molecule for treatment of
85 hypoparathyroidism²⁴. PCO371 was characterized as an agonist of PTH1R as it can
86 induce cAMP production to the same level as did PTH (1–34)¹⁷, but it remains unknown
87 whether PCO371 could induce PTH1R-mediated β-arrestin signaling (Fig. 1a). We first
88 investigated their effects on G protein signaling pathways using cAMP accumulation,
89 and their effects on β-arrestin signaling using β-arrestin recruitment assay. We
90 confirmed that PCO371 is a full G-protein agonist, but discovered that PCO371, unlike
91 PTH peptide, is defective in promoting PTH1R-mediated arrestin signaling (Fig. 1b-d).
92 These data suggest that PCO371 is a G-protein biased agonist.

93

94 To study the G-protein-biased agonism of PCO371, we prepared the PCO371-bound
95 PTH1R-G_s complex using the NanoBiT tethering strategy, which details are described
96 in methods^{26,27}. The carboxyl terminus of PTH1R was truncated to residue H502 to
97 increase the expression level of PTH1R as we showed previously (Extended Data
98 Fig.1a)²⁸. The complex was purified by size-exclusion chromatography and verified by
99 SDS gel (Extended Data Fig.1b). The structure of PCO371-PTH1R-G_s complex was

100 solved by cryo-EM to high resolution of 2.57 Å (Fig. 1e, Extended Data Fig. 2, and
101 Extended Data Table 1). The high resolution cryo-EM map is sufficiently clear to place
102 the receptor, the G_s heterotrimer, and the small molecule agonist in the PTH1R-G_s
103 protein complex (Fig. 1e-h and Extended Data Fig. 3). Unlike the peptide-bound
104 PTH1R-G_s structures, the PTH1R ECD was invisible in this PCO371-bound PTH1R-
105 G_s structure due to the flexibility of the ECD in the absence of the peptide binding.

106

107 **Overall architecture**

108 The overall structure of PTH1R exhibits a canonical seven-transmembrane domain fold
109 of GPCRs and the hallmark of class B GPCRs activation with a kink in the middle of
110 the TM6 (Extended Data Fig. 4a and b). We also observed several remarkably distinct
111 features in PCO371-PTH1R-G_s structure compared to three cryo-EM structures of
112 PTH1R in complexes with PTH, PTHrP, and LA-PTH as previously reported (Extended
113 Data Fig. 4, Extended Data Fig. 5)^{28,29}. The notable difference is that PCO371 occupies
114 a distinct ligand-binding pocket of PTH1R, comprising of intracellular portion of TM2,
115 TM3, TM6 and TM7 as well as helix H8, at the interface between PTH1R and the G
116 protein (Fig. 1h, Extended Data Fig. 4a and b). This binding pocket is different from
117 the peptide hormone binding pockets of class B GPCRs and the small-molecule binding
118 pockets of GLP-1R (Fig. 2, Extended Data Fig. 4b, 5, 6). In responding to PCO371
119 binding, the extracellular tips of helices TM1, TM6, and TM7 in the PCO371-PTH1R-
120 G_s structure shift counterclockwise by as much as 7–8 Å, relative to their positions in
121 the PTH-PTH1R-G_s structure (Extended Data Fig. 4c), which results in a collision
122 between the extracellular end of TM6 and the bound PTH peptide, consistent with the
123 report that the presence of PCO371 would inhibit the binding of PTH to its TMD¹⁷. On
124 the other hand, relative to the peptide-bound PTH1R structures, we observed a ~4 Å
125 inward shift at the cytoplasmic end of TM6 as measured by the C α of R400^{6,32b} and a
126 1.4 Å outward shift at the cytoplasmic end of TM7 as measured by the C α of I458^{7,56}
127 (Extended Data Fig. 4d). Together, these observations suggest that PCO371 induced a
128 very distinct PTH1R conformation, unseen for structures of all other class B GPCRs,

129 to couple with downstream signal transducers.

130

131 **PCO371 has an unanticipated binding pattern**

132 Within the structure, PCO371 adopted a horizontal “U”-shape pose that wraps around
133 the bottom half (intracellular half) of TM6, (Fig. 2a-c), forming extensive interactions
134 with residues within TM2, TM3, TM6, TM7 and H8 of receptor and the α 5 helix of $\text{G}\alpha_s$
135 (Fig. 2d). The chemical structure of PCO371 is comprised of the head imidazolidinone,
136 the middle dimethylphenyl, the sulfonamide linker, the piperidine motif, the middle
137 spiro-imidazolone, and the tail trifluoromethoxy phenyl (Fig. 1f and Extended Data Fig.
138 7a). The head imidazolidione and the middle phenyl of PCO371 are embedded in the
139 interface between the receptor and the $\text{G}\alpha_s$ protein and form interactions with the
140 residues within TM2, TM6, TM7 and H8, as well as with α 5 helix of $\text{G}\alpha_s$ (Figure 2d-e).
141 The head imidazolidione of PCO371 also forms a hydrogen bond with R219^{2.46b} and a
142 polar interaction with Y391 from α 5 helix of $\text{G}\alpha_s$. In addition, the head imidazolidione
143 and the middle phenyl of PCO371 form extensive hydrophobic interactions with the
144 receptor and α 5 helix of $\text{G}\alpha_s$ (Fig. 2d-e). Specifically, both Y459^{7.57b} and Y391 of $\text{G}\alpha_s$ -
145 α 5 form pi stacking interactions with the middle phenyl of PCO371. (Fig. 2d-e).

146

147 In the middle of PCO371, the sulfonamide group forms polar interactions with E302^{3.50b},
148 the piperidine group form hydrophobic contacts with I299^{3.47b} (Fig. 2d-e). The middle
149 spiro-imidazolone group of PCO371 forms hydrogen bond interactions with the main
150 chain amine of F417^{6.49b} and side chain of Y459^{7.57b}. The middle spiro-imidazolone
151 together with the tail phenyl group form extensive hydrophobic interactions with
152 PTH1R residues from TM3, TM6 and TM7 (Fig. 2d-e). In addition, the tail phenyl
153 inserts into the detergent micelle, probably interacts with the lipid bilayer in a native
154 system (Fig. 2f). Compared to peptide bound PTH1R structures, the binding of PCO371
155 pushes the middle of TM6 outward by \sim 8 Å as measured by the C α of P415^{6.47b} to leave
156 space to accommodate PCO371 (arrows in Extended Fig. 4b&4d).

157

158 To investigate the key residues for ligand binding and the receptor activation, we
159 assessed PCO371-induced G_s activation by the wild-type and mutant PTH1Rs using
160 cAMP assays. Alanine mutations in hydrophobic pocket residues (I299^{3.47b}, L413^{6.45b},
161 P415^{6.47b}, and I458^{7.56b}) significantly reduced the potency as measured by pEC50 for
162 PCO371 relative to the wild-type PTH1R (Fig.2g, Extended Data Fig. 7b and Extended
163 Data Table 2), indicating these hydrophobic residues play important roles in
164 transmitting PTH1R G-protein signaling. It is in line with the previously reported result
165 that P415^{6.47b} of PTH1R is a key residue for PCO371-mediated PTH1R activation¹⁷. In
166 addition, alanine substitutions of R219^{2.46b} and Y459^{7.57b} showed clearly a great
167 reduction in the potency of PCO371-mediated G_s activation. Alanine substitutions of
168 E302^{3.50b} and H223^{2.50b} also diminished PCO371-induced cAMP production (Fig. 2g,
169 Extended Data Fig. 7b and Extended Data Table 2), which suggests the importance of
170 these residues in PCO371 function. Taken together, the unexpected interface bound by
171 PCO371 between PTH1R and G-protein demonstrates the important roles of individual
172 pocket residues in PCO371 recognition and specificity.

173

174 **PTH1R conformational changes and activation**

175 Despite all the active PTH1R structures were solved in the same G protein-bound
176 state^{23,28,30}, yet they display conformational differences at their TMD bundles between
177 the PCO371-bound and the PTH-bound PTH1R structures. The most notable
178 observation is a 7.5 Å inward shift of at the extracellular end of TM6 in the PCO371-
179 bound PTH1R structure (as measured by the C α of M425^{6.57b}, Fig. 3a), which causes
180 the extracellular end of TM6 (residues M425^{6.57b}, Y421^{6.53b} and F424^{6.56b}) to collide
181 with the PTH N-terminal residues (S1, V2, and S3) (Fig. 3a). This is consistent with the
182 report that PCO371 can inhibit the binding of peptides to their TMD¹⁷. The conserved
183 PxxG motif (P415^{6.47b}–L416^{6.48b}–F417^{6.49b}–G418^{6.50b}) at the middle of TM6 in the
184 PTH-bound PTH1R structure also collide with PCO371 (Fig. 3b), therefore the PxxG
185 motif in the PCO371-PTH1R-G_s complex structure is shifted outward to create the
186 binding pocket of PCO371 (Fig. 3b-c). Corresponding to the outward movement of

187 P415^{6.47b} in the PCO371-PTH1R-G_s complex structure, the kink of TM6 at P415^{6.47b} is
188 less pronounced than the TM6 kink in the PTH-bound structure (Fig. 3b), leading to
189 less pronounced outward movement (~4 Å) of TM6 in the cytoplasmic side.

190

191 Compared with the PTH-PTH1R-G_s complex structure, the PCO371-PTH1R-G_s
192 complex structure displays large differences in the extracellular half of the TMD
193 structures but retains very similar structure in the intracellular half of the TMD structure
194 (Extended Data Fig.4b). Specifically, a large inward movement at the extracellular end
195 of TM6, which pushes large outward movements at the extracellular ends of TM7 and
196 TM1 (Extended Data Fig.4c). The rearrangement of these structural elements at
197 extracellular side has cascaded into changes of three conserved polar interaction
198 networks in class B GPCR activation as shown in Figure 3d-f. The conformational
199 changes of H420^{6.52b} and Q451^{7.49b} in the central polar network of the PCO371-bound
200 PTH1R structure would resolve the steric clash with F417^{6.49b}, which is flipped upward
201 in the PCO371-bound structure from the PTH-bound structure (Fig. 3d). Y459^{7.57b} from
202 the HETY network is shifted upward and outward to bind with PCO371. The outward
203 shift of P415^{6.48b} resolve the steric clash with conformational changes of Y459^{7.57b} (Fig.
204 3e). The outward shift of N463^{7.61b} and E465^{8.49b} from the TM2-TM6-TM7-H8 network
205 also resolves the steric clash with each other, and the clash of E465^{8.49b} with R219^{2.46b}
206 (Fig. 3f). These conformational rearrangements together illustrate the structural
207 changes of PTH1R in response to the change of ligand binding from PTH to PCO371,
208 therefore highlighting the capacity of PTH1R to adopt totally different ligands, which
209 induce very distinct receptor conformations in the peptide binding pocket but the
210 receptor can coalesce into a very similar intracellular pocket to couple downstream G
211 proteins.

212

213 **The unique aspect of G protein coupling of PTH1R by PCO371**

214 Although the different binding patterns between peptide agonists and the small
215 molecule agonist, PCO371, they activate PTH1R by inducing a consensus kink at the

216 middle of TM6 and subsequent outward shift of the cytoplasmic end of TM6 to form a
217 binding cavity for G protein coupling ([Extended Data Fig. 8a-b](#)). Different from the
218 binding modes of all reported peptides and small molecule agonists, PCO371 is at the
219 interface between the receptor and the C-terminus of $\text{G}\alpha_s$ - $\alpha 5$ in the PCO371-bound
220 PTH1R structure ([Extended Data Fig. 8c-e](#)). The C-terminal $\alpha 5$ helix of $\text{G}\alpha_s$ makes
221 interactions with TM2, TM3, TM5, TM6 and H8 in both PCO371- and PTH-bound
222 PTH1R structures ([Extended Data Fig. 8d-f](#)). In addition, L393 of $\text{G}\alpha_s$ - $\alpha 5$ forms
223 hydrophobic contact with PCO371, E392 and Y391 of $\text{G}\alpha_s$ - $\alpha 5$ make polar interactions
224 with PCO371 ([Extended Data Fig. 8e](#)). These additional interactions are supported by
225 well-resolved density in the cryo-EM map ([Extended Data Fig. 8c](#)) and they can
226 stabilize the active receptor conformation in the G-protein coupling state (R^G)¹⁷. The
227 direct contact of PCO371 with both PTH1R and G protein is consistent with the data
228 reported by Tamura *et al.*¹⁷, which has showed that the duration of cAMP response
229 induced by PCO371 is much shorter than that of PTH because PCO371 would bind
230 weakly to PTH1R in the absence of a G protein, consistent with that PCO371 exhibits
231 as an R^G -selective ligand¹⁷.

232

233 **Structural basis of selectivity of PCO371 for PTH1R**

234 To investigate the mechanisms underlying the selectivity of PCO371 for PTH1R over
235 other class B GPCRs, we performed cAMP production assays using transfected wild
236 type receptors of PTH1R, PTH2R and GLP-1R in AD293 cells. PCO371 did not have
237 activity in wild type PTH2R and GLP-1R ([Fig. 4a-b](#)). A single residue replacement of
238 L370^{6,47b}P of PTH2R converts its response to PCO371-induced activation, while
239 P415^{6,47b}A mutation inactivated PTH1R to respond PCO371 but the mutated receptor
240 retained full activation by PTH ([Fig. 4a, c](#)). It is worth noting that P^{6,47b} is a conserved
241 residue in TM6 of class B GPCRs except for L370^{6,47b} in PTH2R ([Fig. 4d](#)), and our data
242 suggest that P^{6,47b} in PTH receptors is a key residue for the selective activation of PTH
243 receptors by PCO371.

