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29  Abstract

30 PPMV-1, anantigenic variant of APMV-1, associated with specific pigeon host species.
31  However, its evolutionary strategy and underlying drivers of host specificity remain
32 unknown. In this study, we collect the outbreak data on a global scale to investigate its
33  evolutionary dynamics, and provide an evidence-supported analysis the host shift of
34  PPMV-1 from chickens to pigeons, and this shift is driven by the P protein. Our data
35 indicated that the viruses in the United States and China have undergone convergent
36  evolution. We find that three mutations of P protein, especially R163G, can significantly
37  affect the adaptation of APMV-1 in pigeons. Mechanistically, sensor LSm14A inhibits
38  the replication APMV-1 in DF-1 cells, and R163G substitutionon P protein increase
39  LSml14A degradation. We propose the host shift drive the evolution of PPMV-1 and the
40  underlying mechanism, offering new insights into the adaptive evolutionary process of
41  the virus.
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45 Introduction

46 Many emerging viruses are the result of pathogens jumping from their original hosts to
47  novel species. Successful virus emergence may occur through two distinct processes:
48  host range expansion or shift. Range expansion allows the pathogen to infect more host
49  species without altering its original gene pool (Thines 2019). Host shift, on the other
50 hand, increases genetic differentiation in the pathogen gene pool, resulting in
51  specialization to the novel host (Longdon et al, 2014; Thines 2019). Virus host shift
52 involves different ecological and evolutionary processes. If the main factor leading to
53  the emergence is ecological factors, and the shift does not require adaptation, the
54  reasons for the host shift are called ecological drivers. Yet, if a virus emerges in a new
55  host requiring genetic changes, the cause is known as an adaptive driver, although
56  ecological drivers may also be present in this case (Pepin et al, 2010). The Avian
57  paramyxovirus serotype 1 (APMV-1) of genus Avulavirus within the Paramyxoviridae
58  family (Mayo 2002), has a negative-sense, single-stranded RNA genome approximately
59  15.2 kb in length that contains six genes in the order of 3’-NP-P-M-F-HN-L-5". Two
60 additional proteins, V and W, are generated by an RNA-editing event that occurs during
61  the transcription of the P gene (Steward et al, 1993). The virus can infect a wide variety
62  of Avian species (Wan et al, 2004). Pigeon paramyxovirus type 1 (PPMV-1), an
63  antigenic variant of APMV-1 (Avian paramyxovirus type 1) (Collins et al, 1994; Mayo
64  2002; Ujvari et al, 2003), displays remarkable species-specificity to pigeons, is likely
65  to be the result of APMV-1 host shift. RNA viruses appear to be particularly prone to
66  host shifts, a mechanism that is a major driver of virus evolution in nature (Alkhamis
67 et al, 2020; He et al, 2020). However, some studies have reported that PPMV-1
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68 infections occurred in transplant patients under immunosuppressive therapy (Goebel et
69 al, 2007; Kuiken et al, 2018). A recent study reports a case of severe pneumonia and
70  eventual death in an immunocompetent patient (Zou et al, 2022). Has PPMV-1 evolved
71 by host range expansion or shift, and the major evolutionary drivers of PPMV-1 and the
72 underlying mechanism of PPMV-1 evolution have not been explained.

73 Adaptation generally is considered to affect the likelihood that a virus will be able to
74 successfully emerge in a new host species and have high fitness (Pepin et al, 2010).
75  Viral fitness is generally measured by replication capacity (Orr 2009). The polymerase
76 complex, the minimal replication unit, of numerous viruses is related to viral tropism
77 and host range (Mehle and Doudna 2009; Bortz et al, 2011; Bradel-Tretheway et al,
78  2011; Mehle et al, 2012; Long et al, 2019). The PPMV-1 polymerase complex
79  composed of the P and L proteins, assembles with viral RNA and nucleoprotein (NP)
80  to mediate transcription and replication of the viral genome. Serial passages of PPMV-
81  lin chickens result in host adaptation driven by mutations in the polymerase complex,
82  suggesting that changes in this complex can drive host shifts (Dortmans et al, 2011;
83  Olszewska-Tomczyk et al, 2018). Paramyxovirus P protein is essential for viral RNA
84  synthesis and other biological processes (Lamb and Kolakofsky 1996). The V protein
85  affects the host range of the virus via its species-specific IFN antagonist activity (Park
86 et al, 2003). Therefore, the role of P protein in host shift appears to be particularly
87  important, yet it has been rarely addressed in previous studies.

88 In the present study, we collect global data and used a phylogeographic Bayesian
89  statistical framework to reconstruct PPMV-1 spatial spread over time and the virus
90 transmission history among host species, and identify and characterize the cumulative
91  molecular changes present in naturally occurring PPMV-1 that were responsible for the
92  host adaptation. To further decipher its adaptation process, we evaluate the selection
93  pressure of the six PPMV-1 proteins and genetic changes on P protein, explored the
94  functional locus of P protein in this evolutionary process, and its underlying molecular
95  mechanisms.

