
RETROFIT: REFERENCE-FREE DECONVOLUTION OF CELL-TYPE MIXTURES IN SPATIAL TRANSCRIPTOMICS

Roopali Singh, Xi He, Adam Keebum Park, Ross Cameron Hardison, Xiang Zhu, Qunhua Li
The Pennsylvania State University, University Park, PA 16802

ABSTRACT

1 Spatial transcriptomics (ST) profiles gene expression in intact tissues. However, ST data
2 measured at each spatial location may represent gene expression of multiple cell types, making
3 it difficult to identify cell-type-specific transcriptional variation across spatial contexts.
4 Existing cell-type deconvolutions of ST data often require single-cell transcriptomic references,
5 which can be limited by availability, completeness and platform effect of such references. We
6 present RETROFIT, a reference-free Bayesian method that produces sparse and interpretable
7 solutions to deconvolve cell types underlying each location independent of single-cell trans-
8 scriptomic references. Results from synthetic and real ST datasets acquired by Slide-seq and
9 Visium platforms demonstrate that RETROFIT outperforms existing reference-based and
10 reference-free methods in estimating cell-type composition and reconstructing gene expres-
11 sion. Applying RETROFIT to human intestinal development ST data reveals spatiotemporal
12 patterns of cellular composition and transcriptional specificity. RETROFIT is available at
13 <https://bioconductor.org/packages/release/bioc/html/retrofit.html>.

14 **Introduction**

15 Tissue formation and function rely on the spatial organization of diverse cell types and states, along with
16 coordinated activities of numerous genes pertinent to each cellular context. Recent advances in ST have enabled
17 genome-wide measurements of gene expression throughout intact tissue sections¹, offering a powerful approach
18 to elucidating tissue architecture². The widespread adoption of ST technologies has provided new insights into
19 spatial biology of many complex mammalian tissues, such as brains³ and intestines⁴.

20 ST measures gene expression at each spatial location, henceforth referred to as a “spot”, on a two-dimensional
21 slide of tissue sample. In some ST platforms, spots can cover an area equivalent to multiple mammalian cells.
22 For example, the Visium platform generates ST slides with spots covering an area of 55 μ m diameter and
23 encompassing 6-10 cells when applied to human intestinal samples⁵. Even for ST technologies at resolutions
24 comparable to the sizes of individual cells, such as Slide-seq⁶ (10 μ m diameter), predetermined locations of
25 high-resolution spots in a slide may overlap with multiple cells of different types. Therefore, it is likely that
26 gene expression in multiple cell types frequently contributes to the ST measurement at a single spot. However,
27 cell-type-specific transcriptional profiles and their contributions to the ST measurement at each spot are
28 not observed as part of the existing ST readout. To improve our understanding of cell-type-specific spatial
29 localization and transcriptional signature underlying tissue organization and function, it is crucial to decompose
30 the cell-type mixture at each spot into individual cell types.

31 Various cell-type deconvolution methods have recently been developed to infer cell-type composition for ST
32 data^{7,8}. However, the majority of these methods require a reference of cell-type-annotated gene expression,
33 often acquired by single-cell technologies such as single-cell RNA-sequencing (scRNA-seq). Typically, these
34 methods place cell-type deconvolution in a supervised learning framework, where each ST spot is represented
35 as an unknown combination of individual cell types present in the ST sample, and the proportion of each cell

This work was last updated on June 7, 2023. X.H. and A.K.P. contributed equally to this work as co-second authors.
Correspondence should be addressed to X.Z. (xiangzhu@psu.edu) and Q.L. (qunhua.li@psu.edu).

36 type for each spot is estimated by approximating the observed ST data based on the external transcriptional
37 profiles of these cell types from a single-cell reference.

38 Because of their supervised nature, reference-based deconvolution methods rely heavily on the availability
39 of single-cell transcriptomic data and the quality of cell-type-annotated gene expression references. While
40 ongoing efforts to profile single-cell transcriptomes in diverse mammalian tissues^{9,10} may help alleviate such
41 limitations, compiling a high-quality reference of cell-type-annotated gene expression for certain ST studies
42 remains difficult due to sample limitations and experimental challenges to capture all the relevant cell types
43 through single-cell transcriptomics^{11,12}. Even with a high-quality transcriptomic reference in place, supervised
44 deconvolutions are further complicated by platform effect¹³—a phenomenon that systematic technical variation
45 across single-cell and ST technologies can overshadow relevant biological signals¹⁴. Hence, a reference-free,
46 unsupervised deconvolution approach that does not require the input of single-cell gene expression provides a
47 valuable alternative when a suitable reference is unavailable. However, reference-free methods are currently
48 under-developed, with only one approach, STdeconvolve¹⁵, published at the time of our investigation.

49 Here, we introduce **reference-free spatial transcriptomic factorization (RETROFIT)**, an unsupervised method
50 to decompose cell-type mixtures in ST data without using single-cell gene expression. Built on a Bayesian
51 hierarchical model, RETROFIT decomposes the ST data matrix into two matrices, one reflecting gene expression
52 of cellular components and the other capturing proportions of these components present in each spot. RETROFIT
53 is designed to produce a sparse and interpretable solution, aiding identification of the most relevant cellular
54 components present in the ST sample. Our results demonstrate that RETROFIT outperforms existing reference-
55 based methods in estimating cell-type composition and reconstructing gene expression in synthetic ST data with
56 varying spot size and sample heterogeneity, irrespective of the quality of single-cell transcriptomic references.
57 When applied to a mouse cerebellum Slide-seq dataset⁶, RETROFIT localizes known cell types in the mouse
58 brain without using any single-cell information. When applied to a Visium dataset from a human intestinal
59 development study⁵, RETROFIT reveals spatiotemporal patterns of cellular composition and transcriptional
60 specificity in adult and fetal intestinal samples, yielding insights into human intestinal development and
61 function. Across all the synthetic and real-world ST datasets examined in this study, RETROFIT consistently
62 outperforms STdeconvolve, the only reference-free approach published at the time of our analysis.

63 Results

64 RETROFIT deconvolves ST data independent of single-cell gene expression references

65 RETROFIT is a reference-free approach for cell-type deconvolution of ST data (Fig. 1). In brief, RETROFIT
66 takes a ST count matrix \mathbf{X} , which consists of G genes at S spots, as its sole input, and then conducts an
67 unsupervised projection of \mathbf{X} onto a low-dimensional space spanned by L non-negative latent components,
68 independent of any external reference. Typically, the value of L is set larger than the actual number of cell
69 types (K) present in the ST sample. This allows RETROFIT to produce a sparse solution¹⁶ that capture all
70 the relevant cellular components present in each spot. The expression of each gene at each spot for each
71 component is further decomposed into the expression specific to the gene and the background expression shared
72 by all genes. The L latent components, which are mined from ST data alone, often contain information that
73 distinguishes cell types of distinct transcriptomic profiles, forming the basis for cell-type deconvolution.

74 RETROFIT is formulated as a Bayesian hierarchical model with a Poisson likelihood for the observed ST
75 data and Gamma priors for the unknown parameters (Methods). RETROFIT deconvolves the ST data matrix
76 into two matrices: one reflecting component-specific gene expression and the other reflecting the proportion
77 of each component. To facilitate the analysis of large-scale ST data, RETROFIT is implemented with a
78 structured stochastic variational inference (SSVI) algorithm¹⁷ that scales well with thousands of genes and
79 spots (Algorithm 1; Supplementary Table 1). The software is available as a Bioconductor R package at
80 <https://bioconductor.org/packages/release/bioc/html/retrofit.html>.

81 Like any unsupervised learning, RETROFIT produces unlabeled results. To assign known cell types to the latent
82 components inferred by RETROFIT, we develop two simple post hoc cell-type annotation strategies. The first
83 strategy requires a cell-type-annotated gene expression reference (\mathbf{W}^0) for all K cell types present in the ST data,
84 which is a standard assumption made by most ST deconvolution methods to date^{7,8}. The cell-type-annotated
85 expression reference can be derived from external single-cell transcriptomics data that match the tissue type of
86 ST data. With this reference, we can calculate correlations between the component-specific expression profiles
87 estimated by RETROFIT and the observed cell-type-specific expression profiles in the reference. We then treat
88 the cell type with the largest correlation for a component as the most probable annotation (Algorithm 2). The

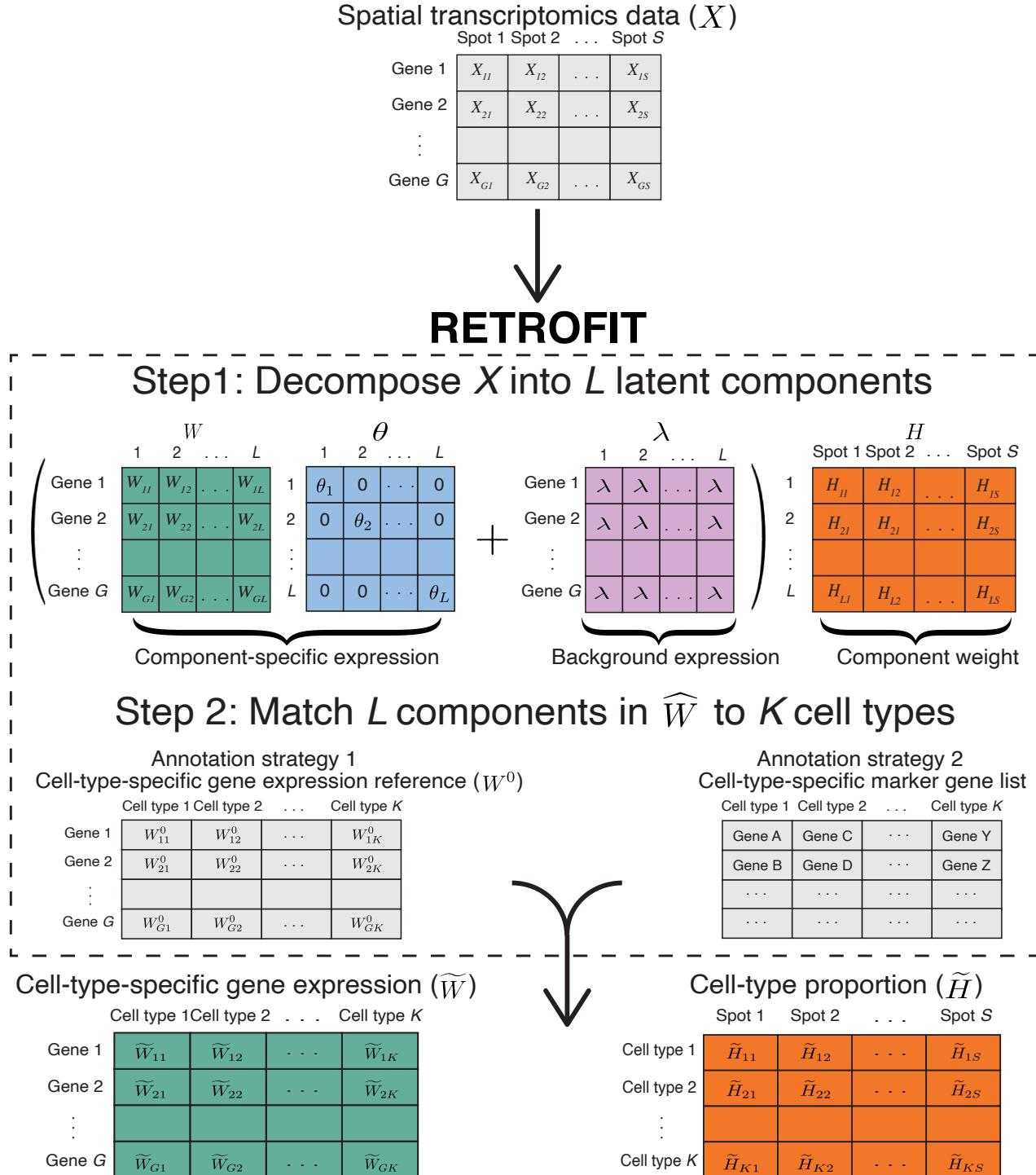


Figure 1: Overview of RETROFIT. Step 1: RETROFIT takes a ST data matrix as the only input and decomposes this matrix into latent components in an unsupervised manner (Algorithm 1). Step 2: RETROFIT matches these latent components to known cell types using either a cell-type-specific gene expression reference (Algorithm 2) or a list of cell-type-specific marker genes (Algorithm 3) for the cell types present in the ST sample, and outputs a cell-type-specific gene expression matrix and a cell-type proportion matrix.

89 second strategy does not require any gene expression references, but requires a curated list of cell-type-specific
90 marker genes for all K cell types present in the ST data. This approach complements the first strategy when a
91 proper cell-type-specific expression reference is unavailable. With the marker gene list in place, we calculate a
92 marker expression score for each component in each cell type. This score is defined as the sum of normalized
93 component-specific expression levels of marker genes in this cell type. We then annotate each component by the
94 cell type with the largest marker expression score (Algorithm 3). Once the latent components are matched to
95 cell types by either strategy, RETROFIT outputs a cell-type-specific expression matrix for all genes (\tilde{W}) and a
96 cell-type proportion matrix for all spots (\tilde{H}) as the final results.

97 **RETROFIT adapts better to spot size and cell-type heterogeneity than existing methods**

98 We compared RETROFIT with existing methods on simulated data (Fig. 2). To imitate ST data from different
99 platforms and samples, we used a real-world scRNA-seq dataset⁶ to simulate ST data with different levels of
100 sequencing depth, spot size and cell-type heterogeneity (Algorithm 4). We varied the levels of spot size and
101 cell-type heterogeneity by changing the number of cells per spot (N) and the maximum number of cell types
102 per spot (M) respectively. We also assessed how the quality of single-cell transcriptomic reference affected
103 reference-based methods by altering the levels of cell-type match between ST data and single-cell references.

104 On each simulated ST dataset, we compared RETROFIT with 4 reference-based methods: NMFreg⁶, Stereo-
105 scope¹⁸, SPOTlight¹⁹ and RCTD¹³, and a reference-free method: STdeconvolve¹⁵. We evaluated each method
106 in two aspects: (1) explanatory power measured by the root-mean-square error (RMSE; Fig. 2a) and correlation
107 (Fig. 2b) between the true and estimated cell-type proportions at each spot; (2) predictive power measured by
108 the normalized RMSE (NRMSE; Fig. 2c) and correlation (Fig. 2d) between the observed and reconstructed
109 gene expression profiles at each spot, where the reconstructed expression profiles were sums of the single-cell
110 expression profiles in individual cell types weighted by the estimated cell-type proportions. Details of simulation
111 and evaluation are provided in Methods.

112 We started with an ideal use case for reference-based methods, where reference-based methods were provided
113 with an exact reference of the same single-cell expression profiles for all 10 cell types that were used to simulate
114 ST data. In contrast, reference-free methods would benefit little from the availability of such an exact reference,
115 because they decompose the ST data free of any external references. The first two columns of Fig. 2 show the
116 simulation results for this case in two scenarios: (1) one with smaller spot size and lower cell-type heterogeneity:
117 $N = 10$ cells and up to $M = 3$ cell types per spot; (2) the other with larger spot size and higher cell-type
118 heterogeneity: $N = 20$ cells and up to $M = 5$ cell types per spot. In both scenarios, we simulated ST data for
119 $G = 500$ genes and $S = 1000$ spots with $K = 10$ cell types.

120 Although the simulations were designed to favor reference-based methods, RETROFIT performed competitively
121 compared to reference-base methods and significantly outperformed the only other reference-free method
122 (STdeconvolve) in the scenario with smaller spot size and lower cell-type heterogeneity ($N = 10$ and $M = 3$).
123 Specifically, RETROFIT achieved similar accuracy in estimating cell-type proportions as the best reference-
124 based method (Stereoscope, KS test $P = 0.31$) and outperformed remaining methods by producing significantly
125 smaller RMSEs (Fig. 2a; KS test $P \leq 7.1 \times 10^{-7}$). RETROFIT also consistently showed higher concordance
126 between the estimate and ground truth than existing methods (Fig. 2b; AUC = 0.964 versus 0.764 – 0.958).
127 Furthermore, RETROFIT achieved similar reconstruction accuracy as several reference-based methods (Fig.
128 2c) and showed consistently higher concordance between the reconstructed and observed expression than
129 existing methods (Fig. 2d; AUC = 0.962 versus 0.802 – 0.946). In contrast, STdeconvolve performed worse than
130 most of the reference-based methods in both cell-type proportion estimation (Fig.s 2a-b) and gene expression
131 reconstruction (Fig.s 2c-d), and it was outperformed by RETROFIT in all measures.

