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Background Applying good data management and FAIR data principles (Findable, Accessible, Interoperable, and Reusable) in
research projects can help disentangle knowledge discovery, study result reproducibility, and data reuse in future studies. Based on
the concepts of the original FAIR principles for research data, FAIR principles for research software were recently proposed. FAIR
Digital Objects enable discovery and reuse of Research Objects, including computational workflows for both humans and
machines. Practical examples can help promote the adoption of FAIR practices for computational workflows in the research
community. We developed a multi-omics data analysis workflow implementing FAIR practices to share it as a FAIR Digital Object.
Findings We conducted a case study investigating shared patterns between multi-omics data and childhood externalizing
behavior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including containers
with software dependencies. We adhered to software development practices like version control, documentation, and licensing.
Finally, the workflow was described with rich semantic metadata, packaged as a Research Object Crate, and shared via
WorkflowHub. Conclusions Along with the packaged multi-omics data analysis workflow, we share our experiences adopting
various FAIR practices and creating a FAIR Digital Object. We hope our experiences can help other researchers who develop omics
data analysis workflows to turn FAIR principles into practice.
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Key Points

- The FAIR4RS principles provide guidelines to enhance the discovery and reuse of research software.
- FAIR Digital Objects support Findability, Accessibility, Interoperability, and Reusability by both humans and machines.
- We here demonstrate the implementation multi-omics data analysis workflow and share it as a FAIR Digital Object.

The FAIR principles for research data [1] were proposed to guide
researchers to create research data that is findable, accessible, inter-
operable, and reusable (FAIR). Since these guidelines aim to enable
researchers handling and navigating through the rapidly increas-
ing amounts of data, special emphasis was put on concepts to make
data not only usable by humans but also machine-actionable. In the
past years, various standards [2, 3] and implementations [4, 5, 6, 7]
of the FAIR principles have been introduced, and it has been demon-
strated that FAIR data is beneficial to research and patients [8, 9, 10].
Reuse of research data and reproducibility of research results [11]
are facilitated by good data provenance and this requires not only
the data but also the data processing and analysis workflows to be
FAIR. Consequently, guidelines and practices for FAIR research soft-
ware have been proposed [12, 13, 14] (see Table 1) and the special
case of computational workflows has been discussed [15, 16]. These
guidelines aim to increase reproducibility not only at the experi-
mental level but also at the data analysis level. It has been shown
that the availability of data and code alone is not sufficient. They
both need to be provided in an open and interoperable format and
described by metadata [17].

Several practices recommended for research software develop-
ment originate from general software engineering practices [12, 15,
19] which include version control, documentation, and licensing.
Version control of source code facilitates collaborative development
and monitoring changes [13]. Additionally, making the code pub-
licly available on dedicated software repositories that support ver-
sion control such as GitHub [20], GitLab [21], or BitBucket [22] con-
tributes to findability [23], accessibility [12], and reusability [13].
The documentation of research software includes multiple levels.
First, a comprehensive end user documentation and usage exam-
ples enable reusability by other researchers [17, 24, 25, 23]. It should
also include the documentation of workflow parameters [17, 16].
Second, source code documentation enables other developers to
understand and build upon the software [17]. Documentation of
code changes via a version control system helps document the de-
velopment process [24, 19] and documentation of dependencies
are prerequisite for software interoperability [23]. Adding a clear
and machine-readable [16] license is essential to allow for software
reuse. It is recommended to choose a widely used and preferably
open source license that is compatible with licenses of the depen-
dencies [12, 24, 19, 23, 13, 14, 18]. Examples of open-source licenses
with few restrictions are the Apache License 2.0 [26] and the MIT
License [27].

There are differences between research software that imple-
ments a specific method as a standalone tool or a software library
and complex analysis workflows [16]. Computational analysis
workflows can comprise numerous steps that are integrated into
pipelines [16] and are often developed in a specific project [28, 19].
With a multitude of analysis steps being combined into com-
plex workflows, the documentation of the individual analyses and
their dependencies can become challenging. To facilitate the au-
tomation of analysis tasks and their documentation, workflows
can be described using workflow management systems such as
Nextflow [29] or Snakemake [30]. Workflow managers that support
the creation of reusable modules can help reduce complexity and
promote the reuse of workflows or workflow modules [15, 16, 31].