96 Results

97  Subtype and Host Changes during Evolution

98  PPMV-1 is an antigenic variant of APMV-1, and new subtypes are emerging (Liu et al,

99  2003; Chen et al, 2013). To confirm the main factor leading to the virus emergence is
100  ecological or adaptive, we constructed a Bayesian tree based on complete F protein
101 sequence using global isolates information to explore the epidemic genotypes of
102 PPMV-1 in each country and the host composition. The tree was divided into two large
103 clades at the root. One clade consisted of genotype XX and XXI, and the other was
104  genotype VI. Genotype VI was further split into 8 subtypes. The topological structure
105  of the phylogenetic tree was associated with the geographical distribution of these
106  PPMV-1 strains. Some subtypes were predominant in particular countries, for example
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107 VI0.2.2.2, V1.21.1.2.1, and VI.2.1.1.2.2 in China, and VI1.2.1.2 and VI1.2.1.1.1 in the
108  United States (supplementary fig. 1A). We then analyzed transmission intensity using
109  BSSVS to infer the forces that drive specific genotypes to dominance in different
110  countries. The model identifies Iraq as the PPMV-1 distribution center, consistent with
111  its previously identified origin in that region (Kaleta and Deursen 1985), and Europe to
112 Africa spread is more frequent (supplementary fig. 1B). We further inferred the isolates
113 from China or the United States formed special subtypes due to relatively infrequent
114  country-to-country spread (supplementary fig. 1B). We also found that the host range
115  of different genotypes was significantly different. Genotype XX mostly infects non-
116  pigeon birds, and Genotype XXI and VI are primarily found in pigeons. The pigeon
117  proportion as hosts of the United States and China subtype increases with time (fig. 1D
118 and supplementary fig. 1C). The results indicated host shift may be the main
119  evolutionary strategy of PPMV-1.

120 Due to the special subtypes, we focus on the virus isolated in China. 241 PPMV-1
121 outbreaks in 26 of the 34 provinces, municipalities, and minority autonomous regions
122 in China were recorded (Supplementary Table 4). PPMV-1 prevalence was highest in
123 the eastern and southern regions, especially in Guangdong and Guangxi Provinces
124  (supplementary fig. 2A). To create a geographically discrete partitioning scheme, 34
125  provinces and cities were divided into seven regions on the basis of geographic
126 proximity as previously described (Bi et al, 2020). The prevalent subtypes in each of
127  the seven regions are largely the same and have no regional preference. The PPMV-1
128  phylogenetic tree in China is ladder-like (that is the subtypes are replaced one by one)
129  and the Bayesian analysis placed the root of the tree in the East, with a posterior
130  probability of 0.81, which suggested that PPMV-1 emerged from East China (fig. 1A).
131 In China, the regional distribution of PPMV-1 subtypes is relatively uniform, which is
132 supported by BSSVS model analysis (supplementary fig. 2B). We also observed
133 migration links from the South and the Northwest to the Northeast that are much
134  stronger than from other regions (supplementary fig. 2B). The highest Bayes factors
135  (BF, BF> 1000) was observed from the South to the East or the Southwest, from the
136  East to the Center and the Northeast, and from the Northeast to the Center
137  (supplementary fig. 2B). The highest migration rate (MR>= 1.5) is from the South and
138  the Northwest to the Northeast. The general transmission trend is from the South to the
139  North (supplementary fig. 2B).

140  The MCC tree of all isolates recorded in China revealed that XX was the original
141  genotype, and was complete replaced from 2000 by a new variant (V1). Genotype VI
142 emerged in 1992 in Zhejiang, and mainly the V1.2.2.2 subtype initially. Subsequently
143 VI1.2.1.1.2.1 appeared and increased rapidly. VI.2.1.1.2.2 replaced VI.2.1.1.2.1 as a
144  dominant PPMV-1 subtype in the past ten years (fig. 1B). We observed the virus
145  continues to spread rapidly, a dramatic rise in number of PPMV-1 cases from 2000-
146 2014 and a decline in recent years (fig. 1B). Phylodynamic modeling of the effective
147  population sizes of dominant subtypes (V1.2.1.1.2.1 and VI1.2.1.1.2.2) in recent ten
148  years indicated that VI1.2.1.1.2.2 expanded rapidly since its emergence, and exceeded
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149  VI1.2.1.1.2.1in 2010 (fig. 1C), which is consistent with the percent of subtypes (fig. 1B).

150  Host range changes of each subtype in China were similar to the global trend, with the
151  proportion of pigeons as hosts increases with time (fig. 1D). We next used a Bayesian
152  stochastic search variable selection (BSSVS) procedure to identify PPMV-1 host shifts
153  among pigeons, chickens, and wild birds. BF was used to estimate statistical support
154  for these shifts. We identified two highly supported (BF > 3) host shifts from pigeons
155  to chickens and wild birds. To quantify the magnitude of these host shifts, we estimated
156  the number of host switching events (Markov jumps) per unit of time. Pigeons were the
157  most frequent source and chickens were the most frequent recipients during host shift
158  events. The virus had a capacity to spill over into non-pigeons but seldom came back
159  (fig. 1E). We therefore confirmed that host shift may be the driving force of PPMV-1
160  evolution.

161  Three P protein Amino Acid Substitutions Drive the PPMV-1 Evolution

162  In order to identify proteins driving the virus evolution, the average non-synonymous
163  substitution/synonymous substitution rate was calculated for the whole protein. The
164  data showed that all the six proteins were under negative selection, and dN/dS ratio of
165 P and F protein are higher than the other proteins (fig. 2B). Notably, The dN/dS of P
166  protein is about three times that of NP, M and L protein. What” more, some regions
167  cumulative dN/dS of the P protein and F protein are larger than 1 (fig. 2A), these
168  proteins may become evidence of adaptive evolution.

