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Effective connectivity in DoC

Abstract

Neuroimaging studies have suggested an important role for the default mode network (DMN) in
disorders of consciousness (DoC). However, the extent to which DMN connectivity can
discriminate DoC states — unresponsive wakefulness syndrome (UWS) and minimally conscious
state (MCS) — is less evident. Particularly, it is unclear whether effective DMN connectivity, as
measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle
UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this
extends to UWS patients with potentially “covert” awareness (minimally conscious star, MCS*)
indexed by voluntary brain activity in conjunction with partially preserved frontoparietal
metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to
PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by
using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET-
and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We
provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS
PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation,
we tested the classification performance of the DCM models demonstrating that connectivity
between medial prefrontal and left parietal sources reliably discriminates UWS PET- from
MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen
dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS*
patients as conscious subjects with high posterior probability (pp > .92). These results identify
specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-
based effective connectivity for identifying patients with potential covert awareness.

Author Summary:

Our study investigates the role of the Default Mode Network (DMN) in individuals with
disorders of consciousness (DoC), such as unresponsive wakefulness syndrome (UWS) and
minimally conscious state (MCS). Previous neuroimaging studies have suggested a role for the
DMN in DoC, but its ability to differentiate between UWS and MCS remain unclear.

Using advance brain imaging and modelling techniques, we analyzed data from DoC patients
with traumatic brain injury and healthy controls. Our findings reveal a key difference in left
frontoparietal connectivity when comparing UWS to MCS patients and healthy individuals.

To validate our results, we employed a robust cross-validation approach, which demonstrated
that the connectivity between frontal and left parietal brain regions reliably discriminates UWS
patients from MCS patients and controls. Furthermore, we extended our analysis to include
patients with potential covert awareness, showcasing the clinical utility of our findings. We
successfully classified these patients as conscious with high accuracy.

This research significantly contributes to our understanding of the DMN in DoC and highlights
the potential use of electroencephalography-based connectivity analysis in clinical settings. By
identifying specific alterations in the DMN after severe brain injury, our study may aid in the
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69  accurate diagnosis and management of individuals with disorders of consciousness, potentially
70  improving their overall outcomes.
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72 1 I ntroduction

73 After a severe brain injury, patients may be diagnosed with a transient or permanent disorders of
74 consciousness (DoC), such as the unresponsive wakefulness syndrome (UWS) or the minimally
75  conscious state (MCS). The UWS is defined by preserved arousal in the absence of behavioral
76  signs of awareness (periodic sustained eye opening with purposeless movements; Laureys et al.,
77  2010). In contrast, patients in MCS show fluctuating but reproducible signs of consciousness
78  with preserved arousal. The MCS has been further divided into MCS- and MCS+, with the latter
79  condition characterized by command following, intelligible verbalization, or gestural or verbal
80  yes/no responses (regardless of accuracy) to spoken or written questions (Bruno et al., 2011).

81  The exclusive use of clinical consensus for diagnosing these DoC based on observed behaviors
82  has been shown to result in high rates of misdiagnosis of the accurate level of consciousness of
83 the DoC patients, especially in the case of patients suffering from UWS (Stender et al., 2014;
84  Thibaut et al., 2021; van Erp et al., 2015). Consequently, with the advent of modern
85  neuroimaging techniques, there has been increasing interest in characterizing the underlying
86  neuronal basis for the presence or lack of awareness in DoC using structural and functional
87  magnetic resonance imaging (MRI/fMRI; e.g., Demertzi et al., 2015; Di Perri et al., 2016),
88  positron emission tomography (PET; e.g., Laureys et al., 1999; Stender et al., 2014), and
89 electroencephalography (EEG,; e.g., Chennu et al., 2014; King et al., 2013; Sitt et al., 2014).

90  Structural and functional neuroimaging studies have suggested an important role of the default
91  mode network (DMN) in DoC — an intrinsic brain network encompassing the posterior cingulate
92  cortex/precuneus, bilateral parietal cortices, and the medial prefrontal cortex (Annen et al., 2018;
93 Boly et al., 2009; Fernandez-Espejo et al., 2012; Guldenmund et al., 2016; Soddu et al., 2012;
94  Vanhaudenhuyse et al., 2010). In parallel, cerebral metabolism as measured by PET has been
95  shown to differentiate UWS from MCS (Stender et al., 2014; Stender et al., 2016; Thibaut et al.,
96  2021), with regional differences often in areas associated with DMN (Stender et al., 2015;
97  Thibaut et al., 2012). This extends to patients with MCS; MCS+ can be distinguished from
98 MCS- with the former group showing partially preserved language related behaviors (e.g.,
99 response to simple commands) alongside with a higher cerebral metabolism especially in left-
100 sided cortical areas, including Broca’s and Wernicke’s areas, premotor, presupplementary motor,
101  and sensorimotor cortices (Aubinet et al., 2020; Bruno et al., 2012; Thibaut et al., 2020). A
102  trained neurologist can diagnose patients also based on a visual inspection of their underlying
103  PET metabolism, to as either PET negative (-) or PET positive (+). A PET- diagnosis is typically
104  produced by a complete bilateral hypometabolism of the associative frontoparietal cortex with no
105  voxels with preserved metabolism, whereas PET+ diagnosis is characterized by an incomplete
106  hypometabolism and partial preservation of activity within these areas (Laureys et al., 2004;
107  Thibaut et al., 2012, Stender et al. 2014).

108 In addition, effective connectivity studies in DoC as measured with dynamic causal modelling
109 (DCM) for fMRI have suggested disruptions within the DMN specifically related to posterior
110 cingulate cortex (PCC; Crone et al., 2015) and in subcortical networks, potentially driving the
111  disruptions in the DMN (Chen et al., 2018; Coulborn et al., 2021). DCM is a generic approach
112  used to infer hidden (or unobserved) neuronal states from measured brain activity; the idea is to
113  model the source activity over time in terms of causal relationships between interacting
114  inhibitory and excitatory populations of neurons. As far as we know, only one study has used
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115 DCM with EEG for measuring and diagnosing cognitive functioning in DoC population. Using a
116  mismatch negativity paradigm, Boly and colleagues (2011a) showed that the difference between
117 UWS and MCS was due to an impairment of backward connectivity from frontal to temporal
118  cortices, emphasizing the importance of top-down processing for conscious perception.

119  Importantly, a number of studies have suggested residual consciousness and/or reported “covert”
120  voluntary brain activity in some seemingly unresponsive patients, with both, active and resting
121  state paradigms (Bodart et al., 2017; Claassen et al., 2019; Chennu et al., 2017; Cruse et al.,
122 2011; Lechinger et al., 2013; Monti et al., 2010; Owen et al., 2006; Owen & Coleman, 2008;
123 Schnakers et al., 2015). These patients, who show no behavioral signs of consciousness, yet with
124 whose neuroimaging results indicate residual brain activity compatible with the diagnosis of
125  MCS, have been termed MCS* (minimally conscious state star; Gosseries et al., 2014; Thibaut et
126  al., 2021). To keep consistent with the literature, from this point on, we use the term MCS* to
127  refer to the UWS patients with PET+ diagnosis in this manuscript.