244

245 Structure-based sequence alignment of class B GPCRs reveals that the PCO371 binding
246 interface has three non-conserved residues between PTH1R and PTH2R and five non-
247 conserved residues between PTH1R and GLP-1R (Fig. 4d, Extended Data Fig. 9a-e).
248 In contrast to single mutation in PTH2R that can converts its response to PCO371, all
249 single mutations that change GLP-1R residue to PTH1R residue at the five non-
250 conserve PCO371 pocket residues, which mutated receptors retained full activation by
251 GLP-1 peptide, did not convert GLP-1R to respond to PCO371 activation (Extended
252 Data Fig. 9f-g). Combined pocket mutations of two residues, four residues, or five
253 residues can convert the mutated GLP-1R to be activated by PCO371 but not by PTH
254 (Fig. 4b-c). The degree of PCO371 activation by the two-residue mutated GLP-1R is
255 the same (if not better) as that by the four-residue or five-residue mutated GLP-1R,
256 suggesting these two residues are key for PCO371 selectivity.

257

258 **A conserved binding site in class B GPCRs for small molecule ligands**

259 The ability of PCO371 activation by one-residue mutated PTH2R or two-residue
260 mutated GLP-1R suggest a possibility of a similar PCO371 binding pocket conserved
261 in members of class B GPCRs. To validate this hypothesis, we performed sequence
262 alignment and homology modeling based on the PCO371-bound PTH1R structure (Fig.
263 4d and Fig. 5a). Sequence alignment reveals that most residues of the 15 PTH1R
264 residues that comprise the PCO371 pocket are conserved across class B GPCRs (Fig.
265 4d). Structural modeling of all other members of class B GPCRs suggest the existence
266 of a similar PCO371 binding pocket in these receptors, in which PCO371 could adopt
267 a similar binding mode to the PCO371-PTH1R structure (Fig. 5a). To corroborate the
268 sequence and structure analyses, we tested the ability of PCO371 to activate other
269 members of class B GPCRs (Fig. 5b). In addition to PTH1R, seven wildtype class B
270 GPCRs (GCGR, GIPR, PAC1R, GHRHR, SCTR, VIP1R, and VIP2R) can be activated
271 by PCO371 (Fig 5b). For GLP-1R, GLP-2R, PTH2R, and CRF2R, their wildtype
272 receptors cannot be activated by PCO371 but one or two mutations in the pocket
273 residues can convert them to respond to PCO371 activation. Based on these results, we

274 conclude that a PCO371-like pocket is mostly conserved in class B GPCRs.

275

276 **Conclusions**

277 In summary, the structure of PCO371-bound PTH1R-G_s complex provides a structural
278 basis of small molecule agonist binding and activation of PTH1R. This work reveals an
279 unanticipated small molecule agonist-binding site and serve as a template for homology
280 modelling of class B GPCRs. The PCO371 binding site is within the TMD at the
281 interface with G protein, which is far away from the receptor ECD, thus small molecule
282 agonists at this site may not require to mimic the interactions of peptides with ECD to
283 promote the binding affinity. Class B GPCRs have higher sequence homology in their
284 TMDs than their ECDs. Our modeling and receptor activation studies suggest that a
285 PCO371-like pocket is likely conserved in most members of class B GPCRs, thus
286 providing a general and exciting direction for structure-based design of small-molecule
287 drugs targeting this new binding site at class B GPCRs.

288

289

290 **Materials and Methods**

291 **Constructs of PTH1R and heterotrimeric G proteins**

292 The human PTH1R (residues 27-502) with G188A and K484R mutations was cloned
293 into pFastBac vector (Invitrogen) with the haemagglutinin signal peptide (HA),
294 followed by a TEV protease cleavage site and a double MBP (2MBP) and His tag to
295 facilitate expression and purification²⁸. To facilitate a stable complex, the above PTH1R
296 construct was added the LgBiT subunit (Promega) at the C terminus of PTH1R with a
297 17-amino acid linker. Based on the published DNG α_s , a modified bovine G α_s
298 (mDNG α_s), its N terminus (M1-K25) and α -helical domain (AHD F68-L203) of G α_s
299 were replaced with the N terminus (M1-M18) and AHD (Y61-K180) of the human G α_i ,
300 which can bind scFv16 and Fab_G50³¹ and the residues N254-T263 of G α_s were deleted.
301 In addition, eight mutations (G49D, E50N, L63Y, A249D, S252D, L272D, I372A, and
302 V375I) were added to improve stability of G protein subunits³². To facilitate the folding
303 of the G protein, mDNG α_s was co-expressed with GST-Ric-8B³³. Rat G β_1 was fused
304 with a His-tag at the N terminus and with a SmBiT subunit (peptide 86, Promega)³⁴
305 after a 15-amino acid linker at its C terminus. The wild type (WT) and mutants of
306 PTH1R, PTH2R, GLP-1R, GLP-2R, GCGR, GIPR, GHRHR, SCTR, PAC1R, VIP1R,
307 VIP2R and CRF2R were constructed into the pcDNA6.0 vector (Promega) for cAMP
308 accumulation. PTH1R, β -arrestin1 and β -arrestin2 were constructed into pBiT vector
309 for arrestin recruitment. All constructs were cloned using Phanta Max Super-Fidelity
310 DNA Polymerase (Vazyme Biotech Co., Ltd).

311

312 **Expression of PCO371-PTH1R-Gs complex**

313 To facilitate a stable complex assembly and purification, PTH1R and G proteins were
314 co-expressed in *Sf9* insect cells (Invitrogen). The *Sf9* cells grew to a density of $3.5 \times$
315 10^6 cells/mL in ESF 921 cell culture medium (Expression Systems) for expression. We
316 infected the cells with five separate virus preparations at a ratio of 1:2:2:2:2, including
317 PTH1R (27-502)-17AA-LgBiT-2MBP, mDNG α_s , G β_1 -peptide 86, G γ_2 , and GST-Ric-
318 8B. The infected cells were cultured at 27°C for 48 h, the cells were harvested by

319 centrifugation and washed with PBS once. The cell pellets were frozen at -80°C for
320 further usage.

321

322 **Expression and purification of Nb35**

323 Nanobody-35 (Nb35) was expressed in *E. coli* BL21 cells, the cultured cells were
324 grown in 2TB media with 100 µg/mL ampicillin, 2 mM MgCl₂, 0.1% glucose at 37°C
325 for 2.5 h until OD600 of 0.7-1.2 was reached. Then the culture was induced with 1 mM
326 IPTG at 37°C for 4-5 h, and harvested and frozen at -80°C for further purification. Nb35
327 was purified by nickel affinity chromatography and followed by size-exclusion
328 chromatography using HiLoad 16/600 Superdex 75 column or following overnight
329 dialysis against 20 mM HEPES, pH 7.4, 100 mM NaCl, 10% glycerol. The Nb35
330 protein was verified by SDS-PAGE and store at -80 °C.

331

332 **Purification of PCO371-PTH1R-Gs complex**

333 The complex was purified according to previously described methods^{28,35}. The cell
334 pellets were resuspended in 20 mM HEPES pH 7.4, 100 mM NaCl, 10 mM MgCl₂, 10
335 mM CaCl₂, 2 mM MnCl₂, 10% glycerol, 0.1 mM TCEP, 15 µg/mL Nb35, 25 mU/mL
336 apyrase (Sigma), 200 µM PCO371 (Hefei Fuya Biotechnology Co., Ltd), supplemented
337 with Protease Inhibitor Cocktail (TargetMol, 1 mL/100 mL suspension). The lysate was
338 incubated for 1 h at room temperature and then solubilized by 0.5% (w/v) lauryl maltose
339 neopentylglycol (LMNG, Anatrace) supplemented with 0.1% (w/v) cholesteryl
340 hemisuccinate TRIS salt (CHS, Anatrace) for 2 h at 4°C. The supernatant of the
341 solubilized membranes was collected by centrifugation at 65,000 × g for 40 min, then
342 incubated with Amylose resin (Smart-lifesciences) for 2 h at 4°C. The resin was loaded
343 onto a gravity flow column and washed with 20 column volumes of 20 mM HEPES,
344 pH 7.4, 100 mM NaCl, 10% glycerol, 5 mM CaCl₂, 5 mM MgCl₂, 1 mM MnCl₂, 0.01%
345 (w/v) LMNG, 0.01% glyco-diosgenin (GDN, Anatrace) and 0.004% (w/v) CHS, 100
346 µM PCO371, and 25 µM TCEP. After washing, the protein was cut with TEV protease
347 on column overnight at 4°C. Next day the flow through was collected and concentrated,

348 then PCO371-PTH1R-G_s flow through was loaded onto a Superdex200 10/300 GL
349 column (GE Healthcare), with the buffer consisting of 20 mM HEPES, pH 7.4, 100 mM
350 NaCl, 2 mM MgCl₂, 0.00075% (w/v) LMNG, 0.00025% GDN, 0.0005% (w/v)
351 digitonin (Biosynth), 0.0002% (w/v) CHS, 50 μM PCO371, and 100 μM TCEP. The
352 complex fractions were collected and concentrated for electron microscopy
353 experiments.

354

355 **Cryo-EM grid preparation and data acquisition**

356 For cryo-EM grid preparation of PCO371-PTH1R-G_s complex, 3.0 μL purified protein
357 at a concentration of ~4.95 mg/mL was used for the glow-discharged holey carbon grids
358 (Quantifoil, R1.2/1.3, Au, 300 mesh). The grids were blotted for 2s at 4°C, in 100%
359 humidity using a Vitrobot Mark IV (Thermo Fisher Scientific) and then plunge-frozen
360 in liquid ethane. The frozen grid of PCO371-PTH1R-G_s complex was transferred to a
361 Titan Krios G4 equipped with a Gatan K3 direct electron detector and cryo-EM movies
362 were performed automatic data collection. with super-resolution mode at a pixel size of
363 0.412 Å using EPU at Advanced Center for Electron Microscopy at Shanghai Institute
364 of Materia Medica, Chinese Academy of Sciences. A total of 8,002 Movies were
365 recorded with pixel size of 0.824 Å at a dose of 50 electron per Å² for 36 frames. The
366 defocus range of this dataset was -0.8 μm to -1.8 μm. For dimer complex, another 5,364
367 movies were obtained with same parameters.

368

369 **Cryo-EM data processing**

370 All dose-fractionated image stacks were subjected to beam-induced motion correction
371 by Relion 4.0³⁶. The defocus parameters were estimated by CTFFIND 4.1³⁷ of
372 Cryosparc³⁸. For PCO371-PTH1R-G_s dataset, template auto-picking yielded 7,124,33
373 particles, which were processed two rounds by reference-free 2D classification using
374 Cryosparc³⁸. With initial model, after two rounds of 3D classification using Relion,
375 local masks were used on receptor. 1,099,315 particles were used to further refinement
376 and polishing. Particle subtractions were used on complex to subtract micelle and do
377 refinement, yielding reconstructions with global resolution of 2.57 Å, and subsequently

378 post-processed by DeepEMhancer³⁹.

379

380 **Model building and refinement**

381 The cryo-EM structure of the LA-PTH1R-G_s-Nb35 complex (PDB code 6NBF) was
382 used as the start for model building and refinement against the electron microscopy
383 map. The model was docked into the electron microscopy density map using Chimera⁴⁰,
384 followed by iterative manual adjustment and rebuilding in COOT⁴¹. Real space and
385 Rosetta refinements were performed using Phenix⁴². The model statistics were
386 validated using MolProbity⁴³. Fitting of the refined model to the final map was analyzed
387 using model-versus-map FSC. To monitor the potential over-fitting in model building,
388 FSC_{work} and FSC_{free} were determined by refining ‘shaken’ models against unfiltered
389 half-map-1 and calculating the FSC of the refined models against unfiltered half-map-
390 1 and half-map-2. The final refinement statistics are provided in Supplementary Table
391 2. Structural figures were prepared in Chimera and PyMOL (<https://pymol.org/2/>).

392

393 **Modeling and volume calculation**

394 The homology modeling of class B GPCRs was based on the PTHR structure using
395 MODELLER⁴⁴. The sequence of PTHR in our cryo-EM structure was used as the
396 reference sequence. After alignment from the receptor sequence from other class B
397 GPCR structures, AutoModel of MODELLER was applied for homology modeling.
398 The structure with the lowest Discrete Optimized Protein Energy (DOPE) potential was
399 used for the following volume calculation using PyVOL⁴⁵. In volume calculation, the
400 minimum radius was 1.2, while the maximum radius was 3.4. The pocket was defined
401 as the residues around 5 Å of ligand and during calculation, the G_α protein of PTHR
402 was kept.

403

404 **cAMP accumulation assay**

405 PTH, PCO371, TIP39 and GLP-1 stimulated cAMP accumulations were measured by
406 a LANCE Ultra cAMP kit (PerkinElmer). After 24 h culture, the transfected AD293

407 cells were seeded into 384-well microtiter plates at a density of 3,000 cells per well in
408 HBSS supplemented with 5 mM HEPES, 0.1% (w/v) BSA or 0.1% (w/v) casein and
409 0.5 mM 3-isobutyl-1-methylxanthine. The cells were stimulated with different
410 concentrations of peptide agonists for 30 min at RT. Eu-cAMP tracer and ULightTM-
411 anti-cAMP were then diluted by cAMP detection buffer and added to the plates
412 separately to terminate the reaction. Plates were incubated at RT for 15min and the
413 fluorescence intensity measured at 620 nm and 665 nm by an EnVision multilabel plate
414 reader (PerkinElmer).

415

416 **NanoBiT β-Arrestin recruitment assay**

417 The recruitment of PTH1R to β-arrestin was detected in HEK293 cells using the
418 NanoLuc Binary System (NanoBiT; Promega). The LgbiT subunit was fused to the C-
419 terminus of PTH1R and the SmBiT subunit was fused to the N-terminus of β-arrestin.
420 The HEK293 cells were harvested and plated into 384-wells microtiter plates at a
421 density of 3000 cells per well 24 h after co-transfection of PTH1R-LgBiT and SmBiT-
422 β-arrestin. Coelenterazine was then added to the plates in the dark with the final
423 concentration of 10 μM (5μL/well). The ligands of different concentrations were finally
424 added to the plates and then the bioluminescence signal was measured using an
425 EnVision plate reader (PerkinElmer).

