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Abstract

Limited knowledge about a substantial portion of protein coding genes, known as "dark"
proteins, hinders our understanding of their functions and potential therapeutic applications. To
address this, we leveraged Reactome, the most comprehensive, open source, open-access
pathway knowledgebase, to contextualize dark proteins within biological pathways. By
integrating multiple resources and employing a random forest classifier trained on 106
protein/gene pairwise features, we predicted functional interactions between dark proteins and
Reactome-annotated proteins. We then developed three scores to measure the interactions
between dark proteins and Reactome pathways, utilizing enrichment analysis and fuzzy logic
simulations. Correlation analysis of these scores with an independent single-cell RNA
sequencing dataset provided supporting evidence for this approach. Furthermore, systematic
natural language processing (NLP) analysis of over 22 million PubMed abstracts and manual
checking of the literature associated with 20 randomly selected dark proteins reinforced the
predicted interactions between proteins and pathways. To enhance the visualization and
exploration of dark proteins within Reactome pathways, we developed the Reactome IDG
portal, deployed at https://idg.reactome.org, a web application featuring tissue-specific protein
and gene expression overlay, as well as drug interactions. Our integrated computational
approach, together with the user-friendly web platform, offers a valuable resource for
uncovering potential biological functions and therapeutic implications of dark proteins.

Introduction

Observational data from clinical genetics and systematic mutagenesis in mice suggest that
almost all of the roughly 20,000 proteins encoded in the human genome are needed for normal
human function [1] (http://www.mousephenotype.org/). Nevertheless, a recent survey of the
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human proteome identifies approximately one third of proteins as understudied or “dark”, with
few or no published molecular annotations and not the subjects of substantial current research

[2].

Pathway knowledgebases extend the classic concept of a metabolic reaction to include covalent
modification of protein substrates, formation and dissociation of complexes and movement of
molecules between subcellular locations. These reactions associate proteins with the full range
of molecular functions and link them into pathways based on overlapping inputs, outputs,
catalysts and regulators to describe the reaction space of an organism as a network connected
by the many proteins and small molecules involved in multiple processes [3]. This network
allows effects of single proteins and their interactors to be tracked across pathways, and
network-based data analyses exploit it to search for effective biomarkers and drug effects [4].
Placing proteins with unknown functions into the context of pathways using evidence, such as
protein/protein interactions or gene co-expression, is a popular and mature approach to predict
the functions of these proteins [5], so-called “guilt-by-association”. A genome-scale pathway
knowledgebase provides a rich context for such an approach, increasing its utility and reliability.

Machine learning approaches, such as naive Bayes classifier, support vector machines, and
random forest, have been frequently used to predict protein functional interactions by integrating
multiple types of evidence [6]. Results produced from these approaches measure the likelihood
of an interaction between two proteins, therefore suggesting a functional similarity between
them. Leveraging these predicted functional interactions between dark proteins and proteins
that have been annotated in a pathway knowledgebase, we may place those dark proteins in
the context of pathways, facilitating the inference and learning of potential biological functions of
dark proteins and their therapeutic potentials.

Reactome [7] is arguably the most comprehensive, open source and open access biological
pathway knowledgebase. The content in Reactome is manually curated and peer reviewed by
experts in the field to ensure high quality. As of release 84 (released in March 2023), Reactome
covers 11,074 human protein coding genes, which are annotated into 14,194 complexes,
14,516 reactions and 2,615 pathways, supported by over 36,000 PubMed indexed literature
references. Reactome pathways constitute a wide range of human biological processes,
comprising diverse domains such as metabolism, signaling transduction, cell cycle, DNA repair,
programmed cell death, developmental biology and cell cell interactions and communications.
This broad scope renders Reactome as an all-encompassing platform to place dark proteins
within the context of established biological pathways using machine learning approaches.

In this paper we describe a computational framework to place dark proteins and any other
human protein not yet manually curated in Reactome into the context of high quality, manually
curated Reactome pathways. Our framework first predicts functional interactions between
proteins after training a random forest using 106 protein or gene pairwise relationships as
features, and then infers potential functional involvement of proteins in individual Reactome
pathways based on pathway enrichment analysis and fuzzy logic based simulation. We
measure the quality of the inference results by mining PubMed abstracts using a large language


https://doi.org/10.1101/2023.06.05.543335
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.05.543335; this version posted June 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

model called BERT [8], by analyzing an independent single cell RNA-seq (scRNA-seq) data and
through conducting manual curation. We also introduce a web application, the Reactome IDG
portal, deployed at https://idg.reactome.org, for researchers to explore and investigate the
functions of dark proteins using Reactome.

Results

Placing Dark Proteins in the Context of Reactome Pathways via Predicted

Functional Interactions

The high quality, manually curated pathways in Reactome provide a framework to understand
the functions of proteins and their action mechanisms via biochemical reactions. Reactome has
annotated a small portion of proteins categorized as dark (i.e. Tdark) proteins according to the
Reactome database (Release 84, March 2023) and Pharos web site (April 2023): 1,351 of total
5,679 dark proteins. To place those dark proteins that have not been annotated in Reactome
into the context of Reactome pathways, we first collected a variety of pairwise relationship
features from multiple data sources and then trained a random forest using functional
interactions extracted from annotated Reactome complexes and reactions as positive data
points and random pairs as negative data points. After that, we predicted whether or not a pair
of proteins could functionally interact with each other based on the trained random forest model.
Based on the predicted functional interactions (FIs), we inferred how likely a dark protein could
potentially functionally interact with pathways annotated in Reactome (Figure 1). Though this
workflow was originally designed for dark proteins, it can be applied to any proteins, including
proteins that have not been annotated in Reactome or proteins that have been annotated but
not for specific pathways.
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Figure 1. Analysis workflow to place dark proteins in the context of Reactome pathways
via machine learning, enrichment analysis and mathematical modeling. Fls: Functional
Interactions.

In total we have collected 106 gene/protein pairwise features, including 48 tissue specific gene
co-expressions from GTEX [9], 31 cancer specific gene co-expressions from TCGA [10], 20
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gene similarities from Harmonizome [11], 5 physical protein-protein interaction datasets in
human and mapped from mouse, fly, worm and yeast based on protein orthologous mappings,
1 protein domain-domain interaction data from pFam [12], and 1 biological process annotation
from GO [13]. The random forest trained with these features demonstrated good performance
with AUC of 0.89 (Figure 1) and acceptable scores of precision, recall rate and F1 (Figure 2A).
The importance analysis of individual features indicated that the top three most important
features for this trained random forest are: GO biological process annotation sharing
(GOBPSharing), physical protein-protein interactions from human (HumanPPI), and physical
protein-protein interactions mapped from yeast (YeastPPI) (Figure 2B), most likely because
these three features have the largest positive counts in the positive data points in the training
dataset (54,007 pairs out of 96,122 FI positive pairs for GOBPSharing, 31,612 pairs for
HumanPPI and 19,664 for YeastPPl).
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Figure 2. The performance of the trained random forest and its feature importance.

