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Abstract 
 

Limited knowledge about a substantial portion of protein coding genes, known as "dark" 

proteins, hinders our understanding of their functions and potential therapeutic applications. To 

address this, we leveraged Reactome, the most comprehensive, open source, open-access 

pathway knowledgebase, to contextualize dark proteins within biological pathways. By 

integrating multiple resources and employing a random forest classifier trained on 106 

protein/gene pairwise features, we predicted functional interactions between dark proteins and 

Reactome-annotated proteins. We then developed three scores to measure the interactions 

between dark proteins and Reactome pathways, utilizing enrichment analysis and fuzzy logic 

simulations. Correlation analysis of these scores with an independent single-cell RNA 

sequencing dataset provided supporting evidence for this approach. Furthermore, systematic 

natural language processing (NLP) analysis of over 22 million PubMed abstracts and manual 

checking of the literature associated with 20 randomly selected dark proteins reinforced the 

predicted interactions between proteins and pathways. To enhance the visualization and 

exploration of dark proteins within Reactome pathways, we developed the Reactome IDG 

portal, deployed at https://idg.reactome.org, a web application featuring tissue-specific protein 

and gene expression overlay, as well as drug interactions. Our integrated computational 

approach, together with the user-friendly web platform, offers a valuable resource for 

uncovering potential biological functions and therapeutic implications of dark proteins. 

 

Introduction 
 

Observational data from clinical genetics and systematic mutagenesis in mice suggest that 

almost all of the roughly 20,000 proteins encoded in the human genome are needed for normal 

human function [1] (http://www.mousephenotype.org/). Nevertheless, a recent survey of the 
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human proteome identifies approximately one third of proteins as understudied or “dark”, with 

few or no published molecular annotations and not the subjects of substantial current research 

[2]. 

  

Pathway knowledgebases extend the classic concept of a metabolic reaction to include covalent 

modification of protein substrates, formation and dissociation of complexes and movement of 

molecules between subcellular locations. These reactions associate proteins with the full range 

of molecular functions and link them into pathways based on overlapping inputs, outputs, 

catalysts and regulators to describe the reaction space of an organism as a network connected 

by the many proteins and small molecules involved in multiple processes [3]. This network 

allows effects of single proteins and their interactors to be tracked across pathways, and 

network-based data analyses exploit it to search for effective biomarkers and drug effects [4]. 

Placing proteins with unknown functions into the context of pathways using evidence, such as 

protein/protein interactions or gene co-expression, is a popular and mature approach to predict 

the functions of these proteins [5], so-called “guilt-by-association”. A genome-scale pathway 

knowledgebase provides a rich context for such an approach, increasing its utility and reliability. 

 

Machine learning approaches, such as naive Bayes classifier, support vector machines, and 

random forest, have been frequently used to predict protein functional interactions by integrating 

multiple types of evidence [6]. Results produced from these approaches measure the likelihood 

of an interaction between two proteins, therefore suggesting a functional similarity between 

them. Leveraging these predicted functional interactions between dark proteins and proteins 

that have been annotated in a pathway knowledgebase, we may place those dark proteins in 

the context of pathways, facilitating the inference and learning of potential biological functions of 

dark proteins and their therapeutic potentials.  

 

Reactome [7] is arguably the most comprehensive, open source and open access biological 

pathway knowledgebase. The content in Reactome is manually curated and peer reviewed by 

experts in the field to ensure high quality. As of release 84 (released in March 2023), Reactome 

covers 11,074 human protein coding genes, which are annotated into 14,194 complexes, 

14,516 reactions and 2,615 pathways, supported by over 36,000 PubMed indexed literature 

references. Reactome pathways constitute a wide range of human biological processes, 

comprising diverse domains such as metabolism, signaling transduction, cell cycle, DNA repair, 

programmed cell death, developmental biology and cell cell interactions and communications. 

This broad scope renders Reactome as an all-encompassing platform to place dark proteins 

within the context of established biological pathways using machine learning approaches.  

 

In this paper we describe a computational framework to place dark proteins and any other 

human protein not yet manually curated in Reactome into the context of high quality, manually 

curated Reactome pathways. Our framework first predicts functional interactions between 

proteins after training a random forest using 106 protein or gene pairwise relationships as 

features, and then infers potential functional involvement of proteins in individual Reactome 

pathways based on pathway enrichment analysis and fuzzy logic based simulation. We 

measure the quality of the inference results by mining PubMed abstracts using a large language 
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model called BERT [8], by analyzing an independent single cell RNA-seq (scRNA-seq) data and 

through conducting manual curation. We also introduce a web application, the Reactome IDG 

portal, deployed at https://idg.reactome.org, for researchers to explore and investigate the 

functions of dark proteins using Reactome.  

 

Results 

 

Placing Dark Proteins in the Context of Reactome Pathways via Predicted 

Functional Interactions  

The high quality, manually curated pathways in Reactome provide a framework to understand 

the functions of proteins and their action mechanisms via biochemical reactions. Reactome has 

annotated a small portion of proteins categorized as dark (i.e. Tdark) proteins according to the 

Reactome database (Release 84, March 2023) and Pharos web site (April 2023): 1,351 of total 

5,679 dark proteins. To place those dark proteins that have not been annotated in Reactome 

into the context of Reactome pathways, we first collected a variety of pairwise relationship 

features from multiple data sources and then trained a random forest using functional 

interactions extracted from annotated Reactome complexes and reactions as positive data 

points and random pairs as negative data points. After that, we predicted whether or not a pair 

of proteins could functionally interact with each other based on the trained random forest model. 

Based on the predicted functional interactions (FIs), we inferred how likely a dark protein could 

potentially functionally interact with pathways annotated in Reactome (Figure 1). Though this 

workflow was originally designed for dark proteins, it can be applied to any proteins, including 

proteins that have not been annotated in Reactome or proteins that have been annotated but 

not for specific pathways.  

 

 
Figure 1. Analysis workflow to place dark proteins in the context of Reactome pathways 

via machine learning, enrichment analysis and mathematical modeling. FIs: Functional 

Interactions.  

 

In total we have collected 106 gene/protein pairwise features, including 48 tissue specific gene 

co-expressions from GTEx [9], 31 cancer specific gene co-expressions from TCGA [10], 20 
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gene similarities from Harmonizome [11], 5 physical protein-protein interaction datasets in 

human and mapped from mouse, fly, worm and yeast based on protein orthologous mappings, 

1 protein domain-domain interaction data from pFam [12], and 1 biological process annotation 

from GO [13]. The random forest trained with these features demonstrated good performance 

with AUC of 0.89 (Figure 1) and acceptable scores of precision, recall rate and F1 (Figure 2A). 

