

Glucose Hypometabolism Prompts RAN Translation and Exacerbates C9orf72-related ALS/FTD Phenotypes

A.T. Nelson¹, M.E. Cicardi¹, S.S. Markandaiah¹, J. Han², N. Philp², E. Welebob¹, A.R. Haeusler¹, P. Pasinelli¹, G. Manfredi³, H. Kawamata³ and D. Trott¹

¹Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA 19107, USA;

²Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA;

³Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, New York 10065, USA.

Running Title: **Brain Glucose and C9orf72-ALS/FTD**

Correspondence:

Davide Trott, Ph.D.

Jefferson Hospital for Neuroscience building, 4th floor, room 416
900 Walnut Street, Philadelphia, PA 19107, USA

Tel. 215.955.8416

Email davide.trott@jefferson.edu

1 Abstract

2 The most prevalent genetic cause of both amyotrophic lateral sclerosis and
3 frontotemporal dementia is a (GGGGCC)_n nucleotide repeat expansion (NRE) occurring in the
4 first intron of the *C9orf72* gene (C9). Brain glucose hypometabolism is consistently observed in
5 C9-NRE carriers, even at pre-symptomatic stages, although its potential role in disease
6 pathogenesis is unknown. Here, we identified alterations in glucose metabolic pathways and
7 ATP levels in the brain of asymptomatic C9-BAC mice. We found that, through activation of the
8 GCN2 kinase, glucose hypometabolism drives the production of dipeptide repeat proteins
9 (DPRs), impairs the survival of C9 patient-derived neurons, and triggers motor dysfunction in
10 C9-BAC mice. We also found that one of the arginine-rich DPRs (PR) can directly contribute to
11 glucose metabolism and metabolic stress. These findings provide a mechanistic link between
12 energy imbalances and C9-ALS/FTD pathogenesis and support a feedforward loop model that
13 opens several opportunities for therapeutic intervention.

14
15 **Key words:** ALS/C9orf72/Dipeptide Repeat Proteins/FTD/Glucose Hypometabolism/RAN
16 Translation
17

18 Introduction

19 Amyotrophic lateral sclerosis (ALS) is a progressive adult-onset neurodegenerative
20 disease characterized by the loss of upper and lower motor neurons, leading to muscle wasting,
21 paralysis, and eventually death (Hardiman *et al*, 2017). It is a highly heterogeneous disease with
22 numerous known genetic causes (Hardiman *et al.*, 2017). The most common of these is a
23 (GGGGCC)_n (G₄C₂) nucleotide repeat expansion (NRE) in a non-coding region of the *C9orf72*
24 gene (C9), which accounts for up to 20% of all ALS cases, as well as a subset of frontotemporal
25 dementia (FTD) cases (DeJesus-Hernandez *et al*, 2011; Renton *et al*, 2011).

26 Common features of various forms of ALS and other neurodegenerative diseases include
27 altered metabolism and bioenergetic homeostasis (Cunnane *et al*, 2020; Nelson & Trott, 2022).
28 Specifically, ALS patients often exhibit systemic hypermetabolism, mitochondrial dysfunction,
29 and brain glucose hypometabolism (De Vocht *et al*, 2020; Fayemendy *et al*, 2021; Popuri *et al*,
30 2021; Smith *et al*, 2019). Targeting these alterations through various metabolic treatments and
31 dietary manipulations has shown promise as a potential therapeutic strategy (Beghi *et al*, 2013;
32 Ludolph *et al*, 2020). Furthermore, in C9-NRE carriers, metabolic alterations – especially
33 glucose hypometabolism – can manifest many years before symptom onset (Popuri *et al.*, 2021;
34 Xia *et al*, 2023). Therefore, energy imbalance is an early manifestation in C9-NRE carriers.
35 However, whether it plays a role in disease pathogenesis is unknown.

36 A well-established pathogenic mechanism associated with C9-ALS/FTD is the aberrant
37 production of dipeptide repeats (DPRs) through repeat-associated non-ATG (RAN) translation.
38 Due to bidirectional transcription of the NRE, five distinct DPRs are produced, including poly-
39 glycine-alanine (GA) and poly-glycine-arginine (GR) from the sense (G₄C₂) transcript; poly-
40 proline-alanine (PA) and poly-proline-arginine (PR) from the antisense (C₄G₂) transcript; and
41 poly-glycine-proline (GP) from both transcripts (Ash *et al*, 2013; Mori *et al*, 2013; Zu *et al*,
42 2013). Accumulation of DPRs in aggregated forms has been detected in the central nervous
43 system (CNS) of ALS/FTD patients (Ash *et al.*, 2013; Mori *et al.*, 2013). Moreover, the GA, GR,
44 and PR species are toxic in both cultured neurons and *in vivo* (Hao *et al*, 2019; Jensen *et al*,
45 2020; Kwon *et al*, 2014; May *et al*, 2014; Verdone *et al*, 2022; Wen *et al*, 2014). For these
46 reasons, DPR production and accumulation are thought to directly contribute to
47 neurodegeneration in C9 patients. Still, a complete understanding of the RAN translation
48 mechanism – including how it can be triggered or modified by other disease-related events (such
49 as energy imbalance) – is lacking.

50 Remarkably, several brain regions that are hypometabolic in C9-NRE carriers – including
51 the frontal and temporal cortices – also tend to be rich in DPR pathology (Ash *et al.*, 2013; De
52 Vocht *et al.*, 2020; Popuri *et al.*, 2021; Schludi *et al*, 2015), which raises the possibility that
53 glucose hypometabolism and DPR formation are mechanistically linked. Notably, cellular stress
54 can selectively enhance RAN translation through activation of the integrated stress response
55 (ISR) (Cheng *et al*, 2018; Green *et al*, 2017; Westergard *et al*, 2019), and glucose deprivation is
56 a well-established activator of the ISR (Pakos-Zebrucka *et al*, 2016; Yang *et al*, 2000; Yang *et*
57 *al*, 2013). Therefore, we hypothesized that glucose hypometabolism could enhance DPR
58 production in C9-ALS/FTD. However, the reverse hypothesis that DPRs can contribute to
59 glucose hypometabolism is also worth considering. Notably, pathogenic proteins associated with
60 several other neurodegenerative diseases (including amyloid-beta and polyglutamine-expanded
61 Huntingtin, linked to Alzheimer's disease and Huntington's disease, respectively) can interfere

62 with neuronal glucose uptake (Li *et al*, 2012; Prapong *et al*, 2002). Therefore, we also propose
63 that the C9-linked DPRs could act similarly and contribute to or exacerbate metabolic stress.

64 In the present study, we investigated the brain metabolite profile of asymptomatic BAC
65 transgenic mice carrying the C9orf72-linked repeat expansion (C9-BAC). We identified
66 significant alterations in glucose metabolic pathways and impairment in steady-state brain ATP
67 levels. We then demonstrated that glucose hypometabolism promotes DPR production and
68 impacts the typical survival profile of cultured neurons expressing the C9-NRE *via* activation of
69 the GCN2 arm of the ISR. We also found that chronic exposure of the C9-BAC mouse to glucose
70 hypometabolism exacerbates the production of DPRs and causes motor dysfunction. And finally,
71 we show that PR can impair neuronal glucose uptake, reduce metabolic flux, and activate the
72 ISR. Our results support a feedforward loop linking glucose hypometabolism, cellular stress, and
73 DPR formation, opening several therapeutic intervention opportunities.

74

75 **Results**

76 *Energy metabolites are altered in the C9orf72 BAC mouse brain*

77 Since glucose is classically considered the primary energy substrate in the brain (Dienel,
78 2019), we hypothesized that reductions in brain glucose uptake (as seen in C9orf72-ALS/FTD
79 patients (De Vocht *et al*, 2020; Popuri *et al*, 2021)) would be accompanied by altered brain
80 energy production. Ideally, this would be assessed by measuring metabolite levels directly in
81 patient postmortem tissue. However, this is unfeasible, mainly due to metabolite degradation
82 during the postmortem interval (Chighine *et al*, 2021). Therefore, we leveraged a C9-BAC
83 transgenic mouse model, which carries the entire human C9orf72 gene with a [GGGGCC] repeat
84 expansion (**Fig. EV1A**) and displays C9orf72-related pathology (i.e., RNA foci and DPR
85 inclusions) but otherwise lacks overt behavioral phenotypes (O'Rourke *et al*, 2015). We
86 performed targeted liquid chromatography-mass spectrometry (LC-MS)-based metabolite
87 profiling to measure the abundance of >200 different metabolites in the frontal cortex of both
88 C9-BAC animals and wild-type littermate controls (**Figure 1A; Table EV1**). Principal
89 component analysis (PCA) indicated that the relative differences in this metabolite panel were
90 sufficient in separating C9-BAC from wild-type (**Figure 1B**). Remarkably, out of all metabolites
91 analyzed, ATP was the most significantly altered and was decreased by ~2-fold in C9-BAC brain
92 (frontal cortex) relative to wild-type; ATP:ADP and ATP:AMP ratios were also significantly
93 reduced (**Figure 1C; Table EV1**). Such an ATP imbalance could be explained by dysfunction of
94 the two main energy-producing metabolic pathways: **1**) glycolysis and **2**) oxidative
95 phosphorylation (Dienel, 2019). Interestingly, we observed alterations to both of these pathways
96 in the brain of C9-BAC animals. Enrichment analysis indicated glycolysis was one of the most
97 significantly enriched metabolite categories and decreased in the C9-BAC brain (**Figure 1D**).
98 Upon closer analysis, despite no differences in brain glucose levels (**Figure EV1B**), we observed
99 significant alterations in the glycolytic intermediates glucose-6-phosphate (G6P),
100 glyceraldehyde-3-phosphate (GADP), and phosphoenolpyruvate (PEP) in the frontal cortex of
101 the C9-BAC mice (**Figure 1E**), which indicates that glycolytic function may be altered. We also
102 observed an enrichment of citric acid cycle metabolites (decreased in C9; **Figure 1D**) and a
103 decrease specifically in α -ketoglutarate, a rate-limiting intermediate of the citric acid cycle and
104 precursor for several amino acids, including glutamate (Wu *et al*, 2016) (**Figure EV1C**).
105 Interestingly, C9-BAC animals also showed *higher* levels of several amino acids, including
106 lysine, isoleucine, cysteine, and ornithine (**Figure EV1D**), as well as significant enrichment of

107 metabolite sets involved in amino acid metabolism (**Figure 1D**). This could reflect a
108 compensatory shift towards increased metabolism or transport of amino acids for energy
109 production. Finally, we detected significant decreases in the key redox cofactors NAD⁺ and
110 NADP⁺ in C9-BAC animals with no changes in their reduced counterparts (NADH and NADPH,
111 respectively; **Figure 1F, Figure EV1E**), indicating a hyper-reduced redox state, which could
112 contribute to glycolytic inefficiency by limiting the pool of available NAD⁺. We also detected a
113 decrease in the levels of nicotinamide mononucleotide (NMN; **Figure 1F**), which is an essential
114 precursor of NAD⁺ (Xie *et al.*, 2020), suggesting a potential defect in NAD⁺ biosynthesis.
115 Overall, our metabolomics data indicate that the C9orf72 repeat expansion mutation is sufficient
116 to alter ATP levels and the NAD⁺/NADH ratio in the mouse frontal cortex.

117

118 *Glucose hypometabolism drives dipeptide repeat accumulation by enhancing RAN translation*

119 We next evaluated the potential impact of energy imbalance on a pathogenic mechanism
120 of C9-ALS/FTD: the production of DPRs by RAN translation of the C9-NRE (Mori *et al.*, 2013;
121 Zu *et al.*, 2013). Given our observations of glycolytic imbalance in the frontal cortex of the C9-
122 BAC mouse, as well as the known overlap between the brain distribution of DPR-positive
123 inclusions (Ash *et al.*, 2013; Schludi *et al.*, 2015) and brain glucose hypometabolism in human
124 mutation carriers (De Vocht *et al.*, 2020; Popuri *et al.*, 2021), we examined the role of glucose
125 hypometabolism as a modifier of RAN translation. To model RAN translation *in vitro*, we used a
126 human synapsin-driven lentiviral vector to ectopically express a (GGGGCC)₁₈₈ repeat expansion
127 with a 3' GFP tag (lacking an ATG start codon) in primary rodent neurons (

128 **Figure 2A**). Notably, we included the region of the C9orf72 gene located immediately
129 upstream of the G₄C₂ repeat expansion – including exon 1a and a portion of intron 1 – which is
130 thought to be required to initiate RAN translation from the sense strand (Tabet *et al.*, 2018).
131 Indeed, neurons transduced with this vector exhibit a clear GFP signal that accumulates into
132 perinuclear and dendritic DPR inclusions (

133 **Figure 2B**), which are detectable by Western blot using both GFP- and DPR-specific
134 antibodies (

135 **Figure 2C**). We then established an *in vitro* glucose hypometabolism paradigm by
136 replacing a portion (up to 40%) of the glucose in the media with the glycolysis inhibitor 2-
137 deoxyglucose (2DG), which caused downregulation of energy metabolism gene ontology (GO)
138 pathways at the transcriptional level (**Figure EV2A**). We also found that 2DG treatment caused
139 a sharp reduction of both extracellular acidification rate (ECAR) and oxygen consumption rate
140 (OCR), as measured by the Seahorse extracellular flux assay (**Figure EV2B**), indicating
141 functional impairment of energy metabolism. We then applied the 2DG treatment paradigm to
142 neurons transduced with the RAN translation vector (

143 **Figure 2D**). Remarkably, we found that DPR formation was highly 2DG dose-dependent,
144 with neurons treated with the highest 2DG concentration (10 mM) accumulating ~six times the
145 number of DPR inclusions compared to non-treated cells (

146 **Figure 2E**), strongly suggesting that glucose hypometabolism increases DPR
147 accumulation.

148 As a control, we performed the same experiment, but instead of using the RAN
149 translation vector to drive DPR production, we used a separate ATG-driven vector encoding 50
150 codon-optimized GA repeats with a 3' GFP tag (

Figure 2G). Importantly, the 2DG treatment did not affect the abundance of GA aggregates from this ATG-driven vector (

Figure 2H). This indicates that glucose hypometabolism selectively enhances RAN translation while having limited effects on ATG-driven translation. The findings suggest that RAN-translated DPR accumulation is due to increased production rather than decreased turnover since the GA aggregates made from both vectors are subject to the same molecular chaperones and degradative mechanisms. Finally, we observed no impact from the 2DG treatment on GFP mRNA levels (

Figure 2I), which indicates that the increase in aggregates is not due to changes in viral transduction or transcription efficiencies but reflects the upregulation of RAN translation.

Glucose hypometabolism causes DPR accumulation through the GCN2 arm of the ISR

To elucidate the mechanism through which glucose hypometabolism enhances the accumulation of DPRs, we first used RNA sequencing to identify the significant transcriptomic changes that occur in C9orf72 patient-derived induced pluripotent stem cell (iPSC) neurons upon 2DG treatment. Among the most highly upregulated pathways were those implicated in stress response, including “response to the endoplasmic reticulum (ER) stress,” “amino acid transport,” and “amino acid biosynthesis” (**Figure 3A**), which led us to consider cellular stress signaling as a potential mediator of increased RAN translation. In line with this, several studies have demonstrated that cellular stress can increase RAN translation by activating the ISR (Cheng *et al.*, 2018; Green *et al.*, 2017; Westergard *et al.*, 2019). The key on-switch for the ISR is phosphorylation of eIF2 α , which is carried out by four different kinases – HRI, PKR, PERK, and GCN2 – each activated by different forms of stress (Pakos-Zebrucka *et al.*, 2016). A major outcome of eIF2 α phosphorylation is ATF4 translational activation. ATF4 then translocates to the nucleus and activates transcription of numerous target genes (Pakos-Zebrucka *et al.*, 2016). Indeed, in our RNA-seq dataset, we observed upregulation of ATF4 and multiple known targets of ATF4 (**Fig. 3B**), indicating that 2DG treatment activates the ISR in C9orf72 patient-derived iPSC neurons. We also identified upregulation of ATF4 in spinal cord lysates from C9orf72 patients (**Figure EV3A**), highlighting the relevance of ISR activation in C9-ALS/FTD.