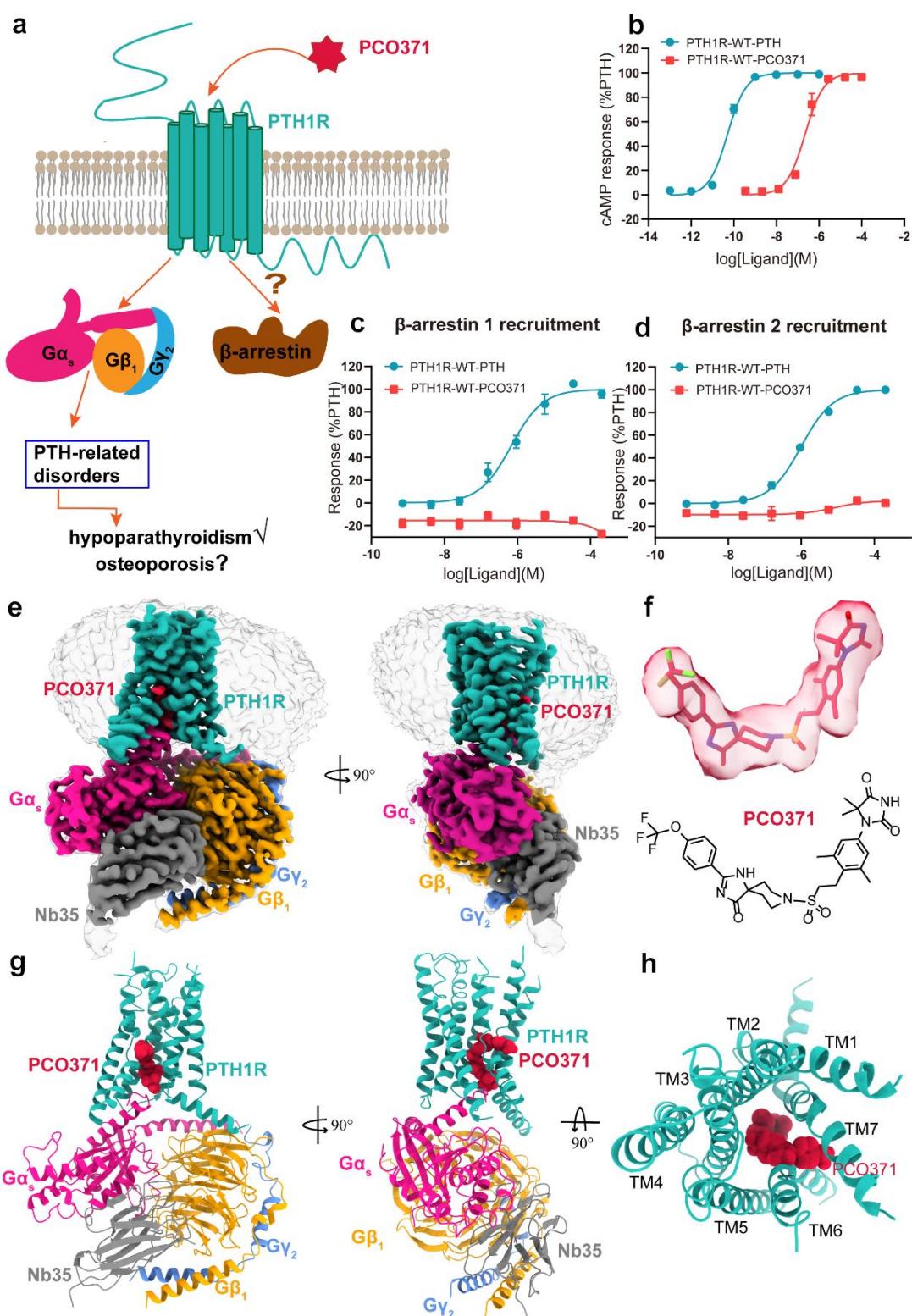
426

427 **Surface expression assay**

428 Surface expression of PTH1R WT and mutants were cloned into pcDNA6.0 (Invitrogen)
429 with 3x Flag tag at C-terminal and determined by flow cytometry. AD293 cells were
430 collected after 24 hours of transient transfection and then blocked with 5% BSA in PBS
431 at RT for 15 min followed by incubation with primary mouse anti-Flag antibody at RT
432 for 1 hour. The cells were then washed three times with PBS containing 1% BSA and
433 incubated with anti-mouse Alexa-488-conjugated secondary antibody at 4 °C in the
434 dark for 1h. After another three washes, the cells were resuspended with 500 μl PBS
435 containing 1% BSA for detection in BD Accuri C6 flow cytometer system (BD

436 Biosciences) at excitation 488 nm and emission 519 nm. For each sample,
437 approximately 5000 cellular events were collected and the data were normalized to
438 PTH1R WT.

439

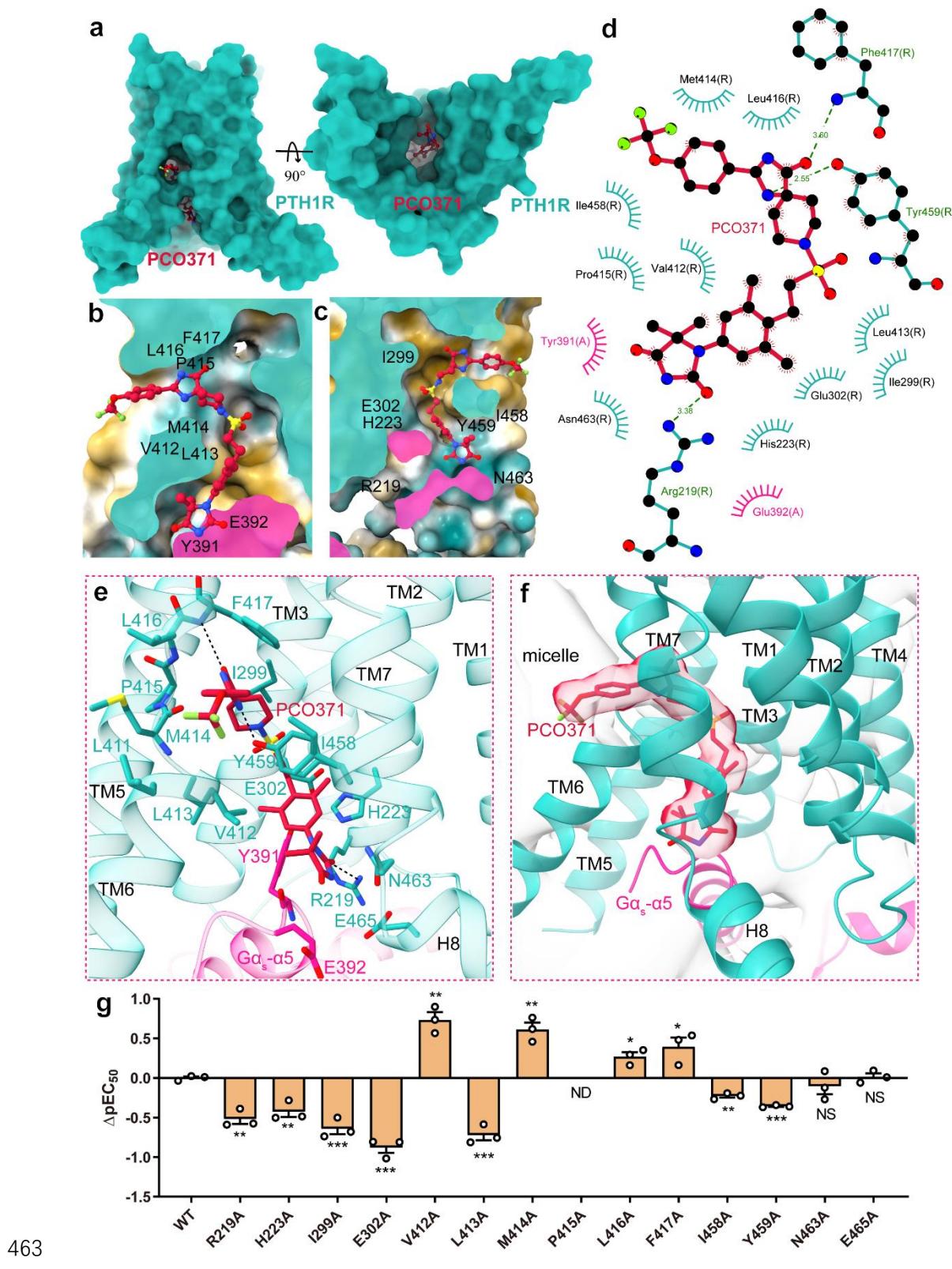

440 **Statistical analysis**

441 All functional data were displayed as means \pm standard error of the mean (S.E.M.).
442 Statistical analysis was performed using GraphPad Prism 8.0 (GraphPad Software).
443 Experimental data were evaluated with a three-parameter logistic equation. The
444 significance was determined with either two-tailed Student's t-test or one-way ANOVA.
445 $P < 0.05$ was considered statistically significant.

446

447 **Data availability**

448 Cryo-EM map has been deposited in the Electron Microscopy Data Bank under
449 accession code: EMD-XXXX (PCO371-bound PTH1R-G_s complex). The atomic
450 coordinate has been deposited in the Protein Data Bank under accession codes: XXXX
451 (PCO371-bound PTH1R-G_s complex).



452

453 **Fig. 1 | Cryo-EM structure of G_s-coupled PTH1R bound to PCO371. (a)** PCO371
454 induced PTH1R signaling and potential pharmacological effects. **(b-d)** Concentration-
455 dependent response curves of PCO371 to induce cAMP accumulation **(b)** and β -
456 arrestin recruitment **(c-d)**. Data were presented and graphed as means \pm S.E.M. of three

457 independent experiments, and each experiment was performed in triplicate. The data
458 were normalized according to the maximal response of PTH. **(e)** Cryo-EM maps of
459 PCO371-PTH1R-G_s complex. **(f)** Chemical structure of PCO371. **(g)** Cryo-EM
460 structure model of PTH-PTH1R-G_s complex. **(h)** The top view shows the binding site
461 of PCO371.

462

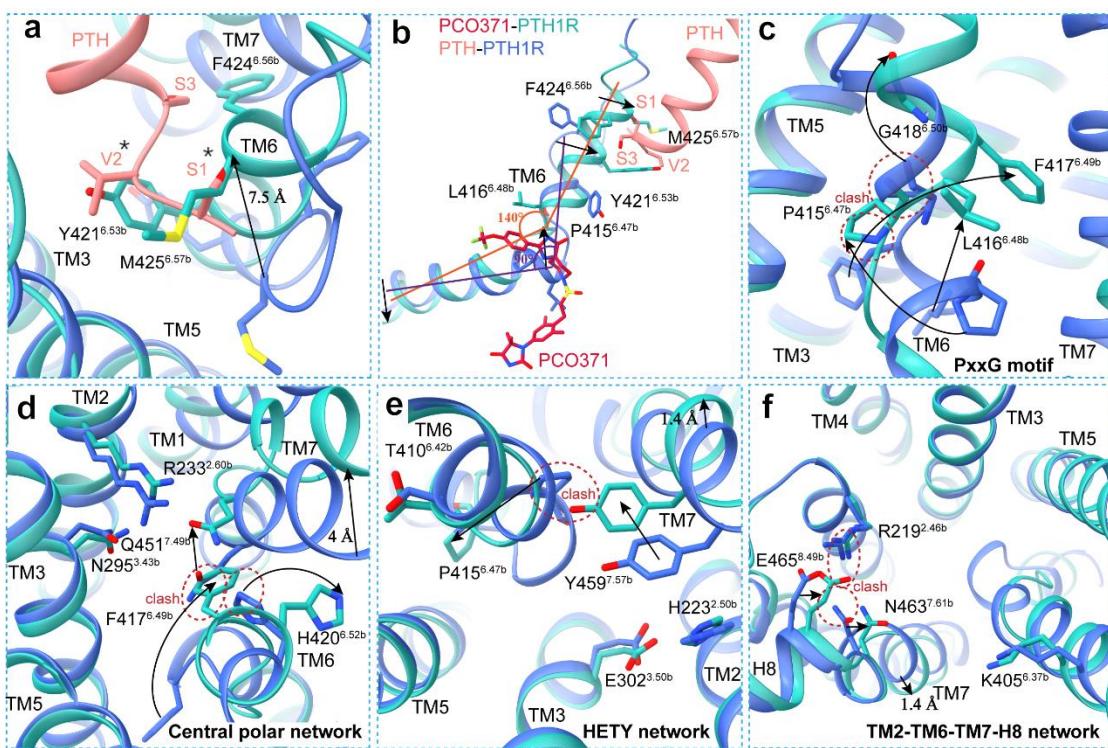
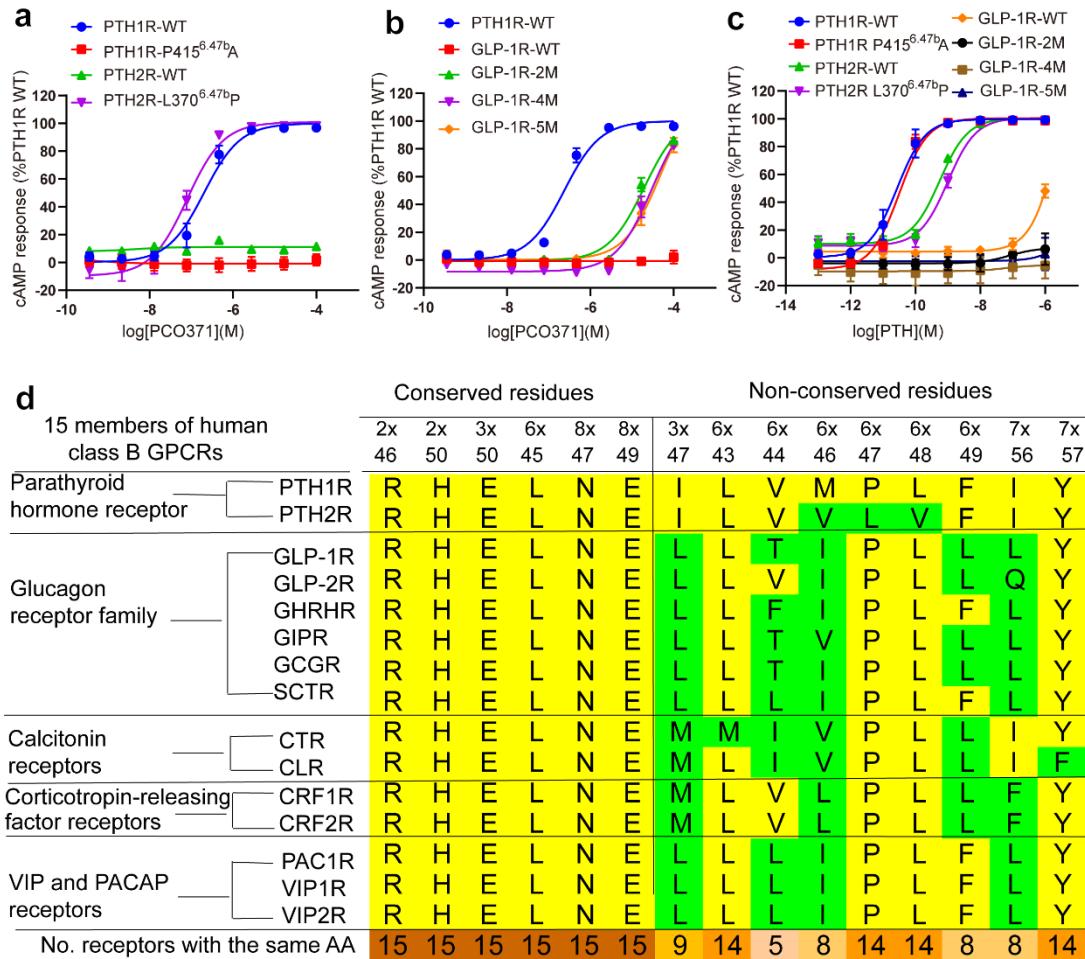