The importance analysis of individual features indicated that the top three most important 

features for this trained random forest are: GO biological process annotation sharing 

(GOBPSharing), physical protein-protein interactions from human (HumanPPI), and physical 

protein-protein interactions mapped from yeast (YeastPPI) (Figure 2B), most likely because 

these three features have the largest positive counts in the positive data points in the training 

dataset (54,007 pairs out of 96,122 FI positive pairs for GOBPSharing, 31,612 pairs for 

HumanPPI and 19,664 for YeastPPI).  

 

 
Figure 2. The performance of the trained random forest and its feature importance. 

 

Quantifying Interacting Pathways for Dark Proteins 

Based on predicted functional interactions between a protein and a set of other proteins that are 

annotated for a specific pathway in Reactome, we developed three scores to measure the 

likelihood or strength of an interacting pathway for a protein (Figure 1). The first score is 

“enrichment score”, which is based on Reactome pathway enrichment analysis for a set of 

proteins that are predicted to functionally interact with a protein. We use negative log10 of FDR 

from the enrichment analysis as the enrichment score. The second two scores, referred to as 

simulation scores, are derived from the mathematical modeling approach based on fuzzy logic 

simulation with Boolean networks automatically converted from Reactome pathways [14]: 

simulation score (activation) assumes the interactions between a protein and its interacting 

partners annotated in a pathway activate the pathway, and simulation score (inhibition) 

assumes these interactions inhibit the pathway, since the predicted functional interactions don’t 

provide types (activation or inhibition). For each pair of protein and pathway, the simulation was 

run twice: the first simulation without injecting predicted FI scores and the second injecting FI 

scores for simulation [14]. The simulation score is the average of impact scores of all reaction 
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outputs in the analyzed pathways. Therefore average_activation is used for simulation score 

(activation) and average_inhibition for simulation score (inhibition). 

 

We conducted the interaction pathway analysis for all proteins, including both dark proteins and 

non-dark proteins, and proteins that have or have not been annotated in Reactome. As 

expected, proteins annotated in Reactome have significantly higher values than proteins that 

have not been annotated in Reactome across all three scores (Figure 3A and 3B, p-values < 

2e-16 based on Welch two sample t-test), recapitulating the functional relationships between 

proteins and their annotated pathways in Reactome. The distribution analysis among proteins 

categorized with different target development levels (i.e. Tbio, Tchem, Tclin, and Tdark [2]) also 

showed significant differences across three scores (Figure 3C and Figure S1 in Supplemental 

Figures, p-value < 2e-16 based on ANOVA in Figure 3C) with Tdark proteins having the lowest 

interaction scores, presumably due to lacking established experimental evidence showing their 

interactions with proteins annotated in pathways overall. On average, the FDR based 

enrichment score shows higher distribution than two simulation based scores though the 

correlation analysis indicated significantly positive correlation between the enrichment score and 

the simulation scores overall (0.18 between enrichment score vs average activation, p-value < 

0.001 and 0.15 between enrichment score vs average inhibition, p-value < 0.001 based on 10% 

sampled data points) and for proteins categorized in individual target levels (Figure S2 in 

Supplemental Figures).   

 

 
Figure 3. Distributions of the three scores used to quantify interacting pathways for 

proteins. All three scores have been scaled between 0 and 1 for comparison purposes. A: 

Violin plot displaying the three interacting pathway scores for proteins that are annotated 
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(IsAnnotated = true) and not annotated (IsAnnotated = false) in Reactome; B: Zoomed-in view 

of two simulation scores, Average_Activation and Average_Inhibition in A; C: Box plot 

presenting the interaction pathway scores for proteins categorized as Tbio, Tchem, Tclin, and 

Tdark. P-values in A and B were determined using the Welch two-sample t-test, while p-values 

in C were based on ANOVA.   

 

Validating Interacting Pathway Scores by Analyzing a scRNA-seq Dataset 

Single cell omics technologies, especially single cell RNA-sequencing (scRNA-seq) technology, 

are generating unbiased extremely large datasets at the single cell level, allowing researchers 

to study molecular interactions and pathways with unprecedented details inside and between 

cells. To validate the predicted scores for interacting pathways, we conducted a gene 

expression correlation analysis using a blood scRNA-seq dataset generated by the Tabular 

Sapiens project [15]. This dataset is independent from gene co-expression features based on 

the bulk RNA-seq GTEx dataset we used to train the random forest to predict functional 

interactions. We used the BigScale workflow [16] to calculate gene co-expression first and then 

selected the top 0.1% gene pairs based on their co-expression values as positive functional 

correlation pairs. Based on these positive pairs, we conducted interacting pathways analysis 

and calculated their enrichment scores as we did using predicted functional interactions from 

the trained random forest. For each gene, we calculated its Pearson correlation between 

pathway enrichment scores from scRNA-seq vs pathway scores from predicted FIs and then 

analyzed the distributions of the correlations of all genes. The Pearson correlations show a 

significantly positively skewed distribution (Figure 4A, p-value = 1.52e-28 (proportion test) for 

counts, p-value = 2.25E-33 for -Log10(p values of Pearson correlations), and p-value = 2.84E-

28 for absolute correlations), supporting the overall validity of the predicted interacting pathway 

scores. We also analyzed the correlation between interacting pathway scores from scRNA-seq 

and average_activation_scores and average_inhibition_scores, and found a similar pattern 

(Figures S3 and S4 in Supplemental Figures). 

 

To check if the scRNA-seq results are biased to annotated and not-dark proteins, we compared 

the distributions of Pearson correlations between annotated and not-annotated proteins and 

dark proteins and not-dark proteins (Figure 4B, two left panels). The results show no 

significant difference between them, indicating scRNA-seq results are unbiased to both 

Reactome annotations and research bias. To calculate the correlation between FI-based 

enrichment score and co-expression-based enrichment score for the scRNA-seq dataset for 

interacting pathways, we chose proteins having at least 10 interacting pathways having both 

scores. In other words, these pathways should have at least one protein coding gene having co-

expression fallen in the top 0.1% in the scRNA-seq dataset and at least one protein having 

predicted FI for proteins understudied. As expected, we saw more such pathways for not-dark 

proteins than dark proteins in the annotated proteins (p-value = 2.7E-5, Mann-Whitney-Wilcoxon 

test) and the similar pattern for annotated proteins and not-annotated proteins for the not-dark 

proteins (p-value = 7.8E-3) (Figure 4B, right panel). Intriguingly, we don’t find any significant 

difference of numbers for such pathways between dark and not-dark not-annotated proteins and 

between annotated and not-annotated dark proteins, strengthening the unbiasedness of scRNA-

seq results that support the predicted interacting pathways. 
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Figure 4. scRNA-seq analysis results support predicted interacting pathways by showing 

a significantly positively skewed distribution of correlations between enrichment scores 

from predicted FIs and scRNA-seq co-expression (A) and unbiased distributions between 

annotated and not-annotated dark and not-dark proteins (B). The right-most panel in B 

shows the numbers of interacting pathways used for correlation calculation for individual 

proteins. P-value: ****:  <= 1.0E-04, ***: 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <= 1.00e-02, 

*: 1.00e-02 < p <= 5.00e-02, ns: p <= 1.00e+00. 

