

1 **Spermidine facilitates the adhesion and subsequent invasion of *Salmonella***
2 **Typhimurium into epithelial cells via the regulation of surface adhesive**
3 **structures and the SPI-1**

4 Abhilash Vijay Nair¹, Yashas Devasurmutt^{2#}, S.A Rahman^{2#}, Utpal Shashikant Tatu²,
5 Dipshikha Chakravortty^{1,3*}

6 ¹Department of Microbiology and Cell Biology, Division of Biological Sciences, Indian
7 Institute of Science, Bengaluru, India

8 ²Department of Biochemistry, Indian Institute of Science, Bangalore, India.

9 ³ Adjunct Faculty, School of Biology, Indian Institute of Science Education and Research,
10 Thiruvananthapuram

11 [#] These authors contributed equally

12 * Corresponding author

13 Dipshikha Chakravortty

14 Email: dipa@iisc.ac.in

15 Tel: 0091 80 2293 2842

16 Fax: 0091 80 2360 269

17

18

19

20

21 **Abstract**

22 Polyamines are poly-cationic molecules ubiquitously present in all organisms. *Salmonella*
23 synthesizes and also harbors specialized ABC transporters to uptake polyamines. Polyamines
24 assist in pathogenesis and stress resistance in *Salmonella*; however, the mechanism remains
25 elusive. The virulence trait of *Salmonella* depends on the injection of effector proteins into the
26 host cell and modulation of host machinery and employs an array of arsenals to colonize in the
27 host niche successfully. However, prior to this, *Salmonella* utilizes multiple surface structures
28 to attach and adhere to the surface of the target cells. Our study solves the enigma of how
29 polyamine spermidine assists in the pathogenesis of *Salmonella*. We show that spermidine
30 mediates the initial attachment and adhesion of *Salmonella* Typhimurium to Caco-2 cells,
31 facilitating its invasion. In-vivo studies showed that polyamines are required for invasion into
32 the murine Peyer's patches. Polyamines have previously been shown to regulate the
33 transcription of multiple genes in both eukaryotes and prokaryotes. We show that spermidine
34 controls the RNA expression of the two-component system, BarA/SirA, that further regulates
35 multiple fimbrial and non-fimbrial adhesins in *Salmonella*. Flagella is also a vital surface
36 structure aiding in motility and attachment to surfaces of host cells and gall stones. Spermidine
37 regulated the expression of flagellin genes by enhancing the translation of s28, which features
38 an unusual start codon and a poor Shine-Dalgarno sequence. Besides regulating the formation
39 of the adhesive structures, spermidine tunes the expression of the *Salmonella* pathogenicity
40 island-1 encoded genes. Thus, our study unravels a novel mechanism by which spermidine aids
41 in the adhesion and the subsequent invasion of *Salmonella* into host cells.

42

43 Keywords: Spermidine, Intestinal epithelial cells, adhesins, flagella, sigma-factor²⁸
44 *Salmonella*- pathogenicity insland-1

45

46 **Introduction**

47 *Salmonella enterica* is considered a primary foodborne pathogen and the most pathogenic
48 species of the genus *Salmonella* [1]. This species comprises more than 2500 serovars broadly
49 classified into Typhoidal (TS) and Non-typhoidal forms (NTS). The serovars *S. Typhimurium*
50 and *S. Enteritidis* infect a wide range of hosts leading to diarrhoea and gastroenteritis, while the
51 human-restricted serovars, *S. Typhi* and *S. Paratyphi* cause severe systemic infection and
52 enteric fever [2, 3]. However, in children and immunocompromised individuals, the NTS can
53 often cause systemic disease and fever-like symptoms classified as invasive non-Typhoidal
54 serovars (iNTS) [4]. Upon ingestion through contaminated food and water, *Salmonella*
55 survives the acidic pH in the stomach and successfully reaches the small intestine. *Salmonella*
56 harbours multiple virulence-associated genes, most of which are clustered into 23 *Salmonella*
57 pathogenicity islands (SPIs) [5]. The primary cell type encountered by *Salmonella* is the
58 epithelial cells lining the intestinal lumen at the Peyer's patches. The first step to a successful
59 infection is passing through the thick mucous lining and adhering to the epithelial cell surface
60 followed by its subsequent invasion[6]. To infect the host cells at the Peyer's patches, it utilises
61 a highly elegant nanomachine called the Type 3 secretion system (T3SS) encoded by the SPI-
62 1, which transports effectors into the host cytosol leading to actin cytoskeletal rearrangement
63 and uptake of the bacteria [7]. Once inside the host cell, it activates another set of virulence
64 genes encoded by SPI-2, which aid in the survival and replication of *Salmonella* in the
65 specialised niche called the *Salmonella* containing vacuole (SCV) [7, 8]. It is then taken up by
66 the CD18+ expressing macrophages and dendritic cells and disseminates through the
67 reticuloendothelial system [9, 10].

68 Polyamines are positively charged compounds that are associated with a number of functions
69 in eukaryotes including cell growth, cell division, stress response gene regulation etc [11]. They
70 are ubiquitously present in all life forms. *Salmonella* also has the ability to utilise polyamines.
71 *Salmonella* can anabolically metabolise putrescine, spermidine and spermine from arginine and
72 ornithine as the precursor[11]. Besides its ability to synthesise, it has three transport systems:
73 PotABCD, PotFGHI and PotE. PotABCD imports mainly spermidine and putrescine, while
74 PotFGHI PotE imports and exports only putrescine respectively [12].

75 In bacteria, polyamines are involved in biofilm formation, virulence, and motility [13, 14]. In
76 *Shigella* sp. the accumulation of spermidine shields it from oxidative stress within the host
77 macrophages, which is essential for its invasion [15]. During infection of *Streptococcus*
78 *pneumoniae*, spermidine transporter PotD levels increase and PotD loss leads to attenuated
79 pneumococcal virulence in mice [16]. Also, in *Vibrio cholerae* and *Yersinia pestis*, polyamines
80 are crucial players regulating biofilm formation. In *Salmonella* Typhimurium polyamines are
81 crucial for the virulence and stress resistance [17]. *C. elegans* infected with *Salmonella* lacking
82 the ability to synthesise both putrescine and spermidine and with *Salmonella* unable to transport
83 the two polyamines survive better than infected with the wild type [12]. Also, the deletion of
84 *speG* that functions in the catabolism of spermidine in *Salmonella* Typhimurium reduces the
85 intracellular replication in multiple human cell lines [18]. Spermidine is a major polyamine in
86 bacteria and functions to regulate the expression of numerous genes in prokaryotes by
87 interacting directly with the negatively charged nucleic acids. Spermidine and putrescine are
88 the two vital polyamines present in *Salmonella*. All the studies till date have shown the function
89 of a group of polyamines in *Salmonella*. However the mechanism involved in assisting in
90 virulence of this bacteria by polyamines still remains a mystery.

91 This led us to ask the question of whether spermidine alone plays a role in the pathogenesis of
92 *Salmonella* Typhimurium. Also, to unravel the mechanism by which spermidine modulates the

93 virulence of *Salmonella* Typhimurium. In our study, we observe that spermidine is an essential
94 player during the infection cycle of *Salmonella* Typhimurium. Spermidine is critical in each of
95 the early stages of the infection cycle of *Salmonella* and its survival within host epithelial cells.
96 We delineate a novel regulatory network involving spermidine in modulating the bacterial
97 surface adhesive and motility structures in *Salmonella* Typhimurium.

98 **Material and Methods**

99 **Bacterial strains and growth condition**

100 *Salmonella enterica* serovars Typhimurium (STM WT) wild type strain ATCC 14028 was used
101 in all experiments which was a kind gift from Prof. Michael Hensel, Abteilung Mikrobiologie,
102 Universität Osnabrück, 273 Osnabrück, Germany. The bacterial strain was cultured in Luria
103 broth (LB-Himedia) with constant shaking (175rpm) at 37°C orbital-shaker. Kanamycin,
104 Chloramphenicol and Ampicillin antibiotics (Kanamycin-50µg/ml, Cholramphenicol-20µg/ml
105 and Ampicillin-50µg/ml) were used wherever required. For immunofluorescence studies, the
106 strains were transformed with pFPV 25.1 plasmid expressing mCherry.

107 **Bacterial gene knock-out and strain generation**

108 The generation of gene knock-out in bacteria was done using the One-step chromosomal gene
109 inactivation protocol by Datsenko and Wanner (2000) [19]. Briefly, primers were designed for
110 amplification of Kanamycin resistance gene and Chloramphenicol resistance gene cassettes
111 from PKD4 and PKD3 plasmids, respectively, such that 5' terminus of the primers had sequence
112 homologous to the flanking region of the gene to be knocked out (here *potCD* and *speED*).
113 After amplifying the Kanamycin resistance gene and the Chloramphenicol resistance gene, the
114 amplified products were purified using chloroform-ethanol precipitation. Followed by
115 electroporation into the STM WT cells (expressing PKD-46 plasmid which provides the λ-Red
116 recombinase system) by a single pulse of 2.25 kV separately for the Kan^R and Chlm^R.

117 Immediately fresh recovery media was added and incubated at 37°C for 60 minutes in an
118 orbital-shaker. After incubation, the cultures were centrifuged at 10000rpm for 5 minutes. Then
119 the pellet was dissolved in 100µL of media and plated at the required dilution on LB agar plates
120 with Kanamycin and Cholaramphenicol as required. The plates were incubated at 37°C for 12-
121 14 hours. The colonies were selected and patched on fresh plates and confirmed for knock-out
122 using PCR with primers designed corresponding to the ~100bp upstream and downstream of
123 the genes (knocked out) for both the knock-out strains. Which was then run on 1% agarose gel
124 to compare the length of the products in the mutants from STM WT bacteria. For the generation
125 of the double knock-out strain (STM *ΔpotCDΔspeED*), the STM *ΔpotCD* (resistant to
126 Kanamycin) was first transformed with the plasmid pKD46 which provides the λ-Red
127 recombinase system. To this transformed strain, the purified PCR product to knock-out *speED*
128 was electroporated to generate the STM *ΔpotCDΔspeED* (resistant to Kanamycin and
129 Chloramphenicol). For generation of chromosomal *fliA*-FLAG in STM WT, STM *ΔpotCD*, and
130 STM *ΔspeED* the same protocol of homologous recombination using pKD-46 plasmid was
131 used. The amplification of FLAG-Kan^R was done from pSUB11 plasmid (a generously gift
132 from Prof. Umesh Varshney, MCB, IISc). The purified PCR product (FLAG-Kan^R flanked by
133 homologous sequence for incorporation at the 3'-end of *fliA* excluding the STOP codon)were
134 electroporated into the respective strains and transformants were selected in Kanamycin
135 containing LB agar plates.

136 **Cell culture and maintenance**

137 Caco-2 cells (human intestinal epithelial cell line) were cultured in DMEM - Dulbecco's
138 Modified Eagle Medium (Lonza) supplemented with 10% FBS (Gibco), 1% Non-essential
139 amino acids (Sigma- Aldrich), 1% Sodium pyruvate (Sigma- Aldrich) and 1% Penicillin-
140 streptomycin (Sigma- Aldrich) at 37°C humidified chamber (Panasonic) with 5% CO₂. HeLa
141 cells (human epithelial cell line) were cultured in DMEM - Dulbecco's Modified Eagle

142 Medium (Lonza) supplemented with 10% FBS (Gibco) at 37°C humidified chamber
143 (Panasonic) with 5% CO₂. For each experiment, the cells were seeded onto the appropriate
144 treated cell culture well plate at a confluence of 80% either without coverslips (for intracellular
145 survival assay, adhesion assay and qRT-PCR) or with coverslips (for immunofluorescence
146 microscopy).

147 **Gentamicin protection assay**

148 The cells were infected with STM WT, STM *ΔpotCD*, STM *ΔspeED* and STM
149 *ΔpotCDΔspeED* at MOI of 10 (for intracellular survival assay, adhesion assay, and
150 immunofluorescence microscopy) and MOI 25 (for qRT-PCR). After infecting the cell line
151 with STM WT and the mutants, the plate was centrifuged at 700-900 rpm for 10 minutes to
152 facilitate the proper adhesion. The plate was then incubated for 25 minutes at 37°C humidified
153 chamber and 5% CO₂. Then the media was removed from the wells and washed with 1X PBS.
154 Fresh media containing 100 µg/mL gentamicin was added and again incubated for 60 minutes
155 at 37°C and 5% CO₂. The media was then removed, cells were washed with 1X PBS twice,
156 and fresh media containing 25µg/mL gentamicin was added. The plate was incubated at 37°C
157 and 5% CO₂ till the appropriate time. For the intracellular survival assay, two time points were
158 considered 2 hours and 16 hours, and for qRT-PCR three time points were considered 2 hours,
159 6 hours and 16 hours.

