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Abstract 30 

Neuroimaging studies have suggested an important role for the default mode network (DMN) in 31 
disorders of consciousness (DoC). However, the extent to which DMN connectivity can 32 
discriminate DoC states – unresponsive wakefulness syndrome (UWS) and minimally conscious 33 
state (MCS) – is less evident. Particularly, it is unclear whether effective DMN connectivity, as 34 
measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle 35 
UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this 36 
extends to UWS patients with potentially “covert” awareness (minimally conscious star, MCS*) 37 
indexed by voluntary brain activity in conjunction with partially preserved frontoparietal 38 
metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to 39 
PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by 40 
using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET- 41 
and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We 42 
provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS 43 
PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation, 44 
we tested the classification performance of the DCM models demonstrating that connectivity 45 
between medial prefrontal and left parietal sources reliably discriminates UWS PET- from 46 
MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen 47 
dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS* 48 
patients as conscious subjects with high posterior probability (pp > .92). These results identify 49 
specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-50 
based effective connectivity for identifying patients with potential covert awareness. 51 

 52 

Author Summary: 53 

Our study investigates the role of the Default Mode Network (DMN) in individuals with 54 
disorders of consciousness (DoC), such as unresponsive wakefulness syndrome (UWS) and 55 
minimally conscious state (MCS). Previous neuroimaging studies have suggested a role for the 56 
DMN in DoC, but its ability to differentiate between UWS and MCS remain unclear. 57 

Using advance brain imaging and modelling techniques, we analyzed data from DoC patients 58 
with traumatic brain injury and healthy controls. Our findings reveal a key difference in left 59 
frontoparietal connectivity when comparing UWS to MCS patients and healthy individuals. 60 

To validate our results, we employed a robust cross-validation approach, which demonstrated 61 
that the connectivity between frontal and left parietal brain regions reliably discriminates UWS 62 
patients from MCS patients and controls. Furthermore, we extended our analysis to include 63 
patients with potential covert awareness, showcasing the clinical utility of our findings. We 64 
successfully classified these patients as conscious with high accuracy. 65 

This research significantly contributes to our understanding of the DMN in DoC and highlights 66 
the potential use of electroencephalography-based connectivity analysis in clinical settings. By 67 
identifying specific alterations in the DMN after severe brain injury, our study may aid in the 68 
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accurate diagnosis and management of individuals with disorders of consciousness, potentially 69 
improving their overall outcomes. 70 

  71 
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1 Introduction 72 

After a severe brain injury, patients may be diagnosed with a transient or permanent disorders of 73 
consciousness (DoC), such as the unresponsive wakefulness syndrome (UWS) or the minimally 74 
conscious state (MCS). The UWS is defined by preserved arousal in the absence of behavioral 75 
signs of awareness (periodic sustained eye opening with purposeless movements; Laureys et al., 76 
2010). In contrast, patients in MCS show fluctuating but reproducible signs of consciousness 77 
with preserved arousal. The MCS has been further divided into MCS- and MCS+, with the latter 78 
condition characterized by command following, intelligible verbalization, or gestural or verbal 79 
yes/no responses (regardless of accuracy) to spoken or written questions (Bruno et al., 2011).  80 

The exclusive use of clinical consensus for diagnosing these DoC based on observed behaviors 81 
has been shown to result in high rates of misdiagnosis of the accurate level of consciousness of 82 
the DoC patients, especially in the case of patients suffering from UWS (Stender et al., 2014; 83 
Thibaut et al., 2021; van Erp et al., 2015). Consequently, with the advent of modern 84 
neuroimaging techniques, there has been increasing interest in characterizing the underlying 85 
neuronal basis for the presence or lack of awareness in DoC using structural and functional 86 
magnetic resonance imaging (MRI/fMRI; e.g., Demertzi et al., 2015; Di Perri et al., 2016), 87 
positron emission tomography (PET; e.g., Laureys et al., 1999; Stender et al., 2014), and 88 
electroencephalography (EEG; e.g., Chennu et al., 2014; King et al., 2013; Sitt et al., 2014). 89 

Structural and functional neuroimaging studies have suggested an important role of the default 90 
mode network (DMN) in DoC – an intrinsic brain network encompassing the posterior cingulate 91 
cortex/precuneus, bilateral parietal cortices, and the medial prefrontal cortex (Annen et al., 2018; 92 
Boly et al., 2009; Fernández-Espejo et al., 2012; Guldenmund et al., 2016; Soddu et al., 2012; 93 
Vanhaudenhuyse et al., 2010). In parallel, cerebral metabolism as measured by PET has been 94 
shown to differentiate UWS from MCS (Stender et al., 2014; Stender et al., 2016; Thibaut et al., 95 
2021), with regional differences often in areas associated with DMN (Stender et al., 2015; 96 
Thibaut et al., 2012). This extends to patients with MCS; MCS+ can be distinguished from 97 
MCS- with the former group showing partially preserved language related behaviors (e.g., 98 
response to simple commands) alongside with a higher cerebral metabolism especially in left-99 
sided cortical areas, including Broca’s and Wernicke’s areas, premotor, presupplementary motor, 100 
and sensorimotor cortices (Aubinet et al., 2020; Bruno et al., 2012; Thibaut et al., 2020). A 101 
trained neurologist can diagnose patients also based on a visual inspection of their underlying 102 
PET metabolism, to as either PET negative (-) or PET positive (+). A PET- diagnosis is typically 103 
produced by a complete bilateral hypometabolism of the associative frontoparietal cortex with no 104 
voxels with preserved metabolism, whereas PET+ diagnosis is characterized by an incomplete 105 
hypometabolism and partial preservation of activity within these areas  (Laureys et al., 2004;  106 
Thibaut et al., 2012, Stender et al. 2014).  107 

In addition, effective connectivity studies in DoC as measured with dynamic causal modelling 108 
(DCM) for fMRI have suggested disruptions within the DMN specifically related to posterior 109 
cingulate cortex (PCC; Crone et al., 2015) and in subcortical networks, potentially driving the 110 
disruptions in the DMN (Chen et al., 2018; Coulborn et al., 2021). DCM is a generic approach 111 
used to infer hidden (or unobserved) neuronal states from measured brain activity; the idea is to 112 
model the source activity over time in terms of causal relationships between interacting 113 
inhibitory and excitatory populations of neurons. As far as we know, only one study has used 114 
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DCM with EEG for measuring and diagnosing cognitive functioning in DoC population. Using a 115 
mismatch negativity paradigm, Boly and colleagues (2011a) showed that the difference between 116 
UWS and MCS was due to an impairment of backward connectivity from frontal to temporal 117 
cortices, emphasizing the importance of top-down processing for conscious perception.  118 

Importantly, a number of studies have suggested residual consciousness and/or reported “covert” 119 
voluntary brain activity in some seemingly unresponsive patients, with both, active and resting 120 
state paradigms (Bodart et al., 2017; Claassen et al., 2019; Chennu et al., 2017; Cruse et al., 121 
2011; Lechinger et al., 2013; Monti et al., 2010; Owen et al., 2006; Owen & Coleman, 2008; 122 
Schnakers et al., 2015). These patients, who show no behavioral signs of consciousness, yet with 123 
whose neuroimaging results indicate residual brain activity compatible with the diagnosis of 124 
MCS, have been termed MCS* (minimally conscious state star; Gosseries et al., 2014; Thibaut et 125 
al., 2021). To keep consistent with the literature, from this point on, we use the term MCS* to 126 
refer to the UWS patients with PET+ diagnosis in this manuscript. 127 