 

Validating Interacting Pathway Scores by Analyzing PubMed Abstracts Using 

Natural Language Processing Technology 
The blood scRNA-seq data analysis results provide unbiased support evidence to the 

interacting pathways based on predicted FIs. In this section, we seek more evidence from 

published literature with caution that understudied proteins have less published literature than 

well studied proteins. To do this, we developed a natural language processing (NLP) workflow 

based on the pre-trained BERT (Bidirectional Encoder Representations from Transformers) 

language model [8] to embed abstracts downloaded from PubMed and pathway text summaries 

manually written in Reactome into numeric vectors. After that, we calculated cosine similarities 

between embedded abstracts and embedded pathway text summaries to quantify the 

similarities between abstracts and Reactome pathways. For each gene, we calculated the 

Pearson correlation between its interacting pathway scores and its NLP-based annotation 

scores calculated by averaging the similarities of abstracts related to the gene or its protein 
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product (Figure 5A). In total, we analyzed 22,539,533 abstracts, sampled 4,875 genes, and 

chose 1,000 top abstracts based on their cosine similarities for each gene, and then analyzed 

the correlation distributions as we did with the scRNA-seq data (Figure 5B).  

 

 
Figure 5. BERT-based NLP workflow to systematically analyze PubMed abstracts to 

validate the interacting pathways predicted based on the trained random forest. A: 

Illustration of the workflow. B: Detailed workflow with the inputs and outputs of the major steps 

shown. 

 

Similar to the scRNA-seq analysis results, the NLP-based analysis also shows a significantly 

positively skewed distribution of Pearson correlations between NLP-based pathway annotation 

scores and interaction scores based on the predicted FIs (Figures 6A, S5 and S6. p-value ~ 

0.00 (proportion test) for counts, p-value = 6.21E-116 for -Log10(p values of Pearson 
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correlations), and p-value = 2.44E-87 for absolute correlations), supporting the overall validity of 

these scores. However, in contrast to the scRNA-seq analysis results, significant differences of 

correlations between annotated and not-annotated not-dark proteins are observed for both 

correlation values (p-value = 3.00E-32) and -Log10(pValue) (pValue = 1.69E-16) (Figure 6B), 

presumably resulting from the pathway annotations with the focus on well studied proteins in 

Reactome as shown with the significantly higher numbers of interacting pathways for annotated 

not-dark proteins (Figure 6B, right panel). For annotated proteins, significant difference of 

correlations between dark proteins and not-dark proteins is also observed as expected because 

of the higher number of published literature available for well studied proteins. Despite these 

biases, the NLP analysis results still provide evidence supporting the predicted interacting 

pathways for dark proteins as shown in Figure 6C, the distribution of correlation for dark 

proteins only still showing a significantly positive skew.  
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Figure 6. BERT-based NLP analysis results support predicted interacting pathways for 

proteins by showing a significantly positively skewed distribution. A: The distribution of 

Pearson correlations between NLP-based annotation scores and predicted FI-based enrichment 

scores exhibits a significantly positively skewed distribution. B: The correlation difference 

analysis for annotated and not-annotated dark and not-dark proteins. C: As A but for dark 

proteins only. The right-most panels in B and C show the numbers of interacting pathways used 

for correlation calculation for individual proteins. P-value: ****:  <= 1.0E-04, ***: 1.00e-04 < p <= 

1.00e-03, **: 1.00e-03 < p <= 1.00e-02, *: 1.00e-02 < p <= 5.00e-02, ns: p <= 1.00e+00. 

 

Manual Literature Annotation Supporting Predicted Interacting Pathways for Dark 

Proteins 
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To further explore the validity of the interacting pathway predictions, literature and database 

searches were performed on twenty randomly selected dark proteins to determine whether 

existing published experimental data supported roles for these proteins in their respective 

predicted interacting pathways. PubMed searches were performed using both the gene names 

and UniProt identifiers. GeneCards, UniProt, and GO entries were also searched for functional 

annotations with direct experimental evidence. The results of this analysis are shown in Table 1 

(For more details, see the “manual annotation of interacting pathways for 20 dark 

proteins.xlsx” file in Supplemental Results).  

 

Table 1. Manual literature annotation of predicted interacting pathways for 20 randomly 

selected dark proteins. Ranks of validated predicted interacting pathways (column 2) are 

based on enrichment scores. 

Gene Validated Interacting pathway Rank Evidence type References 

AGAP3 None N/A None N/A 

FBXO46 
S phase   
 
Regulation of mitotic cell cycle 

7 
 
8 

Experimental 
evidence 

[17] 

HSP90B2P None   N/A None N/A 

IGKJ1 
Anti-inflammatory response 
favouring Leishmania parasite 
infection 

4 
Experimental 
evidence 

[18] 

IGKV1D-17 
Signaling by the B Cell Receptor 
(BCR) 

5 
Indirect-via family 
member function 
annotation 

[19] 

IGKV1D-43 
Signaling by the B Cell Receptor 
(BCR) 

5 
Indirect-via family 
member function 
annotation 

[19] 

IGLV3-10 
Fc epsilon receptor (FCERI) 
signaling 

6 
Experimental 
evidence 

[20] 

KIR3DS1 
Immunoregulatory interactions 
between a Lymphoid and a non-
Lymphoid cell 

1 
Experimental 
evidence 

[21] 

KLHL9 
Mitotic Prometaphase 
 
Mitotic Metaphase and Anaphase 

1 
 
3 

Experimental 
evidence 

[22] 

LILRA1 
Anti-inflammatory response 
favouring Leishmania parasite 
infection  

4 
Experimental 
evidence 

[23] 

NTN3 Netrin-1 signaling                                                                                  2 
Experimental 
evidence 

[24] 

POM121B None N/A Pseudogene 

https://www.
genecards.o
rg/cgi-
bin/carddisp.
pl?gene=PO
M121B 

RBMY1E 
Processing of Capped Intron-
Containing Pre-mRNA                                                                                                                     

3 
Indirect via family 
member functional 
annotation 

[25] 