Additionally, notebooks can apply the concept of literate program-
ming and are a useful tool to add human-readable documentation
next to code blocks [19]. Interoperability and reusability of work-
flows can be achieved using portable software containers such as
Apptainer/Singularity [32] or Docker [33] that capture the runtime
environment of a workflow or a workflow module [15, 34, 16, 25].

Computational workflows can be regarded as digital objects. The
concept of FAIR Digital Objects (FDOs) was introduced to make digi-
tal objects fully FAIR [35]. FDOs comprise, among others, the digital
object, a persistent identifier (PID), and metadata (title, authors,
licenses, etc.) describing the object. Based on the FDO concept,
the RO-Crate approach was specified to package digital research
artefacts or Research Objects (RO) such as computational work-
flows [36]. The RO-Crate contains a PID that links to an RO, which
is described by a structured JSON-LD RO-Crate metadata file. It
can additionally contain data on which the workflow can be run. To
make an RO-Crate findable, it needs to be registered at a registry
such as WorkflowHub [37, 38]. In case the actual data cannot be pub-
licly shared due to privacy reasons, synthetic data can complement
analysis workflows to demonstrate the computational procedure
(16,39].

We here demonstrate the development of a FAIR Digital Object
comprising a computational workflow that analyzes and integrates
multi-omics and phenotype data and is associated with rich human
and machine-readable metadata.

To develop a reusable workflow, our input data and intermediate
files were largely based on open and widely-used formats or com-
munity standards. For the metabolomics data and metadata, we
adopted practices of the MetaboLights database [40] of the Euro-
pean Bioinformatics Institute (EBI) of the European Molecular Bi-
ology Laboratory (EMBL). Metabolite levels and annotations are
reported in metabolite annotation/assignment files (MAF). The
experimental metadata for omics measurements is reported us-
ing the Investigation/Study/Assay (ISA) metadata framework [41].
We employed Jupyter [42] and the Python ISA API [43] to create
ISA-Tab and ISA-JSON files [44]. For machine-readable descrip-
tions of the experiments, ontology terms were used. Ontologies are
standardized taxonomies of entities of a specific subject (domain)
including definitions of relationships between these entities. On-
tology terms refer to these entities [45]. Based on recommended
standards from FAIRgenomes [3] and Metabolights [40], we prefer-
ably employed the following ontologies: National Cancer Institute
Thesaurus (NCIT) [46], Experimental Factor Ontology (EFO) [47],
Ontology for Biomedical Investigations (OBI) [48], Metabolomics
Standards Initiative Ontology (MSIO) [49], Chemical Methods On-
tology (CHMO) [50] and Chemical Entities of Biological Interest
(ChEBI) [51]. The DNA methylation levels and associated metadata,
behavioral data, and additional information about phenotypes or
technical and biological covariates are stored as comma-separated
values (CSV) files. This allows our computational workflow to be
easily reusable and adaptable for other data sets. The workflow doc-
umentation [52] describes all input files used in the workflow and
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Table 1. Overview of recommended FAIR practices for research data and software.

FAIR guiding principles [1]

Findable

F1: (Meta) data are assigned globally
unique and persistent identifiers

F2: Data are described with rich
metadata

F3: Metadata clearly and explicitly
include the identifier of the data they
describe

F4: (Meta)data are registered or
indexed in a searchable resource

Accessible

A1: (Meta)data are retrievable by their
identifier using a standardised
communication protocol

A1.1: The protocol is open, free and
universally implementable

A1.2: The protocol allows for an
authentication and authorisation
procedure where necessary

A2: Metadata should be accessible even
when the data is no longer available

Interoperable

I1: (Meta)data use a formal, accessible,
shared, and broadly applicable
language for knowledge
representation

12: (Meta)data use vocabularies that
follow the FAIR principles

13: (Meta)data include qualified
references to other (meta)data

Reusable

R1: (Meta)data are richly described with
a plurality of accurate and relevant
attributes

