

1 **Lateral frontoparietal effective connectivity differentiates and
2 predicts state of consciousness in traumatic disorders of
3 consciousness**

4

5 Riku Ihalainen^{1,2}, Jitka Annen^{3,4}, Olivia Gosseries^{3,4}, Paolo Cardone^{3,4}, Rajanikant Panda^{3,4},
6 Charlotte Martial^{3,4}, Aurore Thibaut^{3,4}, Steven Laureys^{3,4,5†}, Srivas Chennu^{2†}

7 ¹*Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical
8 Center, Boston, USA*

9 ²*School of Computing, University of Kent, United Kingdom*

10 ³*Coma Science Group, GIGA Consciousness, University of Liège, Belgium*

11 ⁴*Centre du Cerveau², University Hospital of Liège, Liège, Belgium*

12 ⁵*Joint International Research Unit on Consciousness, CERVO Brain Research Centre, CIUSS,
13 University Laval, Canada*

14

15 [†] Both authors contributed equally

16 *** Correspondence:**

17 Riku Ihalainen

18 riku.ihalainen@outlook.com

19

20

21 The authors declare that the research was conducted in the absence of any commercial or
22 financial relationships that could be construed as a potential conflict of interest.

23

24 Sharing of the datasets analyzed for this study can be requested from ogosseries@uliege.be

25

26

27

28 **Keywords: Disorders of Consciousness₁, Effective Connectivity₂, EEG₃, Brain dynamics₄,
29 Dynamic Causal Modeling₅. (Min.5-Max. 8)**

Effective connectivity in DoC

30 Abstract

31 Neuroimaging studies have suggested an important role for the default mode network (DMN) in
32 disorders of consciousness (DoC). However, the extent to which DMN connectivity can
33 discriminate DoC states – unresponsive wakefulness syndrome (UWS) and minimally conscious
34 state (MCS) – is less evident. Particularly, it is unclear whether effective DMN connectivity, as
35 measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle
36 UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this
37 extends to UWS patients with potentially “covert” awareness (minimally conscious state, MCS*)
38 indexed by voluntary brain activity in conjunction with partially preserved frontoparietal
39 metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to
40 PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by
41 using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET-
42 and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We
43 provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS
44 PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation,
45 we tested the classification performance of the DCM models demonstrating that connectivity
46 between medial prefrontal and left parietal sources reliably discriminates UWS PET- from
47 MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen
48 dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS*
49 patients as conscious subjects with high posterior probability ($pp > .92$). These results identify
50 specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-
51 based effective connectivity for identifying patients with potential covert awareness.

52

53 Author Summary:

54 Our study investigates the role of the Default Mode Network (DMN) in individuals with
55 disorders of consciousness (DoC), such as unresponsive wakefulness syndrome (UWS) and
56 minimally conscious state (MCS). Previous neuroimaging studies have suggested a role for the
57 DMN in DoC, but its ability to differentiate between UWS and MCS remain unclear.

58 Using advance brain imaging and modelling techniques, we analyzed data from DoC patients
59 with traumatic brain injury and healthy controls. Our findings reveal a key difference in left
60 frontoparietal connectivity when comparing UWS to MCS patients and healthy individuals.

61 To validate our results, we employed a robust cross-validation approach, which demonstrated
62 that the connectivity between frontal and left parietal brain regions reliably discriminates UWS
63 patients from MCS patients and controls. Furthermore, we extended our analysis to include
64 patients with potential covert awareness, showcasing the clinical utility of our findings. We
65 successfully classified these patients as conscious with high accuracy.

66 This research significantly contributes to our understanding of the DMN in DoC and highlights
67 the potential use of electroencephalography-based connectivity analysis in clinical settings. By
68 identifying specific alterations in the DMN after severe brain injury, our study may aid in the

Effective connectivity in DoC

69 accurate diagnosis and management of individuals with disorders of consciousness, potentially
70 improving their overall outcomes.

71

Effective connectivity in DoC

72 1 Introduction

73 After a severe brain injury, patients may be diagnosed with a transient or permanent disorders of
74 consciousness (DoC), such as the unresponsive wakefulness syndrome (UWS) or the minimally
75 conscious state (MCS). The UWS is defined by preserved arousal in the absence of behavioral
76 signs of awareness (periodic sustained eye opening with purposeless movements; Laureys et al.,
77 2010). In contrast, patients in MCS show fluctuating but reproducible signs of consciousness
78 with preserved arousal. The MCS has been further divided into MCS- and MCS+, with the latter
79 condition characterized by command following, intelligible verbalization, or gestural or verbal
80 yes/no responses (regardless of accuracy) to spoken or written questions (Bruno et al., 2011).

81 The exclusive use of clinical consensus for diagnosing these DoC based on observed behaviors
82 has been shown to result in high rates of misdiagnosis of the accurate level of consciousness of
83 the DoC patients, especially in the case of patients suffering from UWS (Stender et al., 2014;
84 Thibaut et al., 2021; van Erp et al., 2015). Consequently, with the advent of modern
85 neuroimaging techniques, there has been increasing interest in characterizing the underlying
86 neuronal basis for the presence or lack of awareness in DoC using structural and functional
87 magnetic resonance imaging (MRI/fMRI; e.g., Demertzi et al., 2015; Di Perri et al., 2016),
88 positron emission tomography (PET; e.g., Laureys et al., 1999; Stender et al., 2014), and
89 electroencephalography (EEG; e.g., Chennu et al., 2014; King et al., 2013; Sitt et al., 2014).

90 Structural and functional neuroimaging studies have suggested an important role of the default
91 mode network (DMN) in DoC – an intrinsic brain network encompassing the posterior cingulate
92 cortex/precuneus, bilateral parietal cortices, and the medial prefrontal cortex (Annen et al., 2018;
93 Boly et al., 2009; Fernández-Espejo et al., 2012; Guldenmund et al., 2016; Soddu et al., 2012;
94 Vanhaudenhuyse et al., 2010). In parallel, cerebral metabolism as measured by PET has been
95 shown to differentiate UWS from MCS (Stender et al., 2014; Stender et al., 2016; Thibaut et al.,
96 2021), with regional differences often in areas associated with DMN (Stender et al., 2015;
97 Thibaut et al., 2012). This extends to patients with MCS; MCS+ can be distinguished from
98 MCS- with the former group showing partially preserved language related behaviors (e.g.,
99 response to simple commands) alongside with a higher cerebral metabolism especially in left-
100 sided cortical areas, including Broca's and Wernicke's areas, premotor, presupplementary motor,
101 and sensorimotor cortices (Aubinet et al., 2020; Bruno et al., 2012; Thibaut et al., 2020). A
102 trained neurologist can diagnose patients also based on a visual inspection of their underlying
103 PET metabolism, to as either PET negative (-) or PET positive (+). A PET- diagnosis is typically
104 produced by a complete bilateral hypometabolism of the associative frontoparietal cortex with no
105 voxels with preserved metabolism, whereas PET+ diagnosis is characterized by an incomplete
106 hypometabolism and partial preservation of activity within these areas (Laureys et al., 2004;
107 Thibaut et al., 2012, Stender et al. 2014).

108 In addition, effective connectivity studies in DoC as measured with dynamic causal modelling
109 (DCM) for fMRI have suggested disruptions within the DMN specifically related to posterior
110 cingulate cortex (PCC; Crone et al., 2015) and in subcortical networks, potentially driving the
111 disruptions in the DMN (Chen et al., 2018; Coulborn et al., 2021). DCM is a generic approach
112 used to infer hidden (or unobserved) neuronal states from measured brain activity; the idea is to
113 model the source activity over time in terms of causal relationships between interacting
114 inhibitory and excitatory populations of neurons. As far as we know, only one study has used

Effective connectivity in DoC

115 DCM with EEG for measuring and diagnosing cognitive functioning in DoC population. Using a
116 mismatch negativity paradigm, Boly and colleagues (2011a) showed that the difference between
117 UWS and MCS was due to an impairment of backward connectivity from frontal to temporal
118 cortices, emphasizing the importance of top-down processing for conscious perception.

119 Importantly, a number of studies have suggested residual consciousness and/or reported “covert”
120 voluntary brain activity in some seemingly unresponsive patients, with both, active and resting
121 state paradigms (Bodart et al., 2017; Claassen et al., 2019; Chennu et al., 2017; Cruse et al.,
122 2011; Lechinger et al., 2013; Monti et al., 2010; Owen et al., 2006; Owen & Coleman, 2008;
123 Schnakers et al., 2015). These patients, who show no behavioral signs of consciousness, yet with
124 whose neuroimaging results indicate residual brain activity compatible with the diagnosis of
125 MCS, have been termed MCS* (minimally conscious state star; Gosseries et al., 2014; Thibaut et
126 al., 2021). To keep consistent with the literature, from this point on, we use the term MCS* to
127 refer to the UWS patients with PET+ diagnosis in this manuscript.

128 Currently it is unknown whether effective resting state connectivity between key nodes within
129 the DMN, as measured with EEG, could be used to identify such covertly aware patients. Here,
130 as a preliminary investigation, we address this gap by using spectral DCM for EEG with
131 parametric empirical Bayes (PEB). We investigate the difference in causal interactions between
132 cortico-cortical regions of the DMN, between DoC patients (UWS and MCS+) and healthy
133 controls. First, our interest is in distinguishing the differences between UWS patients and
134 healthy controls, and in demonstrating the prospective performance of the connectivity within
135 DMN in classifying these states. Crucially, we include MCS+ patients to function as a second,
136 yet demonstrably conscious, control group to reduce the probability that our findings reflect
137 mainly damage in the brain, and not consciousness itself. Based on previous studies (Boly et al.,
138 2011a), we hypothesize that there will be top-down/backward connectivity differences in UWS
139 vs. healthy controls and in UWS vs. MCS+ comparisons. We also model the difference between
140 MCS+ and healthy controls where we do not expect to see this difference.

141 Next, in a leave-one-subject-out cross-validation, we test the classification performance of
142 models based on the fully connected DMN network and on two connectivity subsets of the
143 DMN: the posterior connections and the frontoparietal connections. Following this, we adopt a
144 data-driven approach to the classification problem by investigating the predictive performance of
145 single connections. The aim here is to identify the direction and location of the largest, most
146 consistent modulations between the subjects.

147 Finally, we demonstrate that our DCM models generalize to a more difficult classification
148 problem: in a leave-one-state-out cross-validation paradigm, we train the models on UWS
149 patients with a confirmed PET negative (PET-) diagnosis (i.e., a complete bilateral
150 hypometabolism of the associative frontoparietal cortex) on the one hand and either healthy
151 controls or MCS+ patients on the other. The MCS+ patients here function as a conscious control
152 group who still suffer from brain damage. We then test the models on datasets from “covertly
153 aware” MCS* patients (partially preserved metabolism and activity within these areas). We
154 hypothesize that if our modelled effects are valid, and if the sustained PET metabolism reflects
155 covert awareness in the MCS* patients, our model should classify these patients as healthy
156 controls/MCS+ rather than UWS PET-.

Effective connectivity in DoC

157

158 2 Results

159 2.1 Dynamic causal modeling and parametric empirical Bayes

160 Our first goal was to investigate the effective connectivity modulations best explaining the
161 difference between healthy controls, UWS PET-, and MCS+ patients. We modelled time-series
162 recorded from the three groups with DCM for CSD at a single-subject level, followed by PEB at
163 the group-level. In doing so, we estimated the change in effective connectivity in 12 inter-node
164 connections in the DMN, contrasting 11 healthy controls both with 6 UWS PET- patients and
165 with 12 MCS+ patients, and the 12 MCS+ patients with 6 UWS PET- patients.

166 Following the inversion of the between-groups PEB model, a greedy search was implemented to
167 prune away connections not contributing significantly to the free energy using BMR. Figure 4
168 shows the most parsimonious models and figure 5 shows the estimated log scaling
169 parameters contrasting healthy controls with UWS PET- (A), MCS+ with UWS PET- (B), and
170 finally, healthy controls with MCS+ (C). Here, we applied a threshold of $>.99$ for the posterior
171 probability; in other words, connections that were pruned by BMR and connections with lower
172 than $.99$ posterior probability with their respective log scaling parameter are faded out (figures
173 5A, 5B, 5C).

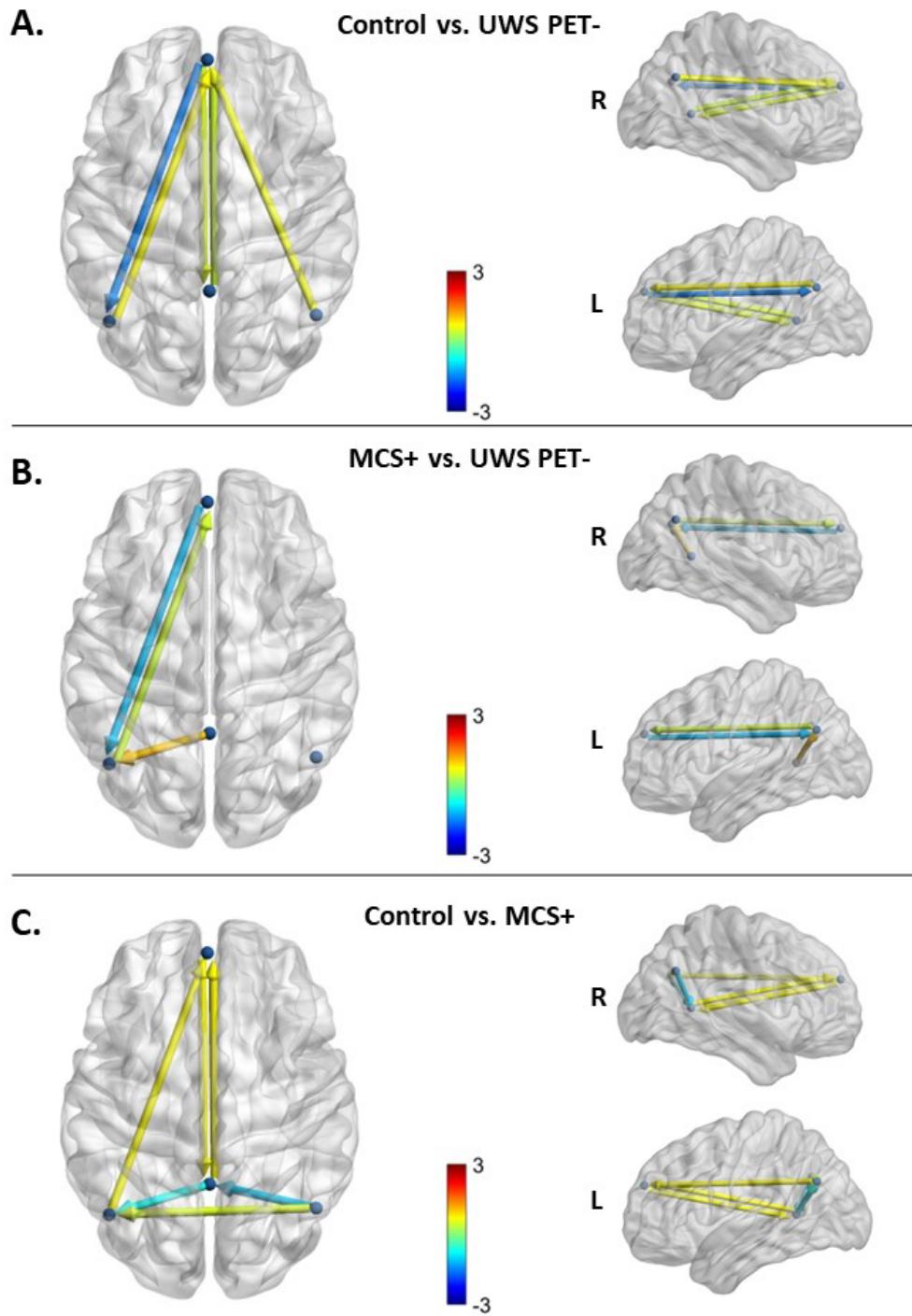
174 On inverting the DMN for the control and UWS PET- groups, 3 connections were pruned away
175 by BMR with additional 4 connections having lower than $.99$ posterior probability (figures 4A
176 and 5A). All but one of the pruned connections were located within the posterior cortices
177 between lateral parietal cortices and PCC/precuneus (except for the right backward frontoparietal
178 connection). The largest reduction in effective connectivity was located on left frontoparietal
179 connection; the backward connection between mPFC and left lateral parietal node was largely
180 diminished for the UWS PET- group in comparison to healthy controls.