SBK2 Myogenesis 14 
Experimental 
evidence 

[26] 
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SFMBT2 PTEN regulation 6 
Experimental 
evidence 

[27] 

STAG3L1 None N/A Pseudogene 

https://www.
genecards.o
rg/cgi-
bin/carddisp.
pl?gene=ST
AG3L1 

TMEM214 
Caspase activation via Death 
Receptors in the presence of 
ligand 

3 
Experimental 
evidence 

[28] 

TOM1L2 Clathrin-mediated endocytosis 5 
Experimental 
evidence 

[29, 30] 

TRAV5 TCR signaling 5 
Indirect-via family 
member function 
annotation 

[19] 

ZNF609 

POU5F1 (OCT4), SOX2, NANOG 
activate genes related to 
proliferation 
 
POU5F1 (OCT4), SOX2, NANOG 
repress genes related to 
differentiation 

1 
 
2 

Experimental 
evidence 

[31, 32] 

 

 

Direct experimental evidence suggesting a function for the dark protein in the interacting 

pathway was found for twelve of twenty proteins. For example, KLHL9 is predicted to interact 

with the Mitotic Metaphase and Anaphase pathways. Evidence supporting this interaction has 

been provided by experiments showing that the KLHL9 protein and another substrate-specific 

adaptor, KLHL13, form a complex with the Cullin 3-based E3 ligase, Cul3, which is essential for 

mitotic division and is required for correct chromosome alignment in metaphase, proper 

midzone and midbody formation, and completion of cytokinesis [22]. Another dark protein, 

TOM1L2, is predicted to interact with the Clathrin-mediated endocytosis pathway. Experimental 

evidence suggests that the C-terminal regions of all Tom1 family proteins, of which TOM1L2 is a 

member [33], interact with clathrin. In addition, Tom1L2 interacts with Tollip and when 

coexpressed with Tollip, all Tom1 family proteins recruit clathrin to endosomes [29, 30].  

 

The function of four dark proteins, IGKV1D-17, IGKV1D-43, RBMY1E, and TRAV5, in this 

analysis could not be determined in literature searches. However, each had a close family 

member protein(s) with a known or suspected function in the predicted interacting pathway. Two 

dark proteins, AGAP3 and HSP90B2P, had functions that did not seem relevant to the 

interacting pathways and two, POM121B and STAG3L1, were predicted pseudogenes. 

 

In summary, our manual literature annotation supports the majority of predicted interacting 

pathways for 20 randomly selected dark proteins, further validating the feasibility of our 

workflow. 
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Exploring the Interacting Pathways at the Reactome IDG Web Portal 

To provide the community with a resource to learn biological functions and therapeutic 

potentials of understudied proteins and proteins that have not been annotated in Reactome, we 

have developed a web portal. The portal was developed on the foundation of the Reactome web 

application by implementing a new homepage and enhancing the pathway diagram widget and 

overlay features. 

 

The main entry point of the portal is the homepage, deployed at https://idg.reactome.org, a 

progressive single-page web app powered by JavaScript widgets, where users may search for 

interacting pathways for a gene or a protein based on gene symbol or UniProt accession 

number, respectively. The homepage presents multiple views for users to explore the found 

interacting pathways. The scatter plot view (Figure 7A) plots interacting pathways as dots, 

which are colored and grouped based on their top-level pathways annotated in Reactome. The 

interacting pathways are ordered based on the original hierarchical structure in Reactome using 

the depth-first search algorithm. The network view (Figure 7B) displays interacting pathways in 

an interactive network where pathways are rendered as nodes and edges. The edges in the 

network represent genes shared between pairs of pathways. The node size is proportional to 

the pathway size, the node border is colored based on -log10(FDR) of interacting pathways, the 

node background is colored based on the average of the target development levels of all genes 

in the pathway, and the edge width is proportional to -log10(overlap pvalue). The user may 

switch between the scatter plot view and the network view by clicking the icon at the bottom left 

corner. Interacting pathways are also listed in the table view at the bottom of the homepage 

(Figure 7A bottom), where users may filter pathways based on an FDR threshold and search 

for pathways based on their names. To assist the user to choose an FI score threshold for 

analyzing interacting pathways, the app also provides a scatter plot of the FI number vs the FI 

score at the bottom of the home page (Figure 7C). Furthermore, the features related to the 

searched protein or gene are also summarized in a scatter plot (Figure 7D) as the number of 

relationships collected for individual features, which were used as the evidence in the training 

and prediction of the random forest classifier. 
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Figure 7. Major features of the homepage of the Reactome IDG portal using predicting 

pathways of TANC1, a dark gene (https://idg.reactome.org/search/TANC1), as 

example. A. The scatter plot view shows interacting pathways as dots colored and grouped 

based on their top-level pathways annotated in Reactome. Pathways are ordered based on the 

original Reactome hierarchical structure. B. The network view shows interacting pathways in a 

network where nodes represent pathways and edges represent the overlap of genes annotated 

in the two linked pathways. The two views can be switched by clicking the icon button at the 
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bottom-left corner. C. The scatter plot showing the number of FI partners of TANC1 vs. the FI 

score predicted from the trained random forest classifier. D. The scatter plot showing the 

number of pairwise relationships of TANC1 collected for individual features. The features are 

colored and grouped based on their types.   

 

Clicking the stable id link for an interacting pathway opens a new browser tab showing 

Reactome IDG’s enhanced pathway browser (Figure 8) where users can investigate interacting 

pathways by overlaying tissue-specific gene or protein expression data collected in the TCRD 

database [34] or gene or protein pairwise relationships we collected to train the random forest 

classifier (Figure 8A). By default, the numbers of drugs targeting entities rendered in the 

pathway diagram are shown in the purple circles at the top left corner of entities, which the user 

may click to bring up the drug-target network view (Figure 8B). The SBGN-based pathway 

diagram in the pathway browser can also be switched to the simplified functional interaction 

view of the pathway by extracting FIs from complexes and reactions annotated in the pathway. 

In the FI network view (Figure 8C), proteins are rendered as nodes and FIs as edges. Proteins 

are highlighted based on target development levels by default or based on overlaid expression 

values. More detailed information about the proteins in the FI network view is displayed in the 

detailed information panels, which are popped up by right clicking protein nodes. Proteins and 

entities that are predicted to functionally interact with the query protein have their borders 

highlighted in magenta in the FI network view (Figure 8C) or the pathway diagram view (Figure 

8A).  
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Figure 8. Pathway and network views of an interacting pathway, Assembly and cell 

surface presentation of NMDA receptors, of TANC1 

(https://idg.reactome.org/PathwayBrowser/#/R-HSA-

9609736&FLG=TANC1&FLGINT&DSKEYS=0&SIGCUTOFF=0.75&FLGFDR=0.05&FIVIZ). A. 