Fig. 2 | Interactions of PCO371 with PTH1R. (a) The PCO371-binding pocket of PTH1R viewed from the side view and intracellular side. (b-c) Cross-section of the PCO371-binding pocket in PTH1R. (d) Interacting residues predicted by LigPlot using

468 the full-length model. **(e)** Detailed interactions of PCO371 with residues in the binding
469 pocket. **(f)** The bound PCO371 at the interface between PTH1R and G_s protein and the
470 tail phenyl inserts into the detergent micelle. **(g)** Signaling profiles of PTH1R mutants
471 of key residues on PCO371-induced cAMP accumulation. $\Delta pEC50$ represents the
472 difference between pEC50 values of the wild-type (WT) and the mutated PTH1Rs. Data
473 from three independent experiments, each of which was performed in triplicate, are
474 presented as mean \pm SEM. Statistical differences between WT and mutations were
475 determined by two-sided one-way ANOVA with Tukey's test. * $P<0.05$; ** $P<0.01$;
476 *** $P<0.001$ vs. WT receptor, ND, not detectable. NS, no significant difference. All data
477 were analyzed by two-side, one-way ANOVA with Tukey's test.

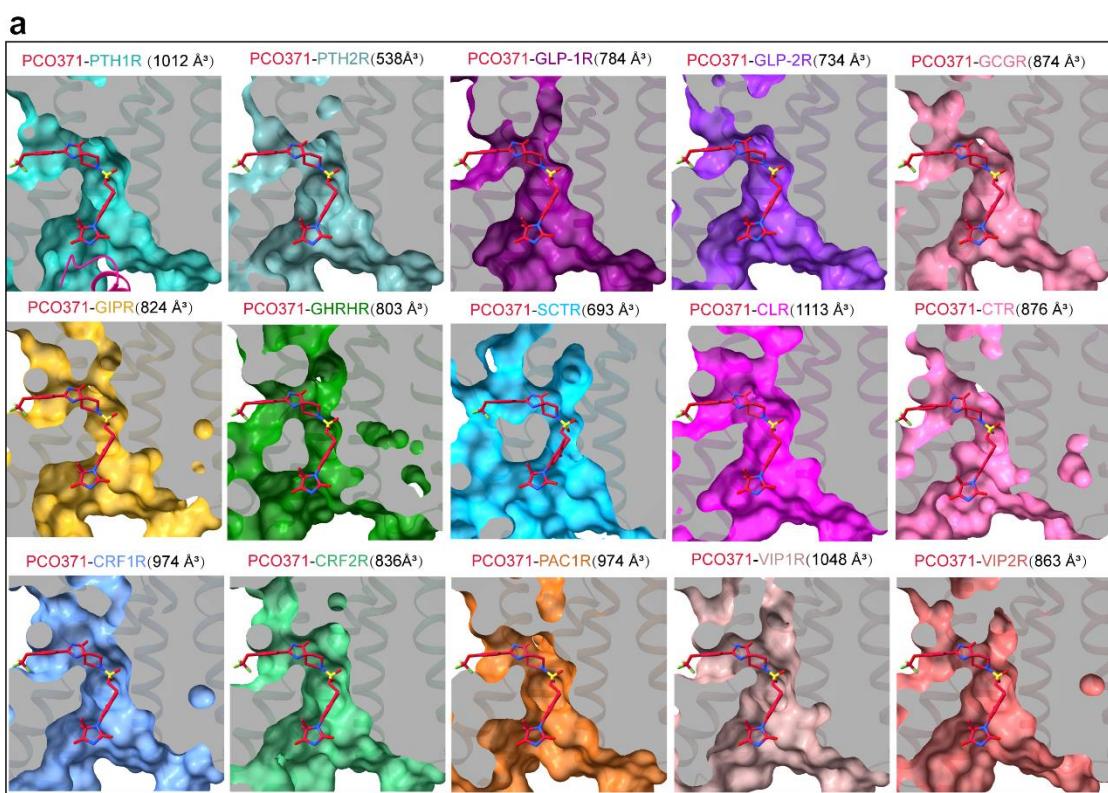
478

479

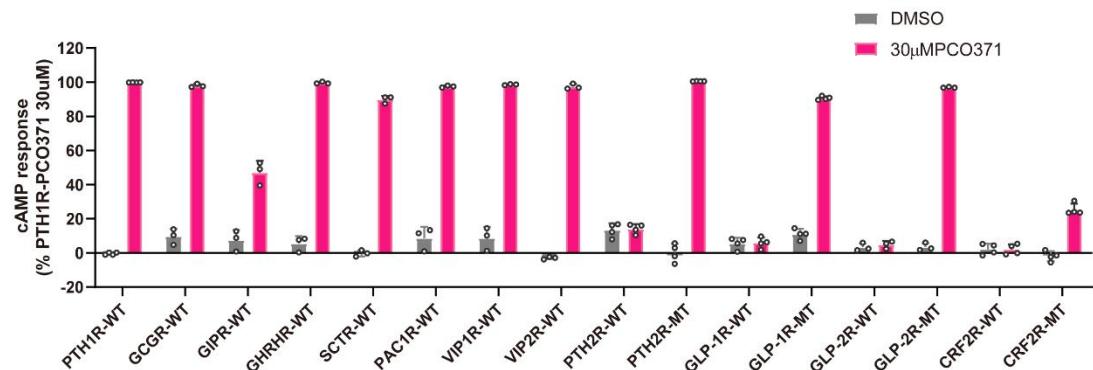


480

481


482 **Fig. 3 | Conformational changes of TMD helix bundles during receptor activation**
483 **between PTH-bound and PCO371-bound PTH1R.** **(a)** Structural comparison of the
484 TMD bundles of the active PTH1R (light sea green) with PCO371 (crimson), PTH1R
485 (royal blue) with PTH (light coral) (PDB: 8HA0). Hormone peptide, PCO371, G
486 protein and Nb35 are omitted for clarity. **(b)** Comparison of TM6 conformational
487 changes between the PCO371-bound and peptide-bound PTH1R structures. **(c-f)**
488 Different conformations are shown for conserved residues and motifs in the active
489 PTH1R, including the conserved PxxG motif (P415^{6.47b}-L416^{6.48b}-F417^{6.49b}-G418^{6.50b}),
490 the central polar network (R233^{2.60b}-N295^{3.43b}-H420^{6.52b}-Q451^{7.49b}), the HETY
491 network (H223^{2.50b}-E302^{3.50b}-T410^{6.42b}-Y459^{7.57b}) and the TM2-TM6-TM7-H8
492 network (R219^{2.46b}-K405^{6.37b}-N463^{7.61b}-E465^{8.49b}).

493



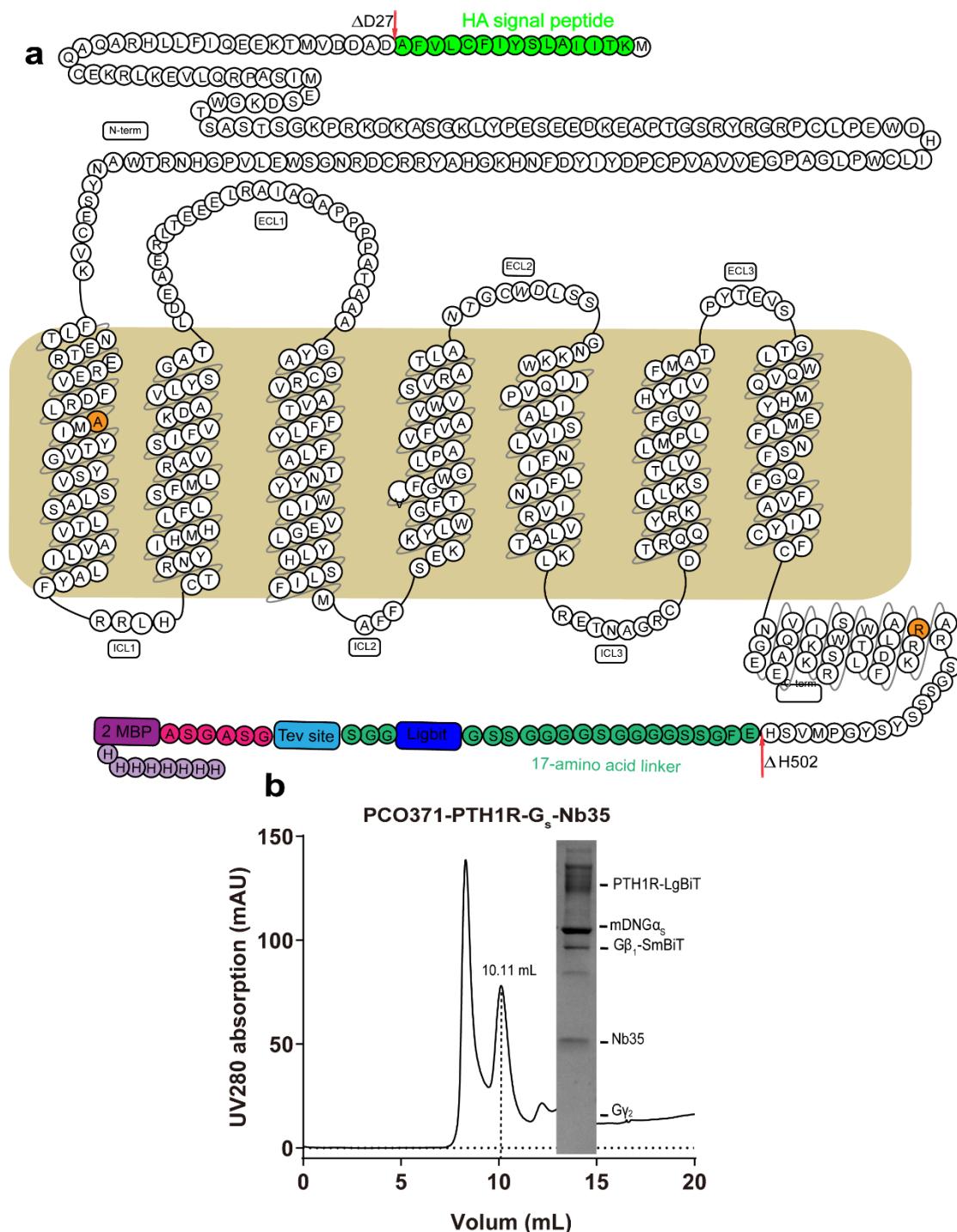
494

495 **Fig. 4 | Selectivity of PCO371 for PTH1R and the conservation of the PCO371-
496 binding site in class B GPCRs. (a)** The cAMP production stimulated by PCO371 in
497 the wild-types (WTs) and mutants of PTH receptors. **(b)** Stimulation of cAMP
498 production by PCO371 in the WT and mutants of GLP-1R. Data from three independent
499 experiments (n=3), each of which was performed in triplicate, are presented as mean \pm
500 SEM. **(c)** Stimulation of cAMP production of wildtype or mutated PTH1R, PTH2R and
501 GLP-1R by PTH. Data from three independent experiments (n=3) performed in
502 technical triplicate are presented as mean \pm SEM. GLP-1R-2M, GLP-1R-4M and GLP-
503 1R-5M are the combined mutations of two residues (L244^{3.47b}I and L360^{6.49b}F), four
504 residues (L244^{3.47b}I/T355^{6.44b}V/L360^{6.49b}F/L401^{7.56b}I), and five residues
505 (L244^{3.47b}I/T355^{6.44b}V/L360^{6.49b}F/L401^{7.56b}I/N407^{8.48b}G). **(d)** Sequence alignment of
506 conserved and non-conserved residues forming the pocket of PCO371 in class B
507 GPCRs.