181 On inverting the DMN contrasting MCS+ and UWS PET-, only three connections survived the
182 BMR process with at least $.99$ posterior probability (with additional three connections surviving
183 pruning with lower than $.99$ posterior probability; figures 4B and 5B). As with the control vs.
184 UWS PET- contrast, the largest reduction was on the left backward
185 connectivity from mPFC to ILP, with left ILP-mPFC forward connectivity increasing.

186 On inverting the DMN for the contrast between healthy controls and MCS+, two
187 connections were pruned by the BMR with additional 4 connections having lower than $.99$
188 posterior probability for being present (figures 4C and 5C). The largest reductions were between
189 the posterior nodes, to and from the lateral parietal cortices and PCC/precuneus. In addition, the
190 left frontoparietal backward connectivity was reduced, although with smaller than $.99$
191 posterior probability and with clearly smaller effect size than with UWS PET-. Other non-pruned
192 connections were associated with small to medium increases.

193 In addition, we also observed increased connectivity (relatively small effect sizes) in most of the
194 other connections with at least $.99$ posterior probability.

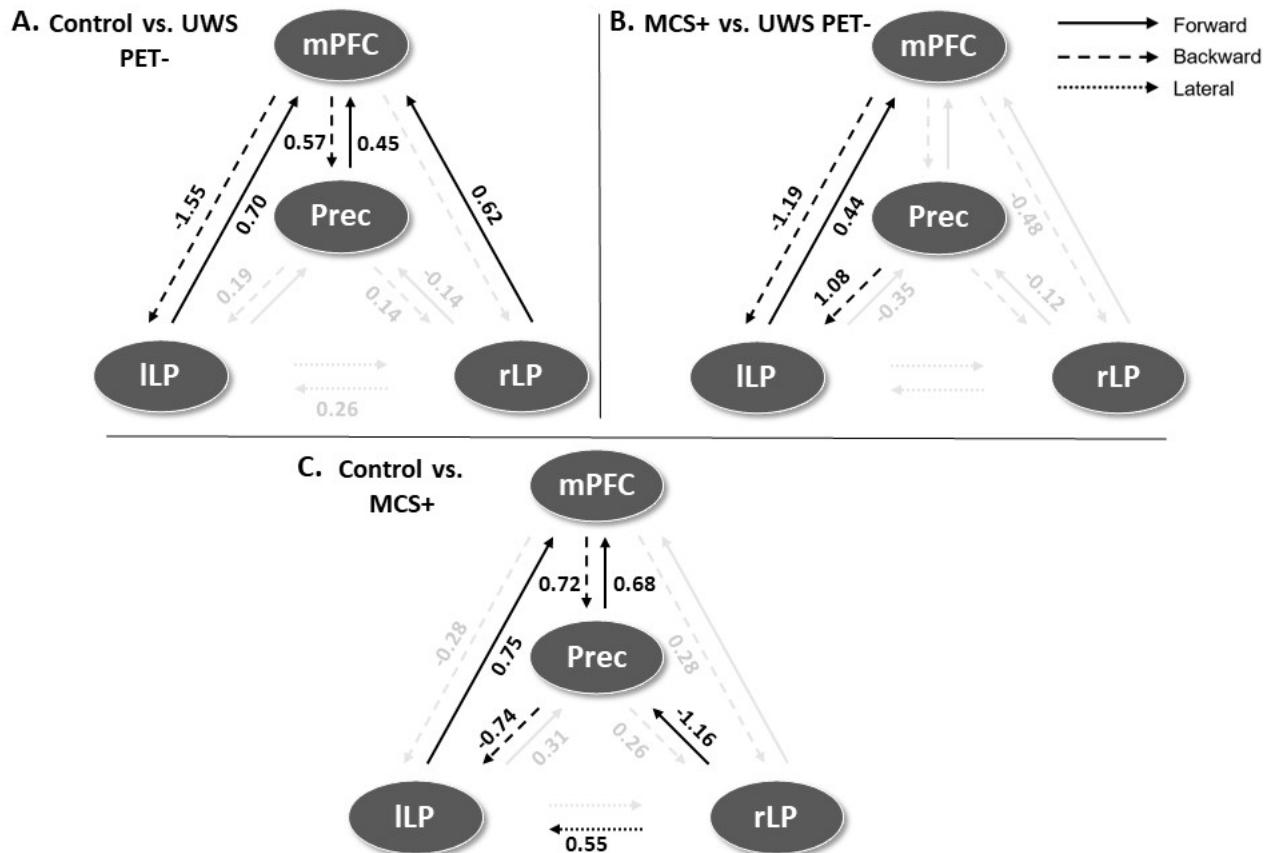
Effective connectivity in DoC



Effective connectivity in DoC

203 from the state of healthy controls to UWS PET-, the largest reduction in effective connectivity
204 was in the backward connection from the medial prefrontal cortex to left lateral parietal cortex.
205 **B.** The most parsimonious model best explaining the difference between the MCS+ and UWS
206 PET- patients. Six connections were pruned by the BMR with an additional three connections
207 having lower than .99 posterior probability of being present. When moving from UWS PET- to
208 MCS+, the largest reduction was observed on the backward connection from the medial
209 prefrontal cortex to left lateral parietal cortex, similar to the reduction between healthy controls
210 and UWS PET- patients. **C.** The most parsimonious model explaining the difference between
211 healthy controls and MCS+ patients. Two connections were pruned with additional four
212 connections having lower than .99 posterior probability of being present. When moving from the
213 state of healthy controls to MCS+, the largest reductions on effective connectivity were on
214 posterior connections between the lateral parietal cortices and PCC/precuneus.

215
216



217

218 **Figure 5.** The log scaling parameters for the connection strengths in the DMN after BMR and
219 BMA. Positive values represent an increase and negative values a decrease in effective
220 connectivity for the three group comparisons. Connections that were pruned by BMR and
221 connections with lower than .99 posterior probability with their respective log scaling parameter
222 are faded out. **A.** The modulatory effects best explaining the difference between healthy controls
223 (HC) and UWS PET- patients. Connectivity between lateral parietal and PCC/precuneus nodes
224 were either pruned away by BMR or had lower than .99 posterior probability with low

Effective connectivity in DoC

225 modulatory effects. The largest reduction was found on backward lateral frontoparietal
226 connection from medial prefrontal cortex to left lateral parietal cortex. **B.** The modulatory effects
227 best explaining the difference between MCS+ and UWS PET-. The modulatory effects on
228 left bidirectional frontoparietal connections were both in the same direction as when comparing
229 healthy controls to UWS PET-, with the largest reduction on left backward frontoparietal
230 connection. In addition, right backward frontoparietal connectivity and posterior forward
231 connectivity between lateral parietal nodes and PCC/precuneus reduced (smaller effect sizes),
232 albeit with lower than .99 posterior probability of being present. **C.** The modulatory effects best
233 explaining the difference between healthy controls and MCS+. The largest reductions were
234 between the posterior nodes, between the lateral parietal nodes and PCC/precuneus. Bidirectional
235 medial frontoparietal connectivity was increased in MCS+ in comparison to healthy
236 controls. mPFC – medial prefrontal cortex, Prec – posterior cingulate cortex/precuneus, ILP –
237 left lateral parietal cortex, rLP – right lateral parietal cortex.

238

239 **2.2 Leave-one-subject-out cross-validation**

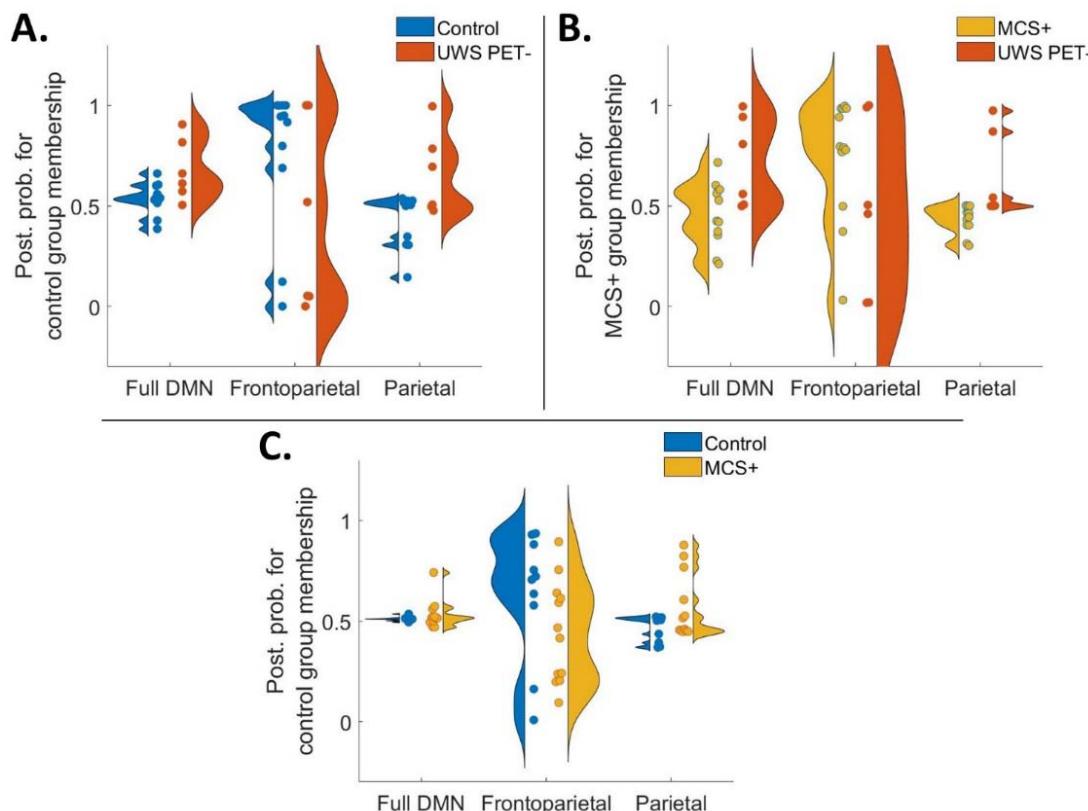
240 To conduct LOSOCV, the DCM model was inverted again, this time separately for each patient
241 group. Following the inversion process, PEB was conducted repeatedly on the training set in
242 each cross-validation run alongside LOSOCV analysis to generate the posterior probabilities
243 for group-membership (see Methods).

244 First, the UWS PET- patients were classified alongside the controls based on the full DMN
245 model, and two hypothesis-driven connection subsets (frontoparietal- and parietal connections;
246 figure 6). A similar approach was applied classifying MCS+ patients alongside UWS PET-
247 patients, and finally, healthy controls alongside MCS+ patients. Figures 6 and 7 show violin
248 plots representing the individual posterior probabilities for the hypothesis-driven
249 classifications and data-driven approach, for all three contrasts, respectively (A: control vs. UWS
250 PET-, B: MCS+ vs. UWS PET-, C: control vs. MCS+). As seen in figure 6, frontoparietal
251 connections classified correctly most of the controls and MCS+, and around half of the UWS
252 PET- patients in the controls vs. UWS PET- and MCS+ vs. UWS PET- contrasts. Both full DMN
253 and parietal subsets clustered most of the subjects around the chance level of 0.5. We further
254 produced confusion matrices of prediction accuracy calculated by labelling posterior
255 probabilities greater than 0.5 as a positive classification (for both hypothesis-driven subsets and
256 the data-driven approach). See Supplementary Materials and figures s3 and s4.

257

258 We then moved to a data-driven approach in which we first predicted the patient group
259 membership based on the connections with the largest reductions in PEB, one at a time, working
260 through all connections. Lastly, we checked combinations based on the connections' respective
261 classification accuracies (see Methods). The bi-directional left frontoparietal connectivity
262 produced the best predictions, especially when classifying the UWS PET- from both,
263 healthy controls and the MCS+ patients (figures 7A and 7B), with the best predictions based on
264 the backward mPFC-ILP connectivity. Forward ILP-mPFC connectivity produced the best
265 predictions for controls vs. MCS+ contrast, especially for the healthy controls (7C). None of the
266 tested combinations improved classification performance.

Effective connectivity in DoC

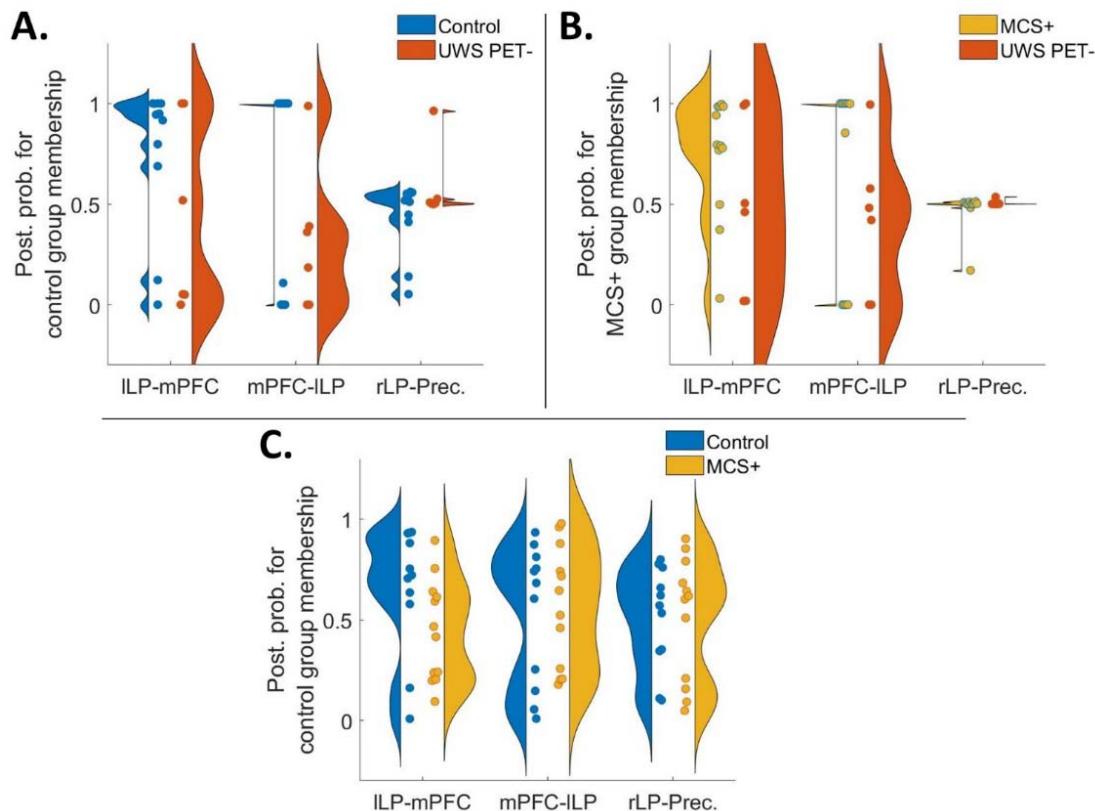


267

268 **Figure 6.** Violin plots representing diversity in posterior probabilities for healthy control group
269 membership (A and C) and for MCS+ group membership (B) for the hypothesis-driven subsets
270 for all three group contrasts. Each colored point specifies a subject. In a perfect model in panels
271 A and B, the UWS PET- patients ($N = 6$), and in panel C, the MCS+ patients ($N = 12$) should
272 approach a posterior probability of zero. Overall, the results show a trend for frontoparietal
273 connections producing the best predictions. **A.** When classifying UWS PET- patients alongside
274 healthy controls, the frontoparietal subset produced the best results. The individual data points
275 reveal more consistent classifications of healthy controls. On all three panels, full DMN model
276 and parietal subset produced classifications with most posterior probabilities bordering the 0.5
277 chance level. **B.** As in panel A, the best predictions when classifying UWS PET- patients
278 alongside MCS+ were based on frontoparietal connections, specifically with MCS+ patients. **C.**
279 Classification of MCS+ alongside healthy controls. Frontoparietal subset produced the best
280 predictions, however with large variability on the performance across the subjects.