The Reactome-IDG pathway browser showing the enhanced pathway diagram overlaid 

with a tissue-specific gene expression data (Artery - Aorta from GTEx), a protein-protein 

interaction data (BioGridBioPlexStringDB|Homo Sapiens). In this diagram view, entities 

interacting with TANC1 based on FI Score >= 0.75 have their borders highlighted in 

magenta. B. The drug/target interaction view popped up by clicking the purple circle 

with a number at the top-left corner of an entity in the pathway diagram view. C. The FI 

network view of the pathway displayed after clicking the network view button in the 

button pane. Proteins in the network are highlighted based on their expression values 

for the selected tissue. Detailed information for individual proteins may be displayed in 

the information panel by right-clicking the proteins. Overlaid protein-protein interactions 

can be shown in a popup panel by clicking the “show pairwise” button (not shown) in the 

information panel. 
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Discussion 
 

Reactome is the most comprehensive open source biological pathway knowledgebase that is 

widely used in the community. Due to biased studies, about one third of human proteins have 

not been extensively investigated and their therapeutic potentials have not been explored yet. 

These proteins are called “dark proteins” or “dark targets” [2]. To infer possible functions for 

these proteins, we have developed a novel computational framework that integrates a machine 

learning approach and data from publicly available sources to predict functional interactions 

between dark proteins and proteins annotated in Reactome and then place dark proteins within 

the context of Reactome pathways. The correlation analysis results using an independent 

scRNA-seq dataset and PubMed abstracts based on an NLP workflow support our prediction 

results. Additionally, we manually curated randomly sampled dark proteins to further validate 

our framework's accuracy. To facilitate the exploration and investigation of dark proteins in 

Reactome, we have also developed a user-friendly web portal that allows users to easily access 

and analyze the pathways interacting with dark proteins in Reactome. This computational 

framework and accompanying web portal offer valuable resources for researchers seeking to 

gain insight into the functions and roles of dark proteins in biological pathways, assisting in the 

search of new drugs targeting these proteins. The framework we have developed is not limited 

to dark proteins. It can be applied to any protein that has not been annotated in Reactome and 

infer its candidate pathways where the protein may be annotated. It can also be applied to any 

protein that has been annotated in Reactome to study crosstalk between pathways or fill gaps in 

Reactome’s pathway annotation.  

 

We have implemented three distinct approaches to evaluate the performance of our interaction 

pathway predictions for proteins. Our first approach involved examining a blood scRNA-seq 

dataset, which was not used and is independent of any feature in our random forest training and 

providing an impartial way to evaluate our predictions. This dataset is unbiased with respect to 

the knowledge levels of proteins. Our random forest approach integrates features from multiple 

sources, such as gene expression data that is tissue or cancer specific, resulting in a 

generalized summary of protein function that is agnostic to cell or tissue type. Despite this 

generalization, we found a strong positive correlation between our predicted pathway interaction 

scores and those derived from top co-expression analysis from this scRNA-seq data. Our 

second approach employed a comprehensive NLP workflow to analyze over 22 million PubMed 

abstracts, while the third approach leveraged Reactome's manual curation practices to annotate 

20 randomly selected dark proteins. Both approaches rely on published results, and 

interestingly, they support our predictions of interacting pathways for proteins, including dark 

ones, which have limited published data. We are confident that our predictions of interacting 

pathways for both dark and non-dark proteins are reliable based on these results. 

 

Reactome has annotated about 50% of human protein coding genes, including some 

categorized as dark proteins based on the IDG project (https://pharos.ncats.nih.gov). The 

coverage analysis using Reactome’s pathway enrichment analysis tool (Release 84, March 

2023) indicates that 1,351 out of 5,679 Tdark proteins 
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(https://pharos.ncats.nih.gov/targets?facet=Target%2BDevelopment%2BLevel!Tdark, April, 

2023) have been annotated across 864 Reactome pathways. As expected, the majority (4,328, 

76%) remain unannotated in Reactome. Using our novel functional interaction based pathway 

interaction approach and applying an FI score cutoff of 0.8, we found that 2,217 out of 4,328 

(51% based on gene names) of these unannotated Tdark proteins have at least one interacting 

pathway in Reactome, with an enrichment score (FDR) of less than 0.05. Our web portal 

provides a range of features for users to try different FI score cutoffs, increasing the likelihood of 

identifying interacting pathways for even more dark proteins. 

 

Reactome pathways are characterized as tissue-agnostic since they are annotated by 

combining the results of multiple experiments conducted in different in vitro systems or using 

different tissues or cell types. Our predicted FI interactions and interaction pathways based on 

predicted FIs also remain tissue-agnostic. To infer the biological functions of proteins in a 

tissue-specific manner, the Reactome IDG portal enables overlaying tissue-specific gene or 

protein expression data. Nevertheless, to infer pathway activities in particular cell types or 

tissues, more advanced computational tools are still necessary. We have developed some 

mathematical modeling approaches for Reactome pathways based on probabilistic graphical 

models [35] or fuzzy logic models [14], which we plan to integrate into the Reactome IDG portal 

in the future.  

 

The Reactome pathway knowledgebase is a highly integrated knowledge graph that 

interconnects various types of nodes and edges, extensively linked to bioinformatics resources 

available in the scientific community. Notably, the Reactome knowledge graph contains 

literature references that support reaction and pathway annotations, providing a wealth of 

supporting evidence from experiments. By integrating the tissue or cancer-specific gene co-

expression data we have gathered in this project, along with over 22 million PubMed abstracts 

we collected for our NLP workflow, and incorporating them into this knowledge graph, we can 

unlock new opportunities by leveraging graph convolutional networks (GNNs) [36, 37] or other 

deep learning technologies to explore the biological functions of poorly understood proteins, 

including the elusive "dark" proteins, and reveal their potential therapeutic applications.  

