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ABSTRACT

Spatial transcriptomics (ST) profiles gene expression in intact tissues. However, ST data1

measured at each spatial location may represent gene expression of multiple cell types, mak-2

ing it difficult to identify cell-type-specific transcriptional variation across spatial contexts.3

Existing cell-type deconvolutions of ST data often require single-cell transcriptomic references,4

which can be limited by availability, completeness and platform effect of such references. We5

present RETROFIT, a reference-free Bayesian method that produces sparse and interpretable6

solutions to deconvolve cell types underlying each location independent of single-cell tran-7

scriptomic references. Results from synthetic and real ST datasets acquired by Slide-seq and8

Visium platforms demonstrate that RETROFIT outperforms existing reference-based and9

reference-free methods in estimating cell-type composition and reconstructing gene expres-10

sion. Applying RETROFIT to human intestinal development ST data reveals spatiotemporal11

patterns of cellular composition and transcriptional specificity. RETROFIT is available at12

https://bioconductor.org/packages/release/bioc/html/retrofit.html.13

Introduction14

Tissue formation and function rely on the spatial organization of diverse cell types and states, along with15

coordinated activities of numerous genes pertinent to each cellular context. Recent advances in ST have enabled16

genome-wide measurements of gene expression throughout intact tissue sections1, offering a powerful approach17

to elucidating tissue architecture2. The widespread adoption of ST technologies has provided new insights into18

spatial biology of many complex mammalian tissues, such as brains3 and intestines4.19

ST measures gene expression at each spatial location, henceforth referred to as a “spot”, on a two-dimensional20

slide of tissue sample. In some ST platforms, spots can cover an area equivalent to multiple mammalian cells.21

For example, the Visium platform generates ST slides with spots covering an area of 55µm diameter and22

encompassing 6-10 cells when applied to human intestinal samples5. Even for ST technologies at resolutions23

comparable to the sizes of individual cells, such as Slide-seq6 (10µm diameter), predetermined locations of24

high-resolution spots in a slide may overlap with multiple cells of different types. Therefore, it is likely that25

gene expression in multiple cell types frequently contributes to the ST measurement at a single spot. However,26

cell-type-specific transcriptional profiles and their contributions to the ST measurement at each spot are27

not observed as part of the existing ST readout. To improve our understanding of cell-type-specific spatial28

localization and transcriptional signature underlying tissue organization and function, it is crucial to decompose29

the cell-type mixture at each spot into individual cell types.30

Various cell-type deconvolution methods have recently been developed to infer cell-type composition for ST31

data7,8. However, the majority of these methods require a reference of cell-type-annotated gene expression,32

often acquired by single-cell technologies such as single-cell RNA-sequencing (scRNA-seq). Typically, these33

methods place cell-type deconvolution in a supervised learning framework, where each ST spot is represented34

as an unknown combination of individual cell types present in the ST sample, and the proportion of each cell35
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type for each spot is estimated by approximating the observed ST data based on the external transcriptional36

profiles of these cell types from a single-cell reference.37

Because of their supervised nature, reference-based deconvolution methods rely heavily on the availability38

of single-cell transcriptomic data and the quality of cell-type-annotated gene expression references. While39

ongoing efforts to profile single-cell transcriptomes in diverse mammalian tissues9,10 may help alleviate such40

limitations, compiling a high-quality reference of cell-type-annotated gene expression for certain ST studies41

remains difficult due to sample limitations and experimental challenges to capture all the relevant cell types42

through single-cell transcriptomics11,12. Even with a high-quality transcriptomic reference in place, supervised43

deconvolutions are further complicated by platform effect13— a phenomenon that systematic technical variation44

across single-cell and ST technologies can overshadow relevant biological signals14. Hence, a reference-free,45

unsupervised deconvolution approach that does not require the input of single-cell gene expression provides a46

valuable alternative when a suitable reference is unavailable. However, reference-free methods are currently47

under-developed, with only one approach, STdeconvolve15, published at the time of our investigation.48

Here, we introduce reference-free spatial transcriptomic factorization (RETROFIT), an unsupervised method49

to decompose cell-type mixtures in ST data without using single-cell gene expression. Built on a Bayesian50

hierarchical model, RETROFIT decomposes the ST data matrix into two matrices, one reflecting gene expression51

of cellular components and the other capturing proportions of these components present in each spot. RETROFIT52

is designed to produce a sparse and intepretable solution, aiding identification of the most relevant cellular53

components present in the ST sample. Our results demonstrate that RETROFIT outperforms existing reference-54

based methods in estimating cell-type composition and reconstructing gene expression in synthetic ST data with55

varying spot size and sample heterogeneity, irrespective of the quality of single-cell transcriptomic references.56

When applied to a mouse cerebellum Slide-seq dataset6, RETROFIT localizes known cell types in the mouse57

brain without using any single-cell information. When applied to a Visium dataset from a human intestinal58

development study5, RETROFIT reveals spatiotemporal patterns of cellular composition and transcriptional59

specificity in adult and fetal intestinal samples, yielding insights into human intestinal development and60

function. Across all the synthetic and real-world ST datasets examined in this study, RETROFIT consistently61

outperforms STdeconvolve, the only reference-free approach published at the time of our analysis.62

Results63

RETROFIT deconvolves ST data independent of single-cell gene expression references64

RETROFIT is a reference-free approach for cell-type deconvolution of ST data (Fig. 1). In brief, RETROFIT65

takes a ST count matrix X, which consists of G genes at S spots, as its sole input, and then conducts an66

unsupervised projection of X onto a low-dimensional space spanned by L non-negative latent components,67

independent of any external reference. Typically, the value of L is set larger than the actual number of cell68

types (K) present in the ST sample. This allows RETROFIT to produce a sparse solution16 that capture all69

the relevant cellular components present in each spot. The expression of each gene at each spot for each70

component is further decomposed into the expression specific to the gene and the background expression shared71

by all genes. The L latent components, which are mined from ST data alone, often contain information that72

distinguishes cell types of distinct transcriptomic profiles, forming the basis for cell-type deconvolution.73

RETROFIT is formulated as a Bayesian hierarchical model with a Poisson likelihood for the observed ST74

data and Gamma priors for the unknown parameters (Methods). RETROFIT deconvolves the ST data matrix75

into two matrices: one reflecting component-specific gene expression and the other reflecting the proportion76

of each component. To facilitate the analysis of large-scale ST data, RETROFIT is implemented with a77

structured stochastic variational inference (SSVI) algorithm17 that scales well with thousands of genes and78

spots (Algorithm 1; Supplementary Table 1). The software is available as a Bioconductor R package at79

https://bioconductor.org/packages/release/bioc/html/retrofit.html.80

Like any unsupervised learning, RETROFIT produces unlabeled results. To assign known cell types to the latent81

components inferred by RETROFIT, we develop two simple post hoc cell-type annotation strategies. The first82

strategy requires a cell-type-annotated gene expression reference (W0) for all K cell types present in the ST data,83

which is a standard assumption made by most ST deconvolution methods to date7,8. The cell-type-annotated84

expression reference can be derived from external single-cell transcriptomics data that match the tissue type of85

ST data. With this reference, we can calculate correlations between the component-specific expression profiles86

estimated by RETROFIT and the observed cell-type-specific expression profiles in the reference. We then treat87

the cell type with the largest correlation for a component as the most probable annotation (Algorithm 2). The88
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Figure 1: Overview of RETROFIT. Step 1: RETROFIT takes a ST data matrix as the only input and decomposes this matrix into latent components
in an unsupervised manner (Algorithm 1). Step 2: RETROFIT matches these latent components to known cell types using either a cell-type-specific
gene expression reference (Algorithm 2) or a list of cell-type-specific marker genes (Algorithm 3) for the cell types present in the ST sample, and
outputs a cell-type-specific gene expression matrix and a cell-type proportion matrix.
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second strategy does not require any gene expression references, but requires a curated list of cell-type-specific89

marker genes for all K cell types present in the ST data. This approach complements the first strategy when a90

proper cell-type-specific expression reference is unavailable. With the marker gene list in place, we calculate a91

marker expression score for each component in each cell type. This score is defined as the sum of normalized92

component-specific expression levels of marker genes in this cell type. We then annotate each component by the93

cell type with the largest marker expression score (Algorithm 3). Once the latent components are matched to94

cell types by either strategy, RETROFIT outputs a cell-type-specific expression matrix for all genes (W̃) and a95

cell-type proportion matrix for all spots (H̃) as the final results.96

RETROFIT adapts better to spot size and cell-type heterogeneity than existing methods97

We compared RETROFIT with existing methods on simulated data (Fig. 2). To imitate ST data from different98

platforms and samples, we used a real-world scRNA-seq dataset6 to simulate ST data with different levels of99

sequencing depth, spot size and cell-type heterogeneity (Algorithm 4). We varied the levels of spot size and100

cell-type heterogeneity by changing the number of cells per spot (N) and the maximum number of cell types101

per spot (M) respectively. We also assessed how the quality of single-cell transcriptomic reference affected102

reference-based methods by altering the levels of cell-type match between ST data and single-cell references.103

On each simulated ST dataset, we compared RETROFIT with 4 reference-based methods: NMFreg6, Stereo-104

scope18, SPOTlight19 and RCTD13, and a reference-free method: STdeconvolve15. We evaluated each method105

in two aspects: (1) explanatory power measured by the root-mean-square error (RMSE; Fig. 2a) and correlation106

(Fig. 2b) between the true and estimated cell-type proportions at each spot; (2) predictive power measured by107

the normalized RMSE (NRMSE; Fig. 2c) and correlation (Fig. 2d) between the observed and reconstructed108

gene expression profiles at each spot, where the reconstructed expression profiles were sums of the single-cell109

expression profiles in individual cell types weighted by the estimated cell-type proportions. Details of simulation110

and evaluation are provided in Methods.111

We started with an ideal use case for reference-based methods, where reference-based methods were provided112

with an exact reference of the same single-cell expression profiles for all 10 cell types that were used to simulate113

ST data. In contrast, reference-free methods would benefit little from the availability of such an exact reference,114

because they decompose the ST data free of any external references. The first two columns of Fig. 2 show the115

simulation results for this case in two scenarios: (1) one with smaller spot size and lower cell-type heterogeneity:116

N = 10 cells and up to M = 3 cell types per spot; (2) the other with larger spot size and higher cell-type117

heterogeneity: N = 20 cells and up to M = 5 cell types per spot. In both scenarios, we simulated ST data for118

G = 500 genes and S = 1000 spots with K = 10 cell types.119

Although the simulations were designed to favor reference-based methods, RETROFIT performed competitively120

compared to reference-base methods and significantly outperformed the only other reference-free method121

(STdeconvolve) in the scenario with smaller spot size and lower cell-type heterogeneity (N = 10 and M = 3).122