We then confirmed that 2DG treatment activates the ISR in our primary rodent neuron model. Using immunofluorescent staining, we observed a 2DG dose-dependent increase in ATF4 nuclear intensity, specifically in MAP2-positive neurons (**Figure 3C**), which strongly correlated with DPR accumulation ($R^2 > 0.8$) (**Figure 4A**). This suggested that the increase in DPR accumulation was indeed mediated by ISR activation. To provide more evidence, we tested whether direct pharmacological inhibition of the ISR could also inhibit DPR accumulation caused by 2DG. Specifically, we blocked GCN2 because it is activated by nutrient deprivation stress (**Figure 4B**). Remarkably, we found that treatment of the neuronal cultures with A92 – a pharmacological inhibitor of GCN2 – completely prevented the increase in DPR accumulation caused by 2DG (**Figure 4C-D**) with an IC_{50} value of 1.6 μ M (**Figure 4E**). Importantly, A92 had no deleterious effect on neuronal survival (**Figure EV3B**). Furthermore, ISRIB (a small molecule inhibitor of the ISR) could *also* block the increase in DPR formation caused by 2DG (**Figure EV3C**), further confirming the involvement of the ISR in augmenting DPR production. Lastly, we demonstrated that inhibition of GCN2 with A92 can block DPR formation caused by 2DG in human iPSC-derived neurons (**Figure EV3D**). Together, our data indicate that glucose

195 hypometabolism enhances neuronal RAN translation through activation of the GCN2 arm of the
196 ISR.

197

198 *Glucose hypometabolism selectively impairs the survival of i³Neurons from C9orf72 ALS*
199 *patients through activation of the GCN2 kinase*

200 Given the toxic profile of DPRs, we posit that glucose hypometabolism – by augmenting
201 RAN translation – would cause a higher level of toxicity in neurons carrying the repeat
202 expansion compared to healthy controls. We tested this hypothesis in hiPSC-derived neurons
203 generated via doxycycline-inducible expression of pro-neuronal transcription factors (**Figure 5A**).
204 This approach produces highly consistent and homogenous neuronal cultures (i³Neurons), which
205 express the full complement of neuronal markers and exhibit classic electrophysiological
206 properties of neurons (Fernandopulle *et al*, 2018). We generated mature i³Neurons from healthy
207 controls and C9orf72 ALS patients, then removed glucose from the cell culture media (**Figure**
208 **5B**). This approach led to a time-dependent reduction in neuronal activity, which was rescued by
209 the re-addition of glucose (**Figure EV4A**). Moreover, as with our 2DG treatment paradigm, we
210 verified that complete glucose deprivation decreases the metabolic rate of the cells (**Figure**
211 **EV4B**), causes ISR activation, and enhances DPR production (**Figure EV4C-F**). We then
212 tracked the survival of both control and C9 patient-derived i³Neurons (with two iPS lines per
213 genotype) cultured in glucose-deprived or normo-glucose media over six days and found that the
214 C9 cells had markedly worse survival in glucose-deprived media compared to control cells, as
215 well as compared to C9 cells cultured in normo-glucose (**Figure 5C-D**). Furthermore, we found
216 that this C9-specific survival defect was ameliorated by culturing the cells with the GCN2
217 inhibitor A92 (**Figure 5E**), which may suggest that DPR production via GCN2 activation is
218 potentially involved in the C9-specific vulnerability to glucose deprivation. However, the rescue
219 we observed was incomplete, which may reflect the involvement of other pathogenic
220 mechanisms caused by the repeat expansion besides DPR toxicity (for example, C9orf72
221 haploinsufficiency (Wang *et al*, 2021)).

222

223 *Exacerbating energy imbalances increases DPR accumulation and causes motor dysfunction in*
224 *the C9 BAC transgenic mouse*

225 To corroborate our findings in an *in vivo* model and explore the potential downstream
226 behavioral and phenotypical consequences of glucose hypometabolism in C9-ALS/ALS, we
227 returned to the C9 BAC transgenic mouse. Despite exhibiting some basal level of dipeptide
228 repeat pathology in several CNS regions, these mice do not manifest ALS-like motor dysfunction
229 (O'Rourke *et al.*, 2015), which we hypothesized is due to *insufficient* production of DPRs. We
230 further hypothesized that exacerbating metabolic dysfunction in these animals would cause
231 significant stress to the CNS, increase DPR production, and cause the onset of a motor
232 phenotype.

233 To target glucose metabolism in the CNS, we i.p. injected mice with 2DG (**Figure 6A**),
234 which O'Connor and colleagues demonstrated to cause ISR activation in the murine
235 CNS(O'Connor *et al*, 2008). We performed an initial experiment to confirm these results, and
236 indeed, observed a 2DG dose-dependent increase in spinal cord mRNA levels of both CHOP and
237 GADD34 (two downstream targets of the ISR) within 16 hours of 2DG injection (**Figure 6B**).
238 However, we also observed acute toxicity in several animals treated with the highest dose (8

239 g/kg), and therefore we proceeded with further experiments using the intermediate dose (4 g/kg).
240 We exposed animals to 4 g/kg 2DG weekly for six weeks. After the treatment course, we again
241 employed LC-MS to confirm the presence of 2DG-6-P (the primary metabolite of 2DG) in the
242 brain and assess the degree of metabolic alteration it caused. As expected, we detected 2DG-6-P
243 accumulation in the brain of 2DG-injected animals (**Figure 6C**), as well as an increased
244 concentration of fructose-1,6-bisphosphate and enrichment of metabolites involved pathways
245 such as gluconeogenesis, transfer of acetyl groups into the mitochondria, the citric acid cycle,
246 and several others (**Figure 6D, Figure EV5A, Table EV1**), which validates this approach as a
247 method to introduce metabolic impairment in the CNS. Interestingly, using confocal scanning
248 laser ophthalmoscopy (cSLO) imaging, we also observed evidence of retinal damage resulting
249 from 2DG treatment. Specifically, compared to saline-treated, the 2DG-treated C9-BAC animals
250 had a higher number of round hyperfluorescent foci (**Figure EV5B**), which are commonly
251 associated with various pathological retinal conditions (Fragiotta *et al*, 2021). This further
252 highlights the CNS effects of the 2DG injection paradigm.

253 But does 2DG-mediated metabolic impairment alter DPR production and/or motor
254 function? Indeed, using both a dot blot immunoassay and a single molecule array (Simoa) assay,
255 we observed higher GP levels in the spinal cord of 2DG-injected C9-BAC animals compared to
256 those injected with saline (**Figure 6E, Figure EV5C**). Furthermore, we found that chronic 2DG
257 treatment was accompanied by a worsening of motor performance, as indicated by a decreased
258 latency to fall of 2DG-injected C9 animals on the inverted wire hang test (**Figure 6F**), which
259 was independent of changes in body weight (**Figure EV5D**). Importantly, in wild-type animals,
260 we *did not* detect a deficit in inverted wire hang performance (**Figure EV5E**), indicating that the
261 deficit is specific to C9-BAC animals. Together, our data indicate that exacerbating metabolic
262 imbalances and ISR activation *in vivo* enhances DPR production and causes a motor phenotype
263 in a transgenic mouse model of C9-ALS/FTD.

264

265 *PR contributes to neuronal glucose hypometabolism and ISR activation*

266 We also wanted to determine whether RAN-translated DPRs could themselves contribute
267 to neuronal glucose hypometabolism and ISR activation. We again employed synapsin-driven
268 lentiviral vectors to drive DPR production in neurons, but for these experiments, we encoded the
269 DPRs using a randomized codon strategy such that only one of the five possible DPRs would be
270 expressed at any time and using an ATG start codon (**Figure 7A**). We also included a GFP tag
271 downstream of the DPRs to visualize their cellular localization and used a GFP-only vector as a
272 control. These vectors drive robust DPR/GFP expression with the expected cellular localization
273 patterns. For example, the GFP fluorescence resulting from the PR vector mainly localizes to the
274 nuclear and nucleolar regions of the cells (**Figure 7B**). We transduced cells with equivalent
275 amounts of lentivirus for each construct (which we determined using qRT-PCR-based
276 measurement of lentiviral titers; **Figure EV6A**) and found that each vector drove GFP/DPR
277 expression with similar transduction efficiencies ranging from 85%-95% (**Figure EV6B-C**).

278 We then measured how these DPRs affect the neurons' ability to both take up and
279 metabolize glucose. Interestingly, using a luminescence-based glucose uptake assay (which we
280 first validated for use with neurons; **Figure EV6D**), we found that expression of PR (but not the
281 other DPRs) caused a ~25% reduction in glucose uptake normalized to total protein, compared to
282 the GFP control (**Figure 7C**). Furthermore, using the Seahorse flux assay, we found that
283 expression of PR *also* caused a significant reduction in extracellular acidification rate (ECAR)

284 normalized to total protein (**Figure 7D**), which is an indicator of the rate of glycolysis occurring
285 in the cells. Therefore, our data indicate that the presence of PR in neurons is sufficient to impair
286 glucose metabolism. We also detected a trend towards decreased oxygen consumption in PR-
287 expressing neurons, indicating that impaired glucose metabolism caused by PR decreases the
288 amount of pyruvate available for oxidative phosphorylation (**Figure EV6E**). As expected, we
289 also found that PR-expressing neurons had a significantly higher nuclear ATF4 level (**Figure**
290 **7E**), which indicates that PR can *also* activate the ISR, potentially through its effect on glucose
291 metabolism, although we cannot rule out the other mechanisms initiated by PR. Still, these data
292 indicate that PR can independently contribute to neurons' energy imbalance and ISR activation in
293 neurons.

294

295 **Discussion**

296 In this study, we identified a novel link between energy imbalance and disease
297 pathogenesis in C9orf72-ALS/FTD, which uncovers several opportunities for therapeutic
298 intervention. Specifically, we demonstrated that brain glucose hypometabolism – which is a
299 consistently-observed phenomenon that occurs years before symptom onset in C9orf72 patients
300 but also in other neurodegenerative diseases (Cunnane *et al.*, 2020; De Vocht *et al.*, 2020; Popuri
301 *et al.*, 2021) – can act as a modifier of RAN translation and ultimately prime and exacerbate
302 disease phenotypes, both in *in-vitro* and *in-vivo* models of disease. These findings are
303 particularly important because they indicate that, by heightening the production of pathogenic
304 DPRs, pre-symptomatic metabolic imbalances may play a central role in initiating or potentiating
305 disease. This, in turn, highlights a critical window for therapeutic intervention to mitigate RAN
306 translation and thereby delay disease onset or slow disease progression. Fortunately, many FDA-
307 approved metabolic treatments already exist (Kinch *et al.*, 2015) and could quite easily be
308 repurposed to treat C9orf72 ALS/FTD patients. The compound taurursodiol – which, in
309 combination with sodium phenylbutyrate, was recently approved by the FDA under the brand
310 name Relyvrio for the treatment of ALS (Paganoni *et al.*, 2020) – is known to enhance
311 mitochondrial biogenesis (Soares *et al.*, 2018) and may, in turn, enhance mitochondrial energy
312 production, though its exact mechanism of action is unknown. Boosting energy production in the
313 CNS could also be achieved through simple dietary manipulation, and indeed, both high-
314 fat/high-calorie diet and acetyl-L-carnitine supplementation have already shown clear therapeutic
315 potential in both pre-clinical studies and ALS clinical trials (Beghi *et al.*, 2013; Ludolph *et al.*,
316 2020). Another potentially powerful approach (though unexplored in C9orf72-ALS/FTD) is
317 supplementation with the NAD⁺ precursor nicotinamide mononucleotide (NMN), especially
318 since we identified deficits in both NAD⁺ and NMN in the brain of C9-BAC mice. Indeed,
319 dietary supplementation with NMN has been shown to enhance NAD⁺ biosynthesis and, in turn,
320 boost energy production (Xie *et al.*, 2020), and may therefore help to correct energy imbalances
321 associated with the C9orf72 repeat expansion. Overall, our findings warrant additional clinical
322 efforts to preserve bioenergetic homeostasis in C9orf72 ALS/FTD patients – including pre-
323 symptomatic mutation carriers – to keep RAN translation at bay.

324 Our findings also highlight another potential therapeutic target for C9orf72-ALS/FTD:
325 the integrated stress response (ISR). In support of this, we observed activation of the ISR both in
326 neurons exposed to energy deprivation and in the spinal cord of C9orf72-ALS/FTD patients,
327 highlighting the clinical relevance of ISR activation. But more importantly, we also found that
328 pharmacological inhibition of GCN2 – which is one of the four kinases that controls ISR

329 activation (Pakos-Zebrucka *et al.*, 2016) – completely blocked DPR accumulation caused by
330 glucose hypometabolism, which suggests that GCN2 inhibition may serve as a viable therapeutic
331 strategy to attenuate RAN translation caused by metabolic imbalances. Of note, ALS patients are
332 subject to numerous other forms of stress in addition to that caused by energy imbalance
333 (Masrori & Van Damme, 2020), and therefore, the potential contributions of the other three
334 stress-sensing ISR kinases (i.e. PERK, PKR, and HRI) should also be considered. Indeed, several
335 studies have identified roles for PERK and PKR in mediating RAN translation caused by
336 oxidative stress and/or (GGGGCC) repeat-containing RNA, respectively (Cheng *et al.*, 2018;
337 Green *et al.*, 2017; Westergard *et al.*, 2019; Zu *et al.*, 2020). Moreover, perturbation to the
338 mitochondria (also commonly seen in ALS) was recently found to activate HRI, the fourth ISR
339 kinase (Guo *et al.*, 2020). Therefore, rather than selective inhibition of individual ISR kinases, a
340 comprehensive approach focusing on the direct reversal of eIF2 α phosphorylation may prove to
341 be more appropriate. A compound such as ISRib would accomplish just that – and in fact, we
342 also observed a rescue of RAN translation *in vitro* upon ISRib treatment. However, this rescue
343 was not complete, suggesting that other pathways known to respond to energy imbalance (for
344 example, the mTOR pathway (Leprivier & Rotblat, 2020)) may also be involved. Additional
345 studies are warranted to understand the full extent of the role of the ISR and other interconnected
346 pathways as mediators of RAN translation and determine the most efficacious strategies to
347 mitigate DPR production caused by energy imbalance and other forms of cellular stress.

348 We also identified significant brain energetic and metabolic alterations at baseline – with
349 no pharmacological manipulation – in the frontal cortex of 6-month C9-BAC mice. Specifically,
350 we observed a reduction in ATP levels (and ATP:ADP / ATP:AMP ratios) and alterations in
351 glucose metabolic pathways such as glycolysis and gluconeogenesis. We also observed increased
352 amino acid metabolism in C9-BAC animals, which may reflect a compensatory shift towards
353 usage of amino acids as alternative substrates for oxidative metabolism. In line with these results,
354 a recent study identified an increase in brain microvascular expression of GLUT1 – the sole
355 glucose transporter present at the blood-brain barrier – also in an asymptomatic C9-BAC mouse
356 model (Pan *et al.*, 2022), which may reflect an attempt to compensate for altered brain glucose
357 utilization. Based on these lines of evidence, the repeat expansion is sufficient to perturb brain
358 energy homeostasis *in vivo*. The fact that this occurs in the absence of motor and cognitive
359 behavioral phenotypes and overt neuropathology is somewhat surprising – however, these data
360 mirror clinical findings showing that glucose hypometabolism can manifest years before disease
361 onset (De Vocht *et al.*, 2020; Popuri *et al.*, 2021). C9orf72-related metabolic imbalances may
362 accumulate without consequence for some time – potentially years in humans – before becoming
363 disease-causative. Longitudinal metabolomic and transcriptomic studies would be useful to fully
364 characterize the extent of metabolic imbalances caused by the G₄C₂ repeat expansion and may
365 provide additional insight into how they accumulate or evolve. Potential non-cell-autonomous
366 contributions to C9orf72-related energy imbalances would also be worth investigating, especially
367 since C9orf72 patient-derived astrocytes exhibit metabolic inflexibility and may have an
368 impaired capacity to provide metabolic support to neurons (Allen *et al.*, 2019).

