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Abstract

The causative agent of gastroenteritis is Shiga toxin, which belongs to a functionally and structuraly associated protein family
despite each individual having a unique amino acid sequence. After entering the ER lumen and relocating the toxic domain to the
cytoplasm, they alter the large subunit of rRNA, preventing protein synthesis and ribosomal damage. Shiga-like toxin-1 (SLT-1)
subunit B targets glycolipid receptor Gb3, which plays a significant role in cytotoxicity. Though the mutational effect on subunit
B is important for cytotoxicity study, we lack better understanding. Our present study targets the mutational impact of glycine
protein at their 62" amino acid sequence of subunit B. For example, how it can alter the receptor-binding capacity and virulence.
We used in silico method with GROMACS software suite (version 5.2, 2020.1) on Google Colab for a 100ns (100,000ps)
simulation period and UCSF Chimera software for visualizing mutant and wild-type structure similarities. Surprisingly, RMSD,
RMSF, and Rg tragjectories from the simulation analysis indicated a more stable and compact mutant structure than the wild type.
Principle component analysis (PCA) and SASA were visualized for the entire 100ns, which pointed towards homogeneity
between both structures and more solvent accessibility in the mutant structure. This mutation may elevate receptor-binding and
virulence capacity. Moreover, this finding can offer a better insight for future vaccine production.

Keywords- Shiga toxin; Shiga-liketoxin 1 (SLT-1) subunit B; molecular dynamics simulation; mutation; pca analys's,
gromacs.

1. Introduction

Shiga toxins are mainly found in bacteria S. dysenteriae, various serotypes of Escherichia coli (STEC), including
0157:H7, 0104:H4, and Enterobacteria phage H19B(Menge 2020); which plays a major role as a causative agent in
severe gastroenteritis and creates disease burden in immunosuppressed patients, infants and elderly population
(Thomas et a. 2019). Shiga-like toxins have different isoformsi.e. Stx, Stx1, Stx2, etc. Stx1 and Stx are identical in
nature. However, Stx2 isoforms differ immunologically, and approximately 60% similarity to the Stx sequence has
been observed. Although each Stx isoform has a unique amino acid sequence, they all have homologous toxin
structure and mode of action (Golshani, Oloomi, and Bouzari 2017). Shiga-like toxin 1 (from the Stx1 gene) is atype
-1 ribosome-inactivating protein; which broadly reside within Shigatoxin family producing functional and structural
exotoxins. They enter the endoplasmic reticulum (ER) lumen and create cytotoxicity by relocating their toxic domain
to the cytoplasm. These proteins catalytically ater the large subunit of rRNA, preventing protein synthesis and
irreversible damage to the ribosome (Basu and Tumer 2015).

Shigalike toxin 1 contains a single A subunit and pentamers of B subunits (7.7KDa each); which aid in the
recognition and binding of holotoxin to cellular globotriaosylceramide Gbs receptor or CD77. Glycolipid receptor
Gb3 plays a major role in cytotoxic specificity (Chan and Ng 2016). A trisaccharide receptor analog of Gb3 was
used to identify the crystal structure of the Stx1 B subunit in 1998. Three trisaccharide-binding sites were discovered
in this study for each B fragment monomer. Any introduction of mutations in the genes producing the Shigatoxin B
subunit can have a major impact on its structure, dynamics, and virulence. Moreover, amino acid alteration occurs


https://doi.org/10.1101/2023.06.07.544092
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.07.544092; this version posted June 7, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

due to point mutation within the genome; leading to remodeling of stability, binding affinity, and overall toxin-
receptor complex behavior(Menge 2020). According to the mutation study, the B subunit has 3 functional sites. Site
1 and 2 play acrucial rolein cytotoxicity and mediate high-affinity receptor binding. In addition, site 3 facilitates the
identification of additional low-affinity Gb3 epitope (Johannes and Rémer 2010).

An in-silico study provides opportunities to study protein dynamics in prediction level. The wild type Shiga-like
toxin 1 subunit B is synthesize from stxB gene, which contains 89 amino acids and the Uniport ID is P69179. We
aim to elucidate the structural and dynamic changes induced by the mutation and provide valuable insights into the
functional consequences of this mutation. The molecular dynamics comparison between (G62T) wild type protein
complex and (T62G) mutant protein complex (1CQF) will shed a light on the effect of mutation; as well as
corresponding molecular mechanisms underlying disease and target therapeutics development.

2. Materialsand Methods
2.1. Structure Preparation

Model organism Enterobacteria phage H19B gene stxB synthesizes the primary sequence of Shiga-like toxin 1
subunit B protein; which was retrieved from the UniProtKB database in FASTA format and the UniProtKB
identifier was P69179. STXB_BPH19. In addition, Expasy's Prot param server was used to get the physicochemical
parameters of protein Shiga-like toxin 1 subunit B. Mutant structure 1CQF was retrieved from RCSB PDB and the
DOl is: https://doi.org/10.2210/pdb1CQF/pdb. We aso examined the mutant 1CQF protein generated by the UCSF
Chimera (Anwar and Choi 2017).