 

Methods 
 

Downloading and Processing Gene Co-Expression Data  
We collected a dataset of 106 protein/gene pairwise relationship features to train a random 

forest model for predicting functional interactions of proteins. The majority of these features 

were obtained from gene coexpressions derived from bulk RNA-seq data obtained from the 

GTEx and TCGA projects. Tissue-specific gene expression data was downloaded from the 

GTEx portal, https://www.gtexportal.org/home/datasets. The file we used was the gene read 

counts file, GTEx_Analysis_2017-06-05_v8_RNASeQCv1.1.9_gene_reads.gct.gz. Samples 

with RIN values less than or equal to 6.0 and tissues with fewer than 30 samples were filtered 

out. Cancer-specific RNA-seq gene expression data was acquired in November, 2019 using a 

customized Python script that utilized the GDC API as described in this document, 

https://docs.gdc.cancer.gov/API/Users_Guide/Getting_Started/. The script is available at 
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https://github.com/reactome-idg/gather-app/blob/master/python/switch/tcga_gather.py. Outlier 

analysis based on PCA's loading matrix (https://github.com/reactome-idg/gather-

app/blob/master/python/scripts/R/functions.R) was conducted, and samples with z-scores of the 

first PC (principal component) greater than or equal to 3 were marked as outliers. The 

percentage of outliers in each tissue or cancer was less than 5%. The gene counts were 

normalized to cpm (count per million) values and then subjected to pairwise Spearman 

correlation analysis after removing outliers.  A total of 50 and 32 correlation matrices were 

generated for GTEx and TCGA, respectively.  Additionally, we created a new skin dataset by 

merging two skin datasets together, Skin-NotSunExposed-Suprapubic and Skin-SunExposed-

Lowerleg, as an internal control. The code used to download and process these two datasets is 

hosted at https://github.com/reactome-idg/gather-app.  

 

Downloading and Processing Protein-Protein Interactions 
Human protein-protein interactions were downloaded from StringDB (version 11, file 

9609.protein.links.full.v11.0.txt, downloaded in February, 2020 from https://string-

db.org/cgi/download) [38], BioGrid (BIOGRID-ORGANISM-Homo_sapiens-3.5.181.tab2.txt, 

downloaded in January, 2020 from https://downloads.thebiogrid.org/BioGRID/) [39] and BioPlex 

(two files, BioPlex_293T_Network_10K_Dec_2019.tsv and 

BioPlex_HCT116_Network_5.5K_Dec_2019.tsv downloaded in December, 2019 from 

https://bioplex.hms.harvard.edu/interactions.php#datasets) [40, 41]. To ensure the reliability of 

the human PPIs extracted from StringDB, we specifically collected PPIs supported by 

experimental evidence, determined by a score greater than 0 in the experiments channel. 

Additionally, we mapped the StringDB IDs directly to human gene names (symbols) using the 

mapping file human.name_2_string.tsv, downloaded from the StringDB database in February 

2020. The Java code used to load PPIs from these three data sources can be accessed at our 

GitHub repo, https://github.com/reactome-idg/fi-network-

ml/tree/master/src/main/java/org/reactome/idg/ppi. 

 

In addition to human protein-protein interactions (PPIs), we incorporated PPIs from model 

organism species, including yeast, worm, fly, and mouse, and subsequently mapped them to 

human for functional interaction prediction. The model organism PPIs were obtained from 

StringDB and BioGrid. From StringDB, we downloaded the following files in March 2020: 

4932.protein.links.full.v11.0.txt (yeast), 6239.protein.links.full.v11.0.txt (worm), 

7227.protein.links.full.v11.0.txt (fly), and 10090.protein.links.full.v11.0.txt (mouse). 

Corresponding mapping files were used for each organism: yeast.uniprot_2_string.2018.tsv, 

celegans.uniprot_2_string.2018.tsv, fly.uniprot_2_string.2018.tsv, and 

mouse.uniprot_2_string.2018.tsv. All of these files were obtained from https://string-

db.org/cgi/download. For BioGrid, we acquired the following files in March 2020: BIOGRID-

ORGANISM-Saccharomyces_cerevisiae_S288c-3.5.181.tab2.txt (yeast), BIOGRID-

ORGANISM-Caenorhabditis_elegans-3.5.181.tab2.txt (worm), BIOGRID-ORGANISM-

Drosophila_melanogaster-3.5.181.tab2.txt (fly), and BIOGRID-ORGANISM-Mus_musculus-

3.5.181.tab2.txt (mouse). These files were downloaded from 

https://downloads.thebiogrid.org/BioGRID/. The non-human PPIs were loaded as pairs of 

UniProt identifiers and merged separately for each model organism species from the StringDB 
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and BioGrid datasets. To map the model organism PPIs to human, we employed different 

mapping strategies. For yeast, worm, and fly, we used the panther orthologous mapping file, 

RefGenoeOrthologs.tar.gz, downloaded from ftp://ftp.pantherdb.org/ortholog/ in March 2019. 

We filtered this file to extract human genes using the command "grep '^HUMAN' 

RefGenomeOrthologs > HUMAN_RefGenomeOrthologs". To map mouse PPIs to human PPIs, 

we utilized the ENSEMBL Compara protein families (Release 98, downloaded in February 

2020) to maximize the number of mappable PPIs between the two species.  

 

Downloading and Processing Gene Similarity Data, Protein Domain 

Interactions and Go Annotation 
Gene similarity data was downloaded from Harmonizome, 

https://maayanlab.cloud/Harmonizome/download. To integrate this data into our workflow, we 

ported the Python script at its download website into Java. We manually selected a subset of 

datasets that were likely to provide pathway-related information, while excluding datasets 

related to gene expressions or non-human data. For details on the selected datasets, please 

refer to the “harmonizome_datasets_annotations_062819.xlsx” file in Supplemental 

Results. 

 

Protein-protein domain interactions were acquired from pFam (release 32.0, downloaded from 

https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/ in December, 2018) and gene GO 

annotations were downloaded from the GO web site (goa_human.gaf, downloaded in January, 

2020 from http://geneontology.org/docs/go-annotation-file-gaf-format-2.2/). Both the domain-

domain interactions and GO annotations were loaded as gene or protein pairwise features and 

mapped to human gene symbols for compatibility.   

 

Feature Selection for Random Forest Training 
To assess the quality of gene or protein pairwise relationships for training the random forest 

classifier, we utilized functional interactions (FIs) extracted from complexes and reactions in 

Reactome (Release 71, December 2019) using a method we developed previously to build the 

Reactome FI network [42] and calculated an odds ratio for each dataset. Only datasets with 

odds ratios greater than 5.0 were selected as features for training the random forest classifier. 

 

For gene similarities obtained from Harmonizome, we employed an adaptive cutoff approach 

based on a methodology described by Iacono et al [43]. This approach involved selecting gene 

pairs with top 1% or 0.1% gene similarity scores to either increase the odds ratio or retain a 

higher number of gene pairs. Configuration details can be found at https://github.com/reactome-

idg/fi-network-ml/blob/master/src/main/resources/harmonizome_selected_files.txt.  

