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Abstract 
 
Perivascular spaces (PVS) are fluid-filled spaces surrounding the brain vasculature. 
Literature suggests that PVS may play a significant role in aging and neurological 
disorders, including Alzheimer's disease (AD).  
Cortisol, a stress hormone, has been implicated in the development and progression of 
AD. Hypertension, a common condition in older adults, has been found to be a risk factor 
for AD. Hypertension may contribute to PVS enlargement, impairing the clearance of 
waste products from the brain and promoting neuroinflammation. This study aims to 
understand the potential interactions between PVS, cortisol, hypertension, and 
inflammation in the context of cognitive impairment. 
 
Using MRI scans acquired at 1.5T, PVS were quantified in a cohort of 465 individuals with 
cognitive impairment. PVS was calculated in the basal ganglia and centrum semiovale 
using an automated segmentation approach. Levels of cortisol and angiotensin-
converting enzyme (ACE) (an indicator of hypertension) were measured from plasma. 
Inflammatory biomarkers, such as cytokines and matrix metalloproteinases, were 
analyzed using advanced laboratory techniques. 
Main effect and interaction analyses were performed to examine the associations 
between PVS severity, cortisol levels, hypertension, and inflammatory biomarkers. 
In the centrum semiovale, higher levels of inflammation reduced cortisol associations with 
PVS volume fraction. 
For ACE, an inverse association with PVS was seen only when interacting with TNFr2 (a 
transmembrane receptor of TNF). There was also a significant inverse main effect of 
TNFr2. 
In the PVS basal ganglia, a significant positive association was found with TRAIL (a TNF 
receptor inducing apoptosis). 
These findings show for the first time the intricate relationships between PVS structure 
and the levels of stress-related, hypertension, and inflammatory biomarkers. This 
research could potentially guide future studies regarding the underlying mechanisms of 
AD pathogenesis and the potential development of novel therapeutic strategies targeting 
these inflammation factors. 
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1.     Introduction 
  
Perivascular spaces (PVSs) are fluid-filled spaces in the brain surrounding blood 
vasculature (Doubal et al., 2010). Their function is to facilitate the drainage of cerebro-
spinal fluid (CSF) between the interstitial space and the blood vessel space, allowing the 
outflow of waste-soluble proteins from the brain (Zong et al., 2020).  PVSs are a key part 
of the glymphatic system, which are responsible for cleansing the brain of neurotoxins. In 
healthy populations, an increase in PVS number and volume is seen during normal aging 
(Lynch et al., 2022), especially in basal ganglia, centrum semiovale and hippocampus 
(Wardlaw et al., 2020). In clinical populations, studies have shown an association 
between dilated PVSs and several neurological diseases, including Huntington’s disease 
(Chan et al., 2021), cerebral small vessel disease (Brown et al., 2018), and Alzheimer’s 
disease (AD) (Boespflug et al., 2018).  

Increased PVS volume and number can be caused by the alteration of CSF flow 
in the interstitial space (Barisano et al., 2022). Among environmental and external factors 
disrupting this balance, stress has been found to delay the hemodynamic response and 
neurovascular coupling that regulate cerebral flow of metabolites needed for cerebral 
function (Dunlop & Liston, 2018). Higher levels of stress were linked to hyperproduction 
of tau and amyloid, neuropathological changes typical of dementia and cognitive 
impairment (Ennis et al., 2017). The activation of the Hypothalamus-Pituitary-Adrenal 
(HPA) axis is one of the physiological mechanisms to stress response that leads to 
cortisol production and regulation in the body (Justice, 2018).  

 
High cortisol levels can affect blood pressure (BP) and cause hypertension 

(Ouanes & Popp, 2019). High BP induces a change in vessel dynamics that reduces 
perivascular pumping, and decreases the net flow of CSF in PVSs, with a consequent 
reduction of parenchymal waste transport (Ennis et al., 2017). Blood pressure is regulated 
by the renin-angiotensin-adrenal system (RAS).  Angiotensin-converting enzyme (ACE) 
is an enzyme that is part of RAS and is involved in the production of Angiotensin II; high 
levels of Angiotensin II cause arterial stiffness and structural remodeling, which lead to 
hypertension (Popp et al., 2015) and enlarged PVSs (Mestre et al., 2017). ACE was found 
to accumulate in PVS of patients with cerebral amyloid angiopathy (CAA) and correlated 
with parenchymal A𝛽 load in AD (Ouanes & Popp, 2019).  

