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Abstract 
 

This study investigates the functional network underlying response inhibition in the human brain, 
particularly the role of the basal ganglia in successful action cancellation. Functional magnetic resonance 
imaging (fMRI) approaches have frequently used the stop-signal task (SST) to examine this network. We merge 
five such datasets, using a novel aggregatory method allowing the unification of raw fMRI data across sites. 
This meta-analysis, along with other recent aggregatory fMRI studies, does not find evidence for the innervation 
of the hyperdirect or indirect cortico-basal-ganglia pathways in successful response inhibition. What we do 
find, is large subcortical activity profiles for failed stop trials. We discuss possible explanations for the mismatch 
of findings between the fMRI results presented here and results from other research modalities that have 
implicated nodes of the basal ganglia in successful inhibition. We also highlight the substantial effect smoothing 
can have on the conclusions drawn from task-specific GLMs. First and foremost, this study presents a proof of 
concept for meta-analytical methods that enable the merging of extensive, unprocessed or unreduced datasets. 
It demonstrates the significant potential that open-access data sharing can offer to the research community. With 
an increasing number of datasets being shared publicly, researchers will have the ability to conduct meta-
analyses on more than just summary data. 
 
Introduction 
 

Response inhibition, generally defined as the ability to suppress a planned or already-initiated response 
(Logan, 1985), is an essential part of everyday motor control, and underpinned by a series of cortical and 
subcortical pathways. Defining the neural mechanisms underlying response inhibition in the neurotypical 
population has important consequences in the clinical neurosciences, where impairment in these pathways has 
been associated with a number of neurological and psychiatric diseases including Parkinson’s disease, addiction 
and schizophrenia (Chowdhury et al., 2018; Claassen et al., 2015; Congdon et al., 2014; Noël et al., 2016; Rømer 
Thomsen et al., 2018; Seeley et al., 2009).  

Response inhibition has been behaviourally examined using the stop signal task (SST) for more than 
four decades. In the SST, participants make a motor response as quickly as possible in response to a go signal. 
In a minority of trials (usually around 25% of all trials), a stop signal appears shortly after the onset of the go 
signal, indicating that the participant should not respond to the go signal in that trial. The stop signal’s onset is 
normally adjusted after each stop signal trial based on stopping success, such that each participant will be able 
to stop successfully on approximately 50% of trials (Verbruggen et al., 2019). Behavioural dynamics during the 
SST are interpreted under the framework of the horse race model (Logan & Cowan, 1984). This model proposes 
that on each stop trial, the presentation of the go stimulus triggers the go process, which races towards a 
threshold that results in a response. Upon the presentation of the stop signal, a stop process is similarly triggered, 
which races towards an independent threshold. Depending on whether the go or stop process finishes first, the 
response is respectively performed or inhibited. Performance on go trials and failed stop trials (where the 
participant makes an inappropriate response) is quantified by reaction time (RT). Inhibition performance in the 
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SST as a whole is quantified by the stop signal reaction time (SSRT), which estimates the speed of the latent 
stopping process (Verbruggen et al., 2019). 

Contemporary models of response inhibition propose that inhibition is realised via three cortico-basal-
ganglia pathways; the direct, indirect, and hyperdirect pathways (Diesburg & Wessel, 2021; Mink, 1996). While 
all three are involved in response inhibition and movement, the hyperdirect pathway has been theorized to be 
the pathway through which action is ultimately cancelled (Aron & Poldrack, 2006). The signalling cascade 
originates from the prefrontal cortex and is thought to implement stopping upon detection of a stop signal by 
inhibition of the thalamus (Tha) via the subthalamic nucleus (STN), substantia nigra (SN) and globus pallidus 
interna (GPi; Coudé et al., 2018; Diesburg & Wessel, 2021). This pathway was originally identified in rodents 
and non-human primates (Eagle et al., 2008; Schmidt et al., 2013), but its anatomical plausibility in humans 
was demonstrated by Chen and colleagues, who measured firing in the frontal cortex 1-2 ms after stimulation 
of the STN (Chen et al., 2020). The connectivity of these cortico-basal-ganglia tracts has been shown to be 
correlated with stopping behaviour (Forstmann et al., 2012; M. Singh et al., 2021; M. Xu et al., 2016; F. Zhang 
& Iwaki, 2020). Clinical studies have also demonstrated the importance of subcortical regions, particularly the 
STN, in relation to stopping. A multitude of these studies provide electrophysiological support for the 
involvement of the STN in successful response inhibition  (Alegre et al., 2013a; Benis et al., 2014, 2016; Fischer 
et al., 2017; Mosher et al., 2021; Wessel et al., 2016), indicating that increased ß-band activity induces global 
motor suppression. Evidence from Parkinson’s disease patients undergoing deep brain stimulation has also 
associated the STN with (successful) stopping behaviour (Mirabella et al., 2012; Ray et al., 2009, 2012; Swann 
et al., 2011; van den Wildenberg et al., 2021) and demonstrated that bilateral stimulation of this region can 
improve performance in the SST (Mancini et al., 2019). 

Functional imaging research has also been used extensively to elucidate which regions are associated 
with response inhibition. These images are frequently acquired at 3 Tesla (T) and the BOLD responses 
interpreted by the use of contrast analyses, subtracting the activity of regions during different conditions. In the 
SST, these conditions are go (GO), failed stop (FS) and successful stop (SS) trials. Contrasts of interest are often 
FS > GO, SS > GO, and FS > SS. Cortically, three regions have been consistently implicated in successful 
inhibition: the right inferior frontal gyrus (rIFG), pre-supplementary motor area (preSMA) and anterior insula 
(Aron et al., 2014; de Hollander et al., 2017; Isherwood et al., 2023; Miletić et al., 2020; Swick et al., 2011). In 
the subcortex, functional evidence is relatively inconsistent. Some studies have found an increase in BOLD 
response in the STN in SS > GO contrasts (Aron & Poldrack, 2006; Coxon et al., 2016; Gaillard et al., 2020; 
Yoon et al., 2019), but others have failed to replicate this (Bloemendaal et al., 2016; Boehler et al., 2010; Chang 
et al., 2020; B. Xu et al., 2015). Moreover, some studies have actually found higher STN, SN and thalamic 
activation in failed stop trials, not successful ones (de Hollander et al., 2017; Isherwood et al., 2023; Miletić et 
al., 2020). 

Here, we reprocess and reanalyse five functional SST datasets to shed light on the discrepancies in 
subcortical BOLD responses. Canonical methods of meta-analysis have the tendency to lose information when 
compiling multiple sources of data, due to reliance on summary statistics and a lack of raw data accessibility. 
Taking advantage of the recent surge in open access data, we aimed to improve upon these methods by using 
the raw data now available instead of relying on simple summary measures (e.g., MNI coordinates). Though 
computationally expensive, the gain in power from reanalysing multiple functional datasets without this loss of 
information is of huge benefit. In addition, using raw data as a starting point for datasets acquired separately 
allows one to minimize differences in preprocessing and analyses pipelines. We chose datasets that used similar 
go stimuli (left or right pointing arrows) to maintain as much consistency across the datasets as possible. Stop 
signals during the SST are generally either of the auditory or visual type; we opted to use both types in this 
study with the assumption that they rely on the same underlying inhibition network (Ramautar et al., 2006).  
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Methods 
 
Participants 
 

This study combined data from five datasets, two acquired at 3T and three at 7T: Aron_3T (Aron & 
Poldrack, 2006), Poldrack_3T (Poldrack et al., 2016), deHollander_7T (de Hollander et al., 2017), 
Isherwood_7T (Isherwood et al., 2023), and Miletic_7T (Miletić et al., 2020). The number of participants and 
their relevant demographics for each dataset are as follows: Aron_3T – 14 participants (4 female; mean age 28.1 
± 4.1), Poldrack_3T – 130 participants (62 female; mean age 31 ± 8.7; age range 21 – 50), deHollander_7T – 
20 participants (10 female; mean age 26 ± 2.6; age range 22 – 32), Isherwood_7T – 37 participants (20 female; 
mean age 26.3 ± 5.6; age range 19 – 39), and Miletic_7T – 17 participants (9 female; mean age 23.7 ± 3.2). 
 
