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Abstract 
 
Structural variants (SVs) comprise the largest genetic variants, altering from 50 base pairs to 

megabases of DNA. However, SVs have not been effectively ascertained in most genetic 

association studies, leaving a key gap in our understanding of human complex trait genetics. We 

ascertained protein-altering SVs from UK Biobank whole-exome sequencing data (n=468,570) 

using haplotype-informed methods capable of detecting sub-exonic SVs and variation within 

segmental duplications. Incorporating SVs into analyses of rare variants predicted to cause gene 

loss-of-function (pLoF) identified 100 associations of pLoF variants with 41 quantitative traits. 

A low-frequency partial deletion of RGL3 exon 6 appeared to confer one of the strongest 

protective effects of gene LoF on hypertension risk (OR = 0.86 [0.82–0.90]). Protein-coding 

variation in rapidly-evolving gene families within segmental duplications—previously invisible 

to most analysis methods—appeared to generate some of the human genome’s largest 

contributions to variation in type 2 diabetes risk, chronotype, and blood cell traits. These results 

illustrate the potential for new genetic insights from genomic variation that has escaped large-

scale analysis to date.  
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Introduction 

 

Genomic structural variants (SVs), which modify 50 base pairs to megabases of DNA, account 

for the majority of base pairs of variation in each human genome1. Recent major efforts to study 

structural variation in human genomes have elucidated the landscape and mutational origins of 

SVs by ascertaining SVs from short-read sequencing of many thousands of individuals2,3 and 

long-read sequencing of tens of individuals4,5. 

 

Assessing the impact of structural variation on human phenotypes requires genotyping SVs in 

large well-phenotyped cohorts. This has been possible for larger copy-number variants (CNVs) 

detectable from the SNP-array and whole-exome sequencing data generated at scale by biobank 

projects and consortia6–11. However, the effects of kilobase-scale and smaller SVs—which 

comprise the majority of SVs1,5 —have remained largely hidden, requiring analyses of whole-

genome sequencing data sets12,13. Such analyses have demonstrated important influences of SVs 

on gene expression14,15 but have only recently begun reaching the scale necessary to detect 

associations with human phenotypes16–19. 

 

We sought to leverage population genetic principles to address this challenge. Studies of CNVs 

classically focused on large, extremely rare CNVs that recurred ab initio in different individuals 

or families20; most such CNVs affected many genes, making it hard to discern the mechanism by 

which they affected phenotypes. In contrast, far more CNVs are inherited by many people from 

common ancestors; these CNVs, which are generally smaller but can have disabling effects on 

specific, individual genes (and thus interpretable, specific effects on human biology), have often 

gone undetected. Since such CNVs are inherited by descent from common ancestors, we 

hypothesized that the additional information provided by SNP haplotypes9,21 could enable 

analyses of abundant exome sequencing data to detect even small copy-number-altering SVs 

within individual protein-coding genes—including genes within multi-copy and segmental 

duplication regions. We applied this approach to explore the impacts of protein-altering SVs 

upon the ~500,000 research participants in UK Biobank (UKB)22,23. 
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Results 

 

Haplotype-informed detection of rare protein-altering CNVs in UK Biobank  

 

We first sought to sensitively detect rare protein-altering CNVs of all sizes—including CNVs 

that affected single exons—from UKB exome sequencing data (n=468,570). To enable detection 

at this resolution, we utilized a computational approach that can integrate information across 

individuals who share extended SNP haplotypes (Fig. 1a). Because CNVs inherited by descent 

from common ancestors will tend to be inherited on a shared SNP haplotype, analyzing such 

individuals together increases detection sensitivity (Fig. 1a). We previously used this approach to 

detect CNVs from genotyping array intensity data (while retaining sensitivity to larger de novo 

CNVs)9; here, we adapted the approach to model exome-sequencing read counts using negative 

binomial distributions with sample- and region-specific parameters (Methods). Importantly, 

leveraging haplotype-sharing information enabled analysis at 100bp resolution, allowing 

detection of small CNVs that only partially overlap single exons (Fig. 1a). 

 

We applied this approach to identify CNVs in the full UK Biobank cohort, focusing our main 

analyses on 454,682 European-ancestry participants to avoid confounding in subsequent 

association analyses. We identified an average of 93.4 CNVs per person (65.7 deletions and 27.7 

duplications), roughly half of which were short deletions called across intervals of 500bp or less 

(Fig. 1b and Supplementary Table 1). This represented a twofold increase compared to a recent 

analysis of an interim UKB WES release (n=200K)10. Validation using whole-genome 

sequencing data for 100 participants indicated that false-positives were well controlled at <10%, 

with precision improving modestly with CNV size (Fig. 1c and Supplementary Table 2; 

Methods). Most deletions and roughly half of the duplications affected at most one exon (Fig. 

1d), including some CNVs identified using only off-target reads that did not intersect any exons. 

 

The most impactful variants were uncommon: across 18,651 genes, whole-gene duplications and 

CNVs predicted to cause loss-of-function (pLoF) were identified in a median of 8 and 11 

individuals, respectively, with observed counts decreasing with increasing gene constraint (Fig. 

1e). When focusing on genes rarely altered by such events, a mean of 4.4 genes per individual 
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were affected (1.8 genes by whole-gene duplications and 2.6 genes by pLoF CNVs) (Fig. 1f), 

indicating improved sensitivity compared to state-of-the-art methods for rare CNV detection24. 