Quantifying Interacting Pathways for Dark Proteins

Based on predicted functional interactions between a protein and a set of other proteins that are
annotated for a specific pathway in Reactome, we developed three scores to measure the
likelihood or strength of an interacting pathway for a protein (Figure 1). The first score is
“enrichment score”, which is based on Reactome pathway enrichment analysis for a set of
proteins that are predicted to functionally interact with a protein. We use negative log10 of FDR
from the enrichment analysis as the enrichment score. The second two scores, referred to as
simulation scores, are derived from the mathematical modeling approach based on fuzzy logic
simulation with Boolean networks automatically converted from Reactome pathways [14]:
simulation score (activation) assumes the interactions between a protein and its interacting
partners annotated in a pathway activate the pathway, and simulation score (inhibition)
assumes these interactions inhibit the pathway, since the predicted functional interactions don’t
provide types (activation or inhibition). For each pair of protein and pathway, the simulation was
run twice: the first simulation without injecting predicted Fl scores and the second injecting Fl
scores for simulation [14]. The simulation score is the average of impact scores of all reaction
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outputs in the analyzed pathways. Therefore average_activation is used for simulation score
(activation) and average_inhibition for simulation score (inhibition).

We conducted the interaction pathway analysis for all proteins, including both dark proteins and
non-dark proteins, and proteins that have or have not been annotated in Reactome. As
expected, proteins annotated in Reactome have significantly higher values than proteins that
have not been annotated in Reactome across all three scores (Figure 3A and 3B, p-values <
2e-16 based on Welch two sample t-test), recapitulating the functional relationships between
proteins and their annotated pathways in Reactome. The distribution analysis among proteins
categorized with different target development levels (i.e. Thio, Tchem, Tclin, and Tdark [2]) also
showed significant differences across three scores (Figure 3C and Figure S1 in Supplemental
Figures, p-value < 2e-16 based on ANOVA in Figure 3C) with Tdark proteins having the lowest
interaction scores, presumably due to lacking established experimental evidence showing their
interactions with proteins annotated in pathways overall. On average, the FDR based
enrichment score shows higher distribution than two simulation based scores though the
correlation analysis indicated significantly positive correlation between the enrichment score and
the simulation scores overall (0.18 between enrichment score vs average activation, p-value <
0.001 and 0.15 between enrichment score vs average inhibition, p-value < 0.001 based on 10%
sampled data points) and for proteins categorized in individual target levels (Figure S2 in
Supplemental Figures).

A 1.00 P = <28-16 pu2e-18 b cde-t8 0.100 p=cZe1d pe=<Zo-1B
0.75: 0078
£ g
& IsAnnotated @
2o i e 20050
k] rue 3
£ &
025 0025
J4 b L 4“; ‘ JL ﬂ
Mverage_Activation Average_Inhibition Enrichme ant Averags_Activation Average_Inhibition
Method Method
C Average_Activation | [ Average_Inhibition l | Enrichment |
0.100 p=<2e-16 p =<2e-16 p=<2e-16
@ 0.075
i
Q
9
3]
g 0.050
s
[F]
 o.025
0.000
Tbio Tchem Telin Tdark Thio Tchem Tclin Tdark Thio Tchem Telin Tdark

DevLevel

Figure 3. Distributions of the three scores used to quantify interacting pathways for
proteins. All three scores have been scaled between 0 and 1 for comparison purposes. A:
Violin plot displaying the three interacting pathway scores for proteins that are annotated
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(IsAnnotated = true) and not annotated (IsAnnotated = false) in Reactome; B: Zoomed-in view
of two simulation scores, Average_Activation and Average_Inhibition in A; C: Box plot
presenting the interaction pathway scores for proteins categorized as Thio, Tchem, Tclin, and
Tdark. P-values in A and B were determined using the Welch two-sample t-test, while p-values
in C were based on ANOVA.

Validating Interacting Pathway Scores by Analyzing a scRNA-seq Dataset

Single cell omics technologies, especially single cell RNA-sequencing (SCRNA-seq) technology,
are generating unbiased extremely large datasets at the single cell level, allowing researchers
to study molecular interactions and pathways with unprecedented details inside and between
cells. To validate the predicted scores for interacting pathways, we conducted a gene
expression correlation analysis using a blood scRNA-seq dataset generated by the Tabular
Sapiens project [15]. This dataset is independent from gene co-expression features based on
the bulk RNA-seq GTEx dataset we used to train the random forest to predict functional
interactions. We used the BigScale workflow [16] to calculate gene co-expression first and then
selected the top 0.1% gene pairs based on their co-expression values as positive functional
correlation pairs. Based on these positive pairs, we conducted interacting pathways analysis
and calculated their enrichment scores as we did using predicted functional interactions from
the trained random forest. For each gene, we calculated its Pearson correlation between
pathway enrichment scores from scRNA-seq vs pathway scores from predicted Fls and then
analyzed the distributions of the correlations of all genes. The Pearson correlations show a
significantly positively skewed distribution (Figure 4A, p-value = 1.52e-28 (proportion test) for
counts, p-value = 2.25E-33 for -Log10(p values of Pearson correlations), and p-value = 2.84E-
28 for absolute correlations), supporting the overall validity of the predicted interacting pathway
scores. We also analyzed the correlation between interacting pathway scores from scRNA-seq
and average_activation_scores and average_inhibition_scores, and found a similar pattern
(Figures S3 and S4 in Supplemental Figures).