169  To confirm the role of F and P protein in host shift, the evolution of PPMV-1 from
170  different hosts was analyzed using Maximum-Likelihood trees and median-joining
171 networks based on complete F (supplementary fig.3A and 3C) and P gene (Figures S3B
172 and S3D) sequences. Obvious “host jumps’ (a cross-species transmission of a pathogen
173 that can lead to successful infection) was observed in the phylogenetic analysis by both
174  methods, and the amino acid of F and P protein evolutionary are positively correlated
175  (supplementary fig. 3E)

176  Since virus adaptation is crucial to host jumping, if the genetic markers that adapt to
177 new hosts can be identified and their impact on virus transmission can be determined,
178  then the genome information can be used to predict future risks (Pepin et al, 2010).
179  Some sites are host-specific and can be used as markers to distinguish hosts (Allison et
180  al, 2014; Lee et al, 2019; Pascelli et al, 2020). We therefore explored which proteins
181  and sites play an important role in host shift, and then used phylogenetic tree-based
182  approach to genome-wide association studies (treeWAS) to make these inferences, and
183  linking genotype to phenotype by testing for statistical associations between the two
184  (Collins and Didelot 2018). The results showed that no nucleotide sites related to host
185  species were found in F gene (supplementary fig. 3E), and 22 nucleotide sites (harbored
186 5 non-synonymous mutations: T93K, W136R, R163G, P314L, A343V) in P gene were
187  found to be reliable genetic markers for host adaptation. (fig. 2C-H).
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188  Since the emergence of APMV-1 was previously attributed to adaptation in chickens
189  and other wild birds, it is now clear that the emergence of PPMV-1 involved the host
190  shift event. The PPMV-1-specific residues were likely acquired during the virus
191  evolution in pigeons. From the phylogenetic tree, the five mutations were clearly
192  displayed during the evolution from APMV-1 into non-pigeon PPMV-1 till pigeon-
193  specificity (fig. 3A). Interestingly, the amino acid substitutions occur largely in host
194  shift rather than genotype switch (fig. 3A).

195  To validate whether the sites linked to adaptation, we incorporated P mutations
196  separately in 93, 136, 163, 314, and 343 into the APMV-1 genome and analyzed the
197  mutant virus. Pigeon fibroblast (PEF) cells were then infected with the mutant and wild
198  type strains, and the virus titers were measured every 12 hours until 48 hours post
199 infection. The growth curves of these APMV-1 mutants were variable. Mutant strains
200  showed residues T93K, W136R, R163G significantly higher virus titers than wild type,
201  especially site R163G, while the viral titer was reduced on the P314L and A343V
202  mutants (fig. 3B). Further mini-genome activity tests also showed similar results (fig.
203  3C), which suggested the importance of these mutations in regulating the biological
204  activity of polymerase. These results support the stepwise adaptation of PPMV-1 since
205 its introduction from the APMV-1 through the three mutations on P protein.

206 We next focused on the three P protein amino acid substitutions of the virus in China.
207  Aphylogenetic analysis based on the complete P protein was conducted and found that
208  Site 93 settled as K after multiple changes (T, N, R), Site 136 changed from W to R/K,
209  while site 163 changed from R/K to G (supplementary fig. 5). Convergent evolution
210  can be used to differentiate adaptation from neutral genetic variation on the basis of
211  sequence data (Pepin et al, 2010). To verify whether the virus has undergone adaptive
212  evolution, a convergent evolution analysis was performed in the United States. We
213 found the three mutations are similar to those in China (193K, R163G, beisides, 136R
214 is consistent with the mutated site of the Chinese strain) (supplementary fig. 6).

215  APMV-1 R163G Increases Transmission Efficiency and Pathogenicity in Pigeons

216  Since R163G is the most sufficient site to improve the replication capacity in PEF cells,
217  we thus compared the contact transmission potential of APMV-1, APMV-1 R163G, and
218  PPMV-1 viruses in 4 weeks old pigeons (the PPMV-1 isolate was used as positive
219  control). The viral load of APMV-1 R163G group in the ranges of 1.15-3.91 Ig TCIDsy,
220  higher than those inoculated with APMV-1, with the viral load in the ranges of 1.25-
221  2.83 (figs. 6B and 6C). In contact pigeons, APMV-1 R163G viral load in the ranges of
222 0.34-1.23 Ig TCIDsp, higher than those exposed to APMV-1, with viral load in the
223 ranges of 0.15-0.25 Ig TCIDso (figs 6B and 6C). These results suggest that APMV-1
224  R163G virus showed better replication in inoculated donors and transmitted more
225  rapidly to contact pigeons than the APMV-1 wild type isolates.
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226  We found that APMV-1 R163G replicated to higher titers than APMV-1 at 1 day post-
227  infection (dpi) in pigeon lung, trachea, and brain explants from 2 dpi to 4 dpi (figs. 6D,
228  6E and 6F). Moreover, pigeons infected with APMV-1 R163G displayed rapid weight
229  loss than that infected with APMV-1 wild type (fig. 6G). One pigeon died on 12 dpi. As
230  expected, the pigeons infected with APMV-1 all survived (fig. 6H).