Scanning protocols 
 

This section describes the MR acquisition procedure for each dataset. The main acquisition parameters 
of the functionals scans can be found in Table 1, with a detailed account of each dataset’s structural and 
functional scans in the following paragraphs. 

 
Table 1. The principal MR acquisition parameters of the functional scans for each dataset. 
 
Dataset TR (ms) TE (ms) Voxel size (mm) FOV (mm) No. slices GRAPPA 
Aron_3T 2000 30 3.125 x 3.125 x 4 200 x 200 x 132 33 N/A 
Poldrack_3T 2000 30 3 x 3 x 4 192 x 192 x 136 34 N/A 
deHollander_7T 2000 14 1.5 x 1.5 x 1.5 192 x 192 x 97 60 3 
Isherwood_7T 1380 14 1.5 x 1.5 x 1.5 192 x 192 x 128 82 3 
Miletic_7T 3000 14 1.6 x 1.6 x 1.6 192 x 192 x 112 70 3 

 
For the Aron_3T dataset, each participant was scanned on a Siemens Allegra 3T scanner. The session 

consisted of three functional runs of the SST and an anatomical T1w image. The functional data was collected 
using a single echo 2D-echo planar imaging (EPI) BOLD sequence (TR = 2000 ms; TE = 30 ms; voxel size = 
3.125 x 3.125 x 4 mm; flip angle = 90°; Field of View (FOV) = 200 x 200 x 132 mm; matrix size = 64 x 64; 
slices = 33; phase encoding direction = A >> P). A 1 mm isotropic T1w image was acquired during each session 
using the MPRAGE sequence (TR = 2300 ms; TE = 2.1 ms; matrix size = 192 x 192). 

For the Poldrack_3T dataset, each participant was scanned on a Siemens Trio 3T scanner. The session 
consisted of one functional run of the SST and an anatomical T1w image. The functional data was collected 
using a single echo 2D-EPI BOLD sequence (TR = 2000 ms; TE = 30 ms; voxel size = 3 x 3 x 4 mm; flip angle 
= 90°; FOV = 192 x 192 x 136 mm; matrix size = 64 x 64; slices = 34; phase encoding direction = A >> P). A 
1 mm isotropic T1w image was acquired during each session using the MPRAGE sequence (TR = 1900 ms; TE 
= 2.26 ms; matrix size = 256 x 256). 

For the deHollander_7T dataset, each participant was scanned on a Siemens MAGNETOM 7 Tesla 
(7T) scanner with a 32-channel head coil. The session consisted of three functional runs of the SST, B0 field 
map acquisition (TR = 1500 ms, TE1 = 6 ms, TE2 = 7.02 ms), and an anatomical T1w image. The functional data 
was collected using a single echo 2D-EPI BOLD sequence (TR = 2000 ms; TE = 14 ms; GRAPPA = 3; voxel 
size = 1.5 mm isotropic; partial Fourier = 6/8; flip angle = 60°; FOV = 192 x 192 x 97 mm; matrix size = 128 x 
128; BW = 1446Hz/Px; slices = 60; phase encoding direction = A >> P; echo spacing = 0.8ms). Each run had 
an acquisition time of 13:27 min, totalling 40:21 min of functional scanning. A 0.7 mm isotropic T1w image 
was acquired during each session using the MP2RAGE sequence (TR = 5000 ms; TE = 2.45 ms; inversions TI1 
= 900 ms, TI2 = 2750 ms; flip angle 1 = 5°; flip angle 2 = 3°; Marques et al., 2010). 

For the Isherwood_7T dataset, each participant was scanned on a Siemens MAGNETOM TERRA 7T 
scanner with a 32-channel head coil. The session consisted of two functional runs of the SST, top-up acquisition, 
and an anatomical T1w image. The functional data was collected using a single echo 2D-EPI BOLD sequence 
(TR = 1380 ms; TE = 14 ms; MB = 2; GRAPPA = 3; voxel size = 1.5 mm isotropic; partial Fourier = 6/8; flip 
angle = 60°; FOV = 192 x 192 x 128 mm; matrix size = 128 x 128; BW = 1446 Hz/Px; slices = 82; phase 
encoding direction = A >> P; echo spacing = 0.8 ms). Each run had an acquisition time of 13:27 min, totalling 
26:54 min of functional scanning. Subsequently to each run, five volumes of the same protocol with opposite 
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phase encoding direction (P >> A) were collected (top-up) for distortion correction. A 1 mm isotropic T1w 
image was acquired during each session using the MP2RAGE sequence (TR = 4300 ms; TE = 1.84 ms; 
inversions TI1 = 840 ms, TI2 = 2370 ms; flip angle 1 = 5°; flip angle 2 = 6°; Marques et al., 2010). 

For the Miletic_7T dataset, each participant was scanned on a Siemens MAGNETOM 7T scanner with 
a 32-channel head coil. The session consisted of three functional runs of the SST, B0 field map acquisition 
(TR = 1500 ms, TE1= 6 ms, TE2 = 7.02 ms), and an anatomical T1w image. The functional data was collected 
using a single echo 2D-EPI BOLD sequence (TR = 3000 ms; TE = 14 ms; GRAPPA = 3; voxel size = 1.6 mm 
isotropic; partial Fourier = 6/8; flip angle = 70°; FOV = 192 x 192 x 112 mm; matrix size = 120 x 120; BW = 
1436 Hz/Px; slices = 70; phase encoding direction = A >> P; echo spacing = 0.8 ms). A 0.7 mm isotropic T1w 
image was acquired during each session using the MP2RAGE sequence (TR = 5000 ms; TE = 2.45 ms; 
inversions TI1 = 900 ms, TI2 = 2750 ms; flip angle 1 = 5°; flip angle 2 = 3°; Marques et al., 2010). 
 
Procedure and exclusions  
 

Participants that were not accompanied by a T1w anatomical image were automatically excluded from 
the study as the image is required for registration during preprocessing. In addition, the behavioural data of each 
participant from each database were quality controlled on the basis of a specific set of exclusion criteria. These 
criteria are: (1) more than 10% go-omissions across all functional runs; (2) a stopping accuracy of less than 35% 
or more than 65%; (3) a go-accuracy of less than 95%; (4) mean signal respond RTs that were longer on average 
than go RTs (inconsistent with the standard race model). Based on these criteria, no subjects were excluded 
from the Aron_3T dataset. 24 subjects were excluded from the Poldrack_3T dataset (3 based on criterion 1, 9 
on criterion 2, 11 on criterion 3, and 8 on criterion 4). Three subjects were excluded from the deHollander_7T 
dataset (2 based on criterion 1 and 1 on criterion 2). Five subjects were excluded from the Isherwood_7T dataset 
(2 based on criterion 1, 1 on criterion 2, and 2 on criterion 4). Two subjects were excluded from the Miletic_7T 
dataset (1 based on criterion 2 and 1 on criterion 4). Note that some participants in the Poldrack_3T study failed 
to meet multiple inclusion criteria. A further nine participants were excluded from the Poldrack_3T dataset due 
to a lack of T1w image or a lack of SST data. As the specific genders and ages of each participant in each dataset 
are not all available due to General Data Protection Regulations (GDPR), we were unable to recalculate 
participant demographics after exclusions. The final number of participants in each dataset after screening is as 
follows: Aron_3T, 14 participants; Poldrack_3T, 97 participants; deHollander_7T, 17 participants; 
Isherwood_7T, 31 participants; Miletic_7T, 15 participants. Therefore, the analyses in this paper are based on 
stop signal data from 5 datasets, 174 participants and 293 runs.  
 
