

1
2
3
4
5

6 **Recording morphogen signals reveals origins of gastruloid 7 symmetry breaking**

8
9
10 Harold M. McNamara^{1*}, Sabrina C. Solley², Britt Adamson^{1,2}, Michelle M. Chan^{1,2},
11 Jared E. Toettcher^{2*}

12
13 ¹ Lewis Sigler Institute for Integrative Genomics
14 Princeton University, Princeton NJ 08544

15
16 ² Department of Molecular Biology
17 Princeton University, Princeton NJ 08544

18
19
20 Corresponding Authors:
21 Harold M. McNamara
22 Lewis Thomas Laboratory Room 138
23 Washington Road
24 Princeton, NJ 08544
25 609-258-9243 (phone)
26 hmcnamara@princeton.edu

27
28 Jared Toettcher
29 Lewis Thomas Laboratory Room 140
30 Washington Road
31 Princeton, NJ 08544
32 609-258-8466 (phone)
33 toettcher@princeton.edu

34
35 **Keywords:** Gastruloid / self-organization / symmetry breaking / cell signaling
36

37 **Abstract**

38 When cultured in three dimensional spheroids, mammalian stem cells can reproducibly self-
39 organize a single anterior-posterior axis and sequentially differentiate into structures resembling
40 the primitive streak and tailbud. Whereas the embryo's body axes are instructed by spatially
41 patterned extra-embryonic cues, it is unknown how these stem cell gastruloids break symmetry
42 to reproducibly define a single anterior-posterior (A-P) axis. Here, we use synthetic gene circuits
43 to trace how early intracellular signals predict cells' future anterior-posterior position in the
44 gastruloid. We show that Wnt signaling evolves from a homogeneous state to a polarized state,
45 and identify a critical 6-hour time period when single-cell Wnt activity predicts future cellular
46 position, prior to the appearance of polarized signaling patterns or morphology. Single-cell RNA
47 sequencing and live-imaging reveal that early Wnt-high and Wnt-low cells contribute to distinct
48 cell types and suggest that axial symmetry breaking is driven by sorting rearrangements
49 involving differential cell adhesion. We further extend our approach to other canonical
50 embryonic signaling pathways, revealing that even earlier heterogeneity in TGF β signaling
51 predicts A-P position and modulates Wnt signaling during the critical time period. Our study
52 reveals a sequence of dynamic cellular processes that transform a uniform cell aggregate into a
53 polarized structure and demonstrates that a morphological axis can emerge out of signaling
54 heterogeneity and cell movements even in the absence of exogenous patterning cues.

55 **Highlights**

56 • Symmetry-breaking gastruloid protocol where Wnt signaling evolves from a uniform high
57 state to a single posterior domain.
58 • Synthetic gene circuits record Wnt, Nodal and BMP signaling with high time resolution.
59 • Heterogeneity in Wnt signaling at 96 h predicts cells' future positions and types.
60 • Wnt activity differences are influenced by earlier heterogeneity in Nodal/BMP activity.

61 **Introduction**

62 One of the most remarkable features of a developing embryo is its capacity for self-
63 organization. Developmental self-organization arises in many contexts, but generally features
64 cells generating or amplifying asymmetries to progress from a nearly uniform initial state to a
65 strongly polarized outcome. Its importance has been appreciated for at least a century, when
66 Spemann and Mangold demonstrated that cells transplanted from the dorsal blastopore lip of one
67 amphibian embryo into another were sufficient to recruit host cells into forming a secondary
68 body axis¹. Since these foundational experiments, self-organizing potential has been
69 demonstrated in a range of model organisms and developmental processes, and is not exclusively
70 localized to discrete ‘organizer’ regions but can be broadly distributed throughout the embryo².
71 Understanding how embryonic cells achieve reproducible outcomes through self-organizing
72 processes is a fundamental challenge in developmental and systems biology, and may suggest
73 engineering routes towards regenerative medicine and biomanufacturing.

74

75 Developmental self-organization can in principle be orchestrated through many classes of
76 molecular and physical processes. At the molecular level, diffusible ligands can spread between
77 cells which then can respond by secreting either the same or a different ligand. Cells thereby
78 form feedback loops that amplify small differences and generate stable patterns^{3–5}. For example,
79 injection of mRNA encoding Nodal- and BMP-family ligands into the zebrafish embryo is
80 sufficient to induce host cells to form a complete secondary body axis⁶. A second class of
81 mechanisms involves physical interactions between cells. For example, cells expressing different
82 adhesion receptors can self-sort based on the relative strengths of their interactions to form stable
83 patterns in both natural and synthetic contexts^{7,8}. These mechanisms need not be mutually

84 exclusive; physical interactions and intracellular signaling can influence one another in
85 mechanochemical feedback loops⁹. Due to this complexity, we lack a complete understanding of
86 developmental self-organization in virtually every context in which it has been observed. What
87 are the earliest signaling asymmetries that contribute to a polarized outcome, and how are they
88 subsequently amplified and stabilized by biochemical and physical interactions between cells?

