

1 Role of Mce proteins in *Mycobacterium avium paratuberculosis*
2 infection

3 **Authors:** Rose Blake, Kirsty Jensen, Omar Alfituri, Neil Mabbott, Jayne Hope, Jo Stevens

4 **Abstract**

5 *Mycobacterium avium* subspecies *paratuberculosis* (MAP) is the causative agent of Johne's Disease,
6 a chronic granulomatous enteritis of ruminants. MAP establishes an infection in the host via the
7 small intestine. This requires the bacteria to adhere to and be internalised by cells of the intestinal
8 tract. The effector molecules expressed by MAP for this remain to be fully identified and
9 understood. The mammalian cell entry (Mce) proteins play an essential role for other Mycobacterial
10 species to facilitate the attachment and invasion of host epithelial cells. Here, we have expressed
11 Mce1A, Mce1D, Mce3C and Mce4A proteins derived from MAP on the surface of a non-invasive *E.*
12 *coli* host to characterise their role in the initial interaction between MAP and the host. To this end,
13 *mce1A* was found to significantly increase the ability of the *E. coli* to attach and survive
14 intracellularly in THP-1 cells, and *mce1D* was found to significantly increase attachment and invasion
15 of MDBK cells. Both genes were implicated in the increased ability of *E. coli* to infect 3D bovine
16 basal-out enteroids. Together, these results have identified two effector molecules used by MAP
17 with a degree of cell-type specificity.

18 **Keywords:** microbial-cell interaction; Mycobacteria; *Mycobacterium avium* ssp *paratuberculosis*;
19 MAP; mammalian cell entry gene; enteroids.

20 **Introduction**

21 *Mycobacterium avium* subspecies *paratuberculosis* (MAP) is a Gram positive, facultative intracellular
22 rod-shaped bacteria which is the causative agent of Johne's Disease (JD). JD is a chronic gastric
23 enteritis which affects ruminants across the world. Animals are typically infected within the first 6
24 months of life via the ingestion of contaminated milk and feed (Larsen et al., 1975). Other routes of
25 infection include horizontal transfer from the environment and wildlife reservoirs such as rabbits,
26 foxes and stoats (Corn et al., 2005; Judge et al., 2006).

27 After ingestion, MAP will travel to the small intestine of the animal and will target specific cells in the
28 intestinal wall to traverse to establish an infection. M cells are known to be a target of several
29 enteric pathogens, such as *Salmonella*, as these are antigen targeting cells which can uptake
30 pathogens in the lumen of the intestine and present the pathogen to the underlying Peyer's Patches
31 (Wang et al., 2015). Immune cells such as macrophages and dendritic cells reside within the Peyer's

32 Patch to phagocytose pathogens which are presented to it. This enables the host to generate an
33 appropriate immune response to eliminate the infection. MAP, like other Mycobacteria, takes
34 advantage of this process to be phagocytosed by macrophages where it can survive and replicate
35 (Arsenault et al., 2014). This initiates a chronic inflammatory response which may lead to the
36 formation of granulomas in the intestinal lining, and clinical disease in 10% of infected animals
37 (Arsenault et al., 2014; Lombard, 2011).

38 It may take 2-5 years from the initial infection before the animal may show clinical disease, which
39 typically presents as chronic diarrhoea and emaciation of the animal. Within the subclinical period,
40 MAP can be shed intermittently in the faeces and serve to infect other animals within the herd, yet
41 remain below the level of detection for many diagnostic tests (Nielsen & Toft, 2008). Due to the
42 limited diagnostic tests currently available for MAP, it is critical to identify factors expressed by MAP
43 which may aid its infection of the host and may serve as therapeutic targets.

44 Currently, the initial interaction between MAP and the host remains largely unknown. While MAP
45 has been shown to target M cells in a murine model using the FAP expressed on its surface (Secott et
46 al., 2004), some researchers question the importance of this cell type in establishing a MAP
47 infection. In juvenile cattle, the cell types of the small intestine are different than that of fully
48 mature cattle. There are fewer M cells as these have not been stimulated to be matured yet. In
49 addition, the FAP adhesion observed to aid infection of M cells did not aid the infection of
50 enterocytes in the same study. This has led to the conclusion that MAP may express other adhesins
51 on its surface which aid the infection of other cell types of the intestine including enterocytes
52 (Bannantine et al., 2003; Bermudez et al., 2010) and goblet cells (Schleig et al., 2005), and therefore
53 may provide a critical route for MAP to establish an infection.

54 Mammalian cell entry (mce) operons are highly conserved between Mycobacterial species.
55 Recombinant *E. coli* or latex beads expressing *mce1A*, *mce3C* and *mce4A* have been observed to
56 confer increased attachment and invasion of mammalian cells for multiple Mycobacterial species
57 including *M. tuberculosis* and *M. bovis*, *M. leprae* (Saini et al., 2008; Casali & Riley, 2007; Zhang et al.,
58 2018). In addition, *mce1A* derived from *M. tuberculosis* has been shown to increase intracellular
59 survival of the recombinant expression host (Arruda et al., 1993). Due to the highly homologous
60 nature of these operons between Mycobacterial species, it was hypothesised that the *mce* genes in
61 MAP would function similarly to increase attachment and invasion of MAP to host cells. This was
62 supported by a transposon mutagenesis study which observed that mutating *mce1D* in MAP resulted
63 in a significant reduction of MAP infection in MDBK cells (Alonso-Hearn et al., 2008).

64 In the present study we investigate the role of several *mce* genes expressed by MAP using a
65 recombinant *E. coli* host. MDBK cells, THP-1 cells and bovine intestinal organoids (enteroids) were
66 used to investigate cell tropism displayed by *mce1A*, *mce1D*, *mce3C* and *mce4A*.

67 **Materials and Methods**

68 **Bacterial isolates and culture conditions**

69 *E. coli* were cultured in LB broth containing the relevant antibiotics where appropriate at 37°C 180
70 rpm. MAP isolates were cultured in 7H9 medium (270 mL water; 1.41g Middlebrook 7H9
71 supplement; 333 µL glycerol; 333 µL Mycobactin J; 30 mL OADC supplement) at 37°C 100 rpm.

72 **MAP exposure to acid**

73 Five mL of MAP K10 and MAP C49 in the log phase were transferred to 50 mL falcon tubes and
74 centrifuged at 3220 x g for 10 minutes. The cultures were re-suspended in either 5 mL standard 7H9
75 medium or 5 mL of 7H9 medium made to pH 3.0 prior to autoclave. Cultures were then immediately
76 centrifuged at 3220 x g for 10 minutes for RNA isolation to serve as a control, or cultured at 37°C 100
77 rpm for 2 hours. The cultures were then centrifuged at 3220 x g for 10 minutes for RNA isolation. All
78 experiments were carried out in three biological replicates.

79 **RNA isolation from MAP**

80 Immediately after pelleting, bacterial pellets were re-suspended in 1 mL Trizol reagent (Thermo
81 Fisher Scientific) and homogenised using lysing matrix B beads (MP Biomedicals). Tubes were pulsed
82 in a Fastprep machine at 6.0 speed for 30 seconds twice followed by 6.5 speed for 45 seconds,
83 keeping samples on ice for 5 minutes between steps. The sample was centrifuged at 16,200 x g for 3
84 minutes and the supernatant aliquot into a screw-top micro-centrifuge tube. 200 µL chloroform was
85 added to the suspension and the sample treated for RNA isolation as described by the manufacturer,
86 with some adjustments. Briefly, after centrifugation with isopropanol only 50% of the supernatant
87 was removed, and all subsequent centrifugation steps were performed at 12,000 x g for 20 minutes.
88 RNA precipitation was performed with 75% ethanol which was centrifuged at 7500 x g for 10
89 minutes.

90 **RT-qPCR**

91 cDNA was synthesised from the RNA using Agilent AffinityScript Multiple Temperature cDNA
92 Synthesis Kit. The oligo(dT) primers supplied were used and the protocol followed according to the
93 manufacturer's instructions. No reverse transcriptase controls were used to confirm the absence of
94 genomic DNA from the samples.

95 All qPCR experiments were performed using SYBR green Supermix (Quantabio, VWR international Ltd).

96 The total reaction volume was 10 µL consisting of 5 µL Supermix, 0.5 µL forward primer, 0.5 µL

97 reverse primer, 1.5 μ L nuclease free water and 2.5 μ L template. Samples were loaded in triplicate into
 98 96 well plates and no template controls were included to verify the absence of contamination.
 99 Oligonucleotides were designed using Primer3 (Koressaar & Remm, 2007; Untergasser et al., 2012)
 100 and Netprimer (Biosoft International) software and are outlined in Table 1 using the “conventional”
 101 PCR primers to generate PCR amplicons to act as the template for individual standard curves. The
 102 experimental cDNA was diluted 1:20 to generate template for the RT-qPCR reaction. The relative
 103 quantities of mRNA were calculated using the Pfaffl method (Pfaffl, 2001), using the geometric mean
 104 of the RT-qPCR results for the reference genes *GAPDH* and *1g2* (Granger et al., 2004; Pribylova et al.,
 105 2011) to calculate differences in the template RNA levels for standardisation of the Ct values for the
 106 genes of interest.