Specifically, RETROFIT achieved similar accuracy in estimating cell-type proportions as the best reference-123

based method (Stereoscope, KS test P = 0.31) and outperformed remaining methods by producing significantly124

smaller RMSEs (Fig. 2a; KS test P ≤ 7.1×10−7). RETROFIT also consistently showed higher concordance125

between the estimate and ground truth than existing methods (Fig. 2b; AUC = 0.964 versus 0.764−0.958).126

Furthermore, RETROFIT achieved similar reconstruction accuracy as several reference-based methods (Fig.127

2c) and showed consistently higher concordance between the reconstructed and observed expression than128

existing methods (Fig. 2d; AUC= 0.962 versus 0.802−0.946). In contrast, STdeconvolve performed worse than129

most of the reference-based methods in both cell-type proportion estimation (Fig.s 2a-b) and gene expression130

reconstruction (Fig.s 2c-d), and it was outperformed by RETROFIT in all measures.131

With increased spot size and cell-type heterogeneity (N = 20 and M = 5), the accuracy and concordance of132

existing methods decreased in cell-type proportion estimation (Fig.s 2a-b), and there was a similar trend in the133

concordance of gene expression reconstruction for multiple existing methods (Fig. 2d). For example, while RCTD,134

especially its ‘doublet’ mode (RCTD-D) that assumes up to two cell types per spot, performed reasonably well in135

the previous scenario (N = 10 and M = 3), its performance deteriorated with increased spot size and cell-type136

heterogeneity (N = 20 and M = 5). In contrast, RETROFIT was robust to these changes and significantly137

outperformed all methods in both accuracy (KS test P ≤ 8.4×10−19; Fig. 2a) and concordance (AUC = 0.970138

versus 0.628− 0.939; Fig. 2b) for cell-type proportion estimation. When reconstructing gene expression,139

RETROFIT also generated significantly smaller NRMSEs than existing methods (KS test P ≤ 8.2×10−5; Fig.140

2c) except for Stereoscope (KS test P = 0.03), and consistently showed higher concordance with the observed141

expression than all methods (AUC= 0.979 versus 0.741−0.973; Fig. 2d).142
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Figure 2: Evaluating RETROFIT on synthetic ST data with different spot size, cell-type complexity and reference quality. Column 1: small spots
(N = 10 cells per spot) with low cell-type complexity (up to M = 3 cell types per spot from K = 10 cell types in the slide). Column 2: large spots
(N = 20) with high cell-type complexity (M = 5 and K = 10). Columns 3-4: N = 10, M = 3 and K = 5. Reference-based methods were provided with the
following single-cell transcriptomic references. Columns 1-2: exact reference of all 10 ground truth cell types. Column 3: all 5 ground truth plus 5
irrelevant cell types. Column 4: only 3 out of 5 ground truth plus 5 irrelevant cell types. a Distribution of RMSE and b ranked correlation between
true (H) and estimated cell-type proportions (H̃) across all cell types at each spot. c Distribution of NRMSE and d ranked correlation between
observed (X) and reconstructed expression (X̃) across all genes at each spot. The one-sided KS P-values are shown in a and c (black: P < 0.05;
yellow: P > 0.05). A small P-value indicates that RETROFIT estimates have stochastically lower RMSEs compared to another method. The AUC of
ranked correlations is shown for each method with matching color in b and d. e Ranked correlation between the single-cell observation (W0) and
RETROFIT estimation (W̃) of cell-type-specific expression across all genes for each cell type.
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Altogether, even without exploiting the exact single-cell expression reference, RETROFIT performs competi-143

tively with the best-performing reference-based deconvolution, and it adapts better to spot size and cell-type144

heterogeneity than existing methods.145

RETROFIT surpasses reference-based deconvolutions when key cell types are missing146

We next considered a more realistic use case with imperfect single-cell transcriptomic references that included147

irrelevant or excluded relevant cell types, and we evaluated the impact of such imperfection on reference-based148

and reference-free deconvolutions of ST data. Here we simulated ST data of G = 500 genes for S = 1000 spots149

with N = 10 cells from up to M = 3 out of K = 5 cell types per spot, using the same data and scheme as before150

(Methods). We then created two imperfect single-cell expression references: (1) 5 extra cell types and the151

complete set of 5 ground truth cell types used to generate ST data; (2) 5 extra cell types and only 3 out of 5152

ground truth cell types. We evaluated all methods on the same ST data using the 5 ground truth cell types.153

For all reference-based methods, we observed a heavy reliance on the completeness of relevant cell types in154

the single-cell reference. While reference-based methods showed robustness to irrelevant cell types when the155

reference contained 5 cell types in addition to the 5 ground truth cell types (Fig. 2, column 3), their performance156

significantly decreased when 2 out of 5 ground truth cell types were missing in the reference (Fig. 2, column 4),157

highlighting the negative impact of incomplete single-cell references on reference-based deconvolutions.158

In contrast, RETROFIT consistently demonstrated optimal performance regardless of reference quality. When159

the single-cell reference consisted of all 5 ground truth and 5 extra cell types, RETROFIT significantly160

outperformed Stereoscope, the best performing reference-based method in this scenario, in both cell-type161

proportion estimation (KS test P = 2.3×10−10; AUC = 0.985 versus 0.967; Fig.s 2a-b) and gene expression162

reconstruction (KS test P = 4.9×10−2; AUC = 0.990 versus 0.983; Fig.s 2c-d). When 2 out of 5 ground truth163

cell types were missing in the single-cell reference, RETROFIT showed substantial gains in accuracy over164

all reference-based methods for both cell-type proportion estimation (KS test P ≤ 3.7×10−130; Fig. 2a) and165

gene expression reconstruction (KS test P ≤ 1.4×10−53; Fig. 2c). In nearly all spots (≥ 97.4%), the estimated166

cell-type proportions (AUC= 0.985) and reconstructed gene expression profiles (AUC=0.990) from RETROFIT167

were strongly correlated with the ground truth (Pearson R ≥ 0.9), whereas only less than 45.3% and 40.2%168

of spots achieved the same level of concordance for estimated proportions (AUC= 0.316−0.571; Fig. 2b) and169

reconstructed expression profiles (AUC= 0.421−0.546; Fig. 2d) from reference-based methods, respectively.170

Like RETROFIT, STdeconvolve also showed robustness against cell-type incompleteness of single-cell reference171

(Fig. 2, column 4), as both methods deconvolve ST data independent of single-cell transcriptomic references.172

However, compared with RETROFIT, STdeconvolve underperformed in cell-type proportion estimation, as173

reflected in the significantly larger RMSE (KS test P = 4.8×10−102; Fig. 2a) and smaller AUC (0.985 versus174

0.693; Fig. 2b). STdeconvolve also underperformed in gene expression reconstruction, as reflected in the175

significantly larger NRMSE (KS test P = 4.9×10−39; Fig. 2c) and smaller AUC (0.990 versus 0.722; Fig. 2d).176

Lastly, we evaluated the concordance between cell-type-specific gene expression profiles estimated by RETROFIT177

and observed single-cell expression profiles for each cell type (Fig. 2e). Across all simulations, RETROFIT178

estimates were highly correlated with the single-cell data for all cell types (Pearson R > 0.75 when N = 10, M = 3179

and K = 10; R > 0.84 when N = 20, M = 5 and K = 10; R > 0.89 when N = 10, M = 3 and K = 5), confirming that180

the reference-free estimation in RETROFIT effectively captures cell-type-specific transcriptional characteristics.181

Altogether, these simulations demonstrate the major limitation of reference-based deconvolutions, as well as182

the evident advantage of RETROFIT over reference-based methods, especially when key cell types relevant to183

the ST data are absent in the single-cell transcriptomic reference.184

RETROFIT outperforms existing methods to deconvolve mouse cerebellum Slide-seq data185

We evaluated RETROFIT on a mouse cerebellum Slide-seq dataset6 of 17919 genes at 27261 spots, which has186

been widely used to benchmark ST deconvolution methods. We compared RETROFIT with Stereoscope and187

RCTD, two top-performing reference-based methods in our simulations (Fig. 2), as well as the reference-free188

method STdeconvolve. RCTD and Stereoscope were further provided with a scRNA-seq reference for 10 cell189

types from the same study6. RETROFIT and STdeconvolve did not use this single-cell reference to deconvolve190

the ST data into latent components; they only used this scRNA-seq dataset to match latent components to191

known cell types post hoc. Details of applying each method to the Slide-seq study are available in Methods.192

To benchmark the deconvolution methods on the Slide-seq dataset, we focused on 3 cell types in the mouse193

cerebellum for which known cell-type marker genes were available: granule, oligodendrocyte and Purkinje194
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Figure 3: Benchmarking RETROFIT on mouse cerebellum Slide-seq data. Column 1 (leftmost) shows spatial patterns of ST expression scores
(Methods) for curated cell-type marker genes in granule cells, oligodendrocytes and Purkinje cells. Columns 2-5 show cell-type proportions at each
spot estimated by each of the 4 ST deconvolution methods. Pearson correlations (R) between cell-type marker ST expression scores and estimated
cell-type proportions are shown for all methods and cell types.

(Methods; Supplementary Table 2). We found that the estimated cell-type proportions from each method (Fig. 3,195

columns 2-5; Supplementary Tables 3-5) agreed with the spatial expression patterns of known marker genes in196

each cell type (Fig. 3, column 1), showing qualitatively similar results across methods.197

To further quantify the performance difference among methods, we calculated the correlation between estimated198

cell-type proportions and cell-type marker ST expression scores across all spots for each cell type (Methods). A199

higher correlation indicates better performance, as spots with a large proportion of a cell type are expected200

to have high expression levels of marker genes specific to that cell type. Based on this evaluation metric,201

RETROFIT was the best-performing method across all 3 cell types (Fig. 3). For granule cells, RETROFIT and202

STdeconvolve (both R = 0.38) showed marginally better performance than RCTD (R = 0.30) and Stereoscope203

(R = 0.29). For Purkinje cells, RETROFIT (R = 0.77) and STdeconvolve (R = 0.65) showed more obvious gains204

over RCTD (R = 0.55) and Stereoscope (R = 0.45). For oligodendrocytes, STdeconvolve (R = 0.31) performed205

worse than Stereoscope (R = 0.44) and RCTD (R = 0.41), whereas RETROFIT remained the best method by a206

wide margin (R = 0.59). Together these results demonstrate that RETROFIT outperforms existing deconvolution207

methods on the mouse cerebellum Slide-seq dataset, consistent with our simulation assessments.208

RETROFIT extracts relevant cellular compartments from human intestine Visium data209

We applied RETROFIT to a Visium spatial gene expression study of human intestinal development5. This210

study provided ST data of 33538 genes and 9330 spots on intestinal tissues from adults and from fetuses at211