  

Rare large-effect CNVs implicate new gene-trait relationships  

 

This resource of protein-altering copy-number variation in UK Biobank made it possible to 

discover new links between genetic variation and human phenotypes. To do so, we analyzed 

CNVs for association with 57 heritable quantitative traits (reflecting a broad spectrum of 

biological processes; Supplementary Data 1) using linear mixed models25,26. We performed two 

sets of association analyses (Supplementary Fig. 1): (i) CNV-only analyses, which identified 180 

CNV-trait associations (P < 5 x 10–8) likely to be driven by non-syndromic CNVs (Fig. 2a and 

Supplementary Data 2); and (ii) gene-level burden analyses that collapsed all types of pLoF 

variants (nonsyndromic CNVs, SNVs, and indels) to maximize power to detect rare loss-of-

function effects. The burden analyses identified 100 pLoF gene-trait associations (P < 5 x 10–8) 

undetectable from analyses of pLoF SNVs and indels alone, demonstrating the benefit of 

incorporating CNVs in burden analyses (+20% increase in associations; Fig. 2b and 

Supplementary Data 3). 

 

Several of these associations implicated new gene-trait relationships, even for well-studied traits 

such as height for which common-variant association studies have reached saturation27. These 

included strong height-reducing effects (>1 s.d.) of ultra-rare pLoF variants (combined 

AF<0.0001) in CHSY1, which encodes an enzyme that synthesizes chondroitin sulfate (a 

structural component of cartilage), UHRF1, which encodes an E3 ubiquitin ligase that shares 

structural homology with UHRF2 (recently implicated by our previous work9), and CDK6, which 

harbors one of the strongest common-variant associations with height28. Rare pLoF variants in 

two other genes exhibited moderate height-reducing effects (–0.5 s.d.): USP14, which encodes a 

ubiquitin-specific protease, and PRKG2, which was recently implicated in autosomal recessive 

acromesomelic dysplasia29. 

 

Another height association only discovered using CNVs involved CCNF, at which a rare 

duplication spanning a single 107bp exon accounted for more pLoF events than all other CNVs, 
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SNVs, and indels combined (Fig. 2c). Validation using available UKB WGS data (n=200K) 

confirmed this CNV as a tandem duplication that was called from WES with 100% precision and 

95% recall, illustrating the efficacy of haplotype-informed CNV detection (Supplementary Fig. 

2a,b and Supplementary Note). CCNF pLoF CNVs associated with a moderate decrease in 

height (–0.4 ± 0.1 s.d., P = 5.2 x 10–12) and appeared to have a pleiotropic effect on erythrocyte 

traits (Fig. 2d), motivating further study of this gene and its product, cyclin F. 

 

While further work will be needed to confirm these findings and establish causality, two 

additional analyses provided evidence supporting their robustness. First, across the 15 height 

associations discovered only upon considering pLoF CNVs, the effect sizes of pLoF CNVs 

exhibited broad consistency with those of pLoF SNVs and indels (Fig. 2e), and this consistency 

held across traits (Supplementary Fig. 3). Second, for seven height-associated pLoF CNVs that 

affected genes not previously identified either by large-scale pLoF SNV/indel burden 

analyses23,30 or CNV analyses9, we attempted replication in BioBank Japan31, observing broadly 

consistent effect sizes for the five genes with at least five pLoF CNV carriers in BBJ (Fig. 2f). 

 

RGL3 loss of function associates with reduced hypertension risk 

 

A low-frequency (AF=0.9%) deletion of part of exon 6 of the RGL3 (Ral Guanine Nucleotide 

Dissociation Stimulator Like 3) gene associated with lower blood pressure (–0.11 ± 0.01 s.d.; P 

= 6.1 x 10–23) and decreased hypertension risk (OR = 0.86 [0.82–0.90]; Fig. 3a,b and 

Supplementary Table 3) as well as decreased serum calcium (-0.08 ± 0.01 s.d.; P = 6.0 x 10-11; 

Supplementary Data 2). Closer examination of this CNV showed it to be a 1.1kb deletion present 

in 8,117 UKB participants that intersects only 55bp of coding sequence (Fig. 3c and 

Supplementary Fig. 2c), yet had been successfully called with 99.9% precision and 88% recall 

(based on breakpoint-based follow-up analysis; Supplementary Note). This association replicated 

in the All of Us cohort (n=245,394) with a consistent decrease in hypertension risk (OR = 0.83 

[0.75–0.92], P = 0.00026; Supplementary Fig. 2d and Supplementary Table 4a). The strongest 

blood pressure association at this locus was attained by a common RGL3 missense variant 

(rs167479; AF= 47%) independent of the deletion (R2=0.005; Fig. 3a). Conditioning on rs167479 

resulted in the deletion becoming the lead variant (Fig. 3a), supporting causality of both RGL3 
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coding variants and explaining a previously-reported association of an intronic SNP in RAB3D 

(rs55670943, 76kb downstream32) that best tags the deletion (R2=0.66).  

 

The deletion variant appeared to have a much larger effect on blood pressure than the missense 

variant, similar to the effect of a rare RGL3 stop gain (Fig. 3b), suggesting that it causes loss of 

RGL3 function. Analysis of RNA-sequencing data from the Genotype-Tissue Expression 

(GTEx) project33 provided insight into the transcriptional basis for this effect: carriers of the 

deletion, which removes the exon 6 splice acceptor, exhibited splicing into a novel splice 

acceptor upstream of the deletion (Fig. 3c), translating to an inframe substitution of a novel 23 

amino acid sequence for a 19 amino acid segment of RGL3. Further work will be required to 

determine whether the modified protein is completely dysfunctional or the apparent LoF effect is 

mediated in part by reduced expression of RGL3 alleles carrying the deletion (Supplementary 

Note). 