b The ability of PCO371 to activate other members of class B GPCRs

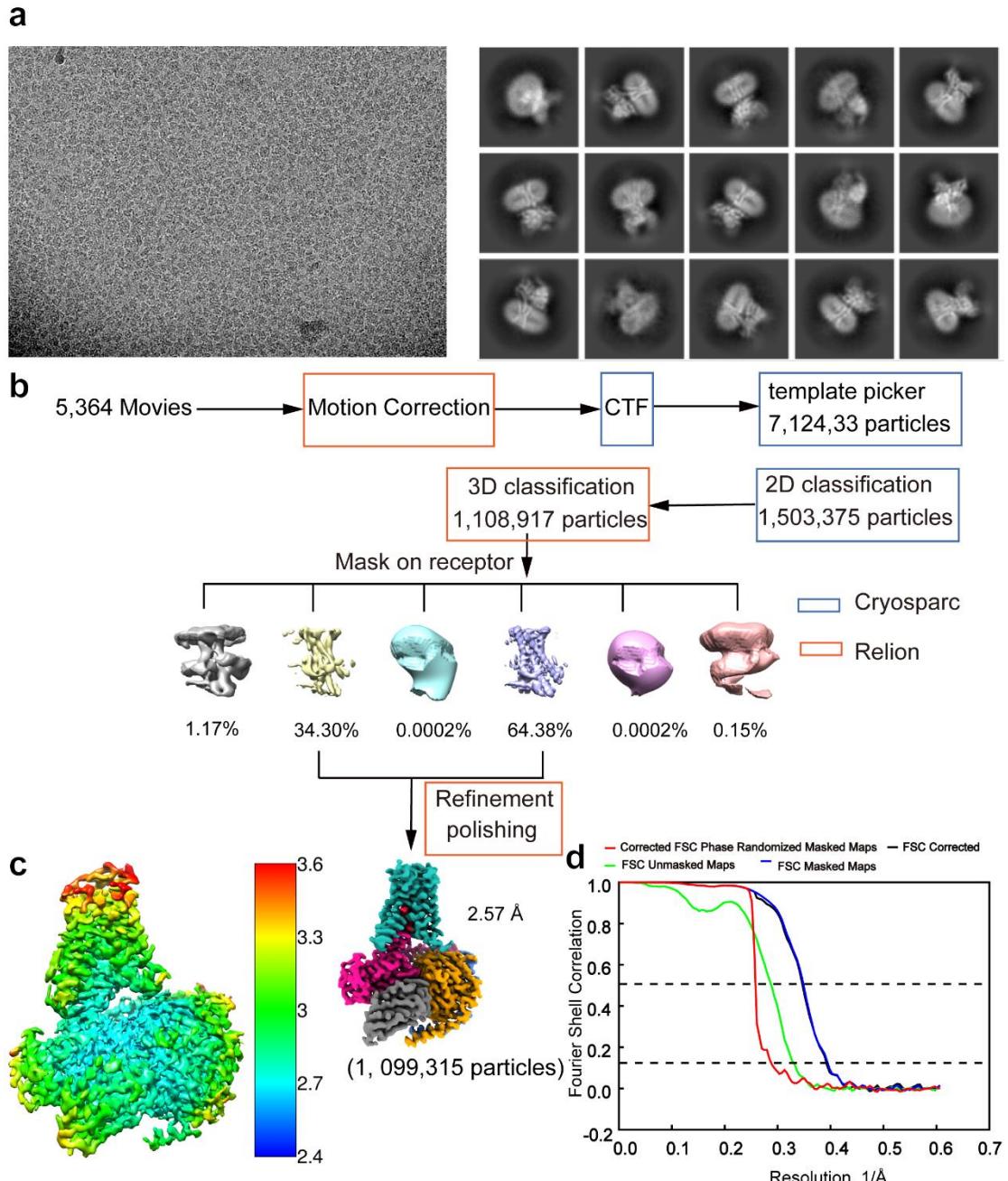
508

509 **Fig. 5 | A mostly conserved PCO371-like binding pocket in class B GPCRs. (a)** The
510 PCO371-like binding pocket is mostly conserved in other members of class B GPCRs
511 by structural modeling. The volume calculation shows these pockets in different
512 receptors are similar in all class B GPCR receptors. Peptides, G protein and Nb35 are
513 omitted for clarity. PDB: 7F16, PTH2R: cadet blue; PDB: 6X1A, GLP-1R: purple; PDB:
514 7D68, GLP-2R: blue violet; PDB: 7CZ5, GHRHR: green; PDB: 7DTY, GIPR:
515 goldenrod; PDB: 6WPW, GCGR: pale violet red; PDB: 6WZG, SCTR: deep sky blue;
516 PDB: 6NIY, CTR: hot pink; PDB: 6E3Y, CLR(CGRPR): magenta; PDB: 6PB0, CRF1R:
517 cornflower blue; PDB: 6PB1, CRF2R: medium sea green; PDB: 6P9Y, PAC1R:


518 chocolate; PDB: 6VN7, VIP1R: rosy brown; PDB: 7VQX, VIP2R: Indian red. **(b)**

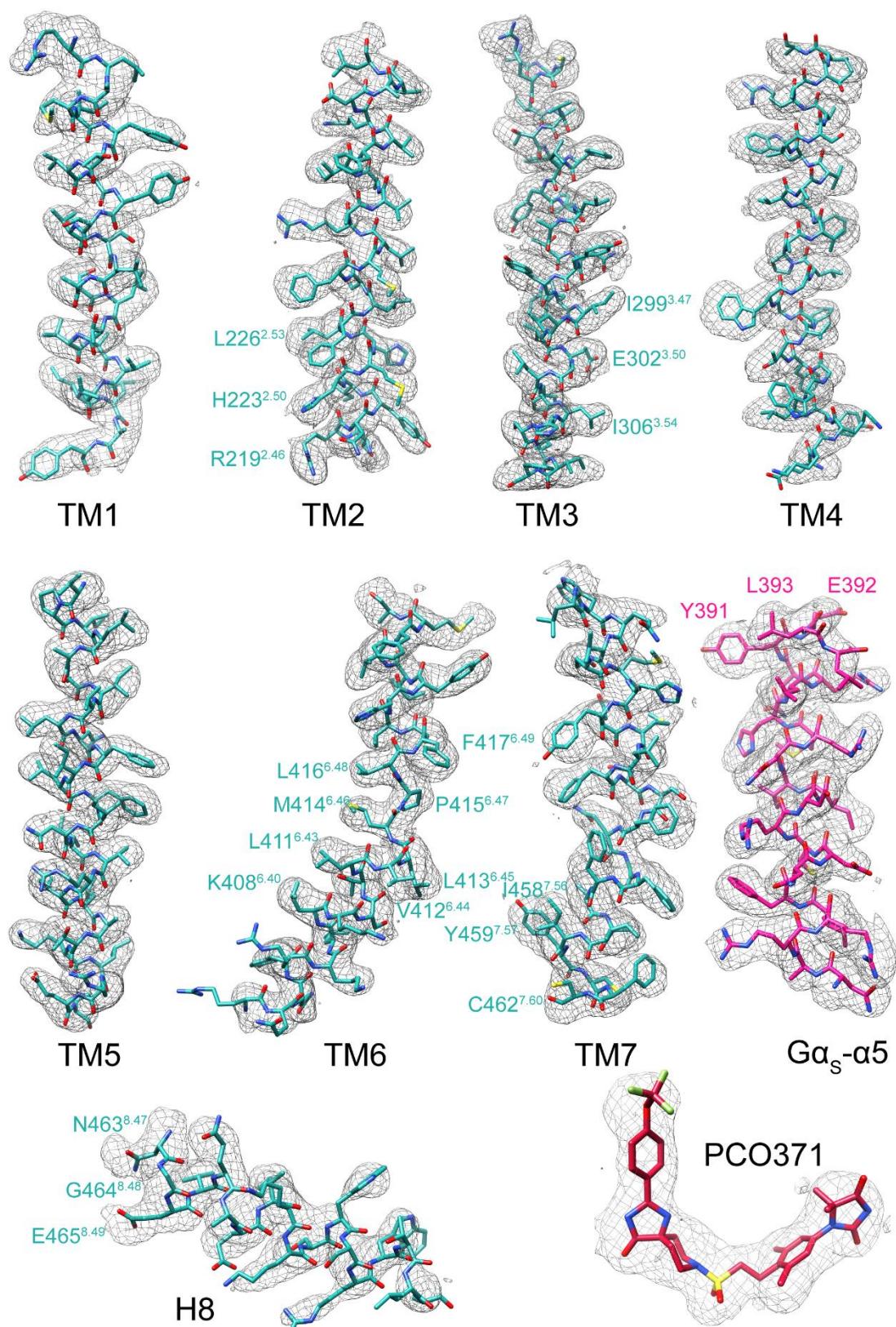
519 PCO371 has pan-agonist activity in wildtype and mutated class B GPCRs. The mutated

520 receptors have two corresponding mutations as GLP-1R that regain response to


521 PCO371.

522

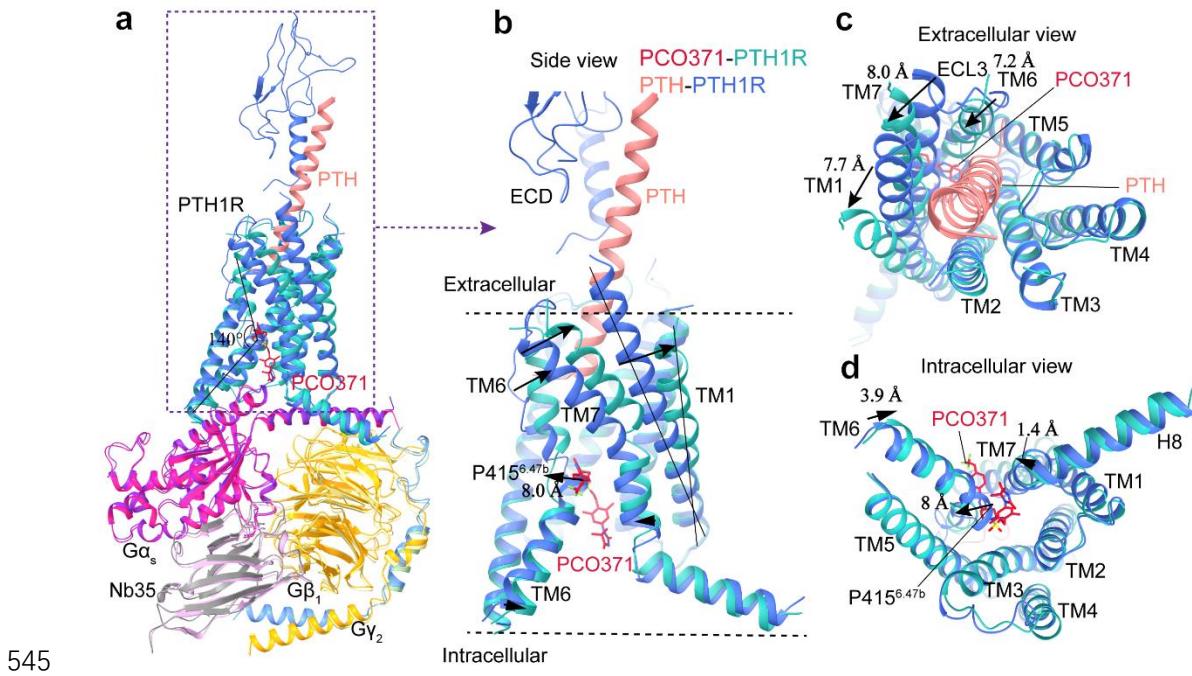
523


524 **Extended Data Fig. 1 | Construct of receptor and purification of the PCO371-**
525 **PTH1R-G_s complex. (a)** Snake plot diagram of the PTH1R-LgBiT construct. **(b)** The
526 size-exclusion chromatography elution profile on Superdex200 Increase 10/300GL (left
527 panel) and SDS-PAGE analysis (right panel) of the PCO371-PTH1R-G_s complex.

528

529 **Extended Data Fig. 2 | Single particle cryo-EM data analysis of the PCO371-**
530 **PTH1R-G_s complex. (a)** A representative cryo-EM micrograph of the PCO371-
531 PTH1R-G_s complex and representative 2D class averages with distinct secondary
532 structure features from different views. **(b)** Data processing flowchart of PCO371-
533 PTH1R-G_s complex by CryoSPARC and Relion. **(c)** Color cryo-EM map of the
534 PCO371-PTH1R-G_s complex, showing local resolution (Å) calculated using Relion. **(d)**
535 “Gold-standard” FSC curve of the PCO371-PTH1R-G_s complex, with the global
536 resolution defined at the FSC = 0.143 is 2.57 Å.