369 But *how* does the repeat expansion trigger metabolic imbalance *in vivo*? Since the C9-
370 BAC mouse is a gain-of-function model and lacks neurodegeneration (which could confound
371 metabolite measurements), the perturbations we identified in this study must be due to the gain-
372 of-function of the G₄C₂ repeat expansion. A primary gain-of-function mechanism is DPR
373 production through RAN translation, and in fact, we also found that the arginine-rich DPRs can
374 disrupt glucose metabolism in cultured neurons. Furthermore, several other studies have found

375 that GR localizes to the mitochondria and compromises mitochondrial function (Choi *et al*, 2019;
376 Li *et al*, 2020; Lopez-Gonzalez *et al*, 2016). Therefore, we speculate that DPR production may
377 contribute to the metabolic deficits we identified *in vivo*, although further studies will be required
378 to confirm this. It is also worth noting that, in humans, in addition to causing RAN translation,
379 the repeat expansion also causes haploinsufficiency of the endogenous C9orf72 protein, which
380 potentially relevant to energy metabolism because the loss of C9orf72 was recently found to de-
381 stabilize the electron transport chain (ETC) and in turn disrupt mitochondrial ATP production
382 (Wang *et al.*, 2021). Therefore, future studies should aim to elucidate the potential synergistic
383 roles of *both* gain-of-function mechanisms (i.e., DPR-mediated disruption of glycolysis) *and*
384 loss-of-function mechanisms (i.e., de-stabilization of the ETC), as both would be expected to
385 occur in human C9orf72-ALS/FTD carriers and contribute to energy imbalance.

386 Our data point towards a pathogenic feedforward loop in which stress from ALS-
387 associated energy imbalances enhances RAN translation and accumulation of DPRs,
388 exacerbating glucose hypometabolism and metabolic stress. In essence, brain energy metabolic
389 decline, a feature of C9orf72-ALS/FTD but also observed in other neurodegenerative conditions,
390 drives and is driven by neurodegeneration and neuronal impairment in a potentially destructive
391 cycle. Therapeutically targeting this neurotoxic feedforward loop – either by correcting the
392 energy imbalance or mitigating stress response activation – may be a powerful approach to
393 mitigate neurodegeneration in C9orf72-ALS/FTD.

394

395 **Acknowledgements**

396 We thank Target ALS for providing the anti-GP antibody (cat # TALS 828.179) and Drs. M.E.
397 Ward and S.J. Barmada for providing iPSC lines. We also thank the members of the Weinberg
398 ALS Center for providing critical feedback throughout the development of this project. The
399 following sources supported this work: National Institutes of Health F31-NS118838 (A.T.N.),
400 R21-NS090912 (D.T.), RF1-AG057882 (D.T.), RF1-NS114128 (A.H.), and R01-NS109150
401 (P.P.); Muscular Dystrophy Association grant 628389 (D.T.); DoD grant W81XWH-21-1-0134
402 (M.E.C.); Family Strong for ALS, Farber Family Foundation, and the Greene Foundation
403 (Weinberg ALS Center).

404

405 **Author Contributions**

406 A.T.N. and D.T. conceived the study, designed the experiments, interpreted the results, and
407 wrote and revised the manuscript. A.T.N. performed all major experiments. D.T. supervised all
408 experiments and provided the resources for the project. M.E.C. prepared primary neuron
409 cultures. S.S.M. assisted in rodent dissections and western blotting. J.H. performed confocal
410 scanning laser ophthalmoscopy. E.W. assisted in RNA sequencing analysis and interpretation.
411 A.R.H., N.P., E.S., and P.P. provided conceptual input and critical feedback. G.M. and H.K.
412 aided in metabolite profiling experimental design, analysis, and interpretation.

413

414 **Disclosure and Competing Interests Statement**

415 The authors declare no competing financial interests.

416

417 Materials and Methods

418 Targeted polar metabolite profiling

419 Metabolites from equal amounts of frontal cortex tissue were rapidly extracted in 80%
420 ice-cold methanol. Extracted samples were vortexed twice, cleared by centrifugation at 14,000 x
421 g for 20 minutes at 4°C, and stored at -80°C. The Weill Cornell Medicine Meyer Cancer Center
422 Proteomics & Metabolomics Core Facility performed hydrophilic interaction liquid
423 chromatography-mass spectrometry (LC-MS) for relative quantification of targeted polar
424 metabolite profiles. Metabolites were measured on a Q Exactive Orbitrap mass spectrometer,
425 coupled to a Vanquish UPLC system by an Ion Max ion source with a HESI II probe (Thermo
426 Scientific). A Sequent ZIC-pHILIC column (2.1 mm i.d. x 150 mm, particle size of 5 µm,
427 Millipore Sigma) was used for separation. The MS data were processed using XCalibur 4.1
428 (Thermo Scientific) to obtain the metabolite signal intensity for relative quantitation. Targeted
429 identification was available for 205 metabolites based on an in-house library established using
430 known chemical standards. Identification required exact mass (within 5ppm) and standard
431 retention times. Relative metabolite abundance data were median-normalized and log-
432 transformed, and differential abundance and pathway analyses were done with the free online
433 tool MetaboAnalyst 5.0(Pang *et al*, 2021). Metabolite significance was determined with one-way
434 ANOVA with posthoc t-tests, with the cutoff being a raw p-value < 0.05, and the pathway
435 significance cutoff was an FDR < 0.05.

436

437 Lentiviral transfer vector construction and lentivirus preparation

438 For the RAN translation transfer vector, the 5' region of the *C9orf72* gene and the GFP
439 tag were PCR-amplified from previously described plasmids(Wen *et al.*, 2014; Westergard *et al.*,
440 2019), then inserted into an AgeI-/EcoRI-linearized pLenti-hSyn backbone (Addgene #86641)
441 by Gibson assembly. The (GGGGCC)₁₈₈ repeat expansion was generated using previously
442 described protocols(Wen *et al.*, 2014), then introduced by classical restriction cloning. For each
443 codon-optimized DPR₅₀ transfer vector, the DPR-GFP sequences were PCR-amplified from
444 previously described plasmids(Wen *et al.*, 2014), then inserted into an AgeI-/EcoRI-linearized
445 pLenti-hSyn backbone (Addgene #86641) by Gibson assembly. The complete cloning strategies,
446 primers (GeneWiz), and restriction enzymes (NEB) used are contained within the corresponding
447 .dna files. All PCR products were amplified using a standard Q5 polymerase protocol (NEB) and
448 purified with an agarose gel extraction kit (Thermo Scientific). Gibson assemblies and ligations
449 were performed per the manufacturer's recommendations (Thermo Scientific). The sequences of
450 all plasmids were verified by Sanger sequencing (GeneWiz).

451 Lentivirus was prepared by co-transfection of a confluent 15 cm plate of HEK 293-FT
452 cells (Invitrogen) with 8 µg of transfer vector, 16 µg of packaging plasmid (psPAX2; Addgene
453 #12260), and 4 µg of envelope plasmid (pMD2.G; Addgene #12259) with 112 µg PEI MAX
454 (Polysciences, Inc.) as a transfection reagent. 48 hours later, the viral supernatant was harvested
455 and filtered through a 0.45 µm PVDF syringe filter. Lentivirus was then concentrated using
456 Lenti-X Concentrator (Takara Bio), reconstituted in PBS, and the resulting titers estimated using
457 the Lenti-X qRT-PCR Titration Kit (Takara Bio), all following manufacturers'
458 recommendations. Concentrated lentivirus was aliquoted and stored at -80°C.

459

460 Primary neuron preparation

461 Embryonic day 16 (E16) rat embryos were harvested, brains were dissected, and
462 meninges removed. Cortical and midbrain regions were cut into small pieces and digested by
463 exposure to 0.2% trypsin for 45 min at 37°C with gentle shaking, after which fetal bovine serum
464 (FBS) was added to neutralize the digestion. The tissue was washed several times with HBSS
465 and passed through a 70 μ m strainer to create a single-cell suspension. The neurons were then
466 plated in a neurobasal medium supplemented with B-27, penicillin-streptomycin, and L-
467 glutamine on plates pre-coated with poly-D-lysine or a combination poly-D-lysine and laminin
468 (for glass coverslips). Half media changes were performed twice weekly.

469

470 *Induced pluripotent stem cell (iPSC) maintenance and differentiation*

471 iPSC lines were obtained as generous gifts from the labs of Drs. Ward and Barmada and
472 arrived in our lab. already genetically edited to contain doxycycline-inducible neuronal
473 differentiation cassettes in the AAVS1 and CLYBL safe harbor loci (Fig. 5A). Standard hiPSC
474 maintenance and differentiation protocols were adapted from a previous study(Fernandopulle *et*
475 *al.*, 2018) and are described below.

476 *General maintenance:* The hiPSCs were grown as colonies on Matrigel-coated (Corning)
477 10 cm plates in Essential 8 (E8) medium (Fisher Scientific), which was changed daily.
478 Spontaneous differentiation was identified under an Evos microscope and removed twice weekly
479 by mechanical dissociation. Once reaching a confluence of ~80%, the colonies were removed
480 from the plate by gentle scraping, then split 1:2 into new plates, with care taken to ensure the
481 colonies remained intact. 10 μ M rock inhibitor (Selleck Chemicals) was added to the media after
482 splitting.

483 *Differentiation into i^3 Neurons:* Differentiation was accomplished in two phases: 1) an
484 induction phase from days post induction (DPI) 0-3, in which doxycycline (Sigma) was added to
485 the media to facilitate gene induction and 2) a maturation phase (from DPI 3 and onwards), in
486 which the cells were exposed to neurotrophic factors and allowed to differentiate to maturity. To
487 initiate induction, hiPSCs were dissociated into a single-cell suspension with accutase (Fisher
488 Scientific), re-plated onto matrigel-coated 10 cm plates (1-2 million cells per plate), and
489 switched to doxycycline-containing “induction medium” consisting of DMEM/F12 with N2
490 supplement, glutamax, and NEAA (all Fisher Scientific). Induction media was replaced daily.
491 For the maturation phase, the induced cells were re-plated onto poly-L-ornithine- (Sigma) and
492 laminin- (Fisher Scientific) coated plates and switched to a “maturation medium” consisting of
493 BrainPhys Neuronal Medium (StemCell Technologies) with B-27 supplement (Fisher Scientific),
494 BDNF/NT3 (PeproTech), and laminin (Fisher Scientific). Half media changes with maturation
495 media were performed twice weekly until the cells were utilized for experiments at DPI 21-27.

496

497 *Neuronal transductions and treatments*

498 At day *in vitro* (DIV) 8 (for primary neurons) and DPI21 (for i^3 Neurons), lentiviral
499 particles were diluted into fresh neuronal media at a concentration of 2×10^7 lentiviral RNA
500 copies/ml. The cells' media was then replaced with this virus-containing media – 72 hours later,
501 the virus-containing media was replaced with fresh media.

502 For 2DG treatments, the cells were cultured with media containing 2DG (Cayman
503 Chemical). Notably, the concentration of glucose (usually 25 mM) was adjusted accordingly to

504 prevent osmotic stress (e.g., if media was prepared with 10 mM 2DG, the concentration of
505 glucose was reduced to 15 mM), which was achieved by adding the desired concentrations of
506 glucose/2DG to glucose-free Neurobasal (Fisher Scientific), then preparing the media as usual.
507 Similarly, glucose-deprived media was prepared by replacing the glucose in the media with 25
508 mM mannitol (a metabolically inert compound; Sigma).

509

510 *Immunofluorescence and confocal imaging analysis*

511 Neurons grown on glass coverslips were washed once with PBS, then fixed with 4% PFA
512 for 15 min. The cells were washed with PBS twice more, then permeabilized with 0.1% Triton-X
513 for 15 min, blocked with 5% bovine serum albumin (BSA) for 45 min, then incubated overnight
514 in a primary antibody (anti-ATF4, Cell Signaling Technologies D4B8, 1:500; anti-MAP2, Novus
515 Biologicals NB200-213, 1:5000) diluted in 1% BSA. The following day, the cells were washed
516 twice with PBS, then incubated for 45 min in the appropriate fluorophore-conjugated secondary
517 antibody (Alexa Fluor, Invitrogen, 1:1000) in 1% BSA. After two additional washes with PBS
518 and one wash with ultra-pure water, coverslips were mounted onto glass slides using Vectashield
519 with DAPI (Vector Laboratories, H-1200-10) and sealed with clear nail polish.

520 Mounted coverslips were imaged in the appropriate fluorescent channels using Nikon
521 A1R confocal microscope. Z-stack images (0.3 - 1.0 μ m step size) were taken across >5
522 randomly selected fields of view per experiment with either 20X or 60X objectives.

523 Maximum intensity projections were generated and analyzed using ImageJ software.
524 DPR puncta were quantified using the ImageJ multi-point tool. ATF4 nuclear expression was
525 measured using ImageJ by first creating regions of interest (ROIs) based on DAPI staining (for
526 MAP2+ cells only) and then measuring ATF4 mean fluorescence intensity within each ROI.
527 >30 randomly selected cells were analyzed per condition. GFP mean fluorescence intensity was
528 measured similarly, but instead using MAP2 staining to define ROIs.

529

530 *Time-lapse imaging and analysis*

531 i^3 Neurons were differentiated to DPI 21 on glass-bottom plates, then switched to either
532 normo-glucose or glucose-deprived media containing the viability dye DRAQ7 (Abcam
533 ab109202, 1:100). Immediately following the media change, the cells were imaged live using the
534 Nikon Eclipse Ti microscope in both the brightfield and Cy5 channels across >5 randomly
535 selected fields of view per condition. The same fields of view were imaged daily for the
536 remainder of the experiment. Individual cells were tracked over time and marked dead when they
537 accumulated DRAQ7 fluorescence. >100 cells were tracked per condition per experiment.

538

539 *RNA analyses*

540 Total RNA was extracted from either cultured neurons (>1.5x10⁶) or mouse spinal cord
541 tissue (10-20 mg) using the PureLink RNA Mini kit (Thermo Scientific) and treated with DNase
542 I (NEB) according to the manufacturers' recommendations. RNA concentration and purity (OD
543 260/280 ratio) were assessed by Nanodrop.

544 *Real-time PCR:* 300 ng of total RNA was reverse transcribed using SuperScript IV
545 Reverse Transcriptase (Thermo Scientific). The resulting cDNA was then used for real-time PCR
546 (15 ng per reaction) with the following TaqMan assays: human CHOP, human GADD34, human

547 18S rRNA, mouse CHOP, mouse GADD34, mouse β -actin, rat β -actin, and GFP (all Thermo
548 Scientific). The resulting C_t values were analyzed using the $2^{\Delta\Delta C_t}$ method and expressed as fold
549 change.

550 *RNA sequencing:* Total RNA from two independent differentiations of two C9orf72
551 patient-derived i³Neuron lines (n = 4) per condition were used. Samples with a minimum RNA
552 integrity number (RIN) of 8.0 were used for library preparation, transcriptome sequencing,
553 differential expression analysis, and gene ontology (GO) enrichment analysis, all of which were
554 performed by Novogene Co., LTD (Beijing, China). An adjusted p-value < 0.05 was set as the
555 threshold for significance.