Currently it is unknown whether effective resting state connectivity between key nodes within 128 
the DMN, as measured with EEG, could be used to identify such covertly aware patients. Here, 129 
as a preliminary investigation, we address this gap by using spectral DCM for EEG with 130 
parametric empirical Bayes (PEB). We investigate the difference in causal interactions between 131 
cortico-cortical regions of the DMN, between DoC patients (UWS and MCS+) and healthy 132 
controls. First, our  interest is in distinguishing the differences between UWS patients and 133 
healthy controls, and in demonstrating the prospective performance of the connectivity within 134 
DMN in classifying these states. Crucially, we include MCS+ patients to function as a second, 135 
yet demonstrably conscious, control group to reduce the probability that our findings reflect 136 
mainly damage in the brain, and not consciousness itself.  Based on previous studies (Boly et al., 137 
2011a), we hypothesize that there will be top-down/backward connectivity differences in UWS 138 
vs. healthy controls and in UWS vs. MCS+ comparisons. We also model the difference between 139 
MCS+ and healthy controls where we do not expect to see this difference. 140 

Next, in a leave-one-subject-out cross-validation, we test the classification performance of 141 
models based on the fully connected DMN network and on two connectivity subsets of the 142 
DMN: the posterior connections and the frontoparietal connections. Following this, we adopt a 143 
data-driven approach to the classification problem by investigating the predictive performance of 144 
single connections. The aim here is to identify the direction and location of the largest, most 145 
consistent modulations between the subjects. 146 

Finally, we demonstrate that our DCM models generalize to a more difficult classification 147 
problem: in a leave-one-state-out cross-validation paradigm, we train the models on UWS 148 
patients with a confirmed PET negative (PET-) diagnosis (i.e., a complete bilateral 149 
hypometabolism of the associative frontoparietal cortex) on the one hand and either healthy 150 
controls or MCS+ patients on the other. The MCS+ patients here function as a conscious control 151 
group who still suffer from brain damage. We then test the models on datasets from “covertly 152 
aware” MCS* patients (partially preserved metabolism and activity within these areas). We 153 
hypothesize that if our modelled effects are valid, and if the sustained PET metabolism reflects 154 
covert awareness in the MCS* patients, our model should classify these patients as healthy 155 
controls/MCS+ rather than UWS PET-. 156 
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 157 

2 Results 158 

2.1 Dynamic causal modeling and parametric empirical Bayes 159 

Our first goal was to investigate the effective connectivity modulations best explaining the 160 
difference between healthy controls, UWS PET-, and MCS+ patients. We modelled time-series 161 
recorded from the three groups with DCM for CSD at a single-subject level, followed by PEB at 162 
the group-level. In doing so, we estimated the change in effective connectivity in 12 inter-node 163 
connections in the DMN, contrasting 11 healthy controls both with 6 UWS PET- patients and 164 
with 12 MCS+ patients, and the 12 MCS+ patients with 6 UWS PET- patients.  165 

Following the inversion of the between-groups PEB model, a greedy search was implemented to 166 
prune away connections not contributing significantly to the free energy using BMR. Figure 4 167 
shows the most parsimonious models and figure 5 shows the estimated log scaling 168 
parameters contrasting healthy controls with UWS PET- (A), MCS+ with UWS PET- (B), and 169 
finally, healthy controls with MCS+ (C). Here, we applied a threshold of >.99 for the posterior 170 
probability; in other words, connections that were pruned by BMR and connections with lower 171 
than .99 posterior probability with their respective log scaling parameter are faded out (figures 172 
5A, 5B, 5C).  173 

On inverting the DMN for the control and UWS PET- groups, 3 connections were pruned away 174 
by BMR with additional 4 connections having lower than .99 posterior probability (figures 4A 175 
and 5A). All but one of the pruned connections were located within the posterior cortices 176 
between lateral parietal cortices and PCC/precuneus (except for the right backward frontoparietal 177 
connection). The largest reduction in effective connectivity was located on left frontoparietal 178 
connection; the backward connection between mPFC and left lateral parietal node was largely 179 
diminished for the UWS PET- group in comparison to healthy controls.  180 

On inverting the DMN contrasting MCS+ and UWS PET-, only three connections survived the 181 
BMR process with at least .99 posterior probability (with additional three connections surviving 182 
pruning with lower than .99 posterior probability; figures 4B and 5B). As with the control vs. 183 
UWS PET- contrast, the largest reduction was on the left backward 184 
connectivity from mPFC to lLP, with left lLP-mPFC forward connectivity increasing.  185 

On inverting the DMN for the contrast between healthy controls and MCS+, two 186 
connections were pruned by the BMR with additional 4 connections having lower than .99 187 
posterior probability for being present (figures 4C and 5C). The largest reductions were between 188 
the posterior nodes, to and from the lateral parietal cortices and PCC/precuneus. In addition, the 189 
left frontoparietal backward connectivity was reduced, although with smaller than .99 190 
posterior probability and with clearly smaller effect size than with UWS PET-. Other non-pruned 191 
connections were associated with small to medium increases. 192 

In addition, we also observed increased connectivity (relatively small effect sizes) in most of the 193 
other connections with at least .99 posterior probability. 194 
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 195 
Figure 4. The most parsimonious DMN models after BMA and BMR contrasting the healthy 196 
controls (HC) and the UWS PET-, MCS+ patients and UWS PET-, and healthy controls and 197 
MCS+. Color shows modulation strength and direction. All panels express the modulations of 198 
couplings for the latter state relative to the first. A. The most parsimonious model best explaining 199 
the difference between healthy controls and UWS PET- patients. Three connections were pruned 200 
with an additional four having lower than .99 posterior probability of being present. All but one 201 
pruned connection was located between lateral parietal and PCC/precuneus nodes. When moving 202 
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from the state of healthy controls to UWS PET-, the largest reduction in effective connectivity 203 
was in the backward connection from the medial prefrontal cortex to left lateral parietal cortex. 204 
B. The most parsimonious model best explaining the difference between the MCS+ and UWS 205 
PET- patients. Six connections were pruned by the BMR with an additional three connections 206 
having lower than .99 posterior probability of being present. When moving from UWS PET- to 207 
MCS+, the largest reduction was observed on the backward connection from the medial 208 
prefrontal cortex to left lateral parietal cortex, similar to the reduction between healthy controls 209 
and UWS PET- patients. C. The most parsimonious model explaining the difference between 210 
healthy controls and MCS+ patients. Two connections were pruned with additional four 211 
connections having lower than .99 posterior probability of being present. When moving from the 212 
state of healthy controls to MCS+, the largest reductions on effective connectivity were on 213 
posterior connections between the lateral parietal cortices and PCC/precuneus.  214 

 215 

 216 

 217 

Figure 5. The log scaling parameters for the connection strengths in the DMN after BMR and 218 
BMA. Positive values represent an increase and negative values a decrease in effective 219 
connectivity for the three group comparisons. Connections that were pruned by BMR and 220 
connections with lower than .99 posterior probability with their respective log scaling parameter 221 
are faded out. A. The modulatory effects best explaining the difference between healthy controls 222 
(HC) and UWS PET- patients. Connectivity between lateral parietal and PCC/precuneus nodes 223 
were either pruned away by BMR or had lower than .99 posterior probability with low 224 
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modulatory effects. The largest reduction was found on backward lateral frontoparietal 225 
connection from medial prefrontal cortex to left lateral parietal cortex. B. The modulatory effects 226 
best explaining the difference between MCS+ and UWS PET-. The modulatory effects on 227 
left bidirectional frontoparietal connections were both in the same direction as when comparing 228 
healthy controls to UWS PET-, with the largest reduction on left backward frontoparietal 229 
connection. In addition, right backward frontoparietal connectivity and posterior forward 230 
connectivity between lateral parietal nodes and PCC/precuneus reduced (smaller effect sizes), 231 
albeit with lower than .99 posterior probability of being present. C. The modulatory effects best 232 
explaining the difference between healthy controls and MCS+. The largest reductions were 233 
between the posterior nodes, between the lateral parietal nodes and PCC/precuneus. Bidirectional 234 
medial frontoparietal connectivity was increased in MCS+ in comparison to healthy 235 
controls. mPFC – medial prefrontal cortex, Prec – posterior cingulate cortex/precuneus, lLP – 236 
left lateral parietal cortex, rLP – right lateral parietal cortex. 237 