12 and 19 post-conceptual weeks (PCW). For each of the three developmental stages, we selected the ST slide212

with the clearest anatomical markings (Fig. 4a) and input the ST expression count matrices to RETROFIT213

after quality control (Methods). Specifically, we used a matrix of 722 genes and 1080 spots for 12 PCW, a matrix214

of 681 genes and 1242 spots for 19 PCW, and a matrix of 1051 genes and 2649 spots for adult. The study215

also provided scRNA-seq data on fetal samples, revealing 101 intestinal cell types categorized as 8 cellular216

compartments with distinct transcriptional signatures: endothelial, epithelial, fibroblast, immune, muscle,217

myofibroblast (MyoFB)/mesothelial (MESO), neural and pericyte. To reduce computation and avoid ambiguity218
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12 PCW ST slide 19 PCW ST slide Adult ST slidea

Cellular compartment Endothelial Epithelial Fibroblast Immune Muscle MyoFB/MESO Neural Pericyteb

0 18Epithelial marker score

R=0.55

0 36Epithelial marker score

R=0.64

0 125Epithelial marker score

R=0.71

0 0.5 1Epithelial proportion 0 0.5 1Epithelial proportion 0 0.5 1Epithelial proportion

c

0 132Muscle marker score

R=0.87

0 238Muscle marker score

R=0.71

0 46Muscle marker score

R=0.71

0 0.5 1Muscle proportion 0 0.5 1Muscle proportion 0 0.5 1Muscle proportion

d

Figure 4: Cellular compartments identified by RETROFIT in human fetal and adult intestine Visium data. a H&E images of human fetal
(12 and 19 PCW) and adult intestinal tissues. b Localization of all 8 cellular compartments in each ST slide, marked by the compartment
with the largest proportion estimate at each spot. c-d ST expression scores of compartment marker genes (row 1) and RETROFIT estimates
of compartment proportion (row 2) across spots for c epithelial and d muscle compartments in 3 ST slides. Pearson correlation (R) between
compartment marker ST expression scores and compartment proportion estimates across all spots is shown for every combination of cellular
compartments and developmental stages in c and d.
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caused by a large number of highly correlated cell types, we estimated the proportions of these 8 distinct219

compartments at each tissue-covered spot of fetal and adult intestinal samples using RETROFIT. The most220

abundant compartment identified at each spot is shown in Fig. 4b.221

To estimate compartment proportions at each spot, we matched the L = 16 latent components extracted by222

RETROFIT to the K = 8 cellular compartments. Since the human intestine study5 only provided scRNA-seq223

data for 12 and 19 PCW but not the adult stage, we annotated RETROFIT-extracted components using a224

curated list of 37 intestinal compartment marker genes5 for all three stages (Algorithm 3; Supplementary225

Tables 6-8). All of our primary analyses for the human intestine ST data were conducted using this marker-226

based approach. To evaluate this strategy, we also annotated the RETROFIT results for 12 and 19 PCW227

stages using compartment-specific gene expression derived from the corresponding scRNA-seq data (Algorithm228

2; Supplementary Tables 9-10). We then compared the compartment proportions from the two annotation229

strategies for the same ST slide. For both fetal stages, the proportion estimates produced by the two strategies230

were concordant across spots in 4 compartments: muscle (12 PCW: R = 0.93; 19 PCW: R = 0.92), endothelial (12231

PCW: R = 0.85; 19 PCW: R = 0.92), fibroblast (12 PCW: R = 0.60; 19 PCW: R = 0.88) and epithelial (12 PCW:232

R = 0.49; 19 PCW: R = 0.86). In addition, the two strategies produced highly comparable proportions across233

spots in the immune compartment at 12 PCW (R = 0.86) and the neural compartment at 19 PCW (R = 0.94).234

To assess the accuracy of the two annotation strategies, we examined the correlation between compartment235

proportions estimated by each strategy and compartment marker ST expression scores across all spots for236

each compartment and slide (Table 1; Fig.s 4c-d). We found that for the four compartments where two237

annotation strategies produced consistent results in 12 and 19 PCW samples, their proportion estimates from238

both strategies were positively correlated with the corresponding marker ST expression scores across spots239

(R > 0.54). Moreover, in compartments where the results of two annotations differed, the proportion estimates240

based on the marker annotation aligned better with the compartment marker ST expression scores than those241

based on the scRNA-seq annotation. For example, MyoFB/MESO marker ST expression scores were positively242

correlated with the marker-based proportion estimates of MyoFB/MESO across spots for both stages (12 PCW:243

R = 0.34; 19 PCW: R = 0.61), whereas they were negatively correlated with the proportion estimates based244

on the scRNA-seq annotation (12 PCW: R =−0.09; 19 PCW: R =−0.20). Together, these results validate the245

marker-based annotation strategy in the RETROFIT analysis of human intestine ST data.246

Compartment
12 PCW ST slide 19 PCW ST slide

RETROFIT (L = 16) STdeconvolve RETROFIT (L = 16) STdeconvolve
Marker scRNA-seq L = 6 L = 16 Marker scRNA-seq L = 6 L = 16

Endothelial 0.68 0.57 NA NA 0.54 0.56 NA NA
Epithelial 0.55 0.73 0.73 0.73 0.64 0.62 0.36 0.50
Fibroblast 0.68 0.66 0.35 0.48 0.77 0.87 0.68 0.77
Immune 0.10 0.11 NA NA -0.15 -0.16 NA NA
Muscle 0.87 0.83 0.81 0.77 0.71 0.83 0.68 0.69
MyoFB/MESO 0.34 -0.09 -0.05 -0.10 0.61 -0.20 -0.09 NA
Neural 0.69 0.22 NA NA 0.72 0.81 NA NA
Pericyte 0.11 0.08 NA 0.02 0.34 -0.08 -0.26 -0.17

Table 1: Comparison of RETROFIT and STdeconvolve on human fetal intestine Visium data. Pearson correlations between ST expression scores
of known marker genes and estimated proportions across spots are reported for all methods and cellular compartments. RETROFIT-extracted
components were mapped to known cellular compartments using either a curated list of 37 intestinal compartment marker genes (Algorithm 3) or
the companion scRNA-seq data in fetal intestinal samples (Algorithm 2). STdeconvolve was run with L = 6, which was the optimal number of
components determined by STdeconvolve, and L = 16, which was the same number of components used by RETROFIT. “NA” indicates no match
between a cellular compartment and any STdeconvolve-extracted components.

We compared the deconvolution performance of RETROFIT and STdeconvolve on the ST data from two fetal247

samples, since the component annotation step of STdeconvolve requires single-cell transcriptomic profiles from248

tissues matching the ST data15. Although both samples were characterized by 8 cellular compartments5,249

STdeconvolve determined the optimal number of latent components as L = 6 and failed to produce components250

that could represent the endothelial and neural compartments (Supplementary Fig.s 1-2; Supplementary251

Tables 11-12), resulting in the absence of estimated proportions for these two compartments in all spots (Table252

1). Increasing the number of latent components in STdeconvolve to L = 16 did not identify endothelial and253

neural compartments (Table 1; Supplementary Fig.s 3-4; Supplementary Tables 13-14). In contrast, RETROFIT254

effectively captured these two components and produced proportion estimates consistent with ST profiles of their255
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known marker genes (endothelial: R = 0.68 at 12 PCW and R = 0.54 at 19 PCW; neural: R = 0.69 at 12 PCW and256

R = 0.72 at 19 PCW). While STdeconvolve performed comparably to RETROFIT for other compartments (Table257

1), the absence of STdeconvolve-extracted components for endothelial and neural compartments demonstrates258

the superior performance of RETROFIT in this Visium dataset.259

For all three stages of intestinal development, the cellular compartment proportions estimated by RETROFIT260

correlated well with the anatomical locations and ST profiles of compartment-specific marker genes (Fig.s261

4b-d; Supplementary Fig.s 5-10). In all three stages, spots with a high proportion of epithelial cells localized262

near the lumen and expressed high levels of epithelial marker genes (12 PCW: R = 0.55; 19 PCW: R = 0.64;263

adult: R = 0.71; Fig.s 4b-c), while spots with a high proportion of muscle cells often corresponded to the smooth264

muscle layers and expressed high levels of muscle marker genes (12 PCW: R = 0.87; 19 PCW: R = 0.71; adult:265

R = 0.71; Fig.s 4b and d). In the 19 PCW slide, spots with a high proportion of neural cells localized in the266

myenteric plexuses and expressed high levels of neural marker genes (R = 0.72; Fig. 4b; Supplementary Fig. 9).267

In the adult slide, spots with a high proportion of immune cells localized around submucosal lymphoid follicles268

and expressed high levels of immune marker genes (R = 0.40; Fig. 4b; Supplementary Fig. 7). Additionally,269

spots with a high proportion of fibroblasts in the adult tissue were adjacent to vasculature structures and270

expressed high levels of fibroblast marker genes (R = 0.31; Fig. 4b; Supplementary Fig. 6). Overall, these271

findings recapitulate the anatomical features and transcriptomic signatures of human intestine, confirming the272

effectiveness of RETROFIT as a reference-free approach to ST deconvolution.273

RETROFIT identifies spatiotemporal patterns of cellular composition in intestinal development274

The cellular compositions inferred by RETROFIT on the ST samples of 3 developmental stages shed light on the275

temporal dynamics in human intestine development (Fig.s 5a-b). The 12 PCW slide had more than twice as high276

an average proportion of fibroblasts as the other two stages (12 PCW: 24.4% across 1080 spots, 19 PCW: 11.0%277

across 1242 spots, adult: 11.4% across 2649 spots), aligning with abundant presence of stromal 1–4 (S1–S4)278

fibroblasts5 in the formation of submucosal structure (S1), crypt-villus axis (S2), enteric vasculature (S3) and279

lymphoid tissue (S4) during early intestinal development. The 19 PCW slide had the highest average proportions280

of epithelial (26.3%) and immune (15.6%) cells, indicating the maturation of fetal intestinal epithelium and281

lymphoid tissue to form the structural basis for essential functions of nutrient absorption and host immunity5,20.282

The adult slide had the highest average proportions of endothelial (19.8%) and muscle (15.8%) cells, reflecting283

the fully developed enteric vessels and smooth muscle layers in the mature intestine5.284

The vast majority of spots in all 3 ST slides encompassed cells from multiple intestinal compartments (Fig.285

5b). To help elucidate the dynamics of cell-type complexity across intestinal development, we categorized spots286

into 3 groups based on their cellular diversity estimated by RETROFIT (Fig. 5c). Group 1 comprised spots287

dominated by a single compartment, where at least 50% of cells in each spot belonged to one compartment (Fig.s288

5d diagonals and 5e). These spots mark regions in a tissue slide dominated by a single cellular compartment.289

Group 2 comprised spots with at least two moderately representative compartments, each contributing between290