R1.1: (Meta)data are released with a
clear and accessible data usage license

R1.2: (Meta)data are associated with

detailed provenance

R1.3: (Meta)data meet domain-relevant
community standards

Open source software
recommendations [12]

R2. Make software easy to
discover by providing
software metadata via a
popular community
registry

R1. Make source code
publicly accessible from
day one

R4. Define clear and
transparent contribution,
governance and
communication processes

R3. Adopt a license and
comply with the licence of
third-party dependencies

Recommendations for
FAIR software [13]

#3 Register your code
in a community
registry

#1 Use a publicly
accessible repository
with version control

#/, Enable citation of
the software

#2 Add a license

FAIR principles for research
software [14, 18]

F: Software, and its associated metadata,
is easy for both humans and machines
to find.

F1. Software is assigned a globally unique
and persistent identifier.

F1.1. Components of the software
representing levels of granularity are
assigned distinct identifiers.

F1.2. Different versions of the software
are assigned distinct identifiers.

F2. Software is described with rich
metadata.

F3. Metadata clearly and explicitly include
the identifier of the software they
describe.

F/4. Metadata are FAIR, searchable and
indexable.

A: Software, and its metadata, is
retrievable via standardized protocols.

A1. Software is retrievable by its identifier
using a standardized communications
protocol.

A1.1. The protocol is open, free, and
universally implementable.

A1.2. The protocol allows for an
authentication and authorization
procedure, where necessary.

A2. Metadata are accessible, even when
the software is no longer available.

—

: Software interoperates with other
software by exchanging data and/or
metadata, and/or through interaction
via application programming interfaces
(APIs), described through standards.

I1. Software reads, writes and exchanges

data in a way that meets

domain-relevant community
standards.

I2. Software includes qualified references
to other objects.

R: Software is both usable (can be
executed) and reusable (can be
understood, modified, built upon, or
incorporated into other software).

R1. Software is described with a plurality
of accurate and relevant attributes.

R1.1. Software is given a clear and
accessible license.

R1.2. Software is associated with detailed
provenance.

R2. Software includes qualified references
to other software.

R3. Software meets domain-relevant
community standards.
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provides human-readable descriptions of every step of the work-
flow processing and integrating individual input data types. Each
of these analysis steps is implemented in Python or R, and added as
a module to the workflow. We employ Jupyter and R notebooks for
implementing downstream analyses and visualization of results.
We chose Nextflow as our workflow management system, since
it allows flexible development, can be run on different platforms,
supports containers, is well documented, and is already widely
adopted by the bioinformatics community [31]. Each module of the
workflow is provided with their own Docker container to ensure
portability and eliminate the need for local software installations.

Finally, the Nextflow workflow is packaged as an RO-Crate. Be-
sides the workflow and the synthetic data set, it contains a struc-
tured metadata file with machine-readable descriptions of input
files and analysis steps (ro-crate-metadata. json). We preferably
used EDAM—Ontology of bioscientific data analysis and data man-
agement [53] as it is recommended for workflow RO-Crates [36].
For terms that were not available in EDAM, alternative ontologies
such as NCIT [46], OBI [48], or the Semanticscience Integrated
Ontology (SIO) [54] were used. The RO-Crate further contains
an image with an overview of the analysis steps. For findabil-
ity, the packaged workflow (see Figure 2) is registered on Work-
flowHub [37] and provided with a Digital Object Identifier (DOI)
[https://doi.org/10.48546 /workflowhubworkflow.402.5].

Our workflow was developed to analyze and integrate DNA methy-
lation and urine metabolomics profiles with behavioral data origi-
nating from the ACTION Biomarker Study (ACTION, Aggression in
Children: Unraveling gene-environment interplay to inform Treat-
ment and InterventiON strategies) [55, 56, 57] (see ‘Case Study’ in
the ‘Methods’ section on page 5). Within ACTION, urine and buccal-
cell samples were collected in a twin cohort from the Netherlands
Twin Register (NTR), and in a cohort of children referred to an
academic center for child and youth psychiatry in the Netherlands
(LUMC-Curium). These children were also characterized for be-
havioral problems and here we look at externalizing problems. We
purposely selected a case of complex human behavioral phenotype
that is typically not caused by a single well-defined molecular de-
fect, but originates from changes in multiple factors, and as such
would benefit from a multi-omics analysis. Since we consider this
data to be potentially personally identifiable information, we share
a synthetic data set to demonstrate the workflow. The goal of the
analysis is the identification of substructures in the multi-omics
data and to determine if they correlate with behavioral data (see
‘Unsupervised Data Analysis’ on page 6). A team comprising mem-
bers of the Netherlands X-omics Initiative [58] in collaboration with
the Netherlands Twin Register (NTR) [59] developed the computa-
tional workflow. An overview of the main analysis steps is shown
in Figure 1.