Stop signal task (SST) 
 

All datasets used a simple, two alternative choice stop signal paradigm. This paradigm consists of two 
trial types, go trials, and stop trials. On each trial, an arrow is presented on the screen in either the left or right 
direction (the go stimulus). The participant presses the button corresponding to the direction of the arrow. On a 
subset of trials (25%), a stop signal appears shortly after go signal onset, indicating the participant should try to 
inhibit their movement and not respond in that trial. In the auditory SST, this stop signal is presented as a ‘beep’ 
sound. In the visual SST, this stop signal is presented as a change in visual stimulus; for example, in the 
Isherwood_7T dataset, the circle surrounding the arrow would change from white to red. The time between the 
presentation of the go stimulus and the stop signal is defined by the stop signal delay (SSD). The SSD is adapted 
iteratively during the task. Generally, if the participant responds during a stop trial, the SSD is reduced by 50 
ms on the next stop trial, meaning the stop signal will appear earlier in the next trial and it will be easier for the 
participant to inhibit their response. Conversely, if the participant stops successfully, the SSD will increase by 
50 ms and the stop signal will appear later in the next trial This method of SSD adaptation is known as a staircase 
procedure and ensures that each participant is able to inhibit their actions approximately 50% of the time. Task 
performance in this paradigm is characterized by the race model (Logan and Cowan, 1984). The model assumes 
a go process and a stop process race independently and whichever finishes first defines whether a participant 
responds or inhibits their actions. The go process is characterized by the observable go RT, whereas the stop 
process is characterized by the latent SSRT, which is estimated based on the effects of the SSD throughout the 
task. 
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Although the SST employed in each dataset is similar, there are some differences which are detailed in 
Table 2. We note here the most important differences in design aspects of the SSTs, these include (1) Response 
modality, describing the manual response and whether left (L), right (R) or both (L/R) hands were used; (2) 
Type, describing whether the stop signal was auditory or visual; (3) Stop signal duration, how long the auditory 
or visual stop signal was presented for; (4) Number of staircases, describing the number of staircases used to 
track the SSD of each participant during the task; (5) SSD range, describing the minimum and maximum values 
that the SSD could be during the task; (6) total trial number, the number of trials each participant performed 
over all runs; (7) Stop trials, the percentage of overall trials that were stop trials (as opposed to go trials).  
 
Table 2. Task details for the SST in each dataset.  
 

Dataset Response 
modality 

Type Stop signal 
duration 
(ms) 

No. 
staircases 

SSD range 
(ms) 

Total 
no. 
trials 

Stop 
trials (%) 

Aron_3T Hand, R Auditory 500 4 100 - 250 384 25 
Poldrack_3T Hand, R Auditory 250 2 0 - 1000 128 25 

deHollander_7T Hand, L/R Auditory 62 4 0 – 900 384 25 
Isherwood_7T Hand, L/R Visual 300 1 50 – 900 200 25 

Miletic_7T Hand, L/R Auditory 62 2 0 – 900 342 25 
  
Behavioural analyses 
 

For all runs within each dataset, median RTs on go and stop trials, the mean SSD and proportion of 
successful stops were calculated. For each participant, the SSRT was calculated using the integration method, 
with replacement of go omissions (Verbruggen et al., 2019) estimated by integrating the RT distribution and 
calculating the point at which the integral equals p(respond|signal). The completion time of the stop process 
aligns with the nth RT, where n equals the number of RTs in the RT distribution of go trials multiplied by the 
probability of responding to a signal. Both frequentist and Bayesian analyses methods were used to calculate 
the correlation between mean SSRTs and median go RTs, as well as to test the statistical difference between 
median failed stop RTs and median go RTs.  
 
fMRIprep preprocessing pipeline 
 

fMRIPrep was used to preprocess all acquired anatomical and functional data (Esteban et al., 2018, 
2020). The following two sections describe, in detail, the preprocessing steps that fMRIPrep performed on each 
dataset. 
 
Anatomical data preprocessing 
 

A total of 1 T1-weighted (T1w) images was found within the input for each subject of each BIDS 
dataset. The T1-weighted (T1w) image was corrected for intensity non-uniformity (INU) 
with N4BiasFieldCorrection (Tustison et al., 2010), distributed with ANTs 2.3.3 (Avants et al., 2008), 
RRID:SCR_004757), and used as T1w-reference throughout the workflow. The T1w-reference was then skull-
stripped with a Nipype implementation of the antsBrainExtraction.sh workflow (from ANTs), using 
OASIS30ANTs as target template. Brain tissue segmentation of cerebrospinal fluid (CSF), white matter (WM) 
and grey matter (GM) was performed on the brain-extracted T1w using fast (FSL 5.0.9, RRID:SCR_002823, 
Zhang et al., 2001). Brain surfaces were reconstructed using recon-all (FreeSurfer 6.0.1, RRID:SCR_001847, 
Dale et al., 1999), and the brain mask previously estimated was refined with a custom variation of the method 
to reconcile ANTs-derived and FreeSurfer-derived segmentations of the cortical grey matter of 
Mindboggle (RRID:SCR_002438, Klein et al., 2017). Volume-based spatial normalization to one standard 
space (MNI152NLin2009cAsym) was performed through nonlinear registration with antsRegistration (ANTs 
2.3.3) using brain-extracted versions of both T1w reference and the T1w template. The following template was 
selected for spatial normalization: ICBM 152 Nonlinear Asymmetrical template version 2009c (Fonov et al., 
2009, RRID:SCR_008796; TemplateFlow ID: MNI152NLin2009cAsym). 
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Functional data preprocessing 
 

For each of the BOLD runs per subject (across all datasets), the following preprocessing was performed. 
First, a reference volume and its skull-stripped version were generated using a custom methodology 
of fMRIPrep. For datasets where a distortion correction image was not acquired (Aron_3T and Poldrack_3T), a 
deformation field to correct for susceptibility distortions was estimated based on fMRIPrep’s fieldmap-
less approach. The deformation field is that resulting from co-registering the BOLD reference to the same-
subject T1w-reference with its intensity inverted (Wang et al., 2017). Registration is performed 
with antsRegistration (ANTs 2.3.3), and the process regularized by constraining deformation to be nonzero 
along the phase-encoding direction, and modulated with an average fieldmap template (Treiber et al., 2016). 
For the deHollander_7T and Miletic_7T datasets, a B0-nonuniformity map (or fieldmap) was estimated based 
on a phase-difference map calculated with a dual-echo gradient-recall echo sequence, processed with a custom 
workflow of SDCFlows inspired by the epidewarp.fsl script with further improvements in HCP 
Pipelines (Uǧurbil et al., 2013). The fieldmap was then co-registered to the target EPI reference run and 
converted to a displacements field map (amenable to registration tools such as ANTs) with FSL’s fugue and 
other SDCflows tools. For the Isherwood_7T dataset, a B0-nonuniformity map (or fieldmap) was estimated 
based on two EPI references with opposing phase-encoding directions, with 3dQwarp (Cox and Hyde, 1997; 
AFNI 20160207). 

