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Abstract

Background Applying good data management and FAIR data principles (Findable, Accessible, Interoperable, and Reusable) inresearch projects can help disentangle knowledge discovery, study result reproducibility, and data reuse in future studies. Based onthe concepts of the original FAIR principles for research data, FAIR principles for research software were recently proposed. FAIRDigital Objects enable discovery and reuse of Research Objects, including computational workflows for both humans andmachines. Practical examples can help promote the adoption of FAIR practices for computational workflows in the researchcommunity. We developed a multi-omics data analysis workflow implementing FAIR practices to share it as a FAIR Digital Object.
Findings We conducted a case study investigating shared patterns between multi-omics data and childhood externalizingbehavior. The analysis workflow was implemented as a modular pipeline in the workflow manager Nextflow, including containerswith software dependencies. We adhered to software development practices like version control, documentation, and licensing.Finally, the workflow was described with rich semantic metadata, packaged as a Research Object Crate, and shared viaWorkflowHub. Conclusions Along with the packaged multi-omics data analysis workflow, we share our experiences adoptingvarious FAIR practices and creating a FAIR Digital Object. We hope our experiences can help other researchers who develop omicsdata analysis workflows to turn FAIR principles into practice.
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Key Points

• The FAIR4RS principles provide guidelines to enhance the discovery and reuse of research software.• FAIR Digital Objects support Findability, Accessibility, Interoperability, and Reusability by both humans and machines.• We here demonstrate the implementation multi-omics data analysis workflow and share it as a FAIR Digital Object.

Background

The FAIR principles for research data [1] were proposed to guideresearchers to create research data that is findable, accessible, inter-operable, and reusable (FAIR). Since these guidelines aim to enableresearchers handling and navigating through the rapidly increas-ing amounts of data, special emphasis was put on concepts to makedata not only usable by humans but also machine-actionable. In thepast years, various standards [2, 3] and implementations [4, 5, 6, 7]of the FAIR principles have been introduced, and it has been demon-strated that FAIR data is beneficial to research and patients [8, 9, 10].Reuse of research data and reproducibility of research results [11]are facilitated by good data provenance and this requires not onlythe data but also the data processing and analysis workflows to beFAIR. Consequently, guidelines and practices for FAIR research soft-ware have been proposed [12, 13, 14] (see Table 1) and the specialcase of computational workflows has been discussed [15, 16]. Theseguidelines aim to increase reproducibility not only at the experi-mental level but also at the data analysis level. It has been shownthat the availability of data and code alone is not sufficient. Theyboth need to be provided in an open and interoperable format anddescribed by metadata [17].
Several practices recommended for research software develop-ment originate from general software engineering practices [12, 15,19] which include version control, documentation, and licensing.Version control of source code facilitates collaborative developmentand monitoring changes [13]. Additionally, making the code pub-licly available on dedicated software repositories that support ver-sion control such as GitHub [20], GitLab [21], or BitBucket [22] con-tributes to findability [23], accessibility [12], and reusability [13].The documentation of research software includes multiple levels.First, a comprehensive end user documentation and usage exam-ples enable reusability by other researchers [17, 24, 25, 23]. It shouldalso include the documentation of workflow parameters [17, 16].Second, source code documentation enables other developers tounderstand and build upon the software [17]. Documentation ofcode changes via a version control system helps document the de-velopment process [24, 19] and documentation of dependenciesare prerequisite for software interoperability [23]. Adding a clearand machine-readable [16] license is essential to allow for softwarereuse. It is recommended to choose a widely used and preferablyopen source license that is compatible with licenses of the depen-dencies [12, 24, 19, 23, 13, 14, 18]. Examples of open-source licenseswith few restrictions are the Apache License 2.0 [26] and the MITLicense [27].
There are differences between research software that imple-ments a specific method as a standalone tool or a software libraryand complex analysis workflows [16]. Computational analysisworkflows can comprise numerous steps that are integrated intopipelines [16] and are often developed in a specific project [28, 19].With a multitude of analysis steps being combined into com-plex workflows, the documentation of the individual analyses andtheir dependencies can become challenging. To facilitate the au-tomation of analysis tasks and their documentation, workflowscan be described using workflow management systems such asNextflow [29] or Snakemake [30]. Workflow managers that supportthe creation of reusable modules can help reduce complexity andpromote the reuse of workflows or workflow modules [15, 16, 31].