25-50% to the spot’s compartment composition (Fig.s 5d off-diagonals and 5f-h). These spots indicate boundaries291

between two compartments in the slide. Group 3 comprised spots with highly heterogeneous composition, with292

at most one compartment contributing 25-50% and no other compartment proportion exceeding 25%. These293

spots represent regions with highly complex compositions of cell types.294

Compositions of the 3 spot groups varied across development (Fig.s 5c-d). Group 1 spots were the most prevalent295

in all three stages (12 PCW: 46.1%; 19 PCW: 38.5%; adult: 45.3%), and they exhibited layering and clustering296

patterns that matched known cellular anatomy of the human intestine5, particularly evident in the adult297

sample (Fig. 5e). Group 2 spots were less common in the adult sample than fetal samples (12 PCW: 31.6%;298

19 PCW: 37.2%; adult: 21.1%), but they exhibited a higher degree of pairwise cellular diversity in the adult299

sample. Out of 28 possible pairwise co-localization patterns among 8 cellular compartments, 27 were present300

in Group 2 spots for the adult sample, compared to 20 and 24 for 12 and 19 PCW samples respectively (Fig.301

5d). The adult sample also had the largest fraction of Group 3 spots (12 PCW: 22.3%; 19 PCW: 24.3%; adult:302

33.6%), highlighting the intricate composition of cell-types in the adult intestine. Taken together, the dynamics303

of spot-level cellular diversity inferred by RETROFIT effectively captures the increasing complexity of cellular304

compositions as the human intestine develops.305

We then examined the co-localization patterns of 8 cellular compartments in Group 2 spots across the 3306

developmental stages. We identified some commonalities in cellular co-localization across intestinal development307

(Fig. 5d). For example, muscle cells consistently exhibited the highest prevalence of co-localization with neural308

cells in Group 2 spots across all stages (12 PCW: 51/69 spots, 73.9%; 19 PCW: 40/56 spots, 71.4%; adult:309

26/68 spots, 38.2%; Supplementary Fig. 11), recapitulating the intestinal anatomy that myenteric plexuses310
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Figure 5: Cellular compositions and spatiotemporal patterns identified by RETROFIT in human intestinal development. a Distribution of 8
cellular compartments across all spots in each ST slide. b Compartment composition of each spot in each ST slide. c Distribution of spots with 3
levels of cellular diversity in each slide. Group 1: spots with a dominant compartment. Group 2: spots with at least two moderately representative
compartments. Group 3: spots with highly heterogeneous composition. d In each heatmap, each off-diagonal entry shows the fraction of Group 2
spots for each compartment pair, and each diagonal entry shows the fraction of Group 1 spots for each compartment. The off-diagonal entry colored
in grey indicates that the number of Group 2 spots is 0 for the corresponding compartment pairs. e Spatial distribution of spots with a dominant
compartment (Group 1) in each ST slide. f-h Spatial distribution of spots with at least two moderately representative compartments (Group 2),
with the anchor compartment as f endothelial, g epithelial or h muscle compartment. The color of each spot in f-h represents the other cellular
compartment that co-localizes with the anchor compartment and has the largest proportion estimate. Counts and percentages of Group 2 spots for 6
pairs of co-localized compartments are shown in f-h.
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are surrounded by muscles5. Similarly, epithelial cells consistently displayed the highest prevalence of co-311

localization with immune cells across Group 2 spots throughout development (12 PCW: 12/62 spots, 19.4%; 19312

PCW: 112/166 spots, 67.5%; adult: 18/53 spots, 34.0%; Supplementary Fig. 11), highlighting the crucial role of313

epithelial cells in mediating homeostasis of immune cells in the intestine21.314

Notably, distinct cellular co-localization patterns emerged in Group 2 spots between fetal and adult samples (Fig.315

5d). In both fetal stages, fibroblasts were the most common in Group 2 spots co-localized with endothelial cells316

(Fig. 5f), supporting the coordination of S3 fibroblasts and endothelial cells during fetal intestinal angiogenesis5.317

In the adult sample, however, epithelial cells prevailed in Group 2 spots co-localized with endothelial cells318

(Fig. 5f). The endothelial-epithelial co-localization in the adult sample, which was obtained from a patient319

undergoing intestinal surgery5, aligns with a recent mouse study showing that lymphatic endothelial cells320

reside in proximity to crypt epithelial cells and support renewal and repair of intestinal epithelium after321

injury22. Contrasting the predominant co-localization of endothelial and epithelial compartments in the adult322

sample, MyoFB/MESO compartment prominently co-localized with epithelial cells in both fetal samples (Fig.323

5g). This finding reflects the signaling circuit between epithelial stem cells and myofibroblasts during fetal324

intestinal development5. Moreover, cellular co-localization of muscle cells also exhibited temporal variation325

across stages. For Group 2 spots co-localized with muscle cells, neural cells were predominant in the fetal326

stages, while fibroblasts were the most common in the adult stage (Fig. 5h). This difference can be attributed327

to the role of S1 fibroblasts in forming submucosa structures that join mucosa to smooth muscle layers of the328

mature intestine5.329

Overall, the reference-free inference of cellular composition and co-localization enabled by RETROFIT provides330

insights into the dynamic interplay of cellular processes that shapes intestinal development and function,331

demonstrating the potential for RETROFIT to yield new hypotheses of tissue biology from ST data alone.332

RETROFIT captures cell-type transcriptional specificity without using single-cell references333

RETROFIT estimates cell-type-specific gene expression and cell-type composition simultaneously (Fig. 1). In334

simulations we demonstrated the high concordance between cell-type-specific transcriptional profiles estimated335

by RETROFIT and those measured by single-cell technologies (Fig. 2e). Here we examined compartment-specific336

transcriptional profiles estimated by RETROFIT on the human intestine ST data (Supplementary Tables 15-20).337

First, we compared the estimated compartment-specific expression with the observed single-cell expression for338

37 curated marker genes5 in 8 cellular compartments (Fig. 6a; Methods), using the companion scRNA-seq data339

of 12 and 19 PCW stages from the same human intestine study5. To quantify how well RETROFIT estimates340

corresponded to single-cell observations, we computed Pearson correlation between estimated expression levels341

and scRNA-seq measurements across 8 cellular compartments for each marker gene in each fetal stage. Of342

37 compartment marker genes, 25 (67.6%) showed high concordance (R > 0.95) in at least one stage, and 12343

(32.4%) showed high concordance in both stages. Many of these 12 genes, such as ACTG2 (muscle), PECAM1344

(endothelial), PHOX2B (neural) and PTPRC (immune), exhibited strong cellular specificity as expected.345

Next, we sought to identify compartment-specific genes based on RETROFIT expression estimates alone,346

without using any single-cell transcriptomic information. To ensure reliable results, we only considered347

developmental stages (12 PCW and adult) with biological replicates available (Supplementary Tables 18-20),348

and selected genes with consistent patterns of high expression (count > 40) measured by ST and strong349

compartment specificity (entropy < 1.5 and Gini index > 0.85) estimated by RETROFIT across all replicates in350

a given stage (Methods). Despite the stringent criteria, we identified 34 genes that showed strong compartment351

specificity in at least one developmental stage, 7 of which were compartment-specific in both stages (Fig. 6b).352

We identified 14 and 27 compartment-specific genes in 12 PCW and adult stages, respectively (Fig. 6b). Among353

them, 7 (50.0%) and 6 (22.2%) were curated as compartment markers (Fig. 6a) in the original human intestine354

study5. To validate the compartment specificity of identified genes that were not curated as markers5, we355

compared the compartment-specific expression estimates with the companion scRNA-seq measurements at 12356

PCW for these genes (Fig. 6c). Across 7 genes and 8 compartments, we observed a strong correlation between357

expression estimates and single-cell measurements (R = 0.96, P = 3.1×10−31). The inferred compartment358

specificity of the identified genes also agreed with their biological functions. For example, COL1A1, identified359

as fibroblast-specific by RETROFIT, encodes a fibril-forming collagen found in most connective tissues23. DES,360

identified as muscle-specific by RETROFIT, encodes an intermediate filament with critical roles in muscular361

structure and function24. Our findings are further supported by a recent mouse scRNA-seq study25 that362

determined COL1A1 as a fibroblast-specific expression signature and DES, CNN1 and ACTA2 as mural-363
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Figure 6: Transcriptional signatures and biological pathways identified by RETROFIT in human intestinal development. a Normalized expression
of 37 marker genes for 8 cellular compartments in two fetal stages, obtained from RETROFIT estimates and scRNA-seq data. Each marker gene
(y-axis) has a matching color with the compartment it characterizes (x-axis). b Normalized expression of 34 putative compartment-specific genes
estimated by RETROFIT for 12 PCW and adult stages. Gene colors represent the compartment-specific transcriptional specificity identified in
12 PCW (orange) or adult (green) or both stages (purple). Grey colors indicate that genes were not identified as compartment-specific in a given
stage. Asterisks (*) indicate that the identified genes are also markers in a. c Normalized expression of 7 compartment-specific non-marker genes
obtained from RETROFIT estimates and scRNA-seq data for 12 PCW stage. The 7 genes were identified by RETROFIT in b but were not labeled
as markers in a. d Top-ranked biological pathways enriched in muscle-specific genes identified by RETROFIT in b for 12 PCW and adult stages
(FDR< 0.05), with the multiplicity adjusted enrichment P-value (FDR) in log base 10 shown after each pathway.
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specific signatures. Together, these results demonstrate the potential of RETROFIT to identify genes with364

cell-type-specific expression from ST data alone, without relying on prior knowledge or external single-cell data.365

Lastly, we examined the temporal patterns of compartment-specific genes identified by RETROFIT across366

developmental stages (Fig. 6b). The majority of identified genes (27 out of 34) showed compartment specificity367

in only one stage. For example, 3 known neural marker genes (ELAVL4, GAP43, PHOX2B) were identified368

as neural-specific only in 12 PCW but not in the adult stage. These 3 genes are involved in the process of369

unspecialized cells acquiring specialized neuronal features (Supplementary Table 21) and human embryonic370

ventral midbrain development (Supplementary Table 22), corroborating their neural specificity in fetal stage371

only. As another example, 7 genes (including FABP1 and FABP2, 2 known epithelial markers) were identified372

as epithelial-specific only in adult but not in 12 PCW stage. Among these 7 genes, FABP1, FABP2 and373

MUC13 are involved in the digestive system process (Supplementary Table 21), and they showed significant374

transcriptional specificity for epithelial cells in multiple single-cell transcriptomic studies of human intestinal375

tissues (Supplementary Table 22). Since nutrient absorption manifests late in intestinal development (typically376

after villus formation20), the adult-specific genes likely capture transcriptional signatures of absorptive function377

in the mature intestinal epithelium.378

From RETROFIT estimates, we obtained 10 muscle-specific genes in 12 PCW and 15 in adult stages, with379

7 genes exhibiting muscle specificity in both stages (Fig.s 6b and d). The muscle-specific genes identified by380

RETROFIT in human intestine ST data showed stronger enrichments of single-cell transcriptional signatures381

in smooth muscle cells from human intestinal tissues compared to smooth muscle cells from other tissues such382

as lung, stomach and heart (Supplementary Table 22). Specifically, 8 out of 10 muscle-specific genes in 12383