 
Together with the release of cortisol, the interaction of pro-inflammatory factors 

with the RAS is also crucial for the maintenance of brain vasculature (Xue et al., 2020). 
In previous studies, ACE has been shown to exert a proinflammatory action on the 
endothelial and vascular smooth muscle cells (Dandona et al., 2007) by releasing tumor 
necrosis factor (TNF), interleukins, and matrix metalloproteinases (MMPs), that are 
involved in cell apoptosis and neurodegeneration (Benigni et al., 2010) (Sproston & 
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Ashworth, 2018). This contributes to the onset of cerebral small vessel diseases by 
damaging endothelial cells and disrupting blood brain barrier (BBB) (Figure 1). MMP-2 
and MMP-9 were found to be expressed more around astrocytes in Alzheimer’s disease, 
promoting accumulation of amyloid beta (A𝛽) plaques. MMP-2 and MMP-9 expression is 
regulated by TNF-𝑎  and were found to be related to hypertension (Cancemi et al., 2020). 
Therefore, the action of tumor necrosis factor alpha (TNF-𝑎), TNF-receptor-2 (TNFr2) and 
TNF-receptor-apoptosis-inducing-ligand (TRAIL), interleukin-6 receptor (IL-6r) (Blecharz-
Lang et al., 2018) and C-reactive protein (CRP) (Hilal et al., 2018) play a role in the correct 
response of the immune system (Burgaletto et al., 2020). 

A perturbation in the physiological level of biomarkers in the brain can lead to 
alterations of the clearance system, where PVS is a crucial component. Therefore, 
exploring the relationship between alterations in PVS volume and plasma biomarkers of 
inflammation may help understand the mechanisms of neuroinflammation that contribute 
to the onset of cognitive impairment and neurodegenerative diseases which are 
understudied so far.   

The objective of this study is to investigate the associations of plasma biomarkers 
of stress, hypertension and inflammation with perivascular space (PVS) volume fraction 
in older participants of the Alzheimer's Disease Neuroimaging Initiative 1 (ADNI-1) cohort. 
We tested the main effect of each biomarker with PVS. We also tested whether PVS 
associations with cortisol and ACE are modified by levels of inflammatory biomarkers 
(TNF-𝑎, TNFr2, TRAIL, CRP, IL-6, MMP-2 and MMP-9). 

To our knowledge, this is the first study evaluating associations of stress-related, 
hypertension and inflammatory plasma biomarkers with PVS volume fraction in an elderly 
population, using a novel automated segmentation technique to measure PVS. 
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a)  
 

b)  
 
Figure 1: a) anatomical representation of the perivascular space (PVS) in the brain vasculature. PVS 
surrounds the blood vessel lumen. It is involved in the fluid exchange between blood vessels and brain 
parenchyma through the aquaporin 4 channels, located on the astrocyte endfeet. b) during 
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neuroinflammation, lymphocytes cross the endothelial cell layer as a result of blood brain barrier leakage 
Perivascular macrophages (PVMs) then form, leading to PVS enlargements. As a result, there is a higher 
accumulation of neurotoxins such as amyloid beta, leading to neural death. 
 
  

2.     Methods 
 

2.1.         Participants 
  
Participants were older adults from the ADNI-1 population (n=465, age range=55-90) 
using data from the 12-month follow-up after recruitment. Inclusion and exclusion criteria 
can be found on the ADNI dataset manual (https://adni.loni.usc.edu/wp-
content/uploads/2010/09/ADNI_GeneralProceduresManual.pdf). In brief, ADNI inclusion 
criteria included age between 55-90, not enrolled in other studies, generally healthy, 
fluency in English/Spanish and Geriatric Depression Scale less than 6. Exclusion criteria 
included the use of specific medications within 4 weeks of screening, such as 
antidepressants, narcotic analgesics, and anti-Parkinsonian medications with anti-
cholinergic activity. 
In the current study, participants were excluded if they were missing data on 
demographics, medication history, physiological biomarkers or missing T1w-MPRAGE 
scans at month-12.  From an initial number of 697 that had MRI scans acquired at 1.5T, 
there were 232 cases with missing biomarker information; therefore, our final sample size 
was n=465. 
 The selection of participants for this analysis included those who had complete 
demographic and plasma biomarker information at the 12-month assessment. 
Demographic, biomarker and imaging data were downloaded from the ADNI website 
(http://adni.loni.usc.edu) and are detailed in Table 1. Participants were categorized based 
on their diagnosis at ADNI enrollment into cognitively intact healthy controls (CN), 
persons with mild cognitive impairment (MCI) and persons with more advanced 
Alzheimer’s diseases (AD). Body mass index (BMI) was considered a hypertension-
related factor, expressed as weight (kg) divided by height (m2) (for those participants 
expressing weight/height in lb/inch, we converted them in kg/m). Education was indicated 
in years; the number of APOE-4 allele copies was included as a marker of genetic 
predisposition for AD. Medications were dummy coded based on the type of medication 
participants reported using (ACE-inhibitors, steroids, other hypertension-related 
medication).  
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Table 1: Demographic information about ADNI-1 participants. Six people took more than one type of 
medication 