Gene	Primers (5'-3')	Product length (bp)	Melting Temp (°C)
qPCR			
MAP mce1A For	GTCACCGCAGAAGATCACCC	184	60.74
MAP mce1A Rev	CACTGACTGGCCGAACTTCT		59.97
Conventional			
MAP mce1A For	TCAAGCTGATCCCCTCGAAC	517	60.11
MAP mce1A Rev	CCGCCCTTGTGAAGAGGTC		60.69
qPCR			
MAP mce1D For	CGAACACAGCATCACCAACAT	128	59.76
MAP mce1D Rev	GTCGTGTTGAACTGCTTGCC		60.32
Conventional			
MAP mce1D For	ACCAGAACAAAGTACCGGGTG	581	59.6
MAP mce1D Rev	CTCCAGGTTCTGACGTCGT		59.69
qPCR			
MAP mce3C For	CTGCTGGACGAACGGGATT	124	65.2
MAP mce3C Rev	TTTGAGCTGGGTTGGTTGT		65.4
Conventional			
MAP mce3C For	CGATCTGACCACCACCATCA	576	64.7
MAP mce3C Rev	TCCAGGAAACGGTCGTACAT		64.0
qPCR			
MAP mce4A For	AACCTGCCACGATCAACAA	133	59.97
MAP mce4A Rev	TGGTGTGATGAAGTCCTGC		60.11
Conventional			
MAP mce4A For	ATCGACCTGCTGCACAAGAT	542	60.18
MAP mce4A Rev	TCGGGATAGGTGTACGACGG		60.67
qPCR			
MAP gapDH For	CTACACCCAGGACCAGAAC	134	59.39
MAP gapDH Rev	CCTTGAGGTTGGCATGAC		58.43
Conventional			
MAP gapDH For	CGGCAGCCAGAACATCATCT	469	60.46
MAP gapDH Rev	GGCTTGGTTGTCGATCACCT		60.32
qPCR			
MAP 1g2 For	GCTTCGCGATACTTCAACG		64.3
MAP 1g2 Rev	CGCGTCACCGGACCAG		65.3

107 **Table 1 | Primer pairs used to amplify and then quantify specified genes using qPCR.**

108 Cloning, expression and expression of Mce1A, Mce1D, Mce3C and Mce4A
109 Genomic DNA from *Mycobacterium tuberculosis* H37Rv was gifted by Dr. Jordan Mitchell to act as a
110 positive control, and genomic DNA from MAP K10 was extracted using the Qiagen Blood and Tissue
111 kit. Full length *mce1A* from *M. tuberculosis* (Rv0169), *mce1A* from MAP K10 (MAP3604), *mce1D*
112 from MAP K10 (MAP3607), *mce3C* from MAP K10 (MAP2114c) and *mce4A* from MAP K10
113 (MAP0564) genes were amplified from genomic DNA by PCR using the primers listed in Table 2.
114 These genes will be referred to as *mtb1A*, *map1A*, *map1D*, *map3C* and *map4A* respectively
115 henceforth. Each forward primer contained an *Nde*I restriction enzyme site and each reverse primer
116 contained an *Xba*I restriction site.

Genome Region	Primer	Sequence (5'-3)	Product Size (bp)
mce1A (<i>M. tuberculosis</i>)	Mtb1A For	ATATAT TCTAGA AAGGAGAAATAATATACGACGCCGGGGAAAG	1365
	Mtb1A Rev	ATATAT CATATG TGGGTTGATCGTGTATC	
mce1A (MAP)	MAP1A For	ATATAT TCTAGA AAGGAGAAATAATAGCCGACCCGTCCAG	1302
	MAP1A Rev	ATATAT CATATG TGGGTTGATCGTGTATC	
mce1D (MAP)	MAP1D For	ATATAT TCTAGA AAGGAGAAATAATAGCACCATTTGA	1611
	MAP1D Rev	ATATAT CATATG CTGGCCACCTCCGAAG	
mce3C (MAP)	MAP3C For	ATATAT TCTAGA AAGGAGAAATAATACGTGGAAGCTACC	1176
	MAP3C Rev	ATATAT CATATG TGGCTGATCGAATT	
mce4A (MAP)	MAP4A For	ATATAT TCTAGA AAGGAGAAATAATGTGGTTCGCTG	1137
	MAP4A Rev	ATATAT CATATG GAAGTCGTCCCGTTC	

117

118 **Table 2 | Primer pairs used to amplify the appropriate mce gene for subsequent cloning steps.**
119 *Restriction enzyme sites are in bold.*

120 PCRs were performed in 25-50 µL volumes using 10 ng template DNA, 1 µM oligonucleotide primers,
121 200 µM deoxynucleotides triphosphate, 0.04 U/mL Phusion High Fidelity Polymerase, 1x GC buffer,
122 6-10% DMSO and 5 mM MgCl₂ depending on the primer pair used. 35 cycles of DNA amplification
123 were performed. The samples were denatured at 98°C for c. 5 minutes, annealed at c. 52°C and
124 extension at 72°C (allowing 30 seconds per 500 bp of DNA to be synthesised). The amplicons were
125 cloned into pET21b(+) to generate the appropriate *mce* construct with a hexa histidine tag. Both
126 DH5 α and Rosetta 2 (DE3) strains of *E. coli* were transformed with the recombinant plasmids for
127 expression studies. The presence of the inserts was confirmed by PCR, restriction enzyme digestion
128 and sequencing.

129 Overnight cultures of *E. coli* Rosetta 2 (BL-21) (Novagen) containing the recombinant expression
130 plasmids was diluted 1:10 in fresh LB broth containing ampicillin and chloramphenicol and cultured
131 at 37°C 180 rpm to an optical density (OD) of 0.6 at 600 nm. For transcription induction, IPTG

132 (isopropyl thio- β -D-galactoside, Sigma) to a final concentration of 0.1 mM was added to the culture
133 and incubation was continued for 2 hours.

134

135 **Subcellular fractionation**

136 Recombinant *E. coli* were cultured in 200 mL LB broth containing ampicillin and chloramphenicol at
137 37°C 180 rpm to an OD of 0.6 at 600 nm and then Mce protein expression was induced with 0.1 mM
138 IPTG for a further 2 hours. Cells were harvested by centrifugation at 3000 x g for 10 minutes. The
139 pellet was washed with 0.1 volume of TM buffer (20 mM Tris-HCl pH 7.0, 3 mM MgCl₂) and re-
140 pelleted at 3000 x g for 10 minutes and frozen at -80°C. The pellet was then suspended in 3 mL of 10
141 mM Tris-HCl pH 7.0, 25% sucrose (w/v). A cocktail of protease inhibitors (Sigma) was added at five
142 mL per gram of wet pellet and lysozyme (SERVA) was added to 0.5 mg/mL (w/v) and incubated at
143 37°C for 20 minutes. MgCl₂ was then added to a final concentration of 3 mM and incubated at 37°C
144 for 20 minutes. One volume of 4% Triton-X100 was added and mixed for 4 minutes before freezing
145 the solution at -80°C and subsequently thawed at 37°C and mixed for 1 minute. This freeze-thaw
146 cycle was repeated for a second time before the supernatant was removed after centrifuging the
147 sample at 7500 x g for 15 minutes and frozen at -80°C. The supernatant was thawed at RT and ultra-
148 centrifuged at 110,000 x g for 1 hour at 5°C to pellet the crude outer membranes.

149 The supernatant was stored and represents the cytoplasmic fraction of the bacteria; the pellet was re-
150 suspended in 0.3 mL TM by bath sonification for 5 minutes. One volume of 4% Triton-X100 was added
151 and incubated on ice for 30 minutes before centrifuging at 7500 x g for 15 minutes. The supernatant
152 was aliquot into a separate tube and ultra-centrifuged at 110,000 x g for 1 hour. The pelleted
153 membranes were suspended in 0.4 mL TM by sonification and centrifuged at 7500 x g for 15 minutes.
154 The supernatant containing the outer-membranes of the bacteria were removed and diluted 4-fold
155 with 5 mM Tris-HCl pH 8.0. The outer membranes were pelleted by ultracentrifugation at 110,000 x g
156 for 1 hour. The pellet was suspended using sonification in 0.6 mL 5 mM Tris-HCl pH 8.0 and RNase was
157 added to 0.5 mg/mL (w/v). This was incubated at 37°C for 10 minutes and EDTA was added to 10 mM
158 and incubated for a further 40 minutes. The sample was then adjusted to 50 mM Na₂CO₃ and 1 M NaCl
159 and incubate on ice for 1 hour before incubation at 37°C for 15 minutes. The membranes were
160 centrifuged at 110,000 x g for 1.25 hours and washed by sonification in 0.1 mL 100 mM Na₂CO₃ and 1
161 M NaCl. The sample was incubated on ice for 30 minutes and pelleted at 110,000 x g for 1 hour. The
162 pellet was washed again by sonification in 0.1 mL 100 mM Na₂CO₃ and 1 M NaCl and re-pelleted as
163 described.