281

Effective connectivity in DoC



282

283 **Figure 7.** Violin plots representing diversity in posterior probabilities for control group
284 membership (A and C) and for MCS+ group membership (B) for the data-driven connections for
285 all three contrasts. Each colored point specifies a subject. In a perfect model in panels A and B,
286 the UWS PET- patients, and in panel C, the MCS+ patients should approach
287 a posterior probability of zero. Overall, the best predictive performance was based on the left bi-
288 directional frontoparietal connections when classifying UWS PET- alongside controls (A) and
289 MCS+ (B). Largest inconsistencies and variability were on classifications of MCS+ alongside
290 healthy controls. **A.** Left frontoparietal connectivity from mPFC to ILP produced the best
291 predictions (mean posterior probabilities) of the group-membership when classifying UWS PET-
292 alongside healthy controls. As with the hypothesis-driven subsets, the classifications were more
293 accurate with healthy controls than with patients. **B.** As in panel A with healthy controls and
294 UWS PET- patients, the classification performances based on mPFC-ILP and ILP-
295 mPFC produced the most consistent results when contrasting UWS PET- patients alongside
296 MCS+. **C.** Mean posterior probabilities for classification of MCS+ alongside healthy controls.
297 The performance of the models based on the single connections did not produce consistently
298 accurate classifications. mPFC – medial prefrontal cortex, Prec – posterior cingulate
299 cortex/precuneus, ILP – left lateral parietal cortex, rLP – right lateral parietal cortex.

300

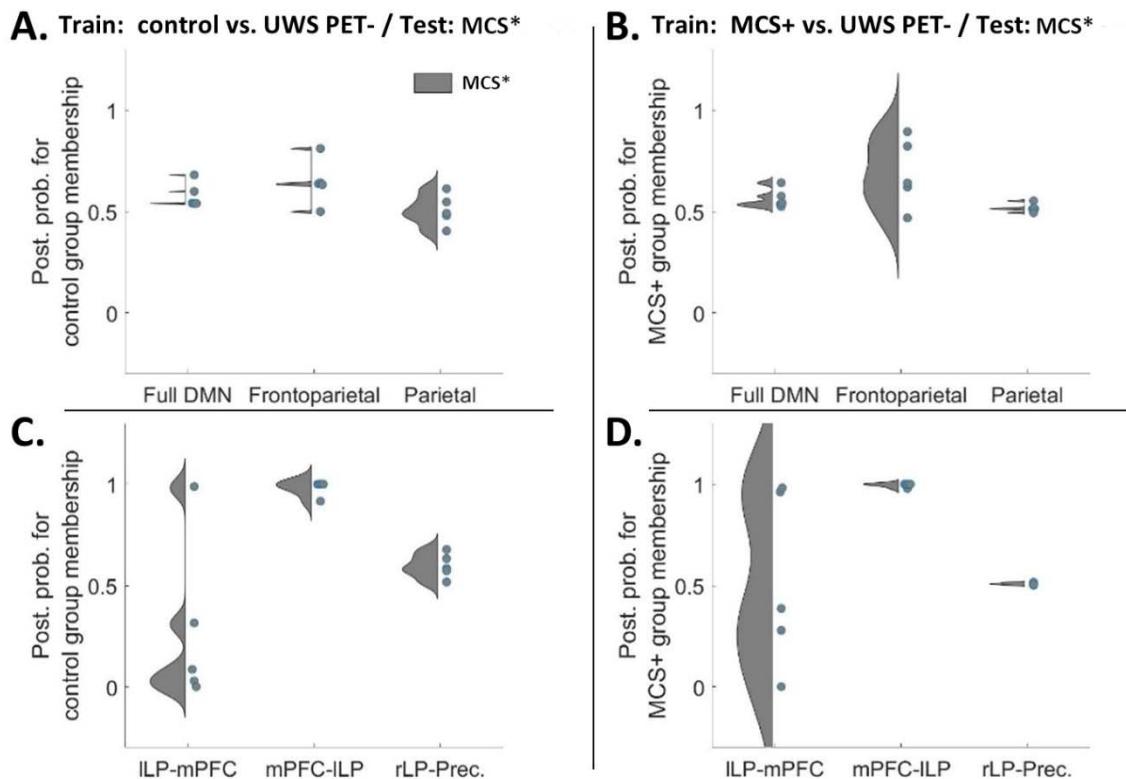
301 **2.3 Leave-one-state-out cross-validation**

Effective connectivity in DoC

302 Finally, the predictive power of DCM modelling was generalized in two more difficult
303 classification problems; each model was trained first on healthy controls and UWS PET- and
304 then tested on the previously unseen UWS PET+ group. A similar approach was used with a
305 training set consisting of MCS+ and UWS PET- patients. The individual posterior probabilities
306 for the five UWS PET+ patients represented in a violin plot for both, the hypothesis subsets
307 (panels A and B; controls vs. UWS PET- and controls vs. MCS+, respectively) and for data-
308 driven connections (panels C and D) are shown in figure 8. The hypothesis-driven subsets did
309 not classify the MCS* as controls or MCS+. Instead, when trained on datasets from healthy
310 controls and UWS PET-, the frontoparietal subset classified four out of five MCS* patients as
311 UWS PET-.

312 With the data-driven approach, the left backward frontoparietal connectivity from mPFC
313 to ILP produced nearly perfect predictions classifying the MCS* datasets as controls (8C,
314 $p(\text{control}|\text{MCS}^*) > .92$) and MCS+ (8D, $p(\text{MCS}^+|\text{MCS}^*) > .98$) rather than as UWS PET- group.
315 Similar as with frontoparietal subset (8A), the left forward connectivity from ILP to mPFC
316 classified four of five patients as UWS PET- patients rather than healthy controls – three of them
317 with a high posterior probability. This dissociation was not as prominent when training the
318 model with MCS+ and UWS PET- patients (8D); the backward connectivity still
319 produced nearly perfect classifications (of MCS* as MCS+) while the predictions based on the
320 forward connectivity showed larger variability.

321



322

323 **Figure 8.** Violin plots representing diversity in posterior probabilities for control group
324 membership (A and C) and for MCS+ group membership (B and D) for both, the hypothesis- and
325 data-driven predictions. Here, the models were trained on datasets from controls and UWS PET-

Effective connectivity in DoC

(A & C) or from MCS+ and UWS PET- (B and D) and tested on unseen data from MCS* patients ($N = 5$). Each colored point specifies a subject. Overall, the left backward frontoparietal connectivity produced the best group membership predictions. **A and B.** Mean posterior probabilities for classification of MCS* patients alongside healthy controls (A) and MCS+ patients (B). Neither of the hypothesis-driven subsets, nor the full DMN, clearly classified the unseen MCS* patients as members of either train-group. **C and D.** Left frontoparietal connectivity from mPFC to ILP produced almost perfect predictions for the MCS*, classifying all five patients as either controls or MCS+ rather than UWS PET- patients. Unlike the backward connectivity, predictions based on the left forward connectivity from ILP to mPFC, the model classified four of five MCS* patients as UWS PET- rather than as controls (C). Similarly, when trained on MCS+ and UWS PET-, the model classified three of five patients as UWS PET- rather than MCS+. mPFC – medial prefrontal cortex, Prec – posterior cingulate cortex/precuneus, ILP – left lateral parietal cortex, rLP – right lateral parietal cortex.

339
340

3 Discussion

341 In this cross-sectional, retrospective analysis, we applied spectral DCM to high-density EEG data
342 with PEB to investigate the difference in effective connectivity dynamics between cortico-
343 cortical regions of the DMN in DoC patients (UWS, MCS+, and MCS*) and healthy controls.
344 Overall, the modelling results indicate a key difference between healthy controls or MCS+
345 patients and unresponsive patients with compatible hypometabolism (UWS PET-) in left-
346 hemispheric backward frontoparietal connectivity. Furthermore, with out-of-sample cross-
347 validation, we demonstrated that this association is robust enough to not only distinguish patient
348 groups from each other, but also generalizes to an unseen data subset, collected from seemingly
349 unresponsive patients showing preserved brain activity compatible with MCS (MCS*). These
350 results identify specific alterations in the DMN after severe brain injury and highlight the clinical
351 utility of EEG-based measurement of effective connectivity for identifying covert consciousness.

352 **3.1 Dynamic causal modelling**

353 The most parsimonious model explaining the difference between healthy controls and
354 unresponsive patients with congruent hypometabolism (UWS PET-) indicated a large relative
355 reduction in left-hemisphere backward frontoparietal connectivity in UWS PET- patients.
356 Additionally, a small, lower-probability reduction from right lateral parietal cortex to precuneus
357 was found. Interestingly, excluding the right parietal connection, the estimated connectivity in
358 the posterior nodes – within the ‘posterior hot zone of conscious contents’ (Koch et al., 2016;
359 Siclari et al., 2017) – was either pruned away from the model best explaining the difference or
360 returned only small, low-probability increases suggesting lower relative importance for the
361 posterior hot zone in explaining the difference between healthy controls and UWS PET- patients.
362 Generally, connections pruned by BMR are considered not to contribute towards the model
363 evidence (Zeidman et al., 2019). In contrast, in a previous fMRI DCM study with DoC patients,
364 precuneus/PCC-related connectivity reduction was the key difference; specifically, the recurrent
365 connectivity (down-regulation of the PCC itself) was found to be diminished on UWS patients in
366 comparison to both, MCS patients and healthy controls (Crone et al., 2015).

Effective connectivity in DoC

367 However, not only are the data between Crone et al.'s (2015) study and the present study from
368 different modalities, and thus, direct comparisons of the results unsound, the underlying
369 neurobiologically motivated models used by DCM are different for hemodynamic vs.
370 electrophysiological data leading to a different interpretation of the modulatory effects. The
371 interpretation of the modulatory effects in DCM for fMRI vs. EEG differ in that positive and
372 negative values indicate excitatory and inhibitory effects in fMRI data (except for recurrent
373 connections, for which the connection strength is always negative and modulations reflect
374 increases or decreases in comparison to the prior). In DCM for EEG, positive modulations
375 indicate an increase and negative a decrease in connectivity relative to the prior. In the neural
376 mass model we used here, the backward connections are thought to have more inhibitory and
377 largely modulatory effect in the nodes they target (top-down connections), while forward
378 connections are viewed as having a strong driving effect (bottom-up; Salin & Bullier, 1995;
379 Sherman & Guillory, 1998).

380 Here, we modelled the data with the default ERP neuronal model (David et al., 2005) primarily
381 in order to produce comparable results with prior DCM for EEG work modelling consciousness
382 (Boly et al., 2011a; Boly et al., 2012; Ihalainen et al., 2021). Further, we aimed to model
383 disrupted consciousness at the level of active networks rather than focusing on e.g., synaptic
384 hypotheses or recurrent self-connections (intrinsic connectivity), which could be better captured
385 with other neuronal models such as the local field potential model (Moran et al., 2007) or the
386 Canonical Microcircuits model (Bastos et al., 2012; see also Moran et al., 2013 for a review of
387 neuronal population models). Hence, we only estimated extrinsic connectivity – i.e., connectivity
388 between cortical areas. It is possible that the observed differences in the network dynamics are
389 driven by modulations in self-inhibiting, recurrent connectivity within the cortical sources or
390 within and between subcortical networks driving the disruptions in the DMN (Chen et al., 2018;
391 Coulborn et al., 2021). A worthwhile endeavor for future DCM for EEG studies would be to
392 model the extent to which recurrent, within-source cortical connectivity may or may not drive
393 the modulations in extrinsic connectivity.

394 To the best of our knowledge, only one study has used DCM for EEG in DoC populations. Boly
395 and colleagues (2011a) showed that in an auditory mismatch negativity paradigm, the difference
396 between UWS, MCS, and healthy controls was an impairment of backward connectivity from
397 frontal to temporal cortices in the UWS patients, emphasizing the importance of top-down
398 processing for conscious perception. Similarly, in the present resting-paradigm, the key
399 difference distinguishing UWS PET- from both, MCS+ and healthy controls was decreased left-
400 lateralized backward frontoparietal connectivity in UWS PET- patients, although from medial
401 prefrontal cortex to lateral parietal cortex and not to superior parietal cortex. It is important to
402 note, however, that the differences in the paradigm, methodology and in the models estimated
403 render rigorous, direct comparisons of the results between Boly et al.'s (2011a) study and the
404 present study infeasible. Moreover, even though some of the patients may have been the same
405 between the present study and those of Boly et al. (2011a), the data were different (here recorded
406 with high-density EEG during PET while Boly et al. (2011a) used a 64 channel EEG prior to
407 TMS-EEG). Despite the methodological differences, the results of both studies suggest a crucial
408 role for lateral backward connectivity originating from the frontal cortex. Future studies should
409 investigate this further by modelling the connectivity related to temporal areas, and the backward
410 frontoposterior connectivity in other resting networks (see below) in DoC patients.

Effective connectivity in DoC

411 Like with healthy controls vs. UWS PET- comparison, the largest difference between MCS+ and
412 UWS PET- patients was left frontoparietal backward connectivity, with UWS PET- patients
413 again showing reduced connectivity. Furthermore, the left forward parietofrontal connectivity
414 and backward connectivity from precuneus to ILP both increased, reproducing the modulations
415 between healthy controls and UWS PET-. These changes were accompanied by smaller, low-
416 probability reductions in forward connectivity within the posterior hot zone and in right
417 backward frontoparietal connectivity. These modelling results highlight the left frontoparietal
418 backward connectivity as the key distinguishing difference when comparing healthy controls or
419 conscious patients with unconscious patients and complement those of previous studies
420 discriminating DoC patients from scalp-level EEG connectivity; especially frontal and parietal
421 functional connectivity has been shown to consistently discriminate DoC patients (Chennu et al.,
422 2014; Chennu et al., 2017). As the direction and the spatial location of the changes in
423 connectivity were similar with the comparisons involving UWS PET- patients, and
424 distinguishable from those when comparing healthy controls vs. MCS+, we were motivated to
425 further test the predictive power of the modulatory effects (see below).