128  Currently it is unknown whether effective resting state connectivity between key nodes within
129  the DMN, as measured with EEG, could be used to identify such covertly aware patients. Here,
130 as a preliminary investigation, we address this gap by using spectral DCM for EEG with
131  parametric empirical Bayes (PEB). We investigate the difference in causal interactions between
132  cortico-cortical regions of the DMN, between DoC patients (UWS and MCS+) and healthy
133  controls. First, our interest is in distinguishing the differences between UWS patients and
134  healthy controls, and in demonstrating the prospective performance of the connectivity within
135 DMN in classifying these states. Crucially, we include MCS+ patients to function as a second,
136  yet demonstrably conscious, control group to reduce the probability that our findings reflect
137  mainly damage in the brain, and not consciousness itself. Based on previous studies (Boly et al.,
138  2011a), we hypothesize that there will be top-down/backward connectivity differences in UWS
139 vs. healthy controls and in UWS vs. MCS+ comparisons. We also model the difference between
140  MCS+ and healthy controls where we do not expect to see this difference.

141  Next, in a leave-one-subject-out cross-validation, we test the classification performance of
142  models based on the fully connected DMN network and on two connectivity subsets of the
143  DMN: the posterior connections and the frontoparietal connections. Following this, we adopt a
144  data-driven approach to the classification problem by investigating the predictive performance of
145  single connections. The aim here is to identify the direction and location of the largest, most
146  consistent modulations between the subjects.

147  Finally, we demonstrate that our DCM models generalize to a more difficult classification
148 problem: in a leave-one-state-out cross-validation paradigm, we train the models on UWS
149  patients with a confirmed PET negative (PET-) diagnosis (i.e., a complete bilateral
150 hypometabolism of the associative frontoparietal cortex) on the one hand and either healthy
151  controls or MCS+ patients on the other. The MCS+ patients here function as a conscious control
152 group who still suffer from brain damage. We then test the models on datasets from “covertly
153 aware” MCS* patients (partially preserved metabolism and activity within these areas). We
154  hypothesize that if our modelled effects are valid, and if the sustained PET metabolism reflects
155  covert awareness in the MCS* patients, our model should classify these patients as healthy
156  controls/MCS+ rather than UWS PET-.
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157

158 2 Results

159 2.1 Dynamic causal modeling and parametric empirical Bayes

160  Our first goal was to investigate the effective connectivity modulations best explaining the
161  difference between healthy controls, UWS PET-, and MCS+ patients. We modelled time-series
162  recorded from the three groups with DCM for CSD at a single-subject level, followed by PEB at
163  the group-level. In doing so, we estimated the change in effective connectivity in 12 inter-node
164  connections in the DMN, contrasting 11 healthy controls both with 6 UWS PET- patients and
165  with 12 MCS+ patients, and the 12 MCS+ patients with 6 UWS PET- patients.

166  Following the inversion of the between-groups PEB model, a greedy search was implemented to
167  prune away connections not contributing significantly to the free energy using BMR. Figure 4
168 shows the most parsimonious models and figure 5 shows the estimated log scaling
169  parameters contrasting healthy controls with UWS PET- (A), MCS+ with UWS PET- (B), and
170  finally, healthy controls with MCS+ (C). Here, we applied a threshold of >.99 for the posterior
171  probability; in other words, connections that were pruned by BMR and connections with lower
172  than .99 posterior probability with their respective log scaling parameter are faded out (figures
173  5A, 5B, 5C).

174 On inverting the DMN for the control and UWS PET- groups, 3 connections were pruned away
175 by BMR with additional 4 connections having lower than .99 posterior probability (figures 4A
176 and 5A). All but one of the pruned connections were located within the posterior cortices
177  between lateral parietal cortices and PCC/precuneus (except for the right backward frontoparietal
178  connection). The largest reduction in effective connectivity was located on left frontoparietal
179  connection; the backward connection between mPFC and left lateral parietal node was largely
180  diminished for the UWS PET- group in comparison to healthy controls.

181  On inverting the DMN contrasting MCS+ and UWS PET-, only three connections survived the
182  BMR process with at least .99 posterior probability (with additional three connections surviving
183  pruning with lower than .99 posterior probability; figures 4B and 5B). As with the control vs.
184 UWS PET- contrast, the largest reduction was on the left backward
185  connectivity from mPFC to ILP, with left ILP-mPFC forward connectivity increasing.

186 On inverting the DMN for the contrast between healthy controls and MCS+, two
187  connections were pruned by the BMR with additional 4 connections having lower than .99
188  posterior probability for being present (figures 4C and 5C). The largest reductions were between
189  the posterior nodes, to and from the lateral parietal cortices and PCC/precuneus. In addition, the
190 left frontoparietal backward connectivity was reduced, although with smaller than .99
191  posterior probability and with clearly smaller effect size than with UWS PET-. Other non-pruned
192  connections were associated with small to medium increases.

193  In addition, we also observed increased connectivity (relatively small effect sizes) in most of the
194  other connections with at least .99 posterior probability.


https://doi.org/10.1101/2023.06.07.544105
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.07.544105; this version posted June 9, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Effective connectivity in DoC

. \
P 7 A
L C— - it
R A%\ o = .
- & T '
/ ’ S .\ < i
3 P %
e — —
/ f A D
4 S s
J y
-3

“I-f" ot Y 7%
L)
-3
£ F Control vs. MCS+ 71
J . Pon. . \‘
/ ; e — 2 o
4] [ R A2k N =S
- ! 1 L # > M L T
rN { 'i‘ o 1 .
n‘{f ! i
LM
3 /[ Y A '3 s 5
. ,,.,-":“__; L (==

AN % v i
195 =

196  Figure 4. The most parsimonious DMN models after BMA and BMR contrasting the healthy
197  controls (HC) and the UWS PET-, MCS+ patients and UWS PET-, and healthy controls and
198 MCS+. Color shows modulation strength and direction. All panels express the modulations of
199  couplings for the latter state relative to the first. A. The most parsimonious model best explaining
200 the difference between healthy controls and UWS PET- patients. Three connections were pruned
201  with an additional four having lower than .99 posterior probability of being present. All but one
202  pruned connection was located between lateral parietal and PCC/precuneus nodes. When moving
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203  from the state of healthy controls to UWS PET-, the largest reduction in effective connectivity
204  was in the backward connection from the medial prefrontal cortex to left lateral parietal cortex.
205 B. The most parsimonious model best explaining the difference between the MCS+ and UWS
206  PET- patients. Six connections were pruned by the BMR with an additional three connections
207  having lower than .99 posterior probability of being present. When moving from UWS PET- to
208  MCS+, the largest reduction was observed on the backward connection from the medial
209  prefrontal cortex to left lateral parietal cortex, similar to the reduction between healthy controls
210 and UWS PET patients. C. The most parsimonious model explaining the difference between
211  healthy controls and MCS+ patients. Two connections were pruned with additional four
212  connections having lower than .99 posterior probability of being present. When moving from the
213  state of healthy controls to MCS+, the largest reductions on effective connectivity were on
214  posterior connections between the lateral parietal cortices and PCC/precuneus.

215

216
A. Control vs. UWS B. MCS+ vs. UWS PET- ——— Forward
PET- - — — — & Backward
||||||||||||||| P Lateral
C. Control vs.
217

218 Figure 5. The log scaling parameters for the connection strengths in the DMN after BMR and
219 BMA. Positive values represent an increase and negative values a decrease in effective
220  connectivity for the three group comparisons. Connections that were pruned by BMR and
221  connections with lower than .99 posterior probability with their respective log scaling parameter
222  are faded out. A. The modulatory effects best explaining the difference between healthy controls
223  (HC) and UWS PET- patients. Connectivity between lateral parietal and PCC/precuneus nodes
224 were either pruned away by BMR or had lower than .99 posterior probability with low
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225  modulatory effects. The largest reduction was found on backward lateral frontoparietal
226  connection from medial prefrontal cortex to left lateral parietal cortex. B. The modulatory effects
227  best explaining the difference between MCS+and UWS PET-. The modulatory effects on
228 left bidirectional frontoparietal connections were both in the same direction as when comparing
229  healthy controls to UWS PET-, with the largest reduction on left backward frontoparietal
230  connection. In addition, right backward frontoparietal connectivity and posterior forward
231  connectivity between lateral parietal nodes and PCC/precuneus reduced (smaller effect sizes),
232  albeit with lower than .99 posterior probability of being present. C. The modulatory effects best
233  explaining the difference between healthy controls and MCS+. The largest reductions were
234 between the posterior nodes, between the lateral parietal nodes and PCC/precuneus. Bidirectional
235 medial frontoparietal connectivity was increased in MCS+in comparison to healthy
236  controls. mPFC — medial prefrontal cortex, Prec — posterior cingulate cortex/precuneus, ILP —
237  left lateral parietal cortex, rLP — right lateral parietal cortex.