89

90 The recent emergence of organoid-based models of embryogenesis provides an opportunity
91 to study self-organization in a simplified and well-controlled context. For example, 3-
92 dimensional gastruloids derived from mouse or human embryonic stem cells are able to break
93 symmetry and elongate along a single anterior-posterior body axis in response to uniform
94 signaling stimuli (e.g., a 24 h pulse of the Wnt pathway activator CHIR-99021) over an
95 experimentally tractable timescale of approximately 5 days¹⁰⁻¹². Gastruloid polarization and axial
96 elongation resembles the formation of the embryonic primitive streak during gastrulation, where
97 the epiblast's radial symmetry is broken to establish the anterior-posterior body axis and form the
98 three germ layers¹³. Whereas gastrulation *in vivo* is guided by spatially patterned external cues
99 (e.g., Wnt3 secreted from the visceral endoderm; BMP4 from the extra-embryonic ectoderm),
100 gastruloids organize a single body axis in the absence of any extra-embryonic tissues or
101 asymmetrically applied cues. This capability to polarize without an apparent pre-pattern is
102 consistent with a capacity for self-organization that is already present in the embryo, where
103 transplantation of the anterior primitive streak (or 'node') is sufficient to induce duplication of a
104 secondary neural axis¹⁴.

105

106 How gastruloids spontaneously break symmetry to form a polarized body axis remains an
107 open question. Treatment with signaling inhibitors can identify signaling pathways involved in
108 polarization¹⁵⁻¹⁷, but often produces broad defects (e.g. failure to polarize) which cannot dissect
109 dynamics of self-organization. Current signaling biosensors are also insufficient: while prior
110 studies have characterized spatiotemporal patterns of BMP, Nodal, and Wnt signaling using
111 transcriptional reporters¹⁰, it has been challenging to causally link cells' signaling histories to
112 their subsequent position along the anterior-posterior (A-P) axis. Gastruloids are optically dense,
113 can contain 10^4 - 10^6 cells, and are highly dynamic, with considerable cell migration,
114 rearrangement, and differential proliferation^{17,18}, making imaging-based single-cell tracking
115 difficult if not impossible using current methods. While powerful, standard transcriptomic
116 techniques (e.g., scRNASeq; smFISH) are terminal measurements and thus also poorly suited to
117 relate cells' current states to their prior history, future fates, or eventual spatial position.

118

119 Here, we describe a synthetic biology approach to map how early signaling dynamics predict
120 cells' future spatial position in the developing gastruloid. We engineered mouse embryonic stem
121 cells expressing "signal-recorder" gene circuits to permanently label cells in which a particular
122 pathway was active in a user-defined time window. We show that these recombinase-based
123 circuits can record morphogen signals with high fidelity and temporal resolution, achieving near-
124 complete labeling of the currently signaling-active population within 6 h. By systematically
125 varying the recording time and measuring labeled cells' final positions, we map how signaling
126 dynamics encode fate information over time. We first use this approach to identify the earliest
127 time points at which Wnt activity is predictive of cells' future A-P axis fates. We define a
128 "symmetry-breaking" gastruloid protocol where Wnt signaling progresses sequentially through

129 uniformly low, uniformly high, and heterogeneous states before localizing exclusively to the
130 posterior pole. Surprisingly, we find that Wnt activity at 96 h post-seeding is already predictive
131 of cells' future A-P position and fate, even though neither Wnt activity nor gastruloid
132 morphology is polarized by this time. Single-cell sequencing and live imaging measurements
133 suggest that these early Wnt-active and Wnt-inactive populations undergo cell sorting to define
134 anterior and posterior cell populations, likely driven by differential cell-cell adhesion. Finally,
135 we extend our signal recording approach to Nodal and BMP signaling, revealing that even earlier
136 pre-existing heterogeneity in both pathways is predictive of cells' future axial positions, likely by
137 altering subsequent Wnt activity dynamics. Taken together, our data reveal early signaling events
138 associated with symmetry-breaking in a model of mammalian development, suggesting a model
139 where early stochastic signaling events and subsequent cell sorting are sufficient to specify the
140 anterior-posterior axis even in the absence of spatially restricted extra-embryonic cues.

141

142 **Results**

143 **Wnt signaling evolves dynamically during gastruloid polarization**

144 We began our investigation of symmetry breaking by focusing on the Wnt signaling
145 pathway, which coordinates A-P patterning in many bilaterally symmetric animals¹⁹. Gastruloid
146 morphogenesis is triggered by transient activation of Wnt pathway activity via addition of the
147 small molecule CHIR-99021 (“CHIR”) to the culture medium. A short time later, Wnt activity
148 becomes polarized to the gastruloid’s posterior domain, where it is required for further
149 development at the morphological and molecular level (e.g., Brachyury expression)^{11,20}.
150 Polarized Wnt activity is thought to act in concert with FGF signaling activity to define an
151 organizing domain capable of autonomously driving gastruloid elongation²¹. This localized