426 In contrast, the largest connectivity reductions between healthy controls and MCS+, although
427 relatively smaller than in previous contrasts, were associated with the precuneus node in the
428 posterior hot zone. The left backward frontoparietal connectivity was again reduced, but by a
429 smaller effect and with lower than .99 probability of being present in the most parsimonious
430 model. The activity changes in the posterior hot zone of conscious content have been associated
431 with changes in consciousness not only during sleep (Lee et al., 2019; Siclari et al., 2017) and
432 general anesthesia (Alkire et al., 2008; Ihalainen et al., 2021), but also in DoC patients
433 (Vanhaudenhuyse et al., 2010; Wu et al., 2015). Moreover, previous studies have suggested a
434 subdivision of the frontoparietal network into two anticorrelated subnetworks; an “intrinsic”
435 network encompassing precuneus/PCC, anterior cingulate/mesofrontal cortices, and
436 parahippocampal areas associated with internal awareness, and into an “extrinsic” central
437 executive network encompassing dorsolateral prefrontal and posterior parietal areas linked with
438 the intensity of external awareness (Boveroux et al., 2010; Vanhaudenhuyse et al., 2011). The
439 observed decrease in the left lateral frontoparietal connectivity in the present study between
440 UWS PET- patients and healthy controls or MCS+ patients may reflect such diminished internal
441 awareness in the UWS PET- patients. To that end, future endeavors should investigate the
442 modulatory effects and the possible predictive power of such modulations in other resting state
443 networks, such as the central executive network.

444 However, changes in the physiological state of the frontoparietal network alter not only
445 consciousness but also several other brain functions such as vigilance and attention (Hohwy,
446 2009; Koch et al., 2016). Moreover, the specific areas of the DMN have been associated with
447 specific cognitive functions; for example, the frontal areas seem to be important for self-
448 reference, whereas the precuneus/PCC in autobiographical memory (Whitfield-Gabrieli et al.,
449 2011). It remains a possibility that the found modulations in the DMN reflect changes also in
450 other cognitive functions, rather than in awareness alone.

451 It is important to bear in mind that DoC patients typically suffer from widespread structural brain
452 damage often accompanied by distributed white matter anomalies (Annen et al., 2018;
453 Fernández-Espejo et al., 2012; Tshibanda et al., 2009). Hence, it is relevant to consider the
454 feasibility and validity of applying DCM to DoC patients; this is particularly true for DCM for

Effective connectivity in DoC

455 EEG which requires the specification of the anatomical locations of the nodes/sources a priori,
456 and with patients with non-traumatic etiology, e.g., patients with anoxic brain damage (King et
457 al., 2011; Boly et al., 2011b). Here, we mitigated these concerns first by limiting our modelling
458 to DMN, a resting state network previously associated with DoC (Boly et al., 2008, 2009; Crone
459 et al., 2011; Crone et al., 2015; Fernández-Espejo et al., 2012; Heine et al., 2012; Laureys et al.,
460 1999; Laureys, 2005; Vanhaudenhuyse et al., 2010) and with changes in the conscious state e.g.,
461 due to anesthesia (Boveroux et al., 2010; Greicius et al., 2008; Stamatakis et al., 2010) and sleep
462 (Horovitz et al., 2009).

463 Second, we selected only patients with TBI as compared to non-traumatic aetiologias, it has been
464 associated with more focal injury centered often on areas susceptible to rotational forces, such as
465 the brainstem, midbrain, thalamus, hypothalamus, cerebellum, and posterior corpus callosum
466 (Guldenmund et al., 2016; Newcombe et al., 2010). That said, future studies should look to
467 extend these results to other aetiologias; an obvious downside for trying to control for the
468 individual differences due to brain damage by restricting the analysis to TBI patients only, was
469 reduced sample size. By including other aetiologias, future studies could not only aim to
470 replicate and verify these results with larger samples and better power, but to increase the
471 potential clinical utility by extending them to cover larger patient populations.

472 Third, we applied a special case of Bayesian model selection (BMS), Bayesian model reduction
473 (BMR), to invert multiple nested models from a single, fully connected DMN (see Methods). A
474 particular advantage here is that BMR can be applied using an explanatory approach, in which no
475 strong a priori hypotheses about the model parameters are needed. This enables a greedy search
476 to compare the negative free energies of the reduced (nested) models by iteratively discarding
477 parameters that do not contribute to the free energy. The procedure stops when discarding any
478 parameters starts to decrease the negative free energy, returning the model that most effectively
479 trades-off goodness of fit and model complexity in explaining the data. BMR applied in this way
480 allows one to estimate a large model space from a single, specified full model in a relatively
481 short period of time (Friston & Penny, 2011; Rosa et al., 2012; Zeidman et al., 2019).

482 Nevertheless, it is possible that not all true influences on the specific regions are captured by the
483 specified full model. Moreover, the explanatory approach to BMR is conducted under the
484 assumption that all reduced models are equally probable a priori, and thus, the full model should
485 only contain parameters that are biologically plausible. Here, we cannot exclude physical
486 damage to cortical areas and pathways crucial to the functioning of the DMN.

487 That said, our aim was not to make any strong claims about the “true” model; to draw stronger
488 conclusions about the “true” underlying neuronal basis using DCM for EEG, structural MRI
489 imaging assessing the extent of the damage in specific patients, possibly in adjunct with source
490 localization of the EEG signals, should be applied. Here, the aim was to demonstrate and to
491 compare the predictive performance of effective connectivity in the clinical context.
492 Additionally, demonstrating predictive value with significant generalization performance with
493 cross-validation, the level of confidence we can ascribe to our modelling results increases.

494

495 **3.2 Leave-one-subject/state-out cross-validation (LOSOCV)**

Effective connectivity in DoC

496 To test whether the effective connectivity modulations were consistent enough across the patient
497 groups and healthy controls to reliably distinguish the groups from each other, we first conducted
498 a leave-one-subject-out cross-validation based on hypothesis- (full DMN, frontoparietal, and
499 parietal subsets; figure 6) and data-driven subsets of connections (figure 7). Amongst the
500 connection subsets, the frontoparietal connections performed the best, classifying most controls
501 and MCS+, and half of the MCS* patients correctly in the healthy controls vs. UWS PET- and in
502 MCS+ vs. UWS PET- contrasts. The full DMN and parietal subsets clustered most of the
503 subjects around the chance level in all three contrasts.

504 We then moved to a data-driven approach in which we first predicted the patient group
505 membership based on the connection with the largest reduction in PEB, one at a
506 time, working through all connections. It is important to note that searching for the best
507 connection in this way increases the risk of overfitting the model by potentially extracting some
508 of the residual variation – noise – as if representing the underlying model structure. However, the
509 fact that the best model generalized to an unseen dataset suggests that the results may reflect a
510 genuine effect (see below).

511 With the data-driven approach, the bi-directional left frontoparietal connectivity produced the
512 best predictions, especially when classifying the UWS PET- from both, healthy controls and the
513 MCS+ patients. The single best performing connection was the backward frontoparietal
514 connectivity (figure 7). Not surprisingly, the classifications were more accurate and
515 consistent with healthy controls than with patients; classifications of patients suffering from
516 severe brain damage, and thus, from highly disrupted brain functioning, were expected to vary
517 more than those of healthy controls. Next, we combined the single connections into data-driven
518 subsets based on the classification performance: none of the combinations improved the
519 performance of the single connections.

520 Last, the predictive power of DCM modelling was generalized in two more difficult
521 classification problems; following the hypothesis- and data-driven approaches above, we trained
522 each model on healthy controls or MCS+ on the one hand, and UWS PET- patients on the other,
523 and then tested the models on the previously unseen, “covertly aware” MCS* patients. The
524 hypothesis-driven subsets did not classify the MCS* patients as controls or MCS+. Crucially,
525 with the data-driven approach, the left backward frontoparietal connection produced nearly
526 perfect predictions classifying all five patients as either controls or MCS+ rather than UWS PET-
527 patients. These results are compatible with previous PET imaging results by Thibaut and
528 colleagues (2021) who observed higher brain metabolism in the lateral and medial frontoparietal
529 network in MCS* patients when compared to UWS PET- patients. Interestingly, their resting
530 state EEG results with functional connectivity indicated a difference in the left hemisphere (and
531 at the whole brain level) when comparing MCS* to both UWS PET- and to MCS patients. To
532 that end, alpha connectivity was higher and delta connectivity lower in MCS* when compared to
533 UWS PET- patients. Moreover, a difference between MCS* and MCS was observed in the left
534 hemisphere with the latter having higher connectivity in the theta band. This finding further
535 extended to MCS* vs. MCS+ comparison.

536 While the results of the cross-validation here should be interpreted with caution due to the
537 relatively low number of subjects in our study, the results, in conjunction with those of Thibaut
538 and colleagues (2021) suggest a pivotal role for left hemisphere connectivity in distinguishing

Effective connectivity in DoC

539 MCS* from UWS PET- and MCS patients. Furthermore, the present results highlight the
540 importance of the frontoparietal connectivity – particularly the left-lateralized backward
541 connectivity – when predicting these states of consciousness. The importance of frontoparietal
542 connections within the DMN for dissociating states of consciousness in DoC patients is not
543 surprising given the previously established association between conscious awareness and the
544 DMN (Boly et al., 2008, 2009; Boveroux et al., 2010; Vanhaudenhuyse et al., 2010). More
545 specifically, consciousness is thought to require brain-wide broadcasting of information by a
546 “global workspace” associated with brain areas within the frontoparietal network (Baars, 1988;
547 Baars, 1997; Dehaene et al., 2011).

548 It is important to note, however, that the global neuronal workspace theory (GNW) is not a
549 localisationist approach but rather posits a distributed “router” for conscious access (Dehaene et
550 al., 2011). The extensive and rapid bidirectional connectivity between the hubs of the GNW is
551 thought to trigger the sudden collective and coordinated activity mediating global broadcasting
552 (Mashour et al., 2020). Aptly, these hubs initially included the prefrontal cortex and parietal
553 cortex (in combination with a set of specialized and modular perceptual, motor, memory,
554 evaluative, and attentional processors) although it has later been complemented with other,
555 potentially equally important hubs (such as the anterior and posterior cingulate and the
556 precuneus). The observation that the changes in the long-range frontoparietal connectivity best
557 predicts the state of consciousness is in accordance with the suggested importance of the
558 connectivity between the hubs in the GNW. This is in contrast with the more restricted, content-
559 specific neural correlates of consciousness often associated with the posterior hot zone (Koch et
560 al., 2016).

561 However, it is important to keep in mind that presumably, when the patient becomes “more”
562 conscious, different content becomes more globally available for conscious processing
563 throughout the brain, affecting and employing different cognitive systems (Hohwy, 2009). In
564 other words, any major changes in the physiological state alter not only consciousness but other
565 cognitive systems as well, many of which depend on levels of arousal-promoting
566 neuromodulators. Therefore, it remains possible that the predictive performance of the
567 frontoparietal effective connectivity is related not only to the state of consciousness, but also to
568 other arousal-related cognitive processes. Further, it is worth noting that here, we limited our
569 contrasts to MCS+, excluding minimally conscious – (negative) from the analyses. Our rationale
570 was to include a second, irrefutably conscious control group. Nonetheless, future studies should
571 include MCS- patients to better control for possible confounds of behavior and language
572 functions present in MCS+.

573 In summary, our results indicate a key difference between healthy controls or MCS+ patients and
574 unresponsive patients with congruent hypometabolism in left-lateralized backward frontoparietal
575 connectivity. With out-of-sample cross-validation, we demonstrated that this association is
576 robust enough to not only distinguish patient groups from each other, but also generalizes to an
577 unseen data subset, collected from seemingly unresponsive patients. These results contribute
578 towards identifying specific alterations in network interaction after severe brain injury, and
579 importantly, suggest clinical utility of EEG-based effective connectivity in identifying covertly
580 aware patients who seem behaviorally unresponsive.

Effective connectivity in DoC

582 4 Methods

583 4.1 Data Acquisition

584 We assessed effective connectivity within the DMN and whether modulation of this connectivity
585 predicted states of consciousness in patients with DoC. The patients included were referred to the
586 University and University Hospital of Liège (Coma Science Group and Centre du Cerveau²)
587 from clinical centers across Europe since 2008. The data collection was approved by the Ethics
588 Committee of the University Hospital of Liège and the patients' legal guardians gave written
589 informed consent. Data were also collected from healthy controls as a reference group, all of
590 whom gave informed written consent before participation.

591 The dataset consisted of the patient data with 26 healthy controls (total $N = 188$). Parts of these
592 data have already been published in previous studies (Carrière et al., 2020; Chennu et al., 2017;
593 Panda et al., 2021). From the dataset, we identified patients admitted due to traumatic brain
594 injury (TBI; $N = 76$). Amongst the TBI patients, we further identified those diagnosed with UWS
595 (Laureys et al., 2010, $N = 11$) or MCS+ (Bruno et al., 2011, $N = 12$). Patients admitted due to any
596 other etiology, e.g., anoxia or hemorrhage, and patients diagnosed with any other condition than
597 UWS or MCS+, were excluded from the further analyses. See Supplementary materials for more
598 details of the rationale and process of pruning the dataset. The patient groups were further
599 divided based on their respective PET-scans – either into a PET-positive (PET+) or a PET-
600 negative (PET-) sub-group (table 1). Amongst the healthy controls, using the random number
601 generator in MATLAB, we (pseudo-randomly) drew a cohort of 11 control subjects to adjust for
602 the group-size discrepancies. There were no meaningful differences in the mean ages between
603 the groups (in a Bayesian ANOVA the probability for the model including the main effect of
604 age: $p(M|data) = 0.247$, Bayes factor = 0.328).

605 Both PET scans and high-density EEG recordings were acquired at the same time and the
606 patients were behaviorally assessed using the Coma Recovery Scale – Revised (CRS-R; Kalmar
607 & Giacino, 2005) on the same day, before and after the scans (and on other days for a total of
608 five assessments). Both patients and healthy volunteers were asked to stay awake during the data
609 collection. The behaviorally apparent arousal levels of patients were monitored during the data
610 collection session to ensure that they stayed awake and awaken with auditory/tactile stimulations
611 if necessary.

612 PET scans were acquired and interpreted using methodology described in Stender et al. (2014)
613 and in the Supplementary materials. Briefly, the analysis results were visually inspected by a
614 trained clinician/researcher. Complete bilateral hypometabolism of the associative frontoparietal
615 cortex without any voxels with preserved metabolism led to PET- diagnosis, whereas partial
616 preservation with incomplete hypometabolism in these areas yielded a diagnosis of PET+
617 (Laureys et al., 2004; Nakayama et al., 2006; Thibaut et al., 2012).

618 The EEG data consisted of high-density EEG recordings of 20-30 minutes (256-channels, EGI),
619 acquired during the F-fluorodeoxyglucose (FDG) uptake, just prior to the start of the PET
620 imaging. The data were recorded at a sampling rate of either 250 Hz or 500 Hz (downsampled to
621 250 Hz). Data from the channels from the neck, cheeks, and forehead were discarded due to
622 contributing most of the movement-related noise. We were left with the data from 173 channels

Effective connectivity in DoC

623 on the scalp for further analysis. The raw signals were filtered from 0.5 – 45 Hz, with additional
624 line noise removal at 50 Hz (notch-filter). We further restricted the DCM analysis to 1 – 30 Hz
625 due to excessive high-frequency noise components. Via calculating the normalized variance, the
626 excessively noisy channels and epochs were identified and either manually rejected or retained
627 by visual inspection. Lastly, the data were re-referenced to a common average.