164 The final fractions representing the cytoplasm and membrane, cytoplasm alone, and 2 membrane
165 fractions at different wash periods were selected to analyse by western blot to detect the presence
166 of the His-tagged Mce proteins.

167 **Detection of protein expression**

168 To detect the C-terminal His-tagged recombinant Mce protein in the *E. coli*, anti-His monoclonal
169 antibody (Raybiotech) and goat anti-rabbit IgG were used as primary and secondary antibodies
170 (Supplementary Table 1). For the intracellular localisation of the Mce proteins in *E. coli*, Western blot
171 was performed on samples containing the cytoplasmic and membranous fractions, the cytoplasmic
172 fraction alone, and two membrane fractions at different wash periods.

173 **Invasion assays**

174 Invasion of MDBK cells seeded at 1×10^5 cells per well into a 24-well plate by Rosetta 2 (BL-21)
175 transformed with pET21b(+)/*mtb1A*, pET21b(+)/*map1A*, pET21b(+)/*map1D*, pET21b(+)/*map3C*,
176 pET21b(+)/*map4A* and empty vector pET21b(+) were assayed. *E. coli* were cultured overnight and
177 diluted 1:10 in fresh medium containing ampicillin and chloramphenicol and incubated at 37°C 180
178 rpm to reach an OD of 0.6 at 600 nm and induced with 0.1 mM IPTG for 2 hours at 37°C. Following
179 induction, the bacteria was normalised to an OD of 0.6 at 600 nm and centrifuged at 3000 x g for 10
180 minutes and re-suspended in mammalian cell culture medium. Prior to the infection, fresh medium
181 replaced the mammalian cell culture medium. Recombinant *E. coli* cells were added to the
182 monolayer at a multiplicity of infection (MOI) of 20:1 for MDBK cells and an MOI of 10:1 for THP-1
183 cells and incubated at 37°C for 1 hour. The cells were washed three times with PBS, and fresh cell
184 culture medium was added to the infected cells for a further 1 or 5 hours for incubation at 37°C. For
185 THP-1 invasion assays, the fresh medium contained 10 µg/mL gentamicin to kill extracellular
186 bacteria.

187 **Enteroid generation and infection**

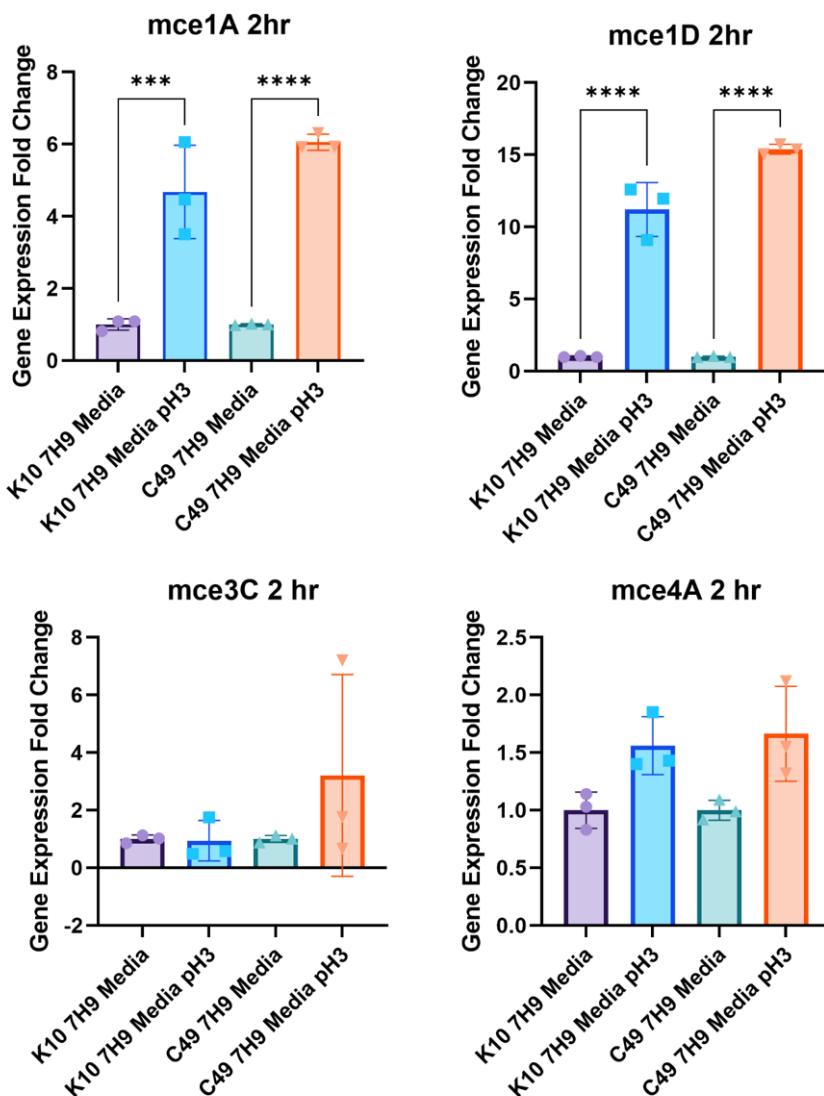
188 3D basal-out bovine enteroids were maintained as described in (Blake et al., 2022). Briefly,
189 enteroids were suspended in Matrigel domes and cultured with murine IntestiCult (STEMCELL)
190 supplemented with 10 µM Y-27632, 10 µM LY2157299 and 55 nM SB202190 (henceforth referred to
191 as complete IntestiCult medium). Medium was changed every 2-3 days and were passaged after 7-
192 10 days of culture. To passage, the medium was removed and the Matrigel containing enteroids was
193 suspended in 1 mL of ice-cold DMEM/F12. The wells of enteroids were pooled and centrifuged at
194 400 x g for 5 minutes. The supernatant removed, the culture made to 1 mL suspension, and the
195 enteroids were sheared by mechanical pipetting. The sheared enteroids were counted using a
196 Brightfield microscope, and the fragments were suspended in Matrigel so that 200 fragmented

197 enteroids were present in 50 μ L of Matrigel per well. 650 μ L fresh complete IntestiCult medium was
198 used to culture the enteroids.

199 The enteroids were infected as described in (Blake et al., 2022). Briefly, the enteroids were pooled
200 and sheared as described above. The number of enteroid fragments were counted and suspended
201 in the appropriate volume of inoculum for each recombinant *E. coli* strain so that there was a final
202 MOI of 100 per bovine cell. This is based on the calculation that each fragmented enteroid
203 contained 100 cells (Blake et al., 2022).

204 The recombinant *E. coli* strains were prepared for infection as described previously, and the sheared
205 enteroids were exposed to the *E. coli* inoculum in a suspension of complete IntestiCult medium. The
206 enteroid and bacteria suspension were incubated at 37°C for 2 hours, pelleted at 500 rpm and
207 washed with PBS. This was repeated twice more, and the enteroids lysed using 0.1% triton X-100.
208 The cell lysates were plated onto LB plates containing 100 μ g/mL carbenicillin and 35 μ g/mL
209 chloramphenicol.