231  APMV-1 R163G Enhances Its Replication Ability by Increasing Degradation of
232 LSm14A

233 Since the P protein is associated with host shift, we set out to identify host cellular
234  factors that associated with the P protein. We focused on LSm14A since it has the
235  highest sum PEP score as identified by LC/MC. LSm14A is a key innate immunity
236 component of processing body (P-body) that mediates interferon-p (IFN-B) signaling
237 by viral RNA (Li et al, 2012). To confirm whether chicken LSM14A could inhibit
238  APMV-1 replication, we overexpressed chicken LSm14A in DF-1 cells. The results
239  showed that expression of LSm14A significantly inhibited APMV-1 replication (figure
240  7B). To further confirm that LSm14A could inhibit APMV-1 replication, a comparative
241  analysis was carried out by CRISPER-Cas9 at later time points (36h) to examine
242  whether the knockdown of LSm14A could enhance APMV-1 replication. The results
243  showed that knockout of LSm14A significantly enhanced APMV-1 replication at 36 h
244 post infection (fig. 7C). This result was also verified by Western blot (fig. 7D). The
245  R163G mutation on P protein increased degradation of LSm14A (fig. 7E), thus it may
246  facilitate escape from host immune responses.

247  Materials method

248  Ethics Statements

249  These animal studies were performed in strict accordance with the Guidelines for the
250  Care and Use of Animals in Research, which are issued by the Institute of Zoology,
251  Chinese Academy of Sciences (Approval Number 10212017).

252  Cells, Viruses and animals

253  The pigeons were bought from a hatchery in Miyun District, Beijing, and certified by
254  hemagglutination inhibition (HI) experiment to have no antibodies of NDV and AlV.
255  These pigeons were housed in separate cage in an animal room under biosafety
256  conditions with a suitable temperature and an adequate supply of food and water.

257  The APMV-1 strain FA48E9 (MG456905) was kept in our laboratory, and the mutant
258  viruses were produced from an infectious cDNA clone.

259  The PEF cells were isolated from 10-day-old pigeon embryos, and maintained in
260 DMEM (Gibco, 11965-092) supplemented with 10% FBS and 1x penicillin,
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261  streptomycin.
262  Bayesian Phylogenetic Analysis

263  The complete F gene (1662bp) sequences from PPMV-1 isolates were downloaded
264  from Genebank and aligned using MEGA version 7. We selected the best fitting model
265  using jJModelTest v2.1.7 on the basis of the Akaike Information Criterion (AIC). Time-
266  scaled phylogenetic analyses were conducted using an uncorrelated relaxed clock with
267 the GMRF Bayesian tree and general time-reversible (GTR) model with gamma 4
268  substitution and invariant site model parameters jModelTest output. Molecular clock
269  was calibrated under an uncorrelated relaxed clock grouped with different trees using
270  BEAULi (v1.8.4). The Bayesian Markov Chain Monte Carlo (MCMC) chain length was
271 100,000,000 generations with sampling every 10,000 generations. Mixing was assessed
272 using effective sample size (ESS) using Tracer (v1.6). The MCC tree at each iteration
273 was generated by TreeAnnotator v.1.8.4, discarding first 10% of the chains as burn-in.
274 The resulting MCC tree was visualized with FigTree software (v1.4.3) and edited with
275  Adobe Instructor. Bayes factors (BFs) were used for posterior probability calculation.

276  Bayesian Skyline Plot Construction

277  Acoalescent-based Bayesian skyline plot was implemented using a piecewise-constant
278  skyline model from the BEAST version 1.8.4 software. This plot was used to quantify
279  contributions of potential predictors of PPMV-1 dispersal in China and the world.

280  Discrete Phylogeography and Transmission between Hosts

281  To infer Bayes factors that are associated with PPMV-1 dispersal among countries and
282  regions within China, we used Bayesian stochastic search variable selection (BSSVYS)
283  to determine the most probable locations of ancestral nodes in the phylogeny and the
284  history and rates of lineage movement among locations (Lemey et al, 2009). Complete
285  F gene sequences from China and the rest of the world were selected to analyze using
286  the BSSVS method. Six candidate clocks with models were compared using a Path
287  Sampling/Stepping-stone analysis in order to estimate the best-fitting demographic
288  model for our dataset. We then used BF comparisons from the resulting marginal-
289 likelihood estimates to select among the models. We found that the uncorrelated clock
290  with constant model provided the best fit to our data (Supplementary Tablel).

291  We inferred the global and within-China geographic origins of PPMV-1 and its
292  significant dispersal routes between affected countries or regions using discrete-state
293  ancestral reconstruction methods implemented in BEAST SPREAD3 version 0.9.6. We
294  used BF > 3 as the significance threshold.

295  The results of BSSVS were summarized using spreaD3 v0.9.7.1 (Bielejec et al, 2011),
296 a json file was generated to identify the routes of geographic diffusion and their
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297  associated Bayes factors and the spatio-temporal pathways of PPMV-1 were visualized
298 by Echart (https://echarts.apache.org).

299  To model transmission between host species, chicken, pigeon, and wild birds were used
300  as discrete traits. We combined the best fitting coalescent tree model and branch-rate
301  prior as described above. The BSSVS method was used to identify significant migration
302  routes and their directionality between hosts. Using the Markov-jump (MJ) method, the
303 intensity of backward and forward transitions within discrete trait matrices was inferred
304  as a proxy for the mean number of viral jumps between hosts.

305  Selection Pressure Analysis of PPMV-1 Proteins

306  Sequences of the six PPMV-1 proteins were aligned using MEGA 7.0, respectively.
307  After deleting terminators, we used datamonkey (http://www.datamonkey.org/) to
308  analyze selection pressure. The BUSTED (Branch-site Unrestricted Statistical Test for
309  Episodic Diversification) method was used. Selection intensity was expressed as dN/dS.