 

Intriguingly, the blood pressure-lowering effect of the deletion in RGL3 appears to be one of the 

strongest such effects among all coding variants genome-wide (Fig. 3d), and knockout of RGL3 

appears likely to be well-tolerated based on the presence of 37 UKB participants homozygous for 

the deletion who appeared to be generally healthy (Supplementary Note). These observations 

raise the possibility that RGL3, or a pathway in which it functions, could be an appealing target 

for antihypertensive drug development, motivating further study of RGL3 function. 

 

Identifying impacts of common coding copy-number polymorphisms 

 

In addition to the genetic effects above, in uniquely mappable regions of the human genome, 

potentially important effects on human biology could arise within rapidly evolving gene families 

shaped by extensive recent gene duplication and divergence. The analytical technique above was 

designed to detect rare protein-altering CNVs within mappable regions. To enable exploration of 

common coding copy-number variation—including abundant variation within segmental 

duplications34—we developed another approach that first identifies genomic regions that harbor 

common copy-number-altering polymorphisms (based on correlated WES read-depth among 

parent-child trios) and then measures copy number in these regions by leveraging haplotype-
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sharing to denoise read-depth-derived estimates. This approach generalizes techniques we 

recently developed to study variable number tandem repeat (VNTR) polymorphisms21; here, we 

developed new algorithms to analyze a much larger set of CNV regions (Methods).  

 

This approach detected 41,042 genomic regions (defined at the resolution of 100bp segments, 

exons, or previously-reported CNVs) with evidence of common copy-number-altering structural 

variation. These commonly copy-number-variable regions overlapped coding exons of 11% of 

autosomal genes, which tended to have lower probability of loss-of-function intolerance (average 

pLI=0.16 across such genes versus 0.25 across genes not impacted by common SVs; 

Supplementary Table 5). 

 

Measuring copy-number variation in these regions—many of which are invisible to large-scale 

genetic analysis pipelines—provided a unique opportunity to search for associations with 

phenotypic variation in UK Biobank. Given the difficulty of modeling potentially-complex 

structural variation in such regions, compounded with the challenge of analyzing short-read 

alignments in low-mappability regions, we performed association analyses on quantitative, 

dosage-like measurements derived from read-depth rather than attempting to call discrete 

genotypes (Supplementary Fig. 1). We reasoned that while these measurements might only 

roughly represent structural variant alleles, association signals could still point to phenotypically-

important SV regions meriting more careful follow-up. 

 

This strategy proved fruitful: association analyses with 57 quantitative traits identified 375 

associations at 99 loci not explainable by LD to nearby SNPs (Supplementary Data 4), 

recovering strong VNTR-phenotype associations we recently reported (including a 39bp coding 

repeat in GP1BA associated with platelet traits; P = 1.1 x 10-133 [ref. 35]), and revealing several 

new loci involving multi-copy variation poorly tagged by SNPs. Follow-up analyses of the most 

intriguing associations, detailed below, enabled further exploration of genetic variation at these 

loci and its influences on human health. 

 

Common coding variants hidden in segmental duplications modulate type 2 diabetes risk 
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Copy-number variation at 7q22.1 and in CTRB2 associated with HbA1c and type 2 diabetes 

(T2D), contributing two of the top 20 T2D-associated loci in UKB (Fig. 4a). The 7q22.1 locus, 

which also generated the human genome’s strongest association with chronotype (Fig. 4b), 

contains a 99kb segmental duplication that is among the largest, most polymorphic CNVs in the 

human genome5 and encompasses four protein-coding genes (Fig. 4c). While copy number of the 

segment (typically ranging from 2–14 copies per diploid genome) associated with T2D status (P 

= 2.4 x 10-13 in UKB; Fig. 4c,d; replication P = 2.0 x 10-4 in All of Us; Supplementary Table 4b), 

we wondered whether this signal might be driven by paralogous sequence variants (PSVs): i.e., 

SNPs and indels carried on one or more copies of the 99kb segment within each allele. To 

genotype such variation, which is inaccessible to conventional analysis of short-read data, we 

first roughly estimated PSV genotypes from WGS read alignments (available for 200,018 UKB 

participants18) and then adapted our haplotype-informed approach to denoise PSV genotypes and 

impute them into the remainder of the UKB cohort (Supplementary Fig. 4; Methods). 

 

Intriguingly, testing PSVs at 7q22.1 for association with T2D and chronotype identified a 

common missense PSV in RASA4 (encoding Ras GTPase-activating protein 4) as the most 

strongly associated variant for T2D and second-strongest for chronotype (P = 1.3 x 10-25 and 2.6 

x 10-72, respectively; Supplementary Table 6a; T2D replication P = 2.8 x 10-5 in All of Us; 

Supplementary Table 4b). For both phenotypes, the number of copies of RASA4 with this 

mutation (encoding a Y731C substitution in the canonical transcript) associated much more 

strongly than copy number of the 99kb segment (Fig. 4c), and for chronotype, the RASA4 

missense PSV associated far more strongly than variants at all other loci across the genome (Fig. 

4b). The contribution of this locus to each phenotype had largely been hidden from previous 

analyses, as SNPs flanking the segmental duplication poorly tag multi-copy variation within it 

(Fig. 4c). The total number of copies of RASA4 carrying the Y731C missense PSV (typically 

ranging from 0 to 3 per individual; Fig. 4d) associated with increasing T2D risk and 

“eveningness” (i.e., later preferred bedtime/rising time) (Fig. 4e), with a 1.30-fold (1.21–1.39) 

range in odds of T2D. This PSV appears to be a strong candidate causal variant given its protein-

altering effect and support from statistical fine-mapping (Supplementary Note); however, further 

study will be required to determine whether it indeed underlies one or both of these associations, 

and if so, how this mutation affects RASA4 function. 
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The CTRB2 gene encodes the chymotrypsinogen B2 protein, which is primarily produced in the 

pancreas, is converted into the active enzyme chymotrypsin B through enzymatic cleavage in the 

small intestine, and plays an important role in the digestive process36. A common 584bp deletion 

(AF=0.08) spanning exon 6 of CTRB2 appeared to underlie another top locus for T2D (Fig. 4a,f). 