Additionally, notebooks can apply the concept of literate program-ming and are a useful tool to add human-readable documentationnext to code blocks [19]. Interoperability and reusability of work-flows can be achieved using portable software containers such asApptainer/Singularity [32] or Docker [33] that capture the runtimeenvironment of a workflow or a workflow module [15, 34, 16, 25].
Computational workflows can be regarded as digital objects. Theconcept of FAIR Digital Objects (FDOs) was introduced to make digi-tal objects fully FAIR [35]. FDOs comprise, among others, the digitalobject, a persistent identifier (PID), and metadata (title, authors,licenses, etc.) describing the object. Based on the FDO concept,the RO-Crate approach was specified to package digital researchartefacts or Research Objects (RO) such as computational work-flows [36]. The RO-Crate contains a PID that links to an RO, whichis described by a structured JSON-LD RO-Crate metadata file. Itcan additionally contain data on which the workflow can be run. Tomake an RO-Crate findable, it needs to be registered at a registrysuch as WorkflowHub [37, 38]. In case the actual data cannot be pub-licly shared due to privacy reasons, synthetic data can complementanalysis workflows to demonstrate the computational procedure[16, 39].
We here demonstrate the development of a FAIR Digital Objectcomprising a computational workflow that analyzes and integratesmulti-omics and phenotype data and is associated with rich humanand machine-readable metadata.

Findings

Workflow Implementation

To develop a reusable workflow, our input data and intermediatefiles were largely based on open and widely-used formats or com-munity standards. For the metabolomics data and metadata, weadopted practices of the MetaboLights database [40] of the Euro-pean Bioinformatics Institute (EBI) of the European Molecular Bi-ology Laboratory (EMBL). Metabolite levels and annotations arereported in metabolite annotation/assignment files (MAF). Theexperimental metadata for omics measurements is reported us-ing the Investigation/Study/Assay (ISA) metadata framework [41].We employed Jupyter [42] and the Python ISA API [43] to createISA-Tab and ISA-JSON files [44]. For machine-readable descrip-tions of the experiments, ontology terms were used. Ontologies arestandardized taxonomies of entities of a specific subject (domain)including definitions of relationships between these entities. On-tology terms refer to these entities [45]. Based on recommendedstandards from FAIRgenomes [3] and Metabolights [40], we prefer-ably employed the following ontologies: National Cancer InstituteThesaurus (NCIT) [46], Experimental Factor Ontology (EFO) [47],Ontology for Biomedical Investigations (OBI) [48], MetabolomicsStandards Initiative Ontology (MSIO) [49], Chemical Methods On-tology (CHMO) [50] and Chemical Entities of Biological Interest(ChEBI) [51]. The DNA methylation levels and associated metadata,behavioral data, and additional information about phenotypes ortechnical and biological covariates are stored as comma-separatedvalues (CSV) files. This allows our computational workflow to beeasily reusable and adaptable for other data sets. The workflow doc-umentation [52] describes all input files used in the workflow and
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Table 1. Overview of recommended FAIR practices for research data and software.
FAIR guiding principles [1] Open source software

recommendations [12]
Recommendations for
FAIR software [13]

FAIR principles for research
software [14, 18]

Findable F: Software, and its associated metadata,is easy for both humans and machinesto find.F1: (Meta) data are assigned globallyunique and persistent identifiers F1. Software is assigned a globally uniqueand persistent identifier.F1.1. Components of the softwarerepresenting levels of granularity areassigned distinct identifiers.F1.2. Different versions of the softwareare assigned distinct identifiers.F2: Data are described with richmetadata F2. Software is described with richmetadata.F3: Metadata clearly and explicitlyinclude the identifier of the data theydescribe
F3. Metadata clearly and explicitly includethe identifier of the software theydescribe.F4: (Meta)data are registered orindexed in a searchable resource R2. Make software easy todiscover by providingsoftware metadata via apopular communityregistry

#3 Register your codein a communityregistry
F4. Metadata are FAIR, searchable andindexable.