PCW (FDR= 1.0×10−16) and 10 out of 15 in adult stages (FDR= 1.0×10−20) showed significant transcriptional384

specificity for the smooth muscle cells from intestinal tissues in a single-cell gene expression study of 15 human385

organs9. In contrast, 4 out of 10 muscle-specific genes in 12 PCW (FDR= 3.2×10−6) and 3 out of 15 in adult386

stages (FDR= 1.6×10−3) showed significant transcriptional specificity for the smooth muscle cells from heart387

tissues in the same 15-organ single-cell study9. These results highlight the spatial context specificity of these388

muscle-specific genes identified by RETROFIT in the intestine compared to other muscle-rich organs.389

The muscle-specific genes identified by RETROFIT in both developmental stages share relevant functional390

themes. Specifically, these genes were significantly enriched in biological pathways (Fig. 6d; Supplementary391

Table 21) related to muscle contraction (12 PCW: FDR = 3.8×10−5; adult: FDR = 3.6×10−7) and muscle392

structure development (12 PCW: FDR = 3.2×10−2; adult: FDR = 3.6×10−7). Among the 7 muscle-specific393

genes shared by both stages, TAGLN is involved in structure development, ACTG2, CNN1 and KCNMB1 are394

involved in contraction, and DES and MYH11 are involved in both contraction and structure development. The395

muscle-specific genes from fetal and adult stages also show functional differences. For example, the mesenchyme396

migration pathway was significantly enriched only in 12 PCW (FDR= 5.9×10−6) but not in adult stage, driven397

by 2 muscle-specific genes that were present in 12 PCW only (ACTA2, ACTC1). This fetal-specific enrichment is398

consistent with the experimental evidence that serosal mesothelial cells undergo epithelial-to-mesenchymal399

transition, migrate throughout the gut, and differentiate into vascular smooth muscle cells26.400

Discussion401

We present RETROFIT, an unsupervised Bayesian framework for reference-free cell-type deconvolution of ST402

data. Through extensive simulations and analyses of the mouse cerebellum Slide-seq and human intestine403

Visum data, we demonstrate significant performance gains of RETROFIT over existing methods. We provide404

the open-source software of RETROFIT as an R package in Bioconductor.405

The most distinctive feature of RETROFIT is the reference-free design, while the vast majority of existing406

ST deconvolution methods require a single-cell gene expression reference as input7,8. In comparison to407

STdeconvolve15, which is the only published reference-free method to date, RETROFIT consistently outperforms408

in both synthetic and real ST data. Our work, together with STdeconvolve, demonstrates the effectiveness of409

reference-free deconvolutions for ST data, offering a powerful alternative to reference-based deconvolutions410

when an appropriate cell-type-annotated transcriptomic reference is unavailable.411

As a reference-free method, RETROFIT separates cell-type annotation from ST data decomposition. By412

removing the dependence on a single-cell transcriptomic reference in the decomposition step, RETROFIT is413

more robust against the availability and quality of single-cell gene expression data, as demonstrated in this414

study. Moreover, the separation of annotation and decomposition offers flexibility to update the ST deconvolution415

results when improved references of cell-type-specific transcriptomic data or marker genes become available. In416

14 / 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2023. ; https://doi.org/10.1101/2023.06.07.544126doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.07.544126
http://creativecommons.org/licenses/by-nc-nd/4.0/


such cases, reference-free methods require only an update on the annotation without the need to rerun the417

decomposition, whereas reference-based methods require a rerun of the entire deconvolution process.418

Besides cell-type composition, RETROFIT also estimates cell-type-specific gene expression for each ST spot.419

Our analyses have demonstrated the statistical accuracy of these estimates in simulations and their biological420

relevance in human intestinal development5. The ST-derived expression estimates reveal cell-type-specific421

transcriptional profiles in native cellular contexts of intact tissues, thus helping researchers identify effects of422

tissue space and cellular environment on gene expression13 and generate new hypotheses of tissue biology2.423

The ST-derived estimates of cell-type-specific transcriptional profiles can also be integrated with a wide range424

of disease-centric datasets more broadly. One simple analysis is to correlate the ST-derived transcriptional425

profiles with a curated list of known disease-causing genes5. This can help link disease manifestation to likely426

tissue regions and cell types via distinct transcriptional signatures of disease genes. Another downstream427

analysis is to combine the ST-derived transcriptional profiles with genome-wide association studies. This428

can help prioritize likely disease-causing genes among numerous candidates in light of spatial and cellular429

transcriptional specificity27. Altogether, these future applications enabled by RETROFIT can help track430

disease-relevant genes to highly specific contexts, yielding novel insights into human diseases.431

Reference-free deconvolutions require specifying the total number of latent components (L) as an input, which432

can be challenging to estimate from the ST data alone. STdeconvolve determines the optimal value for L by433

minimizing model perplexity and the number of ‘rare’ deconvolved cell types simultaneously. Despite being434

data-driven, this approach consistently underestimated the number of known cell types for both simulated435

and real-world ST datasets in our study. For the current version of RETROFIT, we recommend specifying a436

large L that is much greater than the known number of cell types in the ST sample. This simple strategy has437

proven effective in our empirical assessments. Alternatively, one could attempt to incorporate more principled438

approaches to estimating L into the Bayesian hierarchical model underlying RETROFIT. For example, automatic439

selection of L may be enabled by Gamma process prior16 that induces sparsisty on θ or automatic relevance440

determination28 that ties the priors of W and H through a common shrinkage parameter.441

Like most ST deconvolution approaches to date7,8, RETROFIT omits the spatial coordinates of spots in a slide442

and models the ST measurements across spots exchangeably. Despite this modeling simplification, RETROFIT443

was able to reveal known spatial dependencies of cell-type composition and transcriptional specificity in the444

analysis of mouse cerebellum and human intestine ST data. Specifically, RETROFIT results adhere to the445

fundamental principle of tissue organization— cells in close spatial proximity within a tissue are more likely of446

the same type than cells that are spatially distant. Techniques such as Gaussian process29 and hidden Markov447

random field30 have been recently explored to enhance ST data analyses through sophisticated modeling of448

spatial correlations among ST spots. However, these techniques often incur additional computation and may449

not scale well to large ST datasets. As such, we view introducing spatial awareness to RETROFIT while450

maintaining its computational efficiency as a promising future enhancement.451

Overall, RETROFIT is an interpretable and scalable framework to deconvolve ST data, with the distinct452

advantage that it can simultaneously reveal cell-type composition and cell-type-specific gene expression for each453

ST spot independent of any single-cell transcriptomic references. As more ST data are generated and cell-type454

deconvolution becomes a routine analysis, we expect that RETROFIT will facilitate the high-throughput455

translation of genome-wide ST readouts to new insights in tissue biology.456

Methods457

Bayesian hierarchical model458

Let X = [
X gs

]
be the G ×S count matrix of expression levels for G genes at S spots obtained from a ST459

experiment. Since only a finite number of cell types constitute the ST sample, we represent X as a low-rank460

matrix spanned by L non-negative components that capture transcriptional signatures of distinct cell types461

in the ST sample. Specifically, we model the observed expression level of gene g at spot s, X gs, as the sum of462

unobserved expression counts in L latent components:463

X gs =
L∑
ℓ=1

Zgℓs. (1)

We further attribute each latent component Zgℓs to two independent sources in an additive manner:464

Zgℓs = Z0
gℓs +Z1

gℓs, (2)
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where Z0
gℓs denotes the background expression level shared by all genes in component ℓ at spot s and Z1

gℓs465

denotes the expression level specific to gene g in component ℓ at spot s. We model the unobserved gene466

expression counts Z0
gℓs and Z1

gℓs as two independent Poisson random variables13,31:467

Z0
gℓs ∼P (λHℓs) , Z1

gℓs ∼P
(
WgℓθℓHℓs

)
. (3)

Here Wgℓ > 0 denotes the average expression level of gene g in component ℓ, θℓ > 0 represents the contribution468

from component ℓ, Hℓs > 0 denotes the weight of component ℓ at spot s, and λ≥ 0 denotes an ‘offset’ constant469

capturing the background expression level shared by all genes across all components and spots32,33. When a470

sparsity-inducing prior is placed on θ = [θℓ], only a small subset of elements in θ are expected to be substantially471

greater than 0, leading to a preference for a sparse model with relatively few components16. Taken together, we472

obtain the following generative model of ST data:473

X gs ∼P

(
L∑
ℓ=1

(
Wgℓθℓ+λ

)
Hℓs

)
. (4)

The mean of Poisson model (4) implies two non-negative matrix factorization (NMF) models. When λ= 0, the474

mean of Poisson model (4) implies the Gamma Process NMF16: E
(
X gs

) = ∑L
ℓ=1 WgℓθℓHℓs. When λ = 0 and475

θℓ = 1 for ℓ= 1, . . . ,L, the mean of Poisson model (4) implies the standard NMF34: E
(
X gs

)=∑L
ℓ=1 WgℓHℓs.476

We take a Bayesian approach to learn the unknown parameters
{
Wgℓ,θℓ,Hℓs

}
in the Poisson generative model477

(4) from the observed ST data X. Specifically, we place independent Gamma priors16 on them:478

Wgℓ ∼G
(
αW

0 ,βW
0

)
, θℓ ∼G

(
αθ0,βθ0

)
, Hℓs ∼G

(
αH

0 ,βH
0

)
. (5)

We choose the Gamma priors (5) mainly for computational convenience, because combining the Poisson genera-479

tive model (4) with the Gamma priors (5) leads to conditional conjugacy, which will simplify the development of480

SSVI algorithm described in the next section.481

In this study, we fix
{
L,λ,αW

0 ,βW
0 ,αθ0,βθ0,αH

0 ,βH
0

}
as known constants to further simplify large-scale computation.482

For each dataset analyzed here, we set L as twice the number of known cell types in the tissue sample to483

ensure that all the cell types present in the ST slide can be potentially captured by the L latent components.484

This choice of L is informed by Gamma Process NMF16, a related method that recommends using a relative485

large L. For all datasets, we set λ= 0.01 in the Poisson model (4) and we set the hyper-parameters in Gamma486

priors (5) as αW
0 = 0.05,βW

0 = 0.0001,αθ0 = 1.25,βθ0 = 10,αH
0 = 0.2,βH

0 = 0.2. In particular, the Gamma prior on487

the component contribution θℓ ∼G
(
αθ0 = 1.25,βθ0 = 10

)
has mean 0.125 and variance 0.0125, and thus this prior488

favors small values of θℓ and induces a sparse solution in practice. In use cases where specific information489

about
{
L,λ,αW

0 ,βW
0 ,αθ0,βθ0,αH

0 ,βH
0

}
is available, it can be further used to guide their specifications.490

Structured stochastic variational inference491

To compute the posteriors of
{
Wgℓ,θℓ,Hℓs

}
we implement a SSVI algorithm17 that scales well with thousands492

of genes and spots (Supplementary Table 1). To formulate the SSVI algorithm, we use the following notation:493