152 posterior domain of Wnt activity mirrors the situation in the embryo, where Wnt3 is provided as
153 a spatially restricted extra-embryonic cue by the visceral endoderm to initiate gastrulation within
154 the posterior region of the epiblast²². We hypothesized that the gastruloid's progression from a
155 global Wnt-active state (during CHIR stimulation) to a localized posterior domain could reflect
156 an underlying program of developmental self-organization (**Figure 1A**), so we began our study
157 by characterizing how a polarized Wnt signaling domain emerges following a uniform stimulus.
158

159 We engineered a clonal mESC line in which a Wnt-dependent promoter drives expression of
160 a destabilized infrared fluorescent protein (P_{TCF/LEF}-iRFP-PEST)²³ and where constitutive DsRed
161 expression marks all cells (**Figure 1B**). Benchmarking the dynamics of this biosensor revealed
162 that the Wnt reporter responds within 5 h to acute changes in pathway activity (**Figure S1A**). We
163 also optimized gastruloid culture conditions to monitor the evolution of Wnt signaling patterns
164 from the uniform to polarized state. Gastruloids can be seeded from mESCs that were cultured in
165 LIF-supplemented growth media or in 2i+LIF media, where the latter media contains CHIR and
166 a MEK inhibitor to suppress spontaneous differentiation and preserve culture uniformity²⁴. We
167 found that the standard protocol, in which gastruloids are seeded from cells cultured in LIF-
168 supplemented growth media (**Figure S1B**), led to substantial heterogeneity in Wnt signaling both
169 before and after the CHIR pulse (**Figure S1C**), consistent with a recent study¹⁶. In contrast,
170 maintaining cells in 2i+LIF media until immediately before seeding (**Figure 1C**) produced
171 gastruloids in which Wnt pathway activity indeed progressed from a uniform state at the end of
172 the CHIR pulse to a single posterior pole of Wnt activity over time (**Figure 1D**). We proceeded
173 with our modified protocol for all subsequent experiments to maintain tight control over the
174 initial conditions of Wnt signaling while still supporting robust gastruloid development.

175

176 Wnt biosensor measurements over time revealed a progression through uniform, bimodal,
177 and polarized pathway activity states. At 48 h post-seeding, prior to the CHIR pulse, Wnt activity
178 was low in all cells but shifted to a uniformly-high state by 72 h at the end of the CHIR pulse
179 (**Figure 1D**, left). By 96 h, we observed fragmentation of the Wnt activity pattern into locally
180 ordered domains of active and inactive signaling, but without global axial polarization (**Figure**
181 **1D**, middle). Finally, by 108 h post-seeding, gastruloids exhibited a single coherent domain of
182 Wnt activity that marked the elongating posterior. This sharply-defined domain of posterior Wnt
183 activity persisted through subsequent time points, occasionally showing signs of further
184 fragmentation with the emergence of new Wnt-inactive patches (**Figure 1D**, right). We
185 separately characterized single-cell Wnt activity levels by applying flow cytometry suspensions
186 of dissociated gastruloid cells (**Figure 1E-F**; **Figure S1D**). Consistent with our imaging data,
187 these flow cytometric measurements also revealed an initial homogeneous low state at 48 h post-
188 seeding, followed by a uniformly high state at 72 h, finally shifting to a bimodal distribution with
189 Wnt-high and Wnt-low subpopulations at subsequent time points.

190

191 To pinpoint the timing of the transitions to the heterogeneous and polarized states, we
192 prepared gastruloids expressing our instantaneous Wnt biosensor at 6 h time intervals between
193 72 h and 144 h post-seeding (**Figure 1G**; **Figure S1E**; $n = 76$ gastruloids) and imaged the spatial
194 distribution of Wnt activity. We quantified polarization by measuring the center of mass of Wnt
195 fluorescence compared to the ubiquitously expressed DsRed marker, and quantified
196 heterogeneity using the standard deviation of normalized pixel intensities for each gastruloid (see
197 **Figure S1F**; see **Methods**). These analyses revealed a sharp increase in Wnt heterogeneity at 90

198 h post-seeding (**Figure 1G**; red curve), consistent with our flow cytometry results (**Figure 1E**).
199 In contrast, Wnt polarization to a posterior domain was delayed by an additional 12 h, only
200 increasing at 108 h post-seeding (**Figure 1G**; blue curve). In summary, a live-cell signaling
201 biosensor revealed that Wnt pathway activity is highly dynamic and can self-organize into a
202 polarized pattern in response to a uniform cue (the CHIR pulse) by evolving through multiple
203 intermediate states: (1) global low and high Wnt states from 48-90 h post-seeding, (2)
204 heterogeneous, “patchy” Wnt activity without overall polarization from 90-108 h, and finally (3)
205 posterior-polarized Wnt activity coinciding with the emergence of morphological polarization
206 from 108 h onward. Notably, revealing this progression of patterns depends on a gastruloid
207 preparation protocol that minimizes early Wnt heterogeneity¹⁶ and enables all cells to initially
208 respond to the synchronizing CHIR pulse.