Accessible R1. Make source codepublicly accessible fromday one
#1 Use a publiclyaccessible repositorywith version control

A: Software, and its metadata, isretrievable via standardized protocols.
A1: (Meta)data are retrievable by theiridentifier using a standardisedcommunication protocol

A1. Software is retrievable by its identifierusing a standardized communicationsprotocol.A1.1: The protocol is open, free anduniversally implementable A1.1. The protocol is open, free, anduniversally implementable.A1.2: The protocol allows for anauthentication and authorisationprocedure where necessary
A1.2. The protocol allows for anauthentication and authorizationprocedure, where necessary.A2: Metadata should be accessible evenwhen the data is no longer available A2. Metadata are accessible, even whenthe software is no longer available.

Interoperable I: Software interoperates with othersoftware by exchanging data and/ormetadata, and/or through interactionvia application programming interfaces(APIs), described through standards.I1: (Meta)data use a formal, accessible,shared, and broadly applicablelanguage for knowledgerepresentation

I1. Software reads, writes and exchangesdata in a way that meetsdomain-relevant communitystandards.I2: (Meta)data use vocabularies thatfollow the FAIR principlesI3: (Meta)data include qualifiedreferences to other (meta)data I2. Software includes qualified referencesto other objects.
Reusable R4. Define clear andtransparent contribution,governance andcommunication processes

#4 Enable citation ofthe software R: Software is both usable (can beexecuted) and reusable (can beunderstood, modified, built upon, orincorporated into other software).R1: (Meta)data are richly described witha plurality of accurate and relevantattributes
R1. Software is described with a pluralityof accurate and relevant attributes.

R1.1: (Meta)data are released with aclear and accessible data usage license R3. Adopt a license andcomply with the licence ofthird-party dependencies
#2 Add a license R1.1. Software is given a clear andaccessible license.

R1.2: (Meta)data are associated withdetailed provenance R1.2. Software is associated with detailedprovenance.R2. Software includes qualified referencesto other software.R1.3: (Meta)data meet domain-relevantcommunity standards R3. Software meets domain-relevantcommunity standards.
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provides human-readable descriptions of every step of the work-flow processing and integrating individual input data types. Eachof these analysis steps is implemented in Python or R, and added asa module to the workflow. We employ Jupyter and R notebooks forimplementing downstream analyses and visualization of results.We chose Nextflow as our workflow management system, sinceit allows flexible development, can be run on different platforms,supports containers, is well documented, and is already widelyadopted by the bioinformatics community [31]. Each module of theworkflow is provided with their own Docker container to ensureportability and eliminate the need for local software installations.
Finally, the Nextflow workflow is packaged as an RO-Crate. Be-sides the workflow and the synthetic data set, it contains a struc-tured metadata file with machine-readable descriptions of inputfiles and analysis steps (ro-crate-metadata.json). We preferablyused EDAM—Ontology of bioscientific data analysis and data man-agement [53] as it is recommended for workflow RO-Crates [36].For terms that were not available in EDAM, alternative ontologiessuch as NCIT [46], OBI [48], or the Semanticscience IntegratedOntology (SIO) [54] were used. The RO-Crate further containsan image with an overview of the analysis steps. For findabil-ity, the packaged workflow (see Figure 2) is registered on Work-flowHub [37] and provided with a Digital Object Identifier (DOI)[https://doi.org/10.48546/workflowhub.workflow.402.5].