To check if the scRNA-seq results are biased to annotated and not-dark proteins, we compared
the distributions of Pearson correlations between annotated and not-annotated proteins and
dark proteins and not-dark proteins (Figure 4B, two left panels). The results show no
significant difference between them, indicating scRNA-seq results are unbiased to both
Reactome annotations and research bias. To calculate the correlation between Fl-based
enrichment score and co-expression-based enrichment score for the scRNA-seq dataset for
interacting pathways, we chose proteins having at least 10 interacting pathways having both
scores. In other words, these pathways should have at least one protein coding gene having co-
expression fallen in the top 0.1% in the sScRNA-seq dataset and at least one protein having
predicted FI for proteins understudied. As expected, we saw more such pathways for not-dark
proteins than dark proteins in the annotated proteins (p-value = 2.7E-5, Mann-Whitney-Wilcoxon
test) and the similar pattern for annotated proteins and not-annotated proteins for the not-dark
proteins (p-value = 7.8E-3) (Figure 4B, right panel). Intriguingly, we don’t find any significant
difference of numbers for such pathways between dark and not-dark not-annotated proteins and
between annotated and not-annotated dark proteins, strengthening the unbiasedness of sSCRNA-
seq results that support the predicted interacting pathways.
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Figure 4. scRNA-seq analysis results support predicted interacting pathways by showing
a significantly positively skewed distribution of correlations between enrichment scores
from predicted FIs and scRNA-seq co-expression (A) and unbiased distributions between
annotated and not-annotated dark and not-dark proteins (B). The right-most panel in B
shows the numbers of interacting pathways used for correlation calculation for individual
proteins. P-value: ****; <= 1.0E-04, ***: 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <= 1.00e-02,
*: 1.00e-02 < p <=5.00e-02, ns: p <= 1.00e+00.

Validating Interacting Pathway Scores by Analyzing PubMed Abstracts Using
Natural Language Processing Technology

The blood scRNA-seq data analysis results provide unbiased support evidence to the
interacting pathways based on predicted Fls. In this section, we seek more evidence from
published literature with caution that understudied proteins have less published literature than
well studied proteins. To do this, we developed a natural language processing (NLP) workflow
based on the pre-trained BERT (Bidirectional Encoder Representations from Transformers)
language model [8] to embed abstracts downloaded from PubMed and pathway text summaries
manually written in Reactome into numeric vectors. After that, we calculated cosine similarities
between embedded abstracts and embedded pathway text summaries to quantify the
similarities between abstracts and Reactome pathways. For each gene, we calculated the
Pearson correlation between its interacting pathway scores and its NLP-based annotation
scores calculated by averaging the similarities of abstracts related to the gene or its protein
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product (Figure 5A). In total, we analyzed 22,539,533 abstracts, sampled 4,875 genes, and
chose 1,000 top abstracts based on their cosine similarities for each gene, and then analyzed
the correlation distributions as we did with the scRNA-seq data (Figure 5B).
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Figure 5. BERT-based NLP workflow to systematically analyze PubMed abstracts to
validate the interacting pathways predicted based on the trained random forest. A:
lllustration of the workflow. B: Detailed workflow with the inputs and outputs of the major steps
shown.
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Similar to the scRNA-seq analysis results, the NLP-based analysis also shows a significantly
positively skewed distribution of Pearson correlations between NLP-based pathway annotation
scores and interaction scores based on the predicted FIs (Figures 6A, S5 and S6. p-value ~
0.00 (proportion test) for counts, p-value = 6.21E-116 for -Log10(p values of Pearson
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correlations), and p-value = 2.44E-87 for absolute correlations), supporting the overall validity of
these scores. However, in contrast to the sScCRNA-seq analysis results, significant differences of
correlations between annotated and not-annotated not-dark proteins are observed for both
correlation values (p-value = 3.00E-32) and -Log10(pValue) (pValue = 1.69E-16) (Figure 6B),
presumably resulting from the pathway annotations with the focus on well studied proteins in
Reactome as shown with the significantly higher numbers of interacting pathways for annotated
not-dark proteins (Figure 6B, right panel). For annotated proteins, significant difference of
correlations between dark proteins and not-dark proteins is also observed as expected because
of the higher number of published literature available for well studied proteins. Despite these
biases, the NLP analysis results still provide evidence supporting the predicted interacting
pathways for dark proteins as shown in Figure 6C, the distribution of correlation for dark
proteins only still showing a significantly positive skew.
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Figure 6. BERT-based NLP analysis results support predicted interacting pathways for
proteins by showing a significantly positively skewed distribution. A: The distribution of
Pearson correlations between NLP-based annotation scores and predicted Fl-based enrichment
scores exhibits a significantly positively skewed distribution. B: The correlation difference
analysis for annotated and not-annotated dark and not-dark proteins. C: As A but for dark
proteins only. The right-most panels in B and C show the numbers of interacting pathways used
for correlation calculation for individual proteins. P-value: ****; <= 1.0E-04, ***: 1.00e-04 < p <=
1.00e-03, **: 1.00e-03 < p <= 1.00e-02, *: 1.00e-02 < p <= 5.00e-02, ns: p <= 1.00e+00.

Manual Literature Annotation Supporting Predicted Interacting Pathways for Dark
Proteins
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To further explore the validity of the interacting pathway predictions, literature and database
searches were performed on twenty randomly selected dark proteins to determine whether
existing published experimental data supported roles for these proteins in their respective
predicted interacting pathways. PubMed searches were performed using both the gene names
and UniProt identifiers. GeneCards, UniProt, and GO entries were also searched for functional
annotations with direct experimental evidence. The results of this analysis are shown in Table 1
(For more details, see the “manual annotation of interacting pathways for 20 dark
proteins.xlsx” file in Supplemental Results).

Table 1. Manual literature annotation of predicted interacting pathways for 20 randomly
selected dark proteins. Ranks of validated predicted interacting pathways (column 2) are

based on enrichment scores.

Gene Validated Interacting pathway Rank | Evidence type References
AGAP3 None N/A None N/A
S phase 7 .
FBXO46 E\’/(if’j‘zrr']rg‘:ma' [17]
Regulation of mitotic cell cycle 8
HSP90B2P | None N/A None N/A
Anti-inflammatory response Experimental
IGKJ1 favouring Leishmania parasite 4 P [18]
. . evidence
infection
. . Indirect-via family
IGKV1D-17 Signaling by the B Cell Receptor 5 member function [19]
(BCR) !
annotation
. . Indirect-via family
IGKV1D-43 | S'gnaling by the B Cell Receptor | member function [19]
(BCR) !
annotation
IGLV3-10 F_c epsllon receptor (FCERI) 6 Ex_penmental [20]
signaling evidence
Immunoregulatory interactions Experimental
KIR3DS1 between a Lymphoid and a non- 1 P [21]
. evidence
Lymphoid cell
Mitotic Prometaphase 1 Experimental
KLHLS evi?jence [22]
Mitotic Metaphase and Anaphase 3
Anti-inflammatory response Experimental
LILRAL favouring Leishmania parasite 4 P [23]
. . evidence
infection
NTN3 Netrin-1 signaling 2 Ex_penmental [24]
evidence
https://www.
genecards.o
POM121B | None N/A Pseudogene rglegi-
bin/carddisp.
pl?gene=PO
M121B
. Indirect via family
RBMY1E Processing of Capped Intron- 3 member functional [25]
Containing Pre-mRNA .
annotation
SBK2 Myogenesis 14 Ex_penmental [26]
evidence
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Experimental