238

239 2.2 Leave-one-subject-out cross-validation

240  To conduct LOSOCV, the DCM model was inverted again, this time separately for each patient
241  group. Following the inversion process, PEB was conducted repeatedly on the training set in
242  each cross-validation run alongside LOSOCV analysis to generate the posterior probabilities
243  for group-membership (see Methods).

244 First, the UWS PET- patients were classified alongside the controls based on the full DMN
245  model, and two hypothesis-driven connection subsets (frontoparietal- and parietal connections;
246  figure 6). A similar approach was applied classifying MCS+ patients alongside UWS PET-
247  patients, and finally, healthy controls alongside MCS+ patients. Figures 6 and 7 show violin
248  plots representing the individual posterior probabilities for the hypothesis-driven
249 classifications and data-driven approach, for all three contrasts, respectively (A: control vs. UWS
250 PET-, B: MCS+ vs. UWS PET-, C: control vs. MCS+). As seen in figure 6, frontoparietal
251  connections classified correctly most of the controls and MCS+, and around half of the UWS
252  PET- patients in the controls vs. UWS PET- and MCS+ vs. UWS PET- contrasts. Both full DMN
253 and parietal subsets clustered most of the subjects around the chance level of 0.5. We further
254  produced confusion matrices of prediction accuracy calculated by labelling posterior
255  probabilities greater than 0.5 as a positive classification (for both hypothesis-driven subsets and
256  the data-driven approach). See Supplementary Materials and figures s3 and s4.

257

258 We then moved to a data-driven approach in which we first predicted the patient group
259  membership based on the connections with the largest reductions in PEB, one at a time, working
260  through all connections. Lastly, we checked combinations based on the connections’ respective
261 classification accuracies (see Methods). The bi-directional left frontoparietal connectivity
262  produced the best predictions, especially when classifying the UWS PET- from both,
263  healthy controls and the MCS+ patients (figures 7A and 7B), with the best predictions based on
264  the backward mPFC-ILP connectivity. Forward ILP-mPFC connectivity produced the best
265  predictions for controls vs. MCS+ contrast, especially for the healthy controls (7C). None of the
266  tested combinations improved classification performance.
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268  Figure 6. Violin plots representing diversity in posterior probabilities for healthy control group
269  membership (A and C) and for MCS+ group membership (B) for the hypothesis-driven subsets
270  for all three group contrasts. Each colored point specifies a subject. In a perfect model in panels
271 A and B, the UWS PET- patients (N = 6), and in panel C, the MCS+ patients (N = 12) should
272  approach a posterior probability of zero. Overall, the results show a trend for frontoparietal
273  connections producing the best predictions. A. When classifying UWS PET- patients alongside
274 healthy controls, the frontoparietal subset produced the best results. The individual data points
275  reveal more consistent classifications of healthy controls. On all three panels, full DMN model
276  and parietal subset produced classifications with most posterior probabilities bordering the 0.5
277 chance level. B. As in panel A, the best predictions when classifying UWS PET- patients
278  alongside MCS+ were based on frontoparietal connections, specifically with MCS+ patients. C.
279  Classification of MCS+ alongside healthy controls. Frontoparietal subset produced the best
280  predictions, however with large variability on the performance across the subjects.

281
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283  Figure 7.Violin plots representing diversity in posterior probabilities for control group
284  membership (A and C) and for MCS+ group membership (B) for the data-driven connections for
285  all three contrasts. Each colored point specifies a subject. In a perfect model in panels A and B,
286 the UWS PET- patients, and in panel C, the MCS+ patients should approach
287  aposterior probability of zero. Overall, the best predictive performance was based on the left bi-
288  directional frontoparietal connections when classifying UWS PET- alongside controls (A) and
289  MCS+ (B). Largest inconsistencies and variability were on classifications of MCS+ alongside
290 healthy controls. A. Left frontoparietal connectivity from mPFC to ILP produced the best
291  predictions (mean posterior probabilities) of the group-membership when classifying UWS PET-
292  alongside healthy controls. As with the hypothesis-driven subsets, the classifications were more
293 accurate with healthy controls than with patients. B. As in panel A with healthy controls and
294 UWS PET- patients, the classification performances based on mPFC-ILP and ILP-
295 mPFC produced the most consistent results when contrasting UWS PET- patients alongside
296  MCS+. C. Mean posterior probabilities for classification of MCS+ alongside healthy controls.
297  The performance of the models based on the single connections did not produce consistently
298 accurate classifications. mPFC — medial prefrontal cortex, Prec — posterior cingulate
299  cortex/precuneus, ILP — left lateral parietal cortex, rLP — right lateral parietal cortex.

300

301 2.3 Leave-one-state-out cross-validation
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302  Finally, the predictive power of DCM modelling was generalized intwo more difficult
303 classification problems; each model was trained first on healthy controls and UWS PET- and
304  then tested on the previously unseen UWS PET+ group. A similar approach was used with a
305 training set consisting of MCS+ and UWS PET- patients. The individual posterior probabilities
306 for the five UWS PET + patients represented in a violin plot for both, the hypothesis subsets
307  (panels A and B; controls vs. UWS PET-and controls vs. MCS+, respectively) and for data-
308  driven connections (panels C and D) are shown in figure 8. The hypothesis-driven subsets did
309 not classify the MCS* as controls or MCS+. Instead, when trained on datasets from healthy
310 controls and UWS PET-, the frontoparietal subset classified four out of five MCS* patients as
311  UWS PET-.

312  With the data-driven approach, the left backward frontoparietal connectivity from mPFC
313 to ILP produced nearly perfect predictions classifying the MCS* datasets as controls (8C,
314  p(control|MCS* > .92) and MCS+ (8D, p(MCS+|MCS* > .98) rather than as UWS PET- group.
315  Similar as with frontoparietal subset (8A), the left forward connectivity from ILP to mPFC
316 classified four of five patients as UWS PET- patients rather than healthy controls — three of them
317  with a high posterior probability. This dissociation was not as prominent when training the
318 model with MCS+ and UWS PET- patients (8D); the backward connectivity still
319  produced nearly perfect classifications (of MCS* as MSC+) while the predictions based on the
320  forward connectivity showed larger variability.