 238 

2.2 Leave-one-subject-out cross-validation  239 

To conduct LOSOCV, the DCM model was inverted again, this time separately for each patient 240 
group. Following the inversion process, PEB was conducted repeatedly on the training set in 241 
each cross-validation run alongside LOSOCV analysis to generate the posterior probabilities 242 
for group-membership (see Methods).   243 

First, the UWS PET- patients were classified alongside the controls based on the full DMN 244 
model, and two hypothesis-driven connection subsets (frontoparietal- and parietal connections; 245 
figure 6). A similar approach was applied classifying MCS+ patients alongside UWS PET-246 
 patients, and finally, healthy controls alongside MCS+ patients. Figures 6 and 7 show violin 247 
plots representing the individual posterior probabilities for the hypothesis-driven 248 
classifications and data-driven approach, for all three contrasts, respectively (A: control vs. UWS 249 
PET-, B: MCS+ vs. UWS PET-, C: control vs. MCS+). As seen in figure 6, frontoparietal 250 
connections classified correctly most of the controls and MCS+, and around half of the UWS 251 
PET- patients in the controls vs. UWS PET- and MCS+ vs. UWS PET- contrasts. Both full DMN 252 
and parietal subsets clustered most of the subjects around the chance level of 0.5. We further 253 
produced confusion matrices of prediction accuracy calculated by labelling posterior 254 
probabilities greater than 0.5 as a positive classification (for both hypothesis-driven subsets and 255 
the data-driven approach). See Supplementary Materials and figures s3 and s4. 256 

 257 

We then moved to a data-driven approach in which we first predicted the patient group 258 
membership based on the connections with the largest reductions in PEB, one at a time, working 259 
through all connections. Lastly, we checked combinations based on the connections’ respective 260 
classification accuracies (see Methods). The bi-directional left frontoparietal connectivity 261 
produced the best predictions, especially when classifying the UWS PET- from both, 262 
healthy controls and the MCS+ patients (figures 7A and 7B), with the best predictions based on 263 
the backward mPFC-lLP connectivity. Forward lLP-mPFC connectivity produced the best 264 
predictions for controls vs. MCS+ contrast, especially for the healthy controls (7C). None of the 265 
tested combinations improved classification performance. 266 
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 267 

Figure 6. Violin plots representing diversity in posterior probabilities for healthy control group 268 
membership (A and C) and for MCS+ group membership (B) for the hypothesis-driven subsets 269 
for all three group contrasts. Each colored point specifies a subject.  In a perfect model in panels 270 
A and B, the UWS PET- patients (N = 6), and in panel C, the MCS+ patients (N = 12) should 271 
approach a posterior probability of zero. Overall, the results show a trend for frontoparietal 272 
connections producing the best predictions. A. When classifying UWS PET- patients alongside 273 
healthy controls, the frontoparietal subset produced the best results. The individual data points 274 
reveal more consistent classifications of healthy controls. On all three panels, full DMN model 275 
and parietal subset produced classifications with most posterior probabilities bordering the 0.5 276 
chance level. B. As in panel A, the best predictions when classifying UWS PET- patients 277 
alongside MCS+ were based on frontoparietal connections, specifically with MCS+ patients. C. 278 
Classification of MCS+ alongside healthy controls. Frontoparietal subset produced the best 279 
predictions, however with large variability on the performance across the subjects. 280 

 281 
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 282 

Figure 7. Violin plots representing diversity in posterior probabilities for control group 283 
membership (A and C) and for MCS+ group membership (B) for the data-driven connections for 284 
all three contrasts. Each colored point specifies a subject. In a perfect model in panels A and B, 285 
the UWS PET- patients, and in panel C, the MCS+ patients should approach 286 
a posterior probability of zero. Overall, the best predictive performance was based on the left bi-287 
directional frontoparietal connections when classifying UWS PET- alongside controls (A) and 288 
MCS+ (B). Largest inconsistencies and variability were on classifications of MCS+ alongside 289 
healthy controls. A. Left frontoparietal connectivity from mPFC to lLP produced the best 290 
predictions (mean posterior probabilities) of the group-membership when classifying UWS PET- 291 
alongside healthy controls. As with the hypothesis-driven subsets, the classifications were more 292 
accurate with healthy controls than with patients. B. As in panel A with healthy controls and 293 
UWS PET- patients, the classification performances based on mPFC-lLP and lLP-294 
mPFC produced the most consistent results when contrasting UWS PET- patients alongside 295 
MCS+. C. Mean posterior probabilities for classification of MCS+ alongside healthy controls. 296 
The performance of the models based on the single connections did not produce consistently 297 
accurate classifications. mPFC – medial prefrontal cortex, Prec – posterior cingulate 298 
cortex/precuneus, lLP – left lateral parietal cortex, rLP – right lateral parietal cortex. 299 

 300 

2.3 Leave-one-state-out cross-validation 301 
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Finally, the predictive power of DCM modelling was generalized in two more difficult 302 
classification problems; each model was trained first on healthy controls and UWS PET- and 303 
then tested on the previously unseen UWS PET + group. A similar approach was used with a 304 
training set consisting of MCS+ and UWS PET- patients. The individual posterior probabilities 305 
for the five UWS PET + patients represented in a violin plot for both, the hypothesis subsets 306 
(panels A and B; controls vs. UWS PET- and controls vs. MCS+, respectively) and for data-307 
driven connections (panels C and D) are shown in figure 8. The hypothesis-driven subsets did 308 
not classify the MCS* as controls or MCS+. Instead, when trained on datasets from healthy 309 
controls and UWS PET-, the frontoparietal subset classified four out of five MCS* patients as 310 
UWS PET-.  311 

With the data-driven approach, the left backward frontoparietal connectivity from mPFC 312 
to lLP produced nearly perfect predictions classifying the MCS* datasets as controls (8C, 313 
p(control|MCS* > .92) and MCS+ (8D, p(MCS+|MCS* > .98) rather than as UWS PET- group. 314 
Similar as with frontoparietal subset (8A), the left forward connectivity from lLP to mPFC 315 
classified four of five patients as UWS PET- patients rather than healthy controls – three of them 316 
with a high posterior probability. This dissociation was not as prominent when training the 317 
model with MCS+ and UWS PET- patients (8D); the backward connectivity still 318 
produced nearly perfect classifications (of MCS* as MSC+) while the predictions based on the 319 
forward connectivity showed larger variability. 320 