628 **Table 1.** The mean age in years (SD), the total number of patients, and the number of PET+ and
629 PET- of patients in each of the different DoC-groups. UWS – unresponsive wakefulness
630 syndrome, MCS+ – minimally conscious state plus, TBI – traumatic brain injury.

Patient group	Mean age (SD) in years	N ^{TOTAL}	PET+	PET-	Etiology
UWS	30.7 (8.5)	11	5	6	TBI
MCS+	38.3 (10.3)	12	11	1	TBI
Controls	30.9 (6.7)	11	-	-	-

631

632 **4.2 Dynamic causal modeling**

633 We first imported the first 60 artefact-free 10-second epochs, in to SPM12 (Wellcome Trust
634 Centre for Human Neuroimaging; www.fil.ion.ucl.ac.uk/spm/software/spm12). To analyze the
635 resting effective connectivity within the DMN, DCM for EEG cross-spectral densities (CSD)
636 was applied (Friston et al., 2012; Moran et al., 2009). Here, the observed cross-spectral densities
637 in the resting-EEG are explained by a generative model that combines a biologically plausible
638 neural mass model with an electrophysiological forward model mapping the underlying neural
639 states to the observed data (ERP-model; Moran et al., 2013). The idea is to model the source
640 activity over time in terms of causal relationships between interacting inhibitory and excitatory
641 populations of neurons.

642 Each source – or node – is connected to each other via extrinsic connections, while each
643 subpopulation within each source is connected to each other via intrinsic connections. Here,
644 however, we aimed to model disrupted consciousness at the level of active networks, and hence,
645 we estimated extrinsic connectivity between the nodes within the DMN. Among the extrinsic
646 connectivity, the top-down – or backward – connections are thought to have inhibitory and
647 modulatory effects on the nodes they target, while forward connections are viewed as having a
648 strong excitatory driving effect (bottom-up; Salin & Bullier, 1995; Sherman & Guillery, 1998).

649 Within each node, second-order differential equations describe the hidden state of neural activity
650 that depends on both the parameterized intrinsic and extrinsic connection strengths. This enables
651 the computation of the linear mapping from the endogenous neuronal fluctuations to the EEG
652 sensor spectral densities, and consequently, permits the modelling of differences in the spectra

Effective connectivity in DoC

653 due to changes in the underlying neurophysiologically meaningful parameters. These parameters
654 describe, for example, the intrinsic and extrinsic connectivity of coupled neuronal populations
655 (i.e., sources) and their physiology. For further information about EEG DCM, see for example
656 Friston et al. (2012), Kiebel et al. (2008), and Moran et al. (2009).

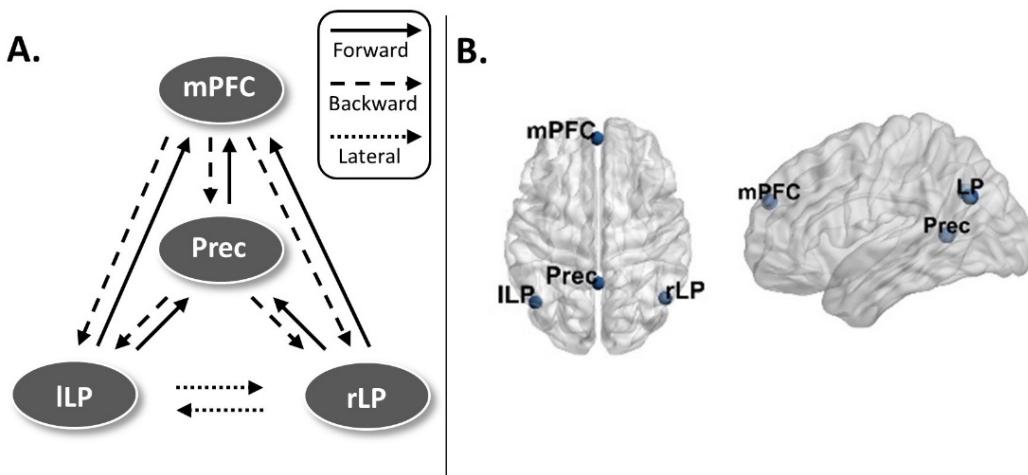
657

658 4.3 Model specification

659 Fitting an EEG DCM model requires the specification of the anatomical locations of the
660 nodes/sources a priori. Here, we only model the DMN, which has been previously associated
661 with DoC (Boly et al., 2008; Crone et al., 2011; Crone et al., 2015; Heine et al., 2012; Lin et al.,
662 2017). The schematic representation and the node locations (adopted from Razi et al., 2017) are
663 shown in figures 1A and 1B, respectively (node locations visualized with the BrainNet Viewer,
664 Xia et al., 2013, <http://www.nitrc.org/projects/bnv/>). The MNI coordinates are listed in table 2.

665 As shown in figure 1A, the nodes in the DMN were connected via forward, backward, and lateral
666 connections as described in David and collaborators (2006; 2005). Thus, each node was
667 modelled as a point source with the neuronal activity being controlled by operations following
668 the Jansen-Rit model (Jansen & Rit, 1995). These three different types of connections in each
669 model were specified in what is referred in the DCM literature as the ‘A-matrix’. This fully
670 connected model was then estimated for each subject using the DCM for CSD (Friston et al.,
671 2012; Moran et al., 2009; see Supplementary materials for details).

672



673

674 **Figure 1. A.** The fully connected, schematic representation of the default mode network (DMN).
675 **B.** The node locations for the DMN. mPFC – medial prefrontal cortex, Prec – posterior cingulate
676 cortex/precuneus, ILP – left lateral parietal cortex, rLP – right lateral parietal cortex.

677

Effective connectivity in DoC

678 **Table 2.** The default mode network nodes and their corresponding MNI coordinates (adapted
679 from Razi et al., 2017).

Network	Coordinates (in mm)		
	x	y	z
Default Mode Network			
Left lateral parietal	-46	-66	30
Right lateral parietal	49	-63	33
Posterior cingulate/precuneus	0	-52	7
Medial prefrontal	-1	54	27

680

681 4.4 Parametric empirical Bayes

682 In DCM, the posterior density over the parameters given by the model inversion process is
683 approximated via a variational Bayesian scheme by maximizing a lower bound (the negative free
684 energy) on the log-evidence (Variational Laplace; Friston et al., 2007). A more recent addition,
685 the PEB framework, can be utilized to infer, for example, the group-level commonalities and
686 differences (Friston et al., 2016).

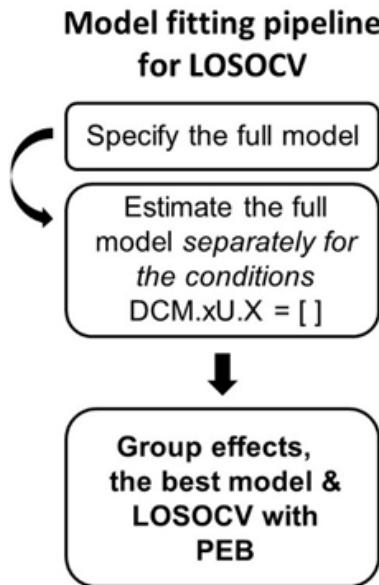
687 In PEB, the subject-specific parameters – here, the effective connectivity modulations between
688 nodes in DMN – are taken to the group-level and modelled using a General Linear Model
689 (GLM). In doing so, PEB partitions the between-subject variability into designed effects and
690 unexplained random effects (captured by the covariance component). As a special case of
691 Bayesian model selection (BMS), Bayesian model reduction (BMR) enables the inversion of
692 multiple nested models from a single, fully connected ('full') model in a hierarchical manner. In
693 doing so it enables a greedy search to compare the negative free energies for the nested models
694 (reduced models), iteratively discarding the parameters that do not contribute to the free energy
695 (originally 'post-hoc DCM analysis'; Friston & Penny, 2011; Rosa et al., 2012). Consequently,
696 PEB conveys both the estimated group-level connection strengths and their respective
697 uncertainty (posterior covariance component). As such, it is argued that hypotheses about
698 commonalities and differences across subjects can be tested with more precise parameter
699 estimates than with traditional frequentist comparisons (Friston et al., 2016).

700 A Bayesian Model Average (BMA) is calculated over the best 256 models weighted by their
701 model evidence; for every connection, a posterior probability for the connection being present
702 vs. absent is calculated by comparing evidence from all the models in which the parameter is
703 switched on vs. all the models in which it is switched off. Here, we applied a threshold of >.99

Effective connectivity in DoC

704 posterior probability, in other words, connections with over .99 posterior probability were
705 retained. The overall process is shown in Figure 2.

706



707

708 **Figure 2.** The pipeline for inverting the dynamic causal modelling (DCM) model for different
709 subject-groups. This was done to find the best models for each patient group, to estimate the
710 effective connectivity modulations between the patient groups, and as a prerequisite for the
711 leave-one-subject-out cross-validation (LOSOCV) classification with parametric empirical
712 Bayes (PEB) modelling.

713

714 4.5 Leave-one-out cross-validation

715 To validate our modelling framework, we investigated which DMN connections are predictive of
716 the subject group by adapting a standard approach in computational statistics, leave-one-subject-
717 out cross-validation (LOSOCV; `spm_dcm_loo.m`). Here, we iteratively fitted a multivariate
718 linear model (as described in detail in Friston et al., 2016) to provide the posterior predictive
719 density over connectivity changes, which was then used to evaluate the posterior belief of
720 the explanatory variable for the left-out participant: in the present case, the probability of the
721 subject group membership.

722 To cross-validate a fitted DCM model, one participant was left out each time *before* conducting
723 PEB analysis on the training dataset, and the optimized empirical priors were then used to predict
724 the subject-group to which the dataset from the left-out participant belonged (see Friston et al.,
725 2016 for details). We repeated this procedure for each participant, and in doing so generated
726 probabilities of state affiliation (here, posterior probabilities for subject group-membership).

Effective connectivity in DoC

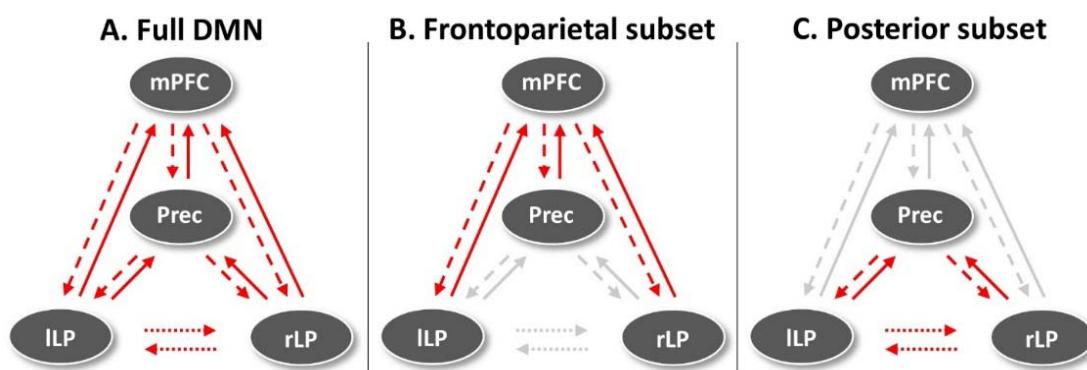
727 It is worthwhile to note, that we have estimated the DCM models using the default parameter
728 settings recommended in the literature (Ashburner et al., 2017; Friston et al., 2003; Friston et al.,
729 2012; Kiebel et al., 2009). This is also true for the LOSOCV procedure: no hyper parameter
730 optimization was done. Here, we trained the model with the data from all but the left-out
731 participant (training set), and predicted the state based on the data from the left-out participant
732 (test set) and repeated this procedure leaving out a different participant each time.

733

734 4.6 Leave-one-subject-out cross-validation

735 We first estimated predictive performance in a leave-one-subject-out cross-validation paradigm
736 in which LOSOCV metrics for all connections in the DMN and for a hypothesis-driven subsets
737 were estimated (frontoparietal and parietal subsets; figure 3). Next, a data-driven approach was
738 used in which we started the estimation from the connection associated with the largest
739 connectivity reduction between the subject-groups and repeated the procedure for all
740 connections. Here, we utilized a forward stepwise regression in which we started the estimation
741 from the connections with the largest changes and continued through the parameters based on
742 their respective modulation effect sizes. Lastly, we combined connections into data-driven
743 subsets, starting from the connections with the best classification performance, until the
744 classification accuracy stopped improving. The rationale was to investigate the location and
745 direction of the most consistent inter-subject-level effects, in addition to the largest effect sizes
746 identified by the PEB analysis.

747



748

749 **Figure 3.** The hypothesis-driven subsets for the LOSOCV-paradigm. The red arrows indicate the
750 connections included in each subset, and the grey arrows the left-out connections. First,
751 predictions based on all connections were estimated (A). Next, predictions based on two
752 connection subsets – frontoparietal (B) and parietal subsets (C) – were estimated. Lastly, we
753 estimated predictions based on single connections in a data-driven approach. mPFC – medial
754 prefrontal cortex, Prec – posterior cingulate cortex/precuneus, ILP – left lateral parietal cortex,
755 rLP – right lateral parietal cortex, DMN – default mode network.

756

Effective connectivity in DoC

757 4.7 Leave-one-state-out cross-validation

758 Finally, the validation process was generalized by introducing two more difficult classification
759 problems: first, we trained the model on the DCM parameters from the control and the UWS
760 PET- groups, and then tested it on unseen data collected from the MCS* patient-group. Second,
761 we trained the model on the data from the MCS+ and the UWS PET-groups, and again tested on
762 the MCS* datasets. Here, the model was trained on all training datasets. As above, the model
763 used the optimized empirical priors to predict the more likely patient-group the test dataset
764 (MCS*) belonged. We hypothesized that if our modelled effects are valid, and if the sustained
765 PET-metabolism reflects higher level of consciousness present in the MCS* patients in
766 comparison to UWS PET-patients, in the former case the model should classify the test datasets
767 as controls rather than UWS PET-. Similarly, in the latter case, given that the MCS+ patients are
768 conscious, the test data should be classified as MCS+ rather than UWS PET-. Here, we used
769 posterior probability for subject group-membership to quantify classification performance.

770

771 5 Acknowledgements and financial disclosure

772 We gratefully acknowledge support from the University of Kent's School of Computing and
773 GIGA Doctoral School for Health Sciences. The study was further supported by the University
774 and University Hospital of Liège, the Belgian National Funds for Scientific Research (FRS-
775 FNRS), the European Union's Horizon 2020 Framework Programme for Research and
776 Innovation under the Specific Grant Agreement No. 945539 (Human Brain Project SGA3), the
777 FNRS MIS project (F.4521.23), the FNRS PDR project (T.0134.21), the ERA-Net FLAG-ERA
778 JTC2021 project ModelDXConsciousness (Human Brain Project Partnering Project), the fund
779 Generet, the King Baudouin Foundation, the Télévie Foundation, the European Space Agency
780 (ESA) and the Belgian Federal Science Policy Office (BELSPO) in the framework of the
781 PRODEX Programme, the BIAL Foundation, the Mind Science Foundation, the European
782 Commission, and the Fondation Leon Fredericq.

783 **Conflict of interest:** none.