210 Confocal microscopy

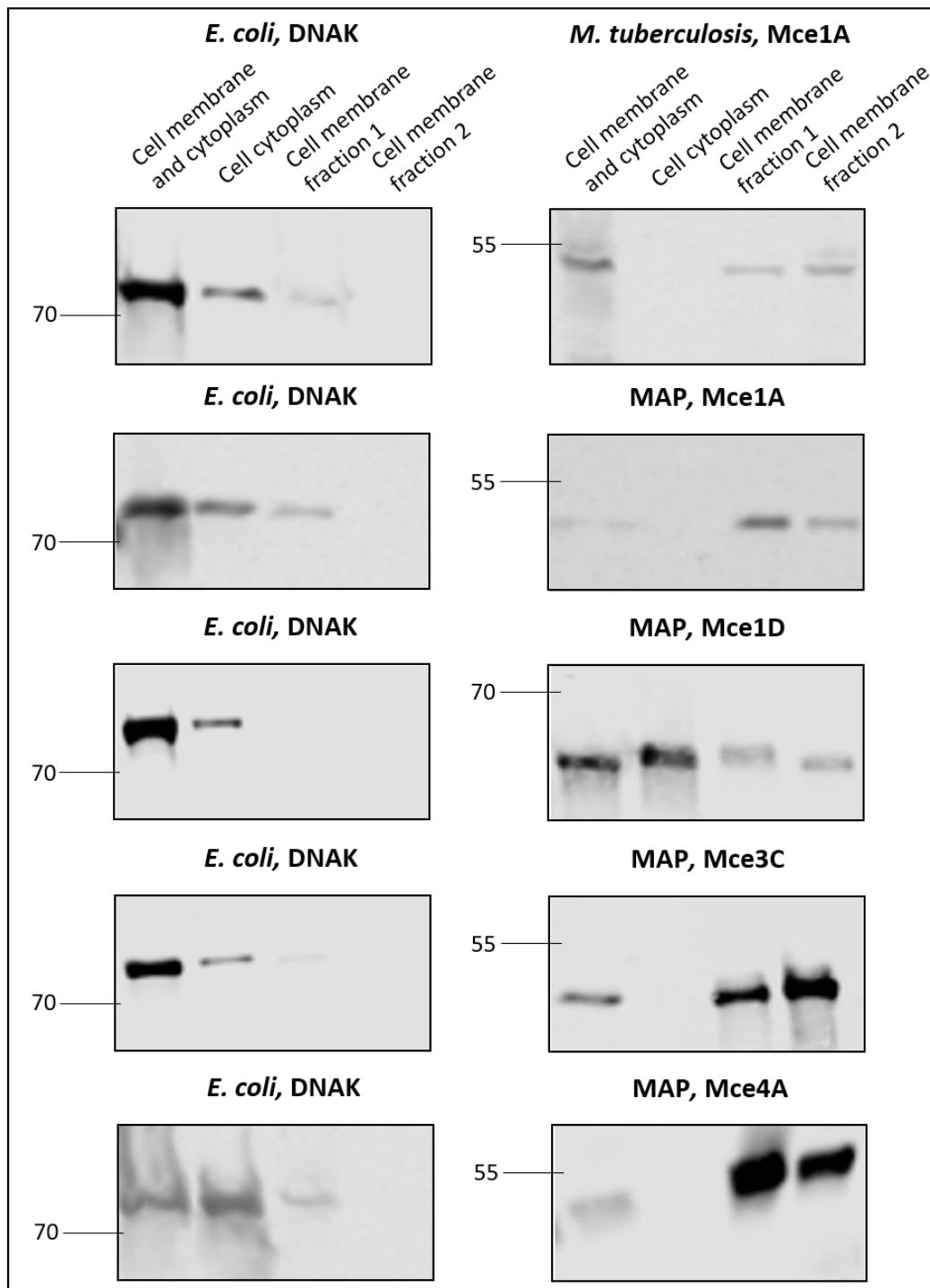

211 To image the infection of mammalian cell lines by recombinant *E. coli*, cells were cultured on
212 coverslip slides prior to infection and fixed with 2% paraformaldehyde (PFA) for 20 minutes at room
213 temperature. For the bovine enteroid samples, the samples were first pelleted at 400 x g and re-
214 suspended in 2% PFA (w/v) and fixed for 1 hour at 4°C. Samples to be stained were then
215 permeabilised with 0.1% Triton-X 100 (v/v) for 15 minutes at room temperature and blocked with
216 PBS containing 0.5% bovine serum albumin (v/v) and 0.02% sodium azide (w/v) (termed blocking
217 buffer) for 30 minutes at room temperature. The samples were incubated with the designated
218 primary antibody (Supplementary Table 1) diluted in blocking buffer for 1 hour at room
219 temperature, washed three times with PBS, and incubated with the appropriate secondary antibody
220 diluted in blocking buffer for 1 hour. Samples were then washed three times and nuclei stained with
221 300 nM DAPI for 2-5 minutes. The coverslips were mounted on a glass slide using Prolong Gold.
222 Enteroids were adhered to the surface of a glass slide using the CytoSpin method described in (Blake
223 et al., 2022). Slides were visualised using Leica LSM710 upright immunofluorescence microscope.

224 Results

225 Expression of *mce* genes in MAP upon exposure to acidic conditions

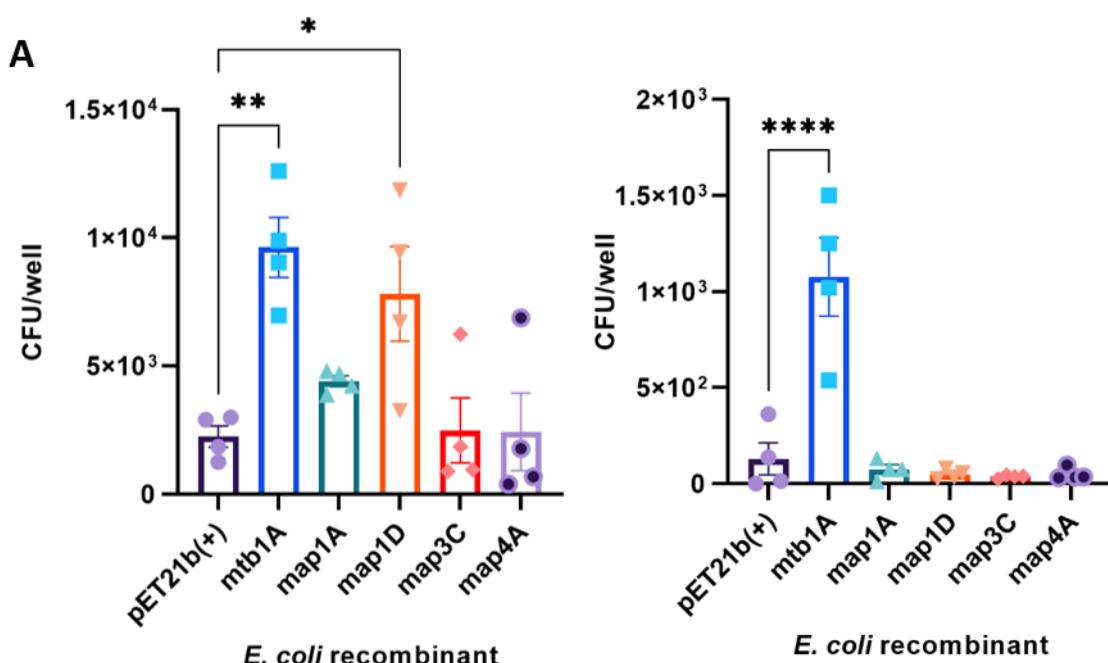
226 Several adhesins expressed by MAP have been identified by quantifying gene upregulation in
227 response to exposure to an acidic environment which may mimic that of the route of infection MAP
228 experiences *in vivo*. To this end, the gene expression fold change of selected *mce* genes in MAP K10
229 and MAP C49 upon exposure to pH 3.0 7H9 medium for 2 hours was analysed using RT-qPCR using

230 the geometric mean of *1g2* and *GAPDH* genes as internal controls. The change in *mce* gene
231 expression was compared to *mce* gene expression in the corresponding MAP cultures which had
232 been exposed to standard 7H9 medium for 2 hours. Both strains of MAP significantly upregulated
233 *mce1A* and *mce1D* gene expression after exposure to acidic pH, whereas there was no change in
234 *mce3C* and *mce4A* gene expression by either strain (Figure 1). This indicated *map1A* and *map1D* may
235 therefore act as effector molecules which aid MAP infection of host cells. Similar studies have
236 reported a resistance to acidic pH in MAP as a high CFU may still be recovered from treated cultures.
237 In our hands, similar CFU/mL values were reported for MAP K10 post treatment as previous studies
238 at 10^8 CFU/mL, but this remains a significant reduction in viable bacteria compared to cultures which
239 were not treated with acidic medium (Supplementary figure 1). MAP C49 seems to show a greater
240 sensitivity to acidity, with the CFU/mL decreasing from 10^8 CFU/mL to 10^7 CFU/mL post treatment.



242 **Figure 1 | Regulation of MAP mce expression upon exposure to an acidic pH.** The expression of *mce*
243 genes was determined by RT-qPCR and calculated as fold change relative to the expression of *gapdh*
244 and *1g2* as endogenous reference genes. Total RNA was isolated from 3 separate cultures of MAP
245 *K10* and *C49* cultured to an OD_{600} 0.6 and pelleted to be resuspended in standard 7H9 media or pH3.0
246 7H9 media. Data presented as the mean of the fold change in gene expression from 3 separate
247 cultures \pm SD. Statistical analysis performed using a 1-way ANOVA followed by a post hoc Dunnett's
248 test. $P<0.05 = *$; $P<0.01 = **$; $P<0.001 = ***$; $P<0.0001 = ****$.

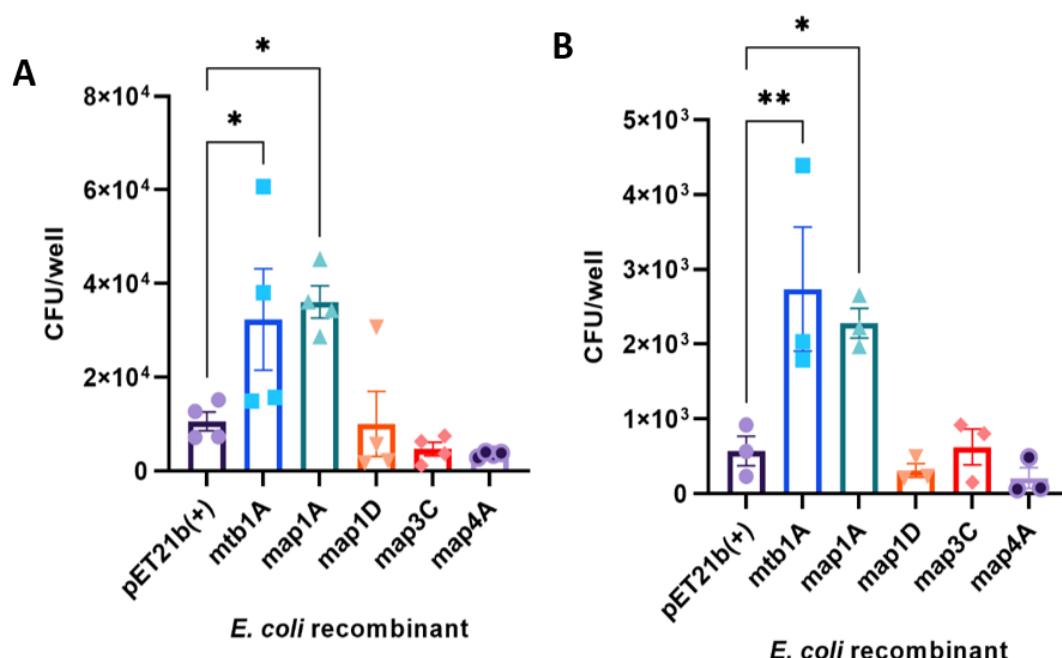
249 Cloning, expression and purification of Mce proteins


250 The expression of the His tagged Mce proteins was studied in *E. coli* Rosetta 2 (BL-21). The proteins
251 were detected using anti-His-tag monoclonal antibody (Raybiotech) and were of the expected size,
252 ranging from 43 – 60 kDa. The expression of the proteins was confirmed to be in the membranous
253 fraction of the *E. coli* following IPTG induction using sub cellular fractionation of the bacteria (Figure
254 2). DNAK is a known cytoplasmic protein in *E. coli* and was used to ensure separation of the
255 cytoplasmic and cell membrane fractions of the bacteria for Western Blotting. All Mce proteins were
256 confirmed to be expressed in the cell membrane and absent from the cytoplasmic fraction, with the
257 exception of Mce1D which was detected in both fractions of the *E. coli* (Figure 2).

258

259 **Figure 2| Western blot of *E. coli* strains expressing Mce protein after subcellular fractionation.** *E.*
260 *coli* clones were induced with 0.1 mM IPTG to produce their respective Mce protein for 2 hours at
261 37°C. The bacteria was then separated into fractions of the cell membrane and cytoplasm, the
262 cytoplasm alone and 2 separate washes of the cell membrane. The fractions were separated by SDS-
263 PAGE and electro-transferred to a nitrocellulose membrane. Rabbit monoclonal anti-His antibody
264 was used to detect the His-tagged Mce protein to determine its location in the bacteria. Rabbit
265 monoclonal anti-DNAK antibody was used as an *E. coli* cytoplasmic control. Numbers on the left lane
266 indicate Molecular weight of protein standards in the ladder (kDa).

267 Invasion of mammalian cells by recombinant *E. coli* expressing Mce protein
268 The use of *E. coli* as expression hosts of Mycobacterium derived Mce proteins was confirmed to have
269 no significant effects on the viability of the bacteria compared to the empty plasmid control prior to
270 performing invasion assays (Supplementary Figure 2). The invasion of the bovine epithelial cell line,
271 MDBK cells, by recombinant *E. coli* was measured using CFU present in the cell lysate post infection.
272 The results show significantly greater numbers of *E. coli* expressing Mce1A derived from *M*
273 *tuberculosis* (Mtb1A) and *E. coli* expressing Mce1D derived from MAP (Map1D) were present in the
274 cell lysate compared to the *E. coli* transformed with the empty pET21b(+) vector 2 hours post
275 infection (Figure 3). This increase remained at 6 hours post infection for the *E. coli* expressing Mtb1A
276 as the positive control, but not for the *E. coli* expressing Map1D. No other Mce protein aided the
277 attachment or invasion of *E. coli* to bovine epithelial cells.

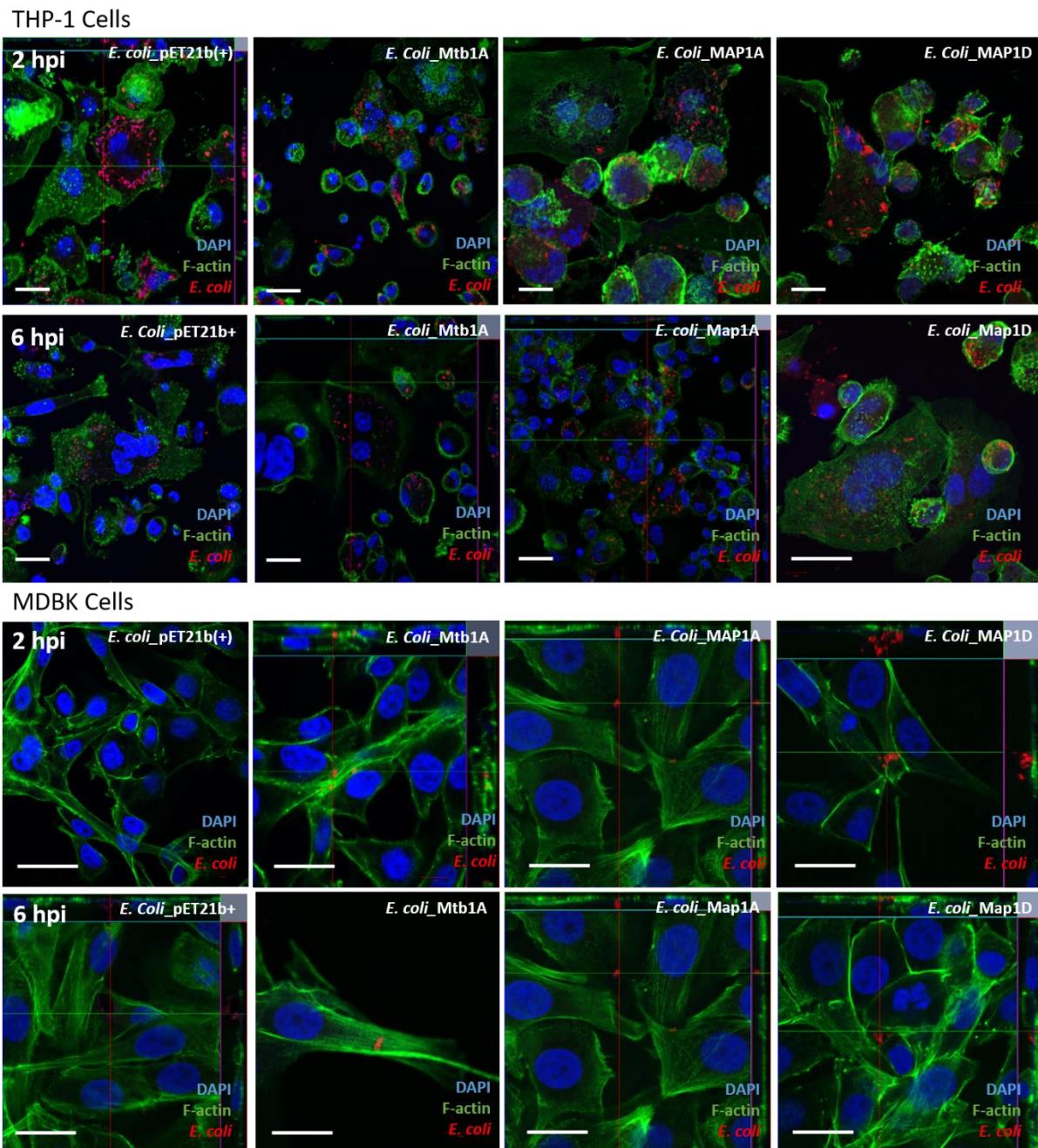

278

279 **Figure 3 | Attachment and survival of *E. coli* recombinants in MDBK cells.** Mce protein expression
280 was induced in *E. coli* recombinants with 0.1 mM IPTG for 2 hours at 37°C and used to infect MDBK
281 cells at MOI 20. Cells were washed at 1 hour post infection and incubated for a further 1 or 5 hours.
282 Cell lysates were plated for CFU analysis at 2 hours post infection A); and at 6 hours post infection B).
283 Error bars presented as SEM of four biological replicates each performed with three technical
284 repeats. Statistical analysis performed as a one-way ANOVA followed by a post hoc Dunnett's test. $P <$
285 $0.05 = *$; $P < 0.001 = **$; $P < 0.0001 = ***$.

286 To investigate the function of the MAP derived Mce proteins in the context of a phagocytic cell line,
287 the recombinant *E. coli* expressing Mce proteins were used to infect THP-1 cells. THP-1 cells have
288 previously been used to investigate the function of Mce proteins using *E. coli* expression hosts, and
289 may indicate the ability of these proteins to confer increased intracellular survival to the *E. coli*. After

290 infection of the THP-1 cells for 2 and 6 hours by the *E. coli*, the cell lysates were plated to calculate
291 the CFU/well. The results show significantly greater numbers of *E. coli* expressing Mtb1A and Mce1A
292 derived from MAP (Map1A) were present in the cell lysate compared to the empty vector control
293 (Figure 4). This difference persisted 6 hours post infection, although the total CFU/well decreased at
294 6 hours post infection compared to the CFU/well recovered 2 hours post infection (Figure 4).

295

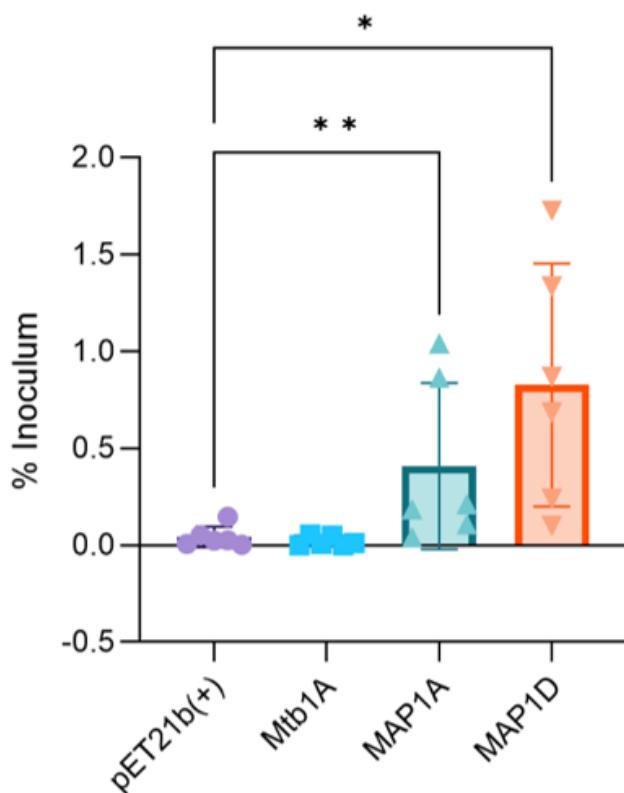


296 **Figure 4| Uptake and survival of recombinant *E. coli* by THP-1 cells.** Mce protein expression was
297 induced in *E. coli* recombinants 0.1 mM IPTG for 2 hours at 37°C and used to infect THP-1 cells at MOI
298 10. Cells were incubated with media containing 10 µg/mL gentamicin after 1 hour infection and
299 incubated for a further 1 or 5 hours. Cell lysates were plated for CFU analysis at 2 hours post infection
300 (n=4) **A**; and at 6 hours post infection (n=3) **B**. Error bars presented as SEM of the specific number of
301 biological replicates each performed with three technical repeats. Statistical analysis performed as a
302 one-way ANOVA followed by a post hoc Dunnett's test. P< 0.05 =*; P<0.001 =**; P<0.0001=***.

303

304 The invasion of MDBK and THP-1 cells by recombinant *E. coli* expressing Mtb1A, Map1A and Map1D
305 was monitored by confocal microscopy. In THP-1 cells, all *E. coli* recombinants were observed to be
306 intracellular at 2 and 6 hpi due to the phagocytic action of the mammalian cells. There were
307 noticeably greater numbers of *E. coli* expressing Mtb1A or Map1A present in the cells at 6 hpi
308 compared to the empty vector control (Figure 5). In MDBK cells at 2 hpi *E. coli* expressing Mtb1A and
309 Map1D were bound to the surface of the of the MDBK cells, while there was no observable *E. coli*
310 transformed with the empty pET21b(+) vector attached to the surface of the mammalian cell. At 6
311 hpi *E. coli* expressing Mtb1A were observed to be intracellular, whereas Map1D expressing *E. coli*
312 remained on the surface of the cells in lower abundance compared to 2 hpi (Figure 5). There was no

313 evidence of membrane ruffling for the *E. coli* located in the intracellular space, which may require
314 EM to determine the mechanism of entry provided by the Mce protein being expressed.



315

316 **Figure 5 | IF staining of infected mammalian cells with recombinant *E. coli*.** The attachment and
317 invasion of recombinant *E. coli* expressing Mce protein was visualised using IF staining and confocal
318 microscopy at 2 and 6 hours post-infection. The cells were stained for nuclei (DAPI, blue), F-actin
319 (Phalloidin, green) and anti-*E. coli* antibody (red). Scale bar = 20 μ m.

320 Invasion of bovine enteroids cells by recombinant *E. coli* expressing Mce protein
321 To further investigate the roles of Map1A and Map1D, invasion assays were performed in 3D basal-
322 out bovine intestinal organoids (enteroids). These enteroids acted as a more physiologically

323 representative model of the bovine intestine, where it is hypothesised the *mce* genes are involved in
324 the attachment and invasion of the intestinal epithelial cells. Enteroids were sheared to expose the
325 apical surface of the cells and incubated in suspension with recombinant *E. coli* expressing the
326 relevant *Mce* protein for 2 hours at 37°C. The samples were lysed to calculate the CFU/well and the
327 % inoculum was calculated for each recombinant *E. coli* investigated to account for differences in the
328 inoculum between experiments (Figure 6). Interestingly, unlike the outcomes observed in the
329 previous cell line studies, *E. coli* expressing both *Map1A* and *Map1D* are present in significantly
330 greater numbers than the vector only control, *pET21b*(+), whereas *Mtb1A* did not confer an
331 increased invasive capacity using the same model. This may indicate there is a species or organ
332 specificity between these proteins despite their high homology at the protein level. The overall level
333 of infection remains low at less than 2% inoculum, which is not unexpected due to the lack of
334 phagocytic cells present in the enteroid cultures.

335

336 **Figure 6 | Infection of 3D basal-out bovine enteroids by *E. coli* recombinants.** *Mce* protein
337 expression was induced in *E. coli* recombinants with 0.1 mM IPTG for 2 hours at 37°C and used to
338 infect enteroids in suspension at MOI 100 for 2 hours. Enteroids were washed three times with PBS.
339 Cell lysates were plated for CFU quantification and data plotted as % of the inoculum. Data is
340 representative of 6 biological replicates from enteroids derived from 2 separate calves. Error bars
341 presented as SD. Statistical analysis performed as a one-tailed student's T-test compared to the
342 empty vector control. $P < 0.05 = *$; $P < 0.01 = **$.

343 **Discussion**

344 The initial interaction between MAP and the host occurs at the intestinal lining and is a critical step
345 in MAP pathogenesis which may impact the outcome of disease. Identification of effector molecules
346 which play a role in this initial interaction increases our understanding of MAP pathogenesis and
347 may provide novel therapeutic targets.

348 There are many studies that have identified MAP effector molecules by investigating gene regulation
349 upon exposing MAP to conditions it would experience in a natural infection setting. Typically,
350 exposure to milk and acidity has been observed to upregulate the expression of effector molecules
351 which aid the attachment and invasion of host cells (Everman et al., 2018; Secott et al., 2001). From
352 such experiments, fibronectin attachment proteins have been shown to be upregulated in response
353 to acidic treatment (Secott et al., 2001), which then aids MAP attachment and invasion of M cells in
354 the intestinal lining. However, these proteins were not observed to affect the ability of MAP to infect
355 enterocytes which are known cell targets of the bacteria to aid translocation across the intestinal
356 lining (Secott et al., 2004).

357 Proteins in the Mce family in pathogen Mycobacteria have been observed to aid the attachment and
358 invasion of the bacteria to host epithelial cells. More recently, the *mce5* cluster has been identified
359 as important for MAP virulence (Hemati et al., 2018), and mutation of *mce1D* resulted in a reduced
360 capacity of MAP to infect MDBK cells (Alonso-Hearn et al., 2008).

361 In this study, a role for *mce1A*, *mce1D*, *mce3C* and *mce4A* in the initial interaction between MAP and
362 the host was investigated. Consistent with other effector molecules, both *mce1A* and *mce1D* were
363 upregulated in acidic conditions. Furthermore, three separate cell culture models were used to
364 investigate the effect the expression of these Mce proteins would confer to their *E. coli* expression
365 host. Both *mce1A* and *mce1D* were observed to increase attachment and invasion of either THP-1 or
366 MDBK cells, but each *mce* gene did not infect both. Interestingly, both genes allowed an increase in
367 the infection of 3D bovine enteroids when expressed by *E. coli*, whilst *mce1A* derived from *M.*
368 *tuberculosis* did not. This indicates these genes exert a degree of host and cell type specificity, and
369 that both cell types and receptors for the Mce1A and Mce1D MAP derived proteins are present in
370 the bovine enteroid model. This lends credence to the hypothesis that these genes are involved in
371 the initial interaction between MAP and the host at the intestinal lining.

372 While a role for *mce3C* and *mce4A* could not be elucidated in the current study, this does not
373 definitively mean these genes do not act as effector molecules under different conditions.

374 Previously, Mce3C derived from *M. tuberculosis* was expressed on the surface of beads to monitor
375 invasion of the beads in HeLa cells (Zhang et al., 2018). In our study, MAP derived *mce3C* was

376 expressed in a Gram-negative *E. coli* host. It may be the outer membrane present in the Gram-
377 negative *E. coli* interferes with the expression of Mce3C in the appropriate morphology on its
378 surface.

379 In other Mycobacteria, Mce4A was found to be upregulated in bacteria in the stationary phase of
380 growth (Kumar et al., 2003). This stage is likened to what a bacterium may experience later in the
381 infection process once becoming intracellular. Therefore, this protein may not be involved in the
382 initial interaction, but it may be more influential in longer infection studies which incorporate
383 cholesterol uptake to maintain MAP viability. In this study, only the initial interaction was studied
384 within the first 6 hours, and this may not be optimal to understand the role of Mce4A.

385 Furthermore, it is only through the use of the enteroids as multicellular model which allowed the
386 observation of the invasive phenotypes of both *mce1A* and *mce1D* in a single model. This indicates
387 that the model chosen to investigate function of MAP genes should be carefully considered in future
388 experiments as cell lines do not reflect the complexity of the *in vivo* host which MAP infects.

389 References

390 Alonso-Hearn, M., Patel, D., Danelishvili, L., Meunier-Goddik, L., & Bermudez, L. (2008). The
391 *Mycobacterium avium* subsp. *paratuberculosis* MAP3464 gene encodes an oxidoreductase
392 involved in invasion of bovine epithelial cells through the activation of host cell Cdc42. *Infection*
393 and *Immunity*, 76(1), 170–178. <https://doi.org/10.1128/IAI.01913-06>

394 Arruda, S., Bomfim, G., Knights, R., Huima-Byron, T., & Riley, L. W. (1993). Cloning of an *M.*
395 *tuberculosis* DNA fragment associated with entry and survival inside cells. *Science*, 261(5127),
396 1454–1457. <https://doi.org/10.1126/science.8367727>

397 Arsenault, R. J., Maattanen, P., Daigle, J., Potter, A., Griebel, P., & Napper, S. (2014). *From mouth to*
398 *macrophage: mechanisms of innate immune subversion by Mycobacterium avium* subsp.
399 *paratuberculosis*. 45, 1–15. <https://doi.org/10.1186/1297-9716-45-54>

400 Bannantine, J., Huntley, J., Miltner, E., Stabel, J., & Bermudez, L. (2003). The *Mycobacterium avium*
401 subsp. *paratuberculosis* 35 kDa protein plays a role in invasion of bovine epithelial cells.
402 *Microbiology (Reading, England)*, 149(Pt 8), 2061–2069. <https://doi.org/10.1099/MIC.0.26323-0>

404 Bermudez, L. E., Petrofsky, M., Sommer, S., & Barletta, R. G. (2010). Peyer's Patch-Deficient Mice
405 Demonstrate That *Mycobacterium avium* subsp. *paratuberculosis* Translocates across the
406 Mucosal Barrier via both M Cells and Enterocytes but Has Inefficient Dissemination. *Infection*
407 and *Immunity*, 78(8), 3570. <https://doi.org/10.1128/IAI.01411-09>

408 Casali, N., & Riley, L. W. (2007). A phylogenomic analysis of the Actinomycetales mce operons. *BMC*
409 *Genomics*, 8, 60. <https://doi.org/10.1186/1471-2164-8-60>

410 Chitale, S., Ehrt, S., Kawamura, I., Fujimura, T., Shimono, N., Anand, N., Lu, S., Cohen-Gould, L., &
411 Riley, L. W. (2001). Recombinant *Mycobacterium tuberculosis* protein associated with

412 mammalian cell entry. *Cellular Microbiology*, 3(4), 247–254. <https://doi.org/10.1046/j.1462-5822.2001.00110.x>

413

414 Corn, J. L., Manning, E. J. B., Sreevatsan, S., & Fischer, J. R. (2005). Isolation of *Mycobacterium avium*
415 subsp. *paratuberculosis* from free-ranging birds and mammals on livestock premises. *Applied*
416 *and Environmental Microbiology*, 71(11), 6963–6967.
417 <https://doi.org/10.1128/AEM.71.11.6963-6967.2005>

418 Everman, J. L., Danelishvili, L., Flores, L. G., & Bermudez, L. E. (2018). MAP1203 Promotes
419 *Mycobacterium avium* Subspecies *paratuberculosis* Binding and Invasion to Bovine Epithelial
420 Cells. *Frontiers in Cellular and Infection Microbiology*, 8(JUN), 217.
421 <https://doi.org/10.3389/FCIMB.2018.00217>

422 Hemati, Z., Haghkhah, M., Derakhshandeh, A., Singh, S. V., & Chaubey, K. K. (2018). Cloning and
423 characterization of MAP2191 gene, a mammalian cell entry antigen of *Mycobacterium avium*
424 subspecies *paratuberculosis*. *Molecular Biology Research Communications*, 7(4), 165–172.
425 <https://doi.org/10.22099/mbrc.2018.30979.1354>

426 Koressaar, T., & Remm, M. (2007). Enhancements and modifications of primer design program
427 Primer3. *Bioinformatics*, 23(10), 1289–1291.
428 <https://doi.org/10.1093/BIOINFORMATICS/BTM091>

429 Kumar, A., Bose, M., & Brahmachari, V. (2003). Analysis of Expression Profile of Mammalian Cell
430 Entry (mce) Operons of *Mycobacterium tuberculosis*. *Infection and Immunity*, 71(10), 6083.
431 <https://doi.org/10.1128/IAI.71.10.6083-6087.2003>

432 Larsen, A. B., Merkal, R. S., & Cutlip, R. C. (1975). Age of cattle as related to resistance to infection
433 with *Mycobacterium paratuberculosis*. *American Journal of Veterinary Research*, 36(3), 255–
434 257.

435 Lombard, J. E. (2011). Epidemiology and Economics of Paratuberculosis. *Veterinary Clinics of North*
436 *America: Food Animal Practice*, 27(3), 525–535. <https://doi.org/10.1016/J.CVFA.2011.07.012>

437 Nielsen, S. S., & Toft, N. (2008). Ante mortem diagnosis of paratuberculosis: A review of accuracies of
438 ELISA, interferon- γ assay and faecal culture techniques. In *Veterinary Microbiology* (Vol. 129,
439 Issues 3–4, pp. 217–235). Elsevier. <https://doi.org/10.1016/j.vetmic.2007.12.011>

440 Pfaffl, M. (2001). A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic*
441 *Acids Research*, 29(9), E45. <https://doi.org/10.1093/NAR/29.9.E45>

442 Schleig, P. M., Buergelt, C. D., Davis, J. K., Williams, E., Monif, G. R. G., & Davidson, M. K. (2005).
443 Attachment of *Mycobacterium avium* subspecies *paratuberculosis* to bovine intestinal organ
444 cultures: Method development and strain differences. *Veterinary Microbiology*, 108(3–4), 271–
445 279. <https://doi.org/10.1016/j.vetmic.2005.04.022>

446 Secott, T. E., Lin, T. L., & Wu, C. C. (2001). Fibronectin attachment protein homologue mediates
447 fibronectin binding by *Mycobacterium avium* subsp. *paratuberculosis*. *Infection and Immunity*,
448 69(4), 2075–2082. <https://doi.org/10.1128/IAI.69.4.2075-2082.2001>

449 Secott, T. E., Lin, T. L., & Wu, C. C. (2004). *Mycobacterium avium* subsp. *paratuberculosis* fibronectin
450 attachment protein facilitates M-cell targeting and invasion through a fibronectin bridge with
451 host integrins. *Infection and Immunity*, 72(7), 3724–3732.
452 <https://doi.org/10.1128/IAI.72.7.3724-3732.2004>

453 Untergasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., & Rozen, S. G. (2012).
454 Primer3—new capabilities and interfaces. *Nucleic Acids Research*, 40(15), e115–e115.
455 <https://doi.org/10.1093/NAR/GKS596>

456 Wang, M., Gao, Z., Zhang, Z., Pan, L., & Zhang, Y. (2015). *Human Vaccines & Immunotherapeutics*
457 *Roles of M cells in infection and mucosal vaccines Roles of M cells in infection and mucosal*
458 *vaccines*. <https://doi.org/10.4161/hv.36174>

459 Zhang, Y., Li, J., Li, B., Wang, J., & Liu, C. H. (2018). *Mycobacterium tuberculosis Mce3C promotes*
460 *mycobacteria entry into macrophages through activation of $\beta 2$ integrin-mediated signalling*
461 *pathway*. *Cellular Microbiology*, 20(2). <https://doi.org/10.1111/CMI.12800>

462

463 [Acknowledgements](#)

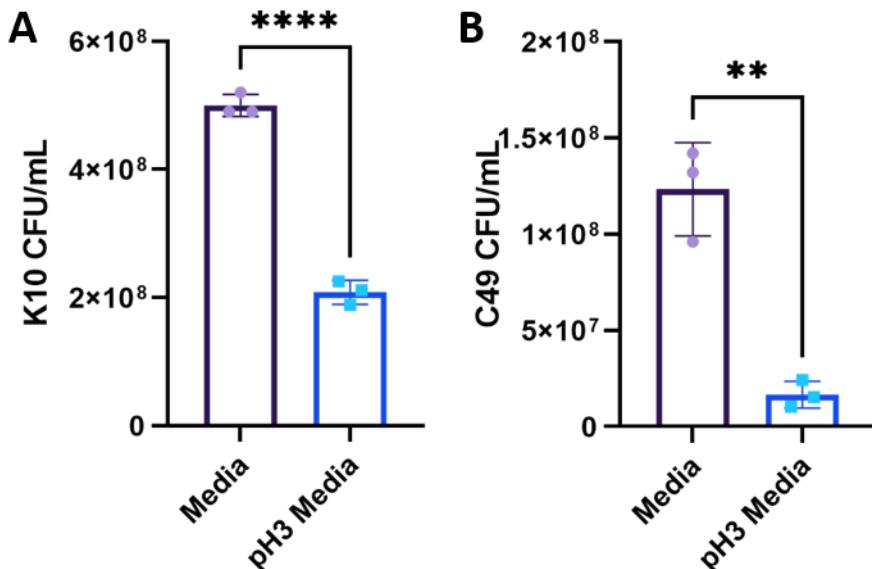
464 We would like to acknowledge our colleagues for their comments and suggestions for experimental
465 design and the Biotechnology and Biological Sciences Research Council Institute Strategic
466 Programme Grant (BBS/E/D/20002173) for funding this work.

467 [Declarations](#)

468 The authors declare that the research was conducted in the absence of any commercial or financial
469 relationships that could be construed as a potential conflict of interest.

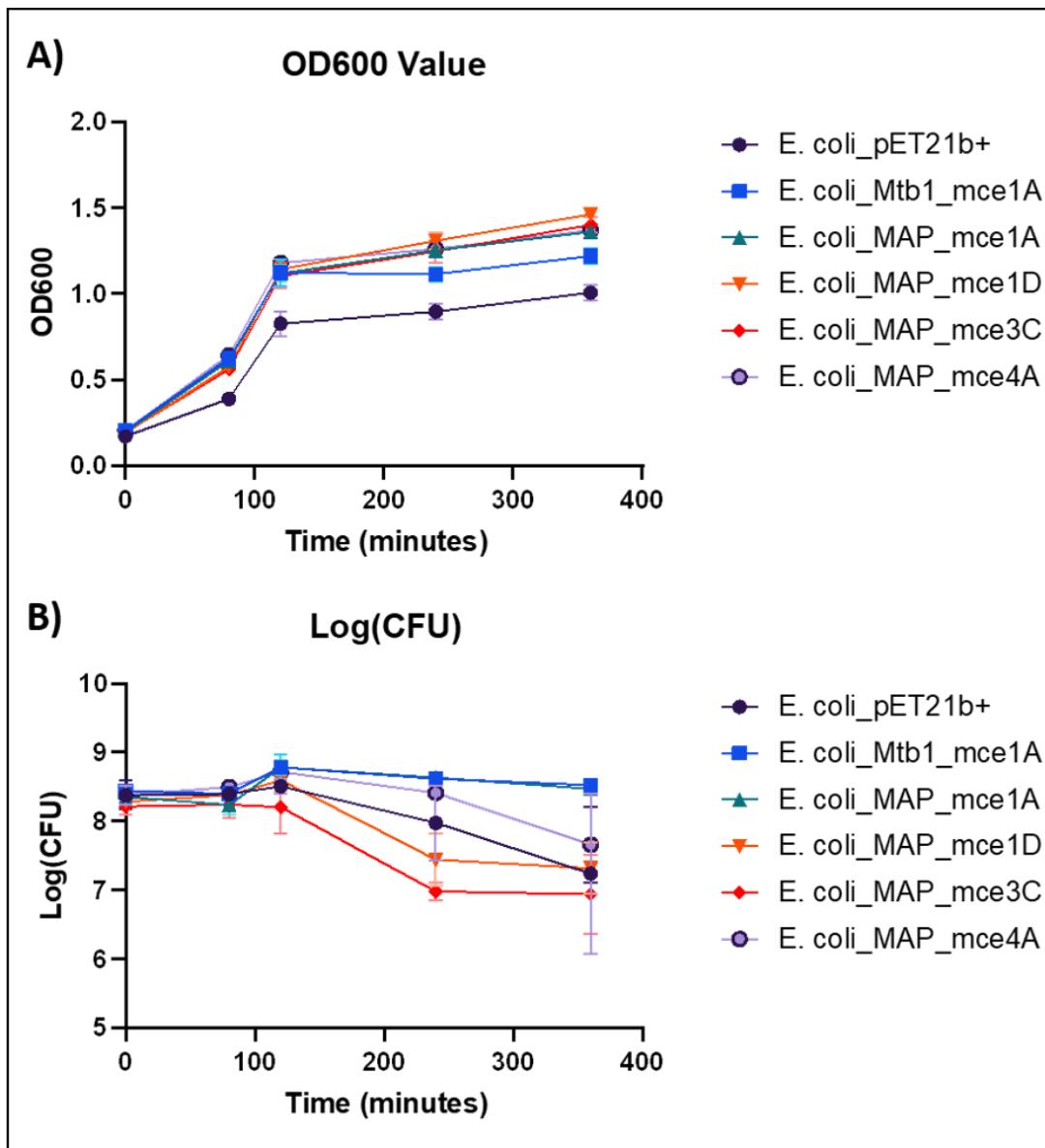
470

471 [Supplementary](#)


Antibody/staining agent	Concentration	Manufacturer Number
Anti-His*	1 μ g/mL	RB-10-0002-100
Anti-Dnak*	1 μ g/mL	A207645
Anti-E. coli	10 μ g/mL	ab137967
Anti-Rabbit IgG H+L*	1 μ g/mL	06/2019
Anti-Mouse IgG H+L*	1 μ g/mL	06/2016
Phalloidin 488	66 μ M	A12379
Anti-Rabbit 594	10 μ g/mL	Z25307

472

473 **Supplementary Table 1| A table outlining the antibodies used in this paper and the corresponding**
474 **concentration.** *Indicates antibodies used for Western Blots.


475

476

Supplementary Figure 1| CFU/ml values of MAP cultured in acidic 7H9 media. MAP was cultured to an OD_{600} 0.6 and pelleted. The pellet was re-suspended in 7H9 growth media that was either the standard pH or pH 3.0 and cultured at 37°C 100 rpm for 2 hours. The cultures were then diluted and plated onto 7H10 agar and incubated at 37°C for up to 6 weeks. A) MAP K10 CFU values; B) MAP C49 CFU values. Data analysed using Student's unpaired T-test. $P<0.05 = *$; $P<0.01 = **$; $P<0.001 = ***$; $P<0.0001 = ****$.

494

495

496 **Supplementary Figure 2| Growth curves of recombinant E. coli mutants upon induction of Mce**
497 **protein expression.** 1:10 dilution was performed from an overnight culture of recombinant E. coli
498 clones and cultured at 37°C. OD₆₀₀ **A)** and CFU/mL **B)** values were taken at the indicated times, and
499 protein production was induced with 0.1 mM IPTG upon an OD₆₀₀ value of 0.6 being reached.
500 Bacteria were cultured on LB agar containing the relevant antibiotics and cultured overnight at 37°C
501 for CFU/mL analysis. Results were gained from 3 biological replicates.

502