To identify underlying patterns in childhood externalizing
behavior, we applied Multiple Correspondence Analysis (MCA)
[60, 61] to the parent-rated responses on the externalizing behav-
ior items of the Child Behavior Checklist (CBCL) of the Achenbach
System of Empirically Based Assessment (ASEBA) [62] in both co-
horts. In NTR participants, the first three MCA dimensions jointly
explain 30% of the variation in 26 externalizing behavior items
of the ASEBA CBCL [see Additional File 1]. Additional dimensions
each explain <5% of the variation. The presence rather than the
absence of externalizing behaviors characterized all of the first
three dimensions, which reflects the answer options to items (a
problem behavior is not present, a little, or a lot). Variables that
contributed most to the first dimension, which explained 16% of
the variation, represent temperamental behavior (frequent tem-
per tantrums, stubbornness, screaming, and arguing). Variables
contributing to the second dimension, which explained 9% of the

variation, represent hostile aggressive behaviors (frequent vandal-
ism, bullying, and cruelty). In LUMC-Curium participants, the first
two MCA dimensions suffice to explain 30% of the variation in 18
items of the ASEBA CBCL [see Additional File 2]. Similar to NTR,
these first dimensions in LUMC-Curium are characterized by the
presence of aggressive behaviors.

We applied Multi-Omics Factor Analysis (MOFA) [63] in both
cohorts to obtain ten factors to describe the buccal DNA methyla-
tion (Illumina EPIC array) and urine metabolomics data. For this
analysis, we selected the top 10% most variable probes from DNA
methylation data. Cumulatively, the ten factors explained 22.5%
and 74.9% of variation in the DNA methylation data and 0.001%
and 1.89% in the urine metabolomics data in NTR [see Additional
File 3] and LUMC-Curium [see Additional File 4], respectively. We
observed no evidence that any of the factors captured sources of
variation in both the DNA methylation and urine metabolomics
data in NTR and LUMC-Curium. Particularly factors 1and 2 in NTR
and factor 1in LUMC-Curium were specific to the DNA methylation
data. To help elucidate the etiology of the ten MOFA factors, we se-
lected for each factor the top 100 CpGs with the largest weights and
performed enrichment analyses within the Epigenome-Wide Asso-
ciation Study (EWAS) atlas [64]. Multiple factors in both cohorts
[see Additional File 5 for ACTION-NTR and Additional Files 6 for
LUMC-Curium cohort] showed enrichment of CpGs associated with
glucocorticoid exposure (i.e., administration of corticosteroid medi-
cation [65]), CpGs associated with ageing, and CpGs associated with
immune-related traits, such as psoriasis. Apart from these robustly
enriched traits, additional significant enrichments were found but
were often based on < 5 overlapping CpGs between the factor results
and the original studies. A limitation of the enrichment analysis is
that the majority of previous EWAS studies included in this analysis
were conducted on blood samples from adult populations with the
Mlumina 450K BeadChip. In the factor weights for metabolites, we
observe that for both NTR [Additional File 3] and LUMC-Curium
[Additional File 4] many of the factors are characterized by only
one or few metabolites. We note that in both cohorts the factors
explained only a small amount of variation in the metabolomics
data. To investigate whether the omics factors were associated
with behavioral dimensions (MCA), we ran gee models adjusting
for relatedness in NTR, and correlation analyses in Curium [see
Additional File 3 for ACTION-NTR and Additional Files 4 for LUMC-
Curium cohort]. None of the omics factors were significantly asso-
ciated with the behavioral dimensions in NTR or LUMC-Curium,
nor did we observe significant associations of sex-and-age-specific
T-scores for aggressive behavior with the omics factors. In previ-
ous multi-omics analyses of high versus low levels of childhood
aggression [66] and Attention-Deficit/Hyperactivity Disorder [67]
we applied supervised analyses in these cohorts while applying
unsupervised analyses here. In these previous supervised analy-
ses, where we also included an additional omics layer—polygenic
scores—we found that although multi-omics models had low pre-
dictive value, they revealed some connections of omics traits with
externalizing problems, that suggested biological plausibility.