 321 

 322 

Figure 8. Violin plots representing diversity in posterior probabilities for control group 323 
membership (A and C) and for MCS+ group membership (B and D) for both, the hypothesis- and 324 
data-driven predictions. Here, the models were trained on datasets from controls and UWS PET- 325 
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(A & C) or from MCS+ and UWS PET- (B and D) and tested on unseen data from MCS* 326 
patients (N = 5). Each colored point specifies a subject. Overall, the left backward frontoparietal 327 
connectivity produced the best group membership predictions. A and B. Mean posterior 328 
probabilities for classification of MCS* patients alongside healthy controls (A) and MCS+ 329 
patients (B). Neither of the hypothesis-driven subsets, nor the full DMN, clearly classified the 330 
unseen MCS* patients as members of either train-group. C and D. Left frontoparietal 331 
connectivity from mPFC to lLP produced almost perfect predictions for the MCS*, classifying 332 
all five patients as either controls or MCS+ rather than UWS PET- patients. Unlike the backward 333 
connectivity, predictions based on the left forward connectivity from lLP to mPFC, the model 334 
classified four of five MCS* patients as UWS PET- rather than as controls (C). Similarly, when 335 
trained on MCS+ and UWS PET-, the model classified three of five patients as UWS PET- rather 336 
than MCS+. mPFC – medial prefrontal cortex, Prec – posterior cingulate cortex/precuneus, lLP – 337 
left lateral parietal cortex, rLP – right lateral parietal cortex. 338 

 339 
3 Discussion 340 

In this cross-sectional, retrospective analysis, we applied spectral DCM to high-density EEG data 341 
with PEB to investigate the difference in effective connectivity dynamics between cortico-342 
cortical regions of the DMN in DoC patients (UWS, MCS+, and MCS*) and healthy controls. 343 
Overall, the modelling results indicate a key difference between healthy controls or MCS+ 344 
patients and unresponsive patients with compatible hypometabolism (UWS PET-) in left-345 
hemispheric backward frontoparietal connectivity. Furthermore, with out-of-sample cross-346 
validation, we demonstrated that this association is robust enough to not only distinguish patient 347 
groups from each other, but also generalizes to an unseen data subset, collected from seemingly 348 
unresponsive patients showing preserved brain activity compatible with MCS (MCS*). These 349 
results identify specific alterations in the DMN after severe brain injury and highlight the clinical 350 
utility of EEG-based measurement of effective connectivity for identifying covert consciousness. 351 

3.1 Dynamic causal modelling 352 

The most parsimonious model explaining the difference between healthy controls and 353 
unresponsive patients with congruent hypometabolism (UWS PET-) indicated a large relative 354 
reduction in left-hemisphere backward frontoparietal connectivity in UWS PET- patients. 355 
Additionally, a small, lower-probability reduction from right lateral parietal cortex to precuneus 356 
was found. Interestingly, excluding the right parietal connection, the estimated connectivity in 357 
the posterior nodes – within the ‘posterior hot zone of conscious contents’ (Koch et al., 2016; 358 
Siclari et al., 2017) – was either pruned away from the model best explaining the difference or 359 
returned only small, low-probability increases suggesting lower relative importance for the 360 
posterior hot zone in explaining the difference between healthy controls and UWS PET- patients. 361 
Generally, connections pruned by BMR are considered not to contribute towards the model 362 
evidence (Zeidman et al., 2019). In contrast, in a previous fMRI DCM study with DoC patients, 363 
precuneus/PCC-related connectivity reduction was the key difference; specifically, the recurrent 364 
connectivity (down-regulation of the PCC itself) was found to be diminished on UWS patients in 365 
comparison to both, MCS patients and healthy controls (Crone et al., 2015).  366 
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However, not only are the data between Crone et al.'s (2015) study and the present study from 367 
different modalities, and thus, direct comparisons of the results unsound, the underlying 368 
neurobiologically motivated models used by DCM are different for hemodynamic vs. 369 
electrophysiological data leading to a different interpretation of the modulatory effects. The 370 
interpretation of the modulatory effects in DCM for fMRI vs. EEG differ in that positive and 371 
negative values indicate excitatory and inhibitory effects in fMRI data (except for recurrent 372 
connections, for which the connection strength is always negative and modulations reflect 373 
increases or decreases in comparison to the prior). In DCM for EEG, positive modulations 374 
indicate an increase and negative a decrease in connectivity relative to the prior. In the neural 375 
mass model we used here, the backward connections are thought to have more inhibitory and 376 
largely modulatory effect in the nodes they target (top-down connections), while forward 377 
connections are viewed as having a strong driving effect (bottom-up; Salin & Bullier, 1995; 378 
Sherman & Guillery, 1998). 379 

Here, we modelled the data with the default ERP neuronal model (David et al., 2005) primarily 380 
in order to produce comparable results with prior DCM for EEG work modelling consciousness 381 
(Boly et al., 2011a; Boly et al., 2012; Ihalainen et al., 2021). Further, we aimed to model 382 
disrupted consciousness at the level of active networks rather than focusing on e.g., synaptic 383 
hypotheses or recurrent self-connections (intrinsic connectivity), which could be better captured 384 
with other neuronal models such as the local field potential model (Moran et al., 2007) or the 385 
Canonical Microcircuits model (Bastos et al., 2012; see also Moran et al., 2013 for a review of 386 
neuronal population models). Hence, we only estimated extrinsic connectivity – i.e., connectivity 387 
between cortical areas. It is possible that the observed differences in the network dynamics are 388 
driven by modulations in self-inhibiting, recurrent connectivity within the cortical sources or 389 
within and between subcortical networks driving the disruptions in the DMN (Chen et al., 2018; 390 
Coulborn et al., 2021). A worthwhile endeavor for future DCM for EEG studies would be to 391 
model the extent to which recurrent, within-source cortical connectivity may or may not drive 392 
the modulations in extrinsic connectivity. 393 

To the best of our knowledge, only one study has used DCM for EEG in DoC populations. Boly 394 
and colleagues (2011a) showed that in an auditory mismatch negativity paradigm, the difference 395 
between UWS, MCS, and healthy controls was an impairment of backward connectivity from 396 
frontal to temporal cortices in the UWS patients, emphasizing the importance of top-down 397 
processing for conscious perception. Similarly, in the present resting-paradigm, the key 398 
difference distinguishing UWS PET- from both, MCS+ and healthy controls was decreased left-399 
lateralized backward frontoparietal connectivity in UWS PET- patients, although from medial 400 
prefrontal cortex to lateral parietal cortex and not to superior parietal cortex. It is important to 401 
note, however, that the differences in the paradigm, methodology and in the models estimated 402 
render rigorous, direct comparisons of the results between Boly et al.'s (2011a) study and the 403 
present study infeasible. Moreover, even though some of the patients may have been the same 404 
between the present study and those of Boly et al. (2011a), the data were different (here recorded 405 
with high-density EEG during PET while Boly et al. (2011a) used a 64 channel EEG prior to 406 
TMS-EEG).  Despite the methodological differences, the results of both studies suggest a crucial 407 
role for lateral backward connectivity originating from the frontal cortex. Future studies should 408 
investigate this further by modelling the connectivity related to temporal areas, and the backward 409 
frontoposterior connectivity in other resting networks (see below) in DoC patients. 410 
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Like with healthy controls vs. UWS PET- comparison, the largest difference between MCS+ and 411 
UWS PET- patients was left frontoparietal backward connectivity, with UWS PET- patients 412 
again showing reduced connectivity. Furthermore, the left forward parietofrontal connectivity 413 
and backward connectivity from precuneus to lLP both increased, reproducing the modulations 414 
between healthy controls and UWS PET-. These changes were accompanied by smaller, low-415 
probability reductions in forward connectivity within the posterior hot zone and in right 416 
backward frontoparietal connectivity. These modelling results highlight the left frontoparietal 417 
backward connectivity as the key distinguishing difference when comparing healthy controls or 418 
conscious patients with unconscious patients and complement those of previous studies 419 
discriminating DoC patients from scalp-level EEG connectivity; especially frontal and parietal 420 
functional connectivity has been shown to consistently discriminate DoC patients (Chennu et al., 421 
2014; Chennu et al., 2017). As the direction and the spatial location of the changes in 422 
connectivity were similar with the comparisons involving UWS PET- patients, and 423 
distinguishable from those when comparing healthy controls vs. MCS+, we were motivated to 424 
further test the predictive power of the modulatory effects (see below). 425 