556

557 *Glucose uptake assays*

558 Primary rat neurons were plated in standard plastic 96-well plates at a density of 40,000
559 cells/well, then transduced with codon-optimized lentiviruses as described in the previous
560 section. Four days after transduction, the Glucose Uptake-Glo assay (Promega) was performed
561 according to the manufacturer's instructions. The reactions were then transferred to opaque white
562 96-well plates, and the luminescence was measured using standard luminometer settings on the
563 Cytation 5 plate reader (BioTek). An aliquot of Glucose Uptake Glo assay lysates was analyzed
564 for total protein content using the Pierce 660 nm protein assay according to the manufacturer's
565 instructions and with Ionic Detergent Compatibility Reagent (Thermo Scientific). Luminescence
566 values were then normalized to total protein.

567

568 *Seahorse extracellular flux assays*

569 Primary rat neurons or human i³Neurons were plated on Seahorse XFp plates (Agilent) at
570 a density of 40,000 cells/well, then either treated with 2DG or transduced with codon-optimized
571 lentiviruses as described in previous sections. 48 hours after 2DG treatment or 4 days after
572 transduction, the Seahorse Extracellular Flux assay was performed using the Seahorse XF Mini
573 instrument (Agilent) according to the manufacturer's instructions. During the assay, the cells
574 were treated sequentially with each of the following mitochondrial toxins: oligomycin (1.5
575 μ g/ml), FCCP (3 μ M), and antimycin (1 μ M) (all Cayman Chemical). Immediately after the
576 assay, the cells were lysed with RIPA buffer with protease inhibitor (Thermo Scientific). The
577 lysates were analyzed for total protein content using the Pierce BCA protein assay (Thermo
578 Scientific). Extracellular acidification rate (ECAR) and oxygen consumption rate (OCR) values
579 were then normalized to total protein.

580

581 *Lysate preparation for immunoassays*

582 *Human tissues:* 100 mg of fresh-frozen spinal cord tissue was submerged in 1% SDS
583 buffer with protease inhibitor (Fisher Scientific) and homogenized with a Dounce homogenizer.
584 The resulting lysates were centrifuged at 3,000 rcf for 20 min at 4°C.

585 *Mouse tissues (for GP immunoassays):* 15-25 mg of fresh-frozen spinal cord tissue was
586 submerged in 8M urea / 1% Triton-X buffer with protease inhibitor, triturated with a pipette, and
587 homogenized with a handheld homogenizer. Lysates were then sonicated at 12°C with a tip
588 sonicator 3-4x for 10 seconds each (until clear) and centrifuged at 18,000 rcf for 5 min at room
589 temperature.

590 *Cultured cells:* 1-2 million cells in 6-well culture plates were washed with ice-cold PBS,
591 submerged with 150 μ l RIPA buffer with protease inhibitor and placed on an orbital shaker at
592 4°C for 15 min. Lysates were transferred to fresh tubes, sonicated with the Bioruptor Pico-
593 Diagenode, and centrifuged at 18,000 rcf for 5 min at 4°C.

594 For all lysates, the clarified supernatant was moved to fresh tubes and Pierce BCA
595 protein assay (Thermo Scientific) was used to measure the protein content of each sample. If
596 used for Western blotting, the samples were mixed 1:1 with 2X Laemmli sample buffer (Bio-
597 Rad) with 5% β -mercaptoethanol (Sigma) and heated to 95°C for 5 min. Samples (with or
598 without sample buffer) were then aliquoted and stored at -80°C.

599

600 *Immunoblotting*

601 For Western blots, 10-30 μ g of protein extracts were run at 100V for 1 hr on 10% pre-
602 cast SDS-PAGE gels (Bio-Rad), then electro-transferred to 0.2 μ m nitrocellulose membranes
603 using the Trans-Blot Turbo Transfer system (Bio-Rad). For dot blots, 2-3 μ g of protein extracts
604 were blotted directly onto 0.2 μ m nitrocellulose membranes and allowed to air dry for 30 min.
605 Membranes were then blocked for 1 hr with 5% milk, incubated with primary antibody (anti-
606 C9orf72/C9RANT (poly-GA), Millipore MABN889, 1:500; anti-GFP, Proteintech 50430-2-AP,
607 1:2000; anti-ATF4, Cell Signaling Technologies D4B8, 1:1000; anti-Histone H3, Cell Signaling
608 Technologies D1H2) diluted in 5% BSA (either overnight at 4°C or 30 min at room
609 temperature), washed 3x with TBS-T, incubated with HRP-conjugated secondary antibody
610 diluted in 5% milk for 45 min at room temperature, and washed again 3x with TBS-T.
611 Membranes were developed with SuperSignal West Femto Maximum Sensitivity substrate
612 (Thermo Scientific). Images were acquired using the ChemiDoc XRS+ system (Bio-Rad).

613

614 *Single-molecule array (Simoa) immunoassays*

615 A custom “Homebrew” Simoa GP assay was performed using the SR-X Simoa platform
616 (Quanterix). Mouse spinal cord lysates (in 8M urea buffer) were adjusted to 1 mg/ml protein and
617 4M urea; serial dilutions of recombinant GP₈ (custom synthesized by Vivitide) were also
618 prepared in 4M urea buffer. All samples were then diluted 1:10 with Simoa Lysate Diluent C
619 (Quanterix). Then, on a 96-well Simoa assay plate, samples were mixed with 1) anti-GP
620 monoclonal antibody (Developmental Hybridoma Studies Bank; TALS 828.179)-coated
621 paramagnetic capture beads, and 2) biotinylated anti-GP polyclonal detector antibody
622 (Proteintech 24494-1-AP). After washing steps, a conjugate of streptavidin- β -galactosidase
623 (SBG) was added to label the captured GP. After additional washing, resorufin β -D-
624 galactopyranoside (RGP, i.e. the substrate for SBG) was added, and the labeled beads were
625 transferred to the Simoa array. Fluorescent signal was captured and quantified by the SR-X
626 instrument as average enzymes per bead (AEB), and then the GP concentration of each unknown
627 lysate was interpolated from the GP standard curve.

628

629 *Animals, drug treatments, and phenotypic analyses*

630 All procedures involving mice were approved by the Institutional Animal Care and Use
631 Committee (IACUC) at Thomas Jefferson University. All animals were housed in standard cages
632 and provided food and water *ad libitum* in a temperature-, light-, and humidity-controlled animal

633 facility. 6-month-old Tg(C9orf72_i3)112Lutzy (Jackson Laboratory) and wild-type littermate
634 mice were administered i.p. injections of saline (vehicle) or 2 g/kg 2DG (Cayman Chemical). For
635 acute studies, animals were administered either a single dose (2 g/kg 2DG), or higher doses (4-8
636 g/kg 2DG) which were achieved by repeated injections with 2 g/kg 2DG each spaced out by 1-2
637 hours. For chronic studies, animals were injected twice weekly with 2 g/kg 2DG for six weeks.
638 For all studies, animals were euthanized by CO₂ inhalation 16 hours following the final injection
639 and transcardially perfused with ice-cold PBS. Whole brains and spinal cords were then excised,
640 flash frozen in liquid N₂, and stored at -80°C for biochemical analysis.

641 For inverted wire hang motor assessments, animals were suspended upside-down from a
642 wire mesh and their latency to fall (capped at 180 seconds) was recorded. Each animal was given
643 3-4 independent trials with >10 minutes of rest between each trial. Baseline assessments were
644 acquired several days before the first 2DG injection; subsequent assessments were acquired
645 weekly and on a different day than the 2DG injections. The average of the 3 trials for each
646 animal at each time-point was used for analysis. All test sessions were performed in the light
647 cycle phase (10 am – 5 pm).

648 For confocal scanning laser ophthalmoscopy (cSLO) imaging, mice were anesthetized
649 with ketamine (100 mg/kg) and xylazine (10 mg/kg) and eyes were anesthetized with 0.5%
650 proparacaine HCl ophthalmic solution (NDC: 17478-263-12, Akorn). Pupils were dilated with
651 1% tropicamide eye drops (NDC: 17478-102-12, Akorn). Ocular eye shields and Systane Ultra
652 Lubricant Eye Drops (Alcon Laboratories) were used to keep eyes hydrated. cSLO images were
653 obtained using a Spectralis HRA+OCT (Heidelberg Engineering). Mice were positioned with the
654 optic nerve in the center of the image using a 55° field of view (FOV) lens and imaged with two
655 different modes, infrared (IR) and blue autofluorescence (BAF). All images were acquired with
656 the auto-normalization activated, which provided the best contrast.

657

658 *Statistical analyses*

659 All statistical analyses were performed using GraphPad Prism 9.0 – these include
660 Kaplan-Meier survival assessment with log-rank testing (to compare survival curves), student's
661 two-tailed t-test (to compare the means of two groups), two-tailed t-test with Welch's correction
662 (to compare the means of two groups with unequal variances or sample sizes), one-way analysis
663 of variance (ANOVA) with Dunnett's multiple comparisons test or two-way ANOVA (to
664 compare the means of more than two groups). A minimum of 30 individual cells were analyzed
665 per condition for single-cell analyses. Data are reported as mean ± SEM. p-value < 0.05 was
666 considered statistically significant.

667

668 *Data Availability*

669 The RNA-seq and metabolomics data produced in this study are in the process of being
670 uploaded to Gene Expression Omnibus (<https://www.ncbi.nlm.nih.gov/geo/>) and Metabolomics
671 workbench (<https://www.metabolomicsworkbench.org/>), respectively. The sequences for all DNA
672 plasmids used in this study are uploaded to GenBank (<https://www.ncbi.nlm.nih.gov/genbank/>)
673 with the following accession numbers:

674 • BankIt2694892 pLV_hSyn_GA188_EGFP OQ828708
675 • BankIt2694894 pLV_hSyn_GFP OQ828709

- BankIt2694876 pLV_hSyn_GA50_GFP OQ828707
- BankIt2694895 pLV_hSyn_GR50_GFP OQ828710
- BankIt2694896 pLV_hSyn_PA50_GFP OQ828711
- BankIt2694899 pLV_hSyn_PR50_GFP OQ828712

680

681 Figure Legends

682 **Figure 1 – The C9orf72-linked G₄C₂ repeat expansion disrupts brain energy balance.**

683 A Schematic depicting brain metabolite profiling experimental setup.

684 **B** Principal component analysis (PCA) of the complete metabolomics panel.

685 C Liquid chromatography mass spectrometry (LC-MS) measurement of relative ATP
 686 concentrations, ATP:ADP ratios, and ATP:AMP ratios in C9-BAC animals versus WT animals.

D Enrichment analysis of metabolite sets in C9-BAC animals versus WT animals. Enrichment ratio represents the number of metabolites within each metabolite set that are either increased (in blue) or decreased (in red) in the frontal cortex of C9-BAC versus WT animals.

690 E Schematic of glycolysis pathway, with significantly altered glycolytic intermediates
691 highlighted in blue text (decreased in C9-BAC animals) or red text (increased in C9-BAC
692 animals). LC-MS measurement of relative concentrations of glucose-6-phosphate (G6P),
693 glyceraldehyde-3-phosphate (GADP), and phosphoenolpyruvate (PEP) in C9-BAC versus WT
694 animals.

695 F LC-MS measurement of nicotinamide adenine dinucleotide (NAD⁺) and nicotinamide
 696 mononucleotide (NMN) concentrations in C9-BAC versus WT animals. All individual
 697 metabolite data are shown as median-normalized and log-transformed values (abbreviated as
 698 “Normalized conc.”).

699 **Data Information** | For all data, n = 7 C9orf72 BAC+ (C9-BAC) and 6 littermate control wild
700 type (WT) animals. For all box and whisker plots, box edges denote upper and lower quartiles,
701 horizontal lines within each box denote median values, whiskers denote maximum and minimum
702 values, and shaded circles denote individual values for each animal. Student's two-tailed t-test, *
703 p < 0.05; ** p < 0.01; **** p < 0.0001.

704

705 **Figure 2 – Glucose hypometabolism triggers accumulation of DPRs.**

706 A Schematic of lentiviral RAN translation vector used for the experiments, containing a
707 (G₄C₂)₁₈₈ repeat expansion with the 5' flanking region of the C9orf72 gene (including exon 1a
708 and intron 1) and a downstream GFP tag lacking an ATG start codon in frame with GA. The
709 entire construct was driven by the human synapsin (hSyn) promoter.

710 **B** Representative images depicting cellular localization patterns of RAN-translated GA-GFP
711 aggregates.

712 **C** Western blot analysis of GA-GFP levels in primary neurons using anti-GA antibody (RRID:
713 AB_2728663) (NT = non-transduced; GFP = transduced with a GFP lentiviral vector (negative
714 control); G4C₂-GFP = transduced with RAN translation vector).

715 **D** Schematic of experimental timeline from day *in vitro* (DIV) 0 to 10.

716 **E** Fluorescent confocal imaging and quantification of DPR aggregate formation in primary
717 neurons transduced with RAN translation vector, then incubated with either normo-glucose
718 media (25 mM glucose + 0 mM 2DG) or media containing increasing concentrations of 2DG (n
719 = 4).

720 **F** qRT-PCR analysis of GFP mRNA levels in primary neurons transduced with either the RAN
721 translation reporter vector, then incubated with either normo-glucose media or 10 mM 2DG-
722 containing media (n = 4).

723 **G** Schematic of lentiviral ATG translation vector used for the experiments, containing a 50 GA
724 repeats encoded with alternative codons and a downstream GFP tag.

725 **H** Fluorescent imaging and quantification of DPR aggregate formation in primary neurons
726 transduced with ATG translation vector, then incubated with either normo-glucose media or 10
727 mM 2DG-containing media (n = 3).

728 **I** qRT-PCR analysis of GFP mRNA levels in primary neurons transduced with the ATG
729 translation vector, then incubated with either normo-glucose media or 10 mM 2DG-containing
730 media (n = 3).

731 **Data Information** | For **E**, one way ANOVA with Dunnett's test for multiple comparisons. For
732 **F-I**, student's two-tailed t-test. All data are presented as mean \pm standard error of the mean
733 (SEM). ** p < 0.01, *** p < 0.001, **** p < 0.0001, n.s. p > 0

734

735 **Figure 3 – Glucose hypometabolism activates the ISR in cultured neurons.**

736 **A, B** RNA sequencing assessment of select transcriptomic changes in C9orf72 patient-derived
737 i³Neurons (n = 2 individual i³Neuron lines with 2 separate differentiations per line) incubated in
738 media containing 10 mM 2DG for 48 hours versus those maintained in normal media, including
739 significantly upregulated gene ontology (GO) pathways (**A**) and significantly upregulated
740 individual integrated stress response (ISR) target transcripts (**B**; all p_{adj} < 0.05).

741 **C** Immunofluorescence-based measurement and quantification of nuclear ATF4 expression level
742 in MAP2-positive primary neurons incubated in media containing 0, 2.5, 5.0, or 10 mM 2DG for
743 48 hours (n = 4).

744 **Data Information** | For **A**, the values adjacent to each bar represent the number of altered genes
745 in each GO pathway. For **B**, bars represent median values, and individual dots represent
746 individual replicates. For **C**, one-way ANOVA with Dunnett's test for multiple comparisons.
747 Data are presented as mean \pm SEM. * p < 0.05, ** p < 0.01, **** p < 0.0001.

748

749 **Figure 4 – DPR accumulation caused by glucose hypometabolism correlates with ISR
750 activation and is blocked by inhibition of the GCN2 kinase.**

751 **A** Correlation between number of GA-GFP aggregates per field of view (from **Fig. 2E**) and
752 nuclear ATF4 expression level (from **Fig. 3C**) in primary neurons incubated with either normo-
753 glucose or various concentrations of 2DG. Best-fit line and R^2 value represent linear regression
754 analysis.