We also constructed integrated similarity networks with Sim-
ilarity Network Fusion (SNF) [68] to identify subgroups of indi-
viduals based on omics data. In both NTR and LUMC-Curium, we
defined integrated similarity networks based on two and four clus-
ters. The two clusters in NTR were characterized by differences in
age whereas the two clusters in LUMC-Curium were characterized
by differences in the proportion of boys and girls. To investigate
whether the omics clusters were associated with externalizing be-
havior, we compared the behavioral dimension scores from MCA
between children in the different clusters. In both NTR and LUMC-
Curium, we observed no significant differences in the behavioral di-
mensions across the two omics clusters after correction for multiple
testing [see Additional File 7 for NTR and Additional File 8 for LUMC-
Curium cohort]. Similarly, no differences in behavioral dimensions
were observed between the four omics clusters in NTR, however,
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in LUMC-Curium, behavioral dimension 6 differed significantly
between the four omics clusters. In LUMC-Curium, dimension 6
explained 3.9% of the variance in childhood externalizing behavior
and the strongest contributors to this dimension comprised higher
frequencies of parent-rated tendencies to be suspicious and loud.
Such forms of direct aggressive behavior, particularly physical ag-
gressive behavior, are common in early childhood in both boys and
girls, and while overall levels of aggression decline with age and
are roughly similar for boys and girls [69], boys are more likely to
engage in direct and physical forms of aggression by age 11 [70].
Thus, this finding aligns with the observation that the two omics
clusters differ in the proportion of males and females and in the age
composition.

In this collaborative research project, partners from the Nether-
lands X-omics Initiative co-developed a workflow to analyze a com-
plex multimodal data set. Developing workflows with partners
across multiple institutions can pose a challenge and we experi-
enced that a secure shared computing environment was key to
the success of this project. Additionally, practices aiming to in-
crease FAIRness of the shared workflow such as version control
with git and a modular workflow structure allowed for transpar-
ent and target-oriented workflow development. Therefore, while
the use of technologies like git or workflow management systems
might require initial training of researchers, we believe this to be
worthwhile.

Several FAIR practices for workflows include existing best prac-
tices of software development, for example, version control and
good documentation. Adoption of these practices, along with the
use of workflow managers and software containers, aims to con-
tribute to better interoperability, reusability and reproducibility
of analysis workflows and research results. While we experienced
the adoption of these technologies to be straightforward, fully FAIR
data or software requires also machine-understandable seman-
tic metadata. Specifications like the ISA metadata framework and
RO-Crate allow ontology-based annotations of omics experiments
and analysis workflows, respectively. Our choice of ontologies was
mainly guided by the documented submission requirements or
recommendations provided by services such as the MetaboLights
archive or WorkflowHub. However, when recommended ontologies
do not comprise suitable terms, choosing appropriate ones from
ontologies can be challenging. For example, no exact match to the
generic term sample collection that is part of the ISA schema can be
found in any ontology available in EBI’s Ontology Lookup Serivce
(OLS) [71]. To describe workflow steps in RO-Crate with unsuper-
vised learning we had to employ the eNanoMapper Ontology [72]
as no matching term was available in the recommended EDAM
ontology. Consequently, we recognize the importance of teams ded-
icated to ontology curation, active user communities, and training
of researchers in using semantic technologies. This is especially
important for multi-omics research that spans multiple research
domains.