209

210 **Recording signaling histories with recombinase circuits**

211 We observe that gastruloid Wnt activity undergoes a complex evolution from a homogenous
212 state to a single posterior pole. Might the sequential spatial patterns of Wnt activity carry
213 functional significance? Early cell-to-cell differences in Wnt activity may simply reflect transient
214 fluctuations prior to a later decision timepoint, or they may already carry information about cells'
215 future position and fate. To test the hypothesis that early Wnt heterogeneity might already
216 predict cell fates, we devised a general experimental strategy to (1) label cells based on their
217 signaling state at precisely defined times, (2) continue to grow gastruloids until some final time
218 of interest and (3) assess the final spatial position of these labeled cells in the end-stage
219 gastruloid. Beyond mapping Wnt-associated cell positions, we reasoned that such a “signal-
220 recording” system could be useful for tracing the fates of signaling-active cells for a broad range
221 of pathways and biological contexts.

222

223 We adopted a generalizable strategy of gating the expression of a site-specific recombinase
224 (e.g., Cre recombinase) to permanently label cells based on their signaling histories^{25,26}. To
225 restrict labeling to a defined time window, we built a synthetic circuit where recombinase
226 activity is controlled by an AND gate sensitive to two inputs: signaling pathway activity and an
227 experimentalist-controlled small molecule, doxycycline. In principle, delivering the small
228 molecule during a brief, well-defined time window would thus label only those cells currently in
229 an active signaling state for analysis at later time points (**Figure 2A**). Similar approaches have
230 been used *in vivo* to label signaling-active neurons during experimentally-defined time windows
231 (e.g., the *Fos-tTA* system), but with temporal precision typically measured in days rather than
232 hours²⁷.

233

234 We implemented our dual-input recombinase circuits in mouse embryonic stem cells using
235 serial rounds of PiggyBac-mediated integration (**Figure 2B**)²⁸. The top-most element in our
236 circuit uses a signaling pathway-responsive ‘sentinel enhancer’²⁹ (in our base case for the Wnt
237 pathway, 7 TCF/LEF binding sites) to drive the expression of a destabilized reverse tetracycline
238 dependent transactivator (rtTA-PEST). Only in the presence of the small molecule doxycycline
239 will rtTA then drive expression of a TetO-driven Cre recombinase³⁰. Finally, Cre recombinase
240 can act on a “stoplight” recording cassette ($P_{EF1\alpha}$ -LoxP-DsRed-LoxP-GFP)³¹, excising the DsRed
241 transgene to permanently switch cells from red to green fluorescence. We first engineered a
242 clonal mESC cell line expressing the P_{TetO} -Cre and stoplight elements to serve as a chassis for
243 signaling-recorder circuits that respond to a variety of inputs, into which we integrated a
244 signaling-responsive enhancer specific for either Wnt, Nodal or BMP signaling (see **Methods**).

245 At each stage of cell line generation, mESC clonal colonies were selected for colony morphology
246 and lack of leaky recombination-mediated GFP expression.

247

248 We characterized the fidelity of a “Wnt-Recorder” mESC clonal cell line by measuring the
249 efficiency of labeling in response to both inputs. We treated 2D cultures of mESC with different
250 combinations of doxycycline (dox; 2 μ g/mL) or CHIR (3 μ M) for 24 h, washed and returned to
251 basal media, and then waited an additional 24 h to equilibrate recombination-mediated shifts in
252 fluorescent protein expression prior to measuring GFP fluorescence by flow cytometry. We
253 found that the circuit exhibited very low leakiness: no detectable GFP labeling was observed
254 when Wnt-Recorder cells were incubated for 24 h in either dox or CHIR alone (**Figure 2C**), and
255 background GFP levels remained consistently low (<0.1%) over at least 15 passages of
256 subculture in Wnt-activating 2i+LIF media but in the absence of doxycycline. Conversely,
257 combined stimulation with dox and CHIR produced near-complete GFP labeling of the cell
258 population (**Figure 2C**, left). We further characterized the sensitivity of the circuit to each input
259 (dox or Wnt signaling) in the presence of a constant cue from the other input (**Figure S2A-B**),
260 revealing that labeling could be detected for doxycycline concentrations as low as 200 ng/mL
261 and for Wnt3A concentrations as low as 50 ng/mL.

262

263 For high-fidelity signal recording it is important that a brief incubation with doxycycline is
264 sufficient to label cells based on their current pathway activity. To measure the minimum
265 recording window required for efficient labeling, we first varied the duration of doxycycline
266 labeling in the presence of a constant CHIR stimulus (**Figure 2C**, right). We found that the
267 circuit exhibited exceptional temporal sensitivity – even a 1 h incubation window was sufficient

268 to label the majority (68%) of cells, with near-complete labeling after a 3 h dox pulse. As a more
269 stringent test, we performed step-up and step-down experiments to measure recording kinetics
270 after an acute change in Wnt activity. We incubated Wnt-Recorder mESCs with a 1 h pulse of
271 doxycycline at various time points after either CHIR stimulation or washout, and measured GFP
272 labeling after 24 h (**Figure 2D**). We generally observed a delay of 3 h before the doxycycline
273 pulse produce labeling results that reflected the change in Wnt activity, likely reflecting the time
274 required for synthesis or degradation of the Wnt-induced rtTA transcription factor. By 6 h
275 following the media change, labeling fractions approached steady state values for low-Wnt or
276 CHIR-stimulated conditions. We thus conclude that Wnt-Recorder cells can faithfully resolve
277 signaling dynamics to within a 6 h time window.