 
  
 

2.2.         Plasma inflammatory and physiological biomarkers 
  

The plasma biomarkers used in this study were obtained from the ADNI website, part of 
the Biomarkers Consortium Plasma Proteomics Project RBM multiplex data 
(https://adni.loni.usc.edu/wp-
content/uploads/2010/11/BC_Plasma_Proteomics_Data_Primer.pdf). A 190-analyte 
multiplex immunoassay panel was developed on the Luminex xMAP platform by Rules-
Based Medicine (RBM, Austin, TX). The panel, referred to as the human discovery map, 
contains plasma proteins previously reported in the literature to be altered as a result of 
cancer, cardiovascular disease, metabolic disorders or inflammation. The Luminex xMAP 
technology uses a flow-based laser apparatus to detect fluorescent polystyrene 
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microspheres which are loaded with different ratios of two spectrally distinct 
fluorochromes. Using a ratio of the fluorochromes, up to 100 different beads can be 
generated such that each of them contains a unique color-coded signature. The beads 
are bonded with either ligand or antibodies and then standard sandwich assay formats 
are used to detect the analytes. The beads are read one at a time as they pass through 
a flow cell on the Luminex laser instrument using a dual laser system. One laser detects 
the color code and the other reports biomarker concentration. Each biomarker considered 
in this study was collected at the 12-month visit (expressed in ng/mL), to correlate with 
imaging data collected at the same visit.  

 
2.3.         Medication Use 

  
Since both antihypertensive medications and steroids can influence the blood pressure 
and cortisol levels, the history of hypertension-related medication use was evaluated for 
each participant. In particular ACE-inhibitors were considered as hypertension-related 
drugs, as their mechanism of action can influence physiological ACE levels.  In ADNI-1, 
each participant provided information on the type of medications ever taken, the dose, 
the morbidity condition for which it was prescribed, and if they were currently taking the 
medication at the time of the study visit. The medication was assigned to a specific 
category (ACE-inhibitors, steroid or other hypertension-related medications). A 
medication variable defined whether each participant ever used medication related to 
hypertension or cortisol levels, in particular ACE-inhibitors, steroids (that control cortisol 
levels), or other hypertension-related medication (0= ‘no medication’; 1= ‘ACE-inhibitors’, 
2= ‘steroids’, 3= ‘other hypertension medications’). Secondly, a 3-level variable was 
applied to indicate whether participants were currently using these medications (0= ‘no 
medication history’, 1= ‘past use of medications; 2= ‘current use of medications’).  
  
  

2.4.         Imaging 
 
2.4.1. Data acquisition 

  
T1w MPRAGE images (n=465) were acquired using scanners from GE Healthcare, 
Philips Medical Systems, or Siemens Medical Solutions at 1.5T (voxel resolution was 
1.25x1.25x1.2 mm3), TR=2400 ms, TE= 3.6 msl, flip angle=8.0 degree, FOV=24 cm, slice 
thickness=1.2mm).  
 
We further replicated the same analyses using a subsample from ADNI-1 with MRI scans 
acquired at 3T (8-channel coil, TR = 650 ms, TE = min full echo, flip-angle = 8°, slice 
thickness = 1.2 mm, resolution = 256 × 256 mm and FOV = 26 cm, voxel size=1x1x1.2 
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mm3), as well as neuroinflammation, stress-related and hypertension biomarkers 
(n=108). This was done to replicate the same results when using data acquired at higher 
magnetic field strength, although the sample size for the 3T data is much smaller.  
 

2.4.2. Data processing 
 

PVS segmentation follows a previously published technique from our lab (Sepehrband et 
al., 2021, Sepehrband et al., 2019).  This is the first time that this method was used to 
segment PVS from T1w scans at 1.5T.In brief, after data wrangling and preprocessing, 
PVSs were mapped from T1w images: A non-local mean filtering method was applied to 
denoise the MRI T1w images (Manjón et al., 2010) which is based on how a voxel of 
interest is similar to neighboring voxels based on their intensity values. A filtering patch 
with a radius of 1 voxel was applied to retain PVS voxels while removing the image noise 
at a single-voxel level (Manjón et al., 2010). The Rician noise of MRI scans was 
considered as the noise reference level for the filtering algorithm. After this, a Frangi filter 
was applied (Frangi et al., 1998) to detect tubular structures (in this case PVS) on the 
T1w at a voxel level using the Quantitative Imaging Toolkit (QIT) (Cabeen et al., 2018). A 
range of 0.1–5 voxels was chosen for this step, as it enhances the detection of vessel-
like structures. The output of this step is a probabilistic map of vesselness (Frangi et al., 
1998), which was thresholded to obtain a binary PVS mask. The threshold of 0.00001 
was used based on expert opinion to capture true positives and true negatives.  
 