755 **B** Schematic depicting the proposed mechanism through which nutrient deprivation increases
756 RAN translation. A92 was used as a pharmacological inhibitor of GCN2 kinase activity.

757 **C, D** Fluorescent confocal imaging and quantification of DPR formation in primary neurons
758 transduced with RAN translation vector, then incubated with either normo-glucose media, 10
759 mM 2DG-containing media, or 10 mM 2DG-containing media with 5.0 μ M A92, all in the
760 presence of 0.1% DMSO (n = 4).

761 **E** Quantification of DPR aggregate formation in primary neurons transduced with RAN
762 translation vector, then treated with A92 concentrations ranging from 0.1 μ M to 7.5 μ M, all in
763 the presence of 10 mM 2DG and 0.1% DMSO (n = 4). Best-fit line and IC_{50} value were derived
764 from non-linear regression analysis.

765 **Data Information** | For **D**, one-way ANOVA with Dunnett's test for multiple comparisons. All
766 data are presented as mean \pm SEM. **** p < 0.0001.

767

768 **Figure 5 – Glucose deprivation is selectively toxic to C9orf72 patient-derived i³Neurons.**

769 **A** Schematic of the doxycycline-inducible neuronal differentiation cassette used to drive rapid
770 differentiation of human induced pluripotent stem cells (hiPSCs) into i³Neurons from days post-
771 induction (DPI) 0 to 27.

772 **B** Timeline of differentiation into i³Neurons and subsequent glucose deprivation.

773 **C** Live-cell longitudinal imaging of healthy control- or C9orf72 patient-derived i³Neurons
774 cultured with glucose-deprived media over 6 days using DRAQ7 as a dead cell indicator.

775 **D** Kaplan-Meier survival analysis of i³Neurons derived from either C9orf72 patients or healthy
776 controls and maintained in glucose-deprived media (n = 2 i³Neuron lines per genotype with 3
777 independent differentiations per line).

778 **E** Kaplan-Meier survival analysis of C9orf72 patient-derived i³Neurons maintained in either
779 normo-glucose or glucose-deprived media and treated with either 2.5 μ M A92 with 0.1% DMSO
780 or 0.1% DMSO only as vehicle control (n = 2 i³Neuron lines per treatment with 3 independent
781 differentiations per line).

782 **Data Information** | For **D-E**, Dotted traces denote i³Neuron lines with only Ngn2 integrated into
783 the safe harbor locus (from Ward laboratory), while solid traces correspond to i³Neuron lines
784 with both Ngn1 and Ngn2 integrated into the safe harbor locus (from Barmada laboratory).
785 Kaplan-Meier log-rank survival test. * p < 0.05, **** p < 0.0001.

786

787 **Figure 6 – 2DG treatment exacerbates metabolic stress and drives disease-related
788 phenotypes in C9orf72 BAC transgenic mice.**

789 **A** Schematic of experimental setup: C9-BAC animals were treated with either 2-deoxyglucose
790 (2DG) or saline (vehicle control) by i.p. injection.

791 **B** RT-qPCR measurement of spinal cord mRNA levels of two ISR transcriptional targets (CHOP
792 and GADD34) in C9-BAC animals acutely treated with various doses of 2DG or saline (n = 3-4
793 animals per condition).

794 **C, D** LC-MS measurement of 2DG-6-P levels (**C**) and significantly altered metabolites (**D**) in the
795 frontal cortex of C9-BAC mice following chronic weekly exposure to 4 g/kg 2DG versus saline
796 (n = 7 animals per condition). Dark shaded lines indicate significance cut-offs ($-\log_{10}(p) > 1.3$
797 and $\log_2(FC) > |1|$).

798 **E** Dot blot assessment and corresponding quantification of 8M urea-soluble GP levels relative to
799 total protein levels in the spinal cord C9-BAC animals treated with either saline (n = 3 animals)
800 or 2DG (n = 6 animals). Bovine serum albumin (BSA) and spinal cord lysate from a wild-type
801 animal were used as controls.

802 **F** Longitudinal assessment of inverted wire hang performance of C9-BAC animals chronically
803 exposed to 4 g/kg 2DG or saline (n = 7 animals per condition).

804 **Data Information** | For **B**, one-way ANOVA with Dunnett's test for multiple comparisons. For
805 **C-D**, student's two-tailed t-test. For **E**, two-tailed t-test with Welch's correction. For **F**, two-way
806 ANOVA. All data are presented as mean \pm SEM. * p < 0.05, *** p < 0.001, **** p < 0.0001.

807

808 **Figure 7 – Arginine-rich DPRs contribute to glucose hypometabolic stress.**

809 **A** Schematic of lentiviral DPR vectors and GFP-only (control) vector.

810 **B** Representative images depicting cellular localization patterns of GFP-tagged DPRs in primary
811 neurons transduced with lentiviral vectors. **C** Luminescence-based measurement of glucose
812 uptake (normalized to total protein) in primary neurons transduced with each of the DPR vectors
813 or the GFP-only control vector (n = 4).

814 **D** Seahorse extracellular flux assay measurement of extracellular acidification rate (ECAR;
815 normalized to total protein) of primary neurons transduced with either the PR vector or GFP-only
816 control vector (n = 3).

817 **E** Immunofluorescence-based measurement and quantification of nuclear ATF4 expression level
818 in MAP2-positive primary neurons transduced with either the PR vector or GFP-only control
819 vector (n = 4).

820 **Data Information** | For **C**, one-way ANOVA with Dunnett's test for multiple comparisons. For
821 **D**, multiple student's two-tailed t-tests. For **E**, student's two-tailed t-test. All data are presented
822 as mean \pm SEM. * p < 0.05, ** p < 0.01, **** p < 0.0001.

823

824 **Figure EV1.**

825 **A** Schematic depicting the bacterial artificial chromosome (BAC) transgene used to drive
826 expression of the entire human *C9orf72* gene with a (GGGGCC)_{100-1,000} repeat expansion in
827 intron 1 (C9-BAC). Adapted from O'Rourke et al³³.

828 **B** LC-MS measurement of relative glucose concentrations in the frontal cortex of C9-BAC
829 versus WT animals.

830 **C** Schematic depicting the tricarboxylic acid (TCA) cycle pathway with all metabolic
831 intermediates. LC-MS measurement of relative α -ketoglutarate concentrations in the frontal
832 cortex of C9-BAC animals versus WT animals.

833 **D** LC-MS measurement of the relative concentrations of four amino acids (isoleucine, cysteine,
834 lysine, and ornithine) in the frontal cortex of C9-BAC vs. WT animals.

835 **E** LC-MS measurement of relative NADP+, NADH, and NADPH concentrations in the frontal
836 cortex of C9-BAC vs WT.

837 **Data Information** | All individual metabolite data are shown as median-normalized and log-
838 transformed values (abbreviated as “Normalized conc.”). For box and whisker plots, box edges
839 denote upper and lower quartiles, horizontal lines within each box denote median values,
840 whiskers denote maximum and minimum values, and shaded circles denote individual values for
841 each animal. Student’s two-tailed t-test, * p < 0.05, ** p < 0.01, **** p < 0.0001.

842

843 **Figure EV2.**

844 **A** RNA sequencing measurement of select downregulated gene ontology (GO) pathways in
845 *C9orf72* patient-derived i³Neurons incubated with 10 mM 2DG-containing media versus normo-
846 glucose media for 48 hours (n = 2 individual i³Neuron lines with 2 separate differentiations per
847 line).

848 **B** Seahorse extracellular flux assay-based measurement of extracellular acidification rate
849 (ECAR) normalized to total protein and oxygen consumption rate (OCR) normalized to total
850 protein in primary neurons incubated with either normo-glucose media or 10 mM 2DG-
851 containing media for 48 hours. Cells were sequentially treated with 1.5 μ g/ml oligomycin (o.), 3
852 μ M FCCP (f.), and 1 μ M antimycin (a.) during the assay (n = 1).

853 **Data Information** | For **A**, the values adjacent to each bar represent the number of altered genes
854 in each GO pathway. For **B**, data are presented as mean \pm SEM of assay technical replicates.

855

856 **Figure EV3.**

857 **A** Western blot analysis and quantification of ATF4 expression level relative to histone H3
858 expression level (as a loading control) in lumbar spinal cord tissue homogenates from either
859 healthy control subjects or *C9orf72*-ALS patients (n = 3 subjects per genotype).

860 **B** Live-cell imaging of human i³Neurons treated with either 0.1% DMSO or 5.0 μ M A92 and
861 0.1% DMSO for 48 hours, with corresponding quantification of survival proportions. DRAQ7
862 was used as a fluorescent dead cell indicator (n = 2 i³Neuron lines with 2 independent
863 differentiations per line).

864 **C** Fluorescent confocal imaging and quantification of DPR aggregate formation in primary
865 neurons transduced with RAN translation vector, then incubated with either normo-glucose
866 media, 10 mM 2DG-containing media, or 10 mM 2DG-containing media with 0.5 uM or 5 uM
867 ISRib (all in the presence of 0.1% DMSO; n = 4).

868 **D** Fluorescent confocal imaging and quantification of DPR formation in human i^3 Neurons
869 transduced with RAN translation vector, then incubated with either normo-glucose media, 10
870 mM 2DG-containing media, or 10 mM 2DG-containing media with 2.5 uM A92 (all in the
871 presence of 0.1% DMSO; n = 1).

872 **Data Information** | For **A-B**, student's two-tailed t-test. For **C**, one-way ANOVA with
873 Dunnett's test for multiple comparisons. All data are presented as mean \pm SEM. * p < 0.05, ** p
874 < 0.01, *** p < 0.001, **** p < 0.0001.

875

876 **Figure EV4.**

877 **A** Longitudinal microelectrode array (MEA)-based measurement of spontaneous neuronal
878 activity of i^3 Neurons (healthy control line) incubated in either normo-glucose or glucose-
879 deprived media over a 48-hour period (n = 3). Glucose deprivation was initiated at time = 0 h.

880 **B** Seahorse extracellular flux assay-based measurement of extracellular acidification rate
881 (ECAR) normalized to total protein and oxygen consumption rate (OCR) normalized to total
882 protein of primary neurons immediately following incubation with either normo-glucose media
883 or glucose-deprived media for 48 hours (n = 1). Cells were sequentially treated 1.5 μ g/ml
884 oligomycin (o.) and 3 μ M FCCP (f.) during the assay.

885 **C** Immunofluorescence-based measurement and quantification of nuclear ATF4 expression level
886 in MAP2-positive primary neurons immediately following incubation with either normo-glucose
887 media or glucose-deprived media for 48 hours (n = 4).

888 **D** RNA sequencing analysis of select individual ISR target transcripts (all $p_{adj} < 0.05$) in
889 i^3 Neurons immediately following exposure to either normo-glucose or glucose-deprived media
890 for 48 hours (n = 2 i^3 Neuron lines with 2 differentiations per line).

891 **E** Representative images of i^3 Neurons transduced with RAN translation vector and then cultured
892 in either normo-glucose or glucose-deprived media for 48 hours, with corresponding
893 quantification of GA-GFP fluorescence intensity (n = 3).

894 **F** qRT-PCR measurement of mRNA levels of two ISR transcriptional targets (CHOP and
895 GADD34) in i^3 Neurons immediately following incubation with either normo-glucose or glucose-
896 deprived media for either 24, 48, or 72 hours (n = 1).

897 **Data Information** | For **A**, multiple student's two-tailed t-tests. For **C-E**, student's two-tailed t-
898 test. All data (except **D** and **F**) are presented as mean \pm SEM. * p < 0.05, ** p < 0.01, *** p <
899 0.001.

900

901 **Figure EV5.**

902 **A** Enrichment analysis of significantly altered metabolite sets in the frontal cortex of C9-BAC
903 animals immediately following chronic exposure to either 4 g/kg/week 2DG or saline (n = 7
904 animals per condition). Enrichment ratio represents the number of metabolites within each
905 metabolite set that are either increased (on the left) or decreased (on the right).

906 **B** Optical coherence tomography (OCT) retinal imaging of C9-BAC animals immediately
907 following chronic exposure to either 4 g/kg/week 2DG or saline. Yellow arrows indicate
908 hyperreflective foci (n = 2-3 animals per condition).

909 **C** Single molecule array (Simoa) measurement of 8M urea-soluble GP levels relative to total
910 protein levels in the spinal cord of saline-treated wild type animals (n = 3), saline-treated C9-
911 BAC animals (n = 4), or 2DG-treated C9-BAC animals (n = 6).

912 **D** Longitudinal measurement of bodyweight during chronic exposure of C9-BAC animals to 4
913 g/kg/week 2DG or saline (n = 7 animals per condition).

914 **E** Longitudinal assessment of inverted wire hang performance of wild-type littermate control
915 animals chronically exposed to 4 g/kg/week 2DG (n = 2 animals) or saline (n = 3 animals).

916 **Data Information** | For **C**, two-tailed t-test with Welch's correction. For **D-E**, two-way
917 ANOVA. All data (except **A**) are presented as mean \pm SEM. * p < 0.05, n.s. p > 0.05.

918

919 **Figure EV6.**

920 **A** qRT-PCR measurement of DPR and GFP-only vector lentiviral titers (n = 1).

921 **B** Representative images of primary neurons transduced with DPR or GFP-only lentiviral
922 vectors, then stained for MAP2.

923 **C** Quantification of the percentage of MAP2-positive cells also positive for GFP from (**B**).

924 **D** Validation of luminescent assay (time- and temperature dependence) for measurement of
925 glucose uptake in primary neurons (n = 1).

926 **E** Seahorse extracellular flux assay measurement of oxygen consumption rate (OCR normalized
927 to total protein) of primary neurons transduced with either the PR or GFP-only vector (n = 3).
928 Cells were sequentially treated with 1.5 μ g/ml oligomycin (o.), 3 μ M FCCP (f.), and 1 μ M
929 antimycin (a.) during the assay.

930 **Data Information** | All data (except **A**) are presented as mean \pm SEM. For **C**, one-way ANOVA
931 with Dunnett's multiple comparisons tests. For **E**, multiple student's two-tailed t-test. n.s. p >
932 0.05.