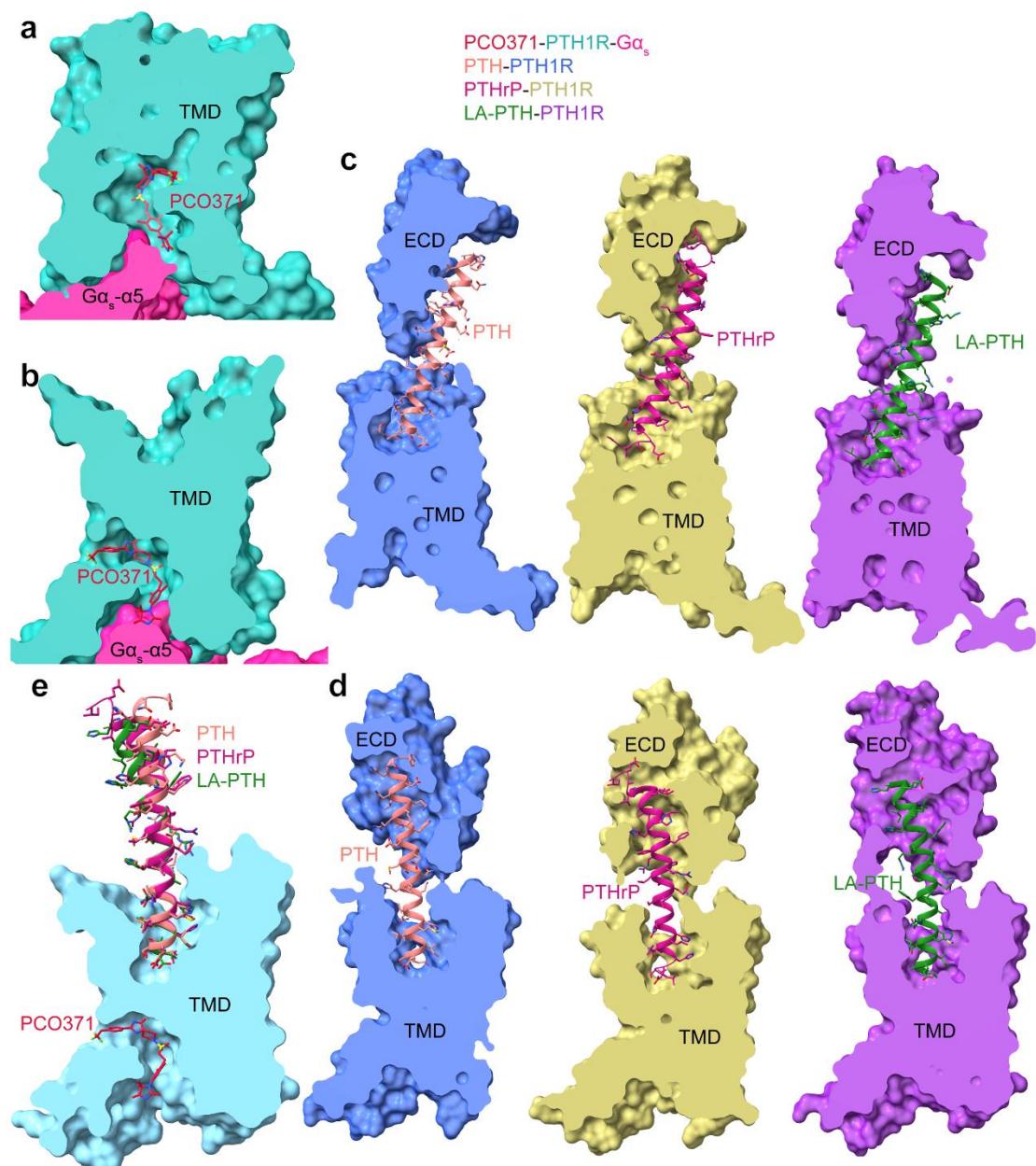
537


538

539 **Extended Data Fig. 3 | Cryo-EM density maps of the PCO371-PTH1R-G_s protein**
540 **structures.** Cryo-EM density map and the model of the PCO371-PTH1R-G_s structure

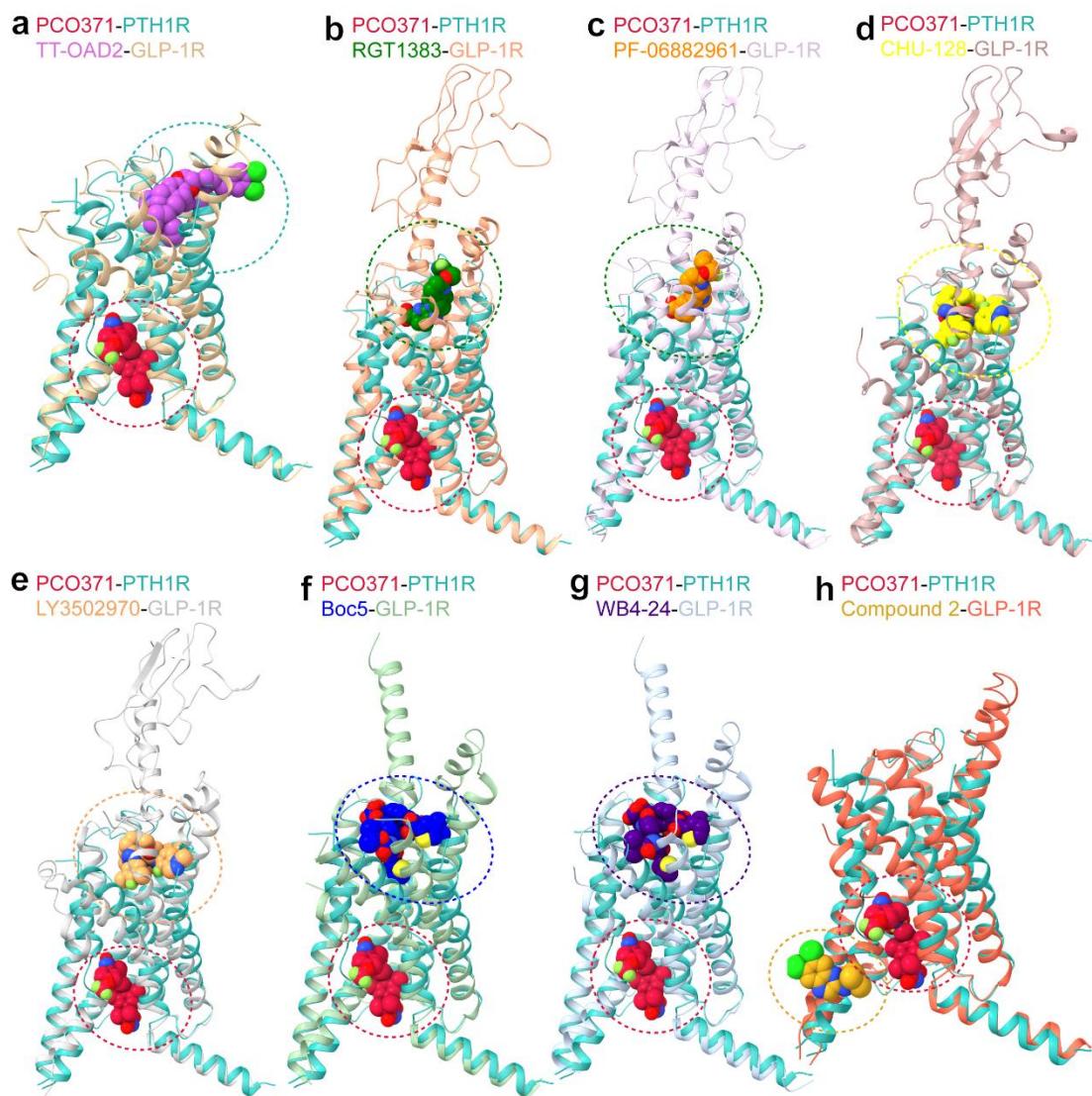
541 are shown for all transmembrane helices and helix 8 of PTH1R, PCO371, and G α s- α 5
542 helix. The model is shown in stick representation. All of them display good density.

543


544

546 **Extended Data Fig. 4 | Comparisons of the agonist binding pockets and PTH1R**
547 **conformations stabilized by PCO371 and PTH.** **(a)** Superimposition of PTH1R from
548 PDB:8HA0 (PTH1R: royal blue, PTH34: light coral, $\text{G}\alpha_s$: blue violet, $\text{G}\beta_1$: khaki, $\text{G}\gamma_2$:
549 dark sea green, Nb35: plum) and the PCO371-bound PTH1R structure (PTH1R: light
550 sea green, PCO371: crimson, $\text{G}\alpha_s$: deep pink, $\text{G}\beta_1$: orange, $\text{G}\gamma_2$: cornflower blue, Nb35:
551 gray) reveals different peptide- and PCO371-binding sites. **(b)** Side view of different
552 binding pockets and conformational changes in receptors; **(c)** Extracellular view and **(d)**
553 intracellular view of PTH1R conformational changes.

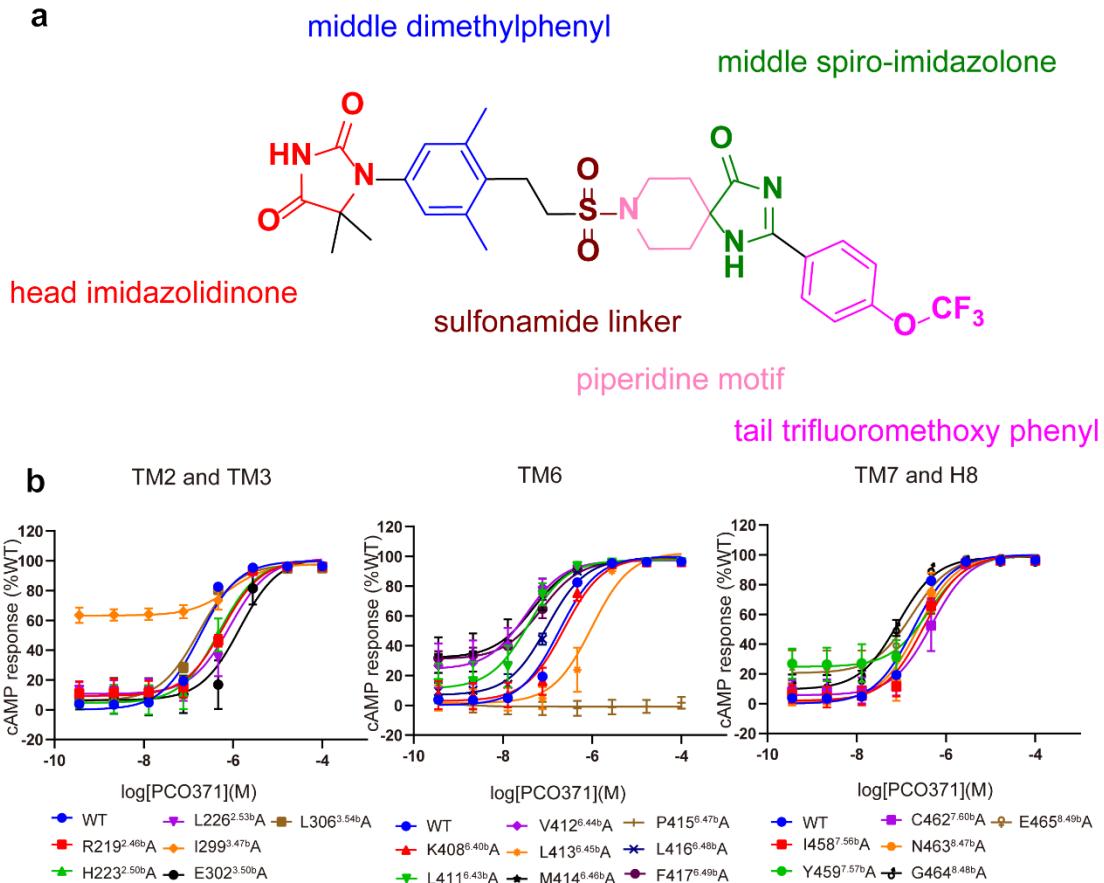
554


555

556

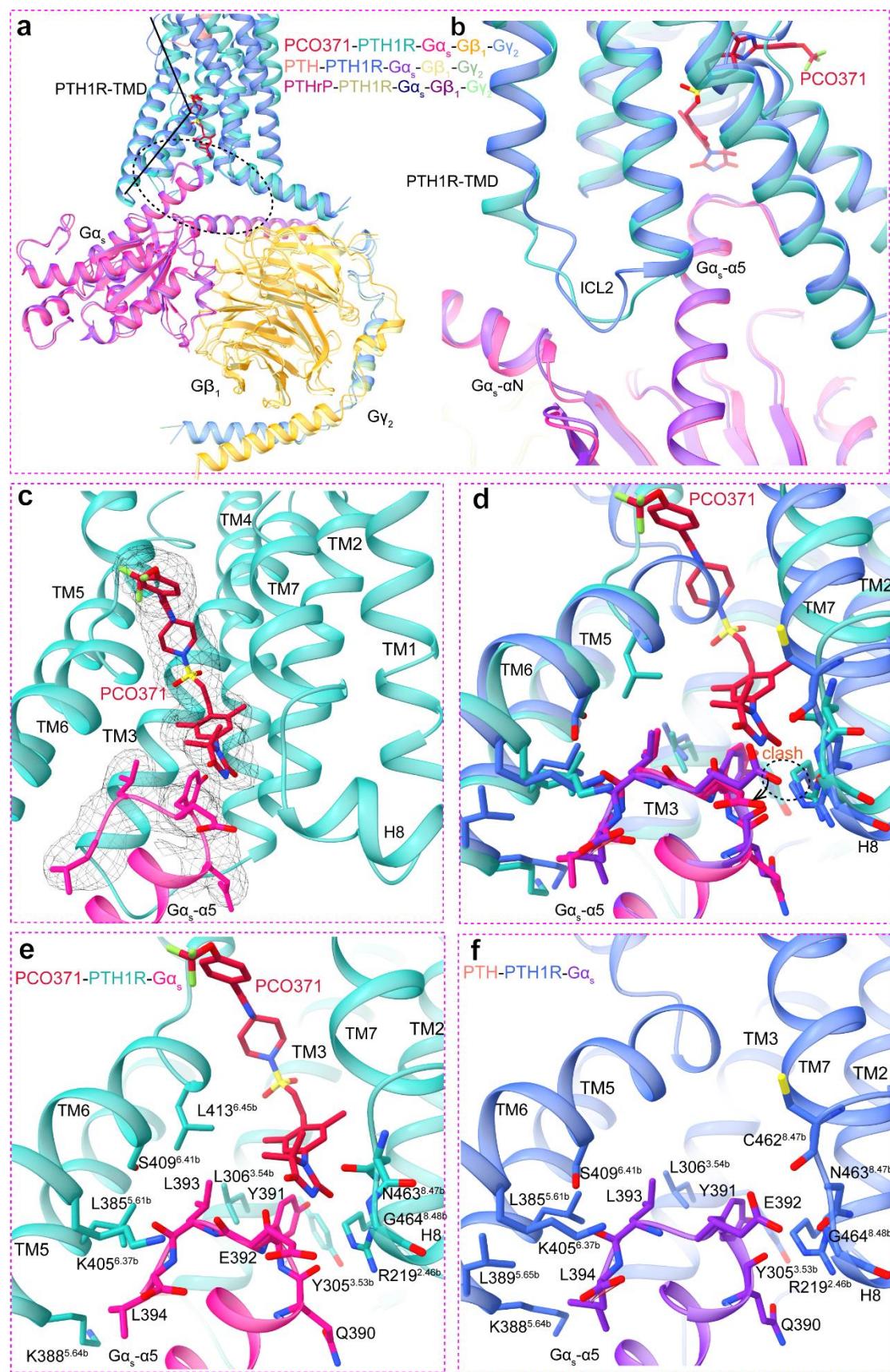
557 **Extended Data Fig. 5 | Differences of ligand-binding pockets between a small**
558 **molecule agonist and peptides of PTH1R. (a-b)** The binding pocket of PCO371 in
559 PCO371-PTH1R-G_s complex structure. The receptor is shown in surface representation
560 and colored in light sea green and PCO371 in crimson is shown as sticks. G protein and
561 Nb35 are omitted for clarity. **(c-d)** The binding pockets of different peptides of PTH1R
562 in the G protein-bound state. In three PTH-, PTHrP- and LA-PTH-bound PTH1R-G_s
563 complex structures, the receptors are shown in surface representation and colored in
564 royal blue, dark khaki and dark orchid, respectively. PTH, PTHrP and LA-PTH are
565 colored in light coral, medium violet red and forest green, respectively. They are shown