2.2. Molecular Dynamics Smulation

A 100 ns (100, 000 ps) molecular dynamics (MD) simulation was conducted in order to assess the stability as
well as the consistency of the predicted structure of shiga toxin B. This study was conducted on GROMACS 5.2
(2020.1) (Abraham et al. 2015) on an on google colab framework. For shiga toxin B structure, MD simulation of
mutated protein was carried out. This simulation not only performed to compare the mutated structure trgjectory data
but also to anticipate the shared similarities between trgectory analysis of both wild-type and mutated structure
prediction. The protein topology force field was developed utilizing all-atom Optimized Potentials for Liquid
Simulations (OPLS-AA) (Robertson, Tirado-Rives, and Jorgensen 2015). In particular, the non-bonded interaction
parameters calculated by OPLS-AA and OPLS-AA/L show positive findings (Shirts et a. 2003; Tzanov, Cuendet,
and Tuckerman 2014). Besides, both the wild type and mutated protein structure was solvated using a general
equilibrated 3-point solvent model named simple point charge (SPC) water model spc216. A 1.50 nm cubic
simulation box was constructed around the projected model and solvated using an SPC water model. 4 cl”ions were
added to neutralize the positive charge. In order to eliminate the edge effect, periodic boundary requirements were
imposed in every direction. Both the mutant and the wild type protein structures were used in the system's energy
minimization, which was done using the steepest descent algorithm with a maximum step size of 50,000 and a
tolerance of 1000 kJ mol™ nm™. Following system minimization, it was equilibrated for 100 ps a both the
isothermal-isobaric ensemble (NPT) and the canonical ensemble (NVT). For establishing long-range electrostatic
interactions with a PME order, the Particle Mesh Ewald (PME) summation was utilized. Restricting hydrogen-atom
bonds and water-molecule geometry, the Linear Constraint Solver (LINCS) algorithm and SETTLE technique were
employed (Hess et a. 1997; Miyamoto and Kollman 1992). The Parrinello- Rahman method modulated a constant
level of pressure a 1 atm (1.01325 bar); while at the same time, temperature regulation at 300K was achieved using
V-rescale weak coupling method. For the 100 ns MD run production with no constraints, the LINCS algorithm and a
2fs (fs) integration stage was utilized (Hess et a. 1997). PME method was utilized for Lennard-Jones and
Coulombic interactions.

2.3. Molecular Dynamics Analysis

A widely used method for deriving functionally important collective movements from a molecular dynamics
(MD) trgectory is principa component analysis. We used previously known methodologies to conduct an
examination of the essential dynamics (Anwar and Choi 2017; Spellmon et al. 2015; Wolf and Kirschner 2013).
Also, we employed MDAnNalysis and MDTras atom selection and associated algorithms to evaluate the C-alpha
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backbone trajectory as well as dice the trgjectory over the entire 100ns (McGibbon et a. 2015; Michaud-Agrawal et
al. 2011). The RMSD distance matrices and hierarchical clustering techniques were also employed to group the MD
simulation trajectory of shiga-like toxin 1 subunit B and the mutated structure 1CQF, using the MDTrg Python
module. Every pairwise RM SDs between conformations are computed, and the result is a dendrogram with RMSD
average linkage hierarchical clustering. Lastly, by mapping the simulation data into the reduced dimensional space
of both the modelled and mutated structures, we created a two-component PCA model to calculate the main
components of the total 100 ns while taking into account the alpha carbon chain. The alignment-dependent input
PCA leverages Cartesian coordinates. In comparison, we calculated the alignment independent pairwise distance
PCA between every atom in each frame of the modeled and mutated al pha-carbon chain.

3. Result and Discussion
3.1. Structural Properties

We used the UniProt database for retrieving the whole structure of the wild-type Shiga toxin-1 B component
(UniProt  ID: P69179) and RCSB PDB database for mutant protein 1CQF  (DOI:
https://doi.org/10.2210/pdb1CQF/pdb). Mutation was introduced in the Shiga toxin B subunit's wild-type structure
by changing the residue G62 to T62 using Chimera software program. The amino acid threonine (T) at the 62
position was mutated to glycine (G). This resultant mutant structure 1CQF represents the complex of the mutated
Shiga toxin. Once the mutation had been introduced via UCSF Chimera (Pettersen et al. 2004), the combination of
the mutant and wild type Shiga toxin was carried out.