310  Synonymous and Non-synonymous Substitution Rate Analysis

311  The synonymous and non-synonymous substitution rates were estimated using SNAP
312 (Synonymous Non-synonymous Analysis Program) v2.1.1
313  (https://www.hiv.lanl.gov/content/sequence/SNAP/SNAP.html). The results are
314  presented by cumulative dN/dS, with dN>dS indicative of positive selection.

315  Statistical Analyses of the F and P proteins

316 The F and P protein amino acid sequences were type-entered into a database and
317  analyzed using SPSS software version 20. Categorical variables were compared using
318  the Pearson y2 test, Fisher’s Exact Test or Linear-by-Linear. Comparison group pair-
319  wise P-values were corrected using the Bonferroni method. P <0.05 were considered
320 statistically significant.

321  Mutations Linking Host Shift via treeWAS

322  We selected 101 viral sequences that infect chickens or pigeons. The protein sequences
323  of the F or P gene were aligned with MUSCLE v3.8.31 (Edgar 2004), and the codon
324  alignments were made based on the protein alignment with RevTrans (Wernersson and
325  Pedersen 2003). RAXMLV8.2.12 (Stamatakis 2014) was used to build the maximum
326  likelihood phylogenetic tree of aligned codon sequences with the parameters “-p 1234
327 -m GTRCAT’. Based on codon alignments and phylogenetic trees, we screened
328  possible host-related loci using treeWAS (Collins and Didelot 2018).

329  Virus Rescue and Site Mutation
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330 A reverse genetics system for the generation of recombinant viruses of the APMV-1
331  strain as previous research (Dortmans et al, 2009).

332  The mutations on P protein were conducted with Mut Express 11 Fast Mutagenesis Kit
333 V2 (Vazyme, C214), and the mutant and vector linearization primers were designed on
334 Vazyme website (https://crm.vazyme.com/cetool/singlepoint.html). The primer
335  sequences list on Supplementary Table2.

336  Viral Replication Kinetics in Vitro

337  PEF cells in 96-well plates were inoculated mutant and wild strains at an MOI of 0.01.
338  Supernatants were collected at 12, 24, 36, 48 hpi and virus titers were determined via
339  limiting dilution in PEF cells using the approach of Reed and Muench and expressed
340  as the 50 % tissue culture infective dose (TCIDsy).

341  Mini-genome PPMV-1 System and Dual Luciferase Assay

342  To detect whether mutations in the P protein influenced polymerase activity, a mini-
343  genome plasmid was constructed. 3’- and 5’- UTRs derived from KJ607169, the firefly
344  luciferase gene, was reverse complementary cloned into pOK12, followed by the
345  hepatitis delta virus ribozyme and the terminator. BSR T7 cells were seeded in 6-well
346  culture plates and co-transfected with plasmids each expressing NP (2.5 pg), P mutated
347  or WT (1.25 pug), and L (1.25 ng) proteins, as well as a firefly luciferase reporter gene
348  (RLuc, 20 ng) with a Renilla luciferase expression plasmid (phRL-TK) as an internal
349  control. The washed cells in PBS twice at 24 h after transfection, added 200 pl cell lysis
350  buffer to each well, and shocked for 10 min. 20 pl of lysate from each well was used
351  for dual the luciferase assay using a commercial kit (Vazyme, DL101-01). The relative
352 luciferase activities were defined as the ratio of FLuc to RLuc according to the
353  manufacturer’s instructions (Dortmans et al,, 2010). Three separate experiments were
354  performed, with luciferase expression measured in triplicate in each experiment.

355  Compare the Pathogenicity of APMV-1, APMV-1-R163G and PPMV-1

356 A total of 30 male and female pigeons at 4 weeks old, with approximately equal body
357  weight of -10-10% were used in our study. These pigeons were randomly divided into
358  six groups, and housed in 12 h dark and 12 h light environments with a suitable
359  temperature and an adequate supply of food and water. Three groups of four-week-old
360  pigeons of six birds each inoculated with 10° EIDso of virus in a volume of 200 pl via
361 intranasal route. Another three groups of pigeons representing contact groups were
362 inoculated with 200 pl PBS via the same routes and co-housed with the three inoculated
363  groups of pigeons to monitor contact transmission between pigeons after 24 hours after
364  inoculation. The negative control group was inoculated with 200 pl via intranasal route.
365  Three pigeons of each group were euthanized at 3 dpi, and the remaining birds were
366  monitored for illness and mortality for 14 days.
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367  Tissue Distribution

368 At 3 days post-inoculation (dpi), three from the four groups were euthanized to analyze
369 viral replication in the brain, lung, and trachea. The virus was isolated from tissues of
370  the same weight, and TCIDsg in DF-1 cells (chicken fibroblast cell line) was used to
371  estimate viral loads of the four groups, 3 x 10* DF-1 cells were seeded in 96-well plate
372 with five repetitions 1 day before infection. Twenty-four hours later, the cells were
373 infected with different dilutions of the virus for 1 h at 37°C with shaking every 12 h
374  and confirmed by the hemagglutination assay. TCIDso was calculated using the Reed-
375  Muench method. Data were analyzed using Prism (v.5.01) software. Statistical
376  significance was set at a P-value of <0.05 (Two-way ANOVA).