In contrast, the largest connectivity reductions between healthy controls and MCS+, although 426 
relatively smaller than in previous contrasts, were associated with the precuneus node in the 427 
posterior hot zone. The left backward frontoparietal connectivity was again reduced, but by a 428 
smaller effect and with lower than .99 probability of being present in the most parsimonious 429 
model. The activity changes in the posterior hot zone of conscious content have been associated 430 
with changes in consciousness not only during sleep (Lee et al., 2019; Siclari et al., 2017) and 431 
general anesthesia (Alkire et al., 2008; Ihalainen et al., 2021), but also in DoC patients 432 
(Vanhaudenhuyse et al., 2010; Wu et al., 2015). Moreover, previous studies have suggested a 433 
subdivision of the frontoparietal network into two anticorrelated subnetworks; an “intrinsic” 434 
network encompassing precuneus/PCC, anterior cingulate/mesofrontal cortices, and 435 
parahippocampal areas associated with internal awareness, and into an “extrinsic” central 436 
executive network encompassing dorsolateral prefrontal and posterior parietal areas linked with 437 
the intensity of external awareness (Boveroux et al., 2010; Vanhaudenhuyse et al., 2011). The 438 
observed decrease in the left lateral frontoparietal connectivity in the present study between 439 
UWS PET- patients and healthy controls or MCS+ patients may reflect such diminished internal 440 
awareness in the UWS PET- patients. To that end, future endeavors should investigate the 441 
modulatory effects and the possible predictive power of such modulations in other resting state 442 
networks, such as the central executive network.  443 

However, changes in the physiological state of the frontoparietal network alter not only 444 
consciousness but also several other brain functions such as vigilance and attention (Hohwy, 445 
2009; Koch et al., 2016). Moreover, the specific areas of the DMN have been associated with 446 
specific cognitive functions; for example, the frontal areas seem to be important for self-447 
reference, whereas the precuneus/PCC in autobiographical memory (Whitfield-Gabrieli et al., 448 
2011). It remains a possibility that the found modulations in the DMN reflect changes also in 449 
other cognitive functions, rather than in awareness alone.  450 

It is important to bear in mind that DoC patients typically suffer from widespread structural brain 451 
damage often accompanied by distributed white matter anomalies (Annen et al., 2018; 452 
Fernández-Espejo et al., 2012; Tshibanda et al., 2009). Hence, it is relevant to consider the 453 
feasibility and validity of applying DCM to DoC patients; this is particularly true for DCM for 454 
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EEG which requires the specification of the anatomical locations of the nodes/sources a priori, 455 
and with patients with non-traumatic etiology, e.g., patients with anoxic brain damage (King et 456 
al., 2011; Boly et al., 2011b). Here, we mitigated these concerns first by limiting our modelling 457 
to DMN, a resting state network previously associated with DoC (Boly et al., 2008, 2009; Crone 458 
et al., 2011; Crone et al., 2015; Fernández-Espejo et al., 2012; Heine et al., 2012; Laureys et al., 459 
1999; Laureys, 2005; Vanhaudenhuyse et al., 2010) and with changes in the conscious state e.g., 460 
due to anesthesia (Boveroux et al., 2010; Greicius et al., 2008; Stamatakis et al., 2010) and sleep 461 
(Horovitz et al., 2009). 462 

Second, we selected only patients with TBI as compared to non-traumatic aetiologias, it has been 463 
associated with more focal injury centered often on areas susceptible to rotational forces, such as 464 
the brainstem, midbrain, thalamus, hypothalamus, cerebellum, and posterior corpus callosum 465 
(Guldenmund et al., 2016; Newcombe et al., 2010). That said, future studies should look to 466 
extend these results to other aetiologias; an obvious downside for trying to control for the 467 
individual differences due to brain damage by restricting the analysis to TBI patients only, was 468 
reduced sample size. By including other aetiologias, future studies could not only aim to 469 
replicate and verify these results with larger samples and better power, but to increase the 470 
potential clinical utility by extending them to cover larger patient populations.  471 

Third, we applied a special case of Bayesian model selection (BMS), Bayesian model reduction 472 
(BMR), to invert multiple nested models from a single, fully connected DMN (see Methods). A 473 
particular advantage here is that BMR can be applied using an explanatory approach, in which no 474 
strong a priori hypotheses about the model parameters are needed. This enables a greedy search 475 
to compare the negative free energies of the reduced (nested) models by iteratively discarding 476 
parameters that do not contribute to the free energy. The procedure stops when discarding any 477 
parameters starts to decrease the negative free energy, returning the model that most effectively 478 
trades-off goodness of fit and model complexity in explaining the data. BMR applied in this way 479 
allows one to estimate a large model space from a single, specified full model in a relatively 480 
short period of time (Friston & Penny, 2011; Rosa et al., 2012; Zeidman et al., 2019).  481 

Nevertheless, it is possible that not all true influences on the specific regions are captured by the 482 
specified full model. Moreover, the explanatory approach to BMR is conducted under the 483 
assumption that all reduced models are equally probable a priori, and thus, the full model should 484 
only contain parameters that are biologically plausible. Here, we cannot exclude physical 485 
damage to cortical areas and pathways crucial to the functioning of the DMN.  486 

That said, our aim was not to make any strong claims about the “true” model; to draw stronger 487 
conclusions about the “true” underlying neuronal basis using DCM for EEG, structural MRI 488 
imaging assessing the extent of the damage in specific patients, possibly in adjunct with source 489 
localization of the EEG signals, should be applied. Here, the aim was to demonstrate and to 490 
compare the predictive performance of effective connectivity in the clinical context. 491 
Additionally, demonstrating predictive value with significant generalization performance with 492 
cross-validation, the level of confidence we can ascribe to our modelling results increases.  493 

 494 

3.2 Leave-one-subject/state-out cross-validation (LOSOCV) 495 
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To test whether the effective connectivity modulations were consistent enough across the patient 496 
groups and healthy controls to reliably distinguish the groups from each other, we first conducted 497 
a leave-one-subject-out cross-validation based on hypothesis- (full DMN, frontoparietal, and 498 
parietal subsets; figure 6) and data-driven subsets of connections (figure 7). Amongst the 499 
connection subsets, the frontoparietal connections performed the best, classifying most controls 500 
and MCS+, and half of the MCS* patients correctly in the healthy controls vs. UWS PET- and in 501 
MCS+ vs. UWS PET- contrasts. The full DMN and parietal subsets clustered most of the 502 
subjects around the chance level in all three contrasts. 503 

We then moved to a data-driven approach in which we first predicted the patient group 504 
membership based on the connection with the largest reduction in PEB, one at a 505 
time, working through all connections. It is important to note that searching for the best 506 
connection in this way increases the risk of overfitting the model by potentially extracting some 507 
of the residual variation – noise – as if representing the underlying model structure. However, the 508 
fact that the best model generalized to an unseen dataset suggests that the results may reflect a 509 
genuine effect (see below). 510 