Z=
{
Z0

gs,Z1
gs

}
for g = 1, . . .G and s = 1, . . . ,S, L-length vector Z0

gs =
[
Z0

gℓs

]
, L-length vector Z1

gs =
[
Z1

gℓs

]
, G×S494

matrix W= [
Wgs

]
, L-length vector θ = [θℓ] and L×S matrix H= [Hℓs]. SSVI seeks a variational distribution495

q(Z,W,θ,H) of the following form to minimize its Kullback–Leibler (KL) divergence to the actual posterior496

distribution p(Z,W,θ,H |X):497

q(Z,W,θ,H)=∏
g,ℓ

q(Wgℓ)
∏
ℓ

q(θℓ)
∏
ℓ,s

q(Hℓs)
∏
g,s

q
(
Z0

gs,Z
1
gs |W,θ,H

)
, (6)

where
{
q(Wgℓ), q(θℓ), q(Hℓs)

}
are required by SSVI to be in the same exponential family as the priors of498 {

Wgℓ,θℓ,Hℓs
}

while
{

q
(
Z0

gs,Z1
gs |W,θ,H

)}
can have any distributional form. By restoring dependence between499

model parameters {W,θ,H} and latent variables Z through
{

q
(
Z0

gs,Z1
gs |W,θ,H

)}
, the variational distribution500

specified by Eq. (6) improves upon the standard mean-field variational distribution that (incorrectly) enforces501

independence between {W,θ,H} and Z. Consequently, SSVI often outperforms mean-field variational inference502

on a wide range of Bayesian hierarchical models17.503

Since our Bayesian model is defined by the Poisson likelihood (4) and Gamma priors (5),
{
q(Wgℓ), q(θℓ), q(Hℓs)

}
504

in Eq. (6) are automatically Gamma distributions, which satisfy the distributional requirement in SSVI:505

q(Wgℓ)=G
(
Wgℓ;αW

gℓ,βW
gℓ

)
, q(θℓ)=G

(
θℓ;αθℓ,βθℓ

)
, q(Hℓs)=G

(
Hℓs;αH

ℓs,β
H
ℓs

)
. (7)

16 / 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2023. ; https://doi.org/10.1101/2023.06.07.544126doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.07.544126
http://creativecommons.org/licenses/by-nc-nd/4.0/


We specify q
(
Z0

gs,Z1
gs |W,θ,H

)
as the exact conditional posterior distributions of

{
Z0

gs,Z1
gs

}
given {W,θ,H}:506

q
(
Z0

gs,Z
1
gs |W,θ,H

)
= p

(
Z0

gs,Z
1
gs |X,W,θ,H

)
. (8)

This specification is chosen for two reasons. First, Eq. (8) provides the best possible approximation by achieving507

zero KL divergence to the actual conditional posterior17. Second, because
{

Z0
gℓs, Z1

gℓs

}
are independent Poisson508

random variables (3) that constitute the ST expression profile X gs =∑
ℓ

(
Z0

gℓs +Z1
gℓs

)
, the right-hand side of Eq.509

(8) has a closed form of a multinomial distribution:510

Pr
(
Z0

gs = z0
gs,Z

1
gs = z1

gs |X= x,W,θ,H
)
=

(
xgs

z0
g1s, · · · , z0

gLs, z1
g1s, · · · , z1

gLs

)
L∏
ℓ=1

(
π0

gℓs

)z0
gℓs

L∏
ℓ=1

(
π1

gℓs

)z1
gℓs , (9)

where xgs =∑
ℓ

(
z0

gℓs + z1
gℓs

)
is the observed ST expression count for gene g at spot s and511

π0
gℓs =

λHℓs∑
ℓ

(
Wgℓθℓ+λ

)
Hℓs

, π1
gℓs =

WgℓθℓHℓs∑
ℓ

(
Wgℓθℓ+λ

)
Hℓs

, (10)

for each component ℓ. With the variational distribution defined by Eq.s (6)-(10), we optimize the corresponding512

variational parameters
{
αW

gℓ,βW
gℓ,αθ

ℓ
,βθ

ℓ
,αH

ℓs,β
H
ℓs,π

0
gℓs,π

1
gℓs

}
through an iterative and stochastic procedure17513

defined in Algorithm 1. The derivation of Algorithm 1 is provided in Supplementary Note 1.514

In this study, we initialize
{
αW

gℓ,βW
gℓ,αθ

ℓ
,βθ

ℓ
,αH

ℓs,β
H
ℓs

}
in Algorithm 1 as515

αW
gℓ(0)∼U (0,0.5)+αW

0 , αθ
ℓ
(0)∼U (0,1)+αθ0, αH

ℓs(0)∼U (0,0.1)+αH
0 ,

βW
gℓ(0)∼U (0,0.005)+βW

0 , βθ
ℓ
(0)∼U (0,1)+βθ0, βH

ℓs(0)∼U (0,0.5)+βH
0 ,

where
{
αW

0 ,βW
0 ,αθ0,βθ0,αH

0 ,βH
0

}
are hyper-parameters specified in the previous section and U (a,b) denotes a516

continuous uniform distribution on the interval [a,b]. In use cases where specific initialization schemes are517

available, they can be easily used in our R package to run Algorithm 1.518

Cell-type annotation strategies519

After running Algorithm 1 on the ST data matrix, the expression profile of each gene at each spot is deconvolved520

into L latent components represented by columns of the G×L matrix Ŵ. To map the L latent components to K521

known cell types present in the ST data, we develop two simple strategies (Fig. 1). The first approach is suitable522

when a reference of cell-type-specific gene expression is available, such as cell-type-annotated scRNA-seq data523

from the same tissue type. This approach computes correlations between the deconvolved component-specific524

expression profiles (Ŵ) and the cell-type-specific expression profiles (W0), and then matches each component to525

the cell type with the largest correlation for this component. This approach is implemented as Algorithm 2.526

The second approach is suitable when marker genes are known for relevant cell types in the ST sample. This527

approach calculates a marker expression score for each component in each cell type (M), defined as the sum of528

normalized component-specific expression of known marker genes in this cell type, and then annotates each529

component by the cell type with the largest score. This approach is implemented as Algorithm 3.530

After matching the latent components to known cell types, we obtain a cell-type-specific expression matrix for531

all genes (W̃) and a cell-type proportion matrix for all spots (H̃) as follows. Let L = {ℓ1,ℓ2, . . . ,ℓK }⊆ {1,2. . . ,L}532

denote the set of latent components that are matched to K cell types, where ℓk indicates that the ℓk-th column of533

the G×L matrix Ŵ is matched to cell type k. We extract these columns in Ŵ to form a G×K matrix W̃= [Ŵgℓk ],534

where g = 1,2, . . . ,G and k = 1,2, . . . ,K . This matrix W̃ represents the cell-type-specific expression estimates of535

G genes in K cell types. Similarly, we extract the rows in Ĥ corresponding to the cell-type-matched columns of536

Ŵ and then normalize them to estimate the proportions of K cell types at S spots. We denote this K ×S matrix537

H̃= [H̃ks], where H̃ks = Ĥℓks/
∑
ℓ∈L Ĥℓs ∈ [0,1], k = 1, . . . ,K and s = 1,2, . . . ,S.538

Existing methods for comparison539

We compared RETROFIT with 5 recently published cell-type deconvolution methods for ST data: STdeconvolve15540

(https://bioconductor.org/packages/release/bioc/html/STdeconvolve.html, version 1.2.0), RCTD13541

17 / 25

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 9, 2023. ; https://doi.org/10.1101/2023.06.07.544126doi: bioRxiv preprint 

https://bioconductor.org/packages/release/bioc/html/STdeconvolve.html
https://doi.org/10.1101/2023.06.07.544126
http://creativecommons.org/licenses/by-nc-nd/4.0/


Algorithm 1 SSVI for reference-free decomposition of ST data matrix

Input the G×S ST data matrix X= [
X gs

]
and pre-specified constants

{
L,λ,αW

0 ,βW
0 ,αθ0,βθ0,αH

0 ,βH
0

}
.

Initialize
{
αW

gℓ,βW
gℓ,αθ

ℓ
,βθ

ℓ
,αH

ℓs,β
H
ℓs

}
as

{
αW

gℓ(0),βW
gℓ(0),αθ

ℓ
(0),βθ

ℓ
(0),αH

ℓs(0),βH
ℓs(0)

}
.

for iteration i = 1,2, . . . , I do
(1) Sample W(i)= [

Wgℓ(i)
]
, θ(i)= [θℓ(i)], H(i)= [Hℓs(i)] from the Gamma distributions defined in Eq. (7):

Wgℓ(i)∼G
(
αW

gℓ(i−1),βW
gℓ(i−1)

)
, θℓ(i)∼G

(
αθℓ(i−1),βθℓ(i−1)

)
, Hℓs(i)∼G

(
αH
ℓs(i−1),βH

ℓs(i−1)
)
.

(2) Update the multinomial distribution defined in Eq.s (9)-(10):

π0
gℓs(i)=

λHℓs(i)∑
ℓ

[
Wgℓ(i)θℓ(i)+λ]

Hℓs(i)
, π1

gℓs(i)=
Wgℓ(i)θℓ(i)Hℓs(i)∑

ℓ

[
Wgℓ(i)θℓ(i)+λ]

Hℓs(i)
.

(3) Update the Gamma parameters in Eq. (7) using a stochastic gradient with step size ρ(i)= i−0.5:

αW
gℓ(i) = [1−ρ(i)] ·αW

gℓ(i−1)+ρ(i) ·
[
αW

0 +∑
s

X gsπ
1
gℓs(i)

]
,

βW
gℓ(i) = [1−ρ(i)] ·βW

gℓ(i−1)+ρ(i) ·
[
βW

0 +∑
s
θℓ(i)Hℓs(i)

]
,

αθℓ(i) = [1−ρ(i)] ·αθℓ(i−1)+ρ(i) ·
[
αθ0 +

∑
g,s

X gsπ
1
gℓs(i)

]
,

βθℓ(i) = [1−ρ(i)] ·βθℓ(i−1)+ρ(i) ·
[
βθ0 +

∑
g,s

Wgℓ(i)Hℓs(i)

]
,

αH
ℓs(i) = [1−ρ(i)] ·αH

ℓs(i−1)+ρ(i) ·
{
αH

0 +∑
g

X gs

[
π1

gℓs(i)+π0
gℓs(i)

]}
,

βH
ℓs(i) = [1−ρ(i)] ·βH

ℓs(i−1)+ρ(i) ·
{
βH

0 +∑
g

[
Wgℓ(i)θℓ(i)+λ]}

.

end for

return estimates of G×L matrix Ŵ= [
Ŵgℓ

]
, L-length vector θ̂ = [

θ̂ℓ
]

and L×S matrix Ĥ= [
Ĥℓs

]
where

Ŵgℓ =
αW

gℓ(I)

βW
gℓ(I)

, θ̂ℓ =
αθ
ℓ
(I)

βθ
ℓ
(I)

, Ĥℓs =
αH
ℓs(I)

βH
ℓs(I)

.