SFMBT2 PTEN regulation 6 ! [27]
evidence
https://www.
genecards.o
STAG3L1 | None N/A Pseudogene rglegi-
bin/carddisp.
pl?gene=ST
AG3L1
Caspase activation via Death Experimental
TMEM214 | Receptors in the presence of 3 . [28]
. evidence
ligand
TOM1L2 Clathrin-mediated endocytosis 5 Ex_penmental [29, 30]
evidence
Indirect-via family
TRAV5 TCR signaling 5 member function [19]
annotation
POUS5F1 (OCT4), SOX2, NANOG
activate genes related to
proliferation 1 Experimental
ZNF609 evidence [31, 32]
POUS5F1 (OCT4), SOX2, NANOG | 2
repress genes related to
differentiation

Direct experimental evidence suggesting a function for the dark protein in the interacting
pathway was found for twelve of twenty proteins. For example, KLHL9 is predicted to interact
with the Mitotic Metaphase and Anaphase pathways. Evidence supporting this interaction has
been provided by experiments showing that the KLHL9 protein and another substrate-specific
adaptor, KLHL13, form a complex with the Cullin 3-based E3 ligase, Cul3, which is essential for
mitotic division and is required for correct chromosome alignment in metaphase, proper
midzone and midbody formation, and completion of cytokinesis [22]. Another dark protein,
TOML1L2, is predicted to interact with the Clathrin-mediated endocytosis pathway. Experimental
evidence suggests that the C-terminal regions of all Tom1 family proteins, of which TOM1L2 is a
member [33], interact with clathrin. In addition, Tom1L2 interacts with Tollip and when
coexpressed with Tollip, all Tom1 family proteins recruit clathrin to endosomes [29, 30].

The function of four dark proteins, IGKV1D-17, IGKV1D-43, RBMY1E, and TRAVS5, in this
analysis could not be determined in literature searches. However, each had a close family
member protein(s) with a known or suspected function in the predicted interacting pathway. Two
dark proteins, AGAP3 and HSP90B2P, had functions that did not seem relevant to the
interacting pathways and two, POM121B and STAG3L1, were predicted pseudogenes.

In summary, our manual literature annotation supports the majority of predicted interacting
pathways for 20 randomly selected dark proteins, further validating the feasibility of our
workflow.
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Exploring the Interacting Pathways at the Reactome IDG Web Portal

To provide the community with a resource to learn biological functions and therapeutic
potentials of understudied proteins and proteins that have not been annotated in Reactome, we
have developed a web portal. The portal was developed on the foundation of the Reactome web
application by implementing a new homepage and enhancing the pathway diagram widget and
overlay features.

The main entry point of the portal is the homepage, deployed at https://idg.reactome.org, a
progressive single-page web app powered by JavaScript widgets, where users may search for
interacting pathways for a gene or a protein based on gene symbol or UniProt accession
number, respectively. The homepage presents multiple views for users to explore the found
interacting pathways. The scatter plot view (Figure 7A) plots interacting pathways as dots,
which are colored and grouped based on their top-level pathways annotated in Reactome. The
interacting pathways are ordered based on the original hierarchical structure in Reactome using
the depth-first search algorithm. The network view (Figure 7B) displays interacting pathways in
an interactive network where pathways are rendered as nodes and edges. The edges in the
network represent genes shared between pairs of pathways. The node size is proportional to
the pathway size, the node border is colored based on -log10(FDR) of interacting pathways, the
node background is colored based on the average of the target development levels of all genes
in the pathway, and the edge width is proportional to -log10(overlap pvalue). The user may
switch between the scatter plot view and the network view by clicking the icon at the bottom left
corner. Interacting pathways are also listed in the table view at the bottom of the homepage
(Figure 7A bottom), where users may filter pathways based on an FDR threshold and search
for pathways based on their names. To assist the user to choose an Fl score threshold for
analyzing interacting pathways, the app also provides a scatter plot of the FI number vs the Fl
score at the bottom of the home page (Figure 7C). Furthermore, the features related to the
searched protein or gene are also summarized in a scatter plot (Figure 7D) as the number of
relationships collected for individual features, which were used as the evidence in the training
and prediction of the random forest classifier.
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Figure 7. Major features of the homepage of the Reactome IDG portal using predicting
pathways of TANC1, a dark gene (https://idg.reactome.org/search/TANC1), as
example. A. The scatter plot view shows interacting pathways as dots colored and grouped
based on their top-level pathways annotated in Reactome. Pathways are ordered based on the
original Reactome hierarchical structure. B. The network view shows interacting pathways in a
network where nodes represent pathways and edges represent the overlap of genes annotated
in the two linked pathways. The two views can be switched by clicking the icon button at the



https://idg.reactome.org/search/TANC1
https://doi.org/10.1101/2023.06.05.543335
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.05.543335; this version posted June 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

bottom-left corner. C. The scatter plot showing the number of FI partners of TANCL1 vs. the FI
score predicted from the trained random forest classifier. D. The scatter plot showing the
number of pairwise relationships of TANCL1 collected for individual features. The features are
colored and grouped based on their types.