566 as sticks and ribbon (PDB: 8HA0, 8HAF and 6NBF). G protein and Nb35 are omitted
567 for clarity.
568


Extended Data Fig. 6 | Comparisons of small molecule agonist binding sites of class

B GPCRs. (a-h) Comparisons of the overall backbone conformations of helical bundles

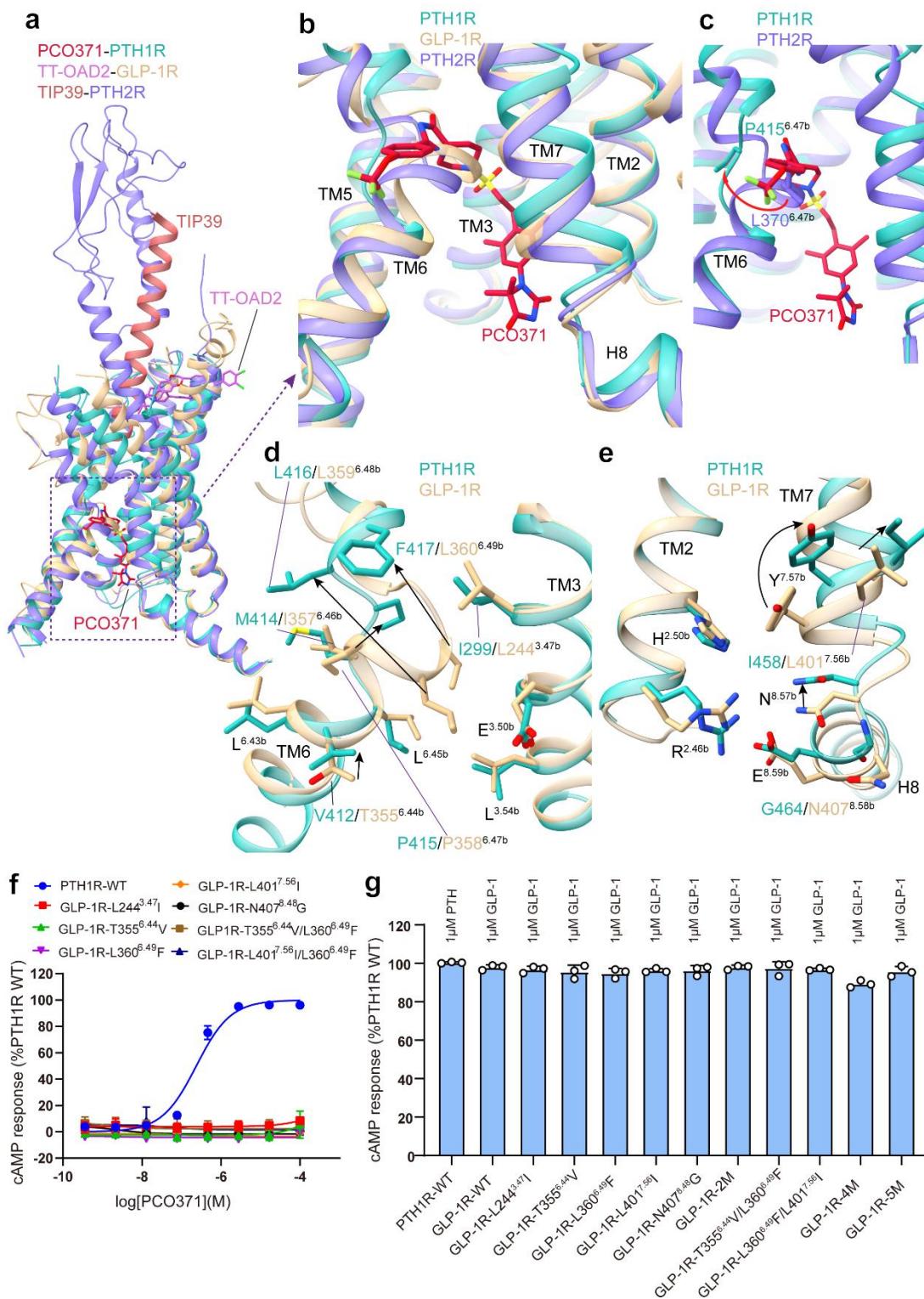
and the ligand binding pockets between PCO371-PTH1R-G_s and non-peptidic ligand-GLP-1R-G_s complexes. Superimposition of the PTH1R (light sea green) in complex with G_s bound to PCO371 (crimson) with the GLP-1R in complexes with G_s bound to different non-peptidic ligands, including small molecule agonists: TT-OAD2(PDB: 6ORV; TT-OAD2: dark orchid, GLP-1R: burly wood); RGT1383 (PDB: 7C2E; RGT1383: green, GLP-1R: light salmon); PF-06882961(PDB: 6X1A; PF-06882961: dark orange, GLP-1R: thistle); CHU-128 (PDB: 6X19; CHU-128: yellow, GLP-1R: rosy brown); LY3502970 (PDB: 6XOX; LY3502970: sandy brown, GLP-1R: silver); Boc5 (PDB: 7x8r; Boc5:blue, GLP-1R: dark sea green) and WB4-24 (PDB:7x8s; WB4-


581 24: indigo, GLP-1R: light steel blue) and with an allosteric ligand, Compound 2, (PDB:
582 7EVM; Compound 2: goldenrod, GLP-1R: tomato). $G\alpha_s$, $G\beta_1$ and $G\gamma_2$ were omitted for
583 clarity. **(a)** PCO371-PTH1R- G_s and TT-OAD2-GLP-1R- G_s complexes. **(b)** PCO371-
584 PTH1R- G_s and RGT1383-GLP-1R- G_s complexes. **(c)** PCO371-PTH1R- G_s and GLP-
585 1R-PF-06882961- G_s complexes. **(d)** PCO371- PTH1R - G_s and CHU-128-GLP-1R- G_s
586 complexes. **(e)** PCO371-PTH1R- G_s and LY3502970-GLP-1R- G_s complexes. **(f)**
587 PCO371-PTH1R- G_s and Boc5-GLP-1R- G_s complexes. **(g)** PCO371-PTH1R- G_s and
588 WB4-24-GLP-1R- G_s complexes. **(h)** PCO371-PTH1R- G_s and Compound 2- GLP-1R-
589 G_s complexes. G protein and Nb35 are omitted for clarity.

590
591

593 **Extended Data Fig.7 | Chemical structure of PCO371 and PCO371-mediated**
594 **cAMP production by receptors containing alanine mutants of key residues in**
595 **PCO371 binding pocket. (a)** The chemical structure of PCO371 is comprised of the
596 head imidazolidinone, the middle dimethylphenyl, the sulfonamide linker, the
597 piperidine motif, the middle spiro-imidazolone, and the tail trifluoromethoxy phenyl.
598 **(b)** PCO371-mediated cAMP production by receptors containing alanine mutants of
599 key residues within TM2, TM3, TM6, TM7 and H8. Data from three independent
600 experiments (n=3) performed in technical triplicate are presented as mean \pm SEM.

601



602

603

604 **Extended Data Fig. 8 | The similarity and the difference of PTH1R in G protein-
605 coupling by hormone peptide and small molecule agonist.** **(a)** Structural comparison
606 of G protein in different ligands bound PTH1R-G_s complex structures. **(b)** Close up of
607 the α N and G α _s- α 5 helix of G α _s, which form interactions with ICL2 and TMD helix
608 bundles in all G protein bound complex structures, showing similar G protein
609 conformation, but the noteworthy difference is that the C-terminal of G α _s- α 5 helix
610 makes additional interactions with the small molecule agonist. **(c)** Good cryo-EM
611 density supports ligand interact with G α _s. **(d-f)** The similar set of interactions between
612 the C-terminal of G α _s- α 5 helix with the receptor. E392 shifts outward due to steric clash.
613 Y391, E392, and L393 form additional interactions with PCO371.

614

615

616 **Extended Data Fig. 9 | Key residues for PCO371 selectivity among class B GPCRs.**

617 (a) Structural comparison of receptors and ligands among PCO371-PTH1R-Gs and TT-
 618 OAD2-GLP-1R-Gs and TIP39-PTH1R-Gs complexes. **(a-b)** Structural comparison of
 619 the cytoplasmic regions of PTH1R, PTH2R and GLP-1R during the receptor activation.
 620 **(c)** Structural comparison of P415^{6.47b} and L370^{6.47b} in PTH receptors. **(d-e)** Different

621 conformations of residues in the active PTH1R, and GLP-1R that are involved the
622 interface of PCO371 in receptor activation. (f) Stimulation of cAMP production by
623 PCO371 in the WT and mutants of GLP-1R. Data from three independent experiments
624 (n=3) performed in technical triplicate are presented as mean \pm SEM. (g) Stimulation
625 of cAMP production by the cognate ligands of PTH1R, PTH2R and GLP-1R in mutants
626 of receptors. Data from three independent experiments (n=3) performed in technical
627 triplicate are presented as mean \pm SEM.

628

629

630 **Extended Data Table 1 | Cryo-EM data collection, refinement and validation**
631 **statistics.**

	PCO371- PTH1R- G _s -complex
Data collection and processing	
Magnification	105000
Voltage (kV)	300
Electron exposure (e-/Å ²)	50
Defocus range (μm)	-1.2 to -1.8
Pixel size (Å)	0.824
Symmetry imposed	C1
Initial particle images (no.)	7,124,33
Final particle images (no.)	1,099,315
Map resolution (Å)	
FSC threshold	0.143
Map resolution (Å)	2.57
Map sharpening B factor (Å ²)	-69.24
Refinement	
Initial model used (PDB code)	6NBF
Model resolution (Å)	3.1
FSC threshold	0.5
Model-Map CC (mask)	0.81
Model composition	
Non-hydrogen atoms	8138
Protein residues	1019
B factors (Å ²)	
Protein	66.78
Ligand	60.37
R.m.s. deviations	
Bond lengths (Å)	0.002
Bond angles (Å)	0.527
Validation	
MolProbity score	1.40
Clash score	7.2
Rotamer outliers (%)	0
Ramachandran plot	
Favored (%)	98
Allowed (%)	2
Disallowed (%)	0

633 **Extended Data Table 2 | Effects of PCO371 bind to PTH1R WT and mutants.**

Mutant	PCO371		Cell surface expression
	pEC ₅₀ ± S.E.M.	E _{max} ± S.E.M. (%) WT)	(% WT)
WT	6.74 ± 0.07	100 ± 2.245	100.00 ± 1.45
R219 ^{2.46b} A	6.23 ± 0.08**	100.66 ± 2.76	46.17 ± 1.96
H223 ^{2.50b} A	6.31 ± 0.09*	100.30 ± 3.19	40.93 ± 0.66
L226 ^{2.53b} A	6.07 ± 0.10***	101.63 ± 3.62	32.35 ± 0.99
I299 ^{3.47b} A	6.09 ± 0.12***	98.02 ± 1.62	60.52 ± 0.38
E302 ^{3.50b} A	5.85 ± 0.14***	102.31 ± 5.59	47.56 ± 0.63
L306 ^{3.54b} A	6.78 ± 0.06	97.62 ± 1.76	78.32 ± 1.30
K408 ^{6.40b} A	6.63 ± 0.09	99.61 ± 2.98	77.45 ± 1.02
L411 ^{6.43b} A	7.43 ± 0.11***	97.72 ± 2.60	63.42 ± 1.36
V412 ^{6.44b} A	7.49 ± 0.12***	97.29 ± 2.44	97.10 ± 2.27
L413 ^{6.45b} A	6.01 ± 0.11***	102.69 ± 4.35	72.94 ± 1.34
M414 ^{6.46b} A	7.34 ± 0.14**	97.30 ± 2.55	88.78 ± 0.59
P415 ^{6.47b} A	N. A	N. A	96.36 ± 0.75
L416 ^{6.48b} A	7.01 ± 0.06	98.75 ± 1.71	75.75 ± 2.54
F417 ^{6.49b} A	7.14 ± 0.05	97.42 ± 1.09	89.05 ± 1.82
I458 ^{7.56b} A	6.51 ± 0.07	99.67 ± 2.56	80.93 ± 1.81
Y459 ^{7.57b} A	6.38 ± 0.09	99.33 ± 3.05	94.38 ± 1.22
C462 ^{7.60b} A	6.32 ± 0.08	100.42 ± 3.12	86.41 ± 1.82
N463 ^{8.47b} A	6.63 ± 0.10	99.76 ± 3.19	103.10 ± 0.87
G464 ^{8.48b} A	7.07 ± 0.06	98.56 ± 1.65	100.36 ± 2.23
E465 ^{8.49b} A	6.76 ± 0.12	99.19 ± 3.05	90.05 ± 1.83

634

635

636 References

637 1 Pal, K., Melcher, K. & Xu, H. E. Structure and mechanism for recognition of peptide
638 hormones by Class B G-protein-coupled receptors. *Acta Pharmacol Sin* **33**, 300-311,
639 doi:10.1038/aps.2011.170 (2012).