3.2. Fundamental Dynamics Analysis

Molecular dynamics simulations were performed to investigate the structural dynamics and stability of wild-
type (G62T) and mutant (T62G) structures. For the simulation we followed the article of Paul et al., 2022; which
used Google Colab’s optimized simulation protocol. The MD simulations were carried out using GROMACS
2020.1 software, utilizing the GPU service on Google Colab to leverage its computational capabilities. The
simulations were run for 100 nsto illustrate the behaviour of the protein over an extended period (Paul et al. 2022).
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Figure 1. The results of simulation (A) Representing the RM SD of wild (blue) and mutant (orange) type during the entire 100ns. (B) Trajectories
of RMSF fluctuation of G62T wild type (blue) and T62G mutant (orange) showing three flexible region. In (A), from little to no deviation both
structures started showing variations within few nano seconds. The highest deviation between two trajectories was about 0.34nm, which remained
for about 10ns (from 15ns-25ns). The system gets stable in the range of 0.17-0.35 nm at about 97ns by the convergence of the both structure. (B)
RM SF dataidentifies 3 significant deviations between two trgjectories of about 10nm, 7nm, 6nm respectively.

RMSD is a quantitative measure to evaluate the similarity between multiple protein structures. In order to
determine the structural stability, the RMSD of the protein backbone was calculated for the wild type (G62T) and
mutated (T62G) structures over a 100 ns (100,000 ps) simulation. The RMSD values were obtained by comparing
the final structures to their initial conformations. Figure 1A displays the maximum and minimum distances of
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RMSD for the wild and mutant type trgectories, which were approximately 0.34 nm and 0.17 nm respectively.
Additionally, six distinct intersections were identified within these trgjectories a 10 ns, 30 ns, 45 ns, 65 ns, 90 ns,
and 97 ns. In summary, both the wild type and mutant structures reached a stable state around 97 ns, with an RMSD
range of 0.17-0.35 nm. These findings suggest that both structures achieved equilibrium and maintained their overall
structural integrity throughout the simulation.

The RMSF is an averaged measure of mutant complex by which we predict the displacement of a specific atom,
or cluster of atoms, with respect to the wild-type structure. The investigation of the structure's time-dependent
movements are retrieved from the RMSD. In Figure 1B, we analyzed the flexibility of the structure; which
represents the Backbone RMS Fluctuation (RMSF) of the wild and mutant structure. RMSF data identifies 3
significant deviations of amino acid residues. The first one is between 8-23th residues, where the deviation is from
23-30nm; the second fluctuation is between the 28-45 residue while 17-28nm is the deviation range and finaly,
from 50-68th residue the deviation ranges from 21-28nm. Comparing the architecture of mutant and wild-type
organisms enabled us to evaluate of the effect of the T62G mutation on the complex's flexibility. From the RMSF
value we can clearly visualize that, the mutant type structure is more compact and has less deviation in its trgjectory
representing its stability. Integration of glycine in the 62th glycine rich loop potentially increased ligand binding
capacity in the mutated protein.
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Figure 2. Representing the Radius of gyration of (Rg) of wild type (blue) and mutant (orange) structures. The Rg data shows overall compactness
of the wild and mutant structure.

In figure 2, the radius of gyration analysis was conducted to evaluate the compactness and global structural
changes of the protein during the simulation. One of the most important metrics that is frequently used to forecast
the structural activity of a macromolecule is the computation of Rg. The result resembles seven different
intersections, started at the 15ns, then at 25-35ns, the third on at 45ns, in between 60ns-70ns the fourth convergence
appeared, later at 80ns-90ns, 95ns and at last the final convergence was from 98-100ns. This result clearly stated
that, the profile of the T62G mutants compactness was closely resembled to that of thewild type and showing an
analogy in their overall homogeneity.

3.3. Essential Dynamics Analysis

Principal component analysis (PCA) was performed to analyze the collective motions and conformational
changes in the Shiga toxin wild type (G62T) and mutated (T62G) structures. Pairwise distance PCA is calculated by
analyzing the atoms precise location against time. On the other hand, the Cartesian coordinate PCA anaysis
partially captures the dominating overall motion. The hierarchical distribution of all the clusters is shown viaRMSD
hierarchical clustering. This distribution was visualized using color coded clusters against a fixed time frame and the
color distribution ranged from initial to final stage at 100ns simulation in both Cartesian coordinate PCA and
pairwise distance PCA.

Complexes produced in figure 3, 4 and 5 evauating the conformational dynamics of the mutant structure
(1CQF) in comparison to the wild type structure and the study comprises clustering dendrograms (figure 3) and
Principal Component Analysis (PCA) plots (figure4 & 5).
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A RMSD Average linkage hierarchical clustering B RMSD Average linkage hierarchical clustering

Figure 3. Essential dynamics analysis of (A) wild and (B) mutant structure. It represents clustering dendrograms of both structures for entire
100ns of simulation period. The hierarchical distribution of all the clustersis shown via RMSD hierarchical clustering.