132 With increased spot size and cell-type heterogeneity ($N = 20$ and $M = 5$), the accuracy and concordance of
133 existing methods decreased in cell-type proportion estimation (Fig.s 2a-b), and there was a similar trend in the
134 concordance of gene expression reconstruction for multiple existing methods (Fig. 2d). For example, while RCTD,
135 especially its ‘doublet’ mode (RCTD-D) that assumes up to two cell types per spot, performed reasonably well in
136 the previous scenario ($N = 10$ and $M = 3$), its performance deteriorated with increased spot size and cell-type
137 heterogeneity ($N = 20$ and $M = 5$). In contrast, RETROFIT was robust to these changes and significantly
138 outperformed all methods in both accuracy (KS test $P \leq 8.4 \times 10^{-19}$; Fig. 2a) and concordance (AUC = 0.970
139 versus 0.628 – 0.939; Fig. 2b) for cell-type proportion estimation. When reconstructing gene expression,
140 RETROFIT also generated significantly smaller NRMSEs than existing methods (KS test $P \leq 8.2 \times 10^{-5}$; Fig.
141 2c) except for Stereoscope (KS test $P = 0.03$), and consistently showed higher concordance with the observed
142 expression than all methods (AUC = 0.979 versus 0.741 – 0.973; Fig. 2d).

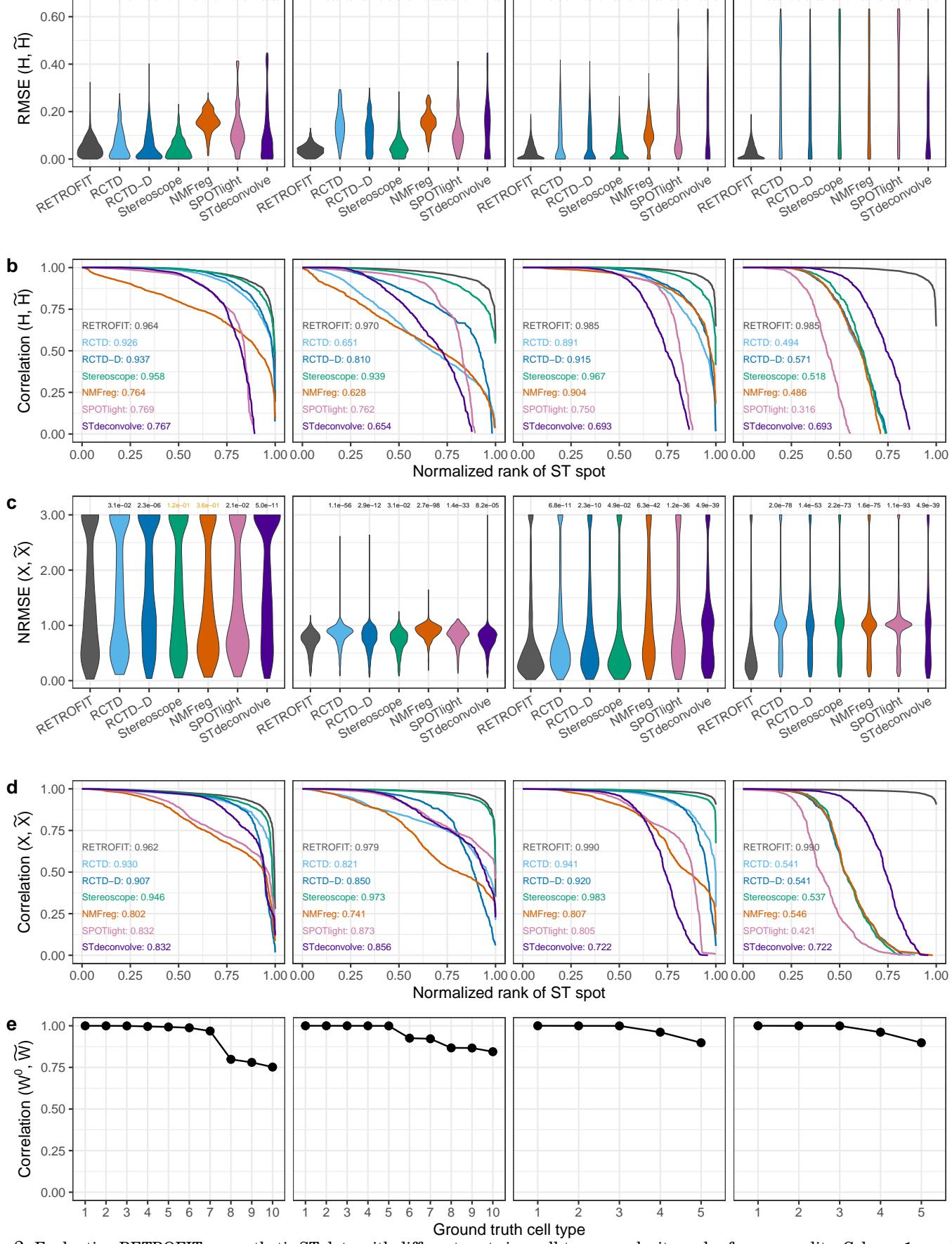


Figure 2: Evaluating RETROFIT on synthetic ST data with different spot size, cell-type complexity and reference quality. Column 1: small spots ($N = 10$ cells per spot) with low cell-type complexity (up to $M = 3$ cell types per spot from $K = 10$ cell types in the slide). Column 2: large spots ($N = 20$) with high cell-type complexity ($M = 5$ and $K = 10$). Columns 3-4: $N = 10$, $M = 3$ and $K = 5$. Reference-based methods were provided with the following single-cell transcriptomic references. Columns 1-2: exact reference of all 10 ground truth cell types. Column 3: all 5 ground truth plus 5 irrelevant cell types. Column 4: only 3 out of 5 ground truth plus 5 irrelevant cell types. **a** Distribution of RMSE and **b** ranked correlation between true (\mathbf{H}) and estimated cell-type proportions ($\tilde{\mathbf{H}}$) across all cell types at each spot. **c** Distribution of NRMSE and **d** ranked correlation between observed (\mathbf{X}) and reconstructed expression ($\tilde{\mathbf{X}}$) across all genes at each spot. The one-sided KS P -values are shown in **a** and **c** (black: $P < 0.05$; yellow: $P > 0.05$). A small P -value indicates that RETROFIT estimates have stochastically lower RMSEs compared to another method. The AUC of ranked correlations is shown for each method with matching color in **b** and **d**. **e** Ranked correlation between the single-cell observation (\mathbf{W}^0) and RETROFIT estimation ($\tilde{\mathbf{W}}$) of cell-type-specific expression across all cell types.

143 Altogether, even without exploiting the exact single-cell expression reference, RETROFIT performs competi-
144 tively with the best-performing reference-based deconvolution, and it adapts better to spot size and cell-type
145 heterogeneity than existing methods.

146 **RETROFIT surpasses reference-based deconvolutions when key cell types are missing**

147 We next considered a more realistic use case with imperfect single-cell transcriptomic references that included
148 irrelevant or excluded relevant cell types, and we evaluated the impact of such imperfection on reference-based
149 and reference-free deconvolutions of ST data. Here we simulated ST data of $G = 500$ genes for $S = 1000$ spots
150 with $N = 10$ cells from up to $M = 3$ out of $K = 5$ cell types per spot, using the same data and scheme as before
151 (Methods). We then created two imperfect single-cell expression references: (1) 5 extra cell types and the
152 complete set of 5 ground truth cell types used to generate ST data; (2) 5 extra cell types and only 3 out of 5
153 ground truth cell types. We evaluated all methods on the same ST data using the 5 ground truth cell types.

154 For all reference-based methods, we observed a heavy reliance on the completeness of relevant cell types in
155 the single-cell reference. While reference-based methods showed robustness to irrelevant cell types when the
156 reference contained 5 cell types in addition to the 5 ground truth cell types (Fig. 2, column 3), their performance
157 significantly decreased when 2 out of 5 ground truth cell types were missing in the reference (Fig. 2, column 4),
158 highlighting the negative impact of incomplete single-cell references on reference-based deconvolutions.

159 In contrast, RETROFIT consistently demonstrated optimal performance regardless of reference quality. When
160 the single-cell reference consisted of all 5 ground truth and 5 extra cell types, RETROFIT significantly
161 outperformed Stereoscope, the best performing reference-based method in this scenario, in both cell-type
162 proportion estimation (KS test $P = 2.3 \times 10^{-10}$; AUC = 0.985 versus 0.967; Fig.s 2a-b) and gene expression
163 reconstruction (KS test $P = 4.9 \times 10^{-2}$; AUC = 0.990 versus 0.983; Fig.s 2c-d). When 2 out of 5 ground truth
164 cell types were missing in the single-cell reference, RETROFIT showed substantial gains in accuracy over
165 all reference-based methods for both cell-type proportion estimation (KS test $P \leq 3.7 \times 10^{-130}$; Fig. 2a) and
166 gene expression reconstruction (KS test $P \leq 1.4 \times 10^{-53}$; Fig. 2c). In nearly all spots ($\geq 97.4\%$), the estimated
167 cell-type proportions (AUC = 0.985) and reconstructed gene expression profiles (AUC = 0.990) from RETROFIT
168 were strongly correlated with the ground truth (Pearson $R \geq 0.9$), whereas only less than 45.3% and 40.2%
169 of spots achieved the same level of concordance for estimated proportions (AUC = 0.316 – 0.571; Fig. 2b) and
170 reconstructed expression profiles (AUC = 0.421 – 0.546; Fig. 2d) from reference-based methods, respectively.

171 Like RETROFIT, STdeconvolve also showed robustness against cell-type incompleteness of single-cell reference
172 (Fig. 2, column 4), as both methods deconvolve ST data independent of single-cell transcriptomic references.
173 However, compared with RETROFIT, STdeconvolve underperformed in cell-type proportion estimation, as
174 reflected in the significantly larger RMSE (KS test $P = 4.8 \times 10^{-102}$; Fig. 2a) and smaller AUC (0.985 versus
175 0.693; Fig. 2b). STdeconvolve also underperformed in gene expression reconstruction, as reflected in the
176 significantly larger NRMSE (KS test $P = 4.9 \times 10^{-39}$; Fig. 2c) and smaller AUC (0.990 versus 0.722; Fig. 2d).

177 Lastly, we evaluated the concordance between cell-type-specific gene expression profiles estimated by RETROFIT
178 and observed single-cell expression profiles for each cell type (Fig. 2e). Across all simulations, RETROFIT
179 estimates were highly correlated with the single-cell data for all cell types (Pearson $R > 0.75$ when $N = 10, M = 3$
180 and $K = 10$; $R > 0.84$ when $N = 20, M = 5$ and $K = 10$; $R > 0.89$ when $N = 10, M = 3$ and $K = 5$), confirming that
181 the reference-free estimation in RETROFIT effectively captures cell-type-specific transcriptional characteristics.

182 Altogether, these simulations demonstrate the major limitation of reference-based deconvolutions, as well as
183 the evident advantage of RETROFIT over reference-based methods, especially when key cell types relevant to
184 the ST data are absent in the single-cell transcriptomic reference.

185 **RETROFIT outperforms existing methods to deconvolve mouse cerebellum Slide-seq data**

186 We evaluated RETROFIT on a mouse cerebellum Slide-seq dataset⁶ of 17919 genes at 27261 spots, which has
187 been widely used to benchmark ST deconvolution methods. We compared RETROFIT with Stereoscope and
188 RCTD, two top-performing reference-based methods in our simulations (Fig. 2), as well as the reference-free
189 method STdeconvolve. RCTD and Stereoscope were further provided with a scRNA-seq reference for 10 cell
190 types from the same study⁶. RETROFIT and STdeconvolve did not use this single-cell reference to deconvolve
191 the ST data into latent components; they only used this scRNA-seq dataset to match latent components to
192 known cell types post hoc. Details of applying each method to the Slide-seq study are available in Methods.

193 To benchmark the deconvolution methods on the Slide-seq dataset, we focused on 3 cell types in the mouse
194 cerebellum for which known cell-type marker genes were available: granule, oligodendrocyte and Purkinje

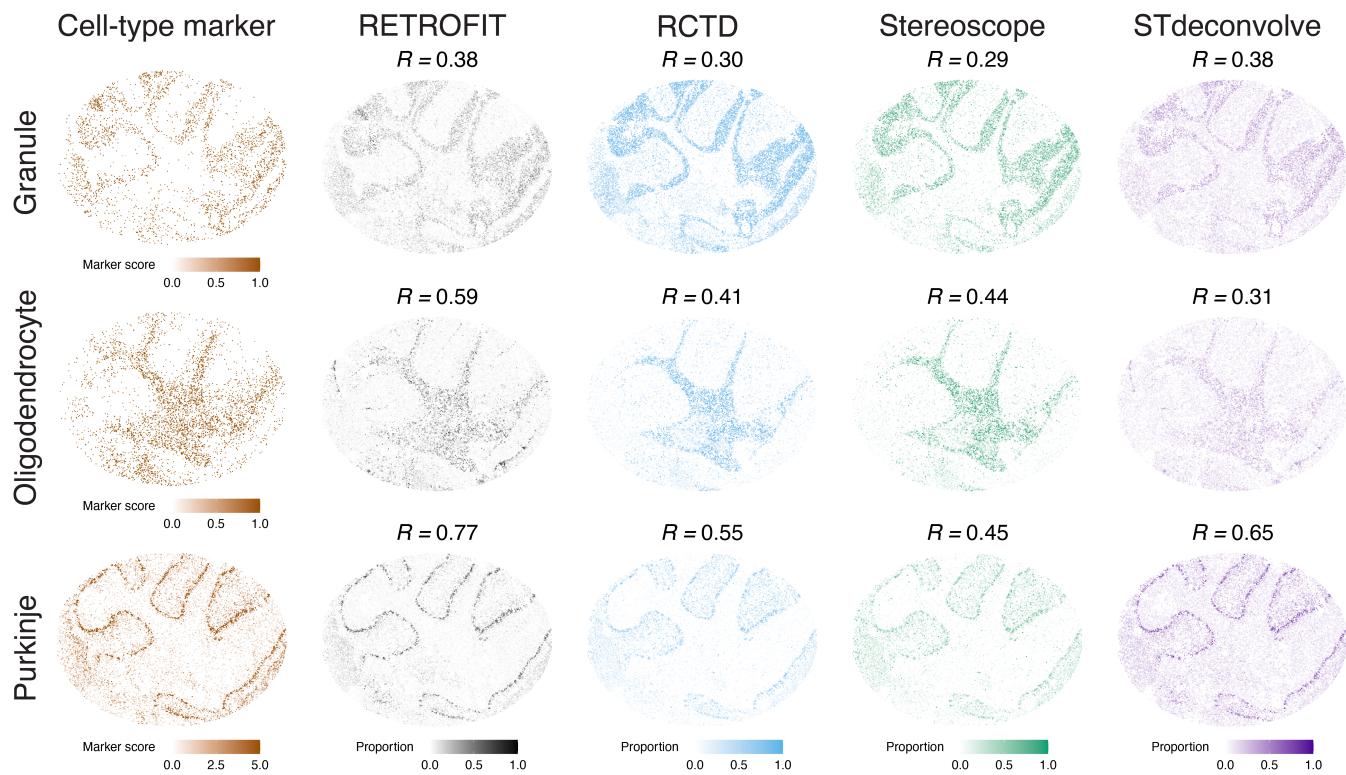


Figure 3: Benchmarking RETROFIT on mouse cerebellum Slide-seq data. Column 1 (leftmost) shows spatial patterns of ST expression scores (Methods) for curated cell-type marker genes in granule cells, oligodendrocytes and Purkinje cells. Columns 2-5 show cell-type proportions at each spot estimated by each of the 4 ST deconvolution methods. Pearson correlations (R) between cell-type marker ST expression scores and estimated cell-type proportions are shown for all methods and cell types.

195 (Methods; Supplementary Table 2). We found that the estimated cell-type proportions from each method (Fig. 3,
196 columns 2-5; Supplementary Tables 3-5) agreed with the spatial expression patterns of known marker genes in
197 each cell type (Fig. 3, column 1), showing qualitatively similar results across methods.