Based on the estimated susceptibility distortion, a corrected EPI reference was calculated for a more 
accurate co-registration with the anatomical reference. The BOLD reference was then co-registered to the T1w 
reference using bbregister (FreeSurfer) which implements boundary-based registration (Greve & Fischl, 2009). 
Co-registration was configured with six degrees of freedom. Head-motion parameters with respect to the BOLD 
reference (transformation matrices, and six corresponding rotation and translation parameters) were estimated 
before any spatiotemporal filtering using mcflirt (FSL 5.0.9, Jenkinson et al., 2002). BOLD runs were slice-
time corrected using 3dTshift from AFNI 20160207 (Cox and Hyde, 1997; RRID:SCR_005927). The BOLD 
time-series (including slice-timing correction when applied) were resampled onto their original, native space by 
applying a single, composite transform to correct for head-motion and susceptibility distortions. These 
resampled BOLD time-series will be referred to as preprocessed BOLD in original space, or just preprocessed 
BOLD. Several confounding time-series were calculated based on the preprocessed BOLD: framewise 
displacement (FD), DVARS and three region-wise global signals. FD was computed using two formulations 
following Power (absolute sum of relative motions, Power et al., 2014) and Jenkinson (relative root mean square 
displacement between affines, Jenkinson et al., 2002). FD and DVARS are calculated for each functional run, 
both using their implementations in Nipype (following the definitions by Power et al., 2014). The three global 
signals are extracted within the CSF, the WM, and the whole-brain masks. Additionally, a set of physiological 
regressors were extracted to allow for component-based noise correction (CompCor, Behzadi et al., 2007). 
Principal components are estimated after high-pass filtering the preprocessed BOLD time-series (using a 
discrete cosine filter with 128 s cut-off) for the two CompCor variants: temporal (tCompCor) and anatomical 
(aCompCor). tCompCor components are then calculated from the top 2% variable voxels within the brain mask. 
For aCompCor, three probabilistic masks (CSF, WM and combined CSF+WM) are generated in anatomical 
space. The implementation differs from that of Behzadi et al. in that instead of eroding the masks by 2 pixels 
on BOLD space, the aCompCor masks are subtracted a mask of pixels that likely contain a volume fraction of 
GM. This mask is obtained by dilating a GM mask extracted from the FreeSurfer’s aseg segmentation, and it 
ensures components are not extracted from voxels containing a minimal fraction of GM. Finally, these masks 
are resampled into BOLD space and binarized by thresholding at .99 (as in the original implementation). 
Components are also calculated separately within the WM and CSF masks. For each CompCor decomposition, 
the k components with the largest singular values are retained, such that the retained components’ time series 
are sufficient to explain 50 percent of variance across the nuisance mask (CSF, WM, combined, or temporal). 
The remaining components are dropped from consideration. The head-motion estimates calculated in the 
correction step were also placed within the corresponding confounds file. The confound time series derived 
from head motion estimates and global signals were expanded with the inclusion of temporal derivatives and 
quadratic terms for each (Satterthwaite et al., 2013). Frames that exceeded a threshold of .5 mm FD or 1.5 
standardised DVARS were annotated as motion outliers. All resamplings can be performed with a single 
interpolation step by composing all the pertinent transformations (i.e. head-motion transform matrices, 
susceptibility distortion correction when available, and co-registrations to anatomical and output spaces). 
Gridded (volumetric) resamplings were performed using antsApplyTransforms (ANTs), configured with 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 7, 2024. ; https://doi.org/10.1101/2023.06.06.543900doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.06.543900
http://creativecommons.org/licenses/by/4.0/


Lanczos interpolation to minimize the smoothing effects of other kernels (Lanczos, 1964). Non-gridded 
(surface) resamplings were performed using mri_vol2surf (FreeSurfer). 
 
Temporal signal to noise ratios (tSNRs) 
 

Sequence sensitivity in BOLD fMRI can be approximated by the calculation of the temporal signal to 
noise ratio (tSNR). While it is not possible discriminate the exact source of noise causing temporal fluctuations 
in measured signal, they are thought to arise from either thermal or physiological interference. To get a feel for 
the image quality in different regions of the brain between datasets, we here compared region of interest (ROI)-
wise tSNRs. Using probabilistic atlases, we took the mean of the ROI signal and divided by its standard 
deviation across time. Each voxels contribution to the mean signal of the region was weighted by its probability 
of belonging to the region While simple to calculate, tSNR comparison between data of differing acquisition 
methods is less trivial. Here, we only correct for the differences in voxel size between datasets. As spatial 
resolution is directly proportional to MR signal, we divided these tSNR values by the volume of a single voxel 
(Edelstein et al., 1986). tSNR was calculated using the exact same data used in the ROI-wise GLMs. That is, 
unsmoothed but preprocessed data from fMRIprep. 
 
fMRI analysis – general linear models (GLMs) 
 

GLM analyses were computed at both a whole-brain voxel-wise and region-specific level. A canonical 
double gamma hemodynamic response function (HRF) with temporal derivative was used as the basis set for 
both methods of analysis (Glover, 1999). The design matrix consisted of the three task-specific regressors for 
each of the three experimental conditions; failed stop (FS) trials, successful stop (SS) trials and go (GO) trials, 
six motion parameters (three translational and three rotational) as well as DVARS and framewise displacement 
estimated during preprocessing. The first 20 aCompCor components from fMRIPrep were used to account for 
physiological noise (Behzadi et al., 2007). For the main GLM analyses, all events were time-locked to the GO 
signal onset, but see the supplementary analyses (Supplementary Figures 4 and 5) for results where SS and FS 
trials were time-locked to the stop signal onset. Following data preprocessing through fMRIPrep, all data were 
high-pass filtered (cut-off 1/128 Hz) to remove slow drift. Three SST contrasts were computed for both the 
whole-brain and region of interest (ROI) GLMs: FS > GO, FS > SS and SS > GO. While many regressors were 
computed in the preprocessing of the fMRI data, not all were used in the subsequent analysis. The exact 
regressors used for the analysis can be found above. For example, tCompCor and global signals were calculated 
in our generic preprocessing pipeline but not part of the analysis. The code used for preprocessing and analysis 
can be found in the data and code availability statement. 
 