321
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323  Figure 8.Violin plots representing diversity in posterior probabilities for control group
324  membership (A and C) and for MCS+ group membership (B and D) for both, the hypothesis- and
325  data-driven predictions. Here, the models were trained on datasets from controls and UWS PET-
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326 (A & C) or from MCS+ and UWS PET- (B and D) and tested on unseen data from MCS*
327 patients (N = 5). Each colored point specifies a subject. Overall, the left backward frontoparietal
328  connectivity produced the bestgroup membership predictions. A and B. Mean posterior
329  probabilities for classification of MCS* patients alongside healthy controls (A) and MCS+
330 patients (B). Neither of the hypothesis-driven subsets, nor the full DMN, clearly classified the
331 unseen MCS* patients as members of either train-group. C and D. Left frontoparietal
332 connectivity from mPFC to ILP produced almost perfect predictions for the MCS*, classifying
333 all five patients as either controls or MCS+ rather than UWS PET- patients. Unlike the backward
334 connectivity, predictions based on the left forward connectivity from ILP to mPFC, the model
335 classified four of five MCS* patients as UWS PET- rather than as controls (C). Similarly, when
336  trained on MCS+ and UWS PET-, the model classified three of five patients as UWS PET- rather
337  than MCS+. mPFC — medial prefrontal cortex, Prec — posterior cingulate cortex/precuneus, ILP —
338  left lateral parietal cortex, rLP — right lateral parietal cortex.

339
340 3 Discussion

341 In this cross-sectional, retrospective analysis, we applied spectral DCM to high-density EEG data
342  with PEB to investigate the difference in effective connectivity dynamics between cortico-
343  cortical regions of the DMN in DoC patients (UWS, MCS+, and MCS*) and healthy controls.
344 Overall, the modelling results indicate a key difference between healthy controls or MCS+
345  patients and unresponsive patients with compatible hypometabolism (UWS PET-) in left-
346  hemispheric backward frontoparietal connectivity. Furthermore, with out-of-sample cross-
347  validation, we demonstrated that this association is robust enough to not only distinguish patient
348  groups from each other, but also generalizes to an unseen data subset, collected from seemingly
349  unresponsive patients showing preserved brain activity compatible with MCS (MCS¥*). These
350 results identify specific alterations in the DMN after severe brain injury and highlight the clinical
351 utility of EEG-based measurement of effective connectivity for identifying covert consciousness.

352 3.1 Dynamic causal modelling

353 The most parsimonious model explaining the difference between healthy controls and
354  unresponsive patients with congruent hypometabolism (UWS PET-) indicated a large relative
355  reduction in left-hemisphere backward frontoparietal connectivity in UWS PET- patients.
356  Additionally, a small, lower-probability reduction from right lateral parietal cortex to precuneus
357 was found. Interestingly, excluding the right parietal connection, the estimated connectivity in
358  the posterior nodes — within the ‘posterior hot zone of conscious contents’ (Koch et al., 2016;
359  Siclari et al., 2017) — was either pruned away from the model best explaining the difference or
360 returned only small, low-probability increases suggesting lower relative importance for the
361  posterior hot zone in explaining the difference between healthy controls and UWS PET- patients.
362  Generally, connections pruned by BMR are considered not to contribute towards the model
363  evidence (Zeidman et al., 2019). In contrast, in a previous fMRI DCM study with DoC patients,
364  precuneus/PCC-related connectivity reduction was the key difference; specifically, the recurrent
365  connectivity (down-regulation of the PCC itself) was found to be diminished on UWS patients in
366  comparison to both, MCS patients and healthy controls (Crone et al., 2015).
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367  However, not only are the data between Crone et al.'s (2015) study and the present study from
368  different modalities, and thus, direct comparisons of the results unsound, the underlying
369  neurobiologically motivated models used by DCM are different for hemodynamic vs.
370 electrophysiological data leading to a different interpretation of the modulatory effects. The
371 interpretation of the modulatory effects in DCM for fMRI vs. EEG differ in that positive and
372  negative values indicate excitatory and inhibitory effects in fMRI data (except for recurrent
373  connections, for which the connection strength is always negative and modulations reflect
374  increases or decreases in comparison to the prior). In DCM for EEG, positive modulations
375 indicate an increase and negative a decrease in connectivity relative to the prior. In the neural
376  mass model we used here, the backward connections are thought to have more inhibitory and
377  largely modulatory effect in the nodes they target (top-down connections), while forward
378  connections are viewed as having a strong driving effect (bottom-up; Salin & Bullier, 1995;
379  Sherman & Guillery, 1998).

380  Here, we modelled the data with the default ERP neuronal model (David et al., 2005) primarily
381 in order to produce comparable results with prior DCM for EEG work modelling consciousness
382 (Boly et al., 2011a; Boly et al., 2012; lhalainen et al., 2021). Further, we aimed to model
383  disrupted consciousness at the level of active networks rather than focusing on e.g., synaptic
384  hypotheses or recurrent self-connections (intrinsic connectivity), which could be better captured
385  with other neuronal models such as the local field potential model (Moran et al., 2007) or the
386  Canonical Microcircuits model (Bastos et al., 2012; see also Moran et al., 2013 for a review of
387  neuronal population models). Hence, we only estimated extrinsic connectivity — i.e., connectivity
388  between cortical areas. It is possible that the observed differences in the network dynamics are
389 driven by modulations in self-inhibiting, recurrent connectivity within the cortical sources or
390  within and between subcortical networks driving the disruptions in the DMN (Chen et al., 2018;
391 Coulborn et al., 2021). A worthwhile endeavor for future DCM for EEG studies would be to
392  model the extent to which recurrent, within-source cortical connectivity may or may not drive
393  the modulations in extrinsic connectivity.

394  To the best of our knowledge, only one study has used DCM for EEG in DoC populations. Boly
395  and colleagues (2011a) showed that in an auditory mismatch negativity paradigm, the difference
396  between UWS, MCS, and healthy controls was an impairment of backward connectivity from
397 frontal to temporal cortices in the UWS patients, emphasizing the importance of top-down
398  processing for conscious perception. Similarly, in the present resting-paradigm, the key
399 difference distinguishing UWS PET- from both, MCS+ and healthy controls was decreased left-
400 lateralized backward frontoparietal connectivity in UWS PET- patients, although from medial
401  prefrontal cortex to lateral parietal cortex and not to superior parietal cortex. It is important to
402  note, however, that the differences in the paradigm, methodology and in the models estimated
403  render rigorous, direct comparisons of the results between Boly et al.'s (2011a) study and the
404  present study infeasible. Moreover, even though some of the patients may have been the same
405  Dbetween the present study and those of Boly et al. (2011a), the data were different (here recorded
406  with high-density EEG during PET while Boly et al. (2011a) used a 64 channel EEG prior to
407 TMS-EEG). Despite the methodological differences, the results of both studies suggest a crucial
408  role for lateral backward connectivity originating from the frontal cortex. Future studies should
409 investigate this further by modelling the connectivity related to temporal areas, and the backward
410  frontoposterior connectivity in other resting networks (see below) in DoC patients.
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411  Like with healthy controls vs. UWS PET- comparison, the largest difference between MCS+ and
412 UWS PET- patients was left frontoparietal backward connectivity, with UWS PET- patients
413  again showing reduced connectivity. Furthermore, the left forward parietofrontal connectivity
414  and backward connectivity from precuneus to ILP both increased, reproducing the modulations
415  between healthy controls and UWS PET-. These changes were accompanied by smaller, low-
416  probability reductions in forward connectivity within the posterior hot zone and in right
417  Dbackward frontoparietal connectivity. These modelling results highlight the left frontoparietal
418  backward connectivity as the key distinguishing difference when comparing healthy controls or
419  conscious patients with unconscious patients and complement those of previous studies
420  discriminating DoC patients from scalp-level EEG connectivity; especially frontal and parietal
421  functional connectivity has been shown to consistently discriminate DoC patients (Chennu et al.,
422  2014; Chennu et al., 2017). As the direction and the spatial location of the changes in
423  connectivity were similar with the comparisons involving UWS PET- patients, and
424 distinguishable from those when comparing healthy controls vs. MCS+, we were motivated to
425  further test the predictive power of the modulatory effects (see below).