For reproducibility of research results, it is essential that data
are shared along with the workflow. However, privacy regulations
prohibit sharing of potentially personally identifiable data such as
omics measurements or clinical information. To demonstrate the
functionality of the workflow, we shared a synthetic data set that
emulates the structure of the case study data set. Current develop-
ments in the areas of federated data storage and analysis such as
Federated European Genome-phenome Archive (EGA) [73] and the
Personal Health Train [74] have the potential to allow fully FAIR and
reproducible data analysis workflows while maintaining privacy
regulation compliance.

We hope our experiences help other researchers who develop
multi-omics data analysis workflows choosing and implementing

practices that makes their research more FAIR.

Our case study comprises data from two cohorts that took part in
the ACTION Biomarker Study (ACTION, Aggression in Children:
Unraveling gene-environment interplay to inform Treatment and
InterventiON strategies) [55, 56, 57]. The ACTION Biomarker Study
collected buccal DNA samples for large-scale genome-wide and
epigenome-wide association studies [75, 76] and first-morning
urine samples to investigate the association of urine biomarkers
and metabolites with childhood aggression [57]. These urine and
buccal-cell samples were collected in a twin cohort from the Nether-
lands Twin Register (NTR) [77], where twin pairs were selected
on their longitudinal concordance or discordance for childhood ag-
gression, and in a cohort of children referred to an academic center
for child and youth psychiatry in the Netherlands (LUMC-Curium).
The DNA methylation, genotype, metabolomics, and behavioural
data from these cohorts were previously used for multi-omics anal-
yses of aggressive behaviour [66] and Attention Deficit Hyperac-
tivity Disorder (ADHD) [67]. Detailed information on the study
populations and study protocol is available at protocols.io [78].

Data

Genome-wide DNA methylation data in buccal DNA samples were
measured on the Infinium MethylationEPIC BeadChip kit (Illumina,
San Diego, CA, USA [79]) by the Human Genotyping Facility (HuGe-
F) of ErasmusMC (the Netherlands; [80]). The ZymoResearch EZ
DNA Methylation kit (Zymo Research Corp, Irvine, CA, USA) was
used for bisulfite treatment of 500 ng of genomic DNA obtained from
buccal swabs. The Infinium HD Methylation Assay was performed
according to the manufacturer’s specification. Good Biomarker
Sciences Leiden (Leiden, the Netherlands) measured the specific
gravity (by refractomertry), levels of creatinine (by colorimertry),
blood traces, markers of leukocytes, proteins, glucose and nitrites
(the latter five by dipstick) of each urine sample. The Metabolomics
Facility of the University of Leiden (Leiden, the Netherlands) quan-
tified urine metabolites using three platforms: a liquid chromatog-
raphy mass spectrometry (LC-MS) platform targeting amines (66
biomarkers), an LC-MS platform targeting steroid hormones (13
biomarkers), and a gas chromatography (GC)-MS platform target-
ing organic acids (21 biomarkers). Behavioral data comprises the
115 items of the Dutch version of the Achenbach System of Empiri-
cally Based Assessment (ASEBA) Child Behavior Checklist (CBCL)
for school-aged children (6—18 years) [62]. For participants of
the NTR cohort we used the mother-rated CBCL as completed at
the time of biological sample collection, and for participants of the
LUMC-Curium cohort we used the parent-rated (90% mother rat-
ings) CBCL as completed in a 6-month window surrounding the
biological sample collection. Again, details on the data generation
are available in Ref. [78].

Synthetic Data

The purpose of the synthetic data set is to demonstrate how the
workflow can be run. It resembles the structure of the files of the
cohort data. The values were randomly sampled from the observed
values in the NTR cohort without preserving any correlations.

To ensure the urine sample metabolic integrity and to minimize
bias contributed by health conditions, we excluded samples from
the metabolomics data from (1) subjects who have started menstru-
ating, (2) subjects where the time between urine sample collection
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and storing in the freezer was > 2 hours, (3) subjects where severe
violations to the sampling protocol occurred (e.g. not putting a lid
on the container), (4) subjects where the leukocyte count was above
trace, (5) subjects where the nitrites level was “positive high”, (6)
subjects where the protein level was > 0.3, (7) subjects with glu-
cose levels above trace, (8) subjects with blood levels above trace,
(9) subjects having the flu, (10) subjects reporting inflammation,
(11) subjects reporting vomiting, (12) subjects reporting abdominal
pain and (12) subjects reporting general health problems. Note that
the above criteria 4—8 are based on the dipstick marker estima-
tion performed separately from the metabolomics measurements
on the same samples [78], while the other criteria are based on
questionnaire data at the time of sampling.