Voxel-wise 
 

Whole-brain analyses were computed using the FILM method from FSL FEAT (version 6.0.5.2; 
Jenkinson et al., 2012; Woolrich et al., 2001) as implemented in the Python package wrapper Nipype (version 
1.7.0; Gorgolewski et al., 2011). Run-level GLMs accounting for autocorrelated residuals were computed, the 
results warped to MNI152NLin2009cAsym space, and subsequently combined per subject using fixed effects 
analyses. Data for the whole-brain GLMs were spatially smoothed using the SUSAN method with a full width 
half maximum (FWHM) equal to the voxel size of the functional image (Smith & Brady, 1997). Therefore, a 
3.125 mm kernel was applied to the Aron_3T dataset, a 3 mm kernel to the Poldrack_3T dataset, a 1.5 mm 
kernel to the deHollander_7T and Isherwood_7T datasets, and a 1.6 mm kernel to the Miletic_7T dataset. These 
base-level kernels were applied to the data used for the main statistical analyses. Group-level models were 
subsequently estimated using FMRIB Local Analysis of Mixed Effects (FLAME) 1 and FLAME 2 from FSL 
(Woolrich et al., 2001), taking advantage of the fact that FLAME allows the estimation of different variances 
for each dataset. Dummy variables were used as regressors to allow the categorization of data into different 
datasets so that they could be estimated separately and then combined. Statistical parametric maps (SPMs) were 
generated to visualize the resulting group-level models. The maps were corrected for the false discovery rate 
(FDR) using critical value of q < .05 (Yekutieli & Benjamini, 1999). 
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ROI-wise 
 

ROI analyses were then performed. Timeseries were extracted from each subcortical region of interest 
using probabilistic masks provided by MASSP (Bazin et al., 2020), except in the case of the putamen and 
caudate nucleus, which were provided by the Harvard-Oxford subcortical atlas (Rizk-Jackson et al., 2011). Each 
voxels contribution to the mean signal of the region was therefore weighted by its probability of belonging to 
the region. Cortical regions parcellations were provided by the Harvard-Oxford cortical atlas (Rizk-Jackson et 
al., 2011). These timeseries were extracted from unsmoothed data so to ensure regional specificity. ROI analyses 
were computed using the FILM method of FSL FEAT. To do this, we inputted each run for each participant in 
MNI152NLin2009cAsym space, where the signal of each region was replaced with its mean extracted 
timeseries. Hence, the signal within each region was homogenous on each given volume. Note that the standard 
implementation of FSL FILM uses a spatial smoothing procedure prior to estimating temporal autocorrelations 
which is suitable for use only on voxelwise data (Woolrich et al., 2001). We therefore turned this spatial 
smoothing procedure off and instead estimated autocorrelation using each voxel’s individual timeseries. ROIs 
were therefore defined before implementing the ROI analyses. The regions include the inferior frontal gyrus 
(IFG), primary motor cortex (M1), pre-supplementary motor area (preSMA), caudate nucleus (caudate), GPe, 
GPi, putamen, SN, STN, Tha, and VTA. Due to the restricted FOV of the deHollander_7T dataset, this dataset 
was not used in the ROI-wise analysis of the M1 and preSMA regions. M1 and preSMA ROI-wise results are 
therefore based only on the Aron_3T, Poldrack_3T, Isherwood_7T, and Miletic_7T datasets. After the run-level 
GLMs were computed using FILM, the same fixed effects analyses and subsequent mixed-effects analyses used 
in the voxel-wise GLMs were performed. In addition to the frequentist analysis, we computed Bayes Factors 
(BFs) for each contrast per ROI and hemisphere. To do this, we extracted the beta weights for each individual 
trial type from our first-level model. We then compared the beta weights from each trial type to one another 
using the ‘BayesFactor’ package as implemented in R (Morey & Rouder, 2015).  

We compared the full model (H1) comprising trial type, dataset and subject as predictors to the null 
model (H0) comprising only the dataset and subject as predictor. Datasets and subjects were modeled as random 
factors in both cases. Since effect sizes in fMRI analyses are typically small, we set the scaling parameter on 
the effect size prior for fixed effects to 0.25, instead of the default of 0.5, which assumes medium effect sizes 
(note that the same qualitative conclusions would be reached with the default prior setting; Rouder et al., 2009). 
We calculated the BF for the full model over the null model, to provide evidence for or against a difference in 
beta weights for each trial type. To interpret the BFs, we used a modified version of Jeffreys’ scale 
(Andraszewicz et al., 2014; Jeffreys, 1939). To facilitate interpretation of the BFs, we converted them to the 
logarithmic scale. The approximate conversion between the interpretation of logarithmic BFs and standard 
interpretation on the adjusted Jeffreys’ scale can be found in Table 3.   
 
Table 3. Approximate interpretation of logarithmically-transformed Bayes Factors. H1 represents the 
alternative hypothesis, H0 represents the null hypothesis. 
 

Log10 BF Interpretation 
 > 2 Extreme evidence for H1 

1.5 – 2 Very strong evidence for H1 
1 – 1.5 Strong evidence for H1 

0.5 – 1 Moderate evidence for H1 
0 – 0.5 Anecdotal evidence for H1 
 0  No evidence 
0 – -0.5 Anecdotal evidence for H0 

-0.5 – -1 Moderate evidence for H0 
-1 – -1.5 Strong evidence for H0 

-1.5 – -2 Very strong evidence for H0 
-2 >  Extreme evidence for H0 
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Smoothing comparison 
 

To further understand the impact of preprocessing on fMRI analyses, we computed voxel-wise GLM 
results based on a more lenient smoothing kernel. To observe the effect of smoothing on these analyses, we 
compared the results of our main statistical analyses, using base-level kernel sizes, to the same data when all 
datasets were smoothed using a 5 mm FWHM kernel. We chose to compared base-level smoothing kernels to 
5 mm as this was the kernel sized used in the Aron and Poldrack (2006) study. To do this, the same voxel-wise 
GLM method was used as described above. 
  
Results 
 
Behavioural analyses 
 

Table 4 summarizes the descriptive statistics of the behavioural data from each dataset. Consistent with 
the assumptions of the standard horse-race model (Logan & Cowan, 1984), the median failed stop RT is 
significantly faster within all datasets than the median go RT (Aron_3T: p < .001, BFlog10 = 2.77; Poldrack_3T: 
p < .001, BFlog10 = 23.49; deHollander_7T: p < .001, BFlog10 = 8.88; Isherwood_7T: p < .001, BFlog10 = 2.95; 
Miletic_7T: p = .0019, BFlog10 = 1.35). Mean SSRTs were calculated using the integration method and are all 
within normal range across the datasets. The mean stopping accuracy (near 50%) across all datasets indicates 
that the staircasing procedure operated accordingly and successfully kept SSDs tailored to the SSRT of 
participants during the task. Longer RTs were found in the Isherwood_7T dataset in comparison to the four 
other datasets. The only difference in procedure in the Isherwood_7T dataset is the use of a visual stop signal 
as opposed to an auditory stop signal. This RT difference is consistent with previous research, where auditory 
stop signals and visual go stimuli have been associated with faster RTs compared to unimodal visual 
presentation (Carrillo-de-la-Peña et al., 2019; Weber et al., 2024). The mean SSRTs and probability of stopping 
are within normal range, indicating that participants understood the task and responded in the expected manner. 
 
Table 4. Descriptive statistics of behaviour in the SST across each dataset. Standard errors are given.  
 