198 To further quantify the performance difference among methods, we calculated the correlation between estimated
199 cell-type proportions and cell-type marker ST expression scores across all spots for each cell type (Methods). A
200 higher correlation indicates better performance, as spots with a large proportion of a cell type are expected
201 to have high expression levels of marker genes specific to that cell type. Based on this evaluation metric,
202 RETROFIT was the best-performing method across all 3 cell types (Fig. 3). For granule cells, RETROFIT and
203 STdeconvolve (both $R = 0.38$) showed marginally better performance than RCTD ($R = 0.30$) and Stereoscope
204 ($R = 0.29$). For Purkinje cells, RETROFIT ($R = 0.77$) and STdeconvolve ($R = 0.65$) showed more obvious gains
205 over RCTD ($R = 0.55$) and Stereoscope ($R = 0.45$). For oligodendrocytes, STdeconvolve ($R = 0.31$) performed
206 worse than Stereoscope ($R = 0.44$) and RCTD ($R = 0.41$), whereas RETROFIT remained the best method by a
207 wide margin ($R = 0.59$). Together these results demonstrate that RETROFIT outperforms existing deconvolution
208 methods on the mouse cerebellum Slide-seq dataset, consistent with our simulation assessments.

209 **RETROFIT extracts relevant cellular compartments from human intestine Visium data**

210 We applied RETROFIT to a Visium spatial gene expression study of human intestinal development⁵. This
211 study provided ST data of 33538 genes and 9330 spots on intestinal tissues from adults and from fetuses at
212 12 and 19 post-conceptual weeks (PCW). For each of the three developmental stages, we selected the ST slide
213 with the clearest anatomical markings (Fig. 4a) and input the ST expression count matrices to RETROFIT
214 after quality control (Methods). Specifically, we used a matrix of 722 genes and 1080 spots for 12 PCW, a matrix
215 of 681 genes and 1242 spots for 19 PCW, and a matrix of 1051 genes and 2649 spots for adult. The study
216 also provided scRNA-seq data on fetal samples, revealing 101 intestinal cell types categorized as 8 cellular
217 compartments with distinct transcriptional signatures: endothelial, epithelial, fibroblast, immune, muscle,
218 myofibroblast (MyoFB)/mesothelial (MESO), neural and pericyte. To reduce computation and avoid ambiguity

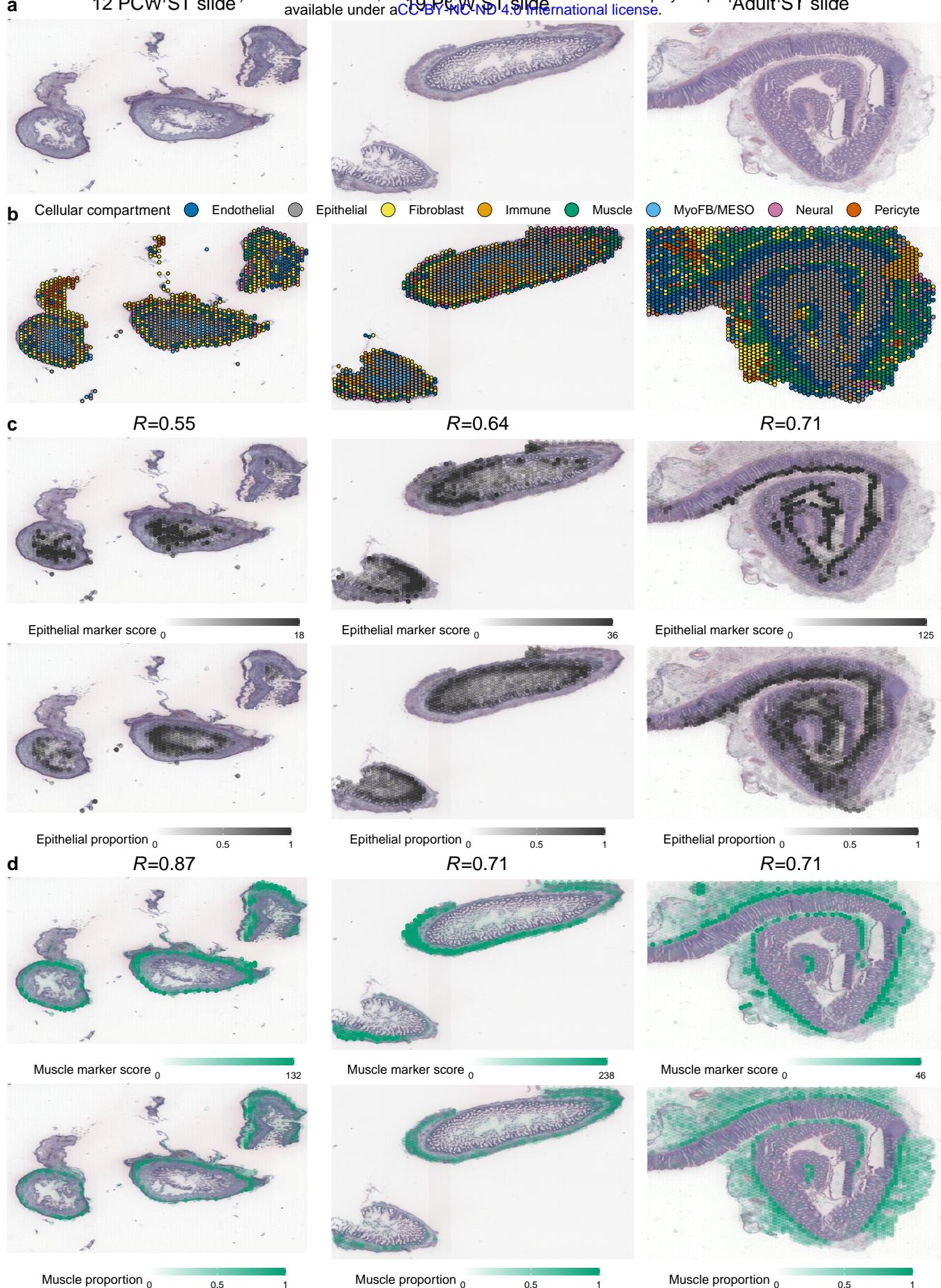


Figure 4: Cellular compartments identified by RETROFIT in human fetal and adult intestine Visium data. **a** H&E images of human fetal (12 and 19 PCW) and adult intestinal tissues. **b** Localization of all 8 cellular compartments in each ST slide, marked by the compartment with the largest proportion estimate at each spot. **c-d** ST expression scores of compartment marker genes (row 1) and RETROFIT estimates of compartment proportion (row 2) across spots for **c** epithelial and **d** muscle compartments in 3 ST slides. Pearson correlation (R) between compartment marker ST expression scores and compartment proportion estimates across all spots is shown for every combination of cellular compartments and developmental stages in **c** and **d**.

219 caused by a large number of highly correlated cell types, we estimated the proportions of these 8 distinct
220 compartments at each tissue-covered spot of fetal and adult intestinal samples using RETROFIT. The most
221 abundant compartment identified at each spot is shown in Fig. 4b.

222 To estimate compartment proportions at each spot, we matched the $L = 16$ latent components extracted by
223 RETROFIT to the $K = 8$ cellular compartments. Since the human intestine study⁵ only provided scRNA-seq
224 data for 12 and 19 PCW but not the adult stage, we annotated RETROFIT-extracted components using a
225 curated list of 37 intestinal compartment marker genes⁵ for all three stages (Algorithm 3; Supplementary
226 Tables 6-8). All of our primary analyses for the human intestine ST data were conducted using this marker-
227 based approach. To evaluate this strategy, we also annotated the RETROFIT results for 12 and 19 PCW
228 stages using compartment-specific gene expression derived from the corresponding scRNA-seq data (Algorithm
229 2; Supplementary Tables 9-10). We then compared the compartment proportions from the two annotation
230 strategies for the same ST slide. For both fetal stages, the proportion estimates produced by the two strategies
231 were concordant across spots in 4 compartments: muscle (12 PCW: $R = 0.93$; 19 PCW: $R = 0.92$), endothelial (12
232 PCW: $R = 0.85$; 19 PCW: $R = 0.92$), fibroblast (12 PCW: $R = 0.60$; 19 PCW: $R = 0.88$) and epithelial (12 PCW:
233 $R = 0.49$; 19 PCW: $R = 0.86$). In addition, the two strategies produced highly comparable proportions across
234 spots in the immune compartment at 12 PCW ($R = 0.86$) and the neural compartment at 19 PCW ($R = 0.94$).

235 To assess the accuracy of the two annotation strategies, we examined the correlation between compartment
236 proportions estimated by each strategy and compartment marker ST expression scores across all spots for
237 each compartment and slide (Table 1; Fig.s 4c-d). We found that for the four compartments where two
238 annotation strategies produced consistent results in 12 and 19 PCW samples, their proportion estimates from
239 both strategies were positively correlated with the corresponding marker ST expression scores across spots
240 ($R > 0.54$). Moreover, in compartments where the results of two annotations differed, the proportion estimates
241 based on the marker annotation aligned better with the compartment marker ST expression scores than those
242 based on the scRNA-seq annotation. For example, MyoFB/MESO marker ST expression scores were positively
243 correlated with the marker-based proportion estimates of MyoFB/MESO across spots for both stages (12 PCW:
244 $R = 0.34$; 19 PCW: $R = 0.61$), whereas they were negatively correlated with the proportion estimates based
245 on the scRNA-seq annotation (12 PCW: $R = -0.09$; 19 PCW: $R = -0.20$). Together, these results validate the
246 marker-based annotation strategy in the RETROFIT analysis of human intestine ST data.

Compartment	12 PCW ST slide				19 PCW ST slide			
	RETROFIT (L = 16)	STdeconvolve	RETROFIT (L = 16)	STdeconvolve	Marker	scRNA-seq	L = 6	L = 16
Endothelial	0.68	0.57	NA	NA	0.54	0.56	NA	NA
Epithelial	0.55	0.73	0.73	0.73	0.64	0.62	0.36	0.50
Fibroblast	0.68	0.66	0.35	0.48	0.77	0.87	0.68	0.77
Immune	0.10	0.11	NA	NA	-0.15	-0.16	NA	NA
Muscle	0.87	0.83	0.81	0.77	0.71	0.83	0.68	0.69
MyoFB/MESO	0.34	-0.09	-0.05	-0.10	0.61	-0.20	-0.09	NA
Neural	0.69	0.22	NA	NA	0.72	0.81	NA	NA
Pericyte	0.11	0.08	NA	0.02	0.34	-0.08	-0.26	-0.17

Table 1: Comparison of RETROFIT and STdeconvolve on human fetal intestine Visium data. Pearson correlations between ST expression scores of known marker genes and estimated proportions across spots are reported for all methods and cellular compartments. RETROFIT-extracted components were mapped to known cellular compartments using either a curated list of 37 intestinal compartment marker genes (Algorithm 3) or the companion scRNA-seq data in fetal intestinal samples (Algorithm 2). STdeconvolve was run with $L = 6$, which was the optimal number of components determined by STdeconvolve, and $L = 16$, which was the same number of components used by RETROFIT. “NA” indicates no match between a cellular compartment and any STdeconvolve-extracted components.

247 We compared the deconvolution performance of RETROFIT and STdeconvolve on the ST data from two fetal
248 samples, since the component annotation step of STdeconvolve requires single-cell transcriptomic profiles from
249 tissues matching the ST data¹⁵. Although both samples were characterized by 8 cellular compartments⁵,
250 STdeconvolve determined the optimal number of latent components as $L = 6$ and failed to produce components
251 that could represent the endothelial and neural compartments (Supplementary Fig.s 1-2; Supplementary
252 Tables 11-12), resulting in the absence of estimated proportions for these two compartments in all spots (Table
253 1). Increasing the number of latent components in STdeconvolve to $L = 16$ did not identify endothelial and
254 neural compartments (Table 1; Supplementary Fig.s 3-4; Supplementary Tables 13-14). In contrast, RETROFIT
255 effectively captured these two components and produced proportion estimates consistent with ST profiles of their

256 known marker genes (endothelial: $R = 0.68$ at 12 PCW and $R = 0.54$ at 19 PCW; neural: $R = 0.69$ at 12 PCW and
257 $R = 0.72$ at 19 PCW). While STdeconvolve performed comparably to RETROFIT for other compartments (Table
258 1), the absence of STdeconvolve-extracted components for endothelial and neural compartments demonstrates
259 the superior performance of RETROFIT in this Visium dataset.

260 For all three stages of intestinal development, the cellular compartment proportions estimated by RETROFIT
261 correlated well with the anatomical locations and ST profiles of compartment-specific marker genes (Fig.s
262 4b-d; Supplementary Fig.s 5-10). In all three stages, spots with a high proportion of epithelial cells localized
263 near the lumen and expressed high levels of epithelial marker genes (12 PCW: $R = 0.55$; 19 PCW: $R = 0.64$;
264 adult: $R = 0.71$; Fig.s 4b-c), while spots with a high proportion of muscle cells often corresponded to the smooth
265 muscle layers and expressed high levels of muscle marker genes (12 PCW: $R = 0.87$; 19 PCW: $R = 0.71$; adult:
266 $R = 0.71$; Fig.s 4b and d). In the 19 PCW slide, spots with a high proportion of neural cells localized in the
267 myenteric plexuses and expressed high levels of neural marker genes ($R = 0.72$; Fig. 4b; Supplementary Fig. 9).
268 In the adult slide, spots with a high proportion of immune cells localized around submucosal lymphoid follicles
269 and expressed high levels of immune marker genes ($R = 0.40$; Fig. 4b; Supplementary Fig. 7). Additionally,
270 spots with a high proportion of fibroblasts in the adult tissue were adjacent to vasculature structures and
271 expressed high levels of fibroblast marker genes ($R = 0.31$; Fig. 4b; Supplementary Fig. 6). Overall, these
272 findings recapitulate the anatomical features and transcriptomic signatures of human intestine, confirming the
273 effectiveness of RETROFIT as a reference-free approach to ST deconvolution.

274 **RETROFIT identifies spatiotemporal patterns of cellular composition in intestinal development**

275 The cellular compositions inferred by RETROFIT on the ST samples of 3 developmental stages shed light on the
276 temporal dynamics in human intestine development (Fig.s 5a-b). The 12 PCW slide had more than twice as high
277 an average proportion of fibroblasts as the other two stages (12 PCW: 24.4% across 1080 spots, 19 PCW: 11.0%
278 across 1242 spots, adult: 11.4% across 2649 spots), aligning with abundant presence of stromal 1–4 (S1–S4)
279 fibroblasts⁵ in the formation of submucosal structure (S1), crypt-villus axis (S2), enteric vasculature (S3) and
280 lymphoid tissue (S4) during early intestinal development. The 19 PCW slide had the highest average proportions
281 of epithelial (26.3%) and immune (15.6%) cells, indicating the maturation of fetal intestinal epithelium and
282 lymphoid tissue to form the structural basis for essential functions of nutrient absorption and host immunity^{5,20}.
283 The adult slide had the highest average proportions of endothelial (19.8%) and muscle (15.8%) cells, reflecting
284 the fully developed enteric vessels and smooth muscle layers in the mature intestine⁵.

285 The vast majority of spots in all 3 ST slides encompassed cells from multiple intestinal compartments (Fig.
286 5b). To help elucidate the dynamics of cell-type complexity across intestinal development, we categorized spots
287 into 3 groups based on their cellular diversity estimated by RETROFIT (Fig. 5c). Group 1 comprised spots
288 dominated by a single compartment, where at least 50% of cells in each spot belonged to one compartment (Fig.s
289 5d diagonals and 5e). These spots mark regions in a tissue slide dominated by a single cellular compartment.
290 Group 2 comprised spots with at least two moderately representative compartments, each contributing between
291 25–50% to the spot's compartment composition (Fig.s 5d off-diagonals and 5f-h). These spots indicate boundaries
292 between two compartments in the slide. Group 3 comprised spots with highly heterogeneous composition, with
293 at most one compartment contributing 25–50% and no other compartment proportion exceeding 25%. These
294 spots represent regions with highly complex compositions of cell types.