Freesurfer (v.7.1.1) was run to perform image pre-processing (motion correction and 
image normalization and skull stripping) and to obtain brain volume and parcellation, by 
running the recon-all module on the Laboratory of Neuro Imaging (LONI) pipeline system 
(https://pipeline.loni.usc.edu).  PVS volumes were extracted from both total white matter 
and basal ganglia (BG), as well as for brain regions based on the Freesurfer’s Desikan-
Killiany-Tourville adult cortical parcellation atlas (Klein and Tourville, 2012). The centrum 
semiovale (CSO) was selected because this region has been historically used as the 
clinical ROI to assess PVS, and it was obtained by adding regions parcellated by Desikan-
Killiany atlas. A list of regions forming the CSO is found in Table 1. Appendix A shows an 
overlay presentation of the CSO. 
The PVS volume fraction was calculated by dividing the PVS volume by the total volume 
for both CSO and basal ganglia in each participant. The regions forming the CSO are 
listed in Table A1, and Figure A1 (the RGB values indicated in the table are from the 
Freesurfer atlas). Total hippocampus volume was obtained by Freesurfer volumetric 
analysis and was used as an indicator of AD-related brain atrophy. A visual representation 
of the PVS segmentation is shown in Figure A3. 
  

2.5.         Statistical analysis 
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PVS volume fractions for both basal ganglia and CSO were used as a dependent variable 
(DV). The different classes of biomarkers were considered as independent variables (IV) 
in separate models. To properly model the positive, continuous skewed PVS data, we 
used generalized linear regression specifying a Gamma distribution and log link function. 
We first analyzed the main effect relationships between PVS volume fraction and stress 
levels (Cortisol), hypertension risk (ACE) and inflammation (CRP, IL-6, TNF-𝑎, TNFr2, 
TRAIL, MMP-2 and MMP-9) biomarkers separately. Secondly, we investigated the 
interactions between physiological (cortisol, ACE) and inflammatory biomarkers. 
Distributions of the inflammatory biomarkers are reported in Figure A2.  Continuous 
independent variables used in interaction analyses were centered around their median 
values.  Sex, age, BMI, and hippocampal volume were included as covariates in all 
analyses. BMI was scaled using z-transformation to reduce distribution skewness. In 
sensitivity analyses, we also included an indicator variable for APOE4 positivity as a 
model covariate. Although we used hippocampal volume as a risk indicator for cognitive 
impairment, we also included cognitive diagnoses (AD, MCI, CN) as model covariates 
(reported in Section 4 of the Results in Appendix). Medications were included as model 
covariate, by coding them as factor variable as described in 2.3. The main effect and 
interaction models with Gamma distribution are described by the mathematical formulas 
reported below - a) main effect, b) interaction with Cortisol and c) interaction with ACE. 
The statistical models were run considering separately the (𝑝𝑣𝑠!") of the centrum 
semiovale and basal ganglia as dependent variables. – Equation 1: 

 
Equation 1: Regression models describing the main effect for PVS volume fraction. a) main effect of each 
biomarker; b) interaction between Cortisol and inflammatory markers; c) interaction between ACE and 
inflammatory markers. Regressions were run both for PVS centrum semiovale and basal ganglia 

 
 

After removing the outliers for the PVS volume fraction (9 in total, calculated by multiplying 
1.5 times the interquartile range) the final sample for the analysis is n = 456 participants. 
A two-sided p-value of 0.05 was used to determine statistical significance; regression 
residuals were investigated for normality. Statistical analyses were used RStudio 
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(v.2022.07.2). We showed statistically significant fitted associations of either cortisol or 
ACE at two levels (minimum and maximum) of inflammatory markers.  
 
  
 3.  Results 
 
We report here from the 1.5T data; findings from 3T are included in the Section 2 of the 
Appendix.  
  
  

3.1.         PVS in centrum semiovale (CSO-PVS) 
  

3.1.1.     Main effects of Cortisol, ACE, MMPs 
  
There was no significant association between PVS volume fraction in the CSO 
and cortisol, ACE or MMP levels. Beta coefficients, standard errors and p-
values are shown in Section 3 in the Appendix (Figure A4). 
  