160 **Intracellular survival assay and invasion assay**

161 At the appropriate time post-infection the cells were lysed using 0.1% Triton X followed by
162 addition of more 1X PBS and samples were collected. The collected samples were plated at the
163 required dilutions on LB agar plates and kept at 37°C. 12 hours post incubation the Colony
164 forming units (CFU) were enumerated for each plate.

165 The fold proliferation and invasion were determined as follows

166 Fold Proliferation = (CFU at 16 hours post-infection)/(CFU at 2 hours post-infection)

167 Percentage invasion = [(CFU at 2 hours post-infection)/(CFU of the Pre-inoculum)] $\times 100$

168 **Adhesion assay**

169 The cells were infected with STM WT, STM *ΔpotCD*, STM *ΔspeED* and STM *ΔpotCDΔspeED*
170 at MOI of 10. After infection, the plate was centrifuged at 700-900 rpm for 10 minutes to
171 facilitate the proper adhesion. The plate was then incubated for 10 minutes at 37°C humidified
172 chamber and 5% CO₂. Then the media was removed, and the cells were washed with 1X PBS
173 twice to remove the loosely adhered bacteria. The mammalian cells were then lysed with 0.1%
174 Triton-X 100 to release the adhered bacteria into the solution, and more of 1XPBS was added
175 and the samples were collected. The collected samples were plated at the required dilutions on
176 LB agar plates and kept at 37°C. 12 hours post incubation, the Colony forming units (CFU)
177 were enumerated for each plate. The percentage adhesion was determined as follows:

178 Percentage adhesion = [(CFU at 10 minutes post-infection)/ (CFU of the Pre-inoculum)] $\times 100$

179 **Confocal microscopy**

180 After the appropriate incubation time, the media was removed, and the cells were washed with
181 1X PBS. The cells were then fixed with 3.5% Paraformaldehyde for 10 minutes. The cells were
182 then washed with 1X PBS and incubated with the required primary antibody (anti- *Salmonella*
183 LPS) in a buffer containing 0.01% saponin and 2% BSA and incubated at room temperature
184 for 45-60 minutes. The primary antibody was then removed by washing with 1X PBS and then
185 incubated with the appropriate secondary antibody tagged to a fluorochrome. The coverslips
186 were then washed with PBS and mounted on a clean glass slide using mounting media
187 containing an anti-fade reagent. The coverslips were sealed with clear nail polish and observed
188 under the confocal microscope (Zeiss 710 microscope, at 63X oil immersion, 2x319 3x zoom,
189 and 100X zoom for studying only bacterial samples, Zeiss 880 microscope, at 63X oil

190 immersion, 2x319 3x zoom). For studying histopathology samples 40X oil immersion 2x319
191 3x zoom was used. For FliC study, STM WT, STM *ΔpotCD*, STM *ΔspeED* were subcultured
192 and grown in LB media, with or without supplementation of 100µM spermidine till log phase
193 of growth (OD 0.1). After washing with 1X PBS, the samples were smeared on clean glass
194 slide and air dried. Followed by staining as previously explained using specific antibody in
195 buffer. For invasion assay buffer contained only 2% BSA.

196 **RNA isolation and qRT-PCR**

197 RNA isolation was performed from infected cells after appropriate hours of infection with STM
198 WT, STM *ΔpotCD*, STM *ΔspeED* by RNA isolation was performed using TRIzol (Takara)
199 reagent according to manufacturers' protocol RNA was quantified using Thermo-fischer
200 scientific Nano Drop followed by running on 2% agarose gel for checking the quality. For
201 cDNA synthesis, first DNase I treatment with 3µg of isolated RNA was done at 37°C for 60
202 minutes, which was then stopped by heating at 65°C for 10 minutes. Then RNA (free of DNA)
203 was subjected to Reverse transcription using Random hexamer, 5X RT buffer, RT enzyme,
204 dNTPs and DEPC treated water at 37°C for 15 minutes, followed by heating at 85°C for 15
205 seconds. Quantitative real-time PCR was done using SYBR green RT-PCR kit in BioRad qRT-
206 PCR system. A 384 well plate with three replicates for each sample was used. The expression
207 levels of the gene of interest were measured using specific RT primers. Gene expression levels
208 were normalised to 16SrDNA primers of *S. Typhimurium*. For expression studies in bacteria
209 grown in LB media, the bacterial samples were harvested at 3 hours, 6 hours, 9 hours and 12
210 hours post subculture in fresh LB media in 1:100 ratio. Then similar protocol was used to
211 isolate total RNA using TRIzol (Takara) reagent according to manufacturers' protocol.

212 **Immunoblotting**

213 STM WT, STM *ΔpotCD*, STM *ΔspeED* and STM *ΔpotCDΔspeED* were grown in LB media
214 until log phase of growth. The cells were centrifuged to remove the media and the cells were

215 resuspended in lysis buffer (Sodium chloride, Tris, EDTA, 10% protease inhibitor cocktail)
216 after washing with 1XPBS. The cells were lysed using sonication and centrifuged at 4°C to
217 collect the cell lysate, followed by estimation of total protein using the Bradford protein
218 estimation method. 50 μ g of protein was loaded on to a Polyacrylamide Gel Electrophoresis
219 (PAGE), then transferred onto 0.45 μ m PVDF membrane (GE Healthcare). 5% skimmed milk
220 (Hi-Media) in TTBS was used to block for 1h at RT and then probed with Anti-FLAG primary
221 and secondary HRP-conjugated antibodies. ECL (Biorad) was used for developing the blot,
222 and images were captured using Chemi-Doc GE healthcare. All densitometric analysis was
223 performed using the Image J.

224 **Swim assay**

225 2 μ l of bacterial samples were spotted on the 0.3% agar plates supplemented with 0.5% yeast
226 extract, 1% casein enzyme hydrolysate, 0.5% NaCl and 0.5% glucose (swim agar plates). The
227 plates were incubated at 37°C for 6 hours, and then images were taken using a Biorad-
228 chemidoc. The diameters of the motility halos were measured using ImageJ. At least five
229 replicate plates were used for each condition.

230 **Transmission electron microscopy**

231 Flagella were visualised by slightly modifying the protocol described in Garai et al 2016 [20].
232 Briefly, overnight STM WT, STM *ΔpotCD*, STM *ΔspeED* and STM *ΔpotCDΔspeED* were
233 inoculated in LB media(1:33 ratio) and incubated at 37°C orbital shaker incubator for 2- 3 hours
234 until it reached an OD of 0.2. The bacterial cultures were centrifuged at 2000rpm for 10 minutes
235 at 4°C. The bacterial cells were washed with 1XPBS twice and finally the cells were
236 resuspended in 100 μ l of 1X PBS. Similarly, STM *ΔfliC* was used as negative control. 10 μ l
237 of the cell suspension was added on copper grid, air dried, stained with 1% uranyl acetate for
238 30 sec, and visualised under transmission electron microscope.

239 **Mass-spectrometry for determination of intracellular spermidine**

240 The sample preparation was done as explained Feng Y et.al; previously[21]. Briefly, STM WT,
241 STM *ΔpotCD*, STM *ΔspeED* and STM *ΔpotCDΔspeED* were grown in LB media until log
242 phase of growth. The cells were centrifuged to remove the media and the cells were
243 resuspended in 80% methanol (Thermo-fischer) after washing with 1XPBS. The cells were
244 lysed using sonication and centrifuged at 4°C to collect the cell lysate. The methanol was
245 evaporated in vacuum at low temperatures, and then lyophilised at -40°C. Dried metabolite
246 extracts were dissolved in 1.0 mL of 0.1% Formic acid in ddH₂O and vortexed for 2 minutes,
247 later centrifuged for 5.0 minutes at 5000 rpm and 4°C. 0.5 ml of supernatant was transferred to
248 a HPLC vial (Amber colored) for LC–MS/MS analysis on a Agilent 1260 HPLC system
249 coupled to an Agilent QQQ 6460 mass spectrometer. An Agilent Eclipse Plus C18 (50 mm ×
250 4.6 mm, 1.8 µm) column at 30°C was utilized for LC separation. Samples were injected (10 µl)
251 from the auto sampler kept at 5°C. Then mobile phase A (ddH₂O containing 0.1% formic acid)
252 and mobile phase B (Methanol containing 0.1% formic acid) were prepared for sample elution.
253 The isocratic elution was as follows: 20% mobile phase B was maintained for 5 min at a flow
254 rate of 0.5 ml min⁻¹. Mass spectra were acquired on a 6460 QQQ mass spectrometer (Agilent,
255 USA) equipped with an electrospray ionization (ESI) source in positive ion mode. The
256 concentrations 1, 5, 10, 25, 50, 75, 100 ng/ml of standard (fresh preparations) were used for
257 Linearity. The Mass parameters and multiple reaction monitoring transition ions of spermidine
258 are shown in Supplementary Table. Peak identification and amounts of spermidine were
259 evaluated using Agilent MassHunter Data Acquisition, Agilent MassHunter QQQ Qualitative
260 Analysis and Agilent MassHunter QQQ Quantitative Analysis softwares on the basis of the
261 known amounts of spermidine.

262

263

264 **In-vivo animal experiment**

265 5-6weeks old C57BL/6 mice were infected by orally gavaging 10^7 CFU of STM WT, STM
266 $\Delta potCD$, STM $\Delta speED$ and STM $\Delta potCD\Delta speED$. For invasion assay intestine was isolated 6
267 hours post-infection, and CFU was enumerated on differential and selective SS agar by serial.

268 **Availability of data and materials**

269 All data generated and analysed during this study, including the supplementary information
270 files, are incorporated in this article. The data is available from the corresponding author on
271 request.

272 **Ethics statement**

273 All the animal experiments were approved by the Institutional Animal Ethics Committee, and
274 the Guidelines provided by National Animal Care were strictly followed during all
275 experiments. (Registration No: 435 48/1999/CPCSEA).

276 **Results**

277 **Spermidine transporter and biosynthesis genes are co-regulated in *Salmonella*
278 *Typhimurium***

279 *Salmonella* Typhimurium harbours both the ability to synthesise spermidine and import it from
280 the extracellular milieu. This intrigued us to investigate the regulation of spermidine synthesis
281 and its transport by *Salmonella*. To begin with we accessed the expression of the genes *potA*,
282 *potB*, *potC*, and *potD*, which encode the ATP-dependent transport apparatus that localises to
283 the cell wall passing through the periplasmic space [22]. We observed that during *in-vitro*
284 growth of *Salmonella* in LB media, all the genes encoding the transporter show a bimodal
285 mRNA expression, with 8-fold, 6-fold, 11-fold and 9-fold higher expression at the mid-log
286 phase (6 hours) than the early-log phase(3 hours) for *potA*, *potB*, *potC* and *potD* respectively.