426  In contrast, the largest connectivity reductions between healthy controls and MCS+, although
427  relatively smaller than in previous contrasts, were associated with the precuneus node in the
428  posterior hot zone. The left backward frontoparietal connectivity was again reduced, but by a
429  smaller effect and with lower than .99 probability of being present in the most parsimonious
430  model. The activity changes in the posterior hot zone of conscious content have been associated
431  with changes in consciousness not only during sleep (Lee et al., 2019; Siclari et al., 2017) and
432  general anesthesia (Alkire et al., 2008; lhalainen et al., 2021), but also in DoC patients
433  (Vanhaudenhuyse et al., 2010; Wu et al., 2015). Moreover, previous studies have suggested a
434  subdivision of the frontoparietal network into two anticorrelated subnetworks; an “intrinsic”
435 network encompassing precuneus/PCC, anterior cingulate/mesofrontal cortices, and
436  parahippocampal areas associated with internal awareness, and into an “extrinsic” central
437  executive network encompassing dorsolateral prefrontal and posterior parietal areas linked with
438  the intensity of external awareness (Boveroux et al., 2010; Vanhaudenhuyse et al., 2011). The
439  observed decrease in the left lateral frontoparietal connectivity in the present study between
440  UWS PET- patients and healthy controls or MCS+ patients may reflect such diminished internal
441  awareness in the UWS PET- patients. To that end, future endeavors should investigate the
442  modulatory effects and the possible predictive power of such modulations in other resting state
443  networks, such as the central executive network.

444  However, changes in the physiological state of the frontoparietal network alter not only
445  consciousness but also several other brain functions such as vigilance and attention (Hohwy,
446  2009; Koch et al., 2016). Moreover, the specific areas of the DMN have been associated with
447  specific cognitive functions; for example, the frontal areas seem to be important for self-
448  reference, whereas the precuneus/PCC in autobiographical memory (Whitfield-Gabrieli et al.,
449  2011). It remains a possibility that the found modulations in the DMN reflect changes also in
450  other cognitive functions, rather than in awareness alone.

451  Itis important to bear in mind that DoC patients typically suffer from widespread structural brain
452  damage often accompanied by distributed white matter anomalies (Annen et al., 2018;
453  Fernandez-Espejo et al., 2012; Tshibanda et al., 2009). Hence, it is relevant to consider the
454  feasibility and validity of applying DCM to DoC patients; this is particularly true for DCM for

15


https://doi.org/10.1101/2023.06.07.544105
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.07.544105; this version posted June 9, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Effective connectivity in DoC

455  EEG which requires the specification of the anatomical locations of the nodes/sources a priori,
456  and with patients with non-traumatic etiology, e.g., patients with anoxic brain damage (King et
457 al.,, 2011; Boly et al., 2011b). Here, we mitigated these concerns first by limiting our modelling
458  to DMN, a resting state network previously associated with DoC (Boly et al., 2008, 2009; Crone
459 etal., 2011; Crone et al., 2015; Fernandez-Espejo et al., 2012; Heine et al., 2012; Laureys et al.,
460  1999; Laureys, 2005; Vanhaudenhuyse et al., 2010) and with changes in the conscious state e.g.,
461  due to anesthesia (Boveroux et al., 2010; Greicius et al., 2008; Stamatakis et al., 2010) and sleep
462  (Horovitz et al., 2009).

463  Second, we selected only patients with TBI as compared to non-traumatic aetiologias, it has been
464  associated with more focal injury centered often on areas susceptible to rotational forces, such as
465  the brainstem, midbrain, thalamus, hypothalamus, cerebellum, and posterior corpus callosum
466  (Guldenmund et al., 2016; Newcombe et al., 2010). That said, future studies should look to
467  extend these results to other aetiologias; an obvious downside for trying to control for the
468 individual differences due to brain damage by restricting the analysis to TBI patients only, was
469 reduced sample size. By including other aetiologias, future studies could not only aim to
470  replicate and verify these results with larger samples and better power, but to increase the
471  potential clinical utility by extending them to cover larger patient populations.

472  Third, we applied a special case of Bayesian model selection (BMS), Bayesian model reduction
473  (BMR), to invert multiple nested models from a single, fully connected DMN (see Methods). A
474  particular advantage here is that BMR can be applied using an explanatory approach, in which no
475  strong a priori hypotheses about the model parameters are needed. This enables a greedy search
476  to compare the negative free energies of the reduced (nested) models by iteratively discarding
477  parameters that do not contribute to the free energy. The procedure stops when discarding any
478  parameters starts to decrease the negative free energy, returning the model that most effectively
479  trades-off goodness of fit and model complexity in explaining the data. BMR applied in this way
480 allows one to estimate a large model space from a single, specified full model in a relatively
481  short period of time (Friston & Penny, 2011; Rosa et al., 2012; Zeidman et al., 2019).

482  Nevertheless, it is possible that not all true influences on the specific regions are captured by the
483  specified full model. Moreover, the explanatory approach to BMR is conducted under the
484  assumption that all reduced models are equally probable a priori, and thus, the full model should
485 only contain parameters that are biologically plausible. Here, we cannot exclude physical
486  damage to cortical areas and pathways crucial to the functioning of the DMN.

487  That said, our aim was not to make any strong claims about the “true” model; to draw stronger
488  conclusions about the “true” underlying neuronal basis using DCM for EEG, structural MRI
489  imaging assessing the extent of the damage in specific patients, possibly in adjunct with source
490 localization of the EEG signals, should be applied. Here, the aim was to demonstrate and to
491 compare the predictive performance of effective connectivity in the clinical context.
492  Additionally, demonstrating predictive value with significant generalization performance with
493  cross-validation, the level of confidence we can ascribe to our modelling results increases.

494
495 3.2 Leave-one-subject/state-out cross-validation (LOSOCV)
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496  To test whether the effective connectivity modulations were consistent enough across the patient
497  groups and healthy controls to reliably distinguish the groups from each other, we first conducted
498 a leave-one-subject-out cross-validation based on hypothesis- (full DMN, frontoparietal, and
499  parietal subsets; figure 6) and data-driven subsets of connections (figure 7). Amongst the
500 connection subsets, the frontoparietal connections performed the best, classifying most controls
501 and MCS+, and half of the MCS* patients correctly in the healthy controls vs. UWS PET- and in
502 MCS+ vs. UWS PET- contrasts. The full DMN and parietal subsets clustered most of the
503  subjects around the chance level in all three contrasts.

504  We then moved to a data-driven approach in which we first predicted the patient group
505 membership based on the connection with the largest reduction in PEB, one at a
506  time, working through all connections. It is important to note that searching for the best
507  connection in this way increases the risk of overfitting the model by potentially extracting some
508 of the residual variation — noise — as if representing the underlying model structure. However, the
509 fact that the best model generalized to an unseen dataset suggests that the results may reflect a
510  genuine effect (see below).

511  With the data-driven approach, the bi-directional left frontoparietal connectivity produced the
512  best predictions, especially when classifying the UWS PET- from both, healthy controls and the
513  MCS+ patients. The single best performing connection was the backward frontoparietal
514  connectivity (figure 7). Not surprisingly, the classifications were more accurate and
515  consistent with healthy controls than with patients; classifications of patients suffering from
516  severe brain damage, and thus, from highly disrupted brain functioning, were expected to vary
517  more than those of healthy controls. Next, we combined the single connections into data-driven
518 subsets based on the classification performance: none of the combinations improved the
519  performance of the single connections.