3.1.2.     Main effect of inflammatory biomarkers 
  
Among the inflammatory biomarkers, there was no significant relationship with 
PVS volume fraction. CRP showed a tendency of significance (beta (SE) = 0.95 
(0.03); p= 0.051), together with a significant effect of age (p<0.001) and BMI 
(p=0.003) on PVS volume fraction. When the medications were included in the 
model, the CRP association with PVS did not change. Other inflammatory 
biomarkers were not significantly associated with PVS in this region. 
  
3.1.3.     Cortisol interaction analysis 
  
In CSO-PVS, interactions of cortisol with inflammatory biomarkers showed 
inverse associations with PVS, such that higher levels of inflammation reduced 
cortisol associations with PVS; this was observed for TNF-𝛼 (interaction 
p=0.008), TRAIL (p= 0.013, t= -2.498), TNFr2 (p= 0.008), CRP (p=0.028) and 
MMP9 (p= 0.015) (Figure 2). Interactions of cortisol with MMP-2 and IL-6r were 
not statistically significant. Regression model results are shown in Table 2. 
Results were confirmed when information on whether participants ever used 
medications was added to the model. 
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Figure 2: Statistically significant interactions between Cortisol and TNF-𝛼, TRAIL, TNFr2, MMP-b9 and 
CRP in centrum semiovale (CSO) PVS volume fraction (vf). Plots indicate model-fitted cortisol-PVS curves 
at two different levels of each inflammatory biomarker. The two levels of inflammatory markers indicate the 
minimum and the maximum values. Shaded areas represent 95% confident intervals.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 2: Beta coefficients, standard error and p-values for significant interactions between Cortisol and 
inflammatory biomarkers (TNF-𝛼, TNFr2, TRAIL, CRP and MMP-9) in the centrum semiovale PVS volume 
fraction.  
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3.1.4.     Interactions with ACE 
  
Interaction of ACE with TNFr2 showed inverse associations with PVS 
(Table 3), such that higher levels of inflammation reduced ACE associations 
with PVS volume fraction (p=0.006). There was also a significant inverse 
main effect of TNFr2 (p=0.014), indicating a positive association of ACE 
with PVS at the median values of TNFr2, and positive main effects of age 
(p<0.00001) and BMI (p= 0.003). The results were confirmed when data on 
whether participants ever used medications (interaction p= 0.006) and 
whether they were currently using medications (interaction p=0.006) were 
included in the model.  

 
 
Table 3: Beta coefficients, standard error and p-values for the significant interaction between ACE and 
TNFr2 in the centrum semiovale PVS volume fraction.  

 

 
 
 

3.2.         PVS in basal ganglia  
  
 

3.2.1.     Main effects of Cortisol, ACE, MMPs 
  

Cortisol

CRP

Cortisol*CRP

ACE

TNFr2

ACE*TNFr2
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There were no significant associations between any of the physiological 
biomarkers and PVS volume fraction of basal ganglia. Regression model 
results are summarized in Table A4b in Appendix.  
  
3.2.2.     Main effects of inflammatory biomarkers 
  

A significant positive association between PVS in basal ganglia and TRAIL was 
seen (p= 0.049, Table 4). This result was confirmed when information on whether 
participants ever used medications (p= 0.049) and whether they were currently 
using them (p=0.035) were considered.  

 
Table 4: Beta coefficients, standard error and p-values for the main effect of TRAIL in the basal ganglia 
PVS volume fraction.  

 

  
 

3.2.3.     Interaction analysis with Cortisol 
  
There was no significant interaction between cortisol and any of the 
inflammatory biomarkers, except for CRP (p= 0.042, Table 5). Age and BMI 
were covariates that had significant direct associations. Statistical significance 
was confirmed when considering the medication use history (p=0.041), while a 
tendency of significance was seen with medication duration (p=0.053).   
 
 
 

Table 5: Beta coefficients, standard error and p-values for the interaction between Cortisol and CRP in the 
basal ganglia PVS volume fraction 
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3.2.4.     Interaction analysis with ACE 
  
No significant interactions were shown between ACE and any of the 
inflammatory biomarkers.    
 
3.3. Sensitivity analysis of ApoE4 
 
When we ran the analyses including ApoE4 as a model covariate representing 
genetic predisposition to Alzheimer’s disease, the presented results did not 
change. This means that adjusting for the number of ApoE4 allele copies does 
not alter our findings.   
 
3.4. Within-group analysis based on cognitive group 
 
To understand more the effect of cognitive impairment on the PVS volume 
fraction, we ran within-group analyses by dividing our sample in HC (n=48), 
MCI (n=325) and AD (n=92) groups. We ran the same regression models as 
for the entire population. Beta coefficients are shown in the tables in Section 5 
of Appendix. 
 