377  Compare the Transmissibility of APMV-1, APMV-1-R163G and PPMV-1

378 At1l,3,5 7,9 11 and 13 dpi, oropharyngeal swabs were collected from all pigeons
379  and placed in tubes with phosphate-buffered saline solution and 2% fetal bovine serum
380 and stored at —80°C until RNA extraction.

381 Identification of Host Proteins Related to the P protein

382  P-Hiswas ligated into the Vector pFastDual, and verified by Western blot analysis (data
383  not shown). Lysates were prepared from Sf9 cells that were infected with baculovirus
384  expressing P-His protein; uninfected Sf9 cells were used as a control. Affinity
385  purification by Nickel column purification (Smart lifesciences) was directed against the
386  His tag; therefore only host proteins that associated with P were precipitated by this
387 method (Supplementary fig. S6A). The samples were separated using a 10% SDS-
388 PAGE gel, followed by Protein bands were visualized using Coomassie brilliant blue
389  staining (Supplementary fig. S6B). The indicated protein-containing band was cut out
390 for mass spectrometry (Supplementary Table3). LSm14A scores highest. We then used
391  co-immunoprecipitation confirmed the interaction of LSm14A with P protein in DF-1
392  cells.

393  Knockout and Overexpression

394  Chicken LSM14A (Gene ID: 415781) was cloned from cDNA of the DF-1 cells, using
395 the following primer sequences: LSM14A-F:
396  taagcttggtaccgagctcggatctATGAGCGGGGGGACGCCCTACATC, LSM14A-R:
397  cactgtgctggatatctgcagaattcCTATGCAGCAACTTTGTTGTCTTTCCTATATTCAAAG
398 TCAGCAAACTCCC. The purified PCR product was digested with BamH | and EcoR
399 |, and inserted into the eukaryotic expression vector pcDNA 3.1 (vector).

400 We designed two sgRNA for CRISPR knockout of LSMI14A using
401  design.synthego.com: LSMsg-F1, CACCGCTGGCCAAGGTTCGTTCCTT; LSMsg-
402 R1, AAACAAGGAACGAACCTTGGCCAGC; LSMsg-F2,
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403 CACCGATACCACTGCGTCCTAATCG; LSMsg-R2,
404  AAACCGATTAGGACGCAGTGGTATC. The sgRNA were then cloned into Lenti
405  CRISPER plasmid for subsequent transfection into 293T cells.

406  Western Blot Analysis

407  Protein was extracted from cells in Radioimmunoprecipitation assay (RIPA) lysis buffer
408  containing 1x complete Protease Inhibitor Cocktail (bimake). Samples were analyzed
409 by SDS-PAGE and followed by electrophoretic transfer to polyvinylidene fluoride
410  membranes, which were then blocked and incubated with primary antibodies. The
411  following antibodies were used in the experiments: anti-LSm14A (dilution 1:1000),
412 anti-P (dilution 1:2000), B-actin (dilution 1:5000).

413

414  Disscussion

415  PPMV-1, an APMV-1 variant, establishes a species-specific relationship with its new
416  host during the evolution process. In this study, we provide unique insights into the
417  drive factor of PPMV-1 jumping from multiple birds to pigeons via a series of analyses.
418  We clarified adaptation driver is the main factor on host shift rather than ecological
419  driver. P protein plays an important role in host shift by select pressure and treeWAS
420  analysis. We demonstrate through molecular biology experiments the variants increase
421  fitness in novel hosts via increasing degradation sensor- LSm14A. The well-fit variants
422  replicate efficiently in the new host, increasing the chance of spillover to other hosts,
423  thereby increasing the risk of a pandemic (fig. 5).