933 **References**

934

935 Allen SP, Hall B, Woof R, Francis L, Gatto N, Shaw AC, Myszczynska M, Hemingway J,
936 Coldicott I, Willcock A *et al* (2019) C9orf72 expansion within astrocytes reduces metabolic
937 flexibility in amyotrophic lateral sclerosis. *Brain* 142: 3771-3790

938

939 Ash Peter EA, Bieniek Kevin F, Gendron Tania F, Caulfield T, Lin W-L, DeJesus-Hernandez M,
940 van Blitterswijk Marka M, Jansen-West K, Paul Joseph W, Rademakers R *et al* (2013)
941 Unconventional Translation of C9ORF72 GGGGCC Expansion Generates Insoluble
942 Polypeptides Specific to c9FTD/ALS. *Neuron* 77: 639-646

943

944 Beghi E, Pupillo E, Bonito V, Buzzi P, Caponnetto C, Chio A, Corbo M, Giannini F, Inghilleri
945 M, Bella VL *et al* (2013) Randomized double-blind placebo-controlled trial of acetyl-L-carnitine
946 for ALS. *Amyotroph Lateral Scler Frontotemporal Degener* 14: 397-405

947

948 Cheng W, Wang S, Mestre AA, Fu C, Makarem A, Xian F, Hayes LR, Lopez-Gonzalez R,
949 Drenner K, Jiang J *et al* (2018) C9ORF72 GGGGCC repeat-associated non-AUG translation is
950 upregulated by stress through eIF2alpha phosphorylation. *Nat Commun* 9: 51

951

952 Chighine A, Locci E, Nioi M, d'Aloja E (2021) Looking for Post-Mortem Metabolomic
953 Standardization: Waiting for Godot-The Importance of Post-Mortem Interval in Forensic
954 Metabolomics. *Chem Res Toxicol* 34: 1946-1947

955

956 Choi SY, Lopez-Gonzalez R, Krishnan G, Phillips HL, Li AN, Seeley WW, Yao WD, Almeida
957 S, Gao FB (2019) C9ORF72-ALS/FTD-associated poly(GR) binds Atp5a1 and compromises
958 mitochondrial function in vivo. *Nat Neurosci* 22: 851-862

959

960 Cunnane SC, Trushina E, Morland C, Prigione A, Casadesus G, Andrews ZB, Beal MF,
961 Bergersen LH, Brinton RD, de la Monte S *et al* (2020) Brain energy rescue: an emerging
962 therapeutic concept for neurodegenerative disorders of ageing. *Nat Rev Drug Discov* 19: 609-633

963

964 De Vocht J, Blommaert J, Devrome M, Radwan A, Van Weehaeghe D, De Schaepdryver M,
965 Ceccarini J, Rezaei A, Schramm G, van Aalst J *et al* (2020) Use of Multimodal Imaging and
966 Clinical Biomarkers in Presymptomatic Carriers of C9orf72 Repeat Expansion. *JAMA Neurol*
967 77: 1008-1017

968

969 DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ,
970 Nicholson AM, Finch NA, Flynn H, Adamson J *et al* (2011) Expanded GGGGCC
971 hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and
972 ALS. *Neuron* 72: 245-256

973

974 Dienel GA (2019) Brain Glucose Metabolism: Integration of Energetics with Function. *Physiol
975 Rev* 99: 949-1045

976

977 Fayemendy P, Marin B, Labrunie A, Boirie Y, Walrand S, Achamrah N, Coeffier M, Preux PM,
978 Lautrette G, Desport JC *et al* (2021) Hypermetabolism is a reality in amyotrophic lateral
979 sclerosis compared to healthy subjects. *J Neurol Sci* 420: 117257
980
981 Fernandopulle MS, Prestil P, Grunseich C, Wang C, Gan L, Ward ME (2018) Transcription
982 Factor-Mediated Differentiation of Human iPSCs into Neurons. *Curr Protoc Cell Biol* 79
983
984 Fragiotta S, Abdolrahimzadeh S, Dolz-Marco R, Sakurada Y, Gal-Or O, Scuderi G (2021)
985 Significance of Hyperreflective Foci as an Optical Coherence Tomography Biomarker in Retinal
986 Diseases: Characterization and Clinical Implications. *J Ophthalmol* 2021: 6096017
987
988 Green KM, Glineburg MR, Kearse MG, Flores BN, Linsalata AE, Fedak SJ, Goldstrohm AC,
989 Barmada SJ, Todd PK (2017) RAN translation at C9orf72-associated repeat expansions is
990 selectively enhanced by the integrated stress response. *Nat Commun* 8: 2005
991
992 Guo X, Aviles G, Liu Y, Tian R, Unger BA, Lin YT, Wiita AP, Xu K, Correia MA, Kampmann
993 M (2020) Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway.
994 *Nature* 579: 427-432
995
996 Hao Z, Liu L, Tao Z, Wang R, Ren H, Sun H, Lin Z, Zhang Z, Mu C, Zhou J *et al* (2019) Motor
997 dysfunction and neurodegeneration in a C9orf72 mouse line expressing poly-PR. *Nat Commun*
998 10: 2906
999
1000 Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W, Shaw PJ, Simmons
1001 Z, van den Berg LH (2017) Amyotrophic lateral sclerosis. *Nat Rev Dis Primers* 3
1002
1003 Jensen BK, Schuldi MH, McAvoy K, Russell KA, Boehringer A, Curran BM, Krishnamurthy K,
1004 Wen X, Westergard T, Ma L *et al* (2020) Synaptic dysfunction induced by glycine-alanine
1005 dipeptides in C9orf72-ALS/FTD is rescued by SV2 replenishment. *EMBO Mol Med* 12: e10722
1006
1007 Kinch MS, Umlauf S, Plummer M (2015) An analysis of FDA-approved drugs for metabolic
1008 diseases. *Drug Discov Today* 20: 648-651
1009
1010 Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, Kim J, Yun J, Xie Y, McKnight
1011 SL (2014) Poly-dipeptides encoded by the C9orf72 repeats bind nucleoli, impede RNA
1012 biogenesis, and kill cells. *Science* 345: 1139-1145
1013
1014 Leprivier G, Rotblat B (2020) How does mTOR sense glucose starvation? AMPK is the usual
1015 suspect. *Cell Death Discov* 6: 27
1016
1017 Li S, Wu Z, Li Y, Tantray I, De Stefani D, Mattarei A, Krishnan G, Gao FB, Vogel H, Lu B
1018 (2020) Altered MICOS Morphology and Mitochondrial Ion Homeostasis Contribute to Poly(GR)
1019 Toxicity Associated with C9-ALS/FTD. *Cell Rep* 32: 107989
1020

1021 Li X, Valencia A, McClory H, Sapp E, Kegel KB, Difiglia M (2012) Deficient Rab11 activity
1022 underlies glucose hypometabolism in primary neurons of Huntington's disease mice. *Biochem*
1023 *Biophys Res Commun* 421: 727-730

1024

1025 Lopez-Gonzalez R, Lu Y, Gendron TF, Karydas A, Tran H, Yang D, Petrucelli L, Miller BL,
1026 Almeida S, Gao FB (2016) Poly(GR) in C9ORF72-Related ALS/FTD Compromises
1027 Mitochondrial Function and Increases Oxidative Stress and DNA Damage in iPSC-Derived
1028 Motor Neurons. *Neuron* 92: 383-391

1029

1030 Ludolph AC, Dorst J, Dreyhaupt J, Weishaupt JH, Kassubek J, Weiland U, Meyer T, Petri S,
1031 Hermann A, Emmer A *et al* (2020) Effect of High-Caloric Nutrition on Survival in Amyotrophic
1032 Lateral Sclerosis. *Ann Neurol* 87: 206-216

1033

1034 Masrori P, Van Damme P (2020) Amyotrophic lateral sclerosis: a clinical review. *Eur J Neurol*
1035 27: 1918-1929

1036

1037 May S, Hornburg D, Schludi MH, Arzberger T, Rentzsch K, Schwenk BM, Grasser FA, Mori K,
1038 Kremmer E, Banzhaf-Strathmann J *et al* (2014) C9orf72 FTLD/ALS-associated Gly-Ala
1039 dipeptide repeat proteins cause neuronal toxicity and Unc119 sequestration. *Acta Neuropathol*
1040 128: 485-503

1041

1042 Mori K, Arzberger T, Grasser FA, Gijselinck I, May S, Rentzsch K, Weng SM, Schludi MH, van
1043 der Zee J, Cruts M *et al* (2013) Bidirectional transcripts of the expanded C9orf72 hexanucleotide
1044 repeat are translated into aggregating dipeptide repeat proteins. *Acta Neuropathol* 126: 881-893

1045

1046 Nelson AT, Trott D (2022) Altered Bioenergetics and Metabolic Homeostasis in Amyotrophic
1047 Lateral Sclerosis. *Neurotherapeutics* 19: 1102-1118

1048

1049 O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B,
1050 Bembinster LA, Lammich S *et al* (2008) Phosphorylation of the translation initiation factor
1051 eIF2alpha increases BACE1 levels and promotes amyloidogenesis. *Neuron* 60: 988-1009

1052

1053 O'Rourke JG, Bogdanik L, Muhammad A, Gendron TF, Kim KJ, Austin A, Cady J, Liu EY,
1054 Zarrow J, Grant S *et al* (2015) C9orf72 BAC Transgenic Mice Display Typical Pathologic
1055 Features of ALS/FTD. *Neuron* 88: 892-901

1056

1057 Paganini S, Macklin EA, Hendrix S, Berry JD, Elliott MA, Maiser S, Karam C, Caress JB,
1058 Owegi MA, Quick A *et al* (2020) Trial of Sodium Phenylbutyrate-Taurursodiol for Amyotrophic
1059 Lateral Sclerosis. *N Engl J Med* 383: 919-930

1060

1061 Pakos-Zebrucka K, Koryga I, Mnich K, Ljubic M, Samali A, Gorman AM (2016) The integrated
1062 stress response. *EMBO Rep* 17: 1374-1395

1063

1064 Pan Y, Kagawa Y, Sun J, Turner BJ, Huang C, Shah AD, Schittenhelm RB, Nicolazzo JA (2022)
1065 Altered Blood-Brain Barrier Dynamics in the C9orf72 Hexanucleotide Repeat Expansion Mouse
1066 Model of Amyotrophic Lateral Sclerosis. *Pharmaceutics* 14

1067 Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PE, Li
1068 S, Xia J (2021) MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional
1069 insights. *Nucleic Acids Res* 49: W388-W396

1070

1071 Popuri K, Beg MF, Lee H, Balachandar R, Wang L, Sossi V, Jacova C, Baker M, Shahinfard E,
1072 Rademakers R *et al* (2021) FDG-PET in presymptomatic C9orf72 mutation carriers. *Neuroimage*
1073 *Clin* 31: 102687

1074

1075 Prapong T, Buss J, Hsu WH, Heine P, West Greenlee H, Uemura E (2002) Amyloid beta-peptide
1076 decreases neuronal glucose uptake despite causing increase in GLUT3 mRNA transcription and
1077 GLUT3 translocation to the plasma membrane. *Exp Neurol* 174: 253-258

1078

1079 Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, Schymick JC,
1080 Laaksovirta H, van Swieten JC, Mallykangas L *et al* (2011) A hexanucleotide repeat expansion
1081 in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. *Neuron* 72: 257-268

1082

1083 Schludi MH, May S, Grasser FA, Rentzsch K, Kremmer E, Kupper C, Klopstock T, German
1084 Consortium for Frontotemporal Lobar D, Bavarian Brain Banking A, Arzberger T *et al* (2015)
1085 Distribution of dipeptide repeat proteins in cellular models and C9orf72 mutation cases suggests
1086 link to transcriptional silencing. *Acta Neuropathol* 130: 537-555

1087

1088 Smith EF, Shaw PJ, De Vos KJ (2019) The role of mitochondria in amyotrophic lateral sclerosis.
1089 *Neurosci Lett* 710: 132933

1090

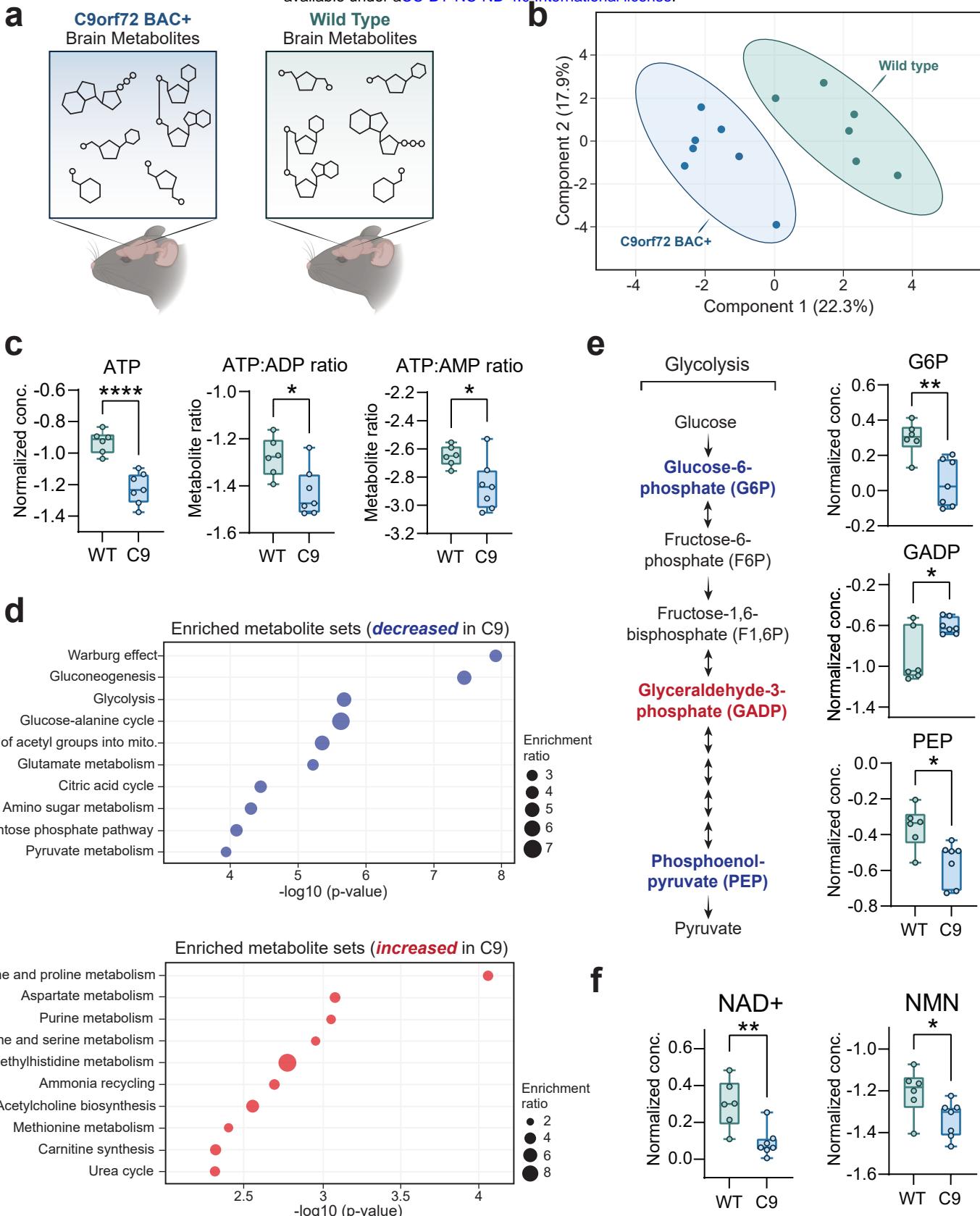
1091 Soares R, Ribeiro FF, Xapelli S, Genebra T, Ribeiro MF, Sebastiao AM, Rodrigues CMP, Sola S
1092 (2018) Tauroursodeoxycholic Acid Enhances Mitochondrial Biogenesis, Neural Stem Cell Pool,
1093 and Early Neurogenesis in Adult Rats. *Mol Neurobiol* 55: 3725-3738