This deletion falls within a region of high homology to CTRB1, but our analysis pipeline 

successfully captured the copy-number variability of exon 6 from WES read-depth despite the 

low mappability (Fig. 4g,h). The deletion associated with decreased T2D risk (P = 1.6 x 10-16, 

strongest at the locus; OR = 0.86 [0.82–0.89]), replicating in All of Us (P = 2.3 x 10-5; 

Supplementary Fig. 2e and Supplementary Table 4c). We also replicated a recently-reported 

association of the deletion (which was shown to impair chymotrypsin B2 function and 

localization) with increased risk of pancreatic cancer37 (P = 4.2 x 10-12; Fig. 4i and 

Supplementary Table 6b). The opposite effect direction of these associations is notable given the 

overall epidemiological association of T2D with increased pancreatic cancer risk38. 

 

FCGR3B and DEFA1A3 segmental duplication variants associate strongly with blood traits 

 

Copy-number polymorphisms in two other segmental duplication regions produced two of the 

top five independent associations with count of basophils (Fig. 5a), a type of white blood cell 

that plays a role in the immune response and the regulation of allergic reactions. Here our 

analysis helped to recognize powerful effects within the FCGR3 gene family, which encodes a 

family of cell surface receptors found on various immune cells, including neutrophils, 

macrophages, and natural killer cells; FCGRs play a crucial role in the immune response by 

recognizing and binding to the Fc portion of immunoglobulins (antibodies) that are bound to 

antigens39. In UKB, copy number of FCGR3B (which our analysis disambiguated from that of its 

paralog, FCGR3A) associated strongly with increased basophil count (P = 1.4 x 10-82, far 

exceeding the associations of nearby SNPs, which poorly tagged the recurrent CNV; Fig. 5b,c). 

Analysis of FCGR3B plasma protein levels corroborated the FCGR3B genotypes 

(Supplementary Fig. 5). FCGR3B deletion has previously been associated with several 

autoimmune disorders40,41; here, decreasing FCGR3B gene dosage also associated with 

increasing risk of chronic obstructive pulmonary disease (P = 7.5 x 10-7; Fig. 5d and 
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Supplementary Table 6c). The FCGR locus on 1q23.3 is known to contain many functional 

variants including multiple distinct CNVs39, such that while the basophil count association 

appears to be driven by FCGR3B copy number, other associations at this locus (Supplementary 

Data 4) may reflect other causal variants. 

 

We were also able to recognize potent effects within the family of alpha-defensin genes, a 

rapidly evolving gene family that encodes a class of small, cationic peptides that are part of the 

innate immune system and play a crucial role in host defense against microbial infections42. 

Variation at the alpha-defensin gene cluster at 8p23.1 associated strongly with basophil count 

(Fig. 5a,e) as well as monocyte count (Fig. 5e). Alleles at this locus contain a highly variable 

number of copies of a 19kb repeat, each containing a single alpha-defensin gene43. Analysis of 

PSVs within this region (which had not previously been studied at scale, similar to the RASA4 

locus at 7q22.1) suggested that the number of copies of the 19kb segment carrying a tightly-

linked 5-SNP haplotype within an Alu element inside the repeat—rather than the total number of 

copies of the repeat—might drive the association (Fig. 5e and Supplementary Table 6d). The 

number of copies of this repeat type typically ranged from 0 to 5 per individual (Fig. 5f) and 

associated with steadily increasing monocyte count and decreasing basophil count (Fig. 5g); 

however, we caution that a functional consequence of the 5-SNP haplotype is not immediately 

clear, unlike for the protein-coding variants at other loci we have highlighted. 

 

SIGLEC14/5 gene fusion demonstrates tissue-specific promoter activity 

 

A common, pleiotropic CNV at the SIGLEC14–SIGLEC5 locus provided a unique opportunity to 

isolate a tissue-specific effect of a promoter element. A deletion allele at this locus that is 

particularly common in East Asians creates a fusion gene in which SIGLEC5 is placed under the 

control of the SIGLEC14 promoter44 (Fig. 6a,b). In UK Biobank, this CNV associated with 

several blood cell indices and serum biomarkers (P = 1.5 x 10-8 to 1.7 x 10-37; Fig. 6c; 

Supplementary Data 4 and Supplementary Table 7a). Follow-up analysis in GTEx revealed an 

unusually tissue-specific effect of the fusion on SIGLEC5 expression, with the effect size varying 

greatly in magnitude and even direction across tissues (Fig. 6d). This phenomenon appeared to 

be explained by the further observation that the fusion’s tissue-specific effects on SIGLEC5 
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expression tracked with relative efficiency of the SIGLEC14 and SIGLEC5 promoters across 

tissues (measured by the relative expression of SIGLEC14 and SIGLEC5 in individuals 

homozygous for the reference allele), such that the variable effect of the fusion was in fact 

consistent with its substitution of the SIGLEC14 promoter in place of the SIGLEC5 promoter 

(Fig. 6d and Supplementary Table 7b). 

 

Other notable results included two strong associations with leukocyte telomere length, one 

involving an 84bp deletion within an alternative last exon of ZNF208 (P = 1.7 x 10-53), and the 

other involving difficult-to-resolve copy number variation in the CLEC18A/B/C gene family (P = 

1.0 x 10-40), which exhibits complex structural variation across two loci >4Mb apart16. Future 

analyses of long-read data sets will be better able to probe variation at such segmental 

duplications and elucidate phenotypic consequences hinted at here. 

