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Abstract
Regression Event-Related-Potentials (ERPs) with overlap
correction (also referred to, as linear deconvolution, or
temporal response functions) are becoming more pop-
ular for the analysis of Electroencephalography (EEG)
data. A common question for the analyst is, how to spec-
ify the length of the estimation windows. Long estimation
windows might capture all relevant event-related activity,
but might introduce artifacts due to overfit, short estima-
tion windows might not overfit, but also might not capture
all (overlapping) activity, and thereby introduce bias.

Using a systematic simulation approach, we show that
longer rather than shorter time windows should be pre-
ferred for typical EEG designs. We further provide an
interactive app to visualize various design parameters:
https://estimationwindow.ccn2023.s-ccs.de
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Introduction
Neural activity is inherently noisy. To attenuate this noise,
data is often time locked to an event and averaged over many
repetitions. Assuming that the noise is uncorrelated to the
event onsets and given enough repetitions, this approach will
dampen the noise and recover the underlying signal.

However, when using averaging, we, often implicitly, as-
sume that brain activity of adjacent events does not overlap
in time. To give an example where this assumption is violated,
let’s imagine a decision-making experiment where participants
have to decide if a stimulus belongs to one of two categories.
Typically, such findings are interpreted in light of evidence
accumulation models (Pisauro, Fouragnan, Retzler, & Phil-
iastides, 2017), where activity for fast trials shows a steeper
increase in activity time locked to the button press, compared
to slower trials. An alternative explanation is based on tempo-
ral overlap of ERPs: In fast trials, stimulus onsets and button
presses are closer together in time compared to slow trials,
and both stimuli and button presses elicit brain activity, often
persisting longer in time than the actual distance of events.
Indeed, we recently showed that the CPP-related evidence
accumulation activity observed by others, can be explained
by an overlap-corrected model (Frömer, Nassar, Ehinger, &
Shenhav, 2022). This highlights one paradigm, where appro-
priate overlap correction is necessary and simple averaging is
not enough.

The most common approach to model such overlap is
based on linear deconvolution models (Smith & Kutas, 2015),
commonly applied to event-related fMRI experiments (Dale
& Buckner, 1997). In a nutshell, instead of modelling time-
locked data, the continuous EEG is modelled as a mixture
of overlapping ERPs. It is assumed that each EEG sam-
ple can be modelled by the summation of the ERPs of the
overlapping events. In practice, we define a linear model in-
corporating all relevant information about each of our events,
resulting in one design-matrix per event type. Next, we de-
fine estimation windows (EW) around all event onsets, and
”time-expand” our design-matrices around each event onsets,
resulting in a much taller and wider design-matrix — taller to
cover all EEG samples; and wider to reflect that we estimate
the whole ERP of all events concurrently (in contrast to the
time-point by time-point operations when using averaging or
mass-univariate analyses)

In the classical averaging analysis, we also make use of
EWs - but critically, the actual EW length does not influence
the estimate at other time-points. In striking contrast, choosing
the correct EWs for deconvolution analysis is crucial. Indeed,
the question of choosing EWs is one of the most common
questions we get with collaborators or at EEG workshops.

In this paper, we investigate the influence of EW length. Too
short EWs will not be able to capture the overlapping signals
correctly, too long EWs could lead to overfit. To do so, we
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Figure 1: Overlap corrected ERPs against different EW dura-
tions, one simulation. Gray line shows ground truth. Red lines
show EWs for durations of [0.15:0.05:0.50] (c.f. indicator bars)
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Figure 2: MSE across varying EWs during the ground truth
time window, except for the last gray boxplot, which shows the
3s-EW MSE over the whole 3s

simulate ERPs, overlap them in time, and try to recover the
original shape while varying the lengths of the EWs.

Methods
Using the UnfoldSim.jl toolbox (Ehinger & Lips, 2023), we gen-
erated proto-ERPs of 0.450 s length, based on scaled Han-
ning windows at 250Hz, resembling a typical P1-N1-P3 com-
plex (Figure 1, gray line). We simulated 400 event-onsets,
where the event-distances were sampled from a uniform distri-
bution from 0.25-0.35s. The continuous EEG was assembled,
and we added pink noise to the signal (single trial signal-to-
noise at component peak ≈ 0.6).