295 Compositions of the 3 spot groups varied across development (Fig.s 5c-d). Group 1 spots were the most prevalent
296 in all three stages (12 PCW: 46.1%; 19 PCW: 38.5%; adult: 45.3%), and they exhibited layering and clustering
297 patterns that matched known cellular anatomy of the human intestine⁵, particularly evident in the adult
298 sample (Fig. 5e). Group 2 spots were less common in the adult sample than fetal samples (12 PCW: 31.6%;
299 19 PCW: 37.2%; adult: 21.1%), but they exhibited a higher degree of pairwise cellular diversity in the adult
300 sample. Out of 28 possible pairwise co-localization patterns among 8 cellular compartments, 27 were present
301 in Group 2 spots for the adult sample, compared to 20 and 24 for 12 and 19 PCW samples respectively (Fig.
302 5d). The adult sample also had the largest fraction of Group 3 spots (12 PCW: 22.3%; 19 PCW: 24.3%; adult:
303 33.6%), highlighting the intricate composition of cell-types in the adult intestine. Taken together, the dynamics
304 of spot-level cellular diversity inferred by RETROFIT effectively captures the increasing complexity of cellular
305 compositions as the human intestine develops.

306 We then examined the co-localization patterns of 8 cellular compartments in Group 2 spots across the 3
307 developmental stages. We identified some commonalities in cellular co-localization across intestinal development
308 (Fig. 5d). For example, muscle cells consistently exhibited the highest prevalence of co-localization with neural
309 cells in Group 2 spots across all stages (12 PCW: 51/69 spots, 73.9%; 19 PCW: 40/56 spots, 71.4%; adult:
310 26/68 spots, 38.2%; Supplementary Fig. 11), recapitulating the intestinal anatomy that myenteric plexuses

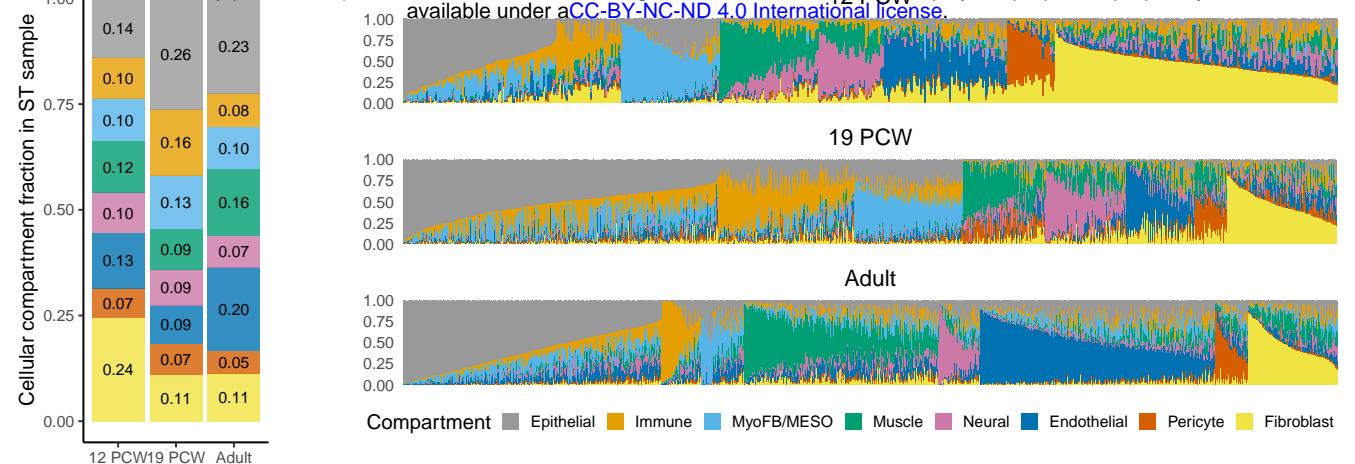


Figure 5: Cellular compositions and spatiotemporal patterns identified by RETROFIT in human intestinal development. **a** Distribution of 8 cellular compartments across all spots in each ST slide. **b** Compartment composition of each spot in each ST slide. **c** Distribution of spots with 3 levels of cellular diversity in each slide. Group 1: spots with a dominant compartment. Group 2: spots with at least two moderately representative compartments. Group 3: spots with highly heterogeneous composition. **d** In each heatmap, each off-diagonal entry shows the fraction of Group 2 spots for each compartment pair, and each diagonal entry shows the fraction of Group 1 spots for each compartment. The off-diagonal entry colored in grey indicates that the number of Group 2 spots is 0 for the corresponding compartment pairs. **e** Spatial distribution of spots with a dominant compartment (Group 1) in each ST slide. **f-h** Spatial distribution of spots with at least two moderately representative compartments (Group 2), with the anchor compartment as **f** endothelial, **g** epithelial or **h** muscle compartment. The color of each spot in **f-h** represents the other cellular compartment that co-localizes with the anchor compartment and has the largest proportion estimate. Counts and percentages of Group 2 spots for 6 pairs of co-localized compartments are shown in **f-h**.

311 are surrounded by muscles⁵. Similarly, epithelial cells consistently displayed the highest prevalence of co-
312 localization with immune cells across Group 2 spots throughout development (12 PCW: 12/62 spots, 19.4%; 19
313 PCW: 112/166 spots, 67.5%; adult: 18/53 spots, 34.0%; Supplementary Fig. 11), highlighting the crucial role of
314 epithelial cells in mediating homeostasis of immune cells in the intestine²¹.

315 Notably, distinct cellular co-localization patterns emerged in Group 2 spots between fetal and adult samples (Fig.
316 5d). In both fetal stages, fibroblasts were the most common in Group 2 spots co-localized with endothelial cells
317 (Fig. 5f), supporting the coordination of S3 fibroblasts and endothelial cells during fetal intestinal angiogenesis⁵.
318 In the adult sample, however, epithelial cells prevailed in Group 2 spots co-localized with endothelial cells
319 (Fig. 5f). The endothelial-epithelial co-localization in the adult sample, which was obtained from a patient
320 undergoing intestinal surgery⁵, aligns with a recent mouse study showing that lymphatic endothelial cells
321 reside in proximity to crypt epithelial cells and support renewal and repair of intestinal epithelium after
322 injury²². Contrasting the predominant co-localization of endothelial and epithelial compartments in the adult
323 sample, MyoFB/MESO compartment prominently co-localized with epithelial cells in both fetal samples (Fig.
324 5g). This finding reflects the signaling circuit between epithelial stem cells and myofibroblasts during fetal
325 intestinal development⁵. Moreover, cellular co-localization of muscle cells also exhibited temporal variation
326 across stages. For Group 2 spots co-localized with muscle cells, neural cells were predominant in the fetal
327 stages, while fibroblasts were the most common in the adult stage (Fig. 5h). This difference can be attributed
328 to the role of S1 fibroblasts in forming submucosa structures that join mucosa to smooth muscle layers of the
329 mature intestine⁵.

330 Overall, the reference-free inference of cellular composition and co-localization enabled by RETROFIT provides
331 insights into the dynamic interplay of cellular processes that shapes intestinal development and function,
332 demonstrating the potential for RETROFIT to yield new hypotheses of tissue biology from ST data alone.

333 **RETROFIT captures cell-type transcriptional specificity without using single-cell references**

334 RETROFIT estimates cell-type-specific gene expression and cell-type composition simultaneously (Fig. 1). In
335 simulations we demonstrated the high concordance between cell-type-specific transcriptional profiles estimated
336 by RETROFIT and those measured by single-cell technologies (Fig. 2e). Here we examined compartment-specific
337 transcriptional profiles estimated by RETROFIT on the human intestine ST data (Supplementary Tables 15-20).

338 First, we compared the estimated compartment-specific expression with the observed single-cell expression for
339 37 curated marker genes⁵ in 8 cellular compartments (Fig. 6a; Methods), using the companion scRNA-seq data
340 of 12 and 19 PCW stages from the same human intestine study⁵. To quantify how well RETROFIT estimates
341 corresponded to single-cell observations, we computed Pearson correlation between estimated expression levels
342 and scRNA-seq measurements across 8 cellular compartments for each marker gene in each fetal stage. Of
343 37 compartment marker genes, 25 (67.6%) showed high concordance ($R > 0.95$) in at least one stage, and 12
344 (32.4%) showed high concordance in both stages. Many of these 12 genes, such as *ACTG2* (muscle), *PECAM1*
345 (endothelial), *PHOX2B* (neural) and *PTPRC* (immune), exhibited strong cellular specificity as expected.

346 Next, we sought to identify compartment-specific genes based on RETROFIT expression estimates alone,
347 without using any single-cell transcriptomic information. To ensure reliable results, we only considered
348 developmental stages (12 PCW and adult) with biological replicates available (Supplementary Tables 18-20),
349 and selected genes with consistent patterns of high expression (count > 40) measured by ST and strong
350 compartment specificity (entropy < 1.5 and Gini index > 0.85) estimated by RETROFIT across all replicates in
351 a given stage (Methods). Despite the stringent criteria, we identified 34 genes that showed strong compartment
352 specificity in at least one developmental stage, 7 of which were compartment-specific in both stages (Fig. 6b).

353 We identified 14 and 27 compartment-specific genes in 12 PCW and adult stages, respectively (Fig. 6b). Among
354 them, 7 (50.0%) and 6 (22.2%) were curated as compartment markers (Fig. 6a) in the original human intestine
355 study⁵. To validate the compartment specificity of identified genes that were not curated as markers⁵, we
356 compared the compartment-specific expression estimates with the companion scRNA-seq measurements at 12
357 PCW for these genes (Fig. 6c). Across 7 genes and 8 compartments, we observed a strong correlation between
358 expression estimates and single-cell measurements ($R = 0.96$, $P = 3.1 \times 10^{-31}$). The inferred compartment
359 specificity of the identified genes also agreed with their biological functions. For example, *COL1A1*, identified
360 as fibroblast-specific by RETROFIT, encodes a fibril-forming collagen found in most connective tissues²³. *DES*,
361 identified as muscle-specific by RETROFIT, encodes an intermediate filament with critical roles in muscular
362 structure and function²⁴. Our findings are further supported by a recent mouse scRNA-seq study²⁵ that
363 determined *COL1A1* as a fibroblast-specific expression signature and *DES*, *CNN1* and *ACTA2* as mural-

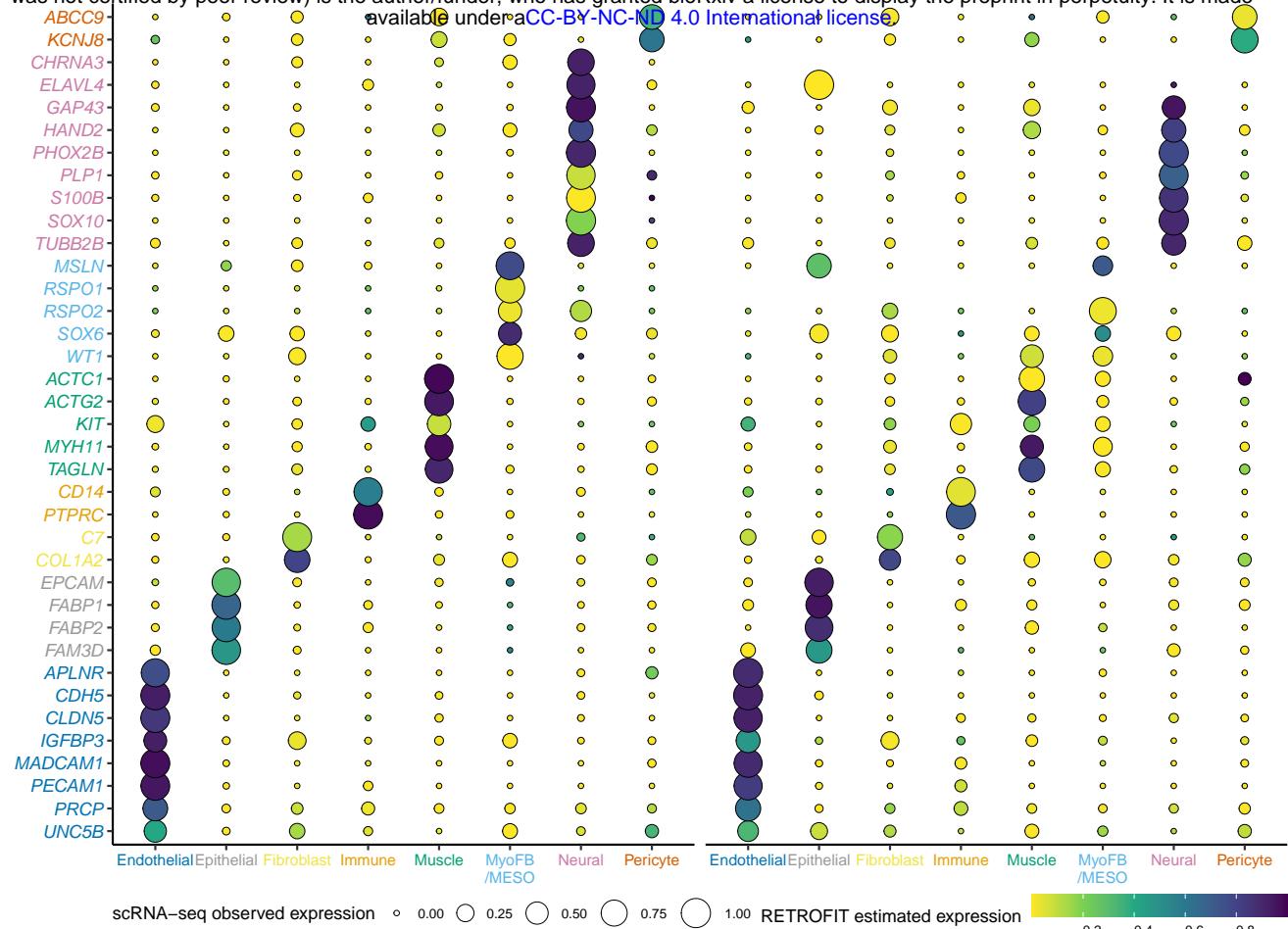
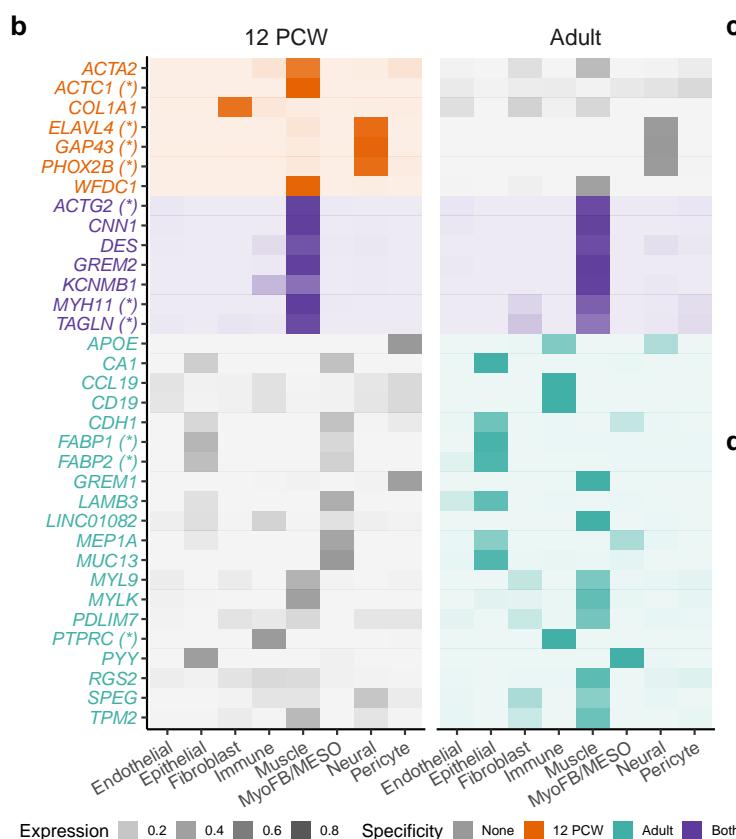
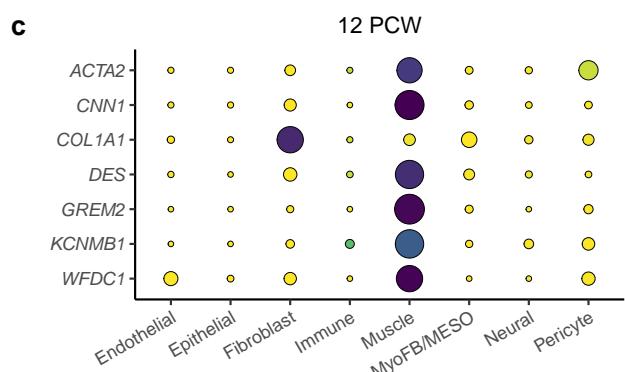
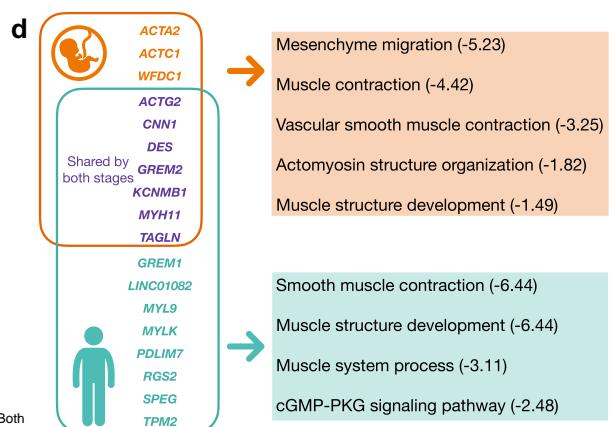


Figure 6: Transcriptional signatures and biological pathways identified by RETROFIT in human intestinal development. **a** Normalized expression of 37 marker genes for 8 cellular compartments in two fetal stages, obtained from RETROFIT estimates and scRNA-seq data. Each marker gene (y-axis) has a matching color with the compartment it characterizes (x-axis). **b** Normalized expression of 34 putative compartment-specific genes estimated by RETROFIT for 12 PCW and adult stages. Gene colors represent the compartment-specific transcriptional specificity identified in 12 PCW (orange) or adult (green) or both stages (purple). Grey colors indicate that genes were not identified as compartment-specific in a given stage. Asterisks (*) indicate that the identified genes are also markers in **a**. **c** Normalized expression of 7 compartment-specific non-marker genes obtained from RETROFIT estimates and scRNA-seq data for 12 PCW stage. The 7 genes were identified by RETROFIT in **b** but were not labeled as markers in **a**. **d** Top-ranked biological pathways enriched in muscle-specific genes identified by RETROFIT in **b** for 12 PCW and adult stages (FDR < 0.05), with the multiplicity adjusted enrichment P-value (FDR) in log base 10 shown after each pathway.