640 2 Cong, Z. *et al.* Structural perspective of class B1 GPCR signaling. *Trends Pharmacol Sci*
641 **43**, 321-334, doi:10.1016/j.tips.2022.01.002 (2022).

642 3 Hollenstein, K. *et al.* Insights into the structure of class B GPCRs. *Trends Pharmacol Sci*
643 **35**, 12-22, doi:10.1016/j.tips.2013.11.001 (2014).

644 4 de Graaf, C. *et al.* Extending the Structural View of Class B GPCRs. *Trends Biochem Sci*
645 **42**, 946-960, doi:10.1016/j.tibs.2017.10.003 (2017).

646 5 Grigoriadis, D. E., Hoare, S. R., Lechner, S. M., Slee, D. H. & Williams, J. A. Drugability of
647 extracellular targets: discovery of small molecule drugs targeting allosteric, functional,
648 and subunit-selective sites on GPCRs and ion channels. *Neuropsychopharmacology* **34**,
649 106-125, doi:10.1038/npp.2008.149 (2009).

650 6 Hoare, S. R. Allosteric modulators of class B G-protein-coupled receptors. *Curr
651 Neuropharmacol* **5**, 168-179, doi:10.2174/157015907781695928 (2007).

652 7 Koole, C. *et al.* Recent advances in understanding GLP-1R (glucagon-like peptide-1
653 receptor) function. *Biochem Soc Trans* **41**, 172-179, doi:10.1042/BST20120236 (2013).

654 8 Gardella, T. J. & Vilardaga, J. P. International Union of Basic and Clinical Pharmacology.
655 XCIII. The parathyroid hormone receptors--family B G protein-coupled receptors.
656 *Pharmacol Rev* **67**, 310-337, doi:10.1124/pr.114.009464 (2015).

657 9 Cong, Z. *et al.* Structural basis of peptidomimetic agonism revealed by small- molecule
658 GLP-1R agonists Boc5 and WB4-24. *Proc Natl Acad Sci U S A* **119**, e2200155119,
659 doi:10.1073/pnas.2200155119 (2022).

660 10 Griffith, D. A. *et al.* A Small-Molecule Oral Agonist of the Human Glucagon-like Peptide-
661 1 Receptor. *J Med Chem* **65**, 8208-8226, doi:10.1021/acs.jmedchem.1c01856 (2022).

662 11 Kawai, T. *et al.* Structural basis for GLP-1 receptor activation by LY3502970, an orally
663 active nonpeptide agonist. *Proc Natl Acad Sci U S A* **117**, 29959-29967,
664 doi:10.1073/pnas.2014879117 (2020).

665 12 Saxena, A. R. *et al.* Danuglipron (PF-06882961) in type 2 diabetes: a randomized,
666 placebo-controlled, multiple ascending-dose phase 1 trial. *Nat Med* **27**, 1079-1087,
667 doi:10.1038/s41591-021-01391-w (2021).

668 13 Ma, H. *et al.* Structural insights into the activation of GLP-1R by a small molecule
669 agonist. *Cell Res* **30**, 1140-1142, doi:10.1038/s41422-020-0384-8 (2020).

670 14 Thompson, A., Stephens, J. W., Bain, S. C. & Kanamarlapudi, V. Molecular
671 Characterisation of Small Molecule Agonists Effect on the Human Glucagon Like
672 Peptide-1 Receptor Internalisation. *PLoS One* **11**, e0154229,
673 doi:10.1371/journal.pone.0154229 (2016).

674 15 Girdhar, K. *et al.* Novel insights into the dynamics behavior of glucagon-like peptide-1
675 receptor with its small molecule agonists. *Journal of Biomolecular Structure & Dynamics*
676 **37**, 3976-3986, doi:10.1080/07391102.2018.1532818 (2019).

677 16 Redij, T., Chaudhari, R., Li, Z. Y., Hua, X. X. & Li, Z. J. Structural Modeling and in Silico
678 Screening of Potential Small-Molecule Allosteric Agonists of a Glucagon-like Peptide 1
679 Receptor. *Acs Omega* **4**, 961-970, doi:10.1021/acsomega.8b03052 (2019).

680 17 Tamura, T. *et al.* Identification of an orally active small-molecule PTHR1 agonist for the
681 treatment of hypoparathyroidism. *Nat Commun* **7**, 13384, doi:10.1038/ncomms13384
682 (2016).

683 18 Zhao, P. *et al.* Activation of the GLP-1 receptor by a non-peptidic agonist. *Nature* **577**,
684 432-436, doi:10.1038/s41586-019-1902-z (2020).

685 19 Zhang, X. *et al.* Evolving cryo-EM structural approaches for GPCR drug discovery.
686 *Structure* **29**, 963-974 e966, doi:10.1016/j.str.2021.04.008 (2021).

687 20 Willard, F. S., Bueno, A. B. & Sloop, K. W. Small molecule drug discovery at the
688 glucagon-like peptide-1 receptor. *Exp Diabetes Res* **2012**, 709893,
689 doi:10.1155/2012/709893 (2012).

690 21 Zhang, X. *et al.* Differential GLP-1R Binding and Activation by Peptide and Non-peptide
691 Agonists. *Mol Cell* **80**, 485-500 e487, doi:10.1016/j.molcel.2020.09.020 (2020).

692 22 Arai, Y. *et al.* Discovery of novel, potent, and orally bioavailable pyrido[2,3-
693 d][1]benzazepin-6-one antagonists for parathyroid hormone receptor 1. *Bioorg Med
694 Chem* **28**, 115524, doi:10.1016/j.bmc.2020.115524 (2020).

695 23 Kobayashi, K. *et al.* Endogenous ligand recognition and structural transition of a human
696 PTH receptor. *Mol Cell* **82**, 3468-3483 e3465, doi:10.1016/j.molcel.2022.07.003 (2022).

697 24 Nishimura, Y. *et al.* Development of a Novel Human Parathyroid Hormone Receptor 1
698 (hPTHR1) Agonist (CH5447240), a Potent and Orally Available Small Molecule for
699 Treatment of Hypoparathyroidism. *J Med Chem* **61**, 5949-5962,
700 doi:10.1021/acs.jmedchem.8b00182 (2018).

701 25 Nishimura, Y. *et al.* Lead Optimization and Avoidance of Reactive Metabolite Leading to
702 PCO371, a Potent, Selective, and Orally Available Human Parathyroid Hormone
703 Receptor 1 (hPTHR1) Agonist. *J Med Chem* **63**, 5089-5099,
704 doi:10.1021/acs.jmedchem.9b01743 (2020).

705 26 Zhao, F. *et al.* Structural insights into hormone recognition by the human glucose-
706 dependent insulinotropic polypeptide receptor. *eLife* **10**, doi:10.7554/eLife.68719 (2021).

707 27 Zhao, L. H. *et al.* Structure insights into selective coupling of G protein subtypes by a
708 class B G protein-coupled receptor. *Nat Commun* **13**, 6670, doi:10.1038/s41467-022-
709 33851-3 (2022).

710 28 Zhao, L. H. *et al.* Structure and dynamics of the active human parathyroid hormone
711 receptor-1. *Science* **364**, 148-153, doi:10.1126/science.aav7942 (2019).

712 29 Zhao, L. H. *et al.* Molecular recognition of two endogenous hormones by the human
713 parathyroid hormone receptor-1. *Acta Pharmacol Sin*, doi:10.1038/s41401-022-01032-z
714 (2022).

715 30 Zhai, X. *et al.* Molecular insights into the distinct signaling duration for the peptide-
716 induced PTH1R activation. *Nat Commun* **13**, 6276, doi:10.1038/s41467-022-34009-x
717 (2022).

718 31 Maeda, S. *et al.* Development of an antibody fragment that stabilizes GPCR/G-protein
719 complexes. *Nat Commun* **9**, 3712, doi:10.1038/s41467-018-06002-w (2018).

720 32 Nehme, R. *et al.* Mini-G proteins: Novel tools for studying GPCRs in their active
721 conformation. *PLoS One* **12**, e0175642, doi:10.1371/journal.pone.0175642 (2017).

722 33 Chan, P. *et al.* Purification of heterotrimeric G protein alpha subunits by GST-Ric-8
723 association: primary characterization of purified G alpha(olf). *The Journal of biological*

724 34 *chemistry* **286**, 2625-2635, doi:10.1074/jbc.M110.178897 (2011).

725 34 Dixon, A. S. *et al.* NanoLuc Complementation Reporter Optimized for Accurate
726 Measurement of Protein Interactions in Cells. *ACS Chem Biol* **11**, 400-408,
727 doi:10.1021/acschembio.5b00753 (2016).

728 35 Ma, S. *et al.* Molecular Basis for Hormone Recognition and Activation of Corticotropin-
729 Releasing Factor Receptors. *Mol Cell* **77**, 669-680 e664,
730 doi:10.1016/j.molcel.2020.01.013 (2020).

731 36 Zivanov, J., Nakane, T. & Scheres, S. H. W. Estimation of high-order aberrations and
732 anisotropic magnification from cryo-EM data sets in RELION-3.1. *lucrj* **7**, 253-267,
733 doi:10.1107/S2052252520000081 (2020).

734 37 Rohou, A. & Grigorieff, N. CTFFIND4: Fast and accurate defocus estimation from
735 electron micrographs. *J Struct Biol* **192**, 216-221, doi:10.1016/j.jsb.2015.08.008 (2015).

736 38 Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for
737 rapid unsupervised cryo-EM structure determination. *Nat Methods* **14**, 290-296,
738 doi:10.1038/nmeth.4169 (2017).

739 39 Sanchez-Garcia, R. *et al.* DeepEMhancer: a deep learning solution for cryo-EM volume
740 post-processing. *Commun Biol* **4**, 874, doi:10.1038/s42003-021-02399-1 (2021).

741 40 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory research and
742 analysis. *J Comput Chem* **25**, 1605-1612, doi:10.1002/jcc.20084 (2004).

743 41 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. *Acta
744 Crystallogr D Biol Crystallogr* **60**, 2126-2132, doi:10.1107/S0907444904019158 (2004).

745 42 Adams, P. D. *et al.* PHENIX: a comprehensive Python-based system for macromolecular
746 structure solution. *Acta Crystallogr D Biol Crystallogr* **66**, 213-221,
747 doi:10.1107/S0907444909052925 (2010).

748 43 Chen, V. B. *et al.* MolProbity: all-atom structure validation for macromolecular
749 crystallography. *Acta Crystallogr D* **66**, 12-21, doi:10.1107/S0907444909042073 (2010).

750 44 Webb, B. & Sali, A. Comparative Protein Structure Modeling Using MODELLER. *Curr
751 Protoc Bioinformatics* **54**, 5.6.1-5.6.37, doi:10.1002/cpbi.3 (2016).

752 45 Smith, R. H. B., Dar, A. C. & Schlessinger, A. PyVOL: a PyMOL plugin for visualization,
753 comparison, and volume calculation of drug-binding sites. *bioRxiv*, 816702,
754 doi:10.1101/816702 (2019).

755

756

757 **Acknowledgements**

758 The cryo-EM data were collected at Advanced Center for Electron Microscopy at
759 Shanghai Institute of Materia Medica, Chinese Academy of Sciences. We are grateful
760 to Wen Hu and Kai Wu for collecting the cryo-EM data. This work was supported by
761 the Young Innovator Association of CAS (2018325 to LHZ); National Natural Science
762 Foundation of China (32071203 to LHZ, 32130022 and 82121005 to H.E.X.); the
763 National Key R&D Program of China (2019YFA0904200) and SA-SIBS Scholarship
764 Program to LHZ; Ministry of Science and Technology (China) grants
765 (2018YFA0507002 to H.E.X.); Shanghai Municipal Science and Technology Major
766 Project (2019SHZDZX02 to H.E.X. and 18ZR1447800 to LHZ); Shanghai Municipal
767 Science and Technology Major Project (H.E.X.); CAS Strategic Priority Research
768 Program (XDB37030103 to H.E.X.).

769

770 **Author Contributions**

771 LHZ designed the expression constructs, purified the complexes, prepared the final
772 samples for cryo-EM data collection toward the structure, participated in model
773 building and performed structure and function data analysis, prepared figures and wrote
774 the manuscript; LHZ prepared the cryo-EM grids, QNY and JRL performed map
775 calculations, QNY built and refined the structure models; XHH performed structure
776 modeling and volume calculation; QH, YMG and YL construct functional plasmids,
777 QH performed signaling experiments under the supervision of LHZ; KW and JHS
778 supplied material; LHZ and HEX conceived the project, wrote the manuscript.

779

780 **ADDITIONAL INFORMATION**

781 **Competing interests:** The authors declare that they have no competing interests.

782