With the data-driven approach, the bi-directional left frontoparietal connectivity produced the 511 
best predictions, especially when classifying the UWS PET- from both, healthy controls and the 512 
MCS+ patients. The single best performing connection was the backward frontoparietal 513 
connectivity (figure 7). Not surprisingly, the classifications were more accurate and 514 
consistent with healthy controls than with patients; classifications of patients suffering from 515 
severe brain damage, and thus, from highly disrupted brain functioning, were expected to vary 516 
more than those of healthy controls. Next, we combined the single connections into data-driven 517 
subsets based on the classification performance: none of the combinations improved the 518 
performance of the single connections.  519 

Last, the predictive power of DCM modelling was generalized in two more difficult 520 
classification problems; following the hypothesis- and data-driven approaches above, we trained 521 
each model on healthy controls or MCS+ on the one hand, and UWS PET- patients on the other, 522 
and then tested the models on the previously unseen, “covertly aware” MCS* patients. The 523 
hypothesis-driven subsets did not classify the MCS* patients as controls or MCS+. Crucially, 524 
with the data-driven approach, the left backward frontoparietal connection produced nearly 525 
perfect predictions classifying all five patients as either controls or MCS+ rather than UWS PET- 526 
patients. These results are compatible with previous PET imaging results by Thibaut and 527 
colleagues (2021) who observed higher brain metabolism in the lateral and medial frontoparietal 528 
network in MCS* patients when compared to UWS PET- patients. Interestingly, their resting 529 
state EEG results with functional connectivity indicated a difference in the left hemisphere (and 530 
at the whole brain level) when comparing MCS* to both UWS PET- and to MCS patients. To 531 
that end, alpha connectivity was higher and delta connectivity lower in MCS* when compared to 532 
UWS PET- patients. Moreover, a difference between MCS* and MCS was observed in the left 533 
hemisphere with the latter having higher connectivity in the theta band. This finding further 534 
extended to MCS* vs. MCS+ comparison.  535 

While the results of the cross-validation here should be interpreted with caution due to the 536 
relatively low number of subjects in our study, the results, in conjunction with those of Thibaut 537 
and colleagues (2021) suggest a pivotal role for left hemisphere connectivity in distinguishing 538 
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MCS* from UWS PET- and MCS patients. Furthermore, the present results highlight the 539 
importance of the frontoparietal connectivity – particularly the left-lateralized backward 540 
connectivity – when predicting these states of consciousness. The importance of frontoparietal 541 
connections within the DMN for dissociating states of consciousness in DoC patients is not 542 
surprising given the previously established  association between conscious awareness and the 543 
DMN (Boly et al., 2008, 2009; Boveroux et al., 2010; Vanhaudenhuyse et al., 2010). More 544 
specifically, consciousness is thought to require brain-wide broadcasting of information by a 545 
“global workspace” associated with brain areas within the frontoparietal network (Baars, 1988; 546 
Baars, 1997; Dehaene et al., 2011). 547 

It is important to note, however, that the global neuronal workspace theory (GNW) is not a 548 
localisationist approach but rather posits a distributed “router” for conscious access (Dehaene et 549 
al., 2011). The extensive and rapid bidirectional connectivity between the hubs of the GNW is 550 
thought to trigger the sudden collective and coordinated activity mediating global broadcasting 551 
(Mashour et al., 2020). Aptly, these hubs initially included the prefrontal cortex and parietal 552 
cortex (in combination with a set of specialized and modular perceptual, motor, memory, 553 
evaluative, and attentional processors) although it has later been complemented with other, 554 
potentially equally important hubs (such as the anterior and posterior cingulate and the 555 
precuneus). The observation that the changes in the long-range frontoparietal connectivity best 556 
predicts the state of consciousness is in accordance with the suggested importance of the 557 
connectivity between the hubs in the GNW. This is in contrast with the more restricted, content-558 
specific neural correlates of consciousness often associated with the posterior hot zone (Koch et 559 
al., 2016). 560 

However, it is important to keep in mind that presumably, when the patient becomes “more” 561 
conscious, different content becomes more globally available for conscious processing 562 
throughout the brain, affecting and employing different cognitive systems (Hohwy, 2009). In 563 
other words, any major changes in the physiological state alter not only consciousness but other 564 
cognitive systems as well, many of which depend on levels of arousal-promoting 565 
neuromodulators. Therefore, it remains possible that the predictive performance of the 566 
frontoparietal effective connectivity is related not only to the state of consciousness, but also to 567 
other arousal-related cognitive processes. Further, it is worth noting that here, we limited our 568 
contrasts to MCS+, excluding minimally conscious – (negative) from the analyses. Our rationale 569 
was to include a second, irrefutably conscious control group. Nonetheless, future studies should 570 
include MCS- patients to better control for possible confounds of behavior and language 571 
functions present in MCS+. 572 

In summary, our results indicate a key difference between healthy controls or MCS+ patients and 573 
unresponsive patients with congruent hypometabolism in left-lateralized backward frontoparietal 574 
connectivity. With out-of-sample cross-validation, we demonstrated that this association is 575 
robust enough to not only distinguish patient groups from each other, but also generalizes to an 576 
unseen data subset, collected from seemingly unresponsive patients. These results contribute 577 
towards identifying specific alterations in network interaction after severe brain injury, and 578 
importantly, suggest clinical utility of EEG-based effective connectivity in identifying covertly 579 
aware patients who seem behaviorally unresponsive. 580 

 581 
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4 Methods 582 

4.1 Data Acquisition 583 

We assessed effective connectivity within the DMN and whether modulation of this connectivity 584 
predicted states of consciousness in patients with DoC. The patients included were referred to the 585 
University and University Hospital of Liège (Coma Science Group and Centre du Cerveau²) 586 
from clinical centers across Europe since 2008. The data collection was approved by the Ethics 587 
Committee of the University Hospital of Liège and the patients’ legal guardians gave written 588 
informed consent. Data were also collected from healthy controls as a reference group, all of 589 
whom gave informed written consent before participation.  590 

The dataset consisted of the patient data with 26 healthy controls (total N = 188). Parts of these 591 
data have already been published in previous studies (Carrière et al., 2020; Chennu et al., 2017; 592 
Panda et al., 2021). From the dataset, we identified patients admitted due to traumatic brain 593 
injury (TBI; N = 76). Amongst the TBI patients, we further identified those diagnosed with UWS 594 
(Laureys et al., 2010, N = 11) or MCS+ (Bruno et al., 2011, N = 12). Patients admitted due to any 595 
other etiology, e.g., anoxia or hemorrhage, and patients diagnosed with any other condition than 596 
UWS or MCS+, were excluded from the further analyses. See Supplementary materials for more 597 
details of the rationale and process of pruning the dataset. The patient groups were further 598 
divided based on their respective PET-scans – either into a PET-positive (PET+) or a PET-599 
negative (PET-) sub-group (table 1). Amongst the healthy controls, using the random number 600 
generator in MATLAB, we (pseudo-randomly) drew a cohort of 11 control subjects to adjust for 601 
the group-size discrepancies. There were no meaningful differences in the mean ages between 602 
the groups (in a Bayesian ANOVA the probability for the model including the main effect of 603 
age: p(M|data) = 0.247, Bayes factor = 0.328). 604 

Both PET scans and high-density EEG recordings were acquired at the same time and the 605 
patients were behaviorally assessed using the Coma Recovery Scale – Revised (CRS-R; Kalmar 606 
& Giacino, 2005) on the same day, before and after the scans (and on other days for a total of 607 
five assessments). Both patients and healthy volunteers were asked to stay awake during the data 608 
collection. The behaviorally apparent arousal levels of patients were monitored during the data 609 
collection session to ensure that they stayed awake and awaken with auditory/tactile stimulations 610 
if necessary.  611 