784

Effective connectivity in DoC

785 6 References

786 Alkire, M. T., Hudetz, A. G., & Tononi, G. (2008). Consciousness and Anesthesia. *Science*,
787 322(5903), 867–880. <https://doi.org/10.1126/science.1151120>

788 Annen, J., Frasso, G., Crone, J. S., Heine, L., Di Perri, C., Martial, C., Cassol, H., Demertzi, A.,
789 Naccache, L., & Laureys, S. (2018). Regional brain volumetry and brain function in
790 severely brain-injured patients. *Annals of Neurology*, 83(4), 842–853.
791 <https://doi.org/10.1002/ana.25214>

792 Ashburner, J., Barnes, G., Chen, C., Daunizeau, J., Moran, R., Henson, R., Glauche, V., &
793 Phillips, C. (2017). SPM12 Manual The FIL Methods Group (and honorary members).
794 *Functional Imaging Laboratory*, 475–1. <https://doi.org/10.1111/j.1365-294X.2006.02813.x>

795 Aubinet, C., Cassol, H., Gosseries, O., Bahri, M. A., Larroque, S. K., Majerus, S., Martial, C.,
796 Martens, G., Carrière, M., Chatelle, C., Laureys, S., & Thibaut, A. (2020). Brain
797 Metabolism but Not Gray Matter Volume Underlies the Presence of Language Function
798 in the Minimally Conscious State (MCS): MCS+ Versus MCS- Neuroimaging
799 Differences. *Neurorehabilitation and Neural Repair*, 34(2), 172–184.
800 <https://doi.org/10.1177/1545968319899914>

801 Baars, B. J. (1988). A Cognitive Theory of Consciousness. NY: *Cambridge University Press*.

802 Baars, B. J. (1997). In the theatre of consciousness. Global Workspace Theory, a rigorous
803 scientific theory of consciousness. *Journal of Consciousness Studies*, 4(4), 292–309.
804 <https://doi.org/10.1080/13993690.1997.10749327>

805 <https://doi.org/10.1093/acprof:oso/9780195102659.001.1>

Effective connectivity in DoC

806 Bastos, A. M., Usrey, W. M., Adams, R. A., Mangun, G. R., Fries, P., & Friston, K. J. (2012).
807 Canonical Microcircuits for Predictive Coding. *Neuron*, 76(4), 695–711.
808 <https://doi.org/10.1016/j.neuron.2012.10.038>

809 Bodart, O., Gosseries, O., Wannez, S., Thibaut, A., Annen, J., Boly, M., Rosanova, M., Casali,
810 A. G., Casarotto, S., Tononi, G., Massimini, M., & Laureys, S. (2017). Measures of
811 metabolism and complexity in the brain of patients with disorders of consciousness.
812 *NeuroImage: Clinical*, 14, 354–362. <https://doi.org/10.1016/j.nicl.2017.02.002>

813 Boly, M., Garrido, M. I., Gosseries, O., Bruno, M., Boveroux, P., Schnakers, C., Massimini, M.,
814 Litvak, V., Laureys, S., & Friston, K. (2011a). Preserved Feedforward But Impaired Top-
815 Down Processes in the Vegetative State. *Science Reports*, 332, 858–862.

816 Boly, M., Garrido, M. I., Gosseries, O., Bruno, M.-A., Boveroux, P., Schnakers, C., Massimini,
817 M., Litvak, V., Laureys, S., & Friston, K. (2011b). Response to Comment on “Preserved
818 Feedforward But Impaired Top-Down Processes in the Vegetative State”. *Science*,
819 334(6060), 1203. <https://doi.org/10.1126/science.1202043>

820 Boly, M., Moran, R., Murphy, M., Boveroux, P., Bruno, M.-A., Noirhomme, Q., Ledoux, D.,
821 Bonhomme, V., Brichant, J.-F., Tononi, G., Laureys, S., & Friston, K. (2012).
822 Connectivity Changes Underlying Spectral EEG Changes during Propofol-Induced Loss
823 of Consciousness. *Journal of Neuroscience*, 32(20), 7082–7090.
824 <https://doi.org/10.1523/JNEUROSCI.3769-11.2012>

825 Boly, M., Phillips, L., Tshibanda, A., Vanhaudenhuyse, M., Schabus, D., Dang-Vu, T. T.,
826 Moonen, G., Hustinx, R., Maquet, P., & Laureys, S. (2008). Intrinsic Brain Activity in
827 Altered States of Consciousness: How Conscious Is the Default Mode of Brain Function?

Effective connectivity in DoC

828 *Annals of the New York Academy of Sciences*, 1129, 119–129.

829 <https://doi.org/10.1196/annals.1417.015.Intrinsic>

830 Boly, M., Tshibanda, L., Vanhaudenhuyse, A., Noirhomme, Q., Schnakers, C., Ledoux, D.,
831 Boveroux, P., Garweg, C., Lambermont, B., Phillips, C., Luxen, A., Moonen, G.,
832 Bassetti, C., Maquet, P., & Laureys, S. (2009). Functional connectivity in the default
833 network during resting state is preserved in a vegetative but not in a brain dead patient.
834 *Human Brain Mapping*, 30(8), 2393–2400. <https://doi.org/10.1002/hbm.20672>

835 Boveroux, P., Vanhaudenhuyse, A., Bruno, M.-A., Noirhomme, Q., Lauwick, S., Luxen, A.,
836 Degueldre, C., Plenevaux, A., Schnakers, C., Phillips, C., Brichant, J.-F., Bonhomme, V.,
837 Maquet, P., Greicius, M. D., Laureys, S., & Boly, M. (2010). Breakdown of within- and
838 between-network Resting State during Propofol-induced Loss of Consciousness.
839 *Anesthesiology*, 113(5), 1038–1053.

840 Bruno, M. A., Majerus, S., Boly, M., Vanhaudenhuyse, A., Schnakers, C., Gossers, O.,
841 Boveroux, P., Kirsch, M., Demertzi, A., Bernard, C., Hustinx, R., Moonen, G., &
842 Laureys, S. (2012). Functional neuroanatomy underlying the clinical subcategorization of
843 minimally conscious state patients. *Journal of Neurology*, 259(6), 1087–1098.
844 <https://doi.org/10.1007/s00415-011-6303-7>

845 Bruno, M. A., Vanhaudenhuyse, A., Thibaut, A., Moonen, G., & Laureys, S. (2011). From
846 unresponsive wakefulness to minimally conscious PLUS and functional locked-in
847 syndromes: Recent advances in our understanding of disorders of consciousness. *Journal*
848 *of Neurology*, 258(7), 1373–1384. <https://doi.org/10.1007/s00415-011-6114-x>

Effective connectivity in DoC

849 Carrière, M., Cassol, H., Aubinet, C., Panda, R., Thibaut, A., Larroque, S. K., Simon, J., Martial,
850 C., Bahri, M. A., Chatelle, C., Martens, G., Chennu, S., Laureys, S., & Gosseries, O.
851 (2020). Auditory localization should be considered as a sign of minimally conscious state
852 based on multimodal findings. *Brain Communications*, 2(2), fcaa195.
853 <https://doi.org/10.1093/braincomms/fcaa195>

854 Chen, P., Xie, Q., Wu, X., Huang, H., Lv, W., Chen, L., Guo, Y., Zhang, S., Hu, H., Wang, Y.,
855 Nie, Y., Yu, R., & Huang, R. (2018). Abnormal Effective Connectivity of the Anterior
856 Forebrain Regions in Disorders of Consciousness. *Neuroscience Bulletin*, 34, 647–658.
857 <https://doi.org/10.1007/s12264-018-0250-6>

858 Chennu, S., Annen, J., Wannez, S., Thibaut, A., Chatelle, C., Cassol, H., Martens, G., Schnakers,
859 C., Gosseries, O., Menon, D., & Laureys, S. (2017). Brain networks predict metabolism,
860 diagnosis and prognosis at the bedside in disorders of consciousness. *Brain*, 140(8),
861 2120–2132. <https://doi.org/10.1093/brain/awx163>

862 Chennu, S., Finoia, P., Kamau, E., Allanson, J., Williams, G. B., Monti, M. M., Noreika, V.,
863 Arnatkeviciute, A., Canales-Johnson, A., Olivares, F., Cabezas-Soto, D., Menon, D. K.,
864 Pickard, J. D., Owen, A. M., & Bekinschtein, T. A. (2014). Spectral Signatures of
865 Reorganised Brain Networks in Disorders of Consciousness. *PLoS Computational
866 Biology*, 10(10). <https://doi.org/10.1371/journal.pcbi.1003887>

867 Claassen, J., Doyle, K., Matory, A., Couch, C., Burger, K. M., Velazquez, A., Okonkwo, J. U.,
868 King, J.-R., Park, S., Agarwal, S., Roh, D., Megjhani, M., Eliseyev, A., Connolly, E. S.,
869 & Rohaut, B. (2019). Detection of Brain Activation in Unresponsive Patients with Acute

Effective connectivity in DoC

870 Brain Injury. *New England Journal of Medicine*, 380(26), 2497–2505.

871 <https://doi.org/10.1056/nejmoa1812757>

872 Coulborn, S., Taylor, C., Naci, L., Owen, A. M., & Fernández-Espejo, D. (2021). Disruptions in
873 effective connectivity within and between default mode network and anterior forebrain
874 mesocircuit in prolonged disorders of consciousness. *Brain Sciences*, 11(6).
875 <https://doi.org/10.3390/brainsci11060749>

876 Crone, J. S., Ladurner, G., Höller, Y., Golaszewski, S., Trinka, E., & Kronbichler, M. (2011).
877 Deactivation of the default mode network as a marker of impaired consciousness: An
878 fmri study. *PLoS ONE*, 6(10). <https://doi.org/10.1371/journal.pone.0026373>

879 Crone, J. S., Schurz, M., Höller, Y., Bergmann, J., Monti, M., Schmid, E., Trinka, E., &
880 Kronbichler, M. (2015). Impaired consciousness is linked to changes in effective
881 connectivity of the posterior cingulate cortex within the default mode network.
882 *NeuroImage*, 110, 101–109. <https://doi.org/10.1016/j.neuroimage.2015.01.037>

883 Cruse, D., Chennu, S., Chatelle, C., Bekinschtein, T. A., Fernández-Espejo, D., Pickard, J. D.,
884 Laureys, S., & Owen, A. M. (2011). Bedside detection of awareness in the vegetative
885 state: A cohort study. *The Lancet*, 378(9809), 2088–2094. [https://doi.org/10.1016/S0140-6736\(11\)61224-5](https://doi.org/10.1016/S0140-6736(11)61224-5)

887 David, O., Harrison, L., & Friston, K. J. (2005). Modelling event-related responses in the brain.
888 *NeuroImage*, 25(3), 756–770. <https://doi.org/10.1016/j.neuroimage.2004.12.030>

889 David, O., Kiebel, S. J., Harrison, L. M., Mattout, J., Kilner, J. M., & Friston, K. J. (2006).
890 Dynamic causal modeling of evoked responses in EEG and MEG. *NeuroImage*, 30(4),
891 1255–1272. <https://doi.org/10.1016/j.neuroimage.2005.10.045>

Effective connectivity in DoC

892 Dehaene, S., Changeux, J.-P., & Naccache, L. (2011). The Global Neuronal Workspace Model
893 of Conscious Access: From Neuronal Architectures to Clinical Applications. In S.
894 Dehaene & Y. Christen (Eds.), *Characterizing Consciousness: From Cognition to the*
895 *Clinic?. Research and Perspectives in Neurosciences*. (Vol. 18, pp. 55–84). Springer,
896 Berlin, Heidelberg. <https://doi.org/10.1007/978-3-642-18015-6>

897 Demertzi, A., Antonopoulos, G., Heine, L., Voss, H. U., Crone, J. S., De Los Angeles, C., Bahri,
898 M. A., Di Perri, C., Vanhaudenhuyse, A., Charland-Verville, V., Kronbichler, M., Trinka,
899 E., Phillips, C., Gomez, F., Tshibanda, L., Soddu, A., Schiff, N. D., Whitfield-Gabrieli,
900 S., & Laureys, S. (2015). Intrinsic functional connectivity differentiates minimally
901 conscious from unresponsive patients. *Brain*, 138(9), 2619–2631.
902 <https://doi.org/10.1093/brain/awv169>

903 Di Perri, C., Bahri, M. A., Amico, E., Thibaut, A., Heine, L., Antonopoulos, G., Charland-
904 Verville, V., Wannez, S., Gomez, F., Hustinx, R., Tshibanda, L., Demertzi, A., Soddu,
905 A., & Laureys, S. (2016). Neural correlates of consciousness in patients who have
906 emerged from a minimally conscious state: A cross-sectional multimodal imaging study.
907 *The Lancet Neurology*, 15(8), 830–842. [https://doi.org/10.1016/S1474-4422\(16\)00111-3](https://doi.org/10.1016/S1474-4422(16)00111-3)

908 Fernández-Espejo, D., Soddu, A., Cruse, D., Palacios, E. M., Junque, C., Vanhaudenhuyse, A.,
909 Rivas, E., Newcombe, V., Menon, D. K., Pickard, J. D., Laureys, S., & Owen, A. M.
910 (2012). A role for the default mode network in the bases of disorders of consciousness.
911 *Annals of Neurology*, 72(3), 335–343. <https://doi.org/10.1002/ana.23635>

Effective connectivity in DoC

912 Friston, K. J., Bastos, A., Litvak, V., Stephan, K. E., Fries, P., & Moran, R. J. (2012). DCM for
913 complex-valued data: Cross-spectra, coherence and phase-delays. *NeuroImage*, 59(1),
914 439–455. <https://doi.org/10.1016/j.neuroimage.2011.07.048>

915 Friston, K. J., Harrison, L., & Penny, W. (2003). Dynamic causal modelling. *NeuroImage*, 19(4),
916 1273–1302. [https://doi.org/10.1016/S1053-8119\(03\)00202-7](https://doi.org/10.1016/S1053-8119(03)00202-7)

917 Friston, K. J., Litvak, V., Oswal, A., Razi, A., Stephan, K. E., Van Wijk, B. C. M., Ziegler, G., &
918 Zeidman, P. (2016). Bayesian model reduction and empirical Bayes for group (DCM)
919 studies. *NeuroImage*, 128, 413–431. <https://doi.org/10.1016/j.neuroimage.2015.11.015>

920 Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J., & Penny, W. (2007). Variational free
921 energy and the Laplace approximation. *NeuroImage*, 34(1), 220–234.
922 <https://doi.org/10.1016/j.neuroimage.2006.08.035>

923 Friston, K., & Penny, W. (2011). Post hoc Bayesian model selection. *NeuroImage*, 56(4), 2089–
924 2099. <https://doi.org/10.1016/j.neuroimage.2011.03.062>

925 Giacino, J. T., Ashwal, S., Childs, N., Cranford, R., Jennett, B., Katz, D. I., Kelly, J. P.,
926 Rosenberg, J. H., Whyte, J., Zafonte, R. D., & Zasler, N. D. (2002). The minimally
927 conscious state: Definition and diagnostic criteria. *Neurology*, 58(3), 349–353.
928 <https://doi.org/10.1212/WNL.58.3.349>

929 Gosseries, O., Zasler, N. D., & Laureys, S. (2014). Recent advances in disorders of
930 consciousness: Focus on the diagnosis. *Brain Injury*, 28(9), 1141–1150.
931 <https://doi.org/10.3109/02699052.2014.920522>

Effective connectivity in DoC

932 Greicius, M. D., Kiviniemi, V., Tervonen, O., Vainionpää, V., Reiss, A. L., & Menon, V. (2008).
933 Persistent Default- Mode Network Connectivity During Light Sedation. *Human Brain*
934 *Mapping*, 29(7), 839–847. <https://doi.org/10.1002/hbm.20537>. Persistent

935 Guldenmund, P., Soddu, A., Baquero, K., Vanhaudenhuyse, A., Bruno, M. A., Gosseries, O.,
936 Laureys, S., & Gómez, F. (2016). Structural brain injury in patients with disorders of
937 consciousness: A voxel-based morphometry study. *Brain Injury*, 30(3), 343–352.
938 <https://doi.org/10.3109/02699052.2015.1118765>

939 Haufe, S., Nikulin, V., & Nolte, G. (2011). Identifying brain effective connectivity patterns from
940 EEG: performance of Granger Causality, DTF, PDC and PSI on simulated data. *BMC*
941 *Neuroscience*. <https://doi.org/10.1186/1471-2202-12-S1-P141>

942 Heine, L., Soddu, A., Gómez, F., Vanhaudenhuyse, A., Tshibanda, L., Thonnard, M., Charland-
943 Verville, V., Kirsch, M., Laureys, S., & Demertzi, A. (2012). Resting state networks and
944 consciousness Alterations of multiple resting state network connectivity in physiological,
945 pharmacological, and pathological consciousness states. *Frontiers in Psychology*,
946 3(AUG), 1–12. <https://doi.org/10.3389/fpsyg.2012.00295>

947 Hohwy, J. (2009). The neural correlates of consciousness: New experimental approaches
948 needed? *Consciousness and Cognition*, 18(2), 428–438.
949 <https://doi.org/10.1016/j.concog.2009.02.006>

950 Horovitz, S. G., Braun, A. R., Carr, W. S., Picchioni, D., Balkin, T. J., Fukunaga, M., & Duyn, J.
951 H. (2009). Decoupling of the brain's default mode network during deep sleep.
952 *Proceedings of the National Academy of Sciences*, 106(27), 11376–11381.
953 <https://doi.org/10.1073/pnas.0901435106>

Effective connectivity in DoC

954 Ihalainen, R., Gosseries, O., de Steen, F. V., Raimondo, F., Panda, R., Bonhomme, V.,

955 Marinazzo, D., Bowman, H., Laureys, S., & Chennu, S. (2021). How hot is the hot zone?

956 Computational modelling clarifies the role of parietal and frontoparietal connectivity

957 during anaesthetic-induced loss of consciousness. *NeuroImage*, 231(January), 117841.