Dataset Median 

go RT 
(ms) 

Median 
failed stop 
RT (ms) 

Go 
omissions 
(%) 

Go 
errors 
(%) 

Mean 
SSRT 
(ms) 

Median 
SSD 
(ms) 

Mean 
stopping 
accuracy (%) 

Aron_3T 423 ± 18 382 ± 11 0.7 ± 0.4 0.6 ± 0.2 189 ± 8 227 ± 17 53 ± 1 
Poldrack_3T 466 ± 9 426 ± 8 0.1 ± 0.04 0.9 ± 0.1 209 ± 5 279 ± 11 52 ± .6 
deHollander_7T 472 ± 24 439 ± 22 1.6 ± 0.5 0.3 ± 0.1 219 ± 8 250 ± 22 54 ± 2 
Isherwood_7T 626 ± 25 543 ± 22 1.9 ± 0.4 2.2 ± 0.4 256 ± 8 350 ± 30 54 ± 1 
Miletic_7T 445 ± 17 414 ± 15 1.1 ± 0.5 0.7 ± 0.2 219 ± 20 230 ± 23 50 ± 1 

 
tSNRs 
 

To observe quantitative differences in signal quality between the datasets, we first calculated ROI-wise 
tSNR maps of the unsmoothed data. In Figure 1 we show both the corrected and uncorrected tSNR values for 
five ROIs. As the tSNR values across each hemisphere were similar, we opted to take the mean across both. 
The corrected tSNR values display the clear benefit of 7T acquisition compared to 3T in terms of data quality. 
In the cortical ROIs, the 7T datasets appear to perform equally well, though when zooming in on subcortical 
ROIs, the deHollander_7T and Miletic_7T datasets display superiority. The uncorrected tSNR values paint a 
different picture. These tSNRs are even across all the datasets, with the exception of the Isherwood_7T dataset 
which appears to suffer, most likely due to its increased multiband factor (L. Chen et al., 2015). It should be 
noted that interpretation of the uncorrected tSNR values is difficult, due to the inherent proportionality of tSNR 
and voxel volume (Edelstein et al., 1986). That is, the 3T datasets acquire data with a voxel volume 
approximately ten times smaller than that of the 7T datasets and therefore have an advantage when not correcting 
for this difference. 
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Figure 1. Corrected and uncorrected tSNR values for five ROIs over all datasets. The values are derived from 
the mean tSNR values of both hemispheres. Error bars are standard errors. Corrected tSNRs are equal to the 
uncorrected tSNRs divided by the volume of a single voxel. IFG, inferior frontal gyrus; SN, substantia nigra; 
STN, subthalamic nucleus; Tha, thalamus; VTA, ventral tegmental area. 
 
Voxel-wise GLMs 
 

We calculated whole-brain voxel-wise GLMs using the canonical HRF with a temporal derivative to 
statistically test the brain areas underlying behaviour in the SST. The three trial types result in three possible 
contrasts: FS > GO, FS > SS, and SS > GO. Due to the restricted FOV of the images acquired in the 
deHollander_7T dataset, group-level SPMs display a limited activation pattern at the most superior part of the 
cortex, as no data were acquired there for one dataset. We first show the group-level SPMs of the overall 
contrasts of the SST across all datasets (see Fig. 2), the SPMs for each contrast of each individual dataset can 
be found in the appendix (Supplementary Figs. 1, 2 & 3). See Supplementary Figure 4 for the group analyses 
where the FS and SS trials were time-locked to the stop signal onset. Significant BOLD responses for the FS > 
GO contrast were found in the bilateral IFG, preSMA, SN, STN and VTA. It can be clearly seen that this contrast 
elicits the largest subcortical response out of the three. The FS > SS contrast shows significant bilateral 
activation in the IFG, STN, Tha and VTA. The SS > GO contrast shows significant activation in the bilateral 
IFG and Tha.  
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Figure 2. Group-level SPMs of the three main contrasts of the SST. Activation colours indicate FDR 
thresholded (q < .05) z-values. Two sagittal, one axial, and one zoomed in coronal view are shown. Coloured 
contour lines indicate regions of interest (IFG in white, M1 in grey, preSMA in orange, Caudate in dark blue, 
Putamen in light blue, GPe in dark green, GPi in light green, SN in pink, STN in red, thalamus in yellow, and 
VTA in black). The background template and coordinates are in MNI2009c (1mm). FS, failed stop; SS, 
successful stop.  
 
ROI-wise GLMs 
 

To further statistically compare the functional results between datasets, we then fit a set of GLMs using 
the canonical HRF with a temporal derivative to the timeseries extracted from each ROI. Below we show the 
results of the group-level ROI analyses over all datasets using z-scores (Fig. 3) and log-transformed Bayes 
Factors (BF; Fig. 4). Note that these values were time-locked to the onset of the go signal. See Supplementary 
Figure 5 for analyses where the FS and SS trials were time-locked to the onset of the stop signal. To account 
for multiple comparisons, threshold values were set using the FDR method for the frequentist analyses.  

For the FS > GO contrast, the frequentist analysis found significant positive z-scores in all regions bar 
left and right M1, and the left GPi. The right M1 showed a significant negative z-score; left M1 and GPi showed 
no significant effect in this contrast. The BFs showed moderate or greater evidence for the alternative hypothesis 
in bilateral IFG, preSMA, caudate, STN, Tha, and VTA, and right GPe. Bilateral M1 and left GPi showed 
moderate evidence for the null. Evidence for other ROIs was anecdotal (see Fig 4). For the FS > SS contrast, 
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we found significant positive z-scores in in all regions except the left GPi. The BFs showed moderate or greater 
evidence for right IFG, right GPi, and bilateral M1, preSMA, Tha, and VTA, and moderate evidence for the 
null in left GPi. Evidence for other ROIs was anecdotal (see Fig 4). For the SS > GO contrast we found a 
significant positive z-scores in bilateral IFG, right Tha, and right VTA, and significant negative z-scores in 
bilateral M1, left GPe, right GPi, and bilateral putamen. The BFs showed moderate or greater evidence for the 
alternative hypothesis in bilateral M1 and right IFG, and moderate or greater evidence for the null in left 
preSMA, bilateral caudate, bilateral GPe, left GPi, bilateral putamen, and bilateral SN. Evidence for other ROIs 
was anecdotal (see Fig 4).  

Although the frequentist and Bayesian analyses are mostly in line with one another, they do detect some 
differences, particularly in the contrasts with FS. In the FS > GO contrast, the interpretation of the GPi, GPe, 
putamen, and SN differ. The frequentist models suggests significantly increased activation for these regions 
(bar left GPi) in FS trials. In the Bayesian model, this evidence was found to be anecdotal in the SN and right 
GPi, and moderate in the right GPe, while finding anecdotal or moderate evidence for the null hypothesis in the 
left GPe, left GPi, and putamen. For the FS > SS contrast, the frequentist analysis found significant activation 
in all regions except for the left GPi, whereas the Bayesian analysis found this evidence to be only anecdotal, 
or in favour of the null for a large number of regions (see Fig 4 for details; note that Fig 3 shows z-scores, thus 
more extreme values indicate an effect in that direction. In contrast, Fig 4 shows log BFs, and thus positive 
values indicated support of an effect in any direction. Supplementary Fig 7 shows a comparison between the z-
scores and the BFs). 

 
 
Figure 3. Group-level z-scores from the ROI-wise GLM analysis of included datasets. Thresholds are set using 
FDR correction (q < .05), varying between contrasts. The thresholds for each contrast are as follows: 3.01 for 
FS > GO, 2.26 for FS > SS and 3.1 for SS > GO. Regions that do not reach significance are coloured white. 
Left and right hemispheres are shown separately, denoted by ‘-l’ or ‘-r’, respectively. IFG, inferior frontal gyrus; 
M1, primary motor cortex; preSMA, pre-supplementary motor area; GPe, globus pallidus externa; GPi, globus 
pallidus interna; SN, substantia nigra; STN, subthalamic nucleus; Tha, thalamus; VTA, ventral tegmental area. 
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Figure 4. Log-transformed Bayes Factors for each contrast based on parameter estimates from first-level model. 
Colouring depicts evidence for each hypothesis based on a variation of Jeffreys’ scale. BFs more than 2 or less 
than 2 on a log scale are defined as extreme evidence. Refer to Table 3 for details on interpretation of log-
transformed BFs. BFs were calculated for each contrast for both hemispheres of each ROI. Left and right 
hemispheres are shown separately, denoted by ‘-l’ or ‘-r’, respectively. IFG, inferior frontal gyrus; M1, primary 
motor cortex; preSMA, pre-supplementary motor area; GPe, globus pallidus externa; GPi, globus pallidus 
interna; SN, substantia nigra; STN, subthalamic nucleus; Tha, thalamus; VTA, ventral tegmental area. 
 