 

 

Discussion 

 

These results illustrate the phenotypic impact of protein-altering copy-number polymorphisms 

hidden from large-scale analyses to date. Here we observed that such variants include top genetic 

influences on human phenotypes that have eluded genetic association studies despite steadily 

increasing sample sizes and phenotyping precision. We further identified new gene-trait 

relationships implicated by rare CNVs that, for many genes, comprise a substantial proportion of 

loss-of-function events. We do caution that some of these associations still need replication; here 

we replicated a subset of the associations and observed corroborating evidence from allelic series 

for others. Additionally, while the protein-coding variants that we have implicated have clear 

effects on amino acid sequence or gene dosage, experimental work is needed to confirm 

causality of these variants and understand how they influence function and ultimately phenotype. 

 

Our analyses here, based on exome sequencing of 468,570 individuals in UK Biobank, are far 

from comprehensive. While our haplotype-informed approach accurately recognized several sub-

exonic CNVs that we linked to phenotypes, we expect that it missed very rare, short CNVs 

carried by only a few UKB participants. We also did not attempt to study shorter tandem repeats, 
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which require specialized techniques45. Additionally, our analysis of common CNV regions—via 

rough quantifications of copy number—imperfectly modeled complex, multi-allelic structural 

variation. More precise genotyping of variation in such regions is needed, particularly in 

segmental duplications (~7% of the human genome46). Our analyses were also limited in scope 

by the generally healthy, predominantly European-ancestry composition of the UK Biobank 

cohort. A search for associations between disease traits and gene-inactivating variants (including 

CNVs) only recovered known Mendelian disease genes (Supplementary Data 5), reflecting 

limited power to study rare diseases in population cohorts. Finally, while we prioritized 

compelling associations to highlight here using a stringent statistical fine-mapping filter, relaxing 

this filter would yield many more associations. 

 

We anticipate that expanding genome-sequencing projects, including some that will use long 

reads17,47, will overcome many of these limitations in the coming years, and we look forward to 

further insights into phenotypic consequences of both coding and noncoding structural 

polymorphisms in the years ahead. 
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Figure 1: Haplotype-informed CNV detection from whole-exome sequencing in UK 
Biobank. (a) This approach improves power to detect CNVs by analyzing whole-exome 
sequencing read-depth data from an individual together with corresponding data from individuals 
sharing extended SNP-haplotypes (“haplotype neighbors”), facilitating analysis at the resolution 
of 100bp bins. In contrast, standard approaches analyze data from an individual alone, generally 
at exon-level resolution. (b) Average number of CNVs called per UKB participant, subdivided 
by copy-number change (deletion/duplication) and call length. (c) Validation rate of CNV calls 
based on analysis of whole-genome sequencing data for 100 UKB participants. (d) Average 
numbers of CNVs called per UKB participant affecting given numbers of genes or exons. (e) 
Distributions (across increasingly constrained gene sets) of observed counts of predicted loss-of-
function deletions and whole-gene duplications in 487,205 UKB participants. Centers, medians; 
box edges, 25th and 75th percentiles; whiskers, 5th and 95th percentiles. (f) Fractions of UKB 
participants with given numbers of genes affected by rare CNVs.  
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Figure 2: Association and fine-mapping analyses implicate rare large-effect CNVs and 
uncover new gene-trait relationships. (a) Effect size versus minor allele frequency for 180 
likely-causal CNV-phenotype associations, colored by phenotype category. (b) Number of genes 
with pLoF burden associations (P < 5 x 10-8) per trait, colored by phenotype category, with 
darker shading corresponding to associations detectable only upon including pLoF CNVs (i.e., P 
> 5 x 10-8 for burden masks considering only SNVs and indels). (c) Genomic locations of CCNF 
pLoF CNV calls; boxed calls correspond to the rare duplication spanning a single 107bp exon. 
(d) Effect sizes of CCNF pLoF CNVs for height and erythrocyte traits. (e) Consistency of height 
effect sizes of pLoF CNVs with those of pLoF SNVs and indels. (f) Replication of height effect 
sizes of pLoF CNVs in BioBank Japan (for newly-implicated genes with at least five pLoF CNV 
carriers in BBJ). Error bars, 95% CIs. 
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Figure 3: A low-frequency deletion in RGL3 associates with reduced hypertension risk and 
generates novel splicing. (a) Associations of variants at the RGL3 locus with systolic blood 
pressure in two steps of stepwise conditional analysis. Colored dots are variants in partial LD (R2