PET scans were acquired and interpreted using methodology described in Stender et al. (2014) 612 
and in the Supplementary materials. Briefly, the analysis results were visually inspected by a 613 
trained clinician/researcher. Complete bilateral hypometabolism of the associative frontoparietal 614 
cortex without any voxels with preserved metabolism led to PET- diagnosis, whereas partial 615 
preservation with incomplete hypometabolism in these areas yielded a diagnosis of PET+ 616 
(Laureys et al., 2004; Nakayama et al., 2006; Thibaut et al., 2012).  617 

The EEG data consisted of high-density EEG recordings of 20-30 minutes (256-channels, EGI), 618 
acquired during the F-fluorodeoxyglucose (FDG) uptake, just prior to the start of the PET 619 
imaging. The data were recorded at a sampling rate of either 250 Hz or 500 Hz (downsampled to 620 
250 Hz). Data from the channels from the neck, cheeks, and forehead were discarded due to 621 
contributing most of the movement-related noise. We were left with the data from 173 channels 622 
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on the scalp for further analysis. The raw signals were filtered from 0.5 – 45 Hz, with additional 623 
line noise removal at 50 Hz (notch-filter). We further restricted the DCM analysis to 1 – 30 Hz 624 
due to excessive high-frequency noise components. Via calculating the normalized variance, the 625 
excessively noisy channels and epochs were identified and either manually rejected or retained 626 
by visual inspection. Lastly, the data were re-referenced to a common average. 627 

Table 1. The mean age in years (SD), the total number of patients, and the number of PET+ and 628 
PET- of patients in each of the different DoC-groups. UWS – unresponsive wakefulness 629 
syndrome, MCS+ – minimally conscious state plus, TBI – traumatic brain injury. 630 

Patient 
group 

Mean age (SD) in 
years 

NTOTAL PET+ PET- Etiology 

UWS 30.7 (8.5) 11 5 6 TBI 

MCS+ 38.3 (10.3) 12 11 1 TBI 

Controls 30.9 (6.7) 11 - - - 

 631 

4.2 Dynamic causal modeling 632 

We first imported the first 60 artefact-free 10-second epochs, in to SPM12 (Wellcome Trust 633 
Centre for Human Neuroimaging; www.fil.ion.ucl.ac.uk/spm/software/spm12). To analyze the 634 
resting effective connectivity within the DMN, DCM for EEG cross-spectral densities (CSD) 635 
was applied (Friston et al., 2012; Moran et al., 2009). Here, the observed cross-spectral densities 636 
in the resting-EEG are explained by a generative model that combines a biologically plausible 637 
neural mass model with an electrophysiological forward model mapping the underlying neural 638 
states to the observed data (ERP-model; Moran et al., 2013). The idea is to model the source 639 
activity over time in terms of causal relationships between interacting inhibitory and excitatory 640 
populations of neurons. 641 

Each source – or node – is connected to each other via extrinsic connections, while each 642 
subpopulation within each source is connected to each other via intrinsic connections. Here, 643 
however, we aimed to model disrupted consciousness at the level of active networks, and hence, 644 
we estimated extrinsic connectvity between the nodes within the DMN. Among the extrinsic 645 
connectivity, the top-down – or backward – connections are thought to have inhibitory and 646 
modulatory effects on the nodes they target, while forward connections are viewed as having a 647 
strong excitatory driving effect (bottom-up; Salin & Bullier, 1995; Sherman & Guillery, 1998). 648 

Within each node, second-order differential equations describe the hidden state of neural activity 649 
that depends on both the parameterized intrinsic and extrinsic connection strengths. This enables 650 
the computation of the linear mapping from the endogenous neuronal fluctuations to the EEG 651 
sensor spectral densities, and consequently, permits the modelling of differences in the spectra 652 
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due to changes in the underlying neurophysiologically meaningful parameters. These parameters 653 
describe, for example, the intrinsic and extrinsic connectivity of coupled neuronal populations 654 
(i.e., sources) and their physiology. For further information about EEG DCM, see for example 655 
Friston et al. (2012), Kiebel et al. (2008), and Moran et al. (2009). 656 

 657 

4.3 Model specification 658 

Fitting an EEG DCM model requires the specification of the anatomical locations of the 659 
nodes/sources a priori. Here, we only model the DMN, which has been previously associated 660 
with DoC (Boly et al., 2008; Crone et al., 2011; Crone et al., 2015; Heine et al., 2012; Lin et al., 661 
2017). The schematic representation and the node locations (adopted from Razi et al., 2017) are 662 
shown in figures 1A and 1B, respectively (node locations visualized with the BrainNet Viewer, 663 
Xia et al., 2013, http://www.nitrc.org/projects/bnv/). The MNI coordinates are listed in table 2. 664 

As shown in figure 1A, the nodes in the DMN were connected via forward, backward, and lateral 665 
connections as described in David and collaborators (2006; 2005). Thus, each node was 666 
modelled as a point source with the neuronal activity being controlled by operations following 667 
the Jansen-Rit model (Jansen & Rit, 1995). These three different types of connections in each 668 
model were specified in what is referred in the DCM literature as the ‘A-matrix’. This fully 669 
connected model was then estimated for each subject using the DCM for CSD (Friston et al., 670 
2012; Moran et al., 2009; see Supplementary materials for details). 671 

 672 

 673 
Figure 1. A. The fully connected, schematic representation of the default mode network (DMN). 674 
B. The node locations for the DMN. mPFC – medial prefrontal cortex, Prec – posterior cingulate 675 
cortex/precuneus, lLP – left lateral parietal cortex, rLP – right lateral parietal cortex. 676 

 677 
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Table 2. The default mode network nodes and their corresponding MNI coordinates (adapted 678 
from Razi et al., 2017). 679 

Network Coordinates (in mm) 

 x y z 

Default Mode Network    

Left lateral parietal -46 -66 30 

Right lateral parietal 49 -63 33 

Posterior cingulate/precuneus 0 -52 7 

Medial prefrontal -1 54 27 

 680 

4.4 Parametric empirical Bayes 681 

In DCM, the posterior density over the parameters given by the model inversion process is 682 
approximated via a variational Bayesian scheme by maximizing a lower bound (the negative free 683 
energy) on the log-evidence (Variational Laplace; Friston et al., 2007). A more recent addition, 684 
the PEB framework, can be utilized to infer, for example, the group-level commonalities and 685 
differences (Friston et al., 2016). 686 

In PEB, the subject-specific parameters – here, the effective connectivity modulations between 687 
nodes in DMN – are taken to the group-level and modelled using a General Linear Model 688 
(GLM). In doing so, PEB partitions the between-subject variability into designed effects and 689 
unexplained random effects (captured by the covariance component). As a special case of 690 
Bayesian model selection (BMS), Bayesian model reduction (BMR) enables the inversion of 691 
multiple nested models from a single, fully connected (‘full’) model in a hierarchical manner. In 692 
doing so it enables a greedy search to compare the negative free energies for the nested models 693 
(reduced models), iteratively discarding the parameters that do not contribute to the free energy 694 
(originally ‘post-hoc DCM analysis’; Friston & Penny, 2011; Rosa et al., 2012). Consequently, 695 
PEB conveys both the estimated group-level connection strengths and their respective 696 
uncertainty (posterior covariance component). As such, it is argued that hypotheses about 697 
commonalities and differences across subjects can be tested with more precise parameter 698 
estimates than with traditional frequentist comparisons (Friston et al., 2016).  699 