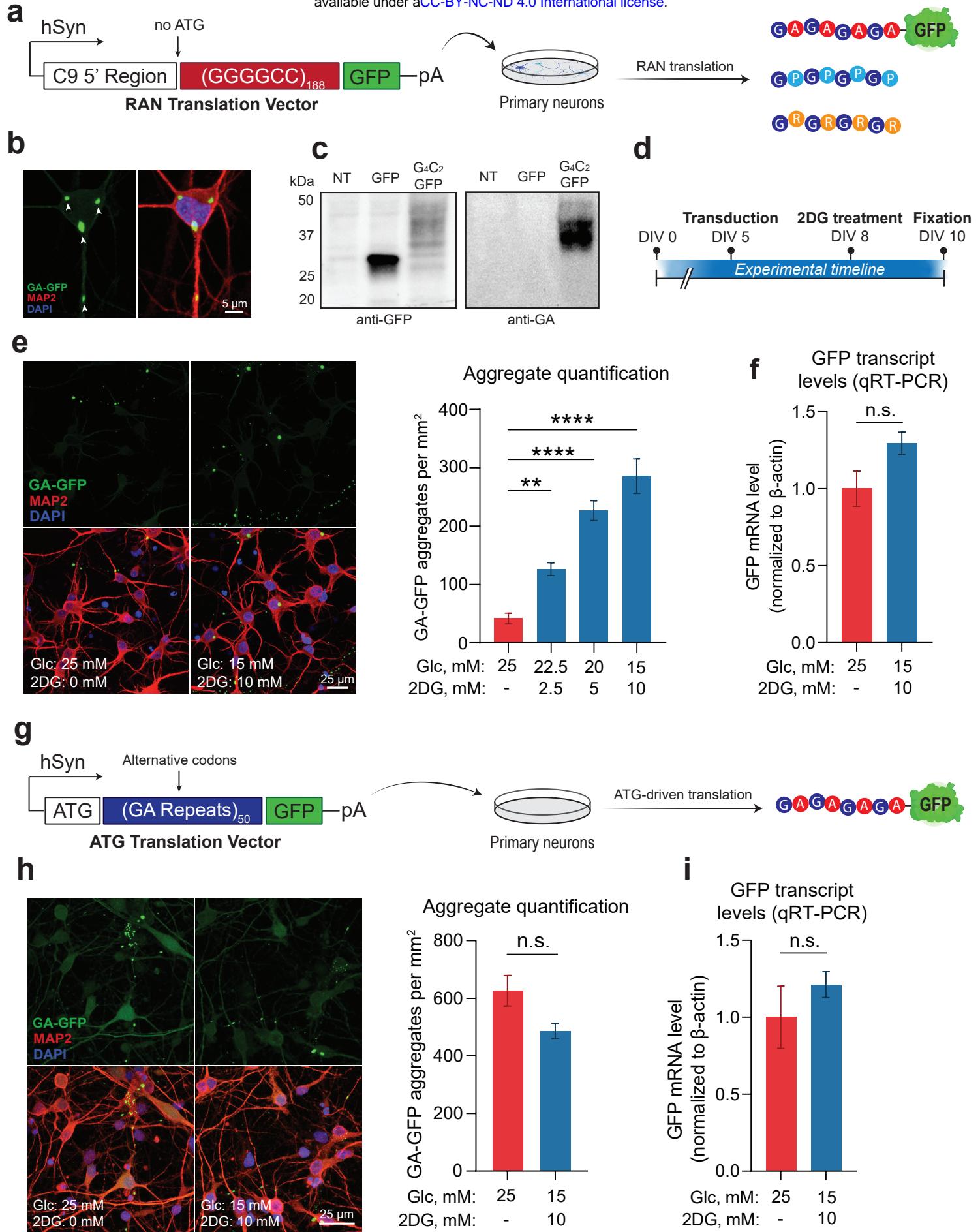
1094

1095 Tabet R, Schaeffer L, Freyermuth F, Jambeau M, Workman M, Lee CZ, Lin CC, Jiang J, Jansen-
1096 West K, Abou-Hamdan H *et al* (2018) CUG initiation and frameshifting enable production of
1097 dipeptide repeat proteins from ALS/FTD C9ORF72 transcripts. *Nat Commun* 9: 152

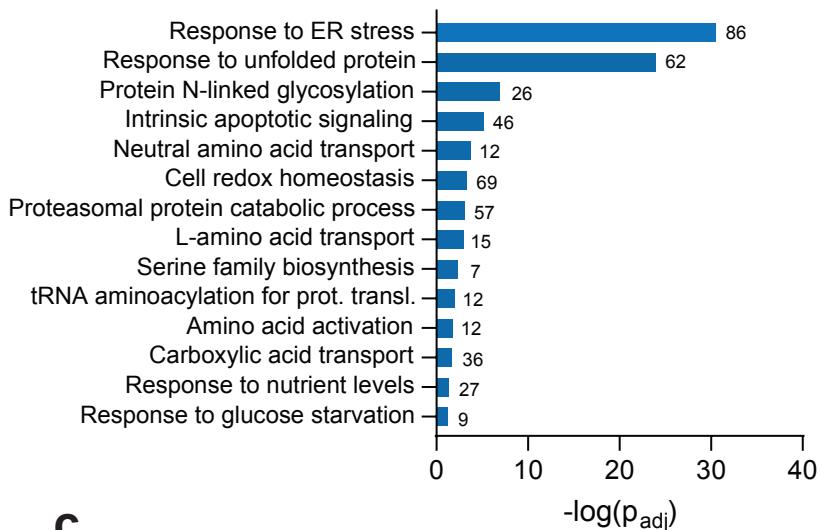
1098

1099 Verdone BM, Cicardi ME, Wen X, Sriramoji S, Russell K, Markandaiah SS, Jensen BK,
1100 Krishnamurthy K, Haeusler AR, Pasinelli P *et al* (2022) A mouse model with widespread
1101 expression of the C9orf72-linked glycine-arginine dipeptide displays non-lethal ALS/FTD-like
1102 phenotypes. *Sci Rep* 12: 5644

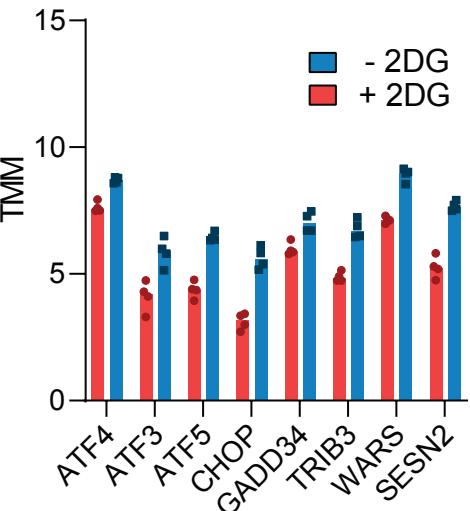

1103

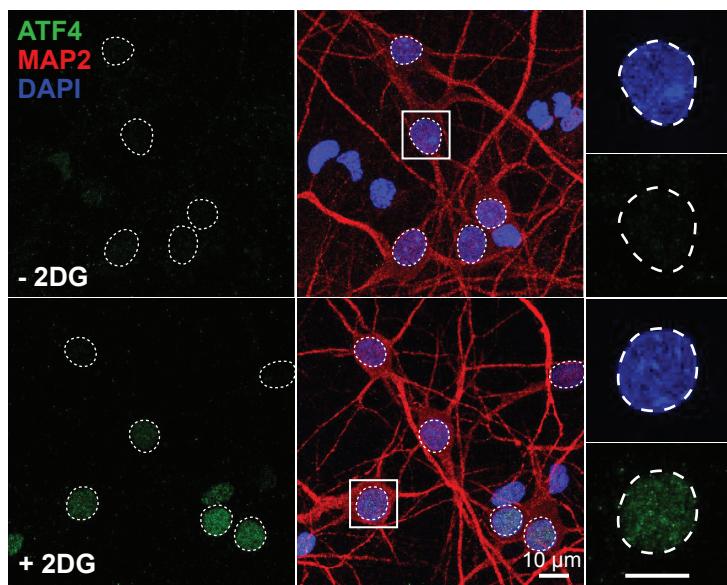

1104 Wang T, Liu H, Itoh K, Oh S, Zhao L, Murata D, Sesaki H, Hartung T, Na CH, Wang J (2021)
1105 C9orf72 regulates energy homeostasis by stabilizing mitochondrial complex I assembly. *Cell*
1106 *Metab* 33: 531-546 e539

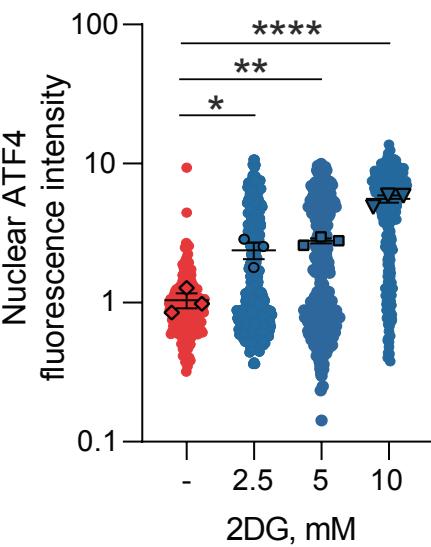
1107

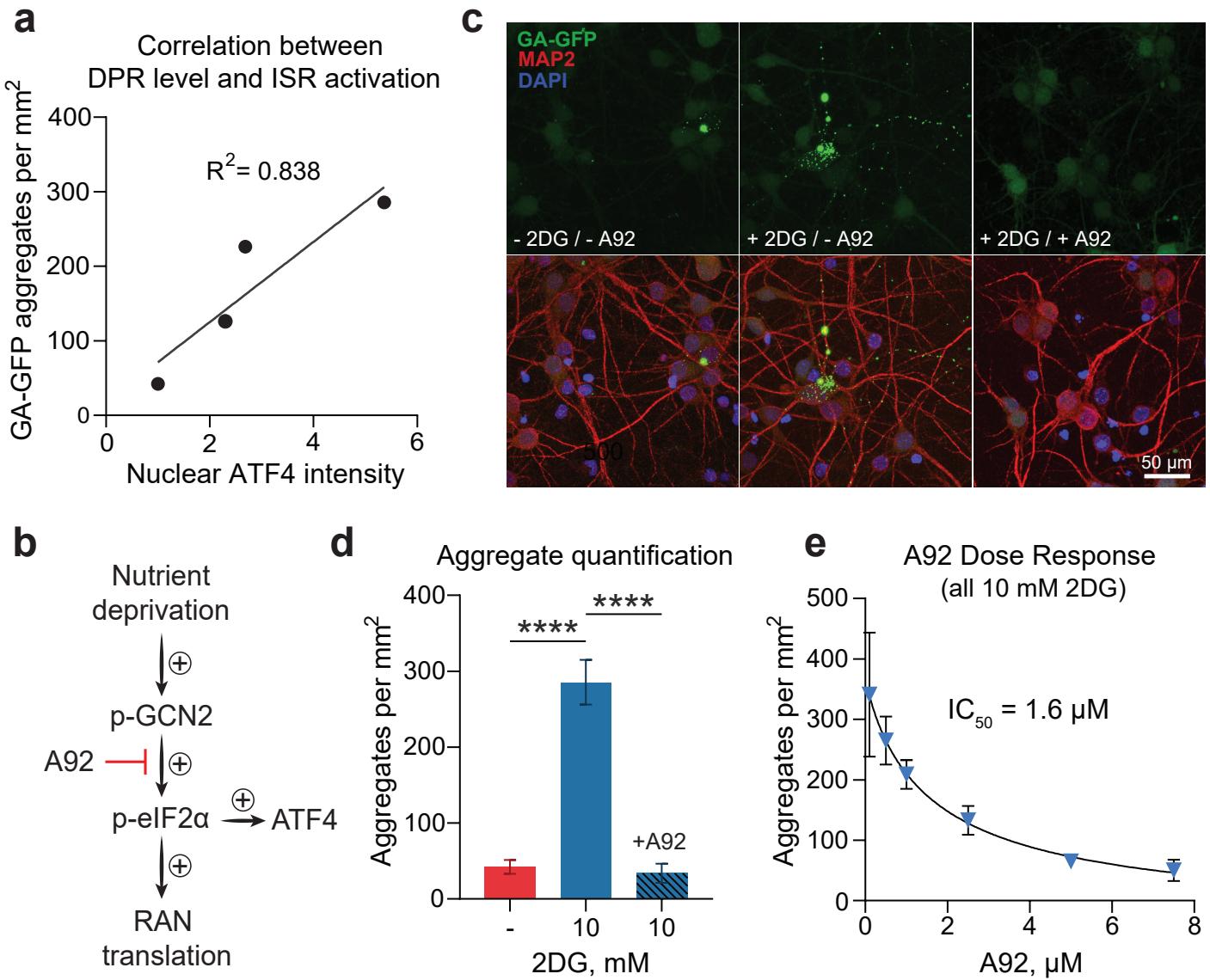

1108 Wen X, Tan W, Westergard T, Krishnamurthy K, Markandaiah SS, Shi Y, Lin S, Shneider NA,
1109 Monaghan J, Pandey UB *et al* (2014) Antisense proline-arginine RAN dipeptides linked to
1110 C9ORF72-ALS/FTD form toxic nuclear aggregates that initiate in vitro and in vivo neuronal
1111 death. *Neuron* 84: 1213-1225

1112 Westergard T, McAvoy K, Russell K, Wen X, Pang Y, Morris B, Pasinelli P, Trott D, Haeusler
1113 A (2019) Repeat-associated non-AUG translation in C9orf72-ALS/FTD is driven by neuronal
1114 excitation and stress. *EMBO Mol Med* 11
1115
1116 Wu N, Yang M, Gaur U, Xu H, Yao Y, Li D (2016) Alpha-Ketoglutarate: Physiological
1117 Functions and Applications. *Biomol Ther (Seoul)* 24: 1-8
1118
1119 Xia K, Witzel S, Witzel C, Klose V, Fan D, Ludolph AC, Dorst J (2023) Mutation-specific
1120 metabolic profiles in presymptomatic amyotrophic lateral sclerosis. *Eur J Neurol* 30: 87-95
1121
1122 Xie N, Zhang L, Gao W, Huang C, Huber PE, Zhou X, Li C, Shen G, Zou B (2020) NAD(+)
1123 metabolism: pathophysiologic mechanisms and therapeutic potential. *Signal Transduct Target*
1124 *Ther* 5: 227
1125
1126 Yang R, Wek SA, Wek RC (2000) Glucose Limitation Induces GCN4 Translation by Activation
1127 of Gcn2 Protein Kinase. *Mol Biol Cell* 20: 2706-2717
1128
1129 Yang YM, Gupta SK, Kim KJ, Powers BE, Cerqueira A, Wainger BJ, Ngo HD, Rosowski KA,
1130 Schein PA, Ackeifi CA *et al* (2013) A small molecule screen in stem-cell-derived motor neurons
1131 identifies a kinase inhibitor as a candidate therapeutic for ALS. *Cell Stem Cell* 12: 713-726
1132
1133 Zu T, Guo S, Bardhi O, Ryskamp DA, Li J, Khoramian Tusi S, Engelbrecht A, Klippel K,
1134 Chakrabarty P, Nguyen L *et al* (2020) Metformin inhibits RAN translation through PKR
1135 pathway and mitigates disease in C9orf72 ALS/FTD mice. *Proc Natl Acad Sci U S A* 117:
1136 18591-18599
1137
1138 Zu T, Liu Y, Banez-Coronel M, Reid T, Pletnikova O, Lewis J, Miller TM, Harms MB,
1139 Falchook AE, Subramony SH *et al* (2013) RAN proteins and RNA foci from antisense
1140 transcripts in C9ORF72 ALS and frontotemporal dementia. *Proc Natl Acad Sci U S A* 110:
1141 E4968-4977
1142



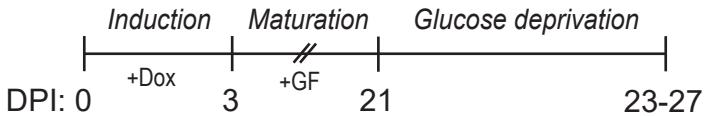

a Enriched GO pathways (*upregulated* in 2DG-treated)

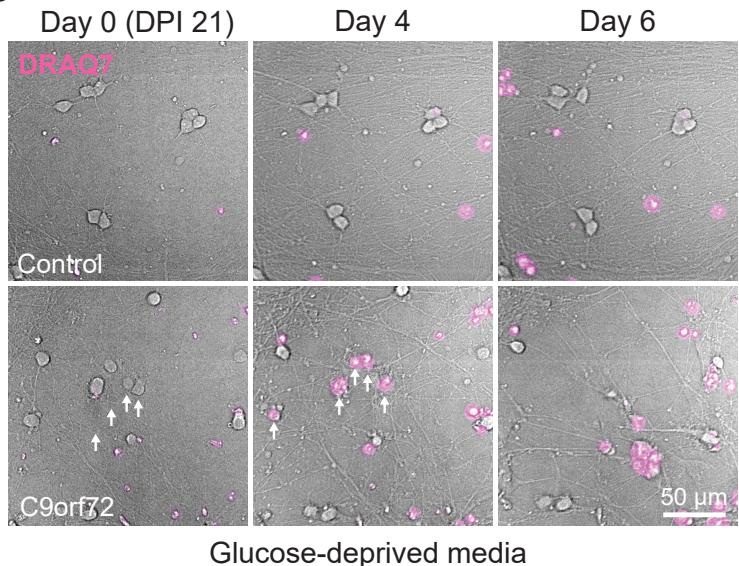

b Integrated stress response pathway targets (RNA-seq)