278

279 Recombinase recording circuits are modular in design: exchange of the upstream most
280 sentinel enhancer can target recording to different morphogen signals of interest. We further
281 developed clonal mESC lines to record Activin/Nodal signaling using the AR8 sentinel enhancer
282 and BMP activity using the IBRE4 sentinel enhancer²⁹, terming the resulting mESC clones
283 Nodal-Recorder and BMP-Recorder cells, respectively. All three Recorder cell lines (Wnt,
284 Nodal, and BMP) could be used to faithfully record ligand-dependent signaling from the
285 appropriate pathway with minimal crosstalk from the other two pathways (**Figure 2E; Figure**
286 **S2C**). For recording windows of 6 h or longer, the BMP-Recorder line exhibited some recording
287 in the absence of exogenous BMP4 (**Figure S2D**) but this basal activity was suppressed by
288 treatment with the BMP inhibitor LDN-193189 and thus may accurately reflect autocrine BMP
289 signaling within the culture (**Figure S2D**). In sum, the synthetic gene circuits described here

290 enable the experimentalist to label mESCs based on their instantaneous Wnt, Nodal or BMP
291 signaling activity with high fidelity and fine temporal resolution.

292

293 **Tracing the emergence of fate information in Wnt signaling**

294 We next applied our Wnt-Recorder system to measure whether early signaling differences in
295 this pathway are predictive of cells' future axial position. We envisioned a simple experimental
296 protocol: establish gastruloids from Wnt-Recorder cells, apply a 90 min pulse of doxycycline at a
297 time t_{dox} to label cells based on their immediate history of Wnt activity, and finally fix and image
298 the elongated gastruloids at a final time t_f (**Figure 3A**). If cells' early Wnt signaling state is
299 instructive of their final position, then recording Wnt-active cells and tracing their fates should
300 reveal an asymmetric distribution of GFP-labeled cells along the gastruloid's final A-P axis. We
301 hypothesized that signal recorders could thereby measure 'fate information' encoded in cells'
302 signaling states; that is, information that does not encode a cell's current position, but rather
303 predicts where it will end up in the final polarized gastruloid.

304

305 We grew cohorts of Wnt-Recorder gastruloids and chose 9 time points between 48-120 h to
306 apply doxycycline pulses for signal-recording. Recording timepoints were spaced by a minimum
307 of 6 h, matching the sensitivity window of the Wnt-Recorder circuit (**Figure 2D**). All gastruloids
308 were grown to a final fixation timepoint t_f between 134 and 144 h, and then imaged to observe
309 the morphogenic fates of signal-recorded cell populations (**Figure 3B**). Applying the
310 doxycycline pulse at 48 h resulted in gastruloids exhibiting only sparse and sporadic GFP
311 labeling (**Figure 3B**, $t_{\text{dox}}=48$ h), consistent with our observation of uniform, low Wnt activity at
312 48 h post-seeding (**Figure 3B**, inset above $t_{\text{dox}}=48$ h). Conversely, a dox pulse delivered at 72 h

313 produced GFP labeling throughout the entirety of the gastruloid, consistent with the high level of
314 Wnt pathway activity expected in all cells immediately following CHIR treatment. We observed
315 the emergence of axially-organized labeling patterns by $t_{\text{dox}}=96$ h, where GFP-labeled cells were
316 evenly distributed across much of the gastruloid but were entirely excluded from the anterior
317 domain (**Figure 3B**, $t_{\text{dox}}=96$ h). At progressively later timepoints, cells harboring Wnt signaling
318 were increasingly restricted to the posterior of the gastruloid. We quantified data for all labeling
319 times by measuring normalized GFP as a proportion of the total normalized intensity of the
320 Stoplight system (GFP + DsRed) along the major axis of each gastruloid (**Figure 3C; Figure**
321 **S3A-D**; see **Methods**). This analysis confirmed our raw imaging data (**Figure 3B**) that GFP
322 labeling transitioned from a uniformly-low state for $t_{\text{dox}}=48$ h to a high state at $t_{\text{dox}}=72-90$ h,
323 followed by progressive restriction to a posterior domain from $t_{\text{dox}}=96$ h onward. We also noted a
324 slight trend in the GFP/(GFP + DsRed) ratio at the anterior-most 10% of the gastruloid (**Figure**
325 **3C**; 72-90 h curves) that was present even at the earliest labeling time points when Wnt signaling
326 was still uniform (**Figure 1E**). This trend may reflect intrinsic differences at the anterior pole
327 (e.g., high cell density or autofluorescence) that affect the relative fluorescence measurements in
328 the GFP and DsRed channels.