≥ 0.01) with labeled variants. (b) Effect sizes and allele frequencies of a common RGL3 
missense variant (rs167479), the low-frequency 1.1 kb deletion, and a rare RGL3 stop gain. (c) 
Evidence of novel RGL3 splicing produced by the 1.1kb deletion. RNA sequencing read-depth 
data from GTEx are shown for a carrier of the deletion and a control sample (both thyroid); red 
arcs indicate novel splice junctions, labeled with counts of supporting RNA-seq reads. (d) 
Systolic and diastolic blood pressure effect sizes versus minor allele frequencies for 
nonsynonymous SNP and indel variants and the 1.1kb deletion. Error bars, 95% CIs. 
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Figure 4: Coding variants within segmental duplications underlie top genetic associations with 
type 2 diabetes and chronotype. (a,b) Genome-wide associations with (a) type 2 diabetes (T2D) and
(b) chronotype. (c) Associations of variation at 7q22.1 with chronotype and T2D. Associations of 
paralogous sequence variants (PSVs) within the 99kb repeat at this locus (1–7 copies per allele; 2 cop
in GRCh37) are plotted in the center; green dashed line indicates association strength of copy number
the 99kb repeat. (d) Joint distribution of copy-number estimates for the 99kb segmental duplication an
the RASA4 Y731C missense variant. (e) T2D prevalence and mean chronotype (in standardized units;
higher for “evening people”) as a function of number of copies of the RASA4 Y731C missense varian
(f) T2D associations at the CTRB2 locus; colored dots are variants in partial LD (R2 > 0.01) with the 
CTRB2 exon 6 deletion. (g) Location of the 584bp deletion spanning CTRB2 exon 6 (top) and exome
sequencing read alignments for a deletion carrier (bottom); most reads aligned to the region paralogou
to CTRB1 do not map uniquely and are colored white. (h) Scatter plot of normalized whole-genome a
whole-exome sequencing read depths at CTRB2 exon 6. (i) Mean HbA1c and prevalence of T2D and 
pancreatic cancer as a function of CTRB2 exon 6 deletion genotype. Error bars, 95% CIs. 
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Figure 5: Variation in segmental duplications generates two of the top five genetic associations 
with basophil counts. (a) Genome-wide associations with basophil counts. (b) Associations with 
basophil counts at the FCGR3B locus; colored dots are variants in partial LD (R2 > 0.01) with FCGR3
copy number. (c) Joint distribution of copy-number estimates for FCGR3A and FCGR3B. (d) Mean 
basophil count and prevalence of chronic obstructive pulmonary disease (COPD) as a function of 
FCGR3B copy number. (e) Associations with basophil counts at the DEFA1/DEFA3 locus. PSVs with
the 19kb repeat at this locus are plotted as in Fig. 4c; green dashed line indicates association strength 
copy number of the 19kb repeat. (f) Histogram of the number of copies of the 19kb repeat carrying th
5-SNP haplotype represented by chr8:6993547 C>A (GRCh38 coordinates). (g) Mean monocyte and 
basophil count as a function of copy number of the 5-SNP haplotype. Error bars, 95% CIs.
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Figure 6: Common, pleiotropic SIGLEC14–SIGLEC5 gene fusion illustrates tissue-specific 
promoter activity. (a) Gene diagram of SIGLEC14 and SIGLEC5. A common deletion allele 
fuses the SIGLEC14 promoter to the SIGLEC5 gene body, and the reciprocal duplication allele is 
also observed at lower frequencies. (b) Allele frequency of gene fusion and duplication events in 
UK Biobank, stratified by reported ethnicity. (c) Effect size of fusion on blood indices and serum 
biomarker traits. (d) Allelic fold change effect of fusion on SIGLEC5 and SIGLEC14 gene 
expression across GTEx tissues tracks with relative efficiency of SIGLEC14 promoter vs. 
SIGLEC5 promoter in each tissue. Error bars, 95% CIs. 
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Methods 
 
UK Biobank genetic data 
 
Whole-exome sequencing (WES) data was previously generated for ~470,000 UK Biobank 
participants23. We analyzed these data together with SNP-haplotypes we previously generated for 
487,409 participants48 in the UKB SNP-array and imputation data set (imp_v3)22. We performed 
haplotype-informed CNV detection on all UK Biobank participants with SNP haplotypes 
(including 468,570 participants with WES data passing QC as well as the remaining ~3% of the 
imp_v3 samples via an imputation approach; Supplementary Note). We also analyzed whole-
genome sequencing (WGS) data available for 200,018 participants18 in validation analyses and 
follow-up analyses of paralogous sequence variants within segmental duplications. We focused 
our primary analyses on individuals of self-reported White ethnicity, excluding individuals with 
trisomy 21, blood cancer, aberrantly many CNV calls, and those who had withdrawn at the time 
of our study (Supplementary Note), resulting in 454,682 participants being included in main 
analyses. 
 
UK Biobank phenotype data 
 
We primarily analyzed 57 heritable quantitative traits measured on most UK Biobank 
participants (Supplementary Data 1), including 56 quantitative traits we recently analyzed9 along 
with telomere length. We reprocessed blood traits using a slightly modified pipeline in which we 
did not perform outlier removal (because some rare variants produce extreme blood indices): i.e., 
within strata of sex and menopause status, we performed inverse normal transformation and then 
regressed out age, ethnicity, alcohol use, smoking status, height, and BMI9. We processed the 
telomere length phenotype (Data-Field 22192)49 by applying inverse normal transformation. The 
remaining traits were processed as previously described9. 
 
In secondary analyses (e.g., follow-up at loci of interest), we analyzed additional traits including 
binary disease outcomes derived from self-report (touchscreen questionnaire at assessment), 
hospital inpatient records, and cancer and death registries as well as plasma protein abundances 
for FCGR3B. In particular, we analyzed hypertension (174,773 cases and 279,891 controls; first-
occurrence Data-Field 131286), type 2 diabetes (21,292 cases and 432,324 controls; derived 
from self-reported doctor-diagnosed T2D Data-Field 2443, following ref.50), pancreatic cancer 
(1,816 cases and 452,848 controls; ICD-10 code C25 from hospital records and cancer and death 
registries), and COPD (23,875 cases and 430,789 controls; first-occurrence Data-Field 131492). 
Further details are provided in the Supplementary Note. 
 
 
Replication data sets 
 
We replicated key genetic associations in the BioBank Japan (BBJ31) and All of Us (AoU47) 
cohorts. For rare pLoF CNV associations with height, we performed replication analyses in BBJ 
(n=179,420) using a SNP-array-based CNV call set we previously generated9. For associations 
with hypertension (at RGL3) and type 2 diabetes (at RASA4 and CTRB2), we performed 
replication in AoU by genotyping each variant under consideration from high-coverage whole-
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genome sequencing data (n=245,394 in the AoU v7 release). Additionally, for variants with 
potential transcriptional effects (at RGL3 and SIGLEC14/SIGLEC5), we performed follow-up in 
the Genotype-Tissue Expression (GTEx33) data set (n=838 in GTEx v8). Details are provided in 
the Supplementary Note. 
 