520 Last, the predictive power of DCM modelling was generalized in two more difficult
521 classification problems; following the hypothesis- and data-driven approaches above, we trained
522  each model on healthy controls or MCS+ on the one hand, and UWS PET- patients on the other,
523 and then tested the models on the previously unseen, “covertly aware” MCS* patients. The
524  hypothesis-driven subsets did not classify the MCS* patients as controls or MCS+. Crucially,
525 with the data-driven approach, the left backward frontoparietal connection produced nearly
526  perfect predictions classifying all five patients as either controls or MCS+ rather than UWS PET-
527  patients. These results are compatible with previous PET imaging results by Thibaut and
528  colleagues (2021) who observed higher brain metabolism in the lateral and medial frontoparietal
529  network in MCS* patients when compared to UWS PET- patients. Interestingly, their resting
530 state EEG results with functional connectivity indicated a difference in the left hemisphere (and
531  at the whole brain level) when comparing MCS* to both UWS PET- and to MCS patients. To
532 that end, alpha connectivity was higher and delta connectivity lower in MCS* when compared to
533 UWS PET- patients. Moreover, a difference between MCS* and MCS was observed in the left
534  hemisphere with the latter having higher connectivity in the theta band. This finding further
535 extended to MCS* vs. MCS+ comparison.

536  While the results of the cross-validation here should be interpreted with caution due to the
537  relatively low number of subjects in our study, the results, in conjunction with those of Thibaut
538 and colleagues (2021) suggest a pivotal role for left hemisphere connectivity in distinguishing
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539 MCS* from UWS PET- and MCS patients. Furthermore, the present results highlight the
540 importance of the frontoparietal connectivity — particularly the left-lateralized backward
541  connectivity — when predicting these states of consciousness. The importance of frontoparietal
542  connections within the DMN for dissociating states of consciousness in DoC patients is not
543  surprising given the previously established association between conscious awareness and the
544 DMN (Boly et al., 2008, 2009; Boveroux et al., 2010; Vanhaudenhuyse et al., 2010). More
545  specifically, consciousness is thought to require brain-wide broadcasting of information by a
546  *“global workspace” associated with brain areas within the frontoparietal network (Baars, 1988;
547  Baars, 1997; Dehaene et al., 2011).

548 It is important to note, however, that the global neuronal workspace theory (GNW) is not a
549 localisationist approach but rather posits a distributed “router” for conscious access (Dehaene et
550 al., 2011). The extensive and rapid bidirectional connectivity between the hubs of the GNW is
551 thought to trigger the sudden collective and coordinated activity mediating global broadcasting
552  (Mashour et al., 2020). Aptly, these hubs initially included the prefrontal cortex and parietal
553 cortex (in combination with a set of specialized and modular perceptual, motor, memory,
554  evaluative, and attentional processors) although it has later been complemented with other,
555  potentially equally important hubs (such as the anterior and posterior cingulate and the
556  precuneus). The observation that the changes in the long-range frontoparietal connectivity best
557  predicts the state of consciousness is in accordance with the suggested importance of the
558  connectivity between the hubs in the GNW. This is in contrast with the more restricted, content-
559  specific neural correlates of consciousness often associated with the posterior hot zone (Koch et
560 al., 2016).

561  However, it is important to keep in mind that presumably, when the patient becomes “more”
562  conscious, different content becomes more globally available for conscious processing
563  throughout the brain, affecting and employing different cognitive systems (Hohwy, 2009). In
564  other words, any major changes in the physiological state alter not only consciousness but other
565  cognitive systems as well, many of which depend on levels of arousal-promoting
566  neuromodulators. Therefore, it remains possible that the predictive performance of the
567  frontoparietal effective connectivity is related not only to the state of consciousness, but also to
568  other arousal-related cognitive processes. Further, it is worth noting that here, we limited our
569  contrasts to MCS+, excluding minimally conscious — (negative) from the analyses. Our rationale
570  was to include a second, irrefutably conscious control group. Nonetheless, future studies should
571 include MCS- patients to better control for possible confounds of behavior and language
572  functions present in MCS+.

573  In summary, our results indicate a key difference between healthy controls or MCS+ patients and
574 unresponsive patients with congruent hypometabolism in left-lateralized backward frontoparietal
575  connectivity. With out-of-sample cross-validation, we demonstrated that this association is
576  robust enough to not only distinguish patient groups from each other, but also generalizes to an
577  unseen data subset, collected from seemingly unresponsive patients. These results contribute
578  towards identifying specific alterations in network interaction after severe brain injury, and
579  importantly, suggest clinical utility of EEG-based effective connectivity in identifying covertly
580  aware patients who seem behaviorally unresponsive.

581
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582 4 M ethods

583 4.1 DataAcquigtion

584  We assessed effective connectivity within the DMN and whether modulation of this connectivity
585  predicted states of consciousness in patients with DoC. The patients included were referred to the
586  University and University Hospital of Liége (Coma Science Group and Centre du Cerveau?)
587  from clinical centers across Europe since 2008. The data collection was approved by the Ethics
588 Committee of the University Hospital of Liége and the patients’ legal guardians gave written
589 informed consent. Data were also collected from healthy controls as a reference group, all of
590 whom gave informed written consent before participation.

591  The dataset consisted of the patient data with 26 healthy controls (total N = 188). Parts of these
592 data have already been published in previous studies (Carriere et al., 2020; Chennu et al., 2017;
593 Panda et al., 2021). From the dataset, we identified patients admitted due to traumatic brain
594  injury (TBI; N = 76). Amongst the TBI patients, we further identified those diagnosed with UWS
595  (Laureys et al., 2010, N=11) or MCS+ (Bruno et al., 2011, N = 12). Patients admitted due to any
596  other etiology, e.g., anoxia or hemorrhage, and patients diagnosed with any other condition than
597  UWS or MCS+, were excluded from the further analyses. See Supplementary materials for more
598 details of the rationale and process of pruning the dataset. The patient groups were further
599 divided based on their respective PET-scans — either into a PET-positive (PET+) or a PET-
600 negative (PET-) sub-group (table 1). Amongst the healthy controls, using the random number
601  generator in MATLAB, we (pseudo-randomly) drew a cohort of 11 control subjects to adjust for
602  the group-size discrepancies. There were no meaningful differences in the mean ages between
603  the groups (in a Bayesian ANOVA the probability for the model including the main effect of
604 age: p(M|data) = 0.247, Bayes factor = 0.328).

605 Both PET scans and high-density EEG recordings were acquired at the same time and the
606 patients were behaviorally assessed using the Coma Recovery Scale — Revised (CRS-R; Kalmar
607 & Giacino, 2005) on the same day, before and after the scans (and on other days for a total of
608  five assessments). Both patients and healthy volunteers were asked to stay awake during the data
609  collection. The behaviorally apparent arousal levels of patients were monitored during the data
610  collection session to ensure that they stayed awake and awaken with auditory/tactile stimulations
611  if necessary.

612  PET scans were acquired and interpreted using methodology described in Stender et al. (2014)
613 and in the Supplementary materials. Briefly, the analysis results were visually inspected by a
614  trained clinician/researcher. Complete bilateral hypometabolism of the associative frontoparietal
615 cortex without any voxels with preserved metabolism led to PET- diagnosis, whereas partial
616  preservation with incomplete hypometabolism in these areas yielded a diagnosis of PET+
617  (Laureys et al., 2004; Nakayama et al., 2006; Thibaut et al., 2012).