287 Followed by a dip in the expression at the late log phase(9 hours), *potA*, *potB*, *potC*, and *potD*
288 show a 6-fold, 3-fold, 7-fold and 5-fold upregulation in the mRNA expression, respectively, at
289 the early stationary phase(12 hours) (**Fig 1 A**). Similarly, we observed that *speE* and *speD*, the
290 genes encoding the two enzymes that catalyse the synthesis of spermidine and decarboxylation
291 of S-Adenosyl methionine, show a 7-fold and 8-fold upregulation in the mRNA expression at
292 the mid-log phase and 5-fold and 7-fold upregulation in the mRNA expression at the early
293 stationary phase of *in-vitro* growth in *Salmonella* Typhimurium (**Fig 1 B**). In prokaryotes,
294 spermidine plays a pivotal role in growth, stress response, nutrient starvation, etc., which
295 explains the higher mRNA expression of the transport and biosynthesis genes during the mid-
296 log phase in *Salmonella*. However, a question remains: how does *Salmonella* regulate the
297 transport system and its intracellular spermidine biosynthesis during its growth? To solve this
298 mystery, we generated chromosomal knock-out strains of *Salmonella* Typhimurium, namely
299 STM Δ *potCD* that cannot import spermidine, STM Δ *speED* that cannot synthesise spermidine
300 and a double knock-out STM Δ *potCD* Δ *speED* that lacks both the functions. We studied the
301 mRNA expression of biosynthesis genes in transporter mutants and vice-versa. We observed
302 that both *speE* and *speD* show downregulation post the early-log phase in STM Δ *potCD*
303 compared to their mRNA expression in STM WT during their *in-vitro* growth in LB media
304 (**Fig- 1 C**). Likewise, *potA*, *potB*, *potC* and *potD* showed significant downregulation in mRNA
305 expression post the early-log phase compared to their mRNA expression in STM Δ *speED*
306 compared to their mRNA expression in STM WT (**Fig 1 D**). Thus in *Salmonella*, spermidine
307 import and biosynthesis are co-regulated. To further verify our observation, we determined the
308 intracellular levels of spermidine in the different strains, and we observed that, indeed, the
309 spermidine levels in both the mutants STM Δ *potCD* and STM Δ *speED* were significantly lower
310 than STM WT (**Fig 1 E, Fig S1 D and E**). These results indicate that in *Salmonella*
311 Typhimurium, spermidine import, and biosynthesis are higher during the mid-log phase, and

312 both of these functions are co-regulated and are not mutually exclusive. Further, we analysed
313 how the loss of spermidine import and biosynthesis affects the growth of *Salmonella* in rich
314 media such as LB medium, minimal media such as M9 media and F-media that mimics the
315 acidic environment of SCV. In LB media, all the strains showed similar growth kinetics (**Fig**
316 **S1 A**). Similarly, we did not observe any difference in minimal M9 media and acidic F-media
317 (**Fig 1 F, Fig S1 B-D**). We further supplemented spermidine and putrescine in minimal M9
318 media during the *in-vitro* growth; however, we also did not observe any significant difference
319 upon supplementation (**Fig. 1 G and H**). Thus, loss of spermidine import and biosynthesis does
320 not alter the growth kinetics of *Salmonella* *in-vitro*.

321

322 **Spermidine synthesis and transport in *Salmonella* Typhimurium is essential to invade**
323 **and proliferate in the host**

324 *Salmonella* infects the host system through the faecal-oral route via contaminated food and
325 water [23]. The primary site of infection is the intestinal epithelial cells (IECs) in the large
326 intestine [24]. Thus, we explored the ability of spermidine mutants to invade followed by
327 proliferate into human intestinal cell line Caco-2 cells. We infected Caco-2 cells with all the
328 strains and determined the percentage invasion and the fold proliferation. We observed that
329 STM Δ potCD, STM Δ speED, and STM Δ potCD Δ speED invaded significantly less than STM
330 WT (**Fig 2 A**). Also, all the mutants exhibited a substantially lower fold proliferation than STM
331 WT in Caco-2 cells (**Fig 2 B**). To validate these results, we performed the infection into HeLa
332 cells, and likewise, we observed a similar lesser invasion and lower fold proliferation of the
333 spermidine transport and biosynthesis gene mutants (**Fig S2 A and B**). The crucial step during
334 the infection of *Salmonella* is its ability to invade the IECs successfully [25, 26]. Upon invasion
335 into these nonphagocytic IECs, the bacteria reside in the SCV and, employing multiple

336 arsenals, survive and proliferate [27, 28]. The above results led us to study the expression of
337 the transporters and the biosynthesis genes of STM upon infection into Caco-2 cells. The
338 transporters *potA*, *potB*, *potC* and *potD* showed a gradual upregulation of their corresponding
339 mRNA expression post 2 hours of infection into Caco-2 cells (**Fig 2 D**). Furthermore, the *speE*
340 and *speD* showed a gradual upregulation of mRNA expression post 2 hours of infection in
341 Caco-2 cells (**Fig 2 C**). All the genes showed a significant upregulation at 16 hours post-
342 infection (**Fig 2 C and D**). These results might explain the lower fold proliferation in Caco-2
343 cells upon deletion of the transporter and biosynthesis genes in *Salmonella* Typhimurium. As
344 previously studied, we further determined the regulation of the two sets of genes during
345 infection into Caco-2 cells. We observed a similar downregulation of *speE* and *speD* mRNA
346 expression in STM Δ *potCD* and downregulation of *potA*, *potB*, *potC* and *potD* mRNA
347 expression in STM Δ *speED* upon infection into Caco-2 cells (**Fig 2 E and F**). These results
348 explain the lower fold proliferation of both the individual mutants even though they lack just
349 one of the two functions (transport/ biosynthesis).

350 We further assessed whether supplementation of exogenous spermidine rescue the lower fold
351 proliferation and invasion. We supplemented the Caco-2 cells with 50 μ M spermidine during
352 infection and observed that supplementation only rescued the lower fold proliferation for STM
353 Δ *speED* (**Fig 2 G**). However, it did not rescue the reduced invasion for any of the mutants (**Fig**
354 **2 H**). STM Δ *speED* harbours the spermidine transport system, although low but may aid in the
355 uptake of the exogenous spermidine to rescue the phenotype. However, when supplemented in
356 minimal M9 media during the *in-vitro* growth of the different strains before infection, it rescued
357 the lower fold proliferation and the lesser invasion of the STM Δ *speED* only (**Fig 2 I and J**).
358 To further validate our *in-vitro* cell line results, we then studied the invasion of the mutants
359 into the intestine upon orally gavaging C57BL/6 mice a sub-lethal dose of the bacteria (**Fig 2**
360 **K**). Interestingly, STM Δ *potCD*, STM Δ *speED*, and STM Δ *potCD* Δ *speED* invaded

361 significantly less into the Peyer's patches of the mice (**Fig 2 L and M**). Thus, *Salmonella*
362 requires spermidine to invade successfully, subsequently survive, and proliferate within the
363 epithelial cells *in-vitro* and *in-vivo*.

364 **Adhesion of *Salmonella* Typhimurium to epithelial cells is aided by spermidine by
365 regulation of fimbrial and non-fimbrial adhesins.**

366 Most bacterial pathogens must first reach the site of infection, followed by a sequential steps
367 of adhesion, invasion, multiplication and proliferation to infect and colonise the host tissues
368 successfully [29]. During the pathogenesis of *Salmonella*, a crucial step towards infection into
369 the IECs is its ability to adhere to the surface of the IECs [30]. Our study so far shows that the
370 loss of spermidine transport or synthesis capability of *Salmonella* reduces the invasiveness of
371 the bacteria into human epithelial cells. Polyamines such as cadaverine have been shown to
372 play an important role in the pathogenesis of respiratory tract pathogens like *S. pneumoniae* by
373 aiding in the stages of adhesion leading to colonisation in the nasopharynx [31]. Also,
374 exogenous spermidine increased the adhesion of *Bifidobacterium animalis* subs. *lactis* Bb12 in
375 the mucous of infants [32]. To understand the role of spermidine in the adhesion of *Salmonella*
376 Typhimurium to epithelial cells, we performed an adhesion assay in Caco-2 cells with various
377 strains. All three mutants showed significantly lower adhesion than the wild-type ones (**Fig 3**
378 **A**). This was also found in HeLa cells (**Fig S3 A**). To validate our observation we performed
379 immunofluorescence and found reduced adhesion of the transport and biosynthesis mutants to
380 Caco-2 cells (**Fig 3 C and D**). The addition of exogenous polyamine to the bacteria before
381 infection reversed the phenotype in STM $\Delta speED$ (**Fig 3 B, C and D**).

382 *Salmonella* employs multiple systems ranging from monomeric structures to highly complex
383 and giant structures to adhere to the host cells. *Salmonella* possesses multiple fimbrial gene
384 clusters that encode fimbrial appendages to bind to the host cell surfaces [33, 34]. Apart from

385 fimbrial proteins, its cell surface is decorated with various non-fimbrial proteins like *PagN*,
386 outer membrane proteins (Omps) and the type 1 secreted giant adhesin *SiiE* etc. [30, 35, 36].
387 We observed that the fimbrial and non-fimbrial adhesins in both mutants show lower mRNA
388 expression than in the wild type during the exponential phase of growth (**Fig 3 E and F**).
389 Furthermore, growth in supplementation of exogenous spermidine showed an increase in the
390 mRNA expression in the mid-log growth phase for the non-fimbrial *siiE* and *pagN* and the
391 fimbrial *fimA* genes (**Fig 3 G**). These observations confirm that spermidine aids in the adhesion
392 of *Salmonella* Typhimurium to host cells by regulating the expression of fimbrial and non-
393 fimbrial genes.

394 **Spermidine regulates flagellar gene expression by enhancing the translation of FliA,
395 which otherwise has a poor Shine-Dalgarno sequence and an unusual START codon**

396 Gram-negative and Gram-positive bacteria express flagella on their surfaces, primarily as a
397 motility structure [37]. However, many studies have shown flagella to act as an appendage to
398 adhere to host cell surfaces, such as the chromosomal mutation of the *fliD* gene that encodes
399 the flagellar cap protein in *Pseudomonas aeruginosa*, which made the bacteria nonadhesive to
400 mucin on epithelial cells [38]. Similarly, in *Vibrio cholerae*, non-motile variants exhibited
401 reduced virulence due to poor adsorption onto the cells [39]. Likewise, in *Salmonella*, the
402 importance of flagella as an adhesive structure has been shown by many researchers [40, 41].
403 Researchers from our group have previously demonstrated that the loss of flagella in
404 *Salmonella* Typhimurium led to reduced adhesion to Caco-2 cells and lesser colonisation in
405 the gut of *C. elegans* [20]. Furthermore, the global transcriptomic analysis in the *speG* deletion
406 mutant of *Salmonella* Typhimurium, showed that the genes associated with the regulation and
407 formation of the flagella were downregulated [18]. Thus, we were interested in deciphering the
408 role of spermidine in regulating flagella. We carried out a swimming motility assay and
409 observed that STM Δ *potCD* and STM Δ *potCD* Δ *speED* showed highly attenuated movement

410 on soft agar (**Fig 4 A, S4 A**). In contrast, STM $\Delta speED$ exhibited a 40 percent reduction in the
411 movement than the wild type (**Fig 4 A, S4 A**). Thus, we determined the mRNA expression of
412 the *fliC* and *fjB* that encode flagellin protein in *Salmonella* Typhimurium and found that both
413 the genes show significant downregulation in STM $\Delta potCD$ and STM $\Delta speED$ (**Fig 4 B and**
414 **C**). However, the growth of STM $\Delta speED$ in the presence of spermidine increased the
415 swimming motility similar to wild type and the mRNA expressions of *fliC* and *fjB* during the
416 mid-log phase of growth (**Fig 4 A and D**). This was not observed for STM $\Delta potCD$.

417 We performed immunofluorescence to study the flagellin FliC expression on *Salmonella*
418 Typhimurium's surface. The presentation of the flagellin FliC was significantly less on the
419 surface in all the mutants than in the wild type (**Fig 4 E and F, S4 B**). The result was further
420 validated using Transmission electron microscopy. Likewise, we observed reduced numbers of
421 flagella on the surface of STM $\Delta speED$, while no flagella on the surface of STM $\Delta potCD$ and
422 STM $\Delta potCD\Delta speED$ similar to STM $\Delta fliC$ (**Fig 4 G**). The surface presentation of FliC was
423 found to be more upon growth of STM $\Delta speED$ in the presence of exogenous spermidine (**Fig**
424 **4 E-G**). As the levels of *fliC* and *fjB* decreased in both the spermidine transport and
425 biosynthesis mutants of *Salmonella*, we next determined the expression of the sigma factor σ^{28}
426 (FliA) that aids in the transcription of the flagellin genes. In both STM $\Delta potCD$ and STM
427 $\Delta speED$, the mRNA expression was not downregulated in the exponential to mid-log growth
428 phase (**Fig 4 H and I**). Polyamines, cationic molecules, interact with the negatively charged
429 nucleic acids and often regulate the transcription and translation of multiple genes. The genes
430 that are regulated by polyamines fall under the polyamine regulon. Multiple sigma factors such
431 as *rpoS*, *hns*, *oppA* etc., are known to be under the polyamine modulon [42, 43]. In *E. coli*
432 OppA has a weak and distant Shine-Dalgarno sequence and polyamines stimulate the
433 translation of OppA in such a case [44, 45]. Also, polyamines increase the translation of RpoN
434 and H-NS whose transcript contains a poor Shine-Dalgarno (SD) sequence in *E. coli* and that

435 of Cra which possesses an unusual “GUG” start codon in its transcript [46]. Interestingly, in
436 *Salmonella* Typhimurium *fliA*, the transcript likewise contains an unusual “GTG” START
437 codon and a poor SD sequence located farther than 6-7bps from the START codon (**S4 C**).
438 Thus, we tagged *fliA* with FLAG-Tag in the chromosome of STM WT, STM Δ *potCD* and STM
439 Δ *speED*, and observed that there was significant downregulation of FliA in both STM Δ *potCD*
440 and STM Δ *speED*. There was an increase in the expression of FliA when STM Δ *speED* was
441 grown in the presence of exogenous polyamine (**Fig 4 I, S4 D**). These results show that
442 spermidine regulates the expression of flagellin genes by enhancing the translation of FliA
443 (σ^{28}), which otherwise possess an unusual START codon and a poor SD sequence in
444 *Salmonella* Typhimurium.