Clicking the stable id link for an interacting pathway opens a new browser tab showing
Reactome IDG’s enhanced pathway browser (Figure 8) where users can investigate interacting
pathways by overlaying tissue-specific gene or protein expression data collected in the TCRD
database [34] or gene or protein pairwise relationships we collected to train the random forest
classifier (Figure 8A). By default, the numbers of drugs targeting entities rendered in the
pathway diagram are shown in the purple circles at the top left corner of entities, which the user
may click to bring up the drug-target network view (Figure 8B). The SBGN-based pathway
diagram in the pathway browser can also be switched to the simplified functional interaction
view of the pathway by extracting FIs from complexes and reactions annotated in the pathway.
In the FI network view (Figure 8C), proteins are rendered as nodes and Fls as edges. Proteins
are highlighted based on target development levels by default or based on overlaid expression
values. More detailed information about the proteins in the FI network view is displayed in the
detailed information panels, which are popped up by right clicking protein nodes. Proteins and
entities that are predicted to functionally interact with the query protein have their borders
highlighted in magenta in the FI network view (Figure 8C) or the pathway diagram view (Figure
8A).
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Figure 8. Pathway and network views of an interacting pathway, Assembly and cell
surface presentation of NMDA receptors, of TANC1
(https:/lidg.reactome.org/PathwayBrowser/#/R-HSA-
9609736&FLG=TANCI1&FLGINT&DSKEYS=0&SIGCUTOFF=0.75&FLGFDR=0.05&FIVIZ). A.
The Reactome-IDG pathway browser showing the enhanced pathway diagram overlaid
with a tissue-specific gene expression data (Artery - Aorta from GTEX), a protein-protein
interaction data (BioGridBioPlexStringDB|Homo Sapiens). In this diagram view, entities
interacting with TANC1 based on FI Score >= 0.75 have their borders highlighted in
magenta. B. The drug/target interaction view popped up by clicking the purple circle
with a number at the top-left corner of an entity in the pathway diagram view. C. The Fl
network view of the pathway displayed after clicking the network view button in the
button pane. Proteins in the network are highlighted based on their expression values
for the selected tissue. Detailed information for individual proteins may be displayed in
the information panel by right-clicking the proteins. Overlaid protein-protein interactions
can be shown in a popup panel by clicking the “show pairwise” button (not shown) in the
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Discussion

Reactome is the most comprehensive open source biological pathway knowledgebase that is
widely used in the community. Due to biased studies, about one third of human proteins have
not been extensively investigated and their therapeutic potentials have not been explored yet.
These proteins are called “dark proteins” or “dark targets” [2]. To infer possible functions for
these proteins, we have developed a novel computational framework that integrates a machine
learning approach and data from publicly available sources to predict functional interactions
between dark proteins and proteins annotated in Reactome and then place dark proteins within
the context of Reactome pathways. The correlation analysis results using an independent
scRNA-seq dataset and PubMed abstracts based on an NLP workflow support our prediction
results. Additionally, we manually curated randomly sampled dark proteins to further validate
our framework's accuracy. To facilitate the exploration and investigation of dark proteins in
Reactome, we have also developed a user-friendly web portal that allows users to easily access
and analyze the pathways interacting with dark proteins in Reactome. This computational
framework and accompanying web portal offer valuable resources for researchers seeking to
gain insight into the functions and roles of dark proteins in biological pathways, assisting in the
search of new drugs targeting these proteins. The framework we have developed is not limited
to dark proteins. It can be applied to any protein that has not been annotated in Reactome and
infer its candidate pathways where the protein may be annotated. It can also be applied to any
protein that has been annotated in Reactome to study crosstalk between pathways or fill gaps in
Reactome’s pathway annotation.

We have implemented three distinct approaches to evaluate the performance of our interaction
pathway predictions for proteins. Our first approach involved examining a blood scRNA-seq
dataset, which was not used and is independent of any feature in our random forest training and
providing an impartial way to evaluate our predictions. This dataset is unbiased with respect to
the knowledge levels of proteins. Our random forest approach integrates features from multiple
sources, such as gene expression data that is tissue or cancer specific, resulting in a
generalized summary of protein function that is agnostic to cell or tissue type. Despite this
generalization, we found a strong positive correlation between our predicted pathway interaction
scores and those derived from top co-expression analysis from this sScRNA-seq data. Our
second approach employed a comprehensive NLP workflow to analyze over 22 million PubMed
abstracts, while the third approach leveraged Reactome's manual curation practices to annotate
20 randomly selected dark proteins. Both approaches rely on published results, and
interestingly, they support our predictions of interacting pathways for proteins, including dark
ones, which have limited published data. We are confident that our predictions of interacting
pathways for both dark and non-dark proteins are reliable based on these results.

Reactome has annotated about 50% of human protein coding genes, including some
categorized as dark proteins based on the IDG project (https://pharos.ncats.nih.gov). The
coverage analysis using Reactome’s pathway enrichment analysis tool (Release 84, March
2023) indicates that 1,351 out of 5,679 Tdark proteins
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(https://pharos.ncats.nih.gov/targets?facet=Target%2BDevelopment%2BLevel! Tdark, April,
2023) have been annotated across 864 Reactome pathways. As expected, the majority (4,328,
76%) remain unannotated in Reactome. Using our novel functional interaction based pathway
interaction approach and applying an Fl score cutoff of 0.8, we found that 2,217 out of 4,328
(51% based on gene names) of these unannotated Tdark proteins have at least one interacting
pathway in Reactome, with an enrichment score (FDR) of less than 0.05. Our web portal
provides a range of features for users to try different FI score cutoffs, increasing the likelihood of
identifying interacting pathways for even more dark proteins.

Reactome pathways are characterized as tissue-agnostic since they are annotated by
combining the results of multiple experiments conducted in different in vitro systems or using
different tissues or cell types. Our predicted Fl interactions and interaction pathways based on
predicted FlIs also remain tissue-agnostic. To infer the biological functions of proteins in a
tissue-specific manner, the Reactome IDG portal enables overlaying tissue-specific gene or
protein expression data. Nevertheless, to infer pathway activities in particular cell types or
tissues, more advanced computational tools are still necessary. We have developed some
mathematical modeling approaches for Reactome pathways based on probabilistic graphical
models [35] or fuzzy logic models [14], which we plan to integrate into the Reactome IDG portal
in the future.

The Reactome pathway knowledgebase is a highly integrated knowledge graph that
interconnects various types of nodes and edges, extensively linked to bioinformatics resources
available in the scientific community. Notably, the Reactome knowledge graph contains
literature references that support reaction and pathway annotations, providing a wealth of
supporting evidence from experiments. By integrating the tissue or cancer-specific gene co-
expression data we have gathered in this project, along with over 22 million PubMed abstracts
we collected for our NLP workflow, and incorporating them into this knowledge graph, we can
unlock new opportunities by leveraging graph convolutional networks (GNNSs) [36, 37] or other
deep learning technologies to explore the biological functions of poorly understood proteins,
including the elusive "dark" proteins, and reveal their potential therapeutic applications.