329

330 Our data indicate a stark transition between 90-96 h post-seeding where Wnt signaling first
331 becomes associated with cells' future position along the anterior-posterior axis (**Figure 3D**).
332 Importantly, Wnt heterogeneity is not yet spatially organized along an anterior-posterior axis at
333 this time, but rather Wnt-high and Wnt-low cells coexist in multiple patches across a single
334 gastruloid without a clear axial bias (**Figure 1D-G**). Put differently, by 96 h, cells with high Wnt

335 activity are already destined to be excluded from the gastruloid's anterior-most domain, even
336 though these cells are not yet spatially organized along an A-P axis.

337
338 In addition to assessing the future position of Wnt-active cells at a single labeling time, our
339 doxycycline-labeling experiments can also be re-cast as measuring the dynamic Wnt signaling
340 history for cells at each final position in the gastruloid. This can be visualized by considering
341 horizontal slices through a kymograph of our Wnt labeling data, representing the Wnt activity
342 over time experienced by cells at each final position (**Figure 3E**). For example, a high proportion
343 of cells at the gastruloid's posterior-most positions (i.e., $x/L = 1$) were Wnt-active from 72-120
344 h, whereas cells at the midpoint ($x/L = 0.5$) saw high Wnt activity only from 72-108 h. We thus
345 set out to ask whether each position in the final gastruloid might be well-defined by its dynamic
346 Wnt signaling history. To address this question, we quantified the total integrated Wnt signaling
347 observed at each spatial position:

348

$$I(x, t) = \int_{t_0}^t W(x, t') dt'$$

349 where $W(x, t')$ is a normalized position-dependent distribution of Wnt activity measured at time
350 t' . Computing this integral from $t_0 = 96$ h through $t = 134$ h yielded a roughly linear gradient
351 (**Figure 3F**). These results reveal a 'temporal gradient' of prior Wnt activity at each A-P position
352 in the final gastruloid: cells at each axial position can be distinguished by the total duration of
353 Wnt signaling they have experienced. Because instantaneous Wnt activity in the elongating
354 gastruloid (> 108 h post-seeding) is restricted to the posterior pole (**Figure 1D; Figure S3D**), it
355 is likely that this temporal gradient reflects the dynamics with which newly born cells exit the
356 posterior-most Wnt domain during gastruloid elongation, turning off this signaling pathway as
357 they differentiate and contribute to tissues at various axial positions.

358

359 Our signal-recorder observations are already sufficient to begin constraining potential
360 mechanisms of gastruloid symmetry breaking. First, we may infer that gastruloid symmetry
361 breaking must include at least some contribution from cell reorganization, since Wnt-high cells
362 that are present throughout the gastruloid at 96 h must subsequently sort away from the future
363 anterior. Such a mechanism would argue against a purely biochemical Turing-like reaction-
364 diffusion system, operating on a fixed field of cells, in setting up a single polarized anterior or
365 posterior domain. Second, our data indicates that a subpopulation of cells retains persistent, high
366 Wnt activity after removal of the CHIR pulse, and that this Wnt-high state persists long enough
367 to transition from patches throughout the gastruloid to a single posterior domain. The long-term
368 maintenance of a Wnt-high state might indicate the presence of local positive feedback acting
369 within the Wnt-high subpopulation²¹. More broadly, our results demonstrate the utility of
370 signaling-recorder gene circuits for defining when signaling pathway activity is first informative
371 of symmetry-breaking polarization.

372

373 **Early Wnt activity is associated with distinct cell fate trajectories**

374 We have seen that cell-to-cell differences in Wnt signaling at 96 h post-seeding are predictive
375 of cells' future position in the elongated gastruloid; are they also associated with the adoption of
376 specific cell fates? We reasoned that combining our signal-recorder cell lines with single-cell
377 RNA sequencing (scRNASeq) could address this question: cells can be GFP-labeled based on
378 their instantaneous signaling state, and then harvested at any future time of interest to assess their
379 transcriptomic state. We thus repeated the 96 h labeling of Wnt-Recorder gastruloids that also
380 expressed the instantaneous destabilized iRFP Wnt reporter, then dissociated and sorted the

381 GFP+ and GFP- subpopulations at 120 h for scRNAseq (**Figure 4A**; see **Methods**). Imaging
382 experiments confirmed that by 120 h post-seeding, gastruloids exhibited high instantaneous Wnt
383 signaling at the posterior pole as well as GFP labeling that was excluded from the anterior
384 domain (**Figure 4B**).