A Bayesian Model Average (BMA) is calculated over the best 256 models weighted by their 700 
model evidence; for every connection, a posterior probability for the connection being present 701 
vs. absent is calculated by comparing evidence from all the models in which the parameter is 702 
switched on vs. all the models in which it is switched off. Here, we applied a threshold of >.99 703 
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posterior probability, in other words, connections with over .99 posterior probability were704 
retained. The overall process is shown in Figure 2. 705 

 706 

 707 

Figure 2. The pipeline for inverting the dynamic causal modelling (DCM) model for different708 
subject-groups. This was done to find the best models for each patient group, to estimate the709 
effective connectivity modulations between the patient groups, and as a prerequisite for the710 
leave-one-subject-out cross-validation (LOSOCV) classification with parametric empirical711 
Bayes (PEB) modelling. 712 

 713 

4.5 Leave-one-out cross-validation 714 

To validate our modelling framework, we investigated which DMN connections are predictive of715 
the subject group by adapting a standard approach in computational statistics, leave-one-subject-716 
out cross-validation (LOSOCV; spm_dcm_loo.m). Here, we iteratively fitted a multivariate717 
linear model (as described in detail in Friston et al., 2016) to provide the posterior predictive718 
density over connectivity changes, which was then used to evaluate the posterior belief of719 
the explanatory variable for the left-out participant: in the present case, the probability of the720 
subject group membership.   721 

To cross-validate a fitted DCM model, one participant was left out each time before conducting722 
PEB analysis on the training dataset, and the optimized empirical priors were then used to predict723 
the subject-group to which the dataset from the left-out participant belonged (see Friston et al.,724 
2016 for details). We repeated this procedure for each participant, and in doing so generated725 
probabilities of state affiliation (here, posterior probabilities for subject group-membership). 726 
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It is worthwhile to note, that we have estimated the DCM models using the default parameter 727 
settings recommended in the literature (Ashburner et al., 2017; Friston et al., 2003; Friston et al., 728 
2012; Kiebel et al., 2009). This is also true for the LOSOCV procedure: no hyper parameter 729 
optimization was done. Here, we trained the model with the data from all but the left-out 730 
participant (training set), and predicted the state based on the data from the left-out participant 731 
(test set) and repeated this procedure leaving out a different participant each time. 732 

 733 

4.6 Leave-one-subject-out cross-validation 734 

We first estimated predictive performance in a leave-one-subject-out cross-validation paradigm 735 
in which LOSOCV metrics for all connections in the DMN and for a hypothesis-driven subsets 736 
were estimated (frontoparietal and parietal subsets; figure 3). Next, a data-driven approach was 737 
used in which we started the estimation from the connection associated with the largest 738 
connectivity reduction between the subject-groups and repeated the procedure for all 739 
connections. Here, we utilized a forward stepwise regression in which we started the estimation 740 
from the connections with the largest changes and continued through the parameters based on 741 
their respective modulation effect sizes. Lastly, we combined connections into data-driven 742 
subsets, starting from the connections with the best classification performance, until the 743 
classification accuracy stopped improving. The rationale was to investigate the location and 744 
direction of the most consistent inter-subject-level effects, in addition to the largest effect sizes 745 
identified by the PEB analysis. 746 

  747 

 748 

Figure 3. The hypothesis-driven subsets for the LOSOCV-paradigm. The red arrows indicate the 749 
connections included in each subset, and the grey arrows the left-out connections. First, 750 
predictions based on all connections were estimated (A). Next, predictions based on two 751 
connection subsets – frontoparietal (B) and parietal subsets (C) – were estimated. Lastly, we 752 
estimated predictions based on single connections in a data-driven approach. mPFC – medial 753 
prefrontal cortex, Prec – posterior cingulate cortex/precuneus, lLP – left lateral parietal cortex, 754 
rLP – right lateral parietal cortex, DMN – default mode network. 755 

 756 
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4.7 Leave-one-state-out cross-validation 757 

Finally, the validation process was generalized by introducing two more difficult classification 758 
problems: first, we trained the model on the DCM parameters from the control and the UWS 759 
PET- groups, and then tested it on unseen data collected from the MCS* patient-group. Second, 760 
we trained the model on the data from the MCS+ and the UWS PET- groups, and again tested on 761 
the MCS* datasets. Here, the model was trained on all training datasets. As above, the model 762 
used the optimized empirical priors to predict the more likely patient-group the test dataset 763 
(MCS*) belonged. We hypothesized that if our modelled effects are valid, and if the sustained 764 
PET-metabolism reflects higher level of consciousness present in the MCS* patients in 765 
comparison to UWS PET- patients, in the former case the model should classify the test datasets 766 
as controls rather than UWS PET-. Similarly, in the latter case, given that the MCS+ patients are 767 
conscious, the test data should be classified as MCS+ rather than UWS PET-. Here, we used 768 
posterior probability for subject group-membership to quantify classification performance. 769 
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7 Supporting Materials 1122 

 1123 

Table S1. The number of satisfactory fits with the default hyperparameters and after adjusting 1124 
the neural innovations and the noise precision for the different subject groups.  1125 

Patient group N Satisfactory fits After BPA Final 

UWS 11 5 11 11 

MCS+ 12 9 12 12 

Controls 11 9 11 11 

 1126 

 1127 

Figure S1. A flowchart showing the dataset pruning process, and the corresponding N for the 1128 
experimental groups. From the full dataset, patients with TBI (N = 76) were identified. Next, the 1129 
main group of interest – patients diagnosed as UWS (N = 11) – were distinguished. We then 1130 
pseudo-randomly drew a cohort of 11 healthy controls to adjust for the group-size discrepancies. 1131 
A cohort of 12 MCS+ patients were identified to act as a second control group. 1132 
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 1134 

Figure S2. The average model fits across the participants in all subject-groups. A-C. Subject-1135 
averaged power spectra of the observed EEG channel-space data, juxtaposed with that predicted 1136 
by the fitted DCM models of each subject group. Individual lines reflect spatial modes. 1137 
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 1139 
Figure S3. Classification accuracy percentage (mean posterior probability for correct 1140 
classification) in the leave-one-subject-out cross-validation paradigm for the hypothesis-driven 1141 
subsets. The number of subjects in each group is shown in parenthesis under the true group 1142 
labels. The frontoparietal subset performed the best in terms of both classification accuracy and 1143 
mean posterior probability, especially with healthy controls for healthy control vs. UWS PET- 1144 
and MCS+ vs. UWS PET- contrasts (panels A2 and B2, respectively). Classification based on 1145 
full DMN had high accuracy for healthy controls; however, the mean posterior probabilities 1146 
bordered the chance level.  1147 
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 1149 

Figure S4. Classification accuracy percentage (mean posterior probability for correct 1150 
classification) in the leave-one-subject-out cross-validation paradigm for the data-driven 1151 
approach. The number of subjects in each group is shown in parenthesis under the true group 1152 
labels. For the healthy controls vs. UWS PET- and MCS+ vs. UWS PET- contrasts, the 1153 
frontoparietal backward connection from mPFC to lLP performed best in terms of both 1154 
classification accuracy and mean posterior probability. Forward frontoparietal connectivity 1155 
from lLP to mPFC classified healthy controls and MCS+ patients from UWS PET- with high 1156 
accuracy but bordered the chance level with UWS PET-. Similarly, lLP to mPFC connectivity 1157 
performed the best with the healthy controls vs. MCS+ contrast.  1158 
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