445 **Spermidine tunes the expression of the *Salmonella* pathogenicity island-1, thereby
446 facilitating the invasion into epithelial cells**

447 *Salmonella* employs multiple ways to invade the IECs, of which an effective strategy is to
448 induce its uptake by the otherwise non-phagocytic cells. *Salmonella* pathogenicity island-1
449 (SPI-1) encodes an elaborate nano injection machinery, the type-3 secretion system (T3SS)
450 and innumerable effector proteins that are involved in inducing the uptake by epithelial cells
451 [47]. The initial attachment of the bacteria to the mucin and the cell surface activates a complex
452 intracellular regulatory network leading to the formation of the T3SS on the surface that
453 penetrates the host cell membrane and translocates multiple effectors into the host cytosol [7,
454 48]. Multiple environmental signals such as osmolarity, pH, and oxygen concentration activate
455 the SPI-1 through the master regulator HilA. Apart from these bile acids, short-chain fatty acids
456 and magnesium ion concentration also stimulate the expression of SPI-1 genes in *Salmonella*
457 [49]. A research group has previously shown that polyamines regulate the SPI-1 and the
458 translation of *hilA* in *Salmonella* Typhimurium [12, 50]. This motivated us to understand the
459 role of spermidine in regulating of *Salmonella* pathogenicity island-1. We determined the

460 expression of SPI-1 genes in STM WT, STM $\Delta potCD$ and STM $\Delta speED$ during their *in-vitro*
461 growth in LB media and observed that all the genes were significantly downregulated in both
462 the mutants (**Fig 5 A and B**). We further validated the results by using *lacZ* constructs under
463 promoter of *hilA* and *spiC*. The LacZ activity was significantly low in STM $\Delta potCD$ and STM
464 $\Delta speED$ when cloned under the *hilA* promoter. Upon growth of STM $\Delta speED$ with
465 supplementation of spermidine, the LacZ activity was high (**Fig S5 A and B**). This suggests
466 that deleting of spermidine transporter and biosynthesis genes in *Salmonella* Typhimurium
467 reduces *hilA* transcription. On the contrary, we did not observe a difference in LacZ activity
468 when cloned under *spiC* promoter (**Fig S5 C**). The mRNA expression of the SPI-1 genes was
469 also reduced in both STM $\Delta potCD$ and STM $\Delta speED$ post-infection into Caco-2 cells (**Fig 5**
470 **C and D**). As the SPI-1 genes have a highly complex regulatory network, we accessed the
471 mRNA expression of the essential two-component system BarA/SirA, upstream of *hilA* in the
472 regulatory network. Both *barA* and *sirA* mRNA levels were significantly low in STM $\Delta potCD$
473 and STM $\Delta speED$ than the wild type (**Fig 5 E and F**).

474 Along with SPI-1 encoded effectors, the T3SS of SPI-1 also translocate an SPI-5 encoded
475 effector protein SopB. SopB is a phosphoinositide-phosphatase, and researchers from our
476 group have previously shown the role of this SPI-1 effector in *Salmonella* Typhimurium
477 virulence [51]. We used HA-tagged SopB to understand the regulation of SPI-1 in STM
478 $\Delta potCD$ and STM $\Delta speED$. Using immunofluorescence, we noticed that, indeed in the two
479 mutants, the translocation of SopB is lesser than in the wild type (**Fig 5 G**). Our results thus
480 explain the crucial role of spermidine.

481 **Discussion**

482 The pathogenesis of most pathogens involves the entry into the host tissues and cells. However,
483 to enter the host cells, the pathogens require multiple crucial steps before entering the host.

484 These include motility to reach the site of entry, the initial attachment and adhesion to the cell
485 surfaces and subsequent invasion using multiple strategies. *Helicobacter pylori* was initially
486 considered a non-invasive pathogen; however, studies in the past decade have proven it
487 invasive. To infect *Helicobacter pylori* initially attaches to the cell surface, followed by
488 receptor-mediated invasion and survival [52]. The Gram-positive pathogen *Staphylococcus*
489 *aureus* expresses fibronectin-binding proteins that help them adhere to the eukaryotic cells,
490 promoting uptake by the host cells [53]. *Salmonella* is an enteric pathogen which enters the
491 host system through the feco-oral route, and at the intestine, it crosses the intestinal barrier to
492 cause systemic infection. Likewise, during *Salmonella* pathogenesis, it must first attach to the
493 mucin in the intestinal lumen and to the cell surface to gain entry into the intestinal epithelial
494 cells [54]. *Salmonella* is considered an ancient pathogen associated with the death of
495 humankind for thousands of years [55, 56]. Over the years, it has emerged as a successful
496 enteric pathogen by modulating its strategies and employing diverse arms and shields, allowing
497 it to conquer diverse niches during its pathogenesis. The complexity of the arsenals and the
498 surface structures forces us to develop combating strategies against the disease-causing
499 pathogen.

500 Polyamines are ubiquitously present in all living forms, including prokaryotes. In eukaryotes,
501 polyamines are often crucial for cellular functions and, most importantly, cell division. Thus,
502 tumour cells are the prime site expressing high levels of polyamines to cope with the high rate
503 of cell division. In prokaryotes, they are linked to the growth, and stress response by regulation
504 of the expression of multiple genes. Few research groups have shown that polyamines are
505 essential in *Salmonella*'s virulence and stress response [12]. However, a dearth of mechanistic
506 understanding remains in the field. Of the various polyamines, putrescine, spermidine and
507 cadaverine are the major ones in *Salmonella*. Most of the studies show the role of the group of
508 polyamines, rather than any particular polyamines, in the virulence of *Salmonella*. Thus, we

509 were fascinated to delve into the mechanism behind the role of the vital polyamine, spermidine,
510 in *Salmonella* pathogenesis. Also, *Salmonella* imports as well as synthesises intracellularly, it
511 is intriguing to understand the regulation of the two processes.

512 For the first time, we report that the two processes are not mutually exclusive rather, *Salmonella*
513 interestingly regulates them together. It suggests that the transporter and the synthesis genes
514 are required to function together to maintain the intracellular homeostasis of spermidine. The
515 *speG* is vital in removing the accumulated spermidine, however our study shows that
516 *Salmonella* has more complexity in maintaining the homeostasis of spermidine intracellularly.
517 *Salmonella* utilises the small molecules like spermidine to regulate the expression of multiple
518 adhesive and non-adhesive complex surface structures, thus identifying new members of
519 polyamine regulon in *Salmonella*. Spermidine also regulates the elegant nano-injection
520 machinery of the T3SS and the effectors of the SPI-1 for its uptake and survival host cells. We
521 expect that spermidine binds to the anionic nucleic acids and there by tune the expression of
522 the multiple genes in *Salmonella*. However, further study is essential in unravelling the
523 mechanism of interaction of spermidine to the nucleic acid in *Salmonella*. We report a novel
524 regulatory pathway in *Salmonella*, where we show that spermidine aid in overcoming the
525 obstacle of a weak and poor transcript, thereby maintaining the synthesis of the elaborate
526 surface tools required for motility and attachment. As previously explained that the pathogenic
527 bacteria use a complex network of molecules to evade and survive. Our study solves the enigma
528 of how spermidine regulates diverse aspects and essentially is a novel player in the complex
529 network regulating the virulence in *Salmonella*. This study opens avenues to design drugs that
530 target the polyamine metabolism in *Salmonella* and thus reducing the infectivity and the burden
531 of *Salmonella*.

532

533 **Acknowledgement**

534 Prof. Umesh Varshney and Mr. Jitendra Bisht from MCB, IISc are duly acknowledged for
535 providing the plasmid for FLAG-tag generation. Departmental Confocal Facility,
536 Departmental Real-Time PCR Facility, Divisional MS facility, Divisional EM facility and
537 Central Animal Facility at IISc are duly acknowledged. Mr Sumith and Ms Navya are
538 acknowledged for their help in image acquisition. Mrs. Sunita is duly acknowledged for helping
539 with mass spectrometry. Mr. Prakhar is also acknowledged for technical help.

540 **Author contribution statement**

541 AVN and DC conceived the study. AVN and DC designed experiments. AVN performed
542 experiments. AVN, YD and SAR performed LC QTOF MS/MS experiment, and UST provided
543 valuable inputs for the LC QTOF MS/MS experiment. AVN, analysed the data, prepared the
544 figures and wrote the manuscript draft. AVN and DC reviewed and edited the manuscript. DC
545 supervised the work. All the authors read and approved the manuscript.

546 **Funding**

547 This work was supported by the Department of Biotechnology (DBT), Ministry of Science and
548 Technology, the Department of Science and Technology (DST), Ministry of Science and
549 Technology. DC acknowledges DAE-SRC ((DAE00195) outstanding investigator award and
550 funds and ASTRA Chair Professorship funds. The authors jointly acknowledge the DBT-IISc
551 partnership program. Infrastructure support from ICMR (Center for Advanced Study in
552 Molecular Medicine), DST (FIST), UGC-CAS (special assistance), and TATA fellowship is
553 acknowledged. This work was also supported by the Department of Biotechnology
554 (BT/PR32489/BRB/10/1786/2019), Science and Engineering Research Board
555 (CRG/2019/000281), DBT-NBACD (BT/HRD-NBA-NWB/38/2019-20) and India Alliance

556 (500122/Z/09/Z) to SRGS. AVN duly acknowledges the IISc-MHRD for the financial
557 assistance. YD and SAR duly acknowledges IISc for their financial assistance.

558 **Conflict of Interest**

559 The authors declare no conflict of interest

560 **References**

- 561 1. Crump, J.A., et al., *Epidemiology, clinical presentation, laboratory diagnosis, antimicrobial*
562 *resistance, and antimicrobial management of invasive Salmonella infections*. Clinical
563 microbiology reviews, 2015. **28**(4): p. 901-937.
- 564 2. Kurtz, J.R., J.A. Goggins, and J.B. McLachlan, *Salmonella infection: Interplay between the*
565 *bacteria and host immune system*. Immunology letters, 2017. **190**: p. 42-50.
- 566 3. Dougan, G. and S. Baker, *Salmonella enterica serovar Typhi and the pathogenesis of typhoid*
567 *fever*. Annual review of microbiology, 2014. **68**: p. 317-336.
- 568 4. Uche, I.V., C.A. MacLennan, and A. Saul, *A systematic review of the incidence, risk factors and*
569 *case fatality rates of invasive nontyphoidal Salmonella (iNTS) disease in Africa (1966 to 2014)*.
570 PLoS neglected tropical diseases, 2017. **11**(1): p. e0005118.
- 571 5. Espinoza, R.A., et al., *Differential roles for pathogenicity islands SPI-13 and SPI-8 in the*
572 *interaction of Salmonella Enteritidis and Salmonella Typhi with murine and human*
573 *macrophages*. Biological research, 2017. **50**.
- 574 6. Wagner, C. and M. Hensel, *Adhesive mechanisms of Salmonella enterica*. Bacterial adhesion,
575 2011: p. 17-34.
- 576 7. Hajra, D., A.V. Nair, and D. Chakravortty, *An elegant nano-injection machinery for sabotaging*
577 *the host: Role of Type III secretion system in virulence of different human and animal*
578 *pathogenic bacteria*. Physics of Life Reviews, 2021. **38**: p. 25-54.
- 579 8. Eswarappa, S.M., et al., *Division of the Salmonella-containing vacuole and depletion of acidic*
580 *lysosomes in Salmonella-infected host cells are novel strategies of Salmonella enterica to avoid*
581 *lysosomes*. Infection and immunity, 2010. **78**(1): p. 68-79.
- 582 9. Leung, K. and B. Finlay, *Intracellular replication is essential for the virulence of Salmonella*
583 *typhimurium*. Proceedings of the National Academy of Sciences, 1991. **88**(24): p. 11470-
584 11474.
- 585 10. Das, P., et al., *Novel role of the nitrite transporter NirC in Salmonella pathogenesis: SPI2-*
586 *dependent suppression of inducible nitric oxide synthase in activated macrophages*.
587 Microbiology, 2009. **155**(8): p. 2476-2489.
- 588 11. Igarashi, K. and K. Kashiwagi, *Modulation of cellular function by polyamines*. The international
589 journal of biochemistry & cell biology, 2010. **42**(1): p. 39-51.
- 590 12. Jelsbak, L., et al., *Polyamines are required for virulence in Salmonella enterica serovar*
591 *Typhimurium*. Plos one, 2012. **7**(4): p. e36149.
- 592 13. Chattopadhyay, M.K., C.W. Tabor, and H. Tabor, *Polyamines protect Escherichia coli cells from*
593 *the toxic effect of oxygen*. Proceedings of the National Academy of Sciences, 2003. **100**(5): p.
594 2261-2265.
- 595 14. Nesse, L.L., K. Berg, and L.K. Vestby, *Effects of norspermidine and spermidine on biofilm*
596 *formation by potentially pathogenic Escherichia coli and Salmonella enterica wild-type strains*.
597 Applied and environmental microbiology, 2015. **81**(6): p. 2226-2232.
- 598 15. Barbagallo, M., et al., *A new piece of the Shigella pathogenicity puzzle: spermidine*
599 *accumulation by silencing of the speG gene*. PloS one, 2011. **6**(11): p. e27226.