 

In total we collected 106 gene or protein pairwise relationship features, which encompassed 31 

cancer specific gene co-expression features from TCGA, 48 tissue specific co-expression 

features from GTEx, 20 gene similarity features from Harmonizome, 5 protein-protein interaction 

features from StringDB, BioGrid, and BioPlex, 1 protein domain-domain interaction feature from 

pFAM, and 1 biological process annotation sharing feature from GO. Further details and 
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analysis results for these features can be found in SelectedFeatures_0415_2020.xlsx in 

Supplemental Results.   

 

Training the Random Forest Classifier to Predict Protein Functional 

Interactions 
The random forest model was trained using the RandomForestClassifier model from the scikit-

learn Python package (version 0.23) with Python 3.8. To determine the optimal parameters for 

this model, we employed the gridsearch function in scikit-learn. The parameters explored in the 

grid search included class_weight ('balanced', 'balanced_subsample', None), max_depth (2, 4, 

6, 10, None), max_features ('auto', 'sqrt', 'log2'), min_samples_leaf (1, 2, 4), min_samples_split 

(2, 4, 10), and n_estimators (100, 200, 500, 1000). To conduct the grid search, we randomly 

selected 100 positive gene pairs representing functional interactions (FIs) and 10,000 negative 

gene pairs. These pairs were divided into 75% for training and 25% for validation, and this 

process was repeated 10 times. 

 

The final set of parameters used in the Random Forest model were as follows: bootstrap=True, 

ccp_alpha=0.0, class_weight='balanced', criterion='gini', max_depth=10, max_features='auto', 

max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, 

min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, n_estimators=200, n_jobs=None, oob_score=False, 

random_state=42, verbose=0, warm_start=False. For further details on the implementation, 

please refer to the Python script available at https://github.com/reactome-idg/fi-network-

ml/blob/master/scripts/ml/fi_predictor.py.  

 

Measuring the Interacting Pathway Scores 
To identify functionally relevant gene pairs, we utilized the random forest classifier trained in our 

study. We selected gene pairs with prediction scores greater than or equal to 0.8 as the set of 

predicted functional interactions (FIs). Next, we performed pathway enrichment analysis for 

each gene in the predicted FI set by using its FI partners as a gene set. We utilized human 

pathways from Reactome release 77 (June, 2021) for this analysis. To assess the significance 

of pathway enrichment, we employed a Binomial test and calculated p-values. To account for 

multiple testing, we also computed adjusted p-values for individual genes using the Benjamini-

Hochberg FDR (False Discovery Rate) Procedure [44]. 

 

To further analyze the impact of predicted FIs on pathways, we employed fuzzy logic models 

based on Boolean networks. These models were automatically converted from Reactome 

pathways. We adopted a previously developed approach used for calculating drug impact 

scores on pathways [14]. Two simulations were conducted: baseline and perturbation. In the 

baseline simulation, we did not inject the prediction scores into the fuzzy logic's Hill equation. In 

the perturbation simulation, we introduced the prediction scores as a perturbation. The impact 

score for a gene-pathway pair was calculated based on the area-under-curve of the time course 

curves generated by the simulations. Since the modes of the FIs (activation or inhibition) were 

not predicted, we ran the simulations twice, assuming all FIs between the protein and proteins in 
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the pathway were either activation or inhibition. This allowed us to calculate both activation 

scores and inhibition scores. The final reported score for a gene-pathway pair represents the 

average score across all outputs of reactions in the pathway.   

 

Downloading and Analyzing the Blood scRNA-seq Dataset 
We obtained scRNA-seq data for blood from the Tabula Sapiens project [15] via 

https://figshare.com/articles/dataset/Tabula_Sapiens_release_1_0/14267219?file=34701964. 

We downloaded the h5ad file, loaded it as an AnnData object using the scanpy Python package 

[45], and filtered genes to about 20,000 human protein coding genes recorded in Reactome. 

After that, we converted the h5ad file into a Seurat rds object [46], and then passed this object 

to the network function in BigSCale2 R package [16] with speed.preset=’fast’. To select the 

most reliable correlation, the correlation output from BigSCale2 was then loaded into a Java 

class to select the top 0.1% of positive correlations by following the approach described by 

Iacono et al [43]. The selected correlations were then used for interacting pathway enrichment 

analysis by following the same procedure for predicted FIs.   

 

Downloading and Analyzing PubMed Abstracts 
We downloaded the PubMed 2022 baseline via https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/, to 

obtain all PubMed indexed abstracts published by the end of 2021. We employed 

SentenceTransformer (https://www.sbert.net, version 2.1.0), a Python package, to embed the 

downloaded abstracts into 384-dimensional numeric vectors using a pre-trained BERT model 

called "all-MiniLM-L6-v2". To retrieve abstracts related to a specific gene, we employed a simple 

text matching approach, collecting any abstracts that mentioned the gene's name or its protein 

product's name or synonyms. The gene’s and protein’s names and synonyms were obtained 

from UniProt's website 

(https://www.uniprot.org/uniprot/?query=*&fil=reviewed%3Ayes+AND+organism%3A%22Homo

+sapiens+%28Human%29+%5B9606%5D%22), selecting columns including Entry, Entry 

name, Protein names, Gene names (primary), and Gene names (synonym). To assess the 

similarities between Reactome pathways and abstracts, we applied the same BERT model to 

embed the text in the Summation instances annotated for pathways and reactions into numeric 

vectors. To determine the similarity between a pathway and an abstract, we first calculated 

cosine similarities using the cos_sim() function in the SentenceTransfomer package between 

the abstract and the pathway and all events (pathways and reactions) annotated inside this 

pathway using their BERT embeddings and then took the mean of these similarities. For 

example, Pathway_1 has Sub_Pathway_1 annotated and Sub_Pathway_1 has a Reaction_1 

annotated. To calculate the cosine similarity between Pathway_1 and Abstract_1, we calculated 

three cosine similarities for Pathway_1 and Abstract_1, Sub_Pathway_1 and Abstract_1, and 

Reaction_1 and Abstract_1 using their respective BERT embeddings, and then calculated the 

mean of these three similarities as the cosine similarity between Pathway_1 and Abstract_1. 

This process allowed us to capture the relationship between the higher-level pathway, its sub-

pathways, and the annotated reactions within the context of the abstract. To calculate the 

annotation score for a gene and a pathway, we selected at most 1,000 abstracts having highest 

average cosine similarities to all Reactome pathways under analyzed, calculated the cosine 

similarities for individual abstracts to pathways and then took the mean of these similarities as 
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the annotation score. All code utilized in this analysis was implemented in Python and is 

available in our GitHub repo, https://github.com/reactome-idg/fi-network-

ml/tree/master/scripts/nlp.  