364 specific signatures. Together, these results demonstrate the potential of RETROFIT to identify genes with
365 cell-type-specific expression from ST data alone, without relying on prior knowledge or external single-cell data.

366 Lastly, we examined the temporal patterns of compartment-specific genes identified by RETROFIT across
367 developmental stages (Fig. 6b). The majority of identified genes (27 out of 34) showed compartment specificity
368 in only one stage. For example, 3 known neural marker genes (*ELAVL4*, *GAP43*, *PHOX2B*) were identified
369 as neural-specific only in 12 PCW but not in the adult stage. These 3 genes are involved in the process of
370 unspecialized cells acquiring specialized neuronal features (Supplementary Table 21) and human embryonic
371 ventral midbrain development (Supplementary Table 22), corroborating their neural specificity in fetal stage
372 only. As another example, 7 genes (including *FABP1* and *FABP2*, 2 known epithelial markers) were identified
373 as epithelial-specific only in adult but not in 12 PCW stage. Among these 7 genes, *FABP1*, *FABP2* and
374 *MUC13* are involved in the digestive system process (Supplementary Table 21), and they showed significant
375 transcriptional specificity for epithelial cells in multiple single-cell transcriptomic studies of human intestinal
376 tissues (Supplementary Table 22). Since nutrient absorption manifests late in intestinal development (typically
377 after villus formation²⁰), the adult-specific genes likely capture transcriptional signatures of absorptive function
378 in the mature intestinal epithelium.

379 From RETROFIT estimates, we obtained 10 muscle-specific genes in 12 PCW and 15 in adult stages, with
380 7 genes exhibiting muscle specificity in both stages (Fig.s 6b and d). The muscle-specific genes identified by
381 RETROFIT in human intestine ST data showed stronger enrichments of single-cell transcriptional signatures
382 in smooth muscle cells from human intestinal tissues compared to smooth muscle cells from other tissues such
383 as lung, stomach and heart (Supplementary Table 22). Specifically, 8 out of 10 muscle-specific genes in 12
384 PCW ($FDR = 1.0 \times 10^{-16}$) and 10 out of 15 in adult stages ($FDR = 1.0 \times 10^{-20}$) showed significant transcriptional
385 specificity for the smooth muscle cells from intestinal tissues in a single-cell gene expression study of 15 human
386 organs⁹. In contrast, 4 out of 10 muscle-specific genes in 12 PCW ($FDR = 3.2 \times 10^{-6}$) and 3 out of 15 in adult
387 stages ($FDR = 1.6 \times 10^{-3}$) showed significant transcriptional specificity for the smooth muscle cells from heart
388 tissues in the same 15-organ single-cell study⁹. These results highlight the spatial context specificity of these
389 muscle-specific genes identified by RETROFIT in the intestine compared to other muscle-rich organs.

390 The muscle-specific genes identified by RETROFIT in both developmental stages share relevant functional
391 themes. Specifically, these genes were significantly enriched in biological pathways (Fig. 6d; Supplementary
392 Table 21) related to muscle contraction (12 PCW: $FDR = 3.8 \times 10^{-5}$; adult: $FDR = 3.6 \times 10^{-7}$) and muscle
393 structure development (12 PCW: $FDR = 3.2 \times 10^{-2}$; adult: $FDR = 3.6 \times 10^{-7}$). Among the 7 muscle-specific
394 genes shared by both stages, *TAGLN* is involved in structure development, *ACTG2*, *CNN1* and *KCNMB1* are
395 involved in contraction, and *DES* and *MYH11* are involved in both contraction and structure development. The
396 muscle-specific genes from fetal and adult stages also show functional differences. For example, the mesenchyme
397 migration pathway was significantly enriched only in 12 PCW ($FDR = 5.9 \times 10^{-6}$) but not in adult stage, driven
398 by 2 muscle-specific genes that were present in 12 PCW only (*ACTA2*, *ACTC1*). This fetal-specific enrichment is
399 consistent with the experimental evidence that serosal mesothelial cells undergo epithelial-to-mesenchymal
400 transition, migrate throughout the gut, and differentiate into vascular smooth muscle cells²⁶.

401 Discussion

402 We present RETROFIT, an unsupervised Bayesian framework for reference-free cell-type deconvolution of ST
403 data. Through extensive simulations and analyses of the mouse cerebellum Slide-seq and human intestine
404 Visum data, we demonstrate significant performance gains of RETROFIT over existing methods. We provide
405 the open-source software of RETROFIT as an R package in Bioconductor.

406 The most distinctive feature of RETROFIT is the reference-free design, while the vast majority of existing
407 ST deconvolution methods require a single-cell gene expression reference as input^{7,8}. In comparison to
408 STdeconvolve¹⁵, which is the only published reference-free method to date, RETROFIT consistently outperforms
409 in both synthetic and real ST data. Our work, together with STdeconvolve, demonstrates the effectiveness of
410 reference-free deconvolutions for ST data, offering a powerful alternative to reference-based deconvolutions
411 when an appropriate cell-type-annotated transcriptomic reference is unavailable.

412 As a reference-free method, RETROFIT separates cell-type annotation from ST data decomposition. By
413 removing the dependence on a single-cell transcriptomic reference in the decomposition step, RETROFIT is
414 more robust against the availability and quality of single-cell gene expression data, as demonstrated in this
415 study. Moreover, the separation of annotation and decomposition offers flexibility to update the ST deconvolution
416 results when improved references of cell-type-specific transcriptomic data or marker genes become available. In

417 such cases, reference-free methods require only an update on the annotation without the need to rerun the
418 decomposition, whereas reference-based methods require a rerun of the entire deconvolution process.

419 Besides cell-type composition, RETROFIT also estimates cell-type-specific gene expression for each ST spot.
420 Our analyses have demonstrated the statistical accuracy of these estimates in simulations and their biological
421 relevance in human intestinal development⁵. The ST-derived expression estimates reveal cell-type-specific
422 transcriptional profiles in native cellular contexts of intact tissues, thus helping researchers identify effects of
423 tissue space and cellular environment on gene expression¹³ and generate new hypotheses of tissue biology².

424 The ST-derived estimates of cell-type-specific transcriptional profiles can also be integrated with a wide range
425 of disease-centric datasets more broadly. One simple analysis is to correlate the ST-derived transcriptional
426 profiles with a curated list of known disease-causing genes⁵. This can help link disease manifestation to likely
427 tissue regions and cell types via distinct transcriptional signatures of disease genes. Another downstream
428 analysis is to combine the ST-derived transcriptional profiles with genome-wide association studies. This
429 can help prioritize likely disease-causing genes among numerous candidates in light of spatial and cellular
430 transcriptional specificity²⁷. Altogether, these future applications enabled by RETROFIT can help track
431 disease-relevant genes to highly specific contexts, yielding novel insights into human diseases.

432 Reference-free deconvolutions require specifying the total number of latent components (L) as an input, which
433 can be challenging to estimate from the ST data alone. STdeconvolve determines the optimal value for L by
434 minimizing model perplexity and the number of ‘rare’ deconvolved cell types simultaneously. Despite being
435 data-driven, this approach consistently underestimated the number of known cell types for both simulated
436 and real-world ST datasets in our study. For the current version of RETROFIT, we recommend specifying a
437 large L that is much greater than the known number of cell types in the ST sample. This simple strategy has
438 proven effective in our empirical assessments. Alternatively, one could attempt to incorporate more principled
439 approaches to estimating L into the Bayesian hierarchical model underlying RETROFIT. For example, automatic
440 selection of L may be enabled by Gamma process prior¹⁶ that induces sparsity on θ or automatic relevance
441 determination²⁸ that ties the priors of \mathbf{W} and \mathbf{H} through a common shrinkage parameter.

442 Like most ST deconvolution approaches to date^{7,8}, RETROFIT omits the spatial coordinates of spots in a slide
443 and models the ST measurements across spots exchangeably. Despite this modeling simplification, RETROFIT
444 was able to reveal known spatial dependencies of cell-type composition and transcriptional specificity in the
445 analysis of mouse cerebellum and human intestine ST data. Specifically, RETROFIT results adhere to the
446 fundamental principle of tissue organization— cells in close spatial proximity within a tissue are more likely of
447 the same type than cells that are spatially distant. Techniques such as Gaussian process²⁹ and hidden Markov
448 random field³⁰ have been recently explored to enhance ST data analyses through sophisticated modeling of
449 spatial correlations among ST spots. However, these techniques often incur additional computation and may
450 not scale well to large ST datasets. As such, we view introducing spatial awareness to RETROFIT while
451 maintaining its computational efficiency as a promising future enhancement.

452 Overall, RETROFIT is an interpretable and scalable framework to deconvolve ST data, with the distinct
453 advantage that it can simultaneously reveal cell-type composition and cell-type-specific gene expression for each
454 ST spot independent of any single-cell transcriptomic references. As more ST data are generated and cell-type
455 deconvolution becomes a routine analysis, we expect that RETROFIT will facilitate the high-throughput
456 translation of genome-wide ST readouts to new insights in tissue biology.

457 Methods

458 Bayesian hierarchical model

459 Let $\mathbf{X} = [X_{gs}]$ be the $G \times S$ count matrix of expression levels for G genes at S spots obtained from a ST
460 experiment. Since only a finite number of cell types constitute the ST sample, we represent \mathbf{X} as a low-rank
461 matrix spanned by L non-negative components that capture transcriptional signatures of distinct cell types
462 in the ST sample. Specifically, we model the observed expression level of gene g at spot s , X_{gs} , as the sum of
463 unobserved expression counts in L latent components:

$$X_{gs} = \sum_{\ell=1}^L Z_{g\ell s}. \quad (1)$$

464 We further attribute each latent component $Z_{g\ell s}$ to two independent sources in an additive manner:

$$Z_{g\ell s} = Z_{g\ell s}^0 + Z_{g\ell s}^1, \quad (2)$$

465 where $Z_{g\ell s}^0$ denotes the background expression level shared by all genes in component ℓ at spot s and $Z_{g\ell s}^1$ denotes the expression level specific to gene g in component ℓ at spot s . We model the unobserved gene expression counts $Z_{g\ell s}^0$ and $Z_{g\ell s}^1$ as two independent Poisson random variables^{13,31}:

$$Z_{g\ell s}^0 \sim \mathcal{P}(\lambda H_{\ell s}), \quad Z_{g\ell s}^1 \sim \mathcal{P}(W_{g\ell} \theta_{\ell} H_{\ell s}). \quad (3)$$

468 Here $W_{g\ell} > 0$ denotes the average expression level of gene g in component ℓ , $\theta_{\ell} > 0$ represents the contribution
469 from component ℓ , $H_{\ell s} > 0$ denotes the weight of component ℓ at spot s , and $\lambda \geq 0$ denotes an 'offset' constant
470 capturing the background expression level shared by all genes across all components and spots^{32,33}. When a
471 sparsity-inducing prior is placed on $\theta = [\theta_{\ell}]$, only a small subset of elements in θ are expected to be substantially
472 greater than 0, leading to a preference for a sparse model with relatively few components¹⁶. Taken together, we
473 obtain the following generative model of ST data:

$$X_{gs} \sim \mathcal{P}\left(\sum_{\ell=1}^L (W_{g\ell} \theta_{\ell} + \lambda) H_{\ell s}\right). \quad (4)$$

474 The mean of Poisson model (4) implies two non-negative matrix factorization (NMF) models. When $\lambda = 0$, the
475 mean of Poisson model (4) implies the Gamma Process NMF¹⁶: $E(X_{gs}) = \sum_{\ell=1}^L W_{g\ell} \theta_{\ell} H_{\ell s}$. When $\lambda = 0$ and
476 $\theta_{\ell} = 1$ for $\ell = 1, \dots, L$, the mean of Poisson model (4) implies the standard NMF³⁴: $E(X_{gs}) = \sum_{\ell=1}^L W_{g\ell} H_{\ell s}$.

477 We take a Bayesian approach to learn the unknown parameters $\{W_{g\ell}, \theta_{\ell}, H_{\ell s}\}$ in the Poisson generative model
478 (4) from the observed ST data \mathbf{X} . Specifically, we place independent Gamma priors¹⁶ on them:

$$W_{g\ell} \sim \mathcal{G}(\alpha_0^W, \beta_0^W), \quad \theta_{\ell} \sim \mathcal{G}(\alpha_0^{\theta}, \beta_0^{\theta}), \quad H_{\ell s} \sim \mathcal{G}(\alpha_0^H, \beta_0^H). \quad (5)$$

479 We choose the Gamma priors (5) mainly for computational convenience, because combining the Poisson generative model (4) with the Gamma priors (5) leads to conditional conjugacy, which will simplify the development of
480 SSVI algorithm described in the next section.

482 In this study, we fix $\{L, \lambda, \alpha_0^W, \beta_0^W, \alpha_0^{\theta}, \beta_0^{\theta}, \alpha_0^H, \beta_0^H\}$ as known constants to further simplify large-scale computation.
483 For each dataset analyzed here, we set L as twice the number of known cell types in the tissue sample to
484 ensure that all the cell types present in the ST slide can be potentially captured by the L latent components.
485 This choice of L is informed by Gamma Process NMF¹⁶, a related method that recommends using a relative
486 large L . For all datasets, we set $\lambda = 0.01$ in the Poisson model (4) and we set the hyper-parameters in Gamma
487 priors (5) as $\alpha_0^W = 0.05, \beta_0^W = 0.0001, \alpha_0^{\theta} = 1.25, \beta_0^{\theta} = 10, \alpha_0^H = 0.2, \beta_0^H = 0.2$. In particular, the Gamma prior on
488 the component contribution $\theta_{\ell} \sim \mathcal{G}(\alpha_0^{\theta} = 1.25, \beta_0^{\theta} = 10)$ has mean 0.125 and variance 0.0125, and thus this prior
489 favors small values of θ_{ℓ} and induces a sparse solution in practice. In use cases where specific information
490 about $\{L, \lambda, \alpha_0^W, \beta_0^W, \alpha_0^{\theta}, \beta_0^{\theta}, \alpha_0^H, \beta_0^H\}$ is available, it can be further used to guide their specifications.