Methods

Downloading and Processing Gene Co-Expression Data

We collected a dataset of 106 protein/gene pairwise relationship features to train a random
forest model for predicting functional interactions of proteins. The majority of these features
were obtained from gene coexpressions derived from bulk RNA-seq data obtained from the
GTEx and TCGA projects. Tissue-specific gene expression data was downloaded from the
GTEXx portal, https://www.gtexportal.org/home/datasets. The file we used was the gene read
counts file, GTEx_Analysis_2017-06-05_v8 RNASeQCv1.1.9_gene_reads.gct.gz. Samples
with RIN values less than or equal to 6.0 and tissues with fewer than 30 samples were filtered
out. Cancer-specific RNA-seq gene expression data was acquired in November, 2019 using a
customized Python script that utilized the GDC API as described in this document,
https://docs.gdc.cancer.gov/API/Users Guide/Getting _Started/. The script is available at
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https://github.com/reactome-idg/gather-app/blob/master/python/switch/tcga _gather.py. Outlier
analysis based on PCA's loading matrix (https://github.com/reactome-idg/gather-
app/blob/master/python/scripts/R/functions.R) was conducted, and samples with z-scores of the
first PC (principal component) greater than or equal to 3 were marked as outliers. The
percentage of outliers in each tissue or cancer was less than 5%. The gene counts were
normalized to cpm (count per million) values and then subjected to pairwise Spearman
correlation analysis after removing outliers. A total of 50 and 32 correlation matrices were
generated for GTEx and TCGA, respectively. Additionally, we created a new skin dataset by
merging two skin datasets together, Skin-NotSunExposed-Suprapubic and Skin-SunExposed-
Lowerleg, as an internal control. The code used to download and process these two datasets is
hosted at https://github.com/reactome-idg/gather-app.

Downloading and Processing Protein-Protein Interactions

Human protein-protein interactions were downloaded from StringDB (version 11, file
9609.protein.links.full.v11.0.txt, downloaded in February, 2020 from https://string-
db.org/cgi/download) [38], BioGrid (BIOGRID-ORGANISM-Homo_sapiens-3.5.181.tab2.txt,
downloaded in January, 2020 from https://downloads.thebiogrid.org/BioGRID/) [39] and BioPlex
(two files, BioPlex_293T_Network_10K_Dec_2019.tsv and
BioPlex_HCT116_Network_5.5K_Dec_2019.tsv downloaded in December, 2019 from
https://bioplex.hms.harvard.edu/interactions.php#datasets) [40, 41]. To ensure the reliability of
the human PPIs extracted from StringDB, we specifically collected PPIs supported by
experimental evidence, determined by a score greater than 0 in the experiments channel.
Additionally, we mapped the StringDB IDs directly to human gene names (symbols) using the
mapping file human.name_2_string.tsv, downloaded from the StringDB database in February
2020. The Java code used to load PPIs from these three data sources can be accessed at our
GitHub repo, https://github.com/reactome-idg/fi-network-
ml/tree/master/src/main/java/org/reactome/idg/ppi.

In addition to human protein-protein interactions (PPIs), we incorporated PPIs from model
organism species, including yeast, worm, fly, and mouse, and subsequently mapped them to
human for functional interaction prediction. The model organism PPIs were obtained from
StringDB and BioGrid. From StringDB, we downloaded the following files in March 2020:
4932.protein.links.full.v11.0.txt (yeast), 6239.protein.links.full.v11.0.txt (worm),

7227 .protein.links.full.v11.0.txt (fly), and 10090.protein.links.full.v11.0.txt (mouse).
Corresponding mapping files were used for each organism: yeast.uniprot_2_string.2018.tsv,
celegans.uniprot_2_string.2018.tsv, fly.uniprot_2_string.2018.tsv, and
mouse.uniprot_2_string.2018.tsv. All of these files were obtained from https://string-
db.org/cgi/download. For BioGrid, we acquired the following files in March 2020: BIOGRID-
ORGANISM-Saccharomyces_cerevisiae_S288c-3.5.181.tab2.txt (yeast), BIOGRID-
ORGANISM-Caenorhabditis_elegans-3.5.181.tab2.txt (worm), BIOGRID-ORGANISM-
Drosophila_melanogaster-3.5.181.tab2.txt (fly), and BIOGRID-ORGANISM-Mus_musculus-
3.5.181.tab2.txt (mouse). These files were downloaded from
https://downloads.thebiogrid.org/BioGRID/. The non-human PPIs were loaded as pairs of
UniProt identifiers and merged separately for each model organism species from the StringDB
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and BioGrid datasets. To map the model organism PPIs to human, we employed different
mapping strategies. For yeast, worm, and fly, we used the panther orthologous mapping file,
RefGenoeOrthologs.tar.gz, downloaded from ftp://ftp.pantherdb.org/ortholog/ in March 2019.
We filtered this file to extract human genes using the command "grep “"HUMAN'
RefGenomeOrthologs > HUMAN_RefGenomeOrthologs". To map mouse PPls to human PPIs,
we utilized the ENSEMBL Compara protein families (Release 98, downloaded in February
2020) to maximize the number of mappable PPIs between the two species.

Downloading and Processing Gene Similarity Data, Protein Domain

Interactions and Go Annotation

Gene similarity data was downloaded from Harmonizome,
https://maayanlab.cloud/Harmonizome/download. To integrate this data into our workflow, we
ported the Python script at its download website into Java. We manually selected a subset of
datasets that were likely to provide pathway-related information, while excluding datasets
related to gene expressions or non-human data. For details on the selected datasets, please
refer to the “harmonizome_datasets_annotations_062819.xIsx” file in Supplemental
Results.

Protein-protein domain interactions were acquired from pFam (release 32.0, downloaded from
https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/ in December, 2018) and gene GO
annotations were downloaded from the GO web site (goa_human.gaf, downloaded in January,
2020 from http://geneontology.org/docs/go-annotation-file-gaf-format-2.2/). Both the domain-
domain interactions and GO annotations were loaded as gene or protein pairwise features and
mapped to human gene symbols for compatibility.

Feature Selection for Random Forest Training

To assess the quality of gene or protein pairwise relationships for training the random forest
classifier, we utilized functional interactions (FIs) extracted from complexes and reactions in
Reactome (Release 71, December 2019) using a method we developed previously to build the
Reactome FI network [42] and calculated an odds ratio for each dataset. Only datasets with
odds ratios greater than 5.0 were selected as features for training the random forest classifier.

For gene similarities obtained from Harmonizome, we employed an adaptive cutoff approach
based on a methodology described by lacono et al [43]. This approach involved selecting gene
pairs with top 1% or 0.1% gene similarity scores to either increase the odds ratio or retain a
higher number of gene pairs. Configuration details can be found at https://github.com/reactome-
ida/fi-network-ml/blob/master/src/main/resources/harmonizome_selected files.txt.