 

Manual Curation of Randomly Selected Dark Proteins 
We randomly selected 20 dark proteins that have not been annotated in Reactome. For each 

protein, we searched PubMed using the names of the protein or its gene or the protein’s UniProt 

identifiers as keywords. We read the full text paper to determine if there was any experimental 

evidence to support the predicted interacting pathways for the protein. Further, we also checked 

GeneCards, UniProt and GO entries for any direct experimental evidence to support the 

predicted interacting pathways. The detailed annotation was provided in the file, manual 

annotation of interacting pathways for 20 dark proteins.xlsx, in Supplemental Results.  

 

The Reactome IDG Web Portal Development 
We extended the Reactome web application by adding new RESTful APIs and enhancing the 

original web-based pathway visualization widgets. The development of the new RESTful API 

followed the Spring MVC framework (https://spring.io, Release 4.3.10) with a MongoDB 

database (https://www.mongodb.com, version 4.2.3) as the backend to store predicted 

functional interactions, pairwise features, interaction pathways and all related information. We 

also used a MySQL database for Reactome specific information (e.g. genes in pathways and 

pathway diagrams). To enhance the pathway widgets, we forked the original Reactome web 

application projects and added new features using GWT (https://www.gwtproject.org, version 

2.8.2). To develop the homepage of the Reactome IDG web portal, we used Vuejs, a JavaScript 

framework (https://vuejs.org, version 2.6.12) and plugins for Vuejs, including vuetify 

(https://vuetifyjs.com/en/, version 2.4.3) for general user interfaces, vue-cytoscape 

(https://rcarcasses.github.io/vue-cytoscape/, 1.0.8) for network views, and vue-plotly 

(https://david-desmaisons.github.io/vue-plotly/, 1.1.0) for plotting. For Java related software 

projects, we used maven (https://maven.apache.org, version 3.5.0) to manage dependencies 

while for JavaScript project, we used npm (https://www.npmjs.com, version 6.14.10). All code is 

open sourced and available in GitHub repositories hosted at https://github.com/reactome-idg, 

including idg-pairwise-ws (https://github.com/reactome-idg/idg-pairwise-ws) for the RESTful 

APIs and idg-homepage (https://github.com/reactome-idg/idg-homepage) for the Reactome IDG 

homepage.  

 

Statistical Analysis 
We used R (version 4.1.1) and Python (3.7 or 3.8) for statistical analysis and plot. All code is 

available in our GitHub repo. 
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Supplemental Results 
 

Hosted at zenodo with DOI: 10.5281/zenodo.7996481 and accessible via  

https://doi.org/10.5281/zenodo.7996481. 

 

● manual annotation of interacting pathways for 20 dark proteins.xlsx: Detailed 

manual annotation of interacting pathways for 20 randomly selected dark proteins  

● harmonizome_datasets_annotations_062819.xlsx: Harmonizome dataset annotations  

● SelectedFeatures_0415_2020.xlsx: Selected features  
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Figure S1. Box plot of interaction pathway scores for proteins categorized as Tbio, 

Tchem, Tclin, and Tdark. P-values were determined based on ANOVA. 
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Figure S2. Correlation plot showing significant correlations between the three interacting 

pathway scores, Average_Activation, Average_Inhibtion and Enrichment. P-values are 

less than 0.001 based on 10% sampled data points.  
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Figure S3. scRNA-seq analysis results support predicted interacting pathways by 

showing a significantly positively skewed distribution of correlations between 

average_activation_scores based on predicted FIs and enrichment score based on 

scRNA-seq coexpression (A) and unbiased distributions between annotated and not-

annotated dark and not-dark proteins (B). The left-most panel in B shows the numbers of 

interacting pathways used for correlation calculation for individual proteins. The numbers of 

pathways used for correlation calculation between average_activation and enrichment score 

based on scRNA-seq co-expression are smaller than ones shown in Figure 4. This is because 

some proteins may functionally interact with proteins annotated in pathways but fail to have 

quantitative impact on pathway activities, according to our simulation approach.  P-value: ****:  

<= 1.0E-04, ***: 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <= 1.00e-02, *: 1.00e-02 < p <= 

5.00e-02, ns: p <= 1.00e+00. 
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Figure S4. scRNA-seq analysis results support predicted interacting pathways by 

showing a significantly positively skewed distribution of correlations between 

average_inhibition_scores based on predicted FIs and enrichment score based on 

scRNA-seq coexpression (A) and unbiased distributions between annotated and not-

annotated dark and not-dark proteins (B). The left-most panel in B shows the numbers of 

interacting pathways used for correlation calculation for individual proteins. The numbers of 

pathways used for correlation calculation between average_inhibition and enrichment score 

based on scRNA-seq co-expression are smaller than ones shown in Figure 4. This is because 

some proteins may functionally interact with proteins annotated in pathways but fail to have 

quantitative impact on pathway activities, according to our simulation approach. No significant 

differences were observed between the number of proteins having negative correlations and the 

number of proteins having positive correlations (second panel in A). Additionally, there was no 

significant difference in the numbers of interacting pathways for dark and non-dark Reactome 

annotated proteins (rightmost panel in B). Those are presumably because only gene pairs with 

co-expression are in the top 0.1% were selected from the scRNA-seq dataset. P-value: ****:  <= 

1.0E-04, ***: 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <= 1.00e-02, *: 1.00e-02 < p <= 5.00e-

02, ns: p <= 1.00e+00. 
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Figure S5. BERT-based NLP analysis results support predicted interacting pathways for 

proteins by showing a significantly positively skewed distribution. A: The distribution of 

Pearson correlations between NLP-based annotation scores and predicted FI-based average 

activation scores exhibits a significantly positively skewed distribution. B: The correlation 

difference analysis for annotated and not-annotated dark and not-dark proteins. The right-most 

panel in B shows the numbers of interacting pathways used for correlation calculation for 

individual proteins. P-value: ****:  <= 1.0E-04, ***: 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <= 

1.00e-02, *: 1.00e-02 < p <= 5.00e-02, ns: p <= 1.00e+00. 
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Figure S6. BERT-based NLP analysis results support predicted interacting pathways for 

proteins by showing a significantly positively skewed distribution. A: The distribution of 

Pearson correlations between NLP-based annotation scores and predicted FI-based average 

inhibition scores exhibits a significantly positively skewed distribution. B: The correlation 

difference analysis for annotated and not-annotated dark and not-dark proteins. The right-most 

panel in B shows the numbers of interacting pathways used for correlation calculation for 

individual proteins. P-value: ****:  <= 1.0E-04, ***: 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <= 

1.00e-02, *: 1.00e-02 < p <= 5.00e-02, ns: p <= 1.00e+00. 
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