 
Overview of HMM method for haplotype-informed rare CNV detection 
 
CNV-calling from exome-sequencing data typically involves searching for consistent increases 
or consistent decreases in a sample’s WES read coverage across a series of captured genomic 
regions, indicating the presence of a duplication or deletion. This requires accurately modeling 
WES read coverage, which can be substantially influenced by technical differences in exome 
capture that may vary across samples and across genomic regions (e.g., due to heterogenous 
effects of local GC content). While exome sequencing of UK Biobank was performed relatively 
uniformly across samples, exome capture was performed using a different IDT oligo lot for the 
first ~50,000 samples51 versus the remainder of the cohort, requiring careful treatment of this 
batch covariate. 
 
Our overall strategy to account for technical variation in WES read coverage (both across and 
within oligo lots) was to estimate sample-specific baseline models of expected read depth by 
identifying sets of reference samples with best-matching exome-wide coverage profiles21. We 
analyzed WES read coverage at the resolution of 100bp bins, restricting to bins with coverage in 
both oligo lots, similar coverage across the two oligo lots, and sufficient mappability (requiring 
most aligned reads to have positive mapping quality). To optimize for robust analysis of rare 
CNVs, we further restricted to bins in which we could accurately calibrate normalized read 
coverage to absolute copy number (either because a bin was rarely affected by copy-number 
polymorphism or because discrete copy-number states could be confidently identified). 
 
While most WES-based CNV-callers analyze each sample independently after performing 
normalization, we reasoned that we could increase CNV detection sensitivity by integrating 
WES data across individuals likely to have co-inherited a large genomic tract (as in our recent 
SNP-array-based CNV analysis9). Similar to our previous work, we used a hidden Markov model 
(HMM) to call CNVs in this haplotype-informed way, integrating information regarding copy 
number state across an individual and up to 10 “haplotype neighbors” with expected time to most 
recent common ancestor (TMRCA) less than a selected value (equivalently, if the length of IBD 
sharing exceeded a threshold). 
 
In more detail, for each 100bp bin, for the individual and each haplotype neighbor, we used 
negative binomial distributions with sample- and region-specific parameters to estimate a Bayes 
factor for deletion and duplication states based on counts of read alignments within the 100bp 
bin for each sample. For a given threshold on minimum length of IBD sharing, we computed a 
haplotype-informed combined Bayes factor by multiplying Bayes factors across the target 
individual and all haplotype neighbors with IBD sharing passing the threshold. We ran this 
analysis using a set of different IBD length thresholds (trading off sensitivity to more recent vs. 
older mutations) and compiled calls made across these IBD parameter values.  
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To obtain a high-quality CNV call set, we performed subsequent filtering of various classes of 
calls that tended to be of lower quality (based on inspection of WES and WGS read alignments 
at initial calls in a pilot analysis). We also removed individuals with more than 300 CNV calls. 
For downstream association analyses, we masked calls on any chromosome in which we had 
previously called a mosaic CNV48. Further methodological details are available in the 
Supplementary Note. 
 
Validation of HMM-based CNV call set 
 
To benchmark precision of the HMM-based CNV call set, we analyzed independent WGS data 
for 100 individuals. For each of these individuals, we assessed whether or not WGS read depth 
was higher (respectively, lower) than expected within the putative duplications (respectively, 
deletions) called. We estimated validation rate as the difference between the fraction of calls 
with WGS read depth in the correct direction versus the opposite direction (reasoning that false 
positive calls should be equally likely to have WGS read depth in either direction by chance). 
We also determined precision and recall for the CCNF exon 3 duplication and RGL3 exon 6 
partial deletion by directly genotyping these CNVs using discordant-read and breakpoint-based 
analyses, respectively (Supplementary Note). 
 
Overview of haplotype-informed analysis of common copy-altering structural variants 
 
The HMM pipeline above was designed primarily to robustly call rare CNVs from exome-
sequencing data. Hidden Markov model approaches for this task directly model read coverage 
generated from discrete copy-number states, which can aid statistical power and breakpoint 
precision when the model is accurate. However, such approaches can produce suboptimal 
performance when model assumptions are violated. Model violations are especially prone to 
occur at common CNV loci (where calibration of read-depth to copy number states can be 
challenging) and in segmental duplications (where high sequence homology can influence read-
mapping in ways that cause copy-number alterations to have unexpected effects on read depth, 
and loci may contain multiple complex SVs). For these reasons, genotyping common CNVs 
from short read-sequencing, especially within segmental duplications, is technically challenging 
and requires careful modeling52, such that general-purpose SV analysis pipelines deployed at 
scale have had limited ability to assess such variation3,24. 
 