Case Study

Our workflow was developed to analyze and integrate DNA methy-lation and urine metabolomics profiles with behavioral data origi-nating from the ACTION Biomarker Study (ACTION, Aggression inChildren: Unraveling gene-environment interplay to inform Treat-ment and InterventiON strategies) [55, 56, 57] (see ‘Case Study’ inthe ‘Methods’ section on page 5). Within ACTION, urine and buccal-cell samples were collected in a twin cohort from the NetherlandsTwin Register (NTR), and in a cohort of children referred to anacademic center for child and youth psychiatry in the Netherlands(LUMC-Curium). These children were also characterized for be-havioral problems and here we look at externalizing problems. Wepurposely selected a case of complex human behavioral phenotypethat is typically not caused by a single well-defined molecular de-fect, but originates from changes in multiple factors, and as suchwould benefit from a multi-omics analysis. Since we consider thisdata to be potentially personally identifiable information, we sharea synthetic data set to demonstrate the workflow. The goal of theanalysis is the identification of substructures in the multi-omicsdata and to determine if they correlate with behavioral data (see‘Unsupervised Data Analysis’ on page 6). A team comprising mem-bers of the Netherlands X-omics Initiative [58] in collaboration withthe Netherlands Twin Register (NTR) [59] developed the computa-tional workflow. An overview of the main analysis steps is shownin Figure 1.
To identify underlying patterns in childhood externalizingbehavior, we applied Multiple Correspondence Analysis (MCA)[60, 61] to the parent-rated responses on the externalizing behav-ior items of the Child Behavior Checklist (CBCL) of the AchenbachSystem of Empirically Based Assessment (ASEBA) [62] in both co-horts. In NTR participants, the first three MCA dimensions jointlyexplain 30% of the variation in 26 externalizing behavior itemsof the ASEBA CBCL [see Additional File 1]. Additional dimensionseach explain <5% of the variation. The presence rather than theabsence of externalizing behaviors characterized all of the firstthree dimensions, which reflects the answer options to items (aproblem behavior is not present, a little, or a lot). Variables thatcontributed most to the first dimension, which explained 16% ofthe variation, represent temperamental behavior (frequent tem-per tantrums, stubbornness, screaming, and arguing). Variablescontributing to the second dimension, which explained 9% of the