424 The evolutionary analysis on a global scale shows the virus in some countries
425  compartmentalizing the genotypes within geographically discrete, possibly due to
426  relatively low country-to-country transmission, especially in China and the United
427  States. Isolates from countries with frequent communication typically cluster together.
428  Europe was the epicenter of global PPMV-1 dissemination, it might because of the
429  movement of pigeons through commercial trade (Chong et al, 2013; Hicks et al, 2019).
430  In China, the initially dominant subtype is gradually replaced by a new subtype and
431  repeat the process, and formed a ladder-like PPMV-1 phylogeny. This evolution mode
432 implies the presence of selection pressure, probably driven by host immune escape
433 (Wolz and Frost 2013). Regions within the country share subtypes without observable
434  differentiation. Viral spread occurred most frequently from south to north China,
435  possibly because these regions are on the border between the Central Asian and East
436 Asian/Australian migratory flyway (Olsen et al, 2006). Industry practices that involve
437  transporting birds born in the South to be raised and bred in the North, also likely
438  contribute to this pattern of PPMV-1 spread. Overall, these results suggest that animal
439  exchange is an important contributor to the dissemination of PPMV-1 subtypes.
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440  The proportion of pigeons infected by PPMV-1 increased with its evolution, and
441  pigeons are the most susceptible host species to this virus (Smietanka et al, 2014;
442  Mayahi et al, 2017; Zhan et al, 2020), indicating that the PPMV-1 evolution trajectory
443 is host-specific rather than host expansion. Since its emergence, PPMV-1 has continued
444  to adapt for pigeon infection, resulting in the emergence of variants with unique genetic
445  profiles. Viral adaptation to new hosts primarily manifest as amino acid substitutions
446  that allows more efficient virus cell entry in the novel host (Ito et al, 1998), blocks
447  interactions with detrimental host proteins (Mangeat et al, 2003; Stremlau et al, 2004)
448  or promotes escape from both the new and the old host's immune responses (Wei et al,
449  2003; DJ et al, 2004). The probability of a host shift will also depend on the number of
450  mutations required to adapt to novel hosts. Host shifts are often associated with changes
451 in the viral polymerase complex (Gabriel et al, 2005; Ackermann et al, 2007). Our
452  treeWAS analysis shows five non-synonymous on P protein (a member of polymerase
453  complex) may associate with host shift. In some cases, adaptation to a novel host relies
454 on specific mutations that arise repeatedly whenever a pathogen switches to a given
455  host (Longdon et al, 2018). In this study, the three selected PPMV-1 P protein sites
456  (T93K, W136R, R163G) underlie the APMV-1 evolution to PPMV-1. A previous
457  research indicated that Genotype VIII evolved as Genotype XIX and V, then evolved
458  Genotype XX PPMV-1 (Dimitrov et al, 2019), thus Genotype VII1 and V were used to
459  represent APMV-1 for analysis. From the evolutionary trends, we can clear see the
460  mutations occur when host shift rather than genotype shift. Each amino acid
461  substitutions, whether affects adaptation are measured by a mutational fitness effect.
462  Five mutations on the reconstituted P protein show that single mutations at three sites
463  could enhance the replication of APMV-1 in pigeon embryo fibroblasts, and the
464  mutation R163G is the most effective. Importantly, R163G facilitated the transmission
465  and pathogenicity in pigeons. LSm14A is known to be involved in antiviral signaling
466  pathway, and its transcriptional levels of the spleen tissues remained high after F48E9
467  (high virulent) and P3 (moderate virulent) infection (Tian et al, 2019). Degradation of
468  LSm14A may help viruses evade host defenses (Saeed et al, 2020), thus APMV-1
469  R163G is more pathogenic and transmissible than APMV-1.

470  The single mutation on virus could switch the host preference, which is in line with
471  previously reported findings. For example, Venezuelan equine encephalitis virus to
472  replicate efficiently in horses when it switched from rodents in the early 1990s
473 (Anishchenko et al, 2006), the single mutation in the AV HA protein that changed
474  receptor binding preferences from a-2, 6 to a-2, 3 (Nicholls et al, 2007), and the
475  epidemic in humans associated with a CHIKYV strain carrying a single mutation in the
476  envelope protein gene (Tsetsarkin et al, 2007). Amino acids 136 and 163 on the P
477  protein are located in a hypervariable motif at residues 135-165 near the RNA editing
478  site, adjacent to the cysteine enriched region of the V protein that constitutes the zinc
479  finger structure. We speculate that the K163G mutation changed PPMV-1 host
480  preference via alterations in alkaline acid similar to PB2 627 of AlV (Lee et al, 2019;
481  Liuetal, 2019). The mutation on P protein causes a mutation (E163R) on the V protein.
482  The C-terminal region of the APMV-1 V protein exerts IFN antagonistic activity (Park
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483 et al, 2003), of which the residue 163 located. Likewise, the mutation changed the
484  amino acid charge of the V protein.

485  Our findings inferred that PPMV-1 may have originated from a variety of birds, the
486  intermediate amplifying and transmitting host, which consistent with previous findings
487  (Chong et al, 2013). Our BSSVS analysis indicated that the virus tends to spill over
488  from the susceptible host, but seldom comes back, which consistent with previous
489  findings (Xiang et al, 2020; Chen et al, 2021). We inferred that the virus accumulates
490 in the susceptible host due to its efficient replication capabilities, with genotypes
491  exhibiting high titers more likely to spill over into other hosts.

492  PPMV-1 are not easy to infect species other than their natural host, whereas the
493  occasional cross-species transmission to other flocks or animals has been documented,
494  several most spill-overs result in a very severe disease in the new host, causes a
495  pandemic. Some studies suggested that multiple ND outbreaks, especially with the third
496  pandemic in Great Britain in 1984, were initiated by PPMV-1 that spread from pigeons
497  to chickens (Alexander 1988; Aldous et al, 2004). Subsequently, PPMV-1 was
498  responsible for other chicken ND outbreaks worldwide (Werner et al, 1999; Kommers
499 et al, 2001; Capua et al, 2002; Aldous et al, 2004; Liu et al, 2006). The PPMV-1 can
500  cause severe pneumonia and death in humans, however, we can’t obtain the P protein
501  sequences from these reaches. We can infer the Site 163 is G from the subtype, thus
502 human infection may be an accidental event. We can use the degradation ability of
503  LSm14A for preliminary explored infectivity of a PPMV-1 strain.

504  USA, another country has special PPMV-1 subtypes, VI.2.1 and VI.2.1.1.1, were
505  displayed in the evolutionary tree. Due to the limited number of PPMV-1 strains from
506  USA, we could not make robust inferences of evolutionary forces acting on the P
507  protein. These subtypes are distinct from those found in China but contain the similar
508  mutations. These parallel mutations provide compelling evidence that these genetic
509 changes are adaptive, with the same mutations evolving independently in response to
510  natural selection. Only a strong selective force is likely to cause multiple occurrences
511  of the same genetic make up originating from different starting points. Taken together
512  with the data from the APMV-1 virus, these results point to repeated evolution of the
513 same P protein sequences underlying host shifts, strongly suggesting that the
514  establishment of a new genotype will depend on ecological and host species traits, and
515  adaptive evolution is the main evolution driving force.