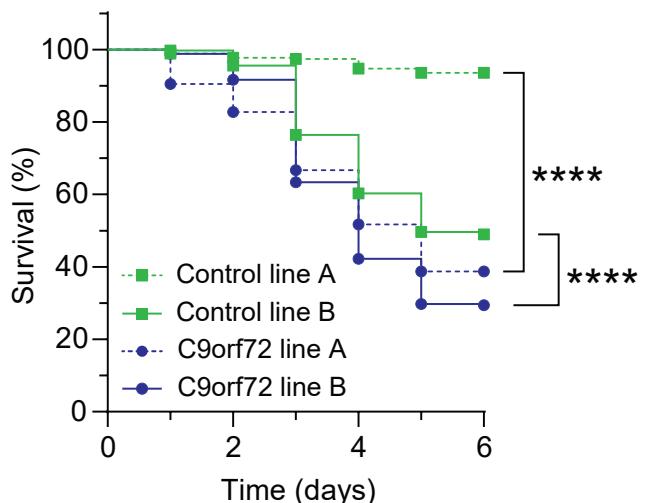
c

Single-cell ATF4 quantification

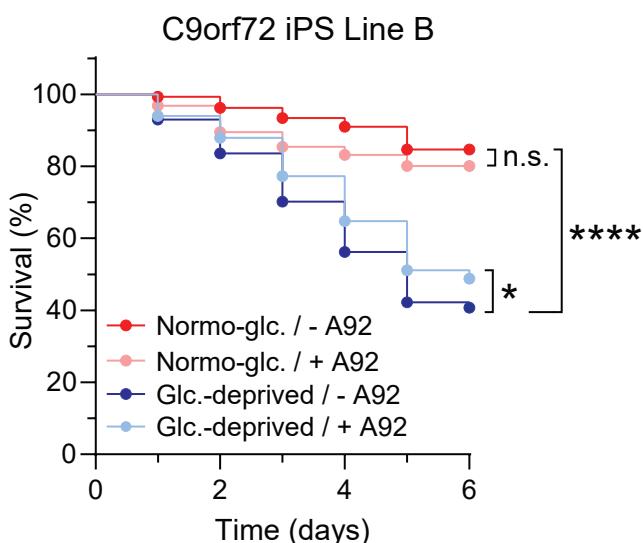
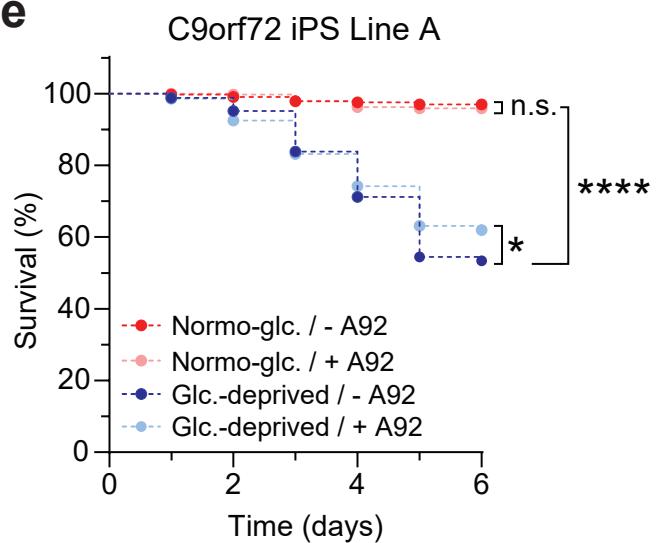



a

b

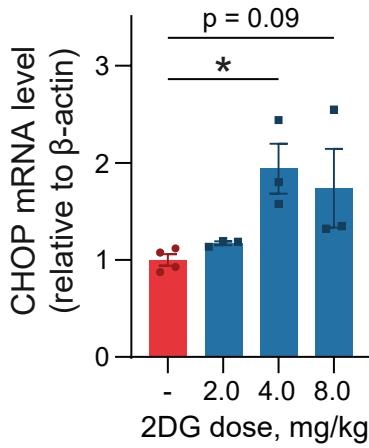


c

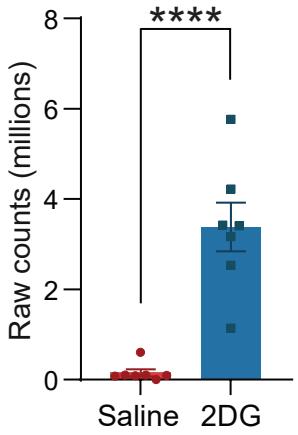
d

Survival in glucose-deprived media

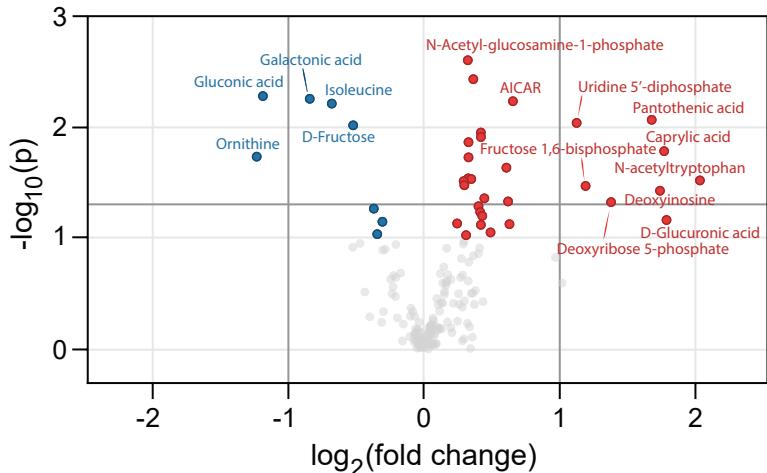

e


a

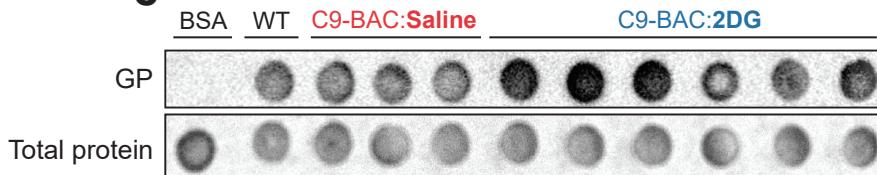
b CHOP (RT-qPCR)



GADD34 (RT-qPCR)


c

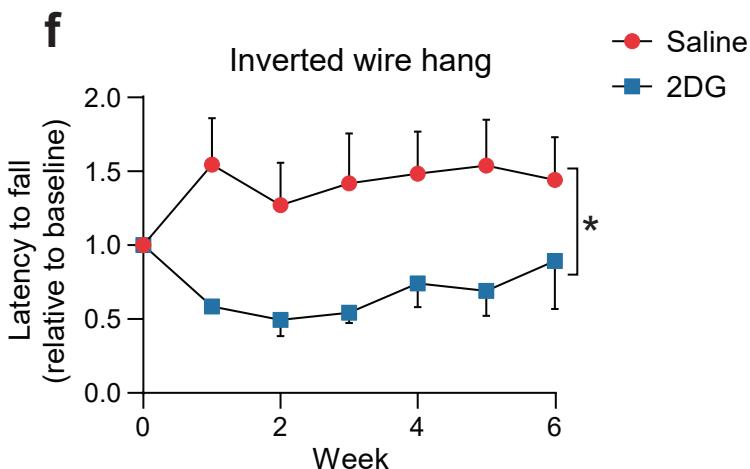
2DG-6-P brain accumulation

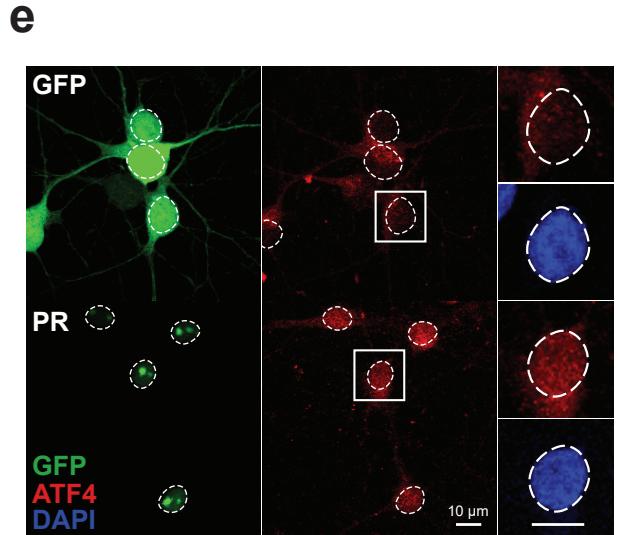
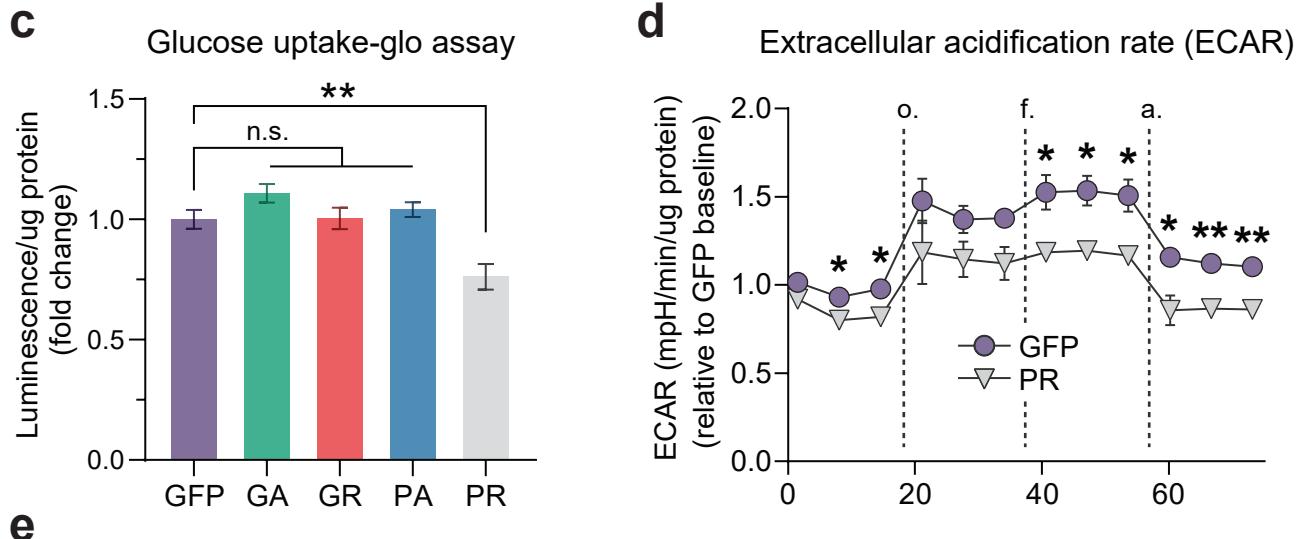
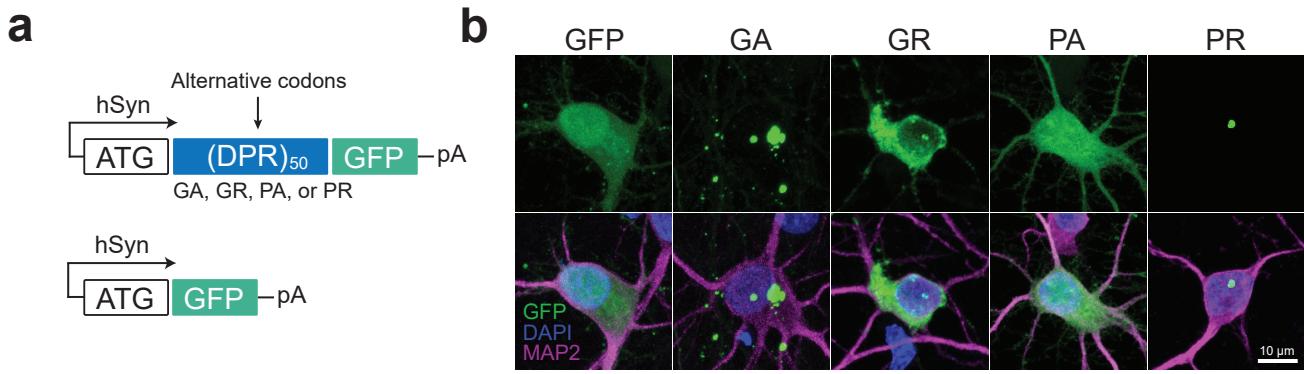


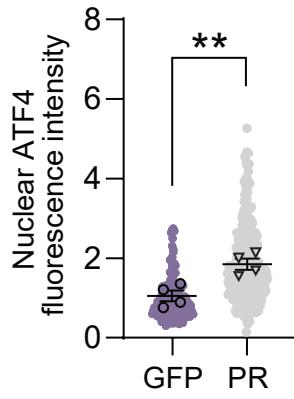
d

Altered metabolites in the brain of 2DG-injected vs. saline-injected (C9-BAC animals)

e






GP dot blot quantification


f

Inverted wire hang

ATF4 staining quantification

	Fold change	log2(Fold change)	p-value
2DGP	17.747	4.1495	0.000
N-Acetyl-glucosamine 1-phosphate	1.2507	0.32277	0.002
D-Ribulose 5-phosphate	1.2862	0.36312	0.004
Gluconic acid	0.43964	-1.1856	0.005
Galactonic acid	0.5579	-0.84192	0.006
AICAR	1.5763	0.65655	0.006
L-Isoleucine	0.62487	-0.67837	0.006
Pantothenic acid	3.2048	1.6802	0.009
Uridine 5'-diphosphate	2.1806	1.1247	0.009
D-Fructose	0.69694	-0.5209	0.010
N-Acetyl-D-glucosamine	1.3384	0.42056	0.011
Uracil	1.3381	0.42016	0.012
L-Methionine	1.2566	0.32948	0.014
Caprylic acid	3.4104	1.7699	0.016
Ornithine	0.42576	-1.2319	0.018
Riboflavin	1.2559	0.32874	0.019
N6-Acetyl-L-lysine	1.5243	0.60817	0.023
Choline	1.2534	0.32586	0.029
L-Serine	1.2737	0.34907	0.029
N-acetyltryptophan	4.0996	2.0355	0.030
Uridine diphosphate-N-acetylglucosamine	1.2244	0.2921	0.031
Uridine 5'-monophosphate	1.2292	0.29771	0.033
Fructose 1,6-bisphosphate	2.2852	1.1923	0.034
Deoxyinosine	3.3378	1.7389	0.037
Isovalerylcarnitine	1.3607	0.44438	0.044
2-Hydroxycaproic acid	1.5378	0.62091	0.046
Deoxyribose 5-phosphate	2.6036	1.3805	0.047
Deoxyuridine	1.3224	0.40315	0.051
Xanthine	0.77474	-0.36821	0.054
L-Phenylalanine	1.3329	0.41462	0.058
Imidazoleacetic acid	1.3465	0.42924	0.063
D-Glucuronic acid	3.4526	1.7877	0.068
Phosphorylcholine	0.80966	-0.30461	0.071
N-Acetyl-L-alanine	1.1848	0.24459	0.073
4-Trimethylammoniobutanoic acid	1.549	0.63133	0.075
Thymine	1.3379	0.41996	0.076
Thymidine	1.4051	0.49068	0.088
N-Acetylasparagine	0.78788	-0.34396	0.092
L-Tyrosine	1.2395	0.30981	0.093

(in order of significance)