The Cartesian coordinate PCA plotsin figures 4A and 4B depict the entire 100ns of the whole simulation period
for the wild type (A) and mutated structure (B) against a 2D graph respectively. In figure 4A, we visualized initial
clusters were residing between first and second coordinate, in the final stage they were placed within 3rd and 4th
quadrant. Though in figure 4B, primary clusters were in 2nd and 3rd quadrants; their final appearance was between
3rd and 4th quadrants as well. In pairwise distance PCA, final cluster of wild type was visualized between 2nd and
3rd quadrants. In contrast, mutant type showed their final cluster in 3rd and 4th quadrant.
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Figure 4. Visualizing Cartesian coordinate (PCA) principal component analysis of wild type (A) and mutant (B) structure of entire 100ns of
simulation period. These distributions were visualized using color coded clusters against a fixed time frame. In (4A) wild type structure, we
visualized the initial clusters were residing between first and second coordinates and in the final stage they were placed within 3rd and 4th
quadrants. Though in (4B) mutant, primary clusters were within 2nd and 3rd quadrants; their final appearance was between 3rd and 4th quadrants
aswell.
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Figure 5. Visualizing pairwise distance (PCA) principal component analysis of wild type (A) and mutant (B) structure of entire 100ns of
simulation period. These distributions were visualized using color coded clusters against a fixed time frame. In pairwise distance PCA (5), final
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clusters of wild type (5A) were visualized between 2nd and 3rd quadrants. In contrast, mutant type (5B) showed their final clustersin 3rd and 4th
quadrant.

The solvent-accessible surface area (SASA) was calculated using the Shrake and Rupley algorithm of MdTraj
(McGibbon et a. 2015). In figure 6, we investigated the total Solvent Accessible Surface Area (SASA) analysis for
the wild type (A) and mutated (B) structure; which is necessary for hydrophobic core region analysis for precise
understanding of the stahility, binding interaction and folding pattern of the protein. The solvent-exposed region was
discovered using SASA analysis, which indicates towards conformational change of mutant protein (B) in
comparison  towild type (A) protein.
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Figure 6. Depicts total SASA value of wild (A) and mutant type (B) structure of entire 100ns. Where wild type (6A) showed highest peak value
of about 58 nm? in between 18-20 ns. Mutant type (6B) showing the highest value of about 55 nm? at approximately 75 ns.
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Figure 7. Depicting SASA autocorrelation. The wild type (7A) variant maintained a constant value of about 1nm? from the 0.10-1ns, then a
constant downfall until two peaks of about 0.1nm? (40-60ns) and 0.2nm? (70-90ns) has been observed between 10-100ns. Similar pattern has
been observed in case of mutant structure (7B) with an exception of a single peak of about 0.3nm2 between 40ns- 90ns.

In figure 7, SASA autocorrelation was depicted. The wild type (A) variant maintained a constant value of about
1nm? from the 0.10ns-1ns; then a constant downfall until two peaks of about 0.1nm? (40-60ns) and 0.2 nm? (70-
90ns) has been observed between 10-100ns. Similar pattern has been observed in case of mutant structure (B) with
an exception of a single peak of about 0.3 nm? was observed between 40ns- 90ns. Despite having functional
homogeneity between wild (A) and mutant type (B) structure we can observe that, mutant structure (B) achieved
more improved binding capacity and thus increased virulence frequency.

4, Conclusion

From our in silico investigation, we analyzed the mutation induced structural changes, pathogenic pattern and
changes in binding affinity. Molecular Dynamics simulation of both wild and mutant Shiga toxin structure predicted
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RMSD, Radiation of gyration (Rg), RMSF value. After assessing the RMSD value, overal resemblance and
homology between wild and mutant type structure was identified. We targeted both of our complexes for their
compactness and time dependent movement by RMSF. Our study investigated a more compact (T62G) mutated
structure 1CQF with a highest deviation of 28nm in comparison of the wild type structure having a deviation of
38nm. It clearly pointed towards a more compact receptor-binding site along with increased virulence capacity in the
mutated protein. The Radius of Gyration (Rg) calculated the structural activity of a protein. Our investigation finds
out similarities between protein complexes along with a highly stable mutant protein structure. Along with this,
SASA indicates towards conformational changes and improved binding capacity. We obtaineda precise
understanding of the intramolecular properties of both protein structures and their overall dominating motion;
mainly through the pairwise distance and Cartesian coordinate PC. Principle component (PC) analysis clearly stated
homogeneity between (T62G) mutant protein and (G62T) wild type protein. In concise, the mutation at 62" amino
acid threonine residue to glycine not only increased the receptor-binding capacity but also it could be a stimulant
factor for increased virulence capacity in the mutant Shiga-like toxin type-1 subunit B.
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