385

386 The combined scRNAseq dataset from GFP+ and GFP- cells revealed 9 cell clusters (**Figure**
387 **4C**, left panel) that could be assigned to distinct embryonic cell types using annotations from a
388 reference scRNAseq atlas mapping mouse development between embryonic day 6.5 and 8.5
389 (**Figure S4A**; see **Methods**)³². The cell types which we observed were largely consistent with
390 those previously reported in similarly staged gastruloids³³. These fates were also associated with
391 a progression along the posterior-to-anterior axis, from the posterior-most neuromesodermal
392 progenitors (NMPs) to caudal and presomitic mesoderm (PSM), followed by anterior mesoderm
393 and cell types associated with somitogenesis (i.e., ‘determination front’ and ‘somite’
394 populations). We also observed compact clusters of endodermal and endothelial cells whose
395 expected position along the A-P axis is less well-defined. Overall, the cell types annotations were
396 broadly consistent with the expression profiles of known marker genes (**Figure 4D**; **Figure**
397 **S4B**), with T/Bra marking NMPs and posterior PSM, Msgn1 marking posterior PSM, Meox1,
398 Lfng, and Pax3 marking cells undergoing somitogenesis, and Sox17 expressed exclusively in the
399 endodermal and endothelial clusters. Cell type annotations were also consistent with the
400 expected localized expression of signaling-associated genes (**Figure S4C**), with high expression
401 of Wnt and FGF ligands (Wnt3a, Wnt5b, Fgf8, and Fgf17) in posterior-associated cell clusters
402 and retinoic acid synthesis (Aldh1a2) in anterior-associated clusters, matching the opposing
403 gradients of Wnt/FGF and retinoic acid signaling along the A-P axis^{34,35}.

404

405 Our scRNAseq analysis further revealed that both instantaneous and recorded Wnt signaling
406 map to specific cell types in the 120 h old gastruloid. We observed high levels of instantaneous
407 Wnt activity (measured by TCF/LEF-driven rtTA transcription) in the NMP and caudal
408 mesoderm subpopulations (**Figure 4C**, middle panel), consistent with the spatial distribution of
409 instantaneous Wnt signaling at the posterior pole (**Figure 4B**) where NMPs are located³³. While
410 both GFP+ and GFP- cells were found in similar proportions throughout each cluster (**Figure**
411 **S4D-E**), we found that GFP-expressing cells were largely excluded from three clusters: the
412 anterior-most ‘somite’ cluster³³ and the ‘endoderm’ and ‘endothelium’ clusters whose axial
413 localization patterns are less well-defined (**Figure 4C**, right). Taken together, these data reveal
414 that cell-to-cell heterogeneity in Wnt signaling at 96 h is indeed associated with distinct
415 subsequent differentiation trajectories (**Figure 4E**). Cells with high Wnt activity at 96 h
416 contribute exclusively to NMP and posterior mesodermal fates, whereas low Wnt activity at 96 h
417 is already predictive of anterior mesoderm and endodermal/endothelial lineages. More broadly,
418 these data demonstrate that signal-recorder circuits can be combined with standard scRNAseq
419 pipelines to annotate maps of cell fates with information about their current and prior signaling
420 histories.

421

422 **Symmetry breaking and polarization involves differential adhesion**

423 Our prior experiments reveal a critical time window from 90-96 h when heterogeneity in Wnt
424 signaling becomes predictive of cells’ future axial positions and transcriptional fates in the
425 elongated gastruloid. This time window corresponds to a period during which Wnt signaling
426 exhibits local order in patchy domains but has not yet polarized to the posterior of the gastruloid

427 (Figure 5A). We next investigated how these Wnt-high and Wnt-low subpopulations differ
428 during the critical window to better understand how their subsequent polarization might occur.

429

430 To fully characterize the transcriptional state of the Wnt-high and Wnt-low populations, we
431 performed scRNASeq on 96 h old Wnt-Recorder gastruloids also expressing our instantaneous
432 Wnt biosensor (7xTCF/LEF-driven iRFP-PEST). We performed Leiden clustering on the
433 resulting 3,272 single-cell transcriptomes, which identified two populations of cells which
434 differentially express many genes previously identified as marker genes in a recent mouse
435 developmental atlas (Figure 5B-C; Figure S5A)³². Reads corresponding to our Wnt
436 transcriptional biosensor were confined to just a single cluster, suggesting that the Wnt-high and
437 Wnt-low signaling domains evident by microscopy also represent the primary distinguishable
438 cell populations in this transcriptomic dataset. These two clusters were also associated with
439 differential expression of a broader range of signaling-associated genes (Figure S5B). For
440 example, the Wnt-high cluster expressed the Wnt ligands Wnt3a and Wnt5b, as well as BMP and
441 FGF ligands, consistent with autocrine positive feedback locally maintaining Wnt activity in this
442 subpopulation after CHIR washout at 72 h. Conversely, the Wnt-inactive population expressed a
443 distinct set of signaling-associated genes, including the Wnt inhibitor FrzB and the retinoic acid
444 biosynthesis enzyme Aldh1a2 (Figure S5D), which plays an opposing role to FGF signaling
445 during somitogenesis³⁶ and might reflect a nascent somitogenic program is already active by this
446 stage of gastruloid development.