(https://github.com/dmcable/spacexr, version 1.2.0), SPOTlight19 (https://github.com/MarcElosua/542

SPOTlight, version 0.1.0), Stereoscope18 (https://github.com/almaan/stereoscope, version 03) and NM-543

Freg6 (https://github.com/broadchenf/Slideseq, version 1.0). The software package versions were up-544

to-date at the time of analysis. For RCTD, we used both the full (allowing an unconstrained number of cell545

types per spot) and doublet (allowing up to two cell types per spot) modes. For SPOTlight, we set the minimum546

expected contribution from a cell type in a spot as 0.01. For Stereoscope, we set the number of epochs for fitting547

both single-cell and ST data as 10000 and the learning rate as 0.1. For the remaining specifications, we used548

the default setting of each software package in the present study.549

Among the 5 existing methods, only STdeconvolve is reference-free, while the other 4 methods require the550

input of a single-cell gene expression reference for ST deconvolution. For each ST dataset analyzed in this551

study, we ran the 4 reference-based methods with the same single-cell expression reference, as described in the552

following sections. We also used the single-cell expression reference to annotate STdeconvolve results by cell553

types, as described in the STdeconvolve publication15. When multiple latent components (topics) extracted554

by STdeconvolve were matched with the same cell type, we merged these components into one component so555

that STdeconovle produced one proportion estimate for each cell type, consistent with the other methods. For556
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Algorithm 2 Cell-type mapping based on cell-type-specific gene expression

Input the G ×L matrix Ŵ and L×S matrix Ĥ produced by Algorithm 1 and a G ×K reference matrix
W0 =

[
W0

i j

]
of cell-type-specific expression with W0

i j indicating the expression level of gene i in cell type j.

Normalize each row of W0 and Ŵ by their row sums:

W0∗ =
[
W0∗

i j

]
, W0∗

i j =
W0

i j∑K
k=1 W0

ik

; Ŵ∗ =
[
Ŵ∗

i j

]
, Ŵ∗

i j =
Ŵi j∑L
ℓ=1 Ŵiℓ

.

Compute the K ×L correlation matrix R = [
Ri j

]
where the (i, j)-th entry of R is the Pearson correlation

between the ith column (cell type) of Ŵ∗ and the jth column (latent component) of Ŵ∗.

repeat
(1) Find the entry of R with the largest value:

(r, c)= argmax
(i, j)

Ri j.

(2) Assign cell type r to latent component c.
(3) Delete the rth row and the cth column from R.

until each cell type k is matched with a unique latent component (column) ℓk of Ŵ, k = 1,2, . . . ,K .

return G ×K cell-type-specific gene expression matrix W̃ = [
Ŵgℓk

]
and K ×S cell-type proportion matrix

H̃= [
H̃ks

]
with H̃ks = Ĥℓks/

∑
ℓ∈L Ĥℓs ∈ [0,1], g = 1,2, . . . ,G, k = 1,2, . . . ,K and s = 1,2, . . . ,S.

Algorithm 3 Cell-type mapping based on cell-type-specific marker gene list

Input the G×L matrix Ŵ and L×S matrix Ĥ produced by Algorithm 1 and known marker gene lists {Mk}K
k=1

for K cell types with Mk indicating the list of marker genes for cell type k.

Normalize each row of Ŵ by its row sum:

Ŵ∗ =
[
Ŵ∗

i j

]
, Ŵ∗

i j =
Ŵi j∑L
ℓ=1 Ŵiℓ

.

Compute the K ×L cell-type marker score matrix M= [
Mi j

]
where the (i, j)-th entry of M is given by

Mi j = 1
|Mi|

∑
g∈Mi

Ŵ∗
g j,

where |Mi| is the total number of marker genes for cell type i.

repeat
(1) Find the entry of M with the largest value:

(r, c)= argmax
(i, j)

Mi j.

(2) Assign cell type r to latent component c.
(3) Delete the rth row and the cth column from M.

until each cell type k is matched with a unique latent component (column) ℓk of Ŵ, k = 1,2, . . . ,K .

return G ×K cell-type-specific gene expression matrix W̃ = [
Ŵgℓk

]
and K ×S cell-type proportion matrix

H̃= [
H̃ks

]
with H̃ks = Ĥℓks/

∑
ℓ∈L Ĥℓs ∈ [0,1], g = 1,2, . . . ,G, k = 1,2, . . . ,K and s = 1,2, . . . ,S.
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each ST dataset, each method outputs an estimated proportion for each cell type at each spot, which can be557

compared with the cell-type proportion estimates (H̃) produced by RETROFIT.558

Simulation studies559

Multiple factors in ST data may affect the performance of cell-type deconvolution. First, spot size differs across560

ST technologies and affects the complexity of the cell-type mixture at each spot. Second, cell-type heterogeneity561

in a ST slide also varies. A ST slide from a highly heterogeneous tissue (e.g., mammalian brains and intestines)562

tends to produce spots with multiple cell types. Methods that limit the number of cell types at a spot13 are563

likely inadequate for deconvolving ST data with high cell-type heterogeneity. Third, sequencing depths on the564

same slide may vary across spots, requiring methods to be adaptive and robust. Lastly, while RETROFIT does565

not require a single-cell gene expression reference for deconvolution, many existing methods do and thus their566

performance relies on the reference quality. We conducted simulations to investigate the impact of these factors567

on the performance of RETROFIT and several existing ST deconvolution methods.568

To imitate ST experiments from various platforms and tissue samples, we simulate ST data with different spot569

sizes and cell-type heterogeneity levels. Specifically, we characterize spot size by the number of cells per spot570

(N) and cell-type heterogeneity by the maximum number of cell types per spot (M). For each combination of571

N and M, we simulate the ST data matrix of G genes and S spots as follows. For each spot s, we randomly572

select an integer Ks between 1 and M, and then randomly select Ks cell types from the K cell types present in573

the ST sample, denoted as Ks. We simulate the proportions of the Ks selected cell types using a flat Dirichlet574

distribution, πs = [πis]i∈Ks ∼DKs (1, . . . ,1), and obtain the cell counts for the Ks selected cell types at spot s as575

ns = Nπs = [Nπis]i∈Ks , rounding to the nearest integer. We randomly select ns unique cells from a single-cell576

gene expression reference of the Ks selected cell types and aggregate their single-cell expression profiles of G577

genes to produce the expression profile for spot s. For example, if a spot contains N = 10 cells from cell types578

a, b and c with proportions 0.1, 0.7 and 0.2, respectively, we randomly select 1, 7 and 2 unique cells from the579

corresponding single-cell expression reference of cell types a, b and c, and then add their gene expression profiles580

up as the aggregated expression profile for this spot. To incorporate sequencing depth variation across spots,581

we simulate a spot-specific effect ϵs for each spot s from a Gamma distribution, ϵs ∼G (3,1), and multiply the582

aggregated expression level for each gene at spot s by ϵs to obtain the final ST expression level. The step-by-step583

protocol to generate synthetic ST data is given by Algorithm 4.584

Algorithm 4 Synthetic ST data generation
Input the total numbers of genes (G), spots (S) and cell types (K) on a ST slide, the number of cells per spot
(N), the maximum number of cell types per spot (M) and single-cell expression references {Yk}K

k=1 for K cell

types with Yk =
[
Y k

i j

]
and Y k

i j indicating the single-cell expression level of gene i in cell j from cell type k.

for each spot s = 1,2, . . . ,S do
(1) Randomly select an integer Ks between 1 and M as the number of cell types at spot s.
(2) Randomly select Ks different cell types from {1,2, . . . ,K}, denoted as Ks.
(3) Generate the proportions for the Ks selected cell types at spot s from a flat Dirichlet distribution and

set the proportions of remaining K −Ks cell types as 0: [πis]i∈Ks ∼DKs (1, . . . ,1) and πis = 0 for i ∉Ks.
(4) Generate the number of cells from cell type k at spot s as nks =Round(Nπks), k = 1, . . . ,K .
(5) Randomly select nks different cells for cell type k from the single-cell expression reference Yk, denoted

as Cks, and compute the aggregated expression level of gene g for cell type k at spot s as Ỹgks =
∑

c∈Cks Ygc.
(6) Generate the spot-level effect from a Gamma distribution: ϵs ∼G (3,1).
(7) Generate the ST expression level of gene g at spot s as X gs = ϵs

∑K
k=1 Ỹgks.

end for

return G×S ST data matrix X= [
X gs

]
.

To simulate ST data for this study, we applied Algorithm 4 to a mouse cerebellum scRNA-seq dataset6 of 2505585

genes and 26139 cells for 10 annotated cell types; see the next section for more details on this dataset. We586

selected 30 cells from each of the 10 cell types in this scRNA-seq dataset, based on the highest sum of single-cell587

expression levels across the 2505 genes. Next, we identified the 500 genes with the most variability across the588

300 selected cells and used them to simulate three ST datasets with G = 500 genes and S = 1000 spots: (1)589

N = 10 cells from up to M = 3 of the K = 10 cell types per spot (column 1 of Fig. 2); (2) N = 20 cells from up590

to M = 5 of the K = 10 cell types per spot (column 2 of Fig. 2); (3) N = 10 cells from up to M = 3 of the K = 5591
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ground-truth cell types per spot (columns 3-4 of Fig. 2) with the 5 ground-truth cell types being Bergmann glia,592

choroid plexus, endothelial, oligodendrocyte and Purkinje.593

We used STdeconvolve and RETROFIT for reference-free deconvolution of simulated ST data. On each ST594

dataset, we ran STdeconvolve with the default setting. STdeconvolve determined the optimal L = 9 for the first595

ST dataset (K = 10), L = 8 for the second ST dataset (K = 10) and L = 7 for the third ST dataset (K = 5). When596

running RETROFIT, we set L = 20 for the first two ST datasets (K = 10) and L = 10 for the third ST dataset597

(K = 5). On each ST dataset, we ran RETROFIT for I = 4000 iterations. To map results of STdeconvolve and598

RETROFIT to ground-truth cell types, we created a cell-type-specific transcriptomic reference W0 =
[
W0

gk

]
for599

the G genes and K ground-truth cell types in each ST dataset, using the same scRNA-seq data6 that produced600

the ST data. Specifically, we set W0
gk as the average scRNA-seq expression level of gene g across the 30 cells601

from cell type k that were used to simulate the ST data. We used this reference to annotate STdeconvolve602

results as previously described15. We applied Algorithm 2 to the same reference to annotate RETROFIT results.603

To perform reference-based deconvolution in simulations, we applied RCTD, SPOTlight, Stereoscope and604