variation, represent hostile aggressive behaviors (frequent vandal-ism, bullying, and cruelty). In LUMC-Curium participants, the firsttwo MCA dimensions suffice to explain 30% of the variation in 18items of the ASEBA CBCL [see Additional File 2]. Similar to NTR,these first dimensions in LUMC-Curium are characterized by thepresence of aggressive behaviors.
We applied Multi-Omics Factor Analysis (MOFA) [63] in bothcohorts to obtain ten factors to describe the buccal DNA methyla-tion (Illumina EPIC array) and urine metabolomics data. For thisanalysis, we selected the top 10% most variable probes from DNAmethylation data. Cumulatively, the ten factors explained 22.5%and 74.9% of variation in the DNA methylation data and 0.001%and 1.89% in the urine metabolomics data in NTR [see AdditionalFile 3] and LUMC-Curium [see Additional File 4], respectively. Weobserved no evidence that any of the factors captured sources ofvariation in both the DNA methylation and urine metabolomicsdata in NTR and LUMC-Curium. Particularly factors 1 and 2 in NTRand factor 1 in LUMC-Curium were specific to the DNA methylationdata. To help elucidate the etiology of the ten MOFA factors, we se-lected for each factor the top 100 CpGs with the largest weights andperformed enrichment analyses within the Epigenome-Wide Asso-ciation Study (EWAS) atlas [64]. Multiple factors in both cohorts[see Additional File 5 for ACTION-NTR and Additional Files 6 forLUMC-Curium cohort] showed enrichment of CpGs associated withglucocorticoid exposure (i.e., administration of corticosteroid medi-cation [65]), CpGs associated with ageing, and CpGs associated withimmune-related traits, such as psoriasis. Apart from these robustlyenriched traits, additional significant enrichments were found butwere often based on≤ 5 overlapping CpGs between the factor resultsand the original studies. A limitation of the enrichment analysis isthat the majority of previous EWAS studies included in this analysiswere conducted on blood samples from adult populations with theIllumina 450K BeadChip. In the factor weights for metabolites, weobserve that for both NTR [Additional File 3] and LUMC-Curium[Additional File 4] many of the factors are characterized by onlyone or few metabolites. We note that in both cohorts the factorsexplained only a small amount of variation in the metabolomicsdata. To investigate whether the omics factors were associatedwith behavioral dimensions (MCA), we ran gee models adjustingfor relatedness in NTR, and correlation analyses in Curium [seeAdditional File 3 for ACTION-NTR and Additional Files 4 for LUMC-Curium cohort]. None of the omics factors were significantly asso-ciated with the behavioral dimensions in NTR or LUMC-Curium,nor did we observe significant associations of sex-and-age-specificT-scores for aggressive behavior with the omics factors. In previ-ous multi-omics analyses of high versus low levels of childhoodaggression [66] and Attention-Deficit/Hyperactivity Disorder [67]we applied supervised analyses in these cohorts while applyingunsupervised analyses here. In these previous supervised analy-ses, where we also included an additional omics layer—polygenicscores—we found that although multi-omics models had low pre-dictive value, they revealed some connections of omics traits withexternalizing problems, that suggested biological plausibility.
We also constructed integrated similarity networks with Sim-ilarity Network Fusion (SNF) [68] to identify subgroups of indi-viduals based on omics data. In both NTR and LUMC-Curium, wedefined integrated similarity networks based on two and four clus-ters. The two clusters in NTR were characterized by differences inage whereas the two clusters in LUMC-Curium were characterizedby differences in the proportion of boys and girls. To investigatewhether the omics clusters were associated with externalizing be-havior, we compared the behavioral dimension scores from MCAbetween children in the different clusters. In both NTR and LUMC-Curium, we observed no significant differences in the behavioral di-mensions across the two omics clusters after correction for multipletesting [see Additional File 7 for NTR and Additional File 8 for LUMC-Curium cohort]. Similarly, no differences in behavioral dimensionswere observed between the four omics clusters in NTR, however,
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in LUMC-Curium, behavioral dimension 6 differed significantlybetween the four omics clusters. In LUMC-Curium, dimension 6explained 3.9% of the variance in childhood externalizing behaviorand the strongest contributors to this dimension comprised higherfrequencies of parent-rated tendencies to be suspicious and loud.Such forms of direct aggressive behavior, particularly physical ag-gressive behavior, are common in early childhood in both boys andgirls, and while overall levels of aggression decline with age andare roughly similar for boys and girls [69], boys are more likely toengage in direct and physical forms of aggression by age 11 [70].Thus, this finding aligns with the observation that the two omicsclusters differ in the proportion of males and females and in the agecomposition.

Discussion

In this collaborative research project, partners from the Nether-lands X-omics Initiative co-developed a workflow to analyze a com-plex multimodal data set. Developing workflows with partnersacross multiple institutions can pose a challenge and we experi-enced that a secure shared computing environment was key tothe success of this project. Additionally, practices aiming to in-crease FAIRness of the shared workflow such as version controlwith git and a modular workflow structure allowed for transpar-ent and target-oriented workflow development. Therefore, whilethe use of technologies like git or workflow management systemsmight require initial training of researchers, we believe this to beworthwhile.
Several FAIR practices for workflows include existing best prac-tices of software development, for example, version control andgood documentation. Adoption of these practices, along with theuse of workflow managers and software containers, aims to con-tribute to better interoperability, reusability and reproducibilityof analysis workflows and research results. While we experiencedthe adoption of these technologies to be straightforward, fully FAIRdata or software requires also machine-understandable seman-tic metadata. Specifications like the ISA metadata framework andRO-Crate allow ontology-based annotations of omics experimentsand analysis workflows, respectively. Our choice of ontologies wasmainly guided by the documented submission requirements orrecommendations provided by services such as the MetaboLightsarchive or WorkflowHub. However, when recommended ontologiesdo not comprise suitable terms, choosing appropriate ones fromontologies can be challenging. For example, no exact match to thegeneric term sample collection that is part of the ISA schema can befound in any ontology available in EBI’s Ontology Lookup Serivce(OLS) [71]. To describe workflow steps in RO-Crate with unsuper-