Smoothing comparison 
 

To visualize the effect of spatial smoothing on voxel-wise GLMs, we computed SST contrasts using 
base-level kernels and a kernel of 5 mm. The difference in group-level SPMs for SS > GO contrast is prominent 
(see Fig 5). Comparisons for the contrasts of FS > GO and FS > SS contrasts can be found in Supplementary 
Figure 6. If we were to make inferences based on the group-level SPMs calculated using the 5 mm kernel, this 
study could potentially conclude that both the SN and VTA are significantly activated in SS trials compared to 
GO trials. Much larger regions of significant activation can be seen in the 5 mm smoothed SPMs, both cortically 
and subcortically. This comparison demonstrates the prominent consequences that preprocessing pipelines can 
have on the overall analysis of functional data. 
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Figure 5. Comparison of group-level SPMs for the SS > GO contrast using different smoothing kernels. SPMs 
resulting from GLMs computed on base-level spatially smoothed data can be seen on the top row, with SPMs 
resulting from GLMs computed on data spatially smoothed with a FHWM of 5 mm. Activation colours indicate 
FDR thresholded (q < .05) z-values. Two sagittal, one axial, and one zoomed in coronal view are shown. 
Coloured contour lines indicate regions of interest (IFG in white, M1 in grey, preSMA in orange, Caudate in 
dark blue, Putamen in light blue, GPe in dark green, GPi in light green, SN in pink, STN in red, thalamus in 
yellow, and VTA in black). The background template and coordinates are in MNI2009c (1mm). FS, failed stop; 
SS, successful stop.  
 
Discussion 
 

The functional network underlying response inhibition in the human brain has been a key research 
question in the cognitive neurosciences for decades. The basal ganglia specifically have been implicated in 
broad movement control since the early twentieth century (Wilson, 1912). However, the precise role of these 
subcortical structures in successful response inhibition is still unclear. Evidence for the role of the basal ganglia 
in response inhibition comes from a multitude of studies citing significant activation of either the SN, STN or 
GPe during successful inhibition trials (Aron, 2007; Aron & Poldrack, 2006; Mallet et al., 2016; Nambu et al., 
2002; Zhang & Iwaki, 2019). Here, we re-examined activation patterns in the subcortex across five different 
datasets, identifying differences in regional activation using both frequentist and Bayesian approaches. Broadly, 
the frequentist approach found significant differences between most ROIs in FS > GO and FS > SS contrasts, 
and limited differences in the SS > GO contrast. The Bayesian results were more conservative; while many of 
the ROIs showed moderate or strong evidence, some with small but significant z scores were considered only 
anecdotal by the Bayesian analysis. In our discussion, where the findings between analytical approaches differ, 
we focus mainly on the more conservative Bayesian analysis. 

Here, our multi-study results found limited evidence that the canonical inhibition pathways (the indirect 
and hyperdirect pathways) are recruited during successful response inhibition in the SST. We expected to find 
increased activation in the nodes of the indirect pathway (e.g., the preSMA, GPe, STN, SN, GPi, and thalamus; 
Diesburg & Wessel, 2021) during successful stop compared to go or failed stop trials. We found strong evidence 
for activation pattern differences in the preSMA, thalamus, and right GPi between the two stop types (failed 
and successful), and limited evidence, or evidence in favour of the null hypothesis, in the other regions, such as 
the GPe, STN, and SN. However, we did find recruitment of subcortical nodes (VTA, thalamus, STN, and 
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caudate), as well as preSMA and IFG activation during failed stop trials. We suggest that these results indicate 
that failing to inhibit one’s action is a larger driver of the utilisation of these nodes than action cancellation 
itself.  

These results are in contention to many previous fMRI studies of the stop signal task as well as research 
using other measurement techniques such as local field potential recordings, direct subcortical stimulation, and 
animal studies, where activation of particularly the STN has consistently been observed (Alegre et al., 2013b; 
Aron & Poldrack, 2006; Benis et al., 2014; Fischer et al., 2017; Mancini et al., 2019; Wessel et al., 2016). 
Attempting to reconcile these discrepancies leaves us with a few discussion points. The first is that of the 
reliability of studying the subcortex in vivo using fMRI. Due to its distance from the MR head coils, proximity 
of subregions and varying biophysical properties, the subcortex can have limited inter-regional contrast and a 
low signal-to-noise ratio (Bazin et al., 2020; de Hollander et al., 2017; Isaacs et al., 2018; Isherwood, Bazin, et 
al., 2021; Keuken et al., 2018; Miletić et al., 2022). The subcortical regions are also relatively small structures. 
For example, the STN has a volume of approximately 82 mm3; 3mm isotropic resolutions therefore provide 
only 3 – 4 voxels for analysis of a relatively complex structure (Alkemade et al., 2020). Attaining sufficient 
signal in the deep brain for accurate statistical analysis is particularly difficult at lower field strengths (Murphy 
et al., 2007). Even with ultra-high field MRI and optimized sequences, it is sometimes difficult to approximate 
the reliability of the signal we receive. Indeed, the mismatch of findings between fMRI studies seemingly 
examining the same task, begs the question of reliability. While studies using lower field strengths have found 
it difficult to consistently replicate activation profiles in the SST, higher field strengths have had yielded better 
success. The subcortical activation profiles of inhibition painted by the three optimized 7T studies 
(deHollander_7T, Isherwood_7T, and Miletic_7T) are very consistent. We can therefore suggest that fMRI of 
the subcortex at higher field strengths is at the very least reliable.  

A second point of consideration is the haemodynamics of the BOLD response in the subcortex, and the 
validity of our modelling methods in this context. A fundamental assumption of fMRI is that BOLD activity is 
influenced by neural activity. Although multiple studies have at least partially confirmed the linearity of the 
relationship between the HRF and neural activity (Liu et al., 2010; Logothetis et al., 2001), these findings have 
almost exclusively focused on the cortex (Kim & Ress, 2017; Taylor et al., 2018). Few studies have attempted 
to characterize the effect of vasculature on the HRF in the deep brain, though differences between the cortex 
and subcortex have been found (Duvernoy, 1999; Lewis et al., 2018; Tatu et al., 1998; Wall et al., 2009). 
Subcortical BOLD responses appear to peak earlier than those observed in the cortex and the post-stimulus 
undershoot normally associated with the canonical HRF is not always seen (Kim et al., 2022). Physiological 
noise is also more of an issue in the subcortex due to its proximity to large vessels (V. Singh et al., 2018). The 
cardiac system produces artefacts due to changes in blood flow and physical pulsation of vessels (Dagli et al., 
1999; Krüger & Glover, 2001), while the respiratory system produces artefacts due to arterial pressure changes 
and effects on B0 (Raj et al., 2001; Wise et al., 2004). Due to all of this, accurately imaging the subcortex 
requires numerous technical considerations. Moreover, an increase in BOLD signal most likely reflects 
underlying neural activation, but a lack of observed BOLD signal (especially in the subcortex) in no way 
suggests a lack of underlying neuronal activation (Lowe et al., 2000). So, while these results do not provide 
evidence towards involvement of the indirect or hyperdirect pathways in successful response inhibition, they 
also do not provide direct evidence against it.  