The metabolomics features were filtered based on missing val-
ues. Missing values were reported for cases where the metabolite
concentration is below the limit of quantification. Samples and
metabolites with 15% or more of missing values were discarded.
Sample-wise normalization to correct for urine concentration was
conducted by adjusting metabolite intensities to the sample cre-
atinine levels [78]. This was followed metabolite-wise by Pareto
scaling [81] to statistically account for large differences in reported
values.

Quality Control (QC) and normalization of the DNA methylation
array data have been previously described [75] and were carried out
with a pipeline developed by the Biobank-based Integrative Omics
Study (BIOS) consortium [82]. From the 787,711 autosomal methyla-
tion probes that survived QC, the top 10% most variable probes were
included in the analyses. Cellular proportions of buccal samples
were predicted with Hierarchical Epigenetic Dissection of Intra-
Sample-Heterogeneity (HepiDISH) with the RPC method (reduced
partial correlation), as described Zheng etal. [83] and implemented
in the R/Bioconductor package EpiDISH. Median imputation was
carried out on the epigenetics data. Residual methylation levels
were obtained by regressing the effects of percentages of epithelial
and natural killer cells, EPIC array row, and bisulfite sample plate,
from the methylation beta-values.

Missing values in the externalizing behavior items were im-
puted with the non-parametric random forests method from the R
library missForest (1.4) [84].

Each cohort was analyzed separately. We applied Multi-Omics
Factor Analysis (MOFA) using the R/Bioconductor library MOFA2
(1.3.4) [63, 85] to obtain factors for the buccal DNA methylation
and urine metabolomics data and applied Multiple Correspondence
Analysis (MCA) [61] using the R library FactoMineR (2.4) [60] to
obtain factors for the behavioral data.

To identify subgroups of individuals based on their buccal
DNA methylation and urine metabolomics data we constructed
integrated similarity networks with Similarity Network Fusion
(SNF) [68]. The optimal numbers of clusters were determined us-
ing a built-in function of the Python library SNFpy [86] that uses
the eigengap method [87] to find the optimal number of clusters.
SNF first constructs sample similarity networks for each available
data type and then fuses these into a single network comprising
both the shared and unique information from each data type. The
final fused network thus captures how each data type contributes
to the similarity amongst the samples. We tested whether the be-
havioral dimension scores from MCA differ between children in the
different SNF clusters, using Mann-Whitney U tests (two clusters)
or Kruskal-Wallis tests (four clusters) in the Curium cohort, and
with generalized estimation equation (GEE) models (with cluster
as predictor and behavioral dimension score as outcome) in NTR.

We determined correlations amongst the obtained factors cap-
turing the omics and behavioral data, respectively, using Spear-
man’s rank correlation, and additionally in the NTR cohort using

GEE models. All GEE models were fitted with the R package GEE,
with the following specifications: Gaussian link function (for con-
tinuous data), 100 iterations, and the ‘exchangeable’ option to ac-
count for the correlations in twin pairs. Statistical test were adjusted
for multiple testing using false discovery rate (FDR) [88].

- Project name: X-omics ACTION demonstrator

- Project home page: [89]

- Operating system(s): Platform independent

- Programming language: Python, R

+ Other requirements: Nextflow (22.04.0), Docker (19.03.1), Sin-
gularity (3.8.0)

- License: MIT

- File name: Additional File 1

- File format: .html

- Title: Multiple Correspondence Analysis of CBCL behavioral data

- Description: Overview of externalizing behavior items of the
Child Behavior Checklist (CBCL) of the Achenbach System of Em-
pirically Based Assessment (ASEBA) in the ACTION-NTR cohort
before and after imputation of missing values using random
forests and results and visualizations of Multiple Correspon-
dence Analysis (MCA).