vised learning we had to employ the eNanoMapper Ontology [72]as no matching term was available in the recommended EDAMontology. Consequently, we recognize the importance of teams ded-icated to ontology curation, active user communities, and trainingof researchers in using semantic technologies. This is especiallyimportant for multi-omics research that spans multiple researchdomains.
For reproducibility of research results, it is essential that dataare shared along with the workflow. However, privacy regulationsprohibit sharing of potentially personally identifiable data such asomics measurements or clinical information. To demonstrate thefunctionality of the workflow, we shared a synthetic data set thatemulates the structure of the case study data set. Current develop-ments in the areas of federated data storage and analysis such asFederated European Genome-phenome Archive (EGA) [73] and thePersonal Health Train [74] have the potential to allow fully FAIR andreproducible data analysis workflows while maintaining privacyregulation compliance.
We hope our experiences help other researchers who developmulti-omics data analysis workflows choosing and implementing

practices that makes their research more FAIR.

Data and Methods

Case Study

Our case study comprises data from two cohorts that took part inthe ACTION Biomarker Study (ACTION, Aggression in Children:Unraveling gene-environment interplay to inform Treatment andInterventiON strategies) [55, 56, 57]. The ACTION Biomarker Studycollected buccal DNA samples for large-scale genome-wide andepigenome-wide association studies [75, 76] and first-morningurine samples to investigate the association of urine biomarkersand metabolites with childhood aggression [57]. These urine andbuccal-cell samples were collected in a twin cohort from the Nether-lands Twin Register (NTR) [77], where twin pairs were selectedon their longitudinal concordance or discordance for childhood ag-gression, and in a cohort of children referred to an academic centerfor child and youth psychiatry in the Netherlands (LUMC-Curium).The DNA methylation, genotype, metabolomics, and behaviouraldata from these cohorts were previously used for multi-omics anal-yses of aggressive behaviour [66] and Attention Deficit Hyperac-tivity Disorder (ADHD) [67]. Detailed information on the studypopulations and study protocol is available at protocols.io [78].
Data
Genome-wide DNA methylation data in buccal DNA samples weremeasured on the Infinium MethylationEPIC BeadChip kit (Illumina,San Diego, CA, USA [79]) by the Human Genotyping Facility (HuGe-F) of ErasmusMC (the Netherlands; [80]). The ZymoResearch EZDNA Methylation kit (Zymo Research Corp, Irvine, CA, USA) wasused for bisulfite treatment of 500 ng of genomic DNA obtained frombuccal swabs. The Infinium HD Methylation Assay was performedaccording to the manufacturer’s specification. Good BiomarkerSciences Leiden (Leiden, the Netherlands) measured the specificgravity (by refractomertry), levels of creatinine (by colorimertry),blood traces, markers of leukocytes, proteins, glucose and nitrites(the latter five by dipstick) of each urine sample. The MetabolomicsFacility of the University of Leiden (Leiden, the Netherlands) quan-tified urine metabolites using three platforms: a liquid chromatog-raphy mass spectrometry (LC-MS) platform targeting amines (66biomarkers), an LC-MS platform targeting steroid hormones (13biomarkers), and a gas chromatography (GC)-MS platform target-ing organic acids (21 biomarkers). Behavioral data comprises the115 items of the Dutch version of the Achenbach System of Empiri-cally Based Assessment (ASEBA) Child Behavior Checklist (CBCL)for school-aged children (6–18 years) [62]. For participants ofthe NTR cohort we used the mother-rated CBCL as completed atthe time of biological sample collection, and for participants of theLUMC-Curium cohort we used the parent-rated (90% mother rat-ings) CBCL as completed in a 6-month window surrounding thebiological sample collection. Again, details on the data generationare available in Ref. [78].
Synthetic Data
The purpose of the synthetic data set is to demonstrate how theworkflow can be run. It resembles the structure of the files of thecohort data. The values were randomly sampled from the observedvalues in the NTR cohort without preserving any correlations.