491 Structured stochastic variational inference

492 To compute the posteriors of $\{W_{g\ell}, \theta_{\ell}, H_{\ell s}\}$ we implement a SSVI algorithm¹⁷ that scales well with thousands
493 of genes and spots (Supplementary Table 1). To formulate the SSVI algorithm, we use the following notation:
494 $\mathbf{Z} = \{\mathbf{Z}_{gs}^0, \mathbf{Z}_{gs}^1\}$ for $g = 1, \dots, G$ and $s = 1, \dots, S$, L -length vector $\mathbf{Z}_{gs}^0 = [Z_{g\ell s}^0]$, L -length vector $\mathbf{Z}_{gs}^1 = [Z_{g\ell s}^1]$, $G \times S$
495 matrix $\mathbf{W} = [W_{gs}]$, L -length vector $\boldsymbol{\theta} = [\theta_{\ell}]$ and $L \times S$ matrix $\mathbf{H} = [H_{\ell s}]$. SSVI seeks a variational distribution
496 $q(\mathbf{Z}, \mathbf{W}, \boldsymbol{\theta}, \mathbf{H})$ of the following form to minimize its Kullback–Leibler (KL) divergence to the actual posterior
497 distribution $p(\mathbf{Z}, \mathbf{W}, \boldsymbol{\theta}, \mathbf{H} | \mathbf{X})$:

$$q(\mathbf{Z}, \mathbf{W}, \boldsymbol{\theta}, \mathbf{H}) = \prod_{g, \ell} q(W_{g\ell}) \prod_{\ell} q(\theta_{\ell}) \prod_{\ell, s} q(H_{\ell s}) \prod_{g, s} q(\mathbf{Z}_{gs}^0, \mathbf{Z}_{gs}^1 | \mathbf{W}, \boldsymbol{\theta}, \mathbf{H}), \quad (6)$$

498 where $\{q(W_{g\ell}), q(\theta_{\ell}), q(H_{\ell s})\}$ are required by SSVI to be in the same exponential family as the priors of
499 $\{W_{g\ell}, \theta_{\ell}, H_{\ell s}\}$ while $\{q(\mathbf{Z}_{gs}^0, \mathbf{Z}_{gs}^1 | \mathbf{W}, \boldsymbol{\theta}, \mathbf{H})\}$ can have any distributional form. By restoring dependence between
500 model parameters $\{\mathbf{W}, \boldsymbol{\theta}, \mathbf{H}\}$ and latent variables \mathbf{Z} through $\{q(\mathbf{Z}_{gs}^0, \mathbf{Z}_{gs}^1 | \mathbf{W}, \boldsymbol{\theta}, \mathbf{H})\}$, the variational distribution
501 specified by Eq. (6) improves upon the standard mean-field variational distribution that (incorrectly) enforces
502 independence between $\{\mathbf{W}, \boldsymbol{\theta}, \mathbf{H}\}$ and \mathbf{Z} . Consequently, SSVI often outperforms mean-field variational inference
503 on a wide range of Bayesian hierarchical models¹⁷.

504 Since our Bayesian model is defined by the Poisson likelihood (4) and Gamma priors (5), $\{q(W_{g\ell}), q(\theta_{\ell}), q(H_{\ell s})\}$
505 in Eq. (6) are automatically Gamma distributions, which satisfy the distributional requirement in SSVI:

$$q(W_{g\ell}) = \mathcal{G}(W_{g\ell}; \alpha_{g\ell}^W, \beta_{g\ell}^W), \quad q(\theta_{\ell}) = \mathcal{G}(\theta_{\ell}; \alpha_{\ell}^{\theta}, \beta_{\ell}^{\theta}), \quad q(H_{\ell s}) = \mathcal{G}(H_{\ell s}; \alpha_{\ell s}^H, \beta_{\ell s}^H). \quad (7)$$

506 We specify $q(\mathbf{Z}_{gs}^0, \mathbf{Z}_{gs}^1 | \mathbf{W}, \boldsymbol{\theta}, \mathbf{H})$ as the exact conditional posterior distributions of $\{\mathbf{Z}_{gs}^0, \mathbf{Z}_{gs}^1\}$ given $\{\mathbf{W}, \boldsymbol{\theta}, \mathbf{H}\}$:

$$q(\mathbf{Z}_{gs}^0, \mathbf{Z}_{gs}^1 | \mathbf{W}, \boldsymbol{\theta}, \mathbf{H}) = p(\mathbf{Z}_{gs}^0, \mathbf{Z}_{gs}^1 | \mathbf{X}, \mathbf{W}, \boldsymbol{\theta}, \mathbf{H}). \quad (8)$$

507 This specification is chosen for two reasons. First, Eq. (8) provides the best possible approximation by achieving
508 zero KL divergence to the actual conditional posterior¹⁷. Second, because $\{Z_{g\ell s}^0, Z_{g\ell s}^1\}$ are independent Poisson
509 random variables (3) that constitute the ST expression profile $X_{gs} = \sum_{\ell} (Z_{g\ell s}^0 + Z_{g\ell s}^1)$, the right-hand side of Eq.
510 (8) has a closed form of a multinomial distribution:

$$\Pr(\mathbf{Z}_{gs}^0 = \mathbf{z}_{gs}^0, \mathbf{Z}_{gs}^1 = \mathbf{z}_{gs}^1 | \mathbf{X} = \mathbf{x}, \mathbf{W}, \boldsymbol{\theta}, \mathbf{H}) = \binom{x_{gs}}{z_{g1s}^0, \dots, z_{gLs}^0, z_{g1s}^1, \dots, z_{gLs}^1} \prod_{\ell=1}^L \left(\pi_{g\ell s}^0 \right)^{z_{g\ell s}^0} \prod_{\ell=1}^L \left(\pi_{g\ell s}^1 \right)^{z_{g\ell s}^1}, \quad (9)$$

511 where $x_{gs} = \sum_{\ell} (z_{g\ell s}^0 + z_{g\ell s}^1)$ is the observed ST expression count for gene g at spot s and

$$\pi_{g\ell s}^0 = \frac{\lambda H_{\ell s}}{\sum_{\ell} (W_{g\ell} \theta_{\ell} + \lambda) H_{\ell s}}, \quad \pi_{g\ell s}^1 = \frac{W_{g\ell} \theta_{\ell} H_{\ell s}}{\sum_{\ell} (W_{g\ell} \theta_{\ell} + \lambda) H_{\ell s}}, \quad (10)$$

512 for each component ℓ . With the variational distribution defined by Eq.s (6)-(10), we optimize the corresponding
513 variational parameters $\{\alpha_{g\ell}^W, \beta_{g\ell}^W, \alpha_{g\ell}^0, \beta_{g\ell}^0, \alpha_{\ell s}^H, \beta_{\ell s}^H, \pi_{g\ell s}^0, \pi_{g\ell s}^1\}$ through an iterative and stochastic procedure¹⁷
514 defined in Algorithm 1. The derivation of Algorithm 1 is provided in Supplementary Note 1.

515 In this study, we initialize $\{\alpha_{g\ell}^W, \beta_{g\ell}^W, \alpha_{g\ell}^0, \beta_{g\ell}^0, \alpha_{\ell s}^H, \beta_{\ell s}^H\}$ in Algorithm 1 as

$$\begin{aligned} \alpha_{g\ell}^W(0) &\sim \mathcal{U}(0, 0.5) + \alpha_0^W, & \alpha_{g\ell}^0(0) &\sim \mathcal{U}(0, 1) + \alpha_0^0, & \alpha_{\ell s}^H(0) &\sim \mathcal{U}(0, 0.1) + \alpha_0^H, \\ \beta_{g\ell}^W(0) &\sim \mathcal{U}(0, 0.005) + \beta_0^W, & \beta_{g\ell}^0(0) &\sim \mathcal{U}(0, 1) + \beta_0^0, & \beta_{\ell s}^H(0) &\sim \mathcal{U}(0, 0.5) + \beta_0^H, \end{aligned}$$

516 where $\{\alpha_0^W, \beta_0^W, \alpha_0^0, \beta_0^0, \alpha_0^H, \beta_0^H\}$ are hyper-parameters specified in the previous section and $\mathcal{U}(a, b)$ denotes a
517 continuous uniform distribution on the interval $[a, b]$. In use cases where specific initialization schemes are
518 available, they can be easily used in our R package to run Algorithm 1.

519 Cell-type annotation strategies

520 After running Algorithm 1 on the ST data matrix, the expression profile of each gene at each spot is deconvolved
521 into L latent components represented by columns of the $G \times L$ matrix $\hat{\mathbf{W}}$. To map the L latent components to K
522 known cell types present in the ST data, we develop two simple strategies (Fig. 1). The first approach is suitable
523 when a reference of cell-type-specific gene expression is available, such as cell-type-annotated scRNA-seq data
524 from the same tissue type. This approach computes correlations between the deconvolved component-specific
525 expression profiles ($\hat{\mathbf{W}}$) and the cell-type-specific expression profiles (\mathbf{W}^0), and then matches each component to
526 the cell type with the largest correlation for this component. This approach is implemented as Algorithm 2.
527 The second approach is suitable when marker genes are known for relevant cell types in the ST sample. This
528 approach calculates a marker expression score for each component in each cell type (\mathbf{M}), defined as the sum of
529 normalized component-specific expression of known marker genes in this cell type, and then annotates each
530 component by the cell type with the largest score. This approach is implemented as Algorithm 3.

531 After matching the latent components to known cell types, we obtain a cell-type-specific expression matrix for
532 all genes ($\tilde{\mathbf{W}}$) and a cell-type proportion matrix for all spots ($\tilde{\mathbf{H}}$) as follows. Let $\mathcal{L} = \{\ell_1, \ell_2, \dots, \ell_K\} \subseteq \{1, 2, \dots, L\}$
533 denote the set of latent components that are matched to K cell types, where ℓ_k indicates that the ℓ_k -th column of
534 the $G \times L$ matrix $\hat{\mathbf{W}}$ is matched to cell type k . We extract these columns in $\hat{\mathbf{W}}$ to form a $G \times K$ matrix $\tilde{\mathbf{W}} = [\tilde{W}_{g\ell_k}]$,
535 where $g = 1, 2, \dots, G$ and $k = 1, 2, \dots, K$. This matrix $\tilde{\mathbf{W}}$ represents the cell-type-specific expression estimates of
536 G genes in K cell types. Similarly, we extract the rows in $\tilde{\mathbf{H}}$ corresponding to the cell-type-matched columns of
537 $\hat{\mathbf{W}}$ and then normalize them to estimate the proportions of K cell types at S spots. We denote this $K \times S$ matrix
538 $\tilde{\mathbf{H}} = [\tilde{H}_{ks}]$, where $\tilde{H}_{ks} = \hat{H}_{\ell_k s} / \sum_{\ell \in \mathcal{L}} \hat{H}_{\ell s} \in [0, 1]$, $k = 1, \dots, K$ and $s = 1, 2, \dots, S$.

539 Existing methods for comparison

540 We compared RETROFIT with 5 recently published cell-type deconvolution methods for ST data: STdeconvolve¹⁵
541 (<https://bioconductor.org/packages/release/bioc/html/STdeconvolve.html>, version 1.2.0), RCTD¹³

Algorithm 1 SSVI for reference-free decomposition of ST data matrix

Input the $G \times S$ ST data matrix $\mathbf{X} = [X_{gs}]$ and pre-specified constants $\{L, \lambda, \alpha_0^W, \beta_0^W, \alpha_0^\theta, \beta_0^\theta, \alpha_0^H, \beta_0^H\}$.

Initialize $\{\alpha_{g\ell}^W, \beta_{g\ell}^W, \alpha_\ell^\theta, \beta_\ell^\theta, \alpha_{\ell s}^H, \beta_{\ell s}^H\}$ as $\{\alpha_{g\ell}^W(0), \beta_{g\ell}^W(0), \alpha_\ell^\theta(0), \beta_\ell^\theta(0), \alpha_{\ell s}^H(0), \beta_{\ell s}^H(0)\}$.

for iteration $i = 1, 2, \dots, I$ **do**

(1) Sample $\mathbf{W}(i) = [W_{g\ell}(i)]$, $\boldsymbol{\theta}(i) = [\theta_\ell(i)]$, $\mathbf{H}(i) = [H_{\ell s}(i)]$ from the Gamma distributions defined in Eq. (7):

$$W_{g\ell}(i) \sim \mathcal{G}(\alpha_{g\ell}^W(i-1), \beta_{g\ell}^W(i-1)), \quad \theta_\ell(i) \sim \mathcal{G}(\alpha_\ell^\theta(i-1), \beta_\ell^\theta(i-1)), \quad H_{\ell s}(i) \sim \mathcal{G}(\alpha_{\ell s}^H(i-1), \beta_{\ell s}^H(i-1)).$$

(2) Update the multinomial distribution defined in Eq.s (9)-(10):

$$\pi_{g\ell s}^0(i) = \frac{\lambda H_{\ell s}(i)}{\sum_\ell [W_{g\ell}(i)\theta_\ell(i) + \lambda] H_{\ell s}(i)}, \quad \pi_{g\ell s}^1(i) = \frac{W_{g\ell}(i)\theta_\ell(i)H_{\ell s}(i)}{\sum_\ell [W_{g\ell}(i)\theta_\ell(i) + \lambda] H_{\ell s}(i)}.$$

(3) Update the Gamma parameters in Eq. (7) using a stochastic gradient with step size $\rho(i) = i^{-0.5}$:

$$\begin{aligned} \alpha_{g\ell}^W(i) &= [1 - \rho(i)] \cdot \alpha_{g\ell}^W(i-1) + \rho(i) \cdot \left[\alpha_0^W + \sum_s X_{gs} \pi_{g\ell s}^1(i) \right], \\ \beta_{g\ell}^W(i) &= [1 - \rho(i)] \cdot \beta_{g\ell}^W(i-1) + \rho(i) \cdot \left[\beta_0^W + \sum_s \theta_\ell(i) H_{\ell s}(i) \right], \\ \alpha_\ell^\theta(i) &= [1 - \rho(i)] \cdot \alpha_\ell^\theta(i-1) + \rho(i) \cdot \left[\alpha_0^\theta + \sum_{g,s} X_{gs} \pi_{g\ell s}^1(i) \right], \\ \beta_\ell^\theta(i) &= [1 - \rho(i)] \cdot \beta_\ell^\theta(i-1) + \rho(i) \cdot \left[\beta_0^\theta + \sum_{g,s} W_{g\ell}(i) H_{\ell s}(i) \right], \\ \alpha_{\ell s}^H(i) &= [1 - \rho(i)] \cdot \alpha_{\ell s}^H(i-1) + \rho(i) \cdot \left\{ \alpha_0^H + \sum_g X_{gs} [\pi_{g\ell s}^1(i) + \pi_{g\ell s}^0(i)] \right\}, \\ \beta_{\ell s}^H(i) &= [1 - \rho(i)] \cdot \beta_{\ell s}^H(i-1) + \rho(i) \cdot \left\{ \beta_0^H + \sum_g [W_{g\ell}(i)\theta_\ell(i) + \lambda] \right\}. \end{aligned}$$

end for

return estimates of $G \times L$ matrix $\widehat{\mathbf{W}} = [\widehat{W}_{g\ell}]$, L -length vector $\widehat{\boldsymbol{\theta}} = [\widehat{\theta}_\ell]$ and $L \times S$ matrix $\widehat{\mathbf{H}} = [\widehat{H}_{\ell s}]$ where

$$\widehat{W}_{g\ell} = \frac{\alpha_{g\ell}^W(I)}{\beta_{g\ell}^W(I)}, \quad \widehat{\theta}_\ell = \frac{\alpha_\ell^\theta(I)}{\beta_\ell^\theta(I)}, \quad \widehat{H}_{\ell s} = \frac{\alpha_{\ell s}^H(I)}{\beta_{\ell s}^H(I)}.$$

542 (https://github.com/dmcable/spacexr, version 1.2.0), SPOTlight¹⁹ (https://github.com/MarcElosua/
 543 SPOTlight, version 0.1.0), Stereoscope¹⁸ (https://github.com/almaan/stereoscope, version 03) and NM-
 544 Freg⁶ (https://github.com/broadchenf/Slideseq, version 1.0). The software package versions were up-
 545 to-date at the time of analysis. For RCTD, we used both the full (allowing an unconstrained number of cell
 546 types per spot) and doublet (allowing up to two cell types per spot) modes. For SPOTlight, we set the minimum
 547 expected contribution from a cell type in a spot as 0.01. For Stereoscope, we set the number of epochs for fitting
 548 both single-cell and ST data as 10000 and the learning rate as 0.1. For the remaining specifications, we used
 549 the default setting of each software package in the present study.