- File name: Additional File 2

- File format: .html

- Title: Multiple Correspondence Analysis of CBCL behavioral data

- Description: Overview of externalizing behavior items of the
Child Behavior Checklist (CBCL) of the Achenbach System of
Empirically Based Assessment (ASEBA) in the LUMC-Curium
cohort before and after imputation of missing values using ran-
dom forests and results and visualizations of Multiple Corre-
spondence Analysis (MCA).

- File name: Additional File 3

- File format: .html

- Title: MOFA downstream analysis report

- Description: Visualizations of Multi-omics Factor Analysis
(MOFA) of buccal DNA methylation (Illumina EPIC array) and
urine metabolomics data of the ACTION-NTR cohort. Also, as-
sociations between the MOFA factors and phenotypic data are
tested with GEE models.

- File name: Additional File 4

+ File format: .html

- Title: MOFA downstream analysis report

- Description: Visualizations of Multi-omics Factor Analysis
(MOFA) of buccal DNA methylation (Illumina EPIC array) and
urine metabolomics data of the LUMC-Curium cohort.

+ File name: Additional File 5

- File format: .xIsx

- Title: EWAS atlas enrichment analysis

- Description: Enriched traits for CpGs with top 100 largest
weights of ACTION-NTR MOFA factors 1-10.

- File name: Additional File 6

- File format: .xIsx

- Title: EWAS atlas enrichment analysis

- Description: Enriched traits for CpGs with top 100 largest
weights of LUMC-Curium MOFA factors 1-10.
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+ File name: Additional File 7

- File format: .html

- Title: Similarity Network Fusion downstream analysis

« Description: Visualizations of Similarity Network Fusions (SNF)
and subsequent spectral clustering of buccal DNA methyla-
tion (Illumina EPIC array) and urine metabolomics data of the
ACTION-NTR cohort.

- File name: Additional File 8

- File format: .html

- Title: Similarity Network Fusion downstream analysis

+ Description: Visualizations of Similarity Network Fusions (SNF)
and subsequent spectral clustering of buccal DNA methylation
(Ilumina EPIC array) and urine metabolomics data of the LUMC-
Curium cohort.

- File name: Additional File 9

- File format: .html

- Title: Similarity Network Fusion downstream analysis with GEE
models

- Description: Associations between the SNF clusters and phe-
notypic data are tested with GEE models in the ACTION-NTR
cohort.

The data of the Netherlands Twin Register (NTR) ACTION
Biomarker Study may be accessed, upon approval of the data access
committee, through the NTR [90].

A synthetic data set representing the structure of the
ACTION Biomarker Study data set is available as part
of the workflow RO-Crate available at WorkflowHub
[https://doi.org/10.48546 /workflowhubworkflow.402.5].

ACTION: Aggression in Children: Unraveling gene-environment
interplay to inform Treatment and InterventiON strategies; ASEBA:
Achenbach System of Empirically Based Assessment; EBI: Euro-
pean Bioinformatics Institute; EGA: European Genome-phenome
Archive; EMBL: European Molecular Biology Laboratory; EWAS:
epigenome-wide association study; FAIR: Findable, Accessible,
Interoperable, Reusable; GC-MS: gas chromatography—mass
spectrometry; ISA: Investigation, Study, Assay; LC-MS: liquid
chromatography—mass spectrometry; MOFA: Multi-Omics Fac-
tor Analysis; NTR: Netherlands Twin Register; RO-Crate: Research
Object Crate; SNF: Similarity Network Fusion

The ACTION Biomarker study was conducted according to the guide-
lines of the Declaration of Helsinki and approved by the Central
Ethics Committee on Research Involving Human Subjects of the VU
University Medical Center, Amsterdam (NTR 25th of May 2007 and
ACTION 2013/41 and 2014.252), an Institutional Review Board certi-
fied by the U.S. Office of Human Research Protections (IRB num-
ber IRB00002991 under Federal-wide Assurance- FWA00017598;
IRB/institute codes), and the Medical Ethical Committee of Leiden
University Medical Center (B17.031, B17.032 and B17.040).

Parents provided written informed consent for the participation
of their children.
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