618 The EEG data consisted of high-density EEG recordings of 20-30 minutes (256-channels, EGI),
619 acquired during the F-fluorodeoxyglucose (FDG) uptake, just prior to the start of the PET
620 imaging. The data were recorded at a sampling rate of either 250 Hz or 500 Hz (downsampled to
621 250 Hz). Data from the channels from the neck, cheeks, and forehead were discarded due to
622  contributing most of the movement-related noise. We were left with the data from 173 channels
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623  on the scalp for further analysis. The raw signals were filtered from 0.5 — 45 Hz, with additional
624  line noise removal at 50 Hz (notch-filter). We further restricted the DCM analysis to 1 — 30 Hz
625  due to excessive high-frequency noise components. Via calculating the normalized variance, the
626  excessively noisy channels and epochs were identified and either manually rejected or retained
627 by visual inspection. Lastly, the data were re-referenced to a common average.

628 Table 1. The mean age in years (SD), the total number of patients, and the number of PET+ and

629 PET- of patients in each of the different DoC-groups. UWS — unresponsive wakefulness
630 syndrome, MCS+ — minimally conscious state plus, TBI — traumatic brain injury.

Patient Meanage(SD)in  N™°™* PET+ PET-  Etiology

group years
UWS 30.7 (8.5) 11 5 6 TBI
MCS+ 38.3(10.3) 12 11 1 TBI

Controls 30.9 (6.7) 11 - - -

631

632 4.2 Dynamic causal modeling

633  We first imported the first 60 artefact-free 10-second epochs, in to SPM12 (Wellcome Trust
634  Centre for Human Neuroimaging; www:.fil.ion.ucl.ac.uk/spm/software/spm12). To analyze the
635 resting effective connectivity within the DMN, DCM for EEG cross-spectral densities (CSD)
636  was applied (Friston et al., 2012; Moran et al., 2009). Here, the observed cross-spectral densities
637 in the resting-EEG are explained by a generative model that combines a biologically plausible
638  neural mass model with an electrophysiological forward model mapping the underlying neural
639 states to the observed data (ERP-model; Moran et al., 2013). The idea is to model the source
640  activity over time in terms of causal relationships between interacting inhibitory and excitatory
641  populations of neurons.

642 Each source — or node — is connected to each other via extrinsic connections, while each
643  subpopulation within each source is connected to each other via intrinsic connections. Here,
644  however, we aimed to model disrupted consciousness at the level of active networks, and hence,
645  we estimated extrinsic connectvity between the nodes within the DMN. Among the extrinsic
646  connectivity, the top-down — or backward — connections are thought to have inhibitory and
647  modulatory effects on the nodes they target, while forward connections are viewed as having a
648  strong excitatory driving effect (bottom-up; Salin & Bullier, 1995; Sherman & Guillery, 1998).

649  Within each node, second-order differential equations describe the hidden state of neural activity
650 that depends on both the parameterized intrinsic and extrinsic connection strengths. This enables
651 the computation of the linear mapping from the endogenous neuronal fluctuations to the EEG
652  sensor spectral densities, and consequently, permits the modelling of differences in the spectra
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due to changes in the underlying neurophysiologically meaningful parameters. These parameters
describe, for example, the intrinsic and extrinsic connectivity of coupled neuronal populations
(i.e., sources) and their physiology. For further information about EEG DCM, see for example
Friston et al. (2012), Kiebel et al. (2008), and Moran et al. (2009).

4.3 Modd specification

Fitting an EEG DCM model requires the specification of the anatomical locations of the
nodes/sources a priori. Here, we only model the DMN, which has been previously associated
with DoC (Boly et al., 2008; Crone et al., 2011; Crone et al., 2015; Heine et al., 2012; Lin et al.,
2017). The schematic representation and the node locations (adopted from Razi et al., 2017) are
shown in figures 1A and 1B, respectively (node locations visualized with the BrainNet Viewer,
Xia et al., 2013, http://www.nitrc.org/projects/bnv/). The MNI coordinates are listed in table 2.

As shown in figure 1A, the nodes in the DMN were connected via forward, backward, and lateral
connections as described in David and collaborators (2006; 2005). Thus, each node was
modelled as a point source with the neuronal activity being controlled by operations following
the Jansen-Rit model (Jansen & Rit, 1995). These three different types of connections in each
model were specified in what is referred in the DCM literature as the ‘A-matrix’. This fully
connected model was then estimated for each subject using the DCM for CSD (Friston et al.,
2012; Moran et al., 2009; see Supplementary materials for details).

—_—
Forward | | B,

-_—-—
Backward

Figure 1. A. The fully connected, schematic representation of the default mode network (DMN).
B. The node locations for the DMN. mPFC — medial prefrontal cortex, Prec — posterior cingulate
cortex/precuneus, ILP — left lateral parietal cortex, rLP — right lateral parietal cortex.
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678 Table 2. The default mode network nodes and their corresponding MNI coordinates (adapted
679 from Razi et al., 2017).

Networ k Coordinates (in mm)

Default M ode Networ k

Left lateral parietal -46 -66 30
Right lateral parietal 49 -63 33
Posterior cingulate/precuneus 0 -52 7
Medial prefrontal -1 54 27

680

681 4.4 Parametric empirical Bayes

682 In DCM, the posterior density over the parameters given by the model inversion process is
683  approximated via a variational Bayesian scheme by maximizing a lower bound (the negative free
684  energy) on the log-evidence (Variational Laplace; Friston et al., 2007). A more recent addition,
685 the PEB framework, can be utilized to infer, for example, the group-level commonalities and
686  differences (Friston et al., 2016).

687 In PEB, the subject-specific parameters — here, the effective connectivity modulations between
688 nodes in DMN - are taken to the group-level and modelled using a General Linear Model
689 (GLM). In doing so, PEB partitions the between-subject variability into designed effects and
690 unexplained random effects (captured by the covariance component). As a special case of
691 Bayesian model selection (BMS), Bayesian model reduction (BMR) enables the inversion of
692  multiple nested models from a single, fully connected (‘full’) model in a hierarchical manner. In
693 doing so it enables a greedy search to compare the negative free energies for the nested models
694  (reduced models), iteratively discarding the parameters that do not contribute to the free energy
695  (originally ‘post-hoc DCM analysis’; Friston & Penny, 2011; Rosa et al., 2012). Consequently,
696 PEB conveys both the estimated group-level connection strengths and their respective
697  uncertainty (posterior covariance component). As such, it is argued that hypotheses about
698 commonalities and differences across subjects can be tested with more precise parameter
699 estimates than with traditional frequentist comparisons (Friston et al., 2016).

700 A Bayesian Model Average (BMA) is calculated over the best 256 models weighted by their
701  model evidence; for every connection, a posterior probability for the connection being present
702  vs. absent is calculated by comparing evidence from all the models in which the parameter is
703  switched on vs. all the models in which it is switched off. Here, we applied a threshold of >.99
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704  posterior probability, in other words, connections with over .99 posterior probability were
705  retained. The overall process is shown in Figure 2.

706

Model fitting pipeline
for LOSOCV

i

Specify the full model

\ A

r
\,'f Estimate the full )

model separately for
the conditions
Y DCM.xU.X =[]

1

Group effects,
the best model &
LOSOCV with
PEB

J

707

708  Figure 2. The pipeline for inverting the dynamic causal modelling (DCM) model for different
709  subject-groups. This was done to find the best models for each patient group, to estimate the
710  effective connectivity modulations between the patient groups, and as a prerequisite for the
711  leave-one-subject-out cross-validation (LOSOCV) classification with parametric empirical
712  Bayes (PEB) modelling.