3.4.1. Healthy controls  
 
Interaction of Cortisol with TNFr2 showed inverse associations with PVS (p= 
0.037), such that higher levels of inflammation reduced Cortisol associations 
with PVS volume fraction in the basal ganglia. No other significant associations 
were seen.  

Cortisol

CRP

Cortisol*CRP

ACE

TNFr2

ACE*TNFr2
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3.4.2. MCI 

 
The MCI group represented the majority of our original sample (70%). Results 
for the CSO-PVS showed a significant negative main effect of TNFr2 (p= 0.023) 
and an inverse association with cortisol when interacting with TNF-𝑎 (p=0.008). 
 
In the PVS of basal ganglia, a significant negative effect of TNF-𝑎 was seen 
(p=0.018), and a significant inverse association with ACE when interacting with 
MMP-2 (p=0.014). 
 

3.4.3. AD patients 
 
In the AD group, interaction of Cortisol with MMP-9 showed inverse 
associations with CSO-PVS (p<0.001), such that higher levels of MMP-9 
reduced Cortisol associations with PVS volume fraction. A positive effect of 
Cortisol was also shown (p=0.04). 
 
In the basal ganglia, interaction of ACE with CRP showed a borderline inverse 
association with PVS volume fraction (p=0.048). 

 
Results with diagnosis as covariate are reported in the Section 4 of Appendix. Forest 
plots reporting beta coefficients are shown in Figure A5. 
 
 
4. Discussion 
  
This paper shows for the first time how the combined action of stress-related, 
hypertension-related and inflammatory plasma biomarkers are associated with structural 
alterations of PVS. In this section, we discuss results from the 1.5T data.   
As recently suggested (Zeng et al., 2022), the relationship between structural alteration 
of PVS, neuroinflammation and neurodegeneration can be described as a “vicious cycle”. 
The accumulation of inflammatory cellular components can cause an enlargement of 
PVS, leading to A𝛽 accumulation; at the same time, neurodegeneration can lead to 
neuroinflammatory cascade with a consequent enlargement of PVS, decreasing the 
glymphatic clearance activity. 
 
4.1. Association with TRAIL  
  
We found a borderline direct association between PVS and TRAIL, that is larger PVS 
volume fraction was related to higher TRAIL levels in basal ganglia. TRAIL, also called 
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Apo2L, belongs to the TNF superfamily and it functions as an inducer of cellular 
apoptosis, after being released by activated microglia during neuroinflammation (Gao et 
al., 2020). A previous study using immunohistochemistry showed the lack of TRAIL 
molecules in the brain, rather the presence of TRAIL receptors on astrocytes, neurons 
and oligodendrocytes (Dörr et al., 2002). This may suggest that rather than having a role 
in the immune defense mechanisms in the brain, TRAIL receptors can be involved as 
effectors of neuroinflammation, showing apoptosis-blocking and apoptosis-mediating 
actions in brain autoimmune diseases via TRAIL upregulation operated by T-cells (Dörr 
et al., 2002). Since neurons, oligodendrocytes and astrocytes have TRAIL receptors, the 
interaction between T-cells and TRAIL receptors can be fatal for the cell. Excessive 
apoptosis has been found to be associated to Alzheimer’s disease, stroke and multiple 
sclerosis (Burgaletto et al., 2020); when there is inflammation occurring, T-cells can cross 
the BBB and release neurotoxins that aggravate the neurodegenerative processes. 
Upregulated TRAIL was found in the brain of AD patients when compared to healthy 
controls, and the highest concentration was located in proximity to the A𝛽 plaques (Uberti 
et al., 2004). TRAIL is responsible for neuronal loss in neurodegenerative diseases, and 
it is associated with cognitive decline in AD mouse models (Burgaletto et al., 2020). There 
are no many studies reporting the association of TRAIL and PVS volume fraction; during 
inflammation, PVS enlargements have been seen  to be caused by the formation and 
deposition of PVS macrophages (PVM) within the vascular walls in response to an 
inflammation event; the PVMs plays a role in the cerebrovascular dysfunction and in the 
production of reactive oxygen species caused by the aggregating of A𝛽, culminating in a 
hyper-production of TRAIL and cell death  (Park et al., 2017). 
  
 4.2. TNFr2 and ACE 
  
A significant negative main effect of TNFr2 was found on the CSO-PVS volume fraction, 
indicating that lower concentrations of TNFr2 were associated with higher PVS volume 
fraction. The interaction of TNFr2 with ACE was also significantly inverse, showing that 
the CSO-PVS relationship with ACE was becoming more negative with higher levels of 
TNFr2. Such results could indicate the neuroprotective effect of TNFr2 already shown by 
previous studies (Ortí-Casañ et al., 2022) (Dong et al., 2016), expressed by promoting 
the degradation of A𝛽. Higher levels of TNFr2 help to counteract the neuroinflammatory 
state, promoting neuronal survival and myelination following a brain insult (Dong et al., 
2016). A recent study showed that the lack of TNFr2 at cellular and physiological level 
corresponded to over-expression of inflammatory genes and increased expression of 
inflammatory cytokines, culminating in increased BBB permeability (Madsen et al., 2020). 
 