958 <https://doi.org/10.1016/j.neuroimage.2021.117841>

959 Jansen, B. H., & Rit, V. G. (1995). Electroencephalogram and visual evoked potential generation

960 in a mathematical model of coupled cortical columns. *Biological Cybernetics*, 73(4),

961 357–366. <https://doi.org/10.1007/BF00199471>

962 Kalmar, K., & Giacino, J. T. (2005). The JFK Coma Recovery Scale—Revised.

963 *Neuropsychological Rehabilitation*, 15(3–4), 454–460.

964 <https://doi.org/10.1080/09602010443000425>

965 Kiebel, S. J., Garrido, M. I., Moran, R., Chen, C.-C., & Friston, K. J. (2009). Dynamic causal

966 modeling for EEG and MEG. *Human Brain Mapping*, 30(6), 1866–1876.

967 <https://doi.org/10.1002/hbm.20775>

968 Kiebel, S. J., Garrido, M. I., Moran, R. J., & Friston, K. J. (2008). Dynamic causal modelling for

969 EEG and MEG. *Cognitive Neurodynamics*, 2(2), 121–136.

970 <https://doi.org/10.1007/s11571-008-9038-0>

971 King, J. R., Sitt, J. D., Faugeras, F., Rohaut, B., El Karoui, I., Cohen, L., Naccache, L., &

972 Dehaene, S. (2013). Information sharing in the brain indexes consciousness in

973 noncommunicative patients. *Current Biology*, 23(19), 1914–1919.

974 <https://doi.org/10.1016/j.cub.2013.07.075>

Effective connectivity in DoC

975 Koch, C., Massimini, M., Boly, M., & Tononi, G. (2016). Neural correlates of consciousness:
976 Progress and problems. *Nature Reviews Neuroscience*, 17(5), 307–321.
977 <https://doi.org/10.1038/nrn.2016.22>

978 Laureys, S. (2005). The neural correlate of (un)awareness: Lessons from the vegetative state.
979 *Trends in Cognitive Sciences*, 9(12), 556–559. <https://doi.org/10.1016/j.tics.2005.10.010>

980 Laureys, S., Celesia, G. G., Cohadon, F., Lavrijsen, J., León-Carrión, J., Sannita, W. G., Sazbon,
981 L., Schmutzhard, E., von Wild, K. R., Zeman, A., & Dolce, G. (2010). Unresponsive
982 wakefulness syndrome: A new name for the vegetative state or apallic syndrome. *BMC
983 Medicine*, 8, 2–5. <https://doi.org/10.1186/1741-7015-8-68>

984 Laureys, S., Goldman, S., Phillips, C., Van Bogaert, P., Aerts, J., Luxen, A., Franck, G., &
985 Maquet, P. (1999). Impaired effective cortical connectivity in vegetative state:
986 Preliminary investigation using PET. *NeuroImage*, 9(4), 377–382.
987 <https://doi.org/10.1006/nimg.1998.0414>

988 Laureys, S., Owen, A. M., & Schiff, N. D. (2004). Brain function in brain death, coma,
989 vegetative state, minimally conscious state and locked-in syndrome. *Lancet Neurology*,
990 3(9), 537–546.

991 Lechinger, J., Chwala-Schlegel, N., Fellinger, R., Donis, J., Michitsch, G., Pichler, G., &
992 Schabus, M. (2013). Mirroring of a simple motor behavior in Disorders of
993 Consciousness. *Clinical Neurophysiology*, 124(1), 27–34.
994 <https://doi.org/10.1016/j.clinph.2012.05.016>

995 Lee, M., Baird, B., Gosseries, O., Nieminen, J. O., Boly, M., Postle, B. R., Tononi, G., & Lee, S.
996 W. (2019). Connectivity differences between consciousness and unconsciousness in non-

Effective connectivity in DoC

997 rapid eye movement sleep: A TMS–EEG study. *Scientific Reports*, 9(1), 1–9.

998 <https://doi.org/10.1038/s41598-019-41274-2>

999 Lin, P., Yang, Y., Gao, J., De Pisapia, N., Ge, S., Wang, X., Zuo, C. S., Jonathan Levitt, J., &

1000 Niu, C. (2017). Dynamic Default Mode Network across Different Brain States. *Scientific*

1001 *Reports*, 7(March), 1–13. <https://doi.org/10.1038/srep46088>

1002 Mashour, G. A., Roelfsema, P., Changeux, J. P., & Dehaene, S. (2020). Conscious Processing

1003 and the Global Neuronal Workspace Hypothesis. *Neuron*, 105(5), 776–798.

1004 <https://doi.org/10.1016/j.neuron.2020.01.026>

1005 Monti, M. M., Vanhaudenhuyse, A., Coleman, M., Boly, M., Pickard, J. D., Tshibanda, L.,

1006 Owen, A. M., & Laureys, S. (2010). Willful modulation of brain activity in disorders of

1007 consciousness. *New England Journal of Medicine*, 362(7), 579–589.

1008 <https://doi.org/10.1056/NEJMc1003229>

1009 Moran, R. J., Kiebel, S. J., Stephan, K. E., Reilly, R. B., Daunizeau, J., & Friston, K. J. (2007). A

1010 neural mass model of spectral responses in electrophysiology. *NeuroImage*, 37(3), 706–

1011 720. <https://doi.org/10.1016/j.neuroimage.2007.05.032>

1012 Moran, R. J., Stephan, K. E., Seidenbecher, T., Pape, H. C., Dolan, R. J., & Friston, K. J. (2009).

1013 Dynamic causal models of steady-state responses. *NeuroImage*, 44(3), 796–811.

1014 <https://doi.org/10.1016/j.neuroimage.2008.09.048>

1015 Moran, R., Pinotsis, D. A., & Friston, K. (2013). Neural masses and fields in dynamic causal

1016 modelling. *Frontiers in Computational Neuroscience*, 7(APR 2013), 1–12.

1017 <https://doi.org/10.3389/fncom.2013.00057>

Effective connectivity in DoC

1018 Nakayama, N., Okumura, A., Shinoda, J., Nakashima, T., & Iwama, T. (2006). Relationship
1019 between regional cerebral metabolism and consciousness disturbance in traumatic diffuse
1020 brain injury without large focal lesions: An FDG-PET study with statistical parametric
1021 mapping analysis. *Journal of Neurology, Neurosurgery and Psychiatry*, 77(7), 856–862.
1022 <https://doi.org/10.1136/jnnp.2005.080523>

1023 Newcombe, V., Williams, G., Scoffings, D., Cross, J., Carpenter, T. A., Pickard, J., & Menon, D.
1024 (2010). Aetiological differences in neuroanatomy of the vegetative state: Insights from
1025 diffusion tensor imaging and functional implications. *Journal of Neurology,
1026 Neurosurgery and Psychiatry*, 81(5), 552–561. <https://doi.org/10.1136/jnnp.2010.205815>

1027 Owen, A. M., & Coleman, M. R. (2008). Functional neuroimaging of the vegetative state. *Nature
1028 Reviews Neuroscience*, 9(3), 235–243. <https://doi.org/10.1038/nrn2330>

1029 Owen, A. M., Coleman, M. R., Boly, M., Matthew, H. D., Laureys, S., & Pickard, J. D. (2006).
1030 Detecting awareness in the vegetative state. *Science*, 313(5792), 1402–1402.
1031 <https://doi.org/10.1196/annals.1417.018>

1032 Panda, R., Lopez-Gonzalez, Ane, Gilson, Matthieu, Gosseries, Olivia, Thibaut, Aurore, Frasso,
1033 Gianluca, Cecconi, Benedetta, Escrichs, Anira, Deco, Gustavo, Laureys, Steven, Zamora-
1034 Lopez, Gorka, & Annen, Jitka. (2021). Posterior integration and thalamo-frontotemporal
1035 broadcasting are impaired in disorders of consciousness. *BioRxiv*, 2021–11.

1036 Razi, A., Seghier, M. L., Zhou, Y., McColgan, P., Zeidman, P., Park, H.-J., Sporns, O., Rees, G.,
1037 & Friston, K. J. (2017). Large-scale DCMs for resting-state fMRI. *Network
1038 Neuroscience*. https://doi.org/10.1162/NETN_a_00015

Effective connectivity in DoC

1039 Rosa, M. J., Friston, K., & Penny, W. (2012). Post-hoc selection of dynamic causal models.
1040 *Journal of Neuroscience Methods*, 208(1), 66–78.
1041 <https://doi.org/10.1016/j.jneumeth.2012.04.013>

1042 Salin, P. A., & Bullier, J. (1995). Corticocortical connections in the visual system: Structure and
1043 function. *Physiological Reviews*, 75(1), 107–154.
1044 <https://doi.org/10.1152/physrev.1995.75.1.107>

1045 Schnakers, C., Giacino, J. T., Løvstad, M., Habbal, D., Boly, M., Di, H., Majerus, S., & Laureys,
1046 S. (2015). Preserved covert cognition in noncommunicative patients with severe brain
1047 injury? *Neurorehabilitation and Neural Repair*, 29(4), 308–317.
1048 <https://doi.org/10.1177/1545968314547767>

1049 Sherman, S. M., & Guillery, R. W. (1998). On the actions that one nerve cell can have on
1050 another: Distinguishing ‘drivers’ from ‘modulators’. *Proceedings of the National
1051 Academy of Sciences of the United States of America*, 95(12), 7121–7126.
1052 <https://doi.org/10.1073/pnas.95.12.7121>

1053 Siclari, F., Baird, B., Perogamvros, L., Bernardi, G., & Larocque, J. (2014). *The neural
1054 correlates of dreaming*. 1–52. <https://doi.org/10.1038/nn.4545>

1055 Sitt, J. D., King, J. R., El Karoui, I., Rohaut, B., Faugeras, F., Gramfort, A., Cohen, L., Sigman,
1056 M., Dehaene, S., & Naccache, L. (2014). Large scale screening of neural signatures of
1057 consciousness in patients in a vegetative or minimally conscious state. *Brain*, 137(8),
1058 2258–2270. <https://doi.org/10.1093/brain/awu141>

1059 Soddu, A., Vanhaudenhuyse, A., Bahri, M. A., Bruno, M. A., Boly, M., Demertzi, A.,
1060 Tshibanda, J. F., Phillips, C., Stanziano, M., Ovadia-Caro, S., Nir, Y., Maquet, P., Papa,

Effective connectivity in DoC

1061 M., Malach, R., Laureys, S., & Noirhomme, Q. (2012). Identifying the default-mode
1062 component in spatial IC analyses of patients with disorders of consciousness. *Human*
1063 *Brain Mapping*, 33(4), 778–796. <https://doi.org/10.1002/hbm.21249>

1064 Stamatakis, E. A., Adapa, R. M., Absalom, A. R., & Menon, D. K. (2010). Changes in resting
1065 neural connectivity during propofol sedation. *PLoS ONE*, 5(12).
1066 <https://doi.org/10.1371/journal.pone.0014224>

1067 Stender, J., Gosseries, O., Bruno, M. A., Charland-Verville, V., Vanhaudenhuyse, A., Demertzi,
1068 A., Chatelle, C., Thonnard, M., Thibaut, A., Heine, L., Soddu, A., Boly, M., Schnakers,
1069 C., Gjedde, A., & Laureys, S. (2014). Diagnostic precision of PET imaging and
1070 functional MRI in disorders of consciousness: A clinical validation study. *The Lancet*,
1071 384(9942), 514–522. [https://doi.org/10.1016/S0140-6736\(14\)60042-8](https://doi.org/10.1016/S0140-6736(14)60042-8)

1072 Stender, J., Kupers, R., Rodell, A., Thibaut, A., Chatelle, C., Bruno, M. A., Gejl, M., Bernard,
1073 C., Hustinx, R., Laureys, S., & Gjedde, A. (2015). Quantitative rates of brain glucose
1074 metabolism distinguish minimally conscious from vegetative state patients. *Journal of*
1075 *Cerebral Blood Flow and Metabolism*, 35(1), 58–65.
1076 <https://doi.org/10.1038/jcbfm.2014.169>

1077 Stender, J., Mortensen, K. N. N., Thibaut, A., Darkner, S., Laureys, S., Gjedde, A., & Kupers, R.
1078 (2016). The Minimal Energetic Requirement of Sustained Awareness after Brain Injury.
1079 *Current Biology*, 26(11), 1494–1499. <https://doi.org/10.1016/j.cub.2016.04.024>

1080 Thibaut, A., Bodien, Y. G., Laureys, S., & Giacino, J. T. (2020). Minimally conscious state
1081 “plus”: Diagnostic criteria and relation to functional recovery. *Journal of Neurology*,
1082 267(5), 1245–1254. <https://doi.org/10.1007/s00415-019-09628-y>

Effective connectivity in DoC

1083 Thibaut, A., Bruno, M. A., Chatelle, C., Gosseries, O., Vanhaudenhuyse, A., Demertzi, A.,

1084 Schnakers, C., Thonnard, M., Charland-Verville, V., Bernard, C., Ali Bahri, M., Phillips,

1085 C., Boly, M., Hustinx, R., & Laureys, S. (2012). Metabolic activity in external and

1086 internal awareness networks in severely brain-damaged patients. *Journal of*

1087 *Rehabilitation Medicine*, 44(6), 487–494. <https://doi.org/10.2340/16501977-0940>

1088 Thibaut, A., Panda, R., Annen, J., Sanz, L. R. D., Naccache, L., Martial, C., Chatelle, C.,

1089 Aubinet, C., Bonin, E. A. C., Barra, A., Briand, M. M., Cecconi, B., Wannez, S., Stender,

1090 J., Laureys, S., & Gosseries, O. (2021). Preservation of Brain Activity in Unresponsive

1091 Patients Identifies MCS Star. *Annals of Neurology*, 90(1), 89–100.

1092 <https://doi.org/10.1002/ana.26095>

1093 van Erp, W. S., Lavrijsen, J. C. M., Vos, P. E., Bor, H., Laureys, S., & Koopmans, R. T. C. M.