As well as attempting to disentangle the pathways associated with inhibitory control specifically, we 
are also observing pathways related to attention and signal detection. This could explain the lack of subcortical 
findings for the SS > GO contrasts, but not the abundance of activation seen in the FS > GO contrast. From both 
the voxel-wise and ROI-wise analyses it is clear that the VTA and STN play a role in the mechanisms underlying 
FS trials. Investigation into the specific role of the VTA and dopaminergic system in response inhibition has 
led to conflicting results (Aron et al., 2003; Boonstra et al., 2005). Inhibition of the VTA has been seen to 
increase the number of premature responses in a five-choice serial reaction time task in rats (Flores-Dourojeanni 
et al., 2021), the VTA appears to degenerate in Parkinson’s Disease (Alberico et al., 2015), and is associated 
with reward uncertainty in response inhibition tasks (Tennyson et al., 2018). Feedback in the SST is inherent in 
its design; a failure to stop simultaneously triggers the realization that an error was made, without the need for 
explicit task feedback. Speculatively, a failure to stop could trigger nodes of the mesolimbic pathway in response 
to this action error, as the VTA is known to respond to reward prediction errors (Bayer et al., 2005; Eshel et al., 
2015; Schultz et al., 1997). For the STN, we know that this region responds to errors (Cavanagh et al., 2014; 
Siegert et al., 2014), which is likely due to exertion of additional motor inhibition afterwards (Guan & Wessel, 
2022). Therefore, one explanation is that the FS > GO contrast reflects an error mechanism. This is perhaps why 
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this is not the first aggregatory study that has found limited activation of basal ganglia regions when specifically 
looking at successful response inhibition (Hung et al., 2018; Isherwood, Keuken, et al., 2021; R. Zhang et al., 
2017).  

While more direct measurements of neural activity (e.g., LFP recordings) may provide superior 
temporal resolution, studies that use them are often required to observe electrophysiological responses in clinical 
populations, due to the invasive nature of the method. How such findings can translate to the neurotypical 
population continues to be a complex topic. Similarly, much work on the role of cortico-basal-ganglia loop in 
response inhibition has come from animal studies. While we can acquire data that is excellent in terms of 
temporal and spatial resolution and number of trials, how well this translates to the general human population 
is uncertain. Further, while the temporal resolution of fMRI is inherently slower, more efficient methods for 
acquiring analysing fast fMRI data, show promise for overcoming this apparent drawback of fMRI (Lewis et 
al., 2016; Polimeni & Lewis, 2021). The ability to extract relevant neuronal information from early phases of 
the BOLD response may help in identifying activation from overlapping processes in complex tasks such as 
this. Several studies have established nonlinear properties of the hemodynamic response that have significant 
implications for fast fMRI (Miller et al., 2001; Vazquez & Noll, 1998). Of course, we cannot rule out that the 
range of fMRI data analysed here lacks the temporal resolution or sensitivity to observe significant changes in 
subcortical activation during motor inhibition, engagement, and instantiation of inhibition. Instead, this study 
picks up on the role of the basal ganglia in error processing, something that more direct methods of measurement 
have thus far not focused on.  

From our literature search, this is the first study to take advantage of an array of unprocessed open-
access data. Now that it is becoming increasingly common for researchers to make such detailed data available, 
it is beneficial for the research field to move on from meta-analytical methods that use only summary measures 
of activation profiles. Although, it should be noted, that canonical methods of meta-analysis still provide 
advantages over more processing-intensive methods such as applied here. Firstly, on the scale of five datasets, 
this methodology was applied and completed relatively quickly, but standard meta-analyses can include tens if 
not hundreds of studies, a feat that would be difficult to manage for the method described here. Secondly, the 
sample reported here is somewhat biased, it includes only data that were openly accessible in full, it is likely 
there are many more studies that would be useful to answer the research question posited here. Simpler methods 
of meta-analyses, where only coordinates or summary measures are needed to aggregate data, benefit from 
having access to a much wider range of potential sources of data. What we have been able to do here, even with 
a limited number of datasets, is process all the data with the same set of criteria. We therefore benefit from sets 
of extremely well-vetted behavioural and functional data, that can have all aspects of the datasets compared to 
one another. This allowed us to tightly control aspects of the preprocessing pipeline that can affect later analyses 
steps, such as distortion correction and smoother kernel sizes. 

The consequences of spatial smoothing on statistical analyses are well known and can have huge effects 
on group or subject-level inferences (Chen & Calhoun, 2018; Mikl et al., 2008). Here, we have shown again the 
substantial effect smoothing can have on the conclusions drawn from task-specific GLMs. In the absence of a 
ground truth, we are not able to fully justify the use of either larger or smaller kernels to analyse such data. On 
the one hand, aberrantly large smoothing kernels could lead to false positives in activation profiles, due to 
bleeding of observed activation into surrounding tissues. Conversely, too little smoothing could lead to false 
negatives, missing some true activity in surrounding regions. While we cannot concretely validate either choice, 
it should be noted that there is lower spatial uncertainty in the subcortex compared to the cortex, due to the 
lower anatomical variability. False positives from smoothing spatially unmatched signal, are therefore more 
likely than false negatives. It may be more prudent for studies to use a range of smoothing kernels, to assess the 
robustness of their fMRI activation profiles. Based on the results of the smoothing comparison and the 
differences in optimal kernel sizes for each dataset, ROI-analyses may offer superior statistical testing to that 
of voxel-wise methods as you do not introduce a loss of specificity. ROI-wise methods also have the added 
benefit of not needing to warp images from individual space to common or group templates, which may also 
introduce a loss of specificity when looking at smaller structures, such as those in the subcortex. However, ROI-
wise methods are only as good as the predefined atlases used in the analysis. MRI may benefit from high spatial 
resolution in comparison to other neuroimaging methods, but there are still subpopulations of nuclei, such as 
those within the STN, that may have different roles in response inhibition and are not easily distinguishable 
(Mosher et al., 2021). As already discussed in detail, MRI is of course also disadvantaged by its poor temporal 
resolution, a dimension that hinders the ability to dissociate different mechanisms occurring during the course 
of a trial (e.g., attention, detection of salient events; Benis et al., 2016). Methodologies with enhanced temporal 
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resolution, such as electroencephalography (EEG), will also benefit from the wave of open-access data and can 
focus on research questions that MRI currently cannot, including disentangling the mixed cognitive processes 
underlying response inhibition. 

This paper serves as a proof of concept for methods of meta-analysis that allow the unification of largely 
unprocessed or unreduced datasets and exemplifies the huge opportunities that open-access data sharing can 
bring to the research field. As more and more datasets are made publicly available, researchers will be able to 
perform meta-analyses not only on summary data, but datasets with a rich body of parameters and data points. 
Our results indicate that error processing is likely a large driver of subcortical activity, and that nodes of the 
indirect and hyperdirect pathways appear to respond to this non-motor inhibition process more than to motor 
inhibition itself. We do not find evidence for either pathways involvement in successful motor inhibition, which 
may be a consequence of the overlap of inhibition control, attention, signal detection, and error processing on 
sub-second timescales in this task. Adaptations of the classical SST are already being deployed and may aid in 
the disentangling of attention and signal detection in overall response inhibition (Boecker et al., 2013; Bryden 
et al., 2015).  
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