4.3. Interactions with Cortisol  
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Results show a significant interaction between Cortisol and CRP for the PVS volume 
fraction in the basal ganglia. In the CSO-PVS, significant interactions were seen between 
Cortisol and TNF-𝛼, CRP, MMP9, TNFr2 and CRP. These findings suggest that the 
association between Cortisol and PVS volume fraction varies across different levels of 
the inflammatory markers.  This relationship is influenced by older age and higher BMI in 
older adults with cognitive impairment, previously shown to influence vascular contractility 
and to contribute to PVS enlargement (Barisano et al., 2020).  
  
In the healthy brain, cortisol is a powerful anti-inflammatory hormone, limiting the spread 
of damaged cells in the brain, and regulating the levels of glucose (Hannibal & Bishop, 
2014). The cortisol peak occurs in the morning and decreases during the day, and PVS 
volume fraction has been shown to be lower in the morning and higher in the afternoon 
(Barisano et al., 2020), suggesting that the hormonal concentration may be a factor 
influencing the changes of PVS volume fraction. 
During a brain insult, activation of macrophages and microglia can release pro-
inflammatory cytokines and lead to hyper-production of cortisol as a stress response 
factor, contributing to faster accumulation of A𝛽 and accelerated cognitive impairment 
(Toledo et al., 2012) (Pistollato et al., 2016).  
Neuroinflammation has a positive effect on the brain in healthy conditions, for example it 
increases blood flow and removes phagocytosis. The microglia-macrophages system 
represents the key cells for the immune response, but they can also trigger an 
overproduction of cytokines, which lead to BBB disruption and alteration of neurogenesis 
in pathological conditions.  
Interaction analyses showed that in the CSO, the relationship between PVS volume 
fraction with cortisol depends on the levels of inflammatory biomarkers (i.e., higher levels 
of inflammation reduced cortisol associations with PVS).  
The dysregulation of glucocorticoids production (including cortisol) associated with aging 
has an impact on the inflammatory processes and the activation of the immune system 
(Valbuena Perez et al., 2020). In an experimental study, the levels of proinflammatory 
cytokines (in particular TNF-𝑎 and CRP) were higher in aged mice (Valbuena Perez et 
al., 2020), along with hypothalamic-pituitary-adrenal (HPA) axis dysregulations with a 
consequent reduction in glucocorticoids synthesis. In addition, CRP levels can differ 
across individuals as it was found to be influenced by lifestyle factors, for example obesity 
and smoking (Natale et al., 2022), and ethnicity (Morimoto et al., 2014) (Watanabe et al., 
2016). 
 
Another explanation of such findings is the connection between cognitive alterations and 
dysfunction in the negative feedback system of the HPA axis (de Souza-Talarico et al., 
2011). This miscommunication leads to higher production of cortisol which has been seen 
in MCI and AD patients. Previous studies have also shown that individuals with cognitive 
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impairment (starting from MCI stages onwards) present higher basal levels of cortisol 
compared to healthy old people, and this is due to increased and faster accumulation of 
A𝛽 in the brain (Pistollato et al., 2016) (Boespflug et al., 2018b), which has been 
associated with an enlarged PVS volume fraction (Sepehrband et al., 2021). 
   
It has been proposed that cortisol plays a dual effect in regulating inflammation processes 
and immune response (Yeager et al., 2011). Glucocorticoids (GCs), whose cortisol is the 
most common one, have both a pro and anti-inflammatory effect. Levels of glucocorticoids 
expressed are key for an effective response during an acute systemic inflammation event: 
decreases of GCs trigger prolonged inflammation, while increased concentration of GC 
impairs inflammatory response against infection, with a slowdown in tissue repair. In 
humans, GCs low levels are associated with a weaker immune response and recurrent 
infections; this highlights the balance between glucocorticoids activity and inflammatory 
mediators’ action is necessary for immune mechanisms and the removal of pathogens 
(Cruz-Topete & Cidlowski, 2015). 
 