600 16. Shah, P., et al., *Polyamine biosynthesis and transport mechanisms are crucial for fitness and*
601 *pathogenesis of Streptococcus pneumoniae*. *Microbiology*, 2011. **157**(2): p. 504-515.

602 17. Espinel, I.C., P.R. Guerra, and L. Jelsbak, *Multiple roles of putrescine and spermidine in stress*
603 *resistance and virulence of Salmonella enterica serovar Typhimurium*. *Microbial pathogenesis*,
604 2016. **95**: p. 117-123.

605 18. Fang, S.-B., et al., *speG Is required for intracellular replication of Salmonella in various human*
606 *cells and affects its polyamine metabolism and global transcriptomes*. *Frontiers in*
607 *Microbiology*, 2017. **8**: p. 2245.

608 19. Datsenko, K.A. and B.L. Wanner, *One-step inactivation of chromosomal genes in Escherichia*
609 *coli K-12 using PCR products*. *Proceedings of the National Academy of Sciences*, 2000. **97**(12):
610 p. 6640-6645.

611 20. Garai, P., et al., *Peptide-utilizing carbon starvation gene yjiY is required for flagella-mediated*
612 *infection caused by Salmonella*. *Microbiology*, 2016. **162**(1): p. 100-116.

613 21. Feng, Y., et al., *Anopheline mosquitoes are protected against parasite infection by tryptophan*
614 *catabolism in gut microbiota*. *Nature Microbiology*, 2022. **7**(5): p. 707-715.

615 22. IGARASHI, K. and K. KASHIWAGI, *Polyamine transport in bacteria and yeast*. *Biochemical*
616 *Journal*, 1999. **344**(3): p. 633-642.

617 23. Galan, J., *Molecular and cellular bases of Salmonella entry into host cells*. *Bacterial*
618 *Invasiveness*, 1996: p. 43-60.

619 24. Galán, J.E., *Salmonella Typhimurium and inflammation: a pathogen-centric affair*. *Nature*
620 *Reviews Microbiology*, 2021. **19**(11): p. 716-725.

621 25. Fattinger, S.A., M.E. Sellin, and W.-D. Hardt, *Salmonella effector driven invasion of the gut*
622 *epithelium: breaking in and setting the house on fire*. *Current Opinion in Microbiology*, 2021.
623 **64**: p. 9-18.

624 26. Altier, C., *Genetic and environmental control of Salmonella invasion*. *The Journal of*
625 *Microbiology*, 2005. **43**(1): p. 85-92.

626 27. Steele-Mortimer, O., et al., *The invasion-associated type III secretion system of Salmonella*
627 *enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole*
628 *biogenesis in epithelial cells*. *Cellular microbiology*, 2002. **4**(1): p. 43-54.

629 28. Lahiri, A., et al., *Visiting the cell biology of Salmonella infection*. *Microbes and infection*, 2010.
630 **12**(11): p. 809-818.

631 29. Pizarro-Cerdá, J. and P. Cossart, *Bacterial adhesion and entry into host cells*. *Cell*, 2006. **124**(4):
632 p. 715-727.

633 30. Wagner, C. and M. Hensel, *Adhesive mechanisms of Salmonella enterica*. *Bacterial Adhesion:*
634 *Chemistry, Biology and Physics*, 2011: p. 17-34.

635 31. Nakamya, M.F., et al., *The role of cadaverine synthesis on pneumococcal capsule and protein*
636 *expression*. *Medical sciences*, 2018. **6**(1): p. 8.

637 32. Mantziari, A., et al., *Exogenous polyamines influence in vitro microbial adhesion to human*
638 *mucus according to the age of mucus donor*. *Microorganisms*, 2021. **9**(6): p. 1239.

639 33. Rehman, T., et al., *Adhesive mechanism of different Salmonella fimbrial adhesins*. *Microbial*
640 *pathogenesis*, 2019. **137**: p. 103748.

641 34. Bäumler, A.J., R.M. Tsolis, and F. Heffron, *The lpf fimbrial operon mediates adhesion of*
642 *Salmonella typhimurium to murine Peyer's patches*. *Proceedings of the National Academy of*
643 *Sciences*, 1996. **93**(1): p. 279-283.

644 35. Gerlach, R.G., et al., *Salmonella pathogenicity island 4-mediated adhesion is coregulated with*
645 *invasion genes in Salmonella enterica*. *Infection and immunity*, 2007. **75**(10): p. 4697-4709.

646 36. Li, X., et al., *MUC1 is a receptor for the Salmonella SiiE adhesin that enables apical invasion*
647 *into enterocytes*. *PLoS pathogens*, 2019. **15**(2): p. e1007566.

648 37. Haiko, J. and B. Westerlund-Wikström, *The role of the bacterial flagellum in adhesion and*
649 *virulence*. *Biology*, 2013. **2**(4): p. 1242-1267.

650 38. Arora, S.K., et al., *The Pseudomonas aeruginosa flagellar cap protein, FliD, is responsible for*
651 *mucin adhesion*. *Infection and immunity*, 1998. **66**(3): p. 1000-1007.

652 39. Guentzel, M. and L. Berry, *Motility as a virulence factor for Vibrio cholerae*. *Infection and*
653 *immunity*, 1975. **11**(5): p. 890-897.

654 40. Dibb-Fuller, M., et al., *Fimbriae-and flagella-mediated association with and invasion of*
655 *cultured epithelial cells by Salmonella enteritidis*. *Microbiology*, 1999. **145**(5): p. 1023-1031.

656 41. Salehi, S., et al., *Salmonella enterica serovar Kentucky flagella are required for broiler skin*
657 *adhesion and Caco-2 cell invasion*. *Applied and Environmental Microbiology*, 2017. **83**(2): p.
658 e02115-16.

659 42. Igarashi, K., Y. Terui, and K. Kashiwagi, *The polyamine modulon: genes encoding proteins*
660 *whose synthesis is enhanced by polyamines at the level of translation*. *Polyamines: a universal*
661 *molecular nexus for growth, survival, and specialized metabolism*, 2015: p. 131-141.

662 43. Igarashi, K. and K. Kashiwagi, *Characterization of genes for polyamine modulon*. *Polyamines: Methods and Protocols*, 2011: p. 51-65.

664 44. Igarashi, K., et al., *Molecular mechanism of polyamine stimulation of the synthesis of*
665 *oligopeptide-binding protein*. *Journal of Biological Chemistry*, 1997. **272**(7): p. 4058-4064.

666 45. Yoshida, M., et al., *Polyamine stimulation of the synthesis of oligopeptide-binding protein*
667 *(OppA): Involvement of a structural change of the Shine-Dalgarno sequence and the initiation*
668 *codon aug in oppa mRNA*. *Journal of Biological Chemistry*, 1999. **274**(32): p. 22723-22728.

669 46. Terui, Y., et al., *Enhancement of the synthesis of RpoN, Cra, and H-NS by polyamines at the*
670 *level of translation in Escherichia coli cultured with glucose and glutamate*. *Journal of*
671 *bacteriology*, 2007. **189**(6): p. 2359-2368.

672 47. Raffatellu, M., et al., *SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica*
673 *serotype Typhimurium invasion of epithelial cells*. *Infection and immunity*, 2005. **73**(1): p. 146-
674 154.

675 48. Hensel, M., *Evolution of pathogenicity islands of Salmonella enterica*. *International Journal of*
676 *Medical Microbiology*, 2004. **294**(2-3): p. 95-102.

677 49. Lou, L., et al., *Salmonella pathogenicity island 1 (SPI-1) and its complex regulatory network*.
678 *Frontiers in cellular and infection microbiology*, 2019. **9**: p. 270.

679 50. Guerra, P.R., et al., *Polyamine depletion has global effects on stress and virulence gene*
680 *expression and affects HilA translation in Salmonella enterica serovar typhimurium*. *Research*
681 *in microbiology*, 2020. **171**(3-4): p. 143-152.

682 51. Chatterjee, R., et al., *Deceiving The Big Eaters: Salmonella Typhimurium SopB subverts host*
683 *cell Xenophagy in macrophages via dual mechanisms*. *Microbes and Infection*, 2023: p.
684 105128.

685 52. Huang, Y., et al., *Adhesion and invasion of gastric mucosa epithelial cells by Helicobacter pylori*.
686 *Frontiers in cellular and infection microbiology*, 2016. **6**: p. 159.

687 53. Agerer, F., et al., *Cellular invasion by Staphylococcus aureus reveals a functional link between*
688 *focal adhesion kinase and cortactin in integrin-mediated internalisation*. *Journal of cell*
689 *science*, 2005. **118**(10): p. 2189-2200.

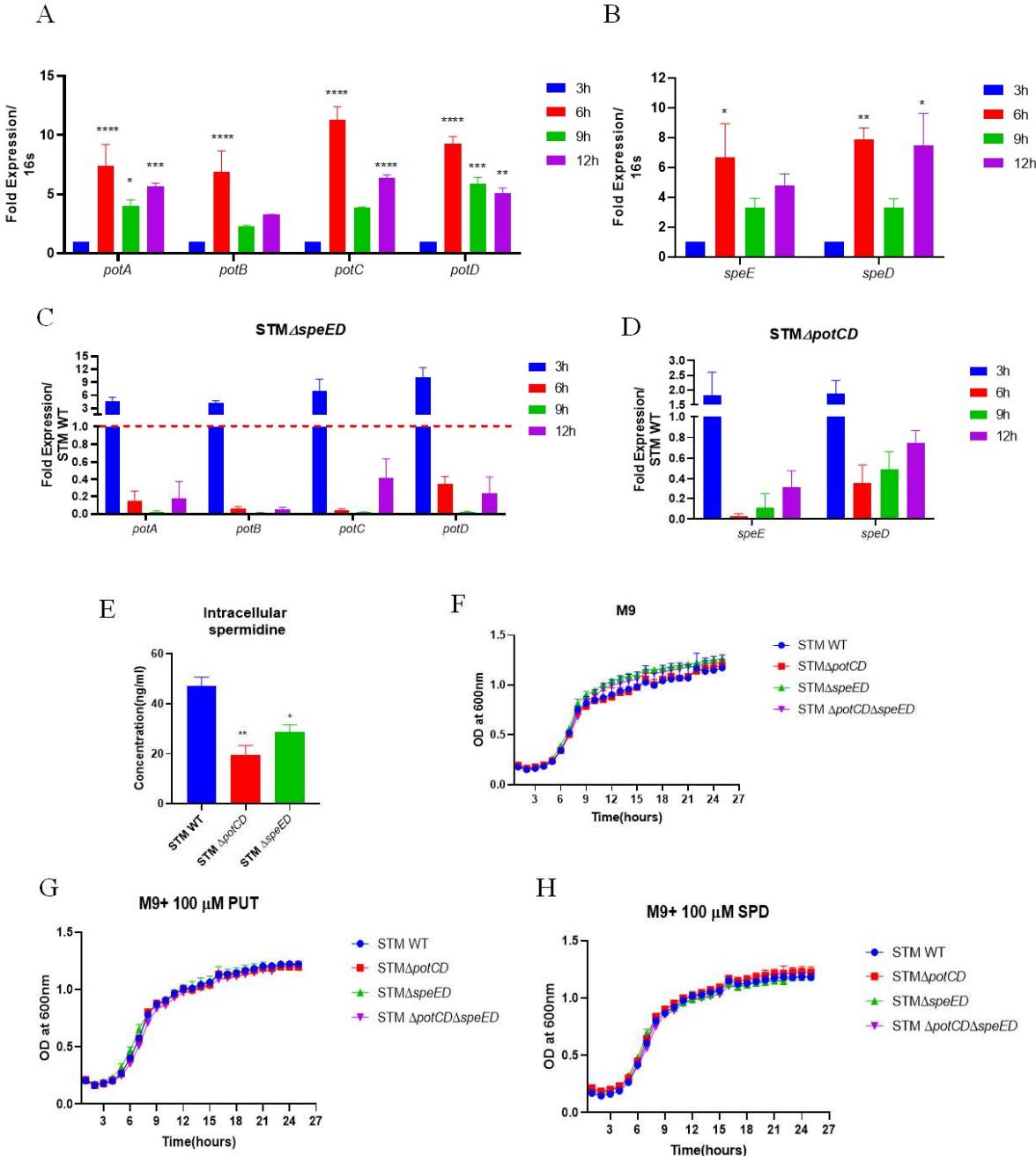
690 54. Garai, P., K. Chandra, and D. Chakravortty, *Bacterial peptide transporters: Messengers of*
691 *nutrition to virulence*. *Virulence*, 2017. **8**(3): p. 297-309.