NMFreg to each of the three simulated ST datasets. For the first two ST datasets, we used the exact scRNA-605

seq data6 of the 10 ground-truth cell types that were used to simulate the ST data as the single-cell gene606

expression reference (columns 1-2 of Fig. 2). For the third ST dataset, we created two ‘imperfect’ references607

for the reference-based methods based on the same scRNA-seq dataset. Specifically, one reference contained608

5 ground-truth and 5 irrelevant cell types (column 3 of Fig. 2), while the other reference contained only 3 of609

the 5 ground-truth cell types (absent: choroid plexus and oligodendrocyte) and 5 irrelevant cell types (column610

4 of Fig. 2). When a ground-truth cell type was absent from the single-cell gene expression reference, all the611

reference-based methods were unable to estimate its proportion at each spot, and we set the estimate as zero.612

We evaluated the performance of RETROFIT and 5 existing methods on the synthetic ST data as follows. Given613

a ST dataset, each method produced a proportion estimate of each cell type k for each spot s: H̃s =
[
H̃ks

]
.614

These estimates were used to reconstruct the ST expression profile for spot s as X̃s =W0H̃s with W0 being the615

cell-type-specific expression reference of G genes for K cell types as described above. We compared H̃s with616

the true cell-type proportions at the same spot, Hs = [Hks], by computing (1) their RMSE (Fig. 2a), defined617

as
√

K−1 ∑K
k=1(Hks − H̃ks)2, and (2) their Pearson correlation (Fig. 2b). Similarly, we compared X̃s with the618

true ST expression profile at the same spot, Xs =
[
X gs

]
, by computing (1) their normalized RMSE (Fig. 2c),619

defined as SD−1(Xs)
√

G−1 ∑G
g=1(X gs − X̃ gs)2 with SD(Xs) being the standard deviation of ST expression levels620

across G genes at spot s, and (2) their correlation (Fig. 2d). For both estimated cell-type proportions (H̃)621

and reconstructed gene expression levels (X̃), lower RMSEs and higher correlations indicate better cell-type622

deconvolution results that are closer to and more concordant with the ground truth, respectively. To evaluate the623

cell-type specificity of RETROFIT-extracted components, we computed the correlation between the estimated624

(W̃k) and observed (W0
k) cell-type-specific expression levels across G genes for each cell type k (Fig. 2e), with a625

higher value indicating a better performance.626

Mouse cerebellum data analysis627

The mouse cerebellum study6 provided Slide-seq data of 17919 genes at 27261 spots (https://singlecell.628

broadinstitute.org/single_cell/study/SCP354/slide-seq-study). This study also provided scRNA-629

seq data of 2505 genes from 26139 cells that were annotated as 10 cell types in the mouse cerebellum630

(astrocyte, Bergmann glia, choroid plexus, endothelial, granule, microglia, mural, oligodendrocyte, Purkinje and631

interneuron). We ran RCTD and Stereoscope on the Slide-seq and scRNA-seq data provided in this study. We632

ran STdeconvolve on the Slide-seq data only, created a cell-type-specific gene expression reference (W0) from633

the companion scRNA-seq data as described in our simulation studies, and then used this reference to match634

the extracted components with the most probable cell types in the mouse cerebellum. STdeconvolve determined635

the optimal number of latent components as L = 7. The remaining details of using RCTD, Stereoscope and636

STdeconvolve were identical to those described in the previous section.637

We used RETROFIT to analyze the mouse cerebellum Slide-seq data as follows. To ensure deconvolution638

accuracy and computation efficiency, we combined three complementary strategies to down-select genes639

before running RETROFIT. First, we selected 61 overdispersed genes with significantly higher-than-expected640

ST expression variances across spots15 using the default setup of the STdeconvolve package. Second, we641

identified 54 cell-type-specific genes by computing entropy and Gini index on the companion scRNA-seq data642

(Supplementary Note 2). Third, we obtained 61 marker genes35 curated for 3 mouse brain cell types (granule:643
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15; oligodendrocyte: 4; Purkinje: 42) from NeuroExpresso (www.neuroexpresso.org; Supplementary Table644

2). We took the union of these 3 gene lists and used the resulting 153 unique genes to construct the input ST645

data matrix (X) for RETROFIT. We then ran RETROFIT on the 153×27261 ST data matrix X with I = 5000646

iterations and L = 20 latent components. To map the RETROFIT-extracted components to the 10 mouse brain647

cell types, we applied Algorithm 2 to the cell-type-specific gene expression reference (W0) from the companion648

scRNA-seq data as described in the previous section.649

We evaluated the performance of 4 deconvolution methods on 3 mouse brain cell types (granule, oligodendrocyte,650

Purkinje) using curated marker genes available in NeuroExpresso35. Given a cell type k, we define the cell-type651

marker ST expression score at spot s in a slide as652

Tks =
∑

g∈Mk

X gs, (11)

where Mk denotes the list of marker genes for cell type k and X gs denotes the ST expression level of gene g653

at spot s. For each combination of the 4 methods and the 3 cell types, we computed the Pearson correlation654

between the observed cell-type marker ST expression scores (T) and the estimated cell-type proportions (H̃)655

across all spots. A higher correlation indicates a better performance.656

Human intestine data analysis657

The human intestine study5 made available Visium ST data from 3 tissue slides, including a 12 PCW slide658

with 1080 spots, a 19 PCW slide with 1242 spots and an adult slide with 2649 spots, providing expression659

measurements for 33538 genes in each slide (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=660

GSE158328). The study provided H&E images of the ST slides (https://doi.org/10.17632/gncg57p5x9.2).661

This study also provided scRNA-seq data of 76592 cells from 77 intestinal samples spanning 8 to 22 PCW662

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158702) that were grouped into 8 distinct663

cellular compartments (endothelial, epithelial, fibroblast, immune, muscle, MyoFB/MESO, neural, pericyte).664

We used RETROFIT to analyze the human intestine Visium ST data as follows. Similar to our analysis of the665

mouse cerebellum Slide-seq data, we down-selected genes prior to running RETROFIT. Specifically, for each of666

the 3 ST slides, we only included (1) significantly overdispersed genes across spots15 and (2) 37 known marker667

genes of the 8 cellular compartments (Fig. 6a) in the input ST data matrix (X) for RETROFIT, resulting in668

722 genes for 12 PCW, 681 genes for 19 PCW and 1051 genes for adult. On each ST data matrix, we then ran669

RETROFIT with I = 4000 iterations and L = 16 latent components. To match RETROFIT-extracted components670

with the 8 intestinal compartments, we utilized Algorithm 3 together with the 37 known marker genes (Fig.671

6a) curated in the human intestine study5. For the 12 and 19 PCW slides, we also applied Algorithm 2 to672

annotate their RETROFIT results, using the compartment-specific gene expression reference (W0) generated673

from the companion scRNA-seq data of 12 and 19 PCW samples respectively. Specifically, for each fetal stage674

we selected 25 cells from each of the 8 compartments that resulted in the highest sum of single-cell expression675

levels across all genes, and then we set W0
gk as the average scRNA-seq expression level of gene g across the 25676

cells selected from compartment k. Unless otherwise specified, estimates of compartment proportion (H̃) and677

compartment-specific expression (W̃) for all 3 ST slides were generated with Algorithm 3.678

For comparison, we also used STdeconvolve to perform reference-free deconvolution of the same human intestine679

ST data. Since the cell-type annotation step in STdeconvolve requires a cell-type-specific gene expression680

reference, we only ran STdeconvolve on the ST data of 12 and 19 PCW tissues that had companion scRNA-seq681

data available. For each ST slide we ran STdeconvolve with two different numbers of latent components (topics):682

L = 6, which was determined by STdeconvolve, and L = 16, which was used in RETROFIT. The remaining683

details of running STdeconvolve were the same as those described in previous sections.684

To evaluate the accuracy of RETROFIT in estimating cellular compartment proportions (H̃), we computed the685

correlation between the ST expression scores of compartment-specific marker genes defined in Eq. (11) and the686

estimated compartment proportions across all spots for each of the 8 cellular compartments and 3 ST slides687

(Table 1; Fig.s 4c-d; Supplementary Fig.s 5-10).688

To evaluate the accuracy of RETROFIT in estimating compartment-specific expression levels (W̃), we compared
the compartment-specific expression levels estimated from 12 and 19 PCW ST slides with the compartment-
specific expression levels based on the companion scRNA-seq data from 12 and 19 PCW intestinal samples
(W0). To account for different scales of ST and scRNA-seq data, we first normalized rows of the two expression
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matrices (W̃ and W0) by their sums as we did in Algorithm 2:

W̃∗
gk = W̃gk∑K

j=1 W̃g j
, W0∗

gk =
W0

gk∑K
j=1 W0

g j

,

and then compared the normalized expression matrices W̃∗ =
[
W̃∗

gk

]
and W0∗ =

[
W0∗

gk

]
in each of the 8 cellular689

compartments and 2 fetal stages (Fig.s 6a and c).690

Based on the normalized cell-type-specific expression levels (W̃∗) estimated by RETROFIT, we further developed691

a simple method to identify genes with high cell-type specificity. Given the normalized cell-type-specific692

expression estimates of gene g for K cell types
{
W̃∗

g1, . . . ,W̃∗
gK

}
, we calculated two dispersion measures:693

entropy Eg = −
K∑

k=1
W̃∗

gk log2

(
W̃∗

gk

)
,

Gini index Gg =
∑K

i=1
∑K

j=1

∣∣∣W̃∗
gi −W̃∗

g j

∣∣∣
2(K −1)

∑K
k=1 W̃∗

gk

.

Lower entropy and higher Gini index indicate an excess of normalized expression for one cell type, thus694

suggesting the cell-type specificity. In the human intestine data analysis, we identified a cell-type-specific gene695

g from the ST data if this gene had (1) entropy Eg < 1.5, (2) Gini index Gg > 0.85, (3) maximum ST expression696

level maxs X gs > 40 and (4) consistent cell-type specificity across all ST replicate samples (e.g., the same tissue697

type from the same developmental stage). We performed this analysis only on adult and 12 PCW stages (Fig.698

6b), because they were the only stages with ST replicate samples available in the human intestine study5699

(Supplementary Tables 18-20), in addition to the ST samples used in our primary analysis (Fig. 4a).700

To assess biological themes of cell-type-specific genes identified by RETROFIT (Fig. 6d; Supplementary Tables701

21-22), we performed the gene set enrichment analysis using Metascape36 (https://metascape.org, version702

3.5). Metascape calculates the enrichment P-values based on the cumulative hypergeometric distribution and703

then adjusts the P-values for multiple testing based on the Benjamini-Hochberg procedure.704

Data availability705

All the data used in this study are publicly available. Links and identifiers of all data are specified in Methods.706

Code availability707

RETROFIT is available as an R package in Bioconductor (https://bioconductor.org/packages/release/708

bioc/html/retrofit.html). Links and identifiers of all other codes are specified in Methods.709
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