Data Processing

To ensure the urine sample metabolic integrity and to minimizebias contributed by health conditions, we excluded samples fromthe metabolomics data from (1) subjects who have started menstru-ating, (2) subjects where the time between urine sample collection
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and storing in the freezer was > 2 hours, (3) subjects where severeviolations to the sampling protocol occurred (e.g. not putting a lidon the container), (4) subjects where the leukocyte count was abovetrace, (5) subjects where the nitrites level was “positive high”, (6)subjects where the protein level was > 0.3, (7) subjects with glu-cose levels above trace, (8) subjects with blood levels above trace,
(9) subjects having the flu, (10) subjects reporting inflammation,
(11) subjects reporting vomiting, (12) subjects reporting abdominalpain and (12) subjects reporting general health problems. Note thatthe above criteria 4–8 are based on the dipstick marker estima-tion performed separately from the metabolomics measurementson the same samples [78], while the other criteria are based onquestionnaire data at the time of sampling.

The metabolomics features were filtered based on missing val-ues. Missing values were reported for cases where the metaboliteconcentration is below the limit of quantification. Samples andmetabolites with 15% or more of missing values were discarded.Sample-wise normalization to correct for urine concentration wasconducted by adjusting metabolite intensities to the sample cre-atinine levels [78]. This was followed metabolite-wise by Paretoscaling [81] to statistically account for large differences in reportedvalues.
Quality Control (QC) and normalization of the DNA methylationarray data have been previously described [75] and were carried outwith a pipeline developed by the Biobank-based Integrative OmicsStudy (BIOS) consortium [82]. From the 787,711 autosomal methyla-tion probes that survived QC, the top 10% most variable probes wereincluded in the analyses. Cellular proportions of buccal sampleswere predicted with Hierarchical Epigenetic Dissection of Intra-Sample-Heterogeneity (HepiDISH) with the RPC method (reducedpartial correlation), as described Zheng et al. [83] and implementedin the R/Bioconductor package EpiDISH. Median imputation wascarried out on the epigenetics data. Residual methylation levelswere obtained by regressing the effects of percentages of epithelialand natural killer cells, EPIC array row, and bisulfite sample plate,from the methylation beta-values.
Missing values in the externalizing behavior items were im-puted with the non-parametric random forests method from the Rlibrary missForest (1.4) [84].

Unsupervised Data Analysis

Each cohort was analyzed separately. We applied Multi-OmicsFactor Analysis (MOFA) using the R/Bioconductor library MOFA2(1.3.4) [63, 85] to obtain factors for the buccal DNA methylationand urine metabolomics data and applied Multiple CorrespondenceAnalysis (MCA) [61] using the R library FactoMineR (2.4) [60] toobtain factors for the behavioral data.
To identify subgroups of individuals based on their buccalDNA methylation and urine metabolomics data we constructedintegrated similarity networks with Similarity Network Fusion(SNF) [68]. The optimal numbers of clusters were determined us-ing a built-in function of the Python library SNFpy [86] that usesthe eigengap method [87] to find the optimal number of clusters.SNF first constructs sample similarity networks for each availabledata type and then fuses these into a single network comprisingboth the shared and unique information from each data type. Thefinal fused network thus captures how each data type contributesto the similarity amongst the samples. We tested whether the be-havioral dimension scores from MCA differ between children in thedifferent SNF clusters, using Mann-Whitney U tests (two clusters)or Kruskal-Wallis tests (four clusters) in the Curium cohort, andwith generalized estimation equation (GEE) models (with clusteras predictor and behavioral dimension score as outcome) in NTR.
We determined correlations amongst the obtained factors cap-turing the omics and behavioral data, respectively, using Spear-man’s rank correlation, and additionally in the NTR cohort using