692 55. Callaway, E., *Collapse of Aztec society linked to catastrophic salmonella outbreak*. *Nature*,
693 2017. **542**(7642).

694 56. Vågene, Å.J., et al., *Salmonella enterica genomes from victims of a major sixteenth-century*
695 *epidemic in Mexico*. *Nature ecology & evolution*, 2018. **2**(3): p. 520-528.

696

697

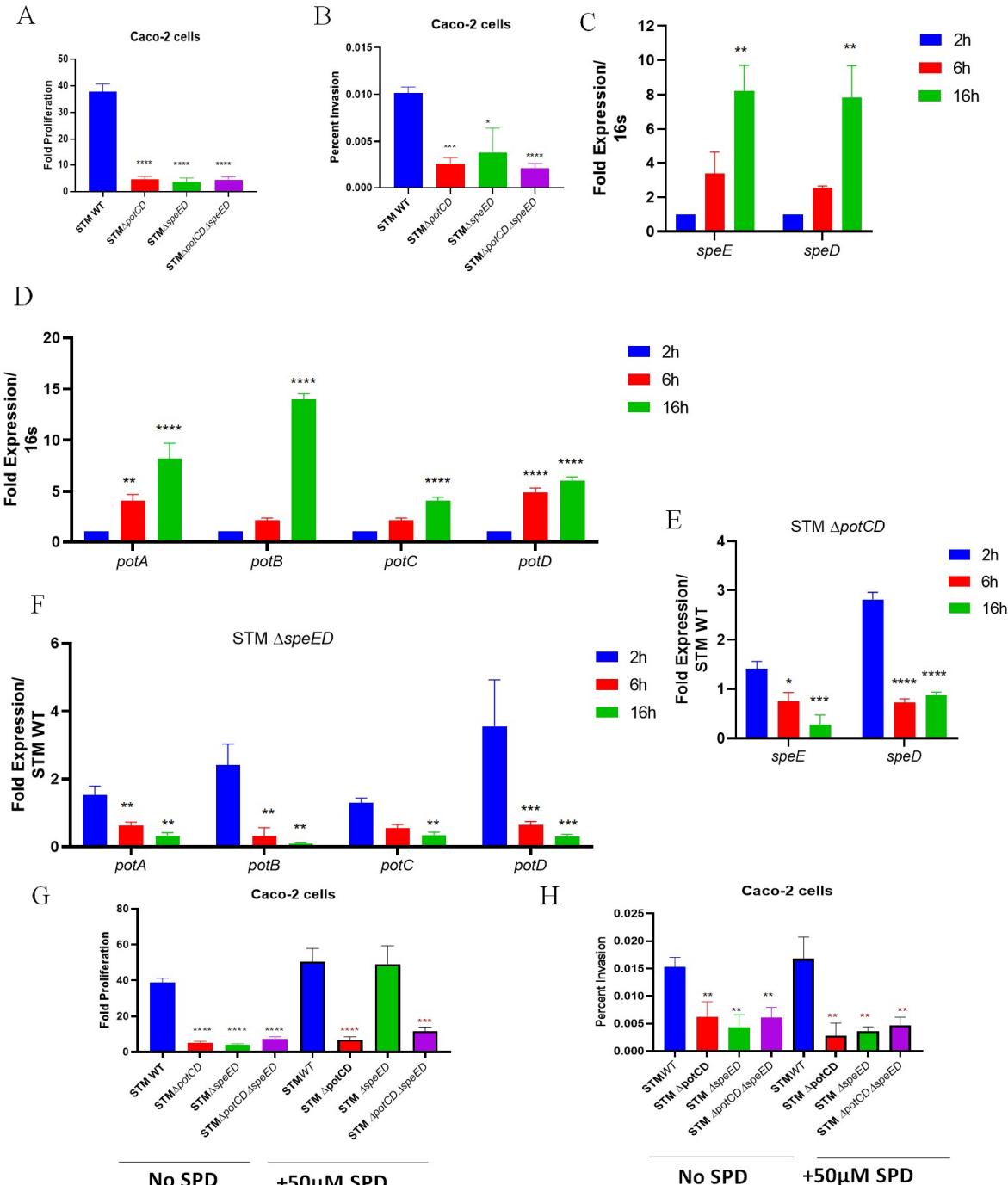

698

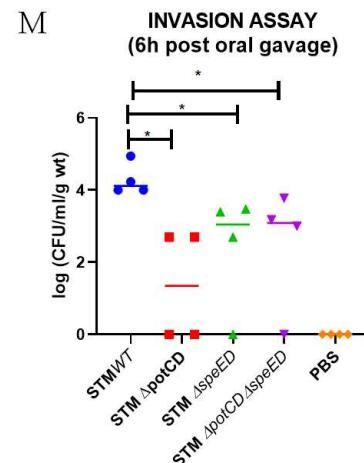
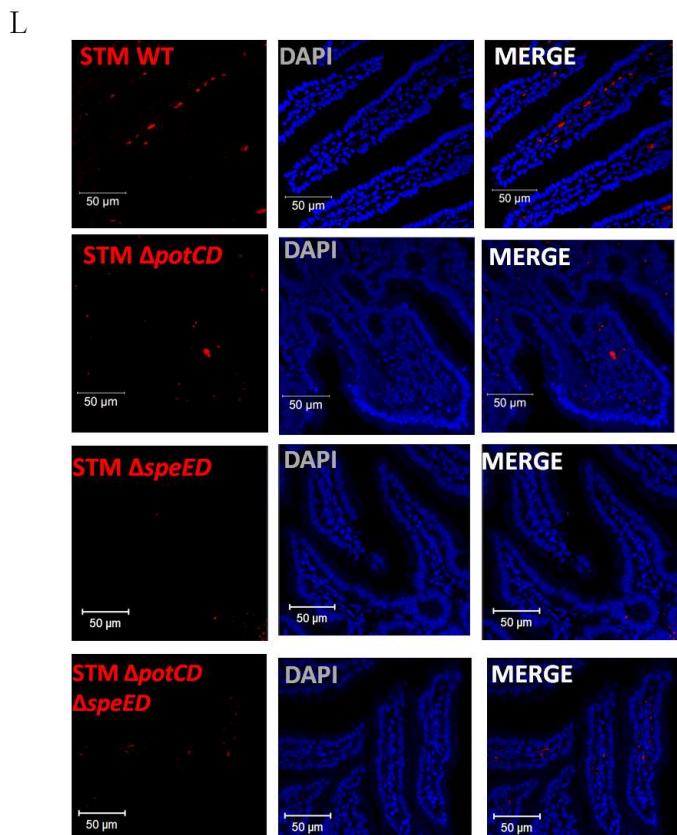
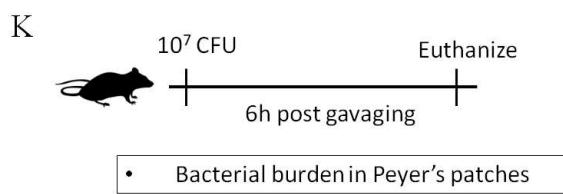
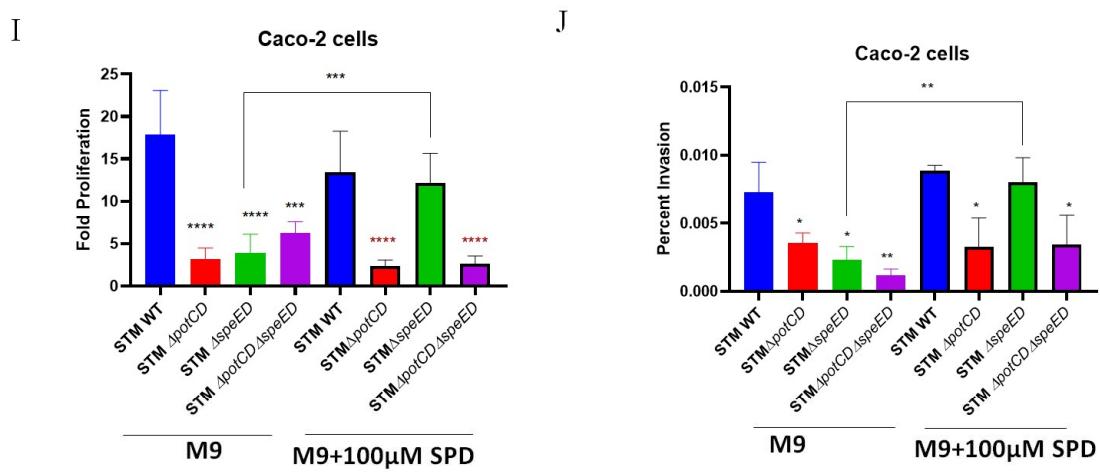
699

700

701

Fig 1: Spermidine transporter and biosynthesis genes are co-regulated in *Salmonella* Typhimurium