1094 (2015). The vegetative state: Prevalence, misdiagnosis, and treatment limitations. *Journal*

1095 *of the American Medical Directors Association*, 16(1), 85.e9-85.e14.

1096 <https://doi.org/10.1016/j.jamda.2014.10.014>

1097 Vanhaudenhuyse, A., Demertzi, A., Schabus, M., Noirhomme, Q., Bredart, S., Boly, M.,

1098 Phillips, C., Soddu, A., Luxen, A., Moonen, G., & Laureys, S. (2011). Two Distinct

1099 Neuronal Networks Mediate the Awareness of Environment and of Self. *Journal of*

1100 *Cognitive Neuroscience*, 23(3), 570–578.

1101 Vanhaudenhuyse, A., Noirhomme, Q., Tshibanda, L. J. F., Bruno, M. A., Boveroux, P.,

1102 Schnakers, C., Soddu, A., Perlberg, V., Ledoux, D., Brichant, J. F., Moonen, G., Maquet,

1103 P., Greicius, M. D., Laureys, S., & Boly, M. (2010). Default network connectivity

Effective connectivity in DoC

1104 reflects the level of consciousness in non-communicative brain-damaged patients. *Brain*,
1105 133(1), 161–171. <https://doi.org/10.1093/brain/awp313>

1106 Whitfield-Gabrieli, S., Moran, J. M., Nieto-Castañón, A., Triantafyllou, C., Saxe, R., & Gabrieli,
1107 J. D. E. (2011). Associations and dissociations between default and self-reference
1108 networks in the human brain. *NeuroImage*, 55(1), 225–232.
1109 <https://doi.org/10.1016/j.neuroimage.2010.11.048>

1110 Wu, X., Zou, Q., Hu, J., Tang, W., Mao, Y., Gao, L., Zhu, J., Jin, Y., Wu, X., Lu, L., Zhang, Y.,
1111 Zhang, Y., Dai, Z., Gao, J. H., Weng, X., Zhou, L., Northoff, G., Giacino, J. T., He, Y., &
1112 Yang, Y. (2015). Intrinsic functional connectivity patterns predict consciousness level
1113 and recovery outcome in acquired brain injury. *Journal of Neuroscience*, 35(37), 12932–
1114 12946. <https://doi.org/10.1523/JNEUROSCI.0415-15.2015>

1115 Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A Network Visualization Tool for Human
1116 Brain Connectomics. *PLoS ONE*, 8: e68910.

1117 Zeidman, P., Jafarian, A., Seghier, M. L., Litvak, V., Cagnan, H., Price, C. J., & Friston, K. J.
1118 (2019). A guide to group effective connectivity analysis, part 2: Second level analysis
1119 with PEB. *NeuroImage*, 200(May), 12–25.
1120 <https://doi.org/10.1016/j.neuroimage.2019.06.032>

1121

Effective connectivity in DoC

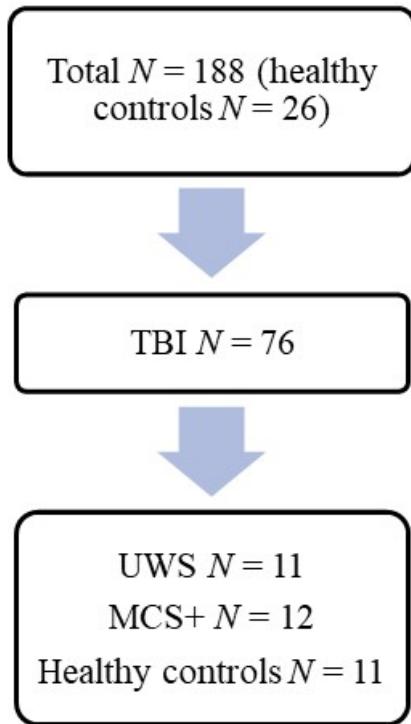
1122 7 Supporting Materials

1123

1124 **Table S1.** The number of satisfactory fits with the default hyperparameters and after adjusting
1125 the neural innovations and the noise precision for the different subject groups.

Patient group	N	Satisfactory fits	After BPA	Final
UWS	11	5	11	11
MCS+	12	9	12	12
Controls	11	9	11	11

1126

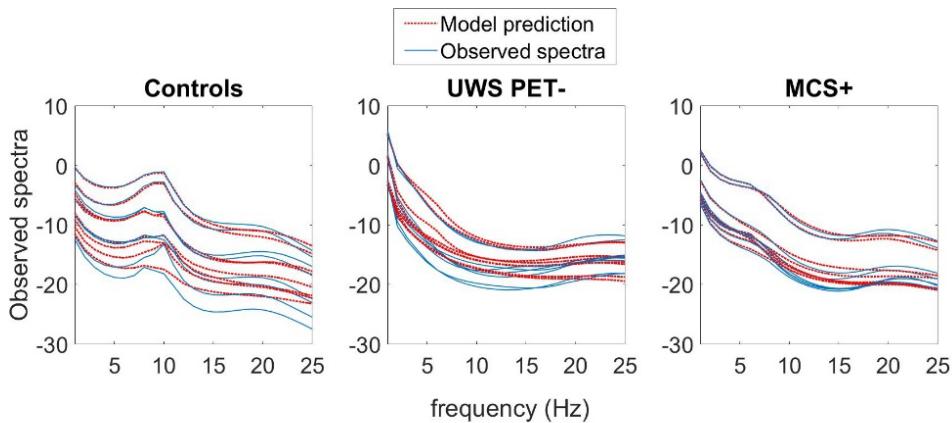


1127

1128 **Figure S1.** A flowchart showing the dataset pruning process, and the corresponding N for the
1129 experimental groups. From the full dataset, patients with TBI ($N = 76$) were identified. Next, the
1130 main group of interest – patients diagnosed as UWS ($N = 11$) – were distinguished. We then
1131 pseudo-randomly drew a cohort of 11 healthy controls to adjust for the group-size discrepancies.
1132 A cohort of 12 MCS+ patients were identified to act as a second control group.

1133

Effective connectivity in DoC



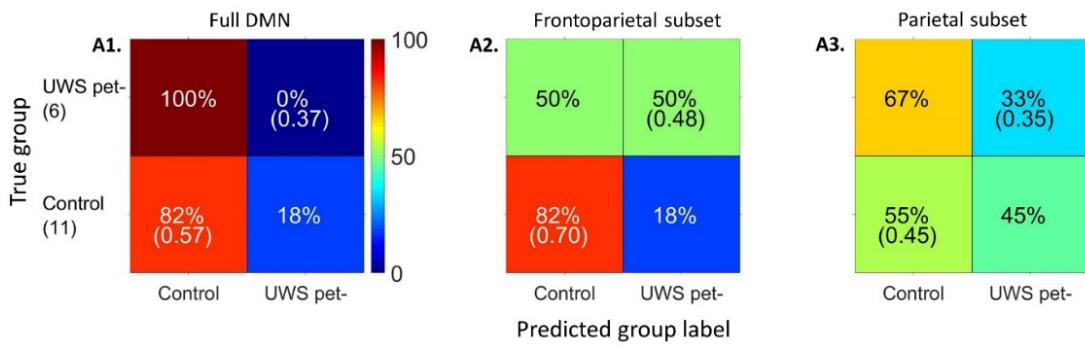
1134

1135 **Figure S2.** The average model fits across the participants in all subject-groups. A-C. Subject-
1136 averaged power spectra of the observed EEG channel-space data, juxtaposed with that predicted
1137 by the fitted DCM models of each subject group. Individual lines reflect spatial modes.

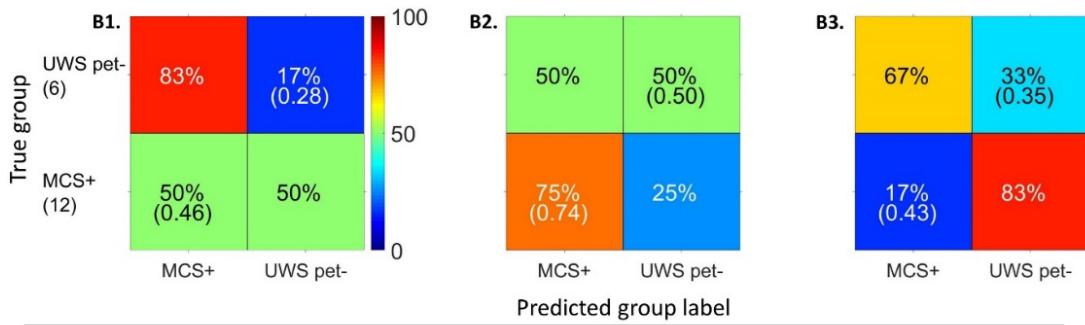
1138

Effective connectivity in DoC

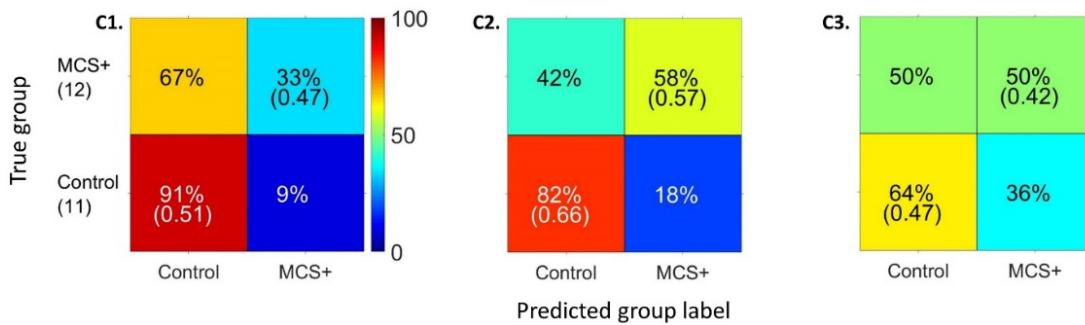
A. Control vs. UWS pet-



B. MCS+ vs. UWS pet-



C. Control vs. MCS+

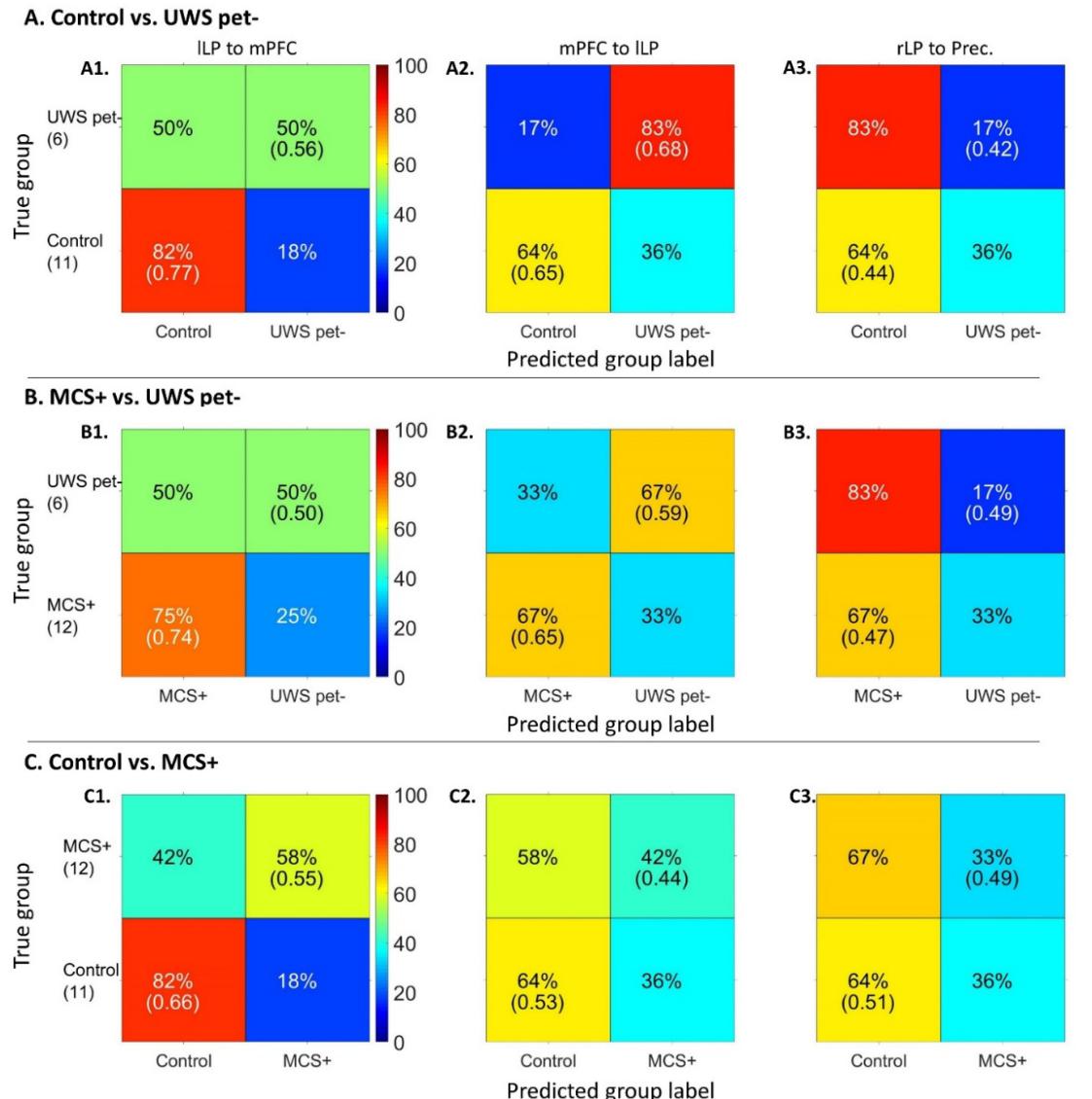


1139

1140 **Figure S3.** Classification accuracy percentage (mean posterior probability for correct
1141 classification) in the leave-one-subject-out cross-validation paradigm for the hypothesis-driven
1142 subsets. The number of subjects in each group is shown in parenthesis under the true group
1143 labels. The frontoparietal subset performed the best in terms of both classification accuracy and
1144 mean posterior probability, especially with healthy controls for healthy control vs. UWS PET-
1145 and MCS+ vs. UWS PET- contrasts (panels A2 and B2, respectively). Classification based on
1146 full DMN had high accuracy for healthy controls; however, the mean posterior probabilities
1147 bordered the chance level.

1148

Effective connectivity in DoC



1149

1150 **Figure S4.** Classification accuracy percentage (mean posterior probability for correct
1151 classification) in the leave-one-subject-out cross-validation paradigm for the data-driven
1152 approach. The number of subjects in each group is shown in parenthesis under the true group
1153 labels. For the healthy controls vs. UWS PET- and MCS+ vs. UWS PET- contrasts, the
1154 frontoparietal backward connection from mPFC to ILP performed best in terms of both
1155 classification accuracy and mean posterior probability. Forward frontoparietal connectivity
1156 from ILP to mPFC classified healthy controls and MCS+ patients from UWS PET- with high
1157 accuracy but bordered the chance level with UWS PET-. Similarly, ILP to mPFC connectivity
1158 performed the best with the healthy controls vs. MCS+ contrast.

1159