In total we collected 106 gene or protein pairwise relationship features, which encompassed 31
cancer specific gene co-expression features from TCGA, 48 tissue specific co-expression
features from GTEX, 20 gene similarity features from Harmonizome, 5 protein-protein interaction
features from StringDB, BioGrid, and BioPlex, 1 protein domain-domain interaction feature from
pFAM, and 1 biological process annotation sharing feature from GO. Further details and


https://maayanlab.cloud/Harmonizome/download
https://ftp.ebi.ac.uk/pub/databases/Pfam/releases/Pfam32.0/
http://geneontology.org/docs/go-annotation-file-gaf-format-2.2/
https://github.com/reactome-idg/fi-network-ml/blob/master/src/main/resources/harmonizome_selected_files.txt
https://github.com/reactome-idg/fi-network-ml/blob/master/src/main/resources/harmonizome_selected_files.txt
https://doi.org/10.1101/2023.06.05.543335
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.05.543335; this version posted June 5, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

analysis results for these features can be found in SelectedFeatures_0415 2020.xIsx in
Supplemental Results.

Training the Random Forest Classifier to Predict Protein Functional

Interactions

The random forest model was trained using the RandomForestClassifier model from the scikit-
learn Python package (version 0.23) with Python 3.8. To determine the optimal parameters for
this model, we employed the gridsearch function in scikit-learn. The parameters explored in the
grid search included class_weight (‘balanced’, 'balanced _subsample', None), max_depth (2, 4,
6, 10, None), max_features (‘auto’, 'sgrt’, 'log2"), min_samples_leaf (1, 2, 4), min_samples_split
(2, 4, 10), and n_estimators (100, 200, 500, 1000). To conduct the grid search, we randomly
selected 100 positive gene pairs representing functional interactions (FIs) and 10,000 negative
gene pairs. These pairs were divided into 75% for training and 25% for validation, and this
process was repeated 10 times.

The final set of parameters used in the Random Forest model were as follows: bootstrap=True,
ccp_alpha=0.0, class_weight="balanced', criterion="gini', max_depth=10, max_features="auto’,
max_leaf_nodes=None, max_samples=None, min_impurity _decrease=0.0,
min_impurity_split=None, min_samples_leaf=1, min_samples_split=2,
min_weight_fraction_leaf=0.0, n_estimators=200, n_jobs=None, oob_score=False,
random_state=42, verbose=0, warm_start=False. For further details on the implementation,
please refer to the Python script available at https://github.com/reactome-idg/fi-network-
ml/blob/master/scripts/mi/fi_predictor.py.

Measuring the Interacting Pathway Scores

To identify functionally relevant gene pairs, we utilized the random forest classifier trained in our
study. We selected gene pairs with prediction scores greater than or equal to 0.8 as the set of
predicted functional interactions (FIs). Next, we performed pathway enrichment analysis for
each gene in the predicted FI set by using its FI partners as a gene set. We utilized human
pathways from Reactome release 77 (June, 2021) for this analysis. To assess the significance
of pathway enrichment, we employed a Binomial test and calculated p-values. To account for
multiple testing, we also computed adjusted p-values for individual genes using the Benjamini-
Hochberg FDR (False Discovery Rate) Procedure [44].

To further analyze the impact of predicted Fls on pathways, we employed fuzzy logic models
based on Boolean networks. These models were automatically converted from Reactome
pathways. We adopted a previously developed approach used for calculating drug impact
scores on pathways [14]. Two simulations were conducted: baseline and perturbation. In the
baseline simulation, we did not inject the prediction scores into the fuzzy logic's Hill equation. In
the perturbation simulation, we introduced the prediction scores as a perturbation. The impact
score for a gene-pathway pair was calculated based on the area-under-curve of the time course
curves generated by the simulations. Since the modes of the Fls (activation or inhibition) were
not predicted, we ran the simulations twice, assuming all FIs between the protein and proteins in
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the pathway were either activation or inhibition. This allowed us to calculate both activation
scores and inhibition scores. The final reported score for a gene-pathway pair represents the
average score across all outputs of reactions in the pathway.

Downloading and Analyzing the Blood scRNA-seq Dataset

We obtained scRNA-seq data for blood from the Tabula Sapiens project [15] via
https://figshare.com/articles/dataset/Tabula Sapiens release 1 0/142672197file=34701964.
We downloaded the h5ad file, loaded it as an AnnData object using the scanpy Python package
[45], and filtered genes to about 20,000 human protein coding genes recorded in Reactome.
After that, we converted the h5ad file into a Seurat rds object [46], and then passed this object
to the network function in BigSCale2 R package [16] with speed.preset="fast’. To select the
most reliable correlation, the correlation output from BigSCale2 was then loaded into a Java
class to select the top 0.1% of positive correlations by following the approach described by
lacono et al [43]. The selected correlations were then used for interacting pathway enrichment
analysis by following the same procedure for predicted Fls.

Downloading and Analyzing PubMed Abstracts

We downloaded the PubMed 2022 baseline via https:/ftp.ncbi.nlm.nih.gov/pubmed/baseline/, to
obtain all PubMed indexed abstracts published by the end of 2021. We employed
SentenceTransformer (https://www.sbert.net, version 2.1.0), a Python package, to embed the
downloaded abstracts into 384-dimensional numeric vectors using a pre-trained BERT model
called "all-MiniLM-L6-v2". To retrieve abstracts related to a specific gene, we employed a simple
text matching approach, collecting any abstracts that mentioned the gene's name or its protein
product's name or synonyms. The gene’s and protein’s names and synonyms were obtained
from UniProt's website
(https://www.uniprot.org/uniprot/?query=*&fil=reviewed%3Ayes+AND+organism%3A%22Homo
+sapiens+%28Human%29+%5B9606%5D%22), selecting columns including Entry, Entry
name, Protein names, Gene names (primary), and Gene names (synonym). To assess the
similarities between Reactome pathways and abstracts, we applied the same BERT model to
embed the text in the Summation instances annotated for pathways and reactions into numeric
vectors. To determine the similarity between a pathway and an abstract, we first calculated
cosine similarities using the cos_sim() function in the SentenceTransfomer package between
the abstract and the pathway and all events (pathways and reactions) annotated inside this
pathway using their BERT embeddings and then took the mean of these similarities. For
example, Pathway_1 has Sub_Pathway_1 annotated and Sub_Pathway_1 has a Reaction_1
annotated. To calculate the cosine similarity between Pathway_1 and Abstract_1, we calculated
three cosine similarities for Pathway_1 and Abstract_1, Sub_Pathway_1 and Abstract_1, and
Reaction_1 and Abstract_1 using their respective BERT embeddings, and then calculated the
mean of these three similarities as the cosine similarity between Pathway_1 and Abstract_1.
This process allowed us to capture the relationship between the higher-level pathway, its sub-
pathways, and the annotated reactions within the context of the abstract. To calculate the
annotation score for a gene and a pathway, we selected at most 1,000 abstracts having highest
average cosine similarities to all Reactome pathways under analyzed, calculated the cosine
similarities for individual abstracts to pathways and then took the mean of these similarities as
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the annotation score. All code utilized in this analysis was implemented in Python and is
available in our GitHub repo, https://github.com/reactome-idg/fi-network-
ml/tree/master/scripts/nip.