550 Among the 5 existing methods, only STdeconvolve is reference-free, while the other 4 methods require the
 551 input of a single-cell gene expression reference for ST deconvolution. For each ST dataset analyzed in this
 552 study, we ran the 4 reference-based methods with the same single-cell expression reference, as described in the
 553 following sections. We also used the single-cell expression reference to annotate STdeconvolve results by cell
 554 types, as described in the STdeconvolve publication¹⁵. When multiple latent components (topics) extracted
 555 by STdeconvolve were matched with the same cell type, we merged these components into one component so
 556 that STdeconvolve produced one proportion estimate for each cell type, consistent with the other methods. For

Algorithm 2 Cell-type mapping based on cell-type-specific gene expression

Input the $G \times L$ matrix $\widehat{\mathbf{W}}$ and $L \times S$ matrix $\widehat{\mathbf{H}}$ produced by Algorithm 1 and a $G \times K$ reference matrix $\mathbf{W}^0 = [W_{ij}^0]$ of cell-type-specific expression with W_{ij}^0 indicating the expression level of gene i in cell type j .

Normalize each row of \mathbf{W}^0 and $\widehat{\mathbf{W}}$ by their row sums:

$$\mathbf{W}^{0*} = \left[W_{ij}^{0*} \right], \quad W_{ij}^{0*} = \frac{W_{ij}^0}{\sum_{k=1}^K W_{ik}^0}; \quad \widehat{\mathbf{W}}^* = \left[\widehat{W}_{ij}^* \right], \quad \widehat{W}_{ij}^* = \frac{\widehat{W}_{ij}}{\sum_{\ell=1}^L \widehat{W}_{i\ell}}.$$

Compute the $K \times L$ correlation matrix $\mathbf{R} = [R_{ij}]$ where the (i, j) -th entry of \mathbf{R} is the Pearson correlation between the i th column (cell type) of $\widehat{\mathbf{W}}^*$ and the j th column (latent component) of $\widehat{\mathbf{W}}^*$.

repeat

(1) Find the entry of \mathbf{R} with the largest value:

$$(r, c) = \arg \max_{(i, j)} R_{ij}.$$

(2) Assign cell type r to latent component c .

(3) Delete the r th row and the c th column from \mathbf{R} .

until each cell type k is matched with a unique latent component (column) ℓ_k of $\widehat{\mathbf{W}}$, $k = 1, 2, \dots, K$.

return $G \times K$ cell-type-specific gene expression matrix $\widetilde{\mathbf{W}} = [\widetilde{W}_{g\ell_k}]$ and $K \times S$ cell-type proportion matrix $\widetilde{\mathbf{H}} = [\widetilde{H}_{ks}]$ with $\widetilde{H}_{ks} = \widehat{H}_{\ell_k s} / \sum_{\ell \in \mathcal{L}} \widehat{H}_{\ell s} \in [0, 1]$, $g = 1, 2, \dots, G$, $k = 1, 2, \dots, K$ and $s = 1, 2, \dots, S$.

Algorithm 3 Cell-type mapping based on cell-type-specific marker gene list

Input the $G \times L$ matrix $\widehat{\mathbf{W}}$ and $L \times S$ matrix $\widehat{\mathbf{H}}$ produced by Algorithm 1 and known marker gene lists $\{\mathcal{M}_k\}_{k=1}^K$ for K cell types with \mathcal{M}_k indicating the list of marker genes for cell type k .

Normalize each row of $\widehat{\mathbf{W}}$ by its row sum:

$$\widehat{\mathbf{W}}^* = \left[\widehat{W}_{ij}^* \right], \quad \widehat{W}_{ij}^* = \frac{\widehat{W}_{ij}}{\sum_{\ell=1}^L \widehat{W}_{i\ell}}.$$

Compute the $K \times L$ cell-type marker score matrix $\mathbf{M} = [M_{ij}]$ where the (i, j) -th entry of \mathbf{M} is given by

$$M_{ij} = \frac{1}{|\mathcal{M}_i|} \sum_{g \in \mathcal{M}_i} \widehat{W}_{gj}^*,$$

where $|\mathcal{M}_i|$ is the total number of marker genes for cell type i .

repeat

(1) Find the entry of \mathbf{M} with the largest value:

$$(r, c) = \arg \max_{(i, j)} M_{ij}.$$

(2) Assign cell type r to latent component c .

(3) Delete the r th row and the c th column from \mathbf{M} .

until each cell type k is matched with a unique latent component (column) ℓ_k of $\widehat{\mathbf{W}}$, $k = 1, 2, \dots, K$.

return $G \times K$ cell-type-specific gene expression matrix $\widetilde{\mathbf{W}} = [\widetilde{W}_{g\ell_k}]$ and $K \times S$ cell-type proportion matrix $\widetilde{\mathbf{H}} = [\widetilde{H}_{ks}]$ with $\widetilde{H}_{ks} = \widehat{H}_{\ell_k s} / \sum_{\ell \in \mathcal{L}} \widehat{H}_{\ell s} \in [0, 1]$, $g = 1, 2, \dots, G$, $k = 1, 2, \dots, K$ and $s = 1, 2, \dots, S$.

557 each ST dataset, each method outputs an estimated proportion for each cell type at each spot, which can be
558 compared with the cell-type proportion estimates ($\tilde{\mathbf{H}}$) produced by RETROFIT.

559 **Simulation studies**

560 Multiple factors in ST data may affect the performance of cell-type deconvolution. First, spot size differs across
561 ST technologies and affects the complexity of the cell-type mixture at each spot. Second, cell-type heterogeneity
562 in a ST slide also varies. A ST slide from a highly heterogeneous tissue (e.g., mammalian brains and intestines)
563 tends to produce spots with multiple cell types. Methods that limit the number of cell types at a spot¹³ are
564 likely inadequate for deconvolving ST data with high cell-type heterogeneity. Third, sequencing depths on the
565 same slide may vary across spots, requiring methods to be adaptive and robust. Lastly, while RETROFIT does
566 not require a single-cell gene expression reference for deconvolution, many existing methods do and thus their
567 performance relies on the reference quality. We conducted simulations to investigate the impact of these factors
568 on the performance of RETROFIT and several existing ST deconvolution methods.

569 To imitate ST experiments from various platforms and tissue samples, we simulate ST data with different spot
570 sizes and cell-type heterogeneity levels. Specifically, we characterize spot size by the number of cells per spot
571 (N) and cell-type heterogeneity by the maximum number of cell types per spot (M). For each combination of
572 N and M , we simulate the ST data matrix of G genes and S spots as follows. For each spot s , we randomly
573 select an integer K_s between 1 and M , and then randomly select K_s cell types from the K cell types present in
574 the ST sample, denoted as \mathcal{K}_s . We simulate the proportions of the K_s selected cell types using a flat Dirichlet
575 distribution, $\pi_s = [\pi_{is}]_{i \in \mathcal{K}_s} \sim \mathcal{D}_{K_s}(1, \dots, 1)$, and obtain the cell counts for the K_s selected cell types at spot s as
576 $\mathbf{n}_s = N\pi_s = [N\pi_{is}]_{i \in \mathcal{K}_s}$, rounding to the nearest integer. We randomly select \mathbf{n}_s unique cells from a single-cell
577 gene expression reference of the K_s selected cell types and aggregate their single-cell expression profiles of G
578 genes to produce the expression profile for spot s . For example, if a spot contains $N = 10$ cells from cell types
579 a, b and c with proportions 0.1, 0.7 and 0.2, respectively, we randomly select 1, 7 and 2 unique cells from the
580 corresponding single-cell expression reference of cell types a, b and c, and then add their gene expression profiles
581 up as the aggregated expression profile for this spot. To incorporate sequencing depth variation across spots,
582 we simulate a spot-specific effect ϵ_s for each spot s from a Gamma distribution, $\epsilon_s \sim \mathcal{G}(3, 1)$, and multiply the
583 aggregated expression level for each gene at spot s by ϵ_s to obtain the final ST expression level. The step-by-step
584 protocol to generate synthetic ST data is given by Algorithm 4.

Algorithm 4 Synthetic ST data generation

Input the total numbers of genes (G), spots (S) and cell types (K) on a ST slide, the number of cells per spot
(N), the maximum number of cell types per spot (M) and single-cell expression references $\{\mathbf{Y}_k\}_{k=1}^K$ for K cell
types with $\mathbf{Y}_k = [Y_{ij}^k]$ and Y_{ij}^k indicating the single-cell expression level of gene i in cell j from cell type k .

for each spot $s = 1, 2, \dots, S$ **do**
 (1) Randomly select an integer K_s between 1 and M as the number of cell types at spot s .
 (2) Randomly select K_s different cell types from $\{1, 2, \dots, K\}$, denoted as \mathcal{K}_s .
 (3) Generate the proportions for the K_s selected cell types at spot s from a flat Dirichlet distribution and
 set the proportions of remaining $K - K_s$ cell types as 0: $[\pi_{is}]_{i \in \mathcal{K}_s} \sim \mathcal{D}_{K_s}(1, \dots, 1)$ and $\pi_{is} = 0$ for $i \notin \mathcal{K}_s$.
 (4) Generate the number of cells from cell type k at spot s as $n_{ks} = \text{Round}(N\pi_{ks})$, $k = 1, \dots, K$.
 (5) Randomly select n_{ks} different cells for cell type k from the single-cell expression reference \mathbf{Y}_k , denoted
 as \mathcal{C}_{ks} , and compute the aggregated expression level of gene g for cell type k at spot s as $\tilde{Y}_{gks} = \sum_{c \in \mathcal{C}_{ks}} Y_{gc}$.
 (6) Generate the spot-level effect from a Gamma distribution: $\epsilon_s \sim \mathcal{G}(3, 1)$.
 (7) Generate the ST expression level of gene g at spot s as $X_{gs} = \epsilon_s \sum_{k=1}^K \tilde{Y}_{gks}$.

end for

return $G \times S$ ST data matrix $\mathbf{X} = [X_{gs}]$.

585 To simulate ST data for this study, we applied Algorithm 4 to a mouse cerebellum scRNA-seq dataset⁶ of 2505
586 genes and 26139 cells for 10 annotated cell types; see the next section for more details on this dataset. We
587 selected 30 cells from each of the 10 cell types in this scRNA-seq dataset, based on the highest sum of single-cell
588 expression levels across the 2505 genes. Next, we identified the 500 genes with the most variability across the
589 300 selected cells and used them to simulate three ST datasets with $G = 500$ genes and $S = 1000$ spots: (1)
590 $N = 10$ cells from up to $M = 3$ of the $K = 10$ cell types per spot (column 1 of Fig. 2); (2) $N = 20$ cells from up
591 to $M = 5$ of the $K = 10$ cell types per spot (column 2 of Fig. 2); (3) $N = 10$ cells from up to $M = 3$ of the $K = 5$

592 ground-truth cell types per spot (columns 3-4 of Fig. 2) with the 5 ground-truth cell types being Bergmann glia,
593 choroid plexus, endothelial, oligodendrocyte and Purkinje.

594 We used STdeconvolve and RETROFIT for reference-free deconvolution of simulated ST data. On each ST
595 dataset, we ran STdeconvolve with the default setting. STdeconvolve determined the optimal $L = 9$ for the first
596 ST dataset ($K = 10$), $L = 8$ for the second ST dataset ($K = 10$) and $L = 7$ for the third ST dataset ($K = 5$). When
597 running RETROFIT, we set $L = 20$ for the first two ST datasets ($K = 10$) and $L = 10$ for the third ST dataset
598 ($K = 5$). On each ST dataset, we ran RETROFIT for $I = 4000$ iterations. To map results of STdeconvolve and
599 RETROFIT to ground-truth cell types, we created a cell-type-specific transcriptomic reference $\mathbf{W}^0 = [W_{gk}^0]$ for
600 the G genes and K ground-truth cell types in each ST dataset, using the same scRNA-seq data⁶ that produced
601 the ST data. Specifically, we set W_{gk}^0 as the average scRNA-seq expression level of gene g across the 30 cells
602 from cell type k that were used to simulate the ST data. We used this reference to annotate STdeconvolve
603 results as previously described¹⁵. We applied Algorithm 2 to the same reference to annotate RETROFIT results.

604 To perform reference-based deconvolution in simulations, we applied RCTD, SPOTlight, Stereoscope and
605 NMFreg to each of the three simulated ST datasets. For the first two ST datasets, we used the exact scRNA-
606 seq data⁶ of the 10 ground-truth cell types that were used to simulate the ST data as the single-cell gene
607 expression reference (columns 1-2 of Fig. 2). For the third ST dataset, we created two ‘imperfect’ references
608 for the reference-based methods based on the same scRNA-seq dataset. Specifically, one reference contained
609 5 ground-truth and 5 irrelevant cell types (column 3 of Fig. 2), while the other reference contained only 3 of
610 the 5 ground-truth cell types (absent: choroid plexus and oligodendrocyte) and 5 irrelevant cell types (column
611 4 of Fig. 2). When a ground-truth cell type was absent from the single-cell gene expression reference, all the
612 reference-based methods were unable to estimate its proportion at each spot, and we set the estimate as zero.

613 We evaluated the performance of RETROFIT and 5 existing methods on the synthetic ST data as follows. Given
614 a ST dataset, each method produced a proportion estimate of each cell type k for each spot s : $\tilde{\mathbf{H}}_s = [\tilde{H}_{ks}]$.
615 These estimates were used to reconstruct the ST expression profile for spot s as $\tilde{\mathbf{X}}_s = \mathbf{W}^0 \tilde{\mathbf{H}}_s$ with \mathbf{W}^0 being the
616 cell-type-specific expression reference of G genes for K cell types as described above. We compared $\tilde{\mathbf{H}}_s$ with
617 the true cell-type proportions at the same spot, $\mathbf{H}_s = [H_{ks}]$, by computing (1) their RMSE (Fig. 2a), defined
618 as $\sqrt{K^{-1} \sum_{k=1}^K (H_{ks} - \tilde{H}_{ks})^2}$, and (2) their Pearson correlation (Fig. 2b). Similarly, we compared $\tilde{\mathbf{X}}_s$ with the
619 true ST expression profile at the same spot, $\mathbf{X}_s = [X_{gs}]$, by computing (1) their normalized RMSE (Fig. 2c),
620 defined as $SD^{-1}(\mathbf{X}_s) \sqrt{G^{-1} \sum_{g=1}^G (X_{gs} - \tilde{X}_{gs})^2}$ with $SD(\mathbf{X}_s)$ being the standard deviation of ST expression levels
621 across G genes at spot s , and (2) their correlation (Fig. 2d). For both estimated cell-type proportions ($\tilde{\mathbf{H}}$)
622 and reconstructed gene expression levels ($\tilde{\mathbf{X}}$), lower RMSEs and higher correlations indicate better cell-type
623 deconvolution results that are closer to and more concordant with the ground truth, respectively. To evaluate the
624 cell-type specificity of RETROFIT-extracted components, we computed the correlation between the estimated
625 ($\tilde{\mathbf{W}}_k$) and observed (\mathbf{W}_k^0) cell-type-specific expression levels across G genes for each cell type k (Fig. 2e), with a
626 higher value indicating a better performance.

627 Mouse cerebellum data analysis

628 The mouse cerebellum study⁶ provided Slide-seq data of 17919 genes at 27261 spots (https://singlecell.broadinstitute.org/single_cell/study/SCP354/slide-seq-study). This study also provided scRNA-
629 seq data of 2505 genes from 26139 cells that were annotated as 10 cell types in the mouse cerebellum
630 (astrocyte, Bergmann glia, choroid plexus, endothelial, granule, microglia, mural, oligodendrocyte, Purkinje and
631 interneuron). We ran RCTD and Stereoscope on the Slide-seq and scRNA-seq data provided in this study. We
632 ran STdeconvolve on the Slide-seq data only, created a cell-type-specific gene expression reference (\mathbf{W}^0) from
633 the companion scRNA-seq data as described in our simulation studies, and then used this reference to match
634 the extracted components with the most probable cell types in the mouse cerebellum. STdeconvolve determined
635 the optimal number of latent components as $L = 7$. The remaining details of using RCTD, Stereoscope and
636 STdeconvolve were identical to those described in the previous section.