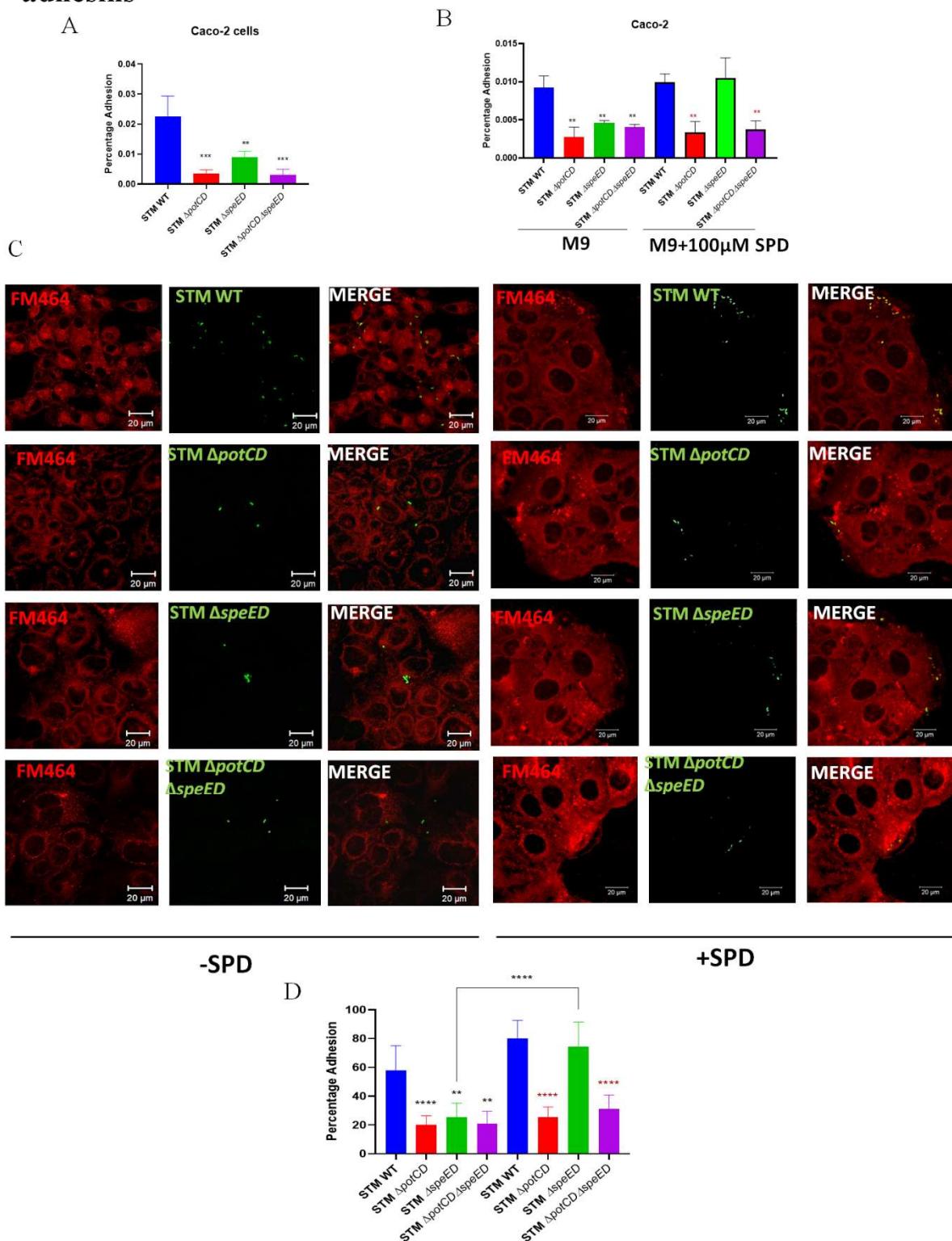

702





703

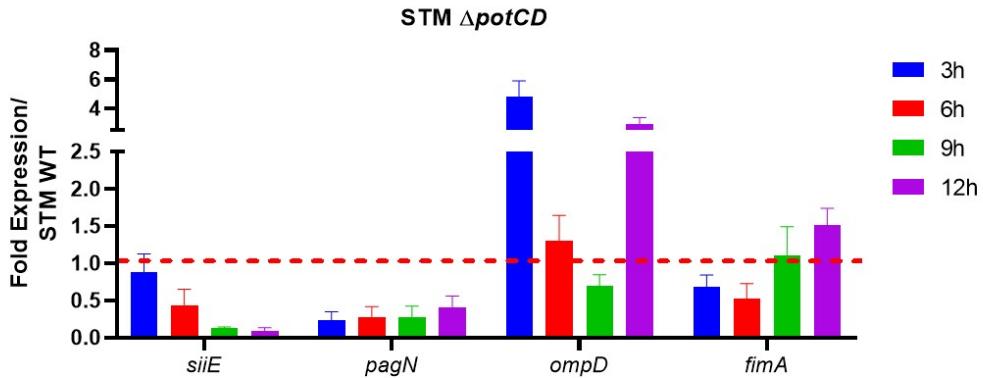
704

705

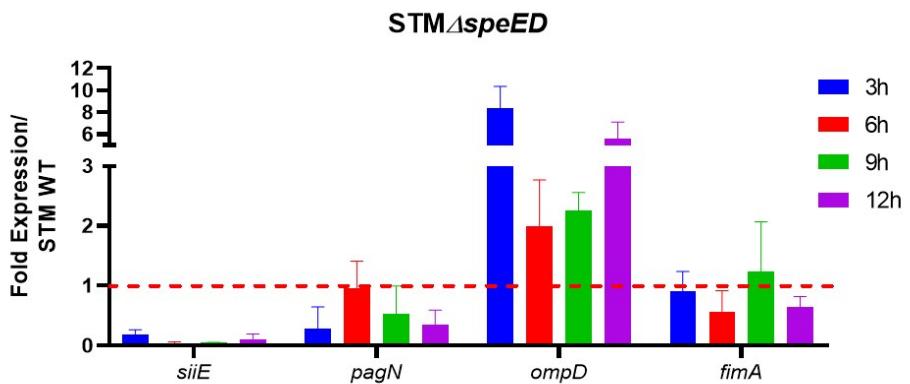
Fig 2: Spermidine synthesis and transport in *Salmonella* Typhimurium is essential to invade and proliferate in the host



707


708

709


Fig 3: Adhesion of *Salmonella Typhimurium* to epithelial cells is aided by spermidine by regulation of fimbrial and non-fimbrial adhesins