Despite these challenges, short-read sequencing read-depth, including from WES, does contain 
useful signatures of common copy-altering SVs. We reasoned that even if precisely 
characterizing such SVs from WES is intractable, the signals of copy-number variation contained 
in WES read-depth data could still provide approximations of structural variation that, while 
rough, could enable discovery of SV loci associated with phenotypes—after which the SVs 
involved could be precisely resolved through follow-up analyses of WGS or long-read data. We 
therefore developed a complementary analysis pipeline to roughly estimate copy-number 
variation across individuals (measured on a continuous rather than discrete scale) from WES 
read coverage at a broad set of predefined genomic regions (including 100bp bins, exons, and 
previously-reported CNVs), extending methods we recently developed to analyze variable-
number tandem repeats21. 
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For each genomic region under consideration, we counted WES reads aligned to the segment and 
normalized these read counts using sample-specific reference panels with matched exome-wide 
coverage profiles (as in the first step of the HMM pipeline). Unlike the HMM pipeline, we 
considered low-mappability regions (e.g., within segmental duplications), and we generated two 
read-count measurements per region, one counting all reads regardless of mapping quality and 
the other counting only reads with positive mapping quality. We then evaluated which of these 
measurements appeared to be heritable, potentially reflecting common copy number variation in 
the region. To do so, we computed mid-parent vs. child correlations of normalized read counts in 
704 trios, restricting further analysis to 100bp bins and exons with significant correlation and all 
previously-reported CNVs.  
 
For each WES read-count measurement that potentially represented common copy number 
variation in a region, we used long shared SNP haplotypes to statistically phase (and 
simultaneously denoise) the values measured across UKB WES samples and also impute into 
individuals without WES data. To do so, we adapted the computational methods we previously 
used to analyze VNTRs21, improving scalability by using the positional Burrows-Wheeler 
transform (PBWT53) to rapidly identify shared haplotypes. To catch instances in which exome 
capture bias rather than copy-number variation was responsible for heritable variation in WES 
coverage (e.g., short haplotypes containing several SNPs co-located within a few hundred base 
pairs that influence capture efficiency), we restricted to regions for which WES and WGS read-
depth measurements exhibited consistent signal. Further details are available in the 
Supplementary Note.  
 
Overview of haplotype-informed analysis of paralogous sequence variants 
 
Beyond measuring copy number at polymorphic segmental duplications, our computational 
approach also enabled analysis of paralogous sequence variants (PSVs) within such segments: 
i.e., SNPs and indels present on varying numbers of copies of a repeated segment within a single 
allele. To do so, we first roughly estimated PSV genotypes from counts of WGS read alignments 
supporting each base (i.e., “pileups”) and then adapted our haplotype-informed approach to 
denoise PSV genotypes and impute them into the remainder of the UKB cohort (Supplementary 
Fig. 4).  
 
In more detail, for a repeat segment of interest, we first identified all regions in the GRCh38 
reference sequence paralogous to the repeat segment and extracted all WGS reads aligning to 
these regions. We then realigned these reads to a new reference containing only one copy of the 
repeat segment (plus a small buffer sequence containing the beginning of a second copy of the 
same repeat), facilitating harmonized ascertainment and genotyping of all common PSVs. 
Specifically, we estimated PSV allele fractions (PSVAF; i.e., the fraction of repeat units 
containing a given PSV) from pileup counts, which we then converted to absolute estimates of 
PSV copy number (PSVCN; i.e., the number of repeat units containing a given PSV) by scaling 
an individual’s total repeat copy number by PSVAF. We then used long shared SNP haplotypes 
to phase PSVCN and impute into individuals without WGS data using the same approach we 
used to analyze common copy-altering SVs. Further details are provided in the Supplementary 
Note. 
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Association testing and statistical fine-mapping 
 
We performed SV-phenotype association analyses on three classes of CNVs derived from the 
HMM-based CNV call set (defined based on (i) 100bp-bin overlap, (ii) gene overlap, and (iii) 
gene pLoF burden) as well as the continuous-valued estimates of common copy-number 
variation derived from heritable WES coverage (Supplementary Fig. 1).  
  
We conducted association tests for our primary set of 57 quantitative traits using BOLT-
LMM25,26 with assessment center, genotyping array, WES release (50K / 200K / 454K / 470K / 
none), sex, age, age squared, and 20 genetic principal components included as covariates. We fit 
the linear mixed model on SNP-array-genotyped autosomal variants with MAF > 10-4 and 
missingness < 0.1 and computed association test statistics for SV genotypes defined above; a 
similar pipeline produced association test statistics for SNP and indel variants imputed by UK 
Biobank (the imp_v3 release22). We included all participants with non-missing phenotypes in the 
QC-ed European-ancestry call set described above. We removed associations potentially 
explainable by linkage disequilibrium (LD) with imputed SNPs and indels within 3Mb9,54 (see 
Supplementary Note).   
  
The associations that survived this filtering represented structural variants likely to causally 
influence phenotypes. We annotated CNVs on this list as syndromic based on a previously-
curated list of pathogenic CNVs55. For associations of particular interest that arose from analysis 
of common copy-altering SVs, we undertook follow-up in UKB WGS or HPRC long-read 
assemblies5 to more precisely resolve SVs, after which we refined SV genotypes (using 
optimized analyses of UKB WES or WGS data) and undertook PSV analyses as necessary. 
Further details on filtering of associations and follow-up analyses at loci of interest are provided 
in the Supplementary Note. 
 
 

Data availability 
 
Individual-level CNV calls and continuous-valued estimates of relative copy number in UKB 
will be returned to UK Biobank. Summary statistics for CNV-phenotype association tests are 
available at https://data.broadinstitute.org/lohlab/UKB_WES_CNV_sumstats/. Access to the 
following data resources used in this study is obtained by application: UK Biobank 
(http://www.ukbiobank.ac.uk/), BioBank Japan (https://biobankjp.org/en/), All of Us 
(https://allofus.nih.gov/), GTEx (via dbGaP, https://www.ncbi.nlm.nih.gov/gap/, accession 
phs000424.v8.p2). 
 
Code availability 
 
Custom code used to perform haplotype-informed CNV analysis of UKB WES data is provided 
at https://data.broadinstitute.org/lohlab/UKB_WES_CNVs_code.tar.gz for review and will be 
deposited in a DOI-minted repository prior to publication. 
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