516  In present study, we document a stepwise adaptation of PPMV-1 to its pigeon hosts
517 involving multiple amino acid changes that appear essential for the successful host shift
518  and prolonged transmission. Our research highlights the importance of the amino acid
519  substitutions on P protein as a marker of both PPMV-1 origin and species-specific
520  polymerase function. Strictly host-specific viruses can cause epidemics once cross-
521  species transmission occurs. The emergence of PPMV-1 demonstrates how a virus can
522  successfully cross species barriers and become established as an epidemically spreading


https://doi.org/10.1101/2023.06.05.543675
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.05.543675; this version posted June 5, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY 4.0 International license.

523  pathogen in a new host.
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540  Figure 1. Host shift during evolution

541  A. Time-scaled maximum clade credibility F gene phylogeny with branches colored

542 according regions. 34 provinces and cities were divided into seven regions on the
543 basis of geographic proximity: Northwest (Xinjiang, XJ; Qinghai, QH; Gansu, GS;
544 Ningxia, NX, Shaanxi, ShaX), North (Inner Mongolia, NM; Hebei, HeB; Shanxi,
545 SX; Beijing, BJ; Tianjin, TJ), Northeast (Heilongjiang, HLJ; Jilin, JL, Liaoning,
546 LN), East (Shandong, SD; Anhui, AH; Fujian, FJ; Zhejiang, ZJ; Jiangxi, JX;
547 Jiangsu, JS; Taiwan, TW; Shanghai, SH), Southwest (Xizang, XZ; Yunnan, YN;
548 Sichuan, SC, Guizhou, GZ; Chongging, CQ), Central (Henan, HeN; Hubei, HuB;
549 Hunan, HuN;), South (Guangdong, GD; Guangxi, GX; Hainan, HaiN; Aomen, AM;
550 Hongkong, HK).

551  B. The proportion of various subtypes between 1985 and 2019 in China. The number
552 of cases is depicted by the line.

553  C. Comparison of Bayesian skyline plot between subtype VI1.2.1.1.2.1and VI1.2.1.1.2.2.
554 The shaded red and blue bands give the 95% HPD intervals of the estimates for
555 VI.2.1.1.2.1 and V1.2.1.1.2.2, respectively.

556 D. Changes of host species distributions during the evolution in China.

557  E. Significant transmission routes between host species inferred using the BSSVS

558 approach. BF values of each route were on top of the arrows. The chart summarized
559 total relative in and out transitions for each host.
560

561  Figure 2 The potential mutations in P gene may be associated with host shift

562  A. Evolutionary rates are estimated by cumulative dS/dN. The regions under positive
563 selection are indicated by black arrows.

564  B. dN/dS ratio of the six whole proteins.

565  C-H. Using treeWAS analysis, 18, 4 and 7 mutations were detected by C. subsequent

566 score D. simultaneous score E. terminal score, respectively. The sites were labeled
567 on the the corresponding figures. Manhattan plots for F. subsequent score G.
568 simultaneous score H. terminal score showing association score values for P gene.
569 The significance thresholds above the red line indicate significant associations.

570  Figure 3 Asingle amino acid change in P protein switches host preference

571  A. Amino acid substitutions of P protein of the APMV-1 and PPMV-1 strains. The
572 genotypes and hosts of PPMV-1 were labeled on the branches.
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B. Virus titers of PPMV-1 with single - amino acid mutations. Error bars represent the
SD of the mean from one representative experiment three biological replicate
samples and each experiment was repeated three times. *: P < 0.05; **: P < 0.01;
***: P <0.001; ****: P<0.0001; n.s: not significant (P > 0.05) by t test. * labeled
by different colors correspond to different mutant sites.

C. Polymerase activities of wild-type and mutants. The polymerase activity of each
mutant strain was compared with wild type strain. Error bars represent the SD of
the mean from one representative experiment three biological replicate samples and
each experiment was repeated three times. *: P <0.05; **: P<0.01; ***: P<0.001;
****: P<0.0001; n.s: not significant (P > 0.05) by t test. * labeled by different colors
correspond to different mutant sites.

Figure 4 APMV-1 R163G increased pathogenicity and transmissibility in pigeons
through increased degradation of host proteins

A-C. Contact transmissibility of APMV-1 A., APMV-1 R163G B., and PPMV-1 C. in
pigeons. Each virus was tested in duplicate with a total of three donors and three
direct contacts. D-F. Replication kinetics in pigeon brain D., trachea E. and lung F..
Each data point represents one explant sample, and mean and SD are shown.
Statistical differences were calculated by two-way ANOVA. *: P < 0.05; **: P <
0.01; ***: P <0.001; ****: P<0.0001; n.s: not significant (P > 0.05)

Figure 5 The mutation on P R163G can enhance the virus replication by increase
degrade LSM14A protein

A. Inhibition of APMV-1 titer by overexpression of LSM14A.

B. Enhancement of APMV-1 titer by CRISPER-Cas9 knockout of LSM14A.
C.PRRSV replication is inhibited by LSM14A on protein level.

D. The mutation on P R163G increases the ability to degrade LSM14A protein.
Figure 6 Schematic model to show the evolution from APMV-1 to PPMV-1

Host adaptation drives evolution of APMV-1 to PPMV-1. Three amino acid residues on

P protein play an important role in host shift. The well-fit variants increasing the risk
of a pandemic.
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