E

F

711

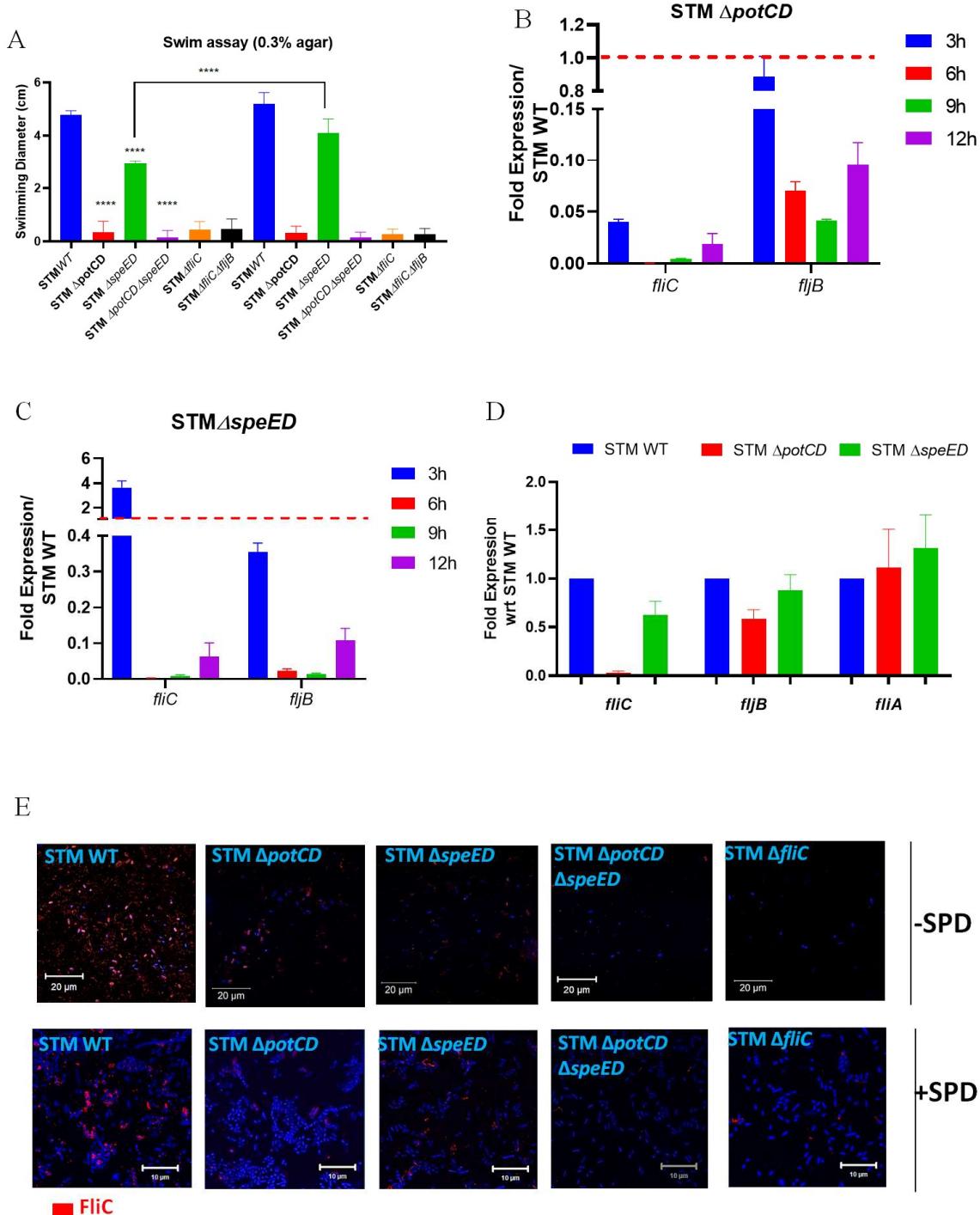
712

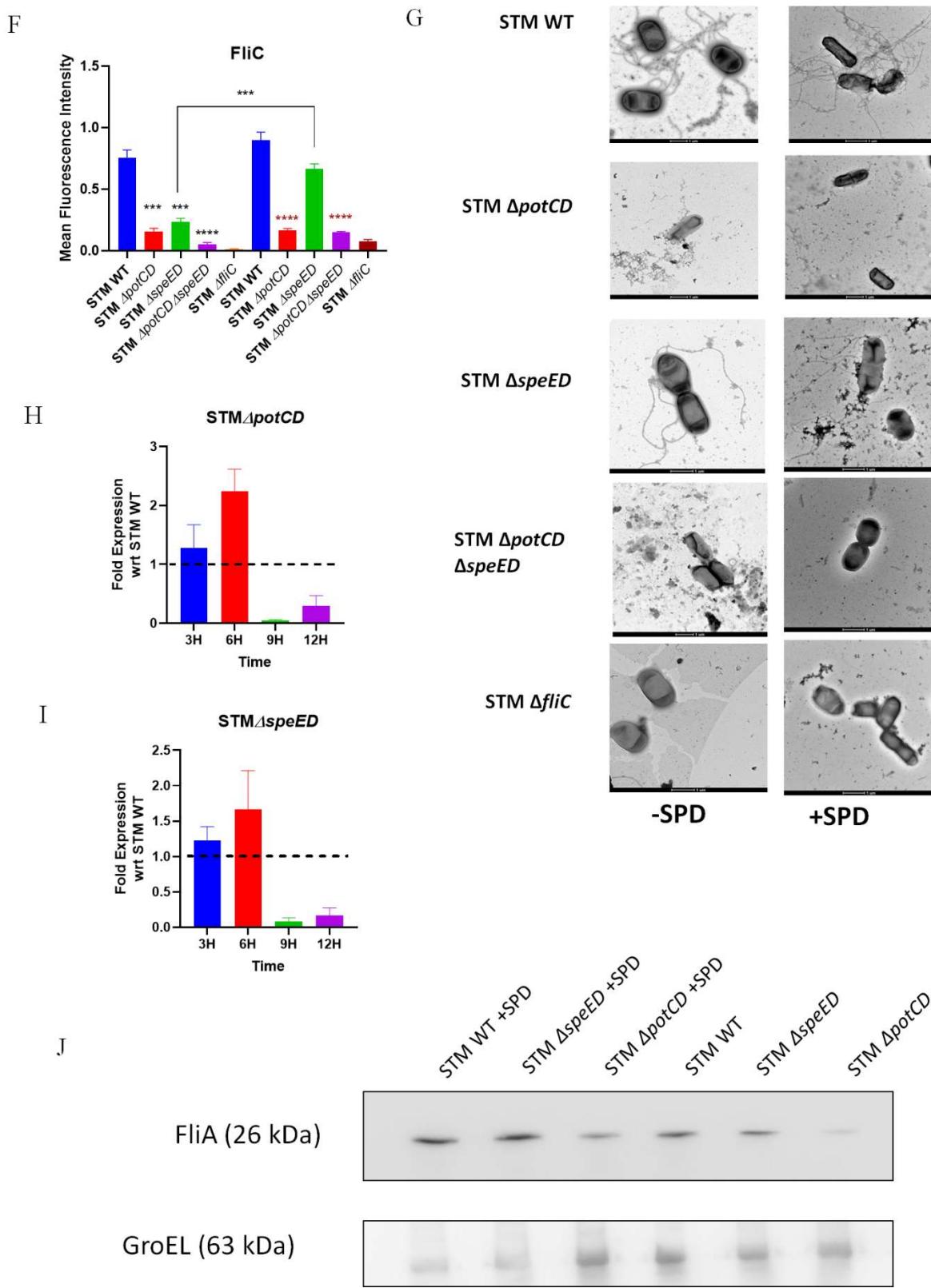
713

714

715

716

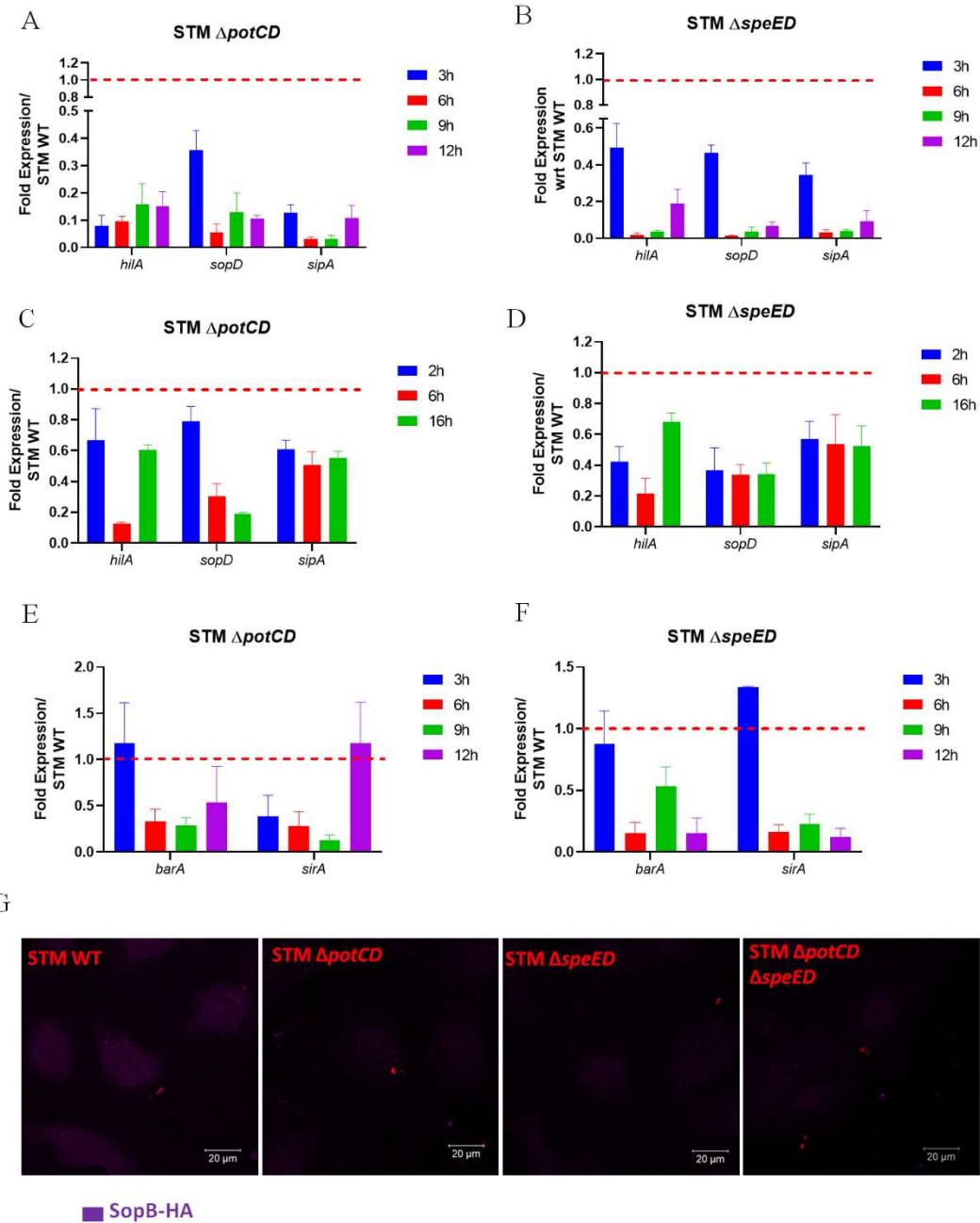

717


718

719

720

Fig 4: Spermidine regulates flagellar gene expression by enhancing the translation of FliA, which otherwise has a poor Shine-Dalgarno sequence and an unusual START codon



722

723

724

Fig 5: Spermidine tunes the expression of the *Salmonella* pathogenicity island-1, thereby facilitating the invasion into epithelial cells

725

726

727

728

729

730 **Fig 1: Spermidine transporter and biosynthesis genes are co-regulated in *Salmonella***

731 **Typhimurium**

732 . A. The mRNA expression of *pot*-transporter genes in STM WT during *in-vitro* growth in LB
733 media. B. The mRNA expression of *speE* and *speD* genes in STM WT during *in-vitro* growth
734 in LB media C. The mRNA expression of *pot*-transporter genes in STM $\Delta speED$ during *in-*
735 *vitro* growth in LB media D. The mRNA expression of *speE* and *speD* genes in STM $\Delta potCD$
736 during *in-vitro* growth in LB media E. Intracellular spermidine determination using Mass
737 spectrometry F. Growth kinetics of STM WT, STM $\Delta potCD$, STM $\Delta speED$ and STM $\Delta potCD$
738 $\Delta speED$ in M9 minimal media, G. in M9 minimal media supplemented with 100 μ M Putrescine
739 (PUT), H. in M9 minimal media supplemented with 100 μ M Spermidine (SPD). Student's t-
740 test was used to analyze the data; p values ****<0.0001, ***<0.001, **<0.01, *<0.05.

741 **Fig 2: Spermidine synthesis and transport in *Salmonella* Typhimurium is essential to**
742 **invade and proliferate in the host**

743 A. The intracellular proliferation of the STM WT, STM $\Delta potCD$, STM $\Delta speED$ and STM
744 $\Delta potCD \Delta speED$ in Caco-2 cells B. The percentage invasion into Caco-2 cells of STM WT and
745 the mutants C. The mRNA expression of *speE* and *speD* in STM WT post infection into Caco-
746 2 cells D. The mRNA expression of *pot*-transporter genes in STM WT post infection into Caco-
747 2 cells E. The mRNA expression of *pot*-transporter genes in STM $\Delta speED$ post infection into
748 Caco-2 cells F. The mRNA expression of *speE* and *speD* genes in STM $\Delta potCD$ post infection
749 into Caco-2 cells G. The intracellular proliferation of the STM WT, STM $\Delta potCD$, STM
750 $\Delta speED$ and STM $\Delta potCD \Delta speED$ in Caco-2 cells with supplementation of exogenous
751 spermidine during infection H. The percentage invasion into Caco-2 cells of STM WT and the
752 mutants with supplementation of exogenous spermidine during infection I. The intracellular
753 proliferation of the STM WT, STM $\Delta potCD$, STM $\Delta speED$ and STM $\Delta potCD \Delta speED$ in

754 Caco-2 cells, grown in M9 minimal media supplemented with spermidine J. The percentage
755 invasion into Caco-2 cells of STM WT and the mutants grown in M9 minimal media
756 supplemented with spermidine K. Experimental procedure for studying invasion of STM into
757 mice Peyer's patches L. Immunofluorescence of histopathological sections of mice intestine
758 (Peyer's patches) to study invasion, DAPI is used to stain the nucleic acids in the cells, and
759 Anti-*Salmonella*(LPS) (Cy3 tagged secondary antibody used-Red) K. Burden of STM in
760 Peyer's patches post 6 hours of oral gavage to assess invasion. Student's t-test was used to
761 analyze the data; p values ****<0.0001, ***<0.001, **<0.01, *<0.05. Two-way Anova was
762 used to analyze the grouped data; p values ****<0.0001, ***<0.001, **<0.01, *<0.05. For *in-*
763 *vivo* studies Mann-Whitney test was used to analyze the data; p values ****<0.0001,
764 ***<0.001, **<0.01, *<0.05.

765 **Fig 3: Adhesion of *Salmonella* Typhimurium to epithelial cells is aided by spermidine by
766 regulation of fimbrial and non-fimbrial adhesins**

767 A. Adhesion assay of STM WT and the mutants Caco-2 cells B. Adhesion assay in Caco-2 of
768 STM WT and the mutants grown in M9 minimal media supplemented with spermidine C.
769 Immunofluorescence imaging to study the adhesion to Caco-2 cells of STM WT and the three
770 mutants grown in M9 minimal media with and without supplementation of spermidine, here
771 FM464(red) is used to stain the lipids for Caco-2 and Anti-*Salmonella*(LPS) (Alexafluor-488
772 tagged secondary antibody used-Green) for STM D. Quantification of C E. The mRNA
773 expression of non-fimbrial adhesins such as *siiE*, *pagN* and *ompD* and fimbrial adhesin *fimA*
774 genes in STM Δ *potCD* during *in-vitro* growth in LB media F. The mRNA expression of non-
775 fimbrial adhesins such as *siiE*, *pagN* and *ompD* and fimbrial adhesin *fimA* genes in STM
776 Δ *speED* during *in-vitro* growth in LB media. Student's t-test was used to analyze the data; p
777 values ****<0.0001, ***<0.001, **<0.01, *<0.05.

778 **Fig 4: Spermidine regulates flagellar gene expression by enhancing the translation of**
779 **FliA, which otherwise has a poor Shine-Dalgarno sequence and an unusual START codon**

780 A. Swimming motility of STM WT, STM $\Delta potCD$, STM $\Delta speED$ and STM $\Delta potCD \Delta speED$
781 grown in M9 minimal media supplemented with and without spermidine on 0.3% agar, B. The
782 mRNA expression of the genes *fliC* and *fjB*, coding for flagellin in STM $\Delta potCD$ during *in-*
783 *vitro* growth in LB media, C. The mRNA expression of the genes *fliC* and *fjB*, coding for
784 flagellin in STM $\Delta speED$ during *in-vitro* growth in LB media, D. The mRNA expression of
785 the genes *fliC* and *fjB* coding for flagellin and *fliA*, coding for the sigma-factor-28 in STM
786 $\Delta potCD$ and STM $\Delta speED$ during log phase of growth (6 hours) in LB media supplemented
787 with spermidine, E. Immunofluorescence imaging to study the expression of FliC (flagella) on
788 the surface of STM WT and the three mutants grown with and without supplementation of
789 spermidine, here DAPI (blue) is used to stain the nucleoid of STM and Anti-FliC(Cy3-tagged
790 secondary antibody used-Red) for STM, F. The quantification of E, G. TEM images of STM
791 WT, STM $\Delta potCD$, STM $\Delta speED$, STM $\Delta potCD \Delta speED$ and STM $\Delta fliC$ grown till log phase
792 of growth,with and without supplementation of spermidine, H. The mRNA expression of the
793 gene *fliA*, coding for sigma-factor-28 in STM $\Delta potCD$ during *in-vitro* growth in LB media, I.
794 The mRNA expression of the gene *fliA*, coding for sigma-factor-28in STM $\Delta speED$ during *in-*
795 *vitro* growth in LB media, J. Western blot of *fliA*-FLAG in STM WT, STM $\Delta potCD$ and STM
796 $\Delta speED$ grown till log phase of growth,with and without supplementation of spermidine.
797 Student's t-test was used to analyze the data; p values ****<0.0001, ***<0.001, **<0.01,
798 *<0.05. Two-way Annova was used to analyze the grouped data; p values ****<0.0001,
799 ***<0.001, **<0.01, *<0.05.

800 **Fig 5: Spermidine tunes the expression of the *Salmonella* pathogenicity island-1, thereby**
801 **facilitating the invasion into epithelial cells**

802 A. The mRNA expression SPI-1 master-regulator and effectors such as *hilA*, *sopD* and
803 *sipA* respectively in STM $\Delta potCD$ during *in-vitro* growth in LB media, B. The mRNA
804 expression of the SPI-1 master-regulator and effectors such as *hilA*, *sopD* and *sipA*
805 respectively in STM $\Delta speED$ during *in-vitro* growth in LB media, C The mRNA
806 expression of SPI-1 master-regulator and effectors such as *hilA*, *sopD* and *sipA*
807 respectively in STM $\Delta potCD$ post infection into Caco-2 cells D. The mRNA expression
808 SPI-1 master-regulator and effectors such as *hilA*, *sopD* and *sipA* respectively in STM
809 $\Delta speED$ post infection into Caco-2 cells, E. The mRNA expression the two-component
810 system *barA* and *sirA*, that regulates the SPI-4 and SPI-1, in STM $\Delta potCD$ during *in-*
811 *vitro* growth in LB media, F. The mRNA expression the two-component system *barA*
812 and *sirA*, that regulates the SPI-4 and SPI-1 in STM $\Delta speED$ during *in-vitro* growth in
813 LB media, G. Immunofluorescence imaging to study the localisation of SopB-HA
814 (Anti- HA, secondary antibody tagged with Alexafluor-488, pseudo-coloured to
815 magenta) in STM WT and the three mutants (expressing RFP-red), 2 hours post
816 infection into Caco-2 cells. Student's t-test was used to analyze the data; p values
817 ****<0.0001, ***<0.001, **<0.01, *<0.05. Two-way Anova was used to analyze the
818 grouped data; p values ****<0.0001, ***<0.001, **<0.01, *<0.05.