Manual Curation of Randomly Selected Dark Proteins

We randomly selected 20 dark proteins that have not been annotated in Reactome. For each
protein, we searched PubMed using the names of the protein or its gene or the protein’s UniProt
identifiers as keywords. We read the full text paper to determine if there was any experimental
evidence to support the predicted interacting pathways for the protein. Further, we also checked
GeneCards, UniProt and GO entries for any direct experimental evidence to support the
predicted interacting pathways. The detailed annotation was provided in the file, manual
annotation of interacting pathways for 20 dark proteins.xlsx, in Supplemental Results.

The Reactome IDG Web Portal Development

We extended the Reactome web application by adding new RESTful APIs and enhancing the
original web-based pathway visualization widgets. The development of the new RESTful API
followed the Spring MVC framework (https://spring.io, Release 4.3.10) with a MongoDB
database (https://www.mongodb.com, version 4.2.3) as the backend to store predicted
functional interactions, pairwise features, interaction pathways and all related information. We
also used a MySQL database for Reactome specific information (e.g. genes in pathways and
pathway diagrams). To enhance the pathway widgets, we forked the original Reactome web
application projects and added new features using GWT (https://www.gwtproject.org, version
2.8.2). To develop the homepage of the Reactome IDG web portal, we used Vuejs, a JavaScript
framework (https://vuejs.org, version 2.6.12) and plugins for Vuejs, including vuetify
(https://vuetifyjs.com/en/, version 2.4.3) for general user interfaces, vue-cytoscape
(https://rcarcasses.qgithub.io/vue-cytoscape/, 1.0.8) for network views, and vue-plotly
(https://david-desmaisons.github.io/vue-plotly/, 1.1.0) for plotting. For Java related software
projects, we used maven (https://maven.apache.org, version 3.5.0) to manage dependencies
while for JavaScript project, we used npm (https://www.npmjs.com, version 6.14.10). All code is
open sourced and available in GitHub repositories hosted at https://github.com/reactome-idg,
including idg-pairwise-ws (https://github.com/reactome-idg/idg-pairwise-ws) for the RESTful
APIs and idg-homepage (https://github.com/reactome-idg/idg-homepage) for the Reactome IDG
homepage.

Statistical Analysis
We used R (version 4.1.1) and Python (3.7 or 3.8) for statistical analysis and plot. All code is
available in our GitHub repo.
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Figure S1. Box plot of interaction pathway scores for proteins categorized as Thio,
Tchem, Tclin, and Tdark. P-values were determined based on ANOVA.
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Figure S2. Correlation plot showing significant correlations between the three interacting
pathway scores, Average_Activation, Average_Inhibtion and Enrichment. P-values are
less than 0.001 based on 10% sampled data points.
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Figure S3. scRNA-seq analysis results support predicted interacting pathways by
showing a significantly positively skewed distribution of correlations between
average_activation_scores based on predicted Fls and enrichment score based on
scRNA-seq coexpression (A) and unbiased distributions between annotated and not-
annotated dark and not-dark proteins (B). The left-most panel in B shows the numbers of
interacting pathways used for correlation calculation for individual proteins. The numbers of
pathways used for correlation calculation between average_activation and enrichment score
based on scRNA-seq co-expression are smaller than ones shown in Figure 4. This is because
some proteins may functionally interact with proteins annotated in pathways but fail to have
guantitative impact on pathway activities, according to our simulation approach. P-value: ****;
<= 1.0E-04, ***: 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <= 1.00e-02, *: 1.00e-02 < p <=

5.00e-02, ns: p <= 1.00e+00.
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Figure S4. scRNA-seq analysis results support predicted interacting pathways by
showing a significantly positively skewed distribution of correlations between
average_inhibition_scores based on predicted FIs and enrichment score based on
SCRNA-seq coexpression (A) and unbiased distributions between annotated and not-
annotated dark and not-dark proteins (B). The left-most panel in B shows the numbers of
interacting pathways used for correlation calculation for individual proteins. The numbers of
pathways used for correlation calculation between average_inhibition and enrichment score
based on scRNA-seq co-expression are smaller than ones shown in Figure 4. This is because
some proteins may functionally interact with proteins annotated in pathways but fail to have
guantitative impact on pathway activities, according to our simulation approach. No significant
differences were observed between the number of proteins having negative correlations and the
number of proteins having positive correlations (second panel in A). Additionally, there was no
significant difference in the numbers of interacting pathways for dark and non-dark Reactome
annotated proteins (rightmost panel in B). Those are presumably because only gene pairs with
co-expression are in the top 0.1% were selected from the scRNA-seq dataset. P-value: ****. <=
1.0E-04, ***: 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <= 1.00e-02, *: 1.00e-02 < p <= 5.00e-
02, ns: p <= 1.00e+00.
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Figure S5. BERT-based NLP analysis results support predicted interacting pathways for
proteins by showing a significantly positively skewed distribution. A: The distribution of
Pearson correlations between NLP-based annotation scores and predicted Fl-based average
activation scores exhibits a significantly positively skewed distribution. B: The correlation
difference analysis for annotated and not-annotated dark and not-dark proteins. The right-most
panel in B shows the numbers of interacting pathways used for correlation calculation for
individual proteins. P-value: ****; <= 1.0E-04, ***; 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <=
1.00e-02, *: 1.00e-02 < p <= 5.00e-02, ns: p <= 1.00e+00.
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Figure S6. BERT-based NLP analysis results support predicted interacting pathways for
proteins by showing a significantly positively skewed distribution. A: The distribution of
Pearson correlations between NLP-based annotation scores and predicted Fl-based average
inhibition scores exhibits a significantly positively skewed distribution. B: The correlation
difference analysis for annotated and not-annotated dark and not-dark proteins. The right-most
panel in B shows the numbers of interacting pathways used for correlation calculation for
individual proteins. P-value: ****; <= 1.0E-04, ***; 1.00e-04 < p <= 1.00e-03, **: 1.00e-03 < p <=
1.00e-02, *: 1.00e-02 < p <= 5.00e-02, ns: p <= 1.00e+00.
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