GEE models. All GEE models were fitted with the R package GEE,with the following specifications: Gaussian link function (for con-tinuous data), 100 iterations, and the ‘exchangeable’ option to ac-count for the correlations in twin pairs. Statistical test were adjustedfor multiple testing using false discovery rate (FDR) [88].
Workflow Implementation

Availability of source code and requirements

• Project name: X-omics ACTION demonstrator• Project home page: [89]• Operating system(s): Platform independent• Programming language: Python, R• Other requirements: Nextflow (22.04.0), Docker (19.03.1), Sin-gularity (3.8.0)• License: MIT

Additional Files

• File name: Additional File 1• File format: .html• Title: Multiple Correspondence Analysis of CBCL behavioral data• Description: Overview of externalizing behavior items of theChild Behavior Checklist (CBCL) of the Achenbach System of Em-pirically Based Assessment (ASEBA) in the ACTION-NTR cohortbefore and after imputation of missing values using randomforests and results and visualizations of Multiple Correspon-dence Analysis (MCA).
• File name: Additional File 2• File format: .html• Title: Multiple Correspondence Analysis of CBCL behavioral data• Description: Overview of externalizing behavior items of theChild Behavior Checklist (CBCL) of the Achenbach System ofEmpirically Based Assessment (ASEBA) in the LUMC-Curiumcohort before and after imputation of missing values using ran-dom forests and results and visualizations of Multiple Corre-spondence Analysis (MCA).
• File name: Additional File 3• File format: .html• Title: MOFA downstream analysis report• Description: Visualizations of Multi-omics Factor Analysis(MOFA) of buccal DNA methylation (Illumina EPIC array) andurine metabolomics data of the ACTION-NTR cohort. Also, as-sociations between the MOFA factors and phenotypic data aretested with GEE models.
• File name: Additional File 4• File format: .html• Title: MOFA downstream analysis report• Description: Visualizations of Multi-omics Factor Analysis(MOFA) of buccal DNA methylation (Illumina EPIC array) andurine metabolomics data of the LUMC-Curium cohort.
• File name: Additional File 5• File format: .xlsx• Title: EWAS atlas enrichment analysis• Description: Enriched traits for CpGs with top 100 largestweights of ACTION-NTR MOFA factors 1-10.
• File name: Additional File 6• File format: .xlsx• Title: EWAS atlas enrichment analysis• Description: Enriched traits for CpGs with top 100 largestweights of LUMC-Curium MOFA factors 1-10.
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• File name: Additional File 7• File format: .html• Title: Similarity Network Fusion downstream analysis• Description: Visualizations of Similarity Network Fusions (SNF)and subsequent spectral clustering of buccal DNA methyla-tion (Illumina EPIC array) and urine metabolomics data of theACTION-NTR cohort.
• File name: Additional File 8• File format: .html• Title: Similarity Network Fusion downstream analysis• Description: Visualizations of Similarity Network Fusions (SNF)and subsequent spectral clustering of buccal DNA methylation(Illumina EPIC array) and urine metabolomics data of the LUMC-Curium cohort.
• File name: Additional File 9• File format: .html• Title: Similarity Network Fusion downstream analysis with GEEmodels• Description: Associations between the SNF clusters and phe-notypic data are tested with GEE models in the ACTION-NTRcohort.

Data Availability

The data of the Netherlands Twin Register (NTR) ACTIONBiomarker Study may be accessed, upon approval of the data accesscommittee, through the NTR [90].
A synthetic data set representing the structure of theACTION Biomarker Study data set is available as partof the workflow RO-Crate available at WorkflowHub[https://doi.org/10.48546/workflowhub.workflow.402.5].
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Figure 1. Overview of analysis steps.
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Figure 2. Schematic overview of packaged workflow.
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