4.4. PVS in clinical settings 
 
Most of the results showed statistically significant associations and interactions on the 
CSO-PVS rather than the BG-PVS. While alterations in BG-PVS are more linked to 
hypertension and small vessel diseases, CSO-PVS structural alterations are associated 
with beta amyloid deposition. This was confirmed by a retrospective study (Kim et al., 
2021), that found higher CSO-PVS linked to neurodegenerative processes and cognitive 
impairment, reflecting an increased deposition of A𝛽 in the brains of patients with 
Alzheimer’s disease. Another study looked at PVS changes in patients with intracerebral 
hemorrhage who developed cerebral amyloid angiopathy (CAA) in an Asian population 
(Tsai et al., 2021). They found that patients who developed CAA showed higher degree 
of CSO-PVS associated with higher vascular A𝛽 retention compared to those with low-
degree CSO-PVS. High degree of CSO-PVS was also found in microglia-related 
inflammation in older people (Zeng et al., 2022), suggesting that inflammatory processes 
can lead to the dysfunction of the glymphatic system and deposition of Alzheimer’s 
disease-related biomarkers (i.e., A𝛽 and Tau).  
 
The accumulation of A𝛽 and other neurotoxic at the level of PVS cause not only an 
enlargement at the structural level, but it also triggers an inflammatory accumulation of 
platelets which can lead to thrombotic events. Higher levels of CRP have been found to 
be related to release of pro-coagulant factors during neuroinflammation. CRP is generally 
considered a biomarker of acute inflammation, but it has also been shown to play a role 
in chronic inflammatory response (for example in neurodegeneration) (Noble et al., 2010). 
Lower levels of CRP have been associated to a faster cognitive impairment and found in 
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patients with mild and moderate Alzheimer’s disease. CRP was also seen to be involved 
in developing cognitive decline in stroke patients, promoting Alzheimer’s disease 
progression after ischemia (Luan et al., 2018). CRP levels can stay stable over time and 
does not show variations during the day. This suggests CRP can be a stable and valid 
measure in clinical settings to investigate structural and functional alterations of the brain 
vasculature in neurodegenerative diseases. 
 
4.5. Strengths and limitations  
 
One of the novelties of this study is the automated segmentation of PVS applied on T1w 
images acquired at 1.5T. Image resolution is a key feature for the highest detection of 
PVS; the reason why we used 1.5T is that in the ADNI-1 cohort, most of the data were 
acquired at 1.5T and only a smaller sub-sample was available at 3T. The voxel resolution 
was higher in 1.5T than in 3T, and this also allowed us to compare the algorithm efficiency 
on data with different magnetic field strength. The automated technique of PVS 
segmentation represents a methodological strength for this study, as most of the literature 
on neuroinflammation and neuroimaging of PVS uses enlarged PVS based visual rating 
scores.  
One of the limitations of this study is the lack of 3D FLAIR images in the ADNI-1 
population, which is generally used to locate and remove WMHs.  The decreased 
specificity of T1w images in respect to vascular abnormalities may lead to inaccurate 
detection of PVS; we investigated PVS changes in CSO and BG, as they are brain areas 
mostly associated with PVS in the literature. In this study, we included hippocampal 
volume as a sign of cognitive impairment and level of brain atrophy. The main results 
shown in this study considered the population as one group of older individuals, although 
their diagnoses included CN, MCI and AD. We ran further analyses by considering the 
diagnosis as covariate, as well as by splitting the population based on diagnosis; the 
sample size for each group was quite unbalanced (the majority of our participants were 
MCIs - 70% MCI, 20% AD and 10% CN-) y and this could affect the results. Another 
limitation is the lack of plasma A𝛽 and Tau measures in the analysis as markers of 
Alzheimer’s disease. This was not possible as there were missing data in more than half 
of participants in the ADNI-1 cohort. We did test for the APOE4 allele presence as a 
covariate in the model (coded based on how many copies of allele each participant had), 
which did not change our results.  
 
5. Conclusion 
 
This study shows how inflammation affects PVS volume fraction in older people with 
cognitive impairment, and how levels of stress and hypertension contribute to 
neuroinflammatory processes. The PVS volume fraction in the centrum semiovale 
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showed significant inverse relationships with Cortisol in the presence of higher levels of 
inflammatory markers belonging to the TNF family, CRP and MMP-9. For the PVS in 
basal ganglia, we found a significant positive main effect of TRAIL, and a significant 
interaction term between Cortisol and CRP. 
The concentration of cytokines is crucial for the physiological maintenance of the immune 
response in the brain; hyper-production can lead to accelerated accumulation of 
neurotoxins, decreasing the molecular waste clearance and leading to neuroimmune and 
neurodegenerative diseases. Future studies should build on these findings and look at 
the type of cells that are mostly found in the PVS during neuroinflammation, and how 
inflammatory markers can disrupt the fluid exchange that weaken the glymphatic system. 
Understanding if higher levels of plasma biomarkers lead to enlargement of PVS or vice 
versa can be helpful to develop therapeutic solutions to prevent neural death.  
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