713

714 45 Leave-one-out cross-validation

715  To validate our modelling framework, we investigated which DMN connections are predictive of
716  the subject group by adapting a standard approach in computational statistics, leave-one-subject-
717  out cross-validation (LOSOCV; spm_dcm_loo.m). Here, we iteratively fitted a multivariate
718  linear model (as described in detail in Friston et al., 2016) to provide the posterior predictive
719  density over connectivity changes, which was then used to evaluate the posterior belief of
720  the explanatory variable for the left-out participant: in the present case, the probability of the
721  subject group membership.

722  To cross-validate a fitted DCM model, one participant was left out each time before conducting
723  PEB analysis on the training dataset, and the optimized empirical priors were then used to predict
724 the subject-group to which the dataset from the left-out participant belonged (see Friston et al.,
725 2016 for details). We repeated this procedure for each participant, and in doing so generated
726  probabilities of state affiliation (here, posterior probabilities for subject group-membership).
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727 1t is worthwhile to note, that we have estimated the DCM models using the default parameter
728  settings recommended in the literature (Ashburner et al., 2017; Friston et al., 2003; Friston et al.,
729  2012; Kiebel et al., 2009). This is also true for the LOSOCV procedure: no hyper parameter
730  optimization was done. Here, we trained the model with the data from all but the left-out
731  participant (training set), and predicted the state based on the data from the left-out participant
732 (test set) and repeated this procedure leaving out a different participant each time.

733

734 4.6 Leave-one-subject-out cross-validation

735  We first estimated predictive performance in a leave-one-subject-out cross-validation paradigm
736  in which LOSOCV metrics for all connections in the DMN and for a hypothesis-driven subsets
737  were estimated (frontoparietal and parietal subsets; figure 3). Next, a data-driven approach was
738 used in which we started the estimation from the connection associated with the largest
739  connectivity reduction between the subject-groups and repeated the procedure for all
740  connections. Here, we utilized a forward stepwise regression in which we started the estimation
741  from the connections with the largest changes and continued through the parameters based on
742  their respective modulation effect sizes. Lastly, we combined connections into data-driven
743  subsets, starting from the connections with the best classification performance, until the
744  classification accuracy stopped improving. The rationale was to investigate the location and
745  direction of the most consistent inter-subject-level effects, in addition to the largest effect sizes
746  identified by the PEB analysis.

747

A. Full DMN B. Frontoparietal subset C. Posterior subset

748

749  Figure 3. The hypothesis-driven subsets for the LOSOCV-paradigm. The red arrows indicate the
750  connections included in each subset, and the grey arrows the left-out connections. First,
751  predictions based on all connections were estimated (A). Next, predictions based on two
752  connection subsets — frontoparietal (B) and parietal subsets (C) — were estimated. Lastly, we
753  estimated predictions based on single connections in a data-driven approach. mPFC — medial
754  prefrontal cortex, Prec — posterior cingulate cortex/precuneus, ILP — left lateral parietal cortex,
755  rLP - right lateral parietal cortex, DMN — default mode network.

756
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757 4.7 Leave-one-state-out cross-validation

758  Finally, the validation process was generalized by introducing two more difficult classification
759  problems: first, we trained the model on the DCM parameters from the control and the UWS
760  PET- groups, and then tested it on unseen data collected from the MCS* patient-group. Second,
761  we trained the model on the data from the MCS+ and the UWS PET-groups, and again tested on
762  the MCS* datasets. Here, the model was trained on all training datasets. As above, the model
763  used the optimized empirical priors to predict the more likely patient-group the test dataset
764  (MCS¥*) belonged. We hypothesized that if our modelled effects are valid, and if the sustained
765  PET-metabolism reflects higher level of consciousness present in the MCS* patients in
766  comparison to UWS PET- patients, in the former case the model should classify the test datasets
767  as controls rather than UWS PET-. Similarly, in the latter case, given that the MCS+ patients are
768  conscious, the test data should be classified as MCS+ rather than UWS PET-. Here, we used
769  posterior probability for subject group-membership to quantify classification performance.

770
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1122 7 Supporting Materials
1123

1124  Table S1. The number of satisfactory fits with the default hyperparameters and after adjusting
1125 the neural innovations and the noise precision for the different subject groups.

Patient group N  Satisfactory fits  After BPA Final
Uws 11 5 11 11
MCS+ 12 9 12 12
Controls 11 9 11 11
1126
Total N =188 (healthy
controls N = 26)
TBIN=176
i ™
UWS N=11
MCS+N=12
Healthy controls N =11
1127 \ J

1128  Figure S1. A flowchart showing the dataset pruning process, and the corresponding N for the
1129  experimental groups. From the full dataset, patients with TBI (N = 76) were identified. Next, the
1130  main group of interest — patients diagnosed as UWS (N = 11) — were distinguished. We then
1131  pseudo-randomly drew a cohort of 11 healthy controls to adjust for the group-size discrepancies.
1132 A cohort of 12 MCS+ patients were identified to act as a second control group.
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Figure S2. The average model fits across the participants in all subject-groups. A-C. Subject-
averaged power spectra of the observed EEG channel-space data, juxtaposed with that predicted
by the fitted DCM models of each subject group. Individual lines reflect spatial modes.

43


https://doi.org/10.1101/2023.06.07.544105
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.07.544105; this version posted June 9, 2023. The copyright holder for this preprint (which

1139

1140
1141
1142
1143
1144
1145
1146
1147

1148

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made

available under aCC-BY 4.0 International license.

Effective connectivity in DoC

A. Control vs. UWS pet-

Full DMN Frontoparietal subset Parietal subset
UWS pet- : ; :
100% 0% 50% 50% 67% 33%

3 © (0:37) T (048) LX)
= 50
E .
|_

Control - PR 82% 55% 45%

an 0.57 (0.70) (0.45)

0
Control UWS pet- Control UWS pet- Control UWS pet-
Predicted group label
B. MCS+ vs. UWS pet-
B1. I 100 B2

o é‘?’s ke 50% 50%
3 (0.50)
3 150
=
}_

oSt 1 80% | 50% 75% | 25%

(12 (0.46) (0.74)

0
MCS+ UWS pet- MCS+ UWS pet- MCS+ UWS pet-

Predicted group label

C. Control vs. MCS+

C1. Cc3.

e 1z | 671% 50% | 0%

o (0.42)
[T4]
(]
=

= Control 64% 36%

(1) (0.47)
D - =
Control MCS+ Control MCS+ Control MCS+

Predicted group label

Figure S3. Classification accuracy percentage (mean posterior probability for correct
classification) in the leave-one-subject-out cross-validation paradigm for the hypothesis-driven
subsets. The number of subjects in each group is shown in parenthesis under the true group
labels. The frontoparietal subset performed the best in terms of both classification accuracy and
mean posterior probability, especially with healthy controls for healthy control vs. UWS PET-
and MCS+ vs. UWS PET- contrasts (panels A2 and B2, respectively). Classification based on
full DMN had high accuracy for healthy controls; however, the mean posterior probabilities

bordered the chance level.
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Figure $4. Classification accuracy percentage (mean posterior probability for correct
classification) in the leave-one-subject-out cross-validation paradigm for the data-driven
approach. The number of subjects in each group is shown in parenthesis under the true group
labels. For the healthy controls vs. UWS PET- and MCS+ vs. UWS PET- contrasts, the
frontoparietal backward connection from mPFC to ILP performed best in terms of both
classification accuracy and mean posterior probability. Forward frontoparietal connectivity
from ILP to mPFC classified healthy controls and MCS+ patients from UWS PET- with high
accuracy but bordered the chance level with UWS PET-. Similarly, ILP to mPFC connectivity
performed the best with the healthy controls vs. MCS+ contrast.
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