638 We used RETROFIT to analyze the mouse cerebellum Slide-seq data as follows. To ensure deconvolution
639 accuracy and computation efficiency, we combined three complementary strategies to down-select genes
640 before running RETROFIT. First, we selected 61 overdispersed genes with significantly higher-than-expected
641 ST expression variances across spots¹⁵ using the default setup of the STdeconvolve package. Second, we
642 identified 54 cell-type-specific genes by computing entropy and Gini index on the companion scRNA-seq data
643 (Supplementary Note 2). Third, we obtained 61 marker genes³⁵ curated for 3 mouse brain cell types (granule:

644 15; oligodendrocyte: 4; Purkinje: 42) from NeuroExpresso (www.neuroexpresso.org; Supplementary Table
645 2). We took the union of these 3 gene lists and used the resulting 153 unique genes to construct the input ST
646 data matrix (\mathbf{X}) for RETROFIT. We then ran RETROFIT on the 153×27261 ST data matrix \mathbf{X} with $I = 5000$
647 iterations and $L = 20$ latent components. To map the RETROFIT-extracted components to the 10 mouse brain
648 cell types, we applied Algorithm 2 to the cell-type-specific gene expression reference (\mathbf{W}^0) from the companion
649 scRNA-seq data as described in the previous section.

650 We evaluated the performance of 4 deconvolution methods on 3 mouse brain cell types (granule, oligodendrocyte,
651 Purkinje) using curated marker genes available in NeuroExpresso³⁵. Given a cell type k , we define the cell-type
652 marker ST expression score at spot s in a slide as

$$T_{ks} = \sum_{g \in \mathcal{M}_k} X_{gs}, \quad (11)$$

653 where \mathcal{M}_k denotes the list of marker genes for cell type k and X_{gs} denotes the ST expression level of gene g
654 at spot s . For each combination of the 4 methods and the 3 cell types, we computed the Pearson correlation
655 between the observed cell-type marker ST expression scores (\mathbf{T}) and the estimated cell-type proportions ($\tilde{\mathbf{H}}$)
656 across all spots. A higher correlation indicates a better performance.

657 Human intestine data analysis

658 The human intestine study⁵ made available Visium ST data from 3 tissue slides, including a 12 PCW slide
659 with 1080 spots, a 19 PCW slide with 1242 spots and an adult slide with 2649 spots, providing expression
660 measurements for 33538 genes in each slide (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158328>). The study provided H&E images of the ST slides (<https://doi.org/10.17632/gncg57p5x9.2>).
661 This study also provided scRNA-seq data of 76592 cells from 77 intestinal samples spanning 8 to 22 PCW
662 (<https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE158702>) that were grouped into 8 distinct
663 cellular compartments (endothelial, epithelial, fibroblast, immune, muscle, MyoFB/MESO, neural, pericyte).
664

665 We used RETROFIT to analyze the human intestine Visium ST data as follows. Similar to our analysis of the
666 mouse cerebellum Slide-seq data, we down-selected genes prior to running RETROFIT. Specifically, for each of
667 the 3 ST slides, we only included (1) significantly overdispersed genes across spots¹⁵ and (2) 37 known marker
668 genes of the 8 cellular compartments (Fig. 6a) in the input ST data matrix (\mathbf{X}) for RETROFIT, resulting in
669 722 genes for 12 PCW, 681 genes for 19 PCW and 1051 genes for adult. On each ST data matrix, we then ran
670 RETROFIT with $I = 4000$ iterations and $L = 16$ latent components. To match RETROFIT-extracted components
671 with the 8 intestinal compartments, we utilized Algorithm 3 together with the 37 known marker genes (Fig.
672 6a) curated in the human intestine study⁵. For the 12 and 19 PCW slides, we also applied Algorithm 2 to
673 annotate their RETROFIT results, using the compartment-specific gene expression reference (\mathbf{W}^0) generated
674 from the companion scRNA-seq data of 12 and 19 PCW samples respectively. Specifically, for each fetal stage
675 we selected 25 cells from each of the 8 compartments that resulted in the highest sum of single-cell expression
676 levels across all genes, and then we set W_{gk}^0 as the average scRNA-seq expression level of gene g across the 25
677 cells selected from compartment k . Unless otherwise specified, estimates of compartment proportion ($\tilde{\mathbf{H}}$) and
678 compartment-specific expression ($\tilde{\mathbf{W}}$) for all 3 ST slides were generated with Algorithm 3.

679 For comparison, we also used STdeconvolve to perform reference-free deconvolution of the same human intestine
680 ST data. Since the cell-type annotation step in STdeconvolve requires a cell-type-specific gene expression
681 reference, we only ran STdeconvolve on the ST data of 12 and 19 PCW tissues that had companion scRNA-seq
682 data available. For each ST slide we ran STdeconvolve with two different numbers of latent components (topics):
683 $L = 6$, which was determined by STdeconvolve, and $L = 16$, which was used in RETROFIT. The remaining
684 details of running STdeconvolve were the same as those described in previous sections.

685 To evaluate the accuracy of RETROFIT in estimating cellular compartment proportions ($\tilde{\mathbf{H}}$), we computed the
686 correlation between the ST expression scores of compartment-specific marker genes defined in Eq. (11) and the
687 estimated compartment proportions across all spots for each of the 8 cellular compartments and 3 ST slides
688 (Table 1; Fig.s 4c-d; Supplementary Fig.s 5-10).

To evaluate the accuracy of RETROFIT in estimating compartment-specific expression levels ($\tilde{\mathbf{W}}$), we compared
the compartment-specific expression levels estimated from 12 and 19 PCW ST slides with the compartment-
specific expression levels based on the companion scRNA-seq data from 12 and 19 PCW intestinal samples
(\mathbf{W}^0). To account for different scales of ST and scRNA-seq data, we first normalized rows of the two expression

matrices ($\tilde{\mathbf{W}}$ and \mathbf{W}^0) by their sums as we did in Algorithm 2:

$$\tilde{W}_{gk}^* = \frac{\tilde{W}_{gk}}{\sum_{j=1}^K \tilde{W}_{gj}}, \quad W_{gk}^{0*} = \frac{W_{gk}^0}{\sum_{j=1}^K W_{gj}^0},$$

689 and then compared the normalized expression matrices $\tilde{\mathbf{W}}^* = [\tilde{W}_{gk}^*]$ and $\mathbf{W}^{0*} = [W_{gk}^{0*}]$ in each of the 8 cellular
690 compartments and 2 fetal stages (Fig.s 6a and c).

691 Based on the normalized cell-type-specific expression levels (\tilde{W}^*) estimated by RETROFIT, we further developed
692 a simple method to identify genes with high cell-type specificity. Given the normalized cell-type-specific
693 expression estimates of gene g for K cell types $\{\tilde{W}_{g1}^*, \dots, \tilde{W}_{gK}^*\}$, we calculated two dispersion measures:

$$\text{entropy } E_g = - \sum_{k=1}^K \tilde{W}_{gk}^* \log_2(\tilde{W}_{gk}^*),$$
$$\text{Gini index } G_g = \frac{\sum_{i=1}^K \sum_{j=1}^K |\tilde{W}_{gi}^* - \tilde{W}_{gj}^*|}{2(K-1) \sum_{k=1}^K \tilde{W}_{gk}^*}.$$

694 Lower entropy and higher Gini index indicate an excess of normalized expression for one cell type, thus
695 suggesting the cell-type specificity. In the human intestine data analysis, we identified a cell-type-specific gene
696 g from the ST data if this gene had (1) entropy $E_g < 1.5$, (2) Gini index $G_g > 0.85$, (3) maximum ST expression
697 level $\max_s X_{gs} > 40$ and (4) consistent cell-type specificity across all ST replicate samples (e.g., the same tissue
698 type from the same developmental stage). We performed this analysis only on adult and 12 PCW stages (Fig.
699 6b), because they were the only stages with ST replicate samples available in the human intestine study⁵
700 (Supplementary Tables 18-20), in addition to the ST samples used in our primary analysis (Fig. 4a).

701 To assess biological themes of cell-type-specific genes identified by RETROFIT (Fig. 6d; Supplementary Tables
702 21-22), we performed the gene set enrichment analysis using Metascape³⁶ (<https://metascape.org>, version
703 3.5). Metascape calculates the enrichment P -values based on the cumulative hypergeometric distribution and
704 then adjusts the P -values for multiple testing based on the Benjamini-Hochberg procedure.

705 Data availability

706 All the data used in this study are publicly available. Links and identifiers of all data are specified in Methods.

707 Code availability

708 RETROFIT is available as an R package in Bioconductor (<https://bioconductor.org/packages/release/bioc/html/retrofit.html>). Links and identifiers of all other codes are specified in Methods.

710 References

- 711 [1] Moffitt, J. R., Lundberg, E. & Heyn, H. The emerging landscape of spatial profiling technologies. *Nat. Rev. Genet.* **23**, 741–759 (2022).
- 712 [2] Rao, A., Barkley, D., França, G. S. & Yanai, I. Exploring tissue architecture using spatial transcriptomics. *Nature* **596**, 211–220 (2021).
- 713 [3] Ortiz, C., Carlén, M. & Meletis, K. Spatial transcriptomics: molecular maps of the mammalian brain. *Annu. Rev. Neurosci.* **44**, 547–562 (2021).
- 714 [4] Danan, C. H., Katada, K., Parham, L. R. & Hamilton, K. E. Spatial transcriptomics add a new dimension to our understanding of the gut. *Am. J. Physiol. Gastrointest. Liver Physiol.* **324**, G91–G98 (2023).
- 715 [5] Fawkner-Corbett, D. *et al.* Spatiotemporal analysis of human intestinal development at single-cell resolution. *Cell* **184**, 810–826 (2021).
- 716 [6] Rodrigues, S. G. *et al.* Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. *Science* **363**, 1463–1467 (2019).
- 717 [7] Li, B. *et al.* Benchmarking spatial and single-cell transcriptomics integration methods for transcript distribution prediction and cell type deconvolution. *Nat. Methods.* **19**, 662–670 (2022).

725 [8] Zhang, Y. *et al.* Deconvolution algorithms for inference of the cell-type composition of the spatial transcriptome. *Comput. Struct. Biotechnol. J.* **21**, 176–184 (2023).

726

727 [9] Cao, J. *et al.* A human cell atlas of fetal gene expression. *Science* **370**, eaba7721 (2020).

728 [10] The Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. *Science* **376**, eabl4896 (2022).

729

730 [11] Nguyen, Q. H., Pervolarakis, N., Nee, K. & Kessenbrock, K. Experimental considerations for single-cell RNA sequencing approaches. *Front. Cell Dev. Biol.* **6**, 108 (2018).

731

732 [12] Lafzi, A., Moutinho, C., Picelli, S. & Heyn, H. Tutorial: guidelines for the experimental design of single-cell RNA sequencing studies. *Nat. Protoc.* **13**, 2742–2757 (2018).

733

734 [13] Cable, D. M. *et al.* Robust decomposition of cell type mixtures in spatial transcriptomics. *Nat. Biotechnol.* **40**, 517–526 (2022).

735

736 [14] Leek, J. T. *et al.* Tackling the widespread and critical impact of batch effects in high-throughput data. *Nat. Rev. Genet.* **11**, 733–739 (2010).

737

738 [15] Miller, B. F., Huang, F., Atta, L., Sahoo, A. & Fan, J. Reference-free cell type deconvolution of multi-cellular pixel-resolution spatially resolved transcriptomics data. *Nat. Commun.* **13**, 2339 (2022).

739

740 [16] Hoffman, M. D., Blei, D. M. & Cook, P. R. Bayesian nonparametric matrix factorization for recorded music. In *ICML*, 439–446 (2010).

741

742 [17] Hoffman, M. D. & Blei, D. M. Structured stochastic variational inference. In *AISTATS*, 361–369 (2015).

743 [18] Andersson, A. *et al.* Single-cell and spatial transcriptomics enables probabilistic inference of cell type topography. *Commun. Biol.* **3**, 565 (2020).

744

745 [19] Elosua-Bayes, M., Nieto, P., Mereu, E., Gut, I. & Heyn, H. SPOTlight: seeded NMF regression to deconvolute spatial transcriptomics spots with single-cell transcriptomes. *Nucleic Acids Res.* **49**, e50–e50 (2021).

746

747

748 [20] Chin, A. M., Hill, D. R., Aurora, M. & Spence, J. R. Morphogenesis and maturation of the embryonic and postnatal intestine. *Semin. Cell Dev. Biol.* **66**, 81–93 (2017).

749

750 [21] Peterson, L. W. & Artis, D. Intestinal epithelial cells: regulators of barrier function and immune homeostasis. *Nat. Rev. Immunol.* **14**, 141–153 (2014).

751

752 [22] Palikuqi, B. *et al.* Lymphangiocrine signals are required for proper intestinal repair after cytotoxic injury. *Cell Stem Cell* **29**, 1262–1272 (2022).

753

754 [23] Gelse, K., Pöschl, E. & Aigner, T. Collagens—structure, function, and biosynthesis. *Adv. Drug Deliv. Rev.* **55**, 1531–1546 (2003).

755

756 [24] Agnelli, G., Herrmann, H. & Cohen, S. New roles for desmin in the maintenance of muscle homeostasis. *FEBS J.* **289**, 2755–2770 (2022).

757

758 [25] Muhl, L. *et al.* Single-cell analysis uncovers fibroblast heterogeneity and criteria for fibroblast and mural cell identification and discrimination. *Nat. Commun.* **11**, 3953 (2020).

759

760 [26] Wilm, B., Ipenberg, A., Hastie, N. D., Burch, J. B. & Bader, D. M. The serosal mesothelium is a major source of smooth muscle cells of the gut vasculature. *Semin. Cell Dev. Biol.* **132**, 5317–5328 (2005).

761

762 [27] Zhu, X. & Stephens, M. Large-scale genome-wide enrichment analyses identify new trait-associated genes and pathways across 31 human phenotypes. *Nat. Commun.* **9**, 4361 (2018).

763

764 [28] Tan, V. Y. & Févotte, C. Automatic relevance determination in nonnegative matrix factorization with the/spl beta/-divergence. *IEEE Trans. Pattern Anal. Mach. Intell.* **35**, 1592–1605 (2013).

765

766 [29] Townes, F. W. & Engelhardt, B. E. Nonnegative spatial factorization applied to spatial genomics. *Nat. Methods* **20**, 229–238 (2023).

767

768 [30] Chidester, B., Zhou, T., Alam, S. & Ma, J. SpiceMix enables integrative single-cell spatial modeling of cell identity. *Nat. Genet.* **55**, 78–88 (2023).

769

770 [31] Sarkar, A. & Stephens, M. Separating measurement and expression models clarifies confusion in single-cell rna sequencing analysis. *Nat. Genet.* **53**, 770–777 (2021).

771

772 [32] Laurberg, H. & Hansen, L. K. On affine non-negative matrix factorization. In *IEEE ICASSP*, vol. 2, II–653–II–656 (2007).

773

774 [33] Badea, L. Extracting gene expression profiles common to colon and pancreatic adenocarcinoma using
775 simultaneous nonnegative matrix factorization. In *Pacific Symp. Biocomput.*, 279–290 (2008).

776 [34] Lee, D. D. & Seung, H. S. Learning the parts of objects by non-negative matrix factorization. *Nature* **401**,
777 788–791 (1999).

778 [35] Mancarci, B. O. *et al.* Cross-laboratory analysis of brain cell type transcriptomes with applications to
779 interpretation of bulk tissue data. *eNeuro* **4** (2017).

780 [36] Zhou, Y. *et al.* Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.
781 *Nat. Commun.* **10**, 1523 (2019).

782 **Acknowledgements**

783 Q.L. acknowledges support from NIH grants R01GM109453, R21AI160138 and R03DE031361. R.C.H. ac-
784 knowledges support from NIH grant R24DK106766. X.Z. and Q.L. acknowledge support from seed grants
785 of the Institute for Computational and Data Sciences and Consortium on Substance Use and Addiction at
786 the Pennsylvania State University. This study used computational resources provided by the Institute for
787 Computational and Data Sciences at the Pennsylvania State University.

788 **Author contributions**

789 X.Z. and Q.L. conceived and supervised the study. R.S., X.Z. and Q.L. developed the methods. A.K.P. developed
790 the R package with input from R.S., X.Z. and Q.L. R.S., X.H., A.K.P. and X.Z. performed the analyses and
791 visualized the results with input from R.C.H. and Q.L. X.Z. prepared the supplementary materials with input
792 from R.S., X.H. and A.K.P. X.H. and A.K.P. contributed equally as co-second authors. X.Z. and Q.L. wrote the
793 manuscript with input from R.C.H.