447

448 We also observed differential expression of cell adhesion-associated genes between Wnt-
449 high and Wnt-low clusters. E-Cadherin/Cdh1 and EpCAM were expressed in the Wnt-high

450 cluster, whereas protocadherins 8 and 19 (Pcdh8; Pcdh19) were predominantly expressed in
451 Wnt-low cells (**Figure 5C-D; Figure S5C**). Not all adhesion receptors were differentially
452 expressed; for example, N-Cadherin/Cdh2 expression was observed uniformly across all cells
453 (**Figure S5C**). We further validated that the differential gene expression we observed also
454 extended to protein distributions by immunostaining for a subset of our hits, including Cdh1,
455 Pcdh19, and Aldh1a2 (**Figure 5D; Figure S6**). In each case, we observed a tight correlation
456 between the spatial domains of our instantaneous Wnt reporter and the candidate gene product.
457 Overall, these data demonstrate that, by 96 h, cells occupying Wnt-high and Wnt-low patches
458 already exhibit broad differences in signaling state and gene expression, consistent with their
459 adoption of distinct future fates and positions.

460
461 The observation of differential expression of adhesion-associated genes lent further support
462 to a model where the Wnt-high and Wnt-low subpopulations might sort out into distinct posterior
463 and anterior domains, respectively^{37,38}. To obtain direct evidence of cell sorting, we performed
464 live imaging of gastruloids grown from a clonal mESC line expressing a destabilized GFP
465 reporter of Wnt activity and constitutive mCherry expression during the period at which
466 symmetry breaking occurs (t = 72 to 96 h) (**Figure 5F; Videos S1 and S2**). We embedded
467 gastruloids in 50% Matrigel to restrict their movement during live imaging^{17,18}. Wnt activity
468 began broadly distributed throughout the gastruloid, with heterogeneous reporter expression
469 levels in individual cells. Wnt-active cells were highly motile and, in the gastruloids where
470 symmetry breaking could be observed (**Video S2**, arrows), gradually coalesced into clusters that
471 merged into a single ring of cells, eventually extruding a broad domain of Wnt-inactive cells on
472 one side of the gastruloid. Because Matrigel embedding may itself influence gastruloid

473 development (e.g., by perturbing mechanical boundary conditions), we further scrutinized the
474 intermediate patterns between domain emergence and polarization in fixed samples that were not
475 embedded in Matrigel (**Figure S5E**). We observed a similar evolution of Wnt activity in these
476 fixed samples, progressing from local patches to a ring, followed by resolution into a singular
477 pole of Wnt activity. Overall, our live-imaging data provides direct evidence for sorting of Wnt-
478 positive and Wnt-negative cells during gastruloid polarization, confirming the sequence of events
479 that can be inferred from our signaling-recorder measurements.

480

481 In sum, single-cell gene expression analysis during the onset of symmetry breaking
482 demonstrates that early heterogeneity in Wnt signaling is also associated with major differences
483 in cells' transcriptional states. Live imaging reveals that a cell sorting process rearranges cells
484 harboring these different Wnt signaling states into progressively more consolidated domains,
485 eventually yielding a polarized pattern of activity which defines a single posterior pole.

486 Throughout this process, local patches of Wnt-high cells may be maintained through local
487 secretion of Wnt3a and Wnt5b ligands, helping to maintain this subpopulation after removal of
488 the CHIR pulse²¹. The observation that the two transcriptionally defined cell types express
489 differential cell adhesion molecules and consolidate into distinct domains suggests that
490 mechanical interactions could contribute to the cell rearrangements underlying gastruloid
491 polarization and patterning.

492

493 **Spontaneous TGF β signaling precedes and predicts Wnt symmetry breaking**

494 Our data indicate that gastruloid polarization evolves from a uniform Wnt-high state to a
495 bimodal population of Wnt-low and Wnt-high cells, followed by rearrangement of these cells

496 into distinct anterior and posterior domains. The emergence of a bimodal distribution from
497 uniformly Wnt-high initial state indicates that some cells maintain Wnt signaling longer than
498 others following CHIR washout. We next sought to determine what cell state variables might
499 contribute to this difference. Are there hidden variables in a cell's state that might already predict
500 Wnt persistence and thus A-P position even before CHIR addition at 48 h post-seeding?

501

502 We hypothesized that pre-existing heterogeneity in other developmental signaling pathway
503 activity could bias cells to respond differently to CHIR stimulation. Indeed, Wnt signaling is
504 only one component of a broader signaling network that organizes anterior-posterior axis
505 specification during gastrulation *in vivo* (**Figure 6A**). The primitive streak is specified in the
506 posterior domain of the epiblast not only by secretion of Wnt3 from the visceral endoderm, but
507 also by secretion of BMP4 from the extraembryonic ectoderm. Within the nascent primitive
508 streak, its anterior-most compartment (the 'node') is further influenced by Nodal signaling³⁹.
509 Both Nodal and BMP4 are TGF β family ligands, and recent studies in human ES cell cultures
510 indicate that TGF β treatment can influence a cell's response to a subsequent Wnt stimulus⁴⁰. We
511 therefore hypothesized that early cell-to-cell differences in Nodal and/or BMP signaling could
512 serve as sources of heterogeneity to help break symmetry in response to Wnt stimulation.

513

514 To characterize Nodal and BMP signaling dynamics, we engineered clonal cell lines
515 expressing instantaneous reporters of Wnt activity ($P_{TCF/LEF}$ -GFP-PEST) and an additional
516 instantaneous reporter of either Nodal activity (P_{