Using linear deconvolution, we then tried to recover the
proto-ERP using the Unfold.jl toolbox (Ehinger & Dimigen,
2019; Ehinger et al., 2023). To investigate the influence of
EW size, we analyzed the same simulated data using eight
different window sizes (all EWS started at -0.1s, ranging to
0.1:0.05:0.5s or 3s). The overlap-corrected responses were
then compared to the ground truth by calculating the mean
squared error (MSE) between 0 and 0.45s. This made it nec-
essary that EWs shorter than the ground truth were zero-
padded to match the length of the ground truth, and EWs
longer than the ground truth were truncated. Such an ap-
proach potentially biases against short time-windows (as over-
fit outside the ground truth time-window is not considered).
Thus, we repeated the analysis with the respective ”full”-MSE
for each EW.

This procedure was repeated a total of 100 times with dif-
ferent random seeds.

Results
To show the influence of estimation window on linear decon-
volution analysis, we systematically vary the EW size on sim-
ulated data.

As visible in Figure 1 for a single simulation, EWs that are
shorter than the ground-truth activity show a systematic bias
away from the ground truth. Indeed, in a quantitative analysis
(Figure 2) we see a near linear decline of MSE with increas-
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Figure 3: Same as Figure 1, but with longer EWs. Grey line
shows ground truth. Blue lines show EWs for durations of
[0.5:0.5:3.0] (c.f. indicator bars)

ing EW until the EWs match the ground truth time window
(short EW 0.15s, mean MSE: 10.44, SD: 1.19 — ground-truth
matching EW: 0.45s, mean MSE: 0.46, SD: 0.38).

Increasing the EW beyond the ground truth time window re-
sulted in worse MSE (EW: 0.5, mean MSE: 0.59, SD: 0.58),
which emphasized in much longer EWs (EW: 3.0s, mean
MSE: 3.69, SD: 3.69), even though in this analysis, we evalu-
ate MSE in the period of the ground truth time window alone.

As indicated above, only testing the MSE in the ground truth
time window underestimates the overfit of the total estimated
ERP. We thus repeated the analysis of the long time-windows
and calculated the MSE in their respective EWs, effectively
zero-padding the ground truth. As seen in Figure 2 (gray box-
plot) MSE values along the entire EW length only worsened
slightly, and we observe a decrease in variance. This likely re-
flects the decreasing influence of the initial ground truth activ-
ity against the longer lasting baseline period. In other words,
for long enough EW duration, MSE approaches the pure noise
variance. However, investigating the results from just a single
iteration (Figure 3) we can see that estimates using long EWs
are strongly contaminated by noise, potentially misleading the
researcher.

Finally, we round off our analysis with several robustness
analyses: The main pattern depicted in Figure 2 persisted re-
gardless of noise (PinkNoise, RedNoise, WhiteNoise), signal-
to-noise (1, 0.6, 0.25), or proto-ERP shape (P1-N1-P3, P1-
N1-N3, P1-N1, P3-only).

Discussion

Choosing the estimation time window length is critical for anal-
yses relying on overlap correction. Our simulations show that
the best performing models are those with an EW length which
matches (or closely matches) the actual underlying activity.

For analyzing real-world EEG data it follows that re-
searchers should — a priori — make an educated guess
about the length of the underlying EEG activity and select this
as their EW. This also suggests to use event windows with
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different sizes between events (as possible in e.g. Unfold.jl
(Ehinger et al., 2023)). Given that the overfit is only of mod-
erate size, when choosing longer time-windows, we further
recommend to generally err on the longer side.

Lastly, two more things to keep in mind :
1) modifying the EW after already previewing a model fit

might not be as inconsequential as in the classical analyses.
In the strictest sense, such a post-hoc parameter change can
lead to overfit, as the analysis parameter was informed by the
data itself. We are not aware of studies showing the extent
of harm that such an overfit/circular procedure has, if any. In
case one pre-specified a time-window not capturing the ac-
tivity, we recommend prolonging the EW and to report this
change transparently in your manuscript.

2) In practice, we have observed in several datasets a
lingering activation beyond 1s, sometimes approaching 0µV
only after the highpass-filter enforced it. Non-systematic tests
showed little to no influence on the more immediate ERP-
shape when truncating this low-µV activity.

Summarized, using a simulation study, we address the gap
on how to specify the estimation time window when using lin-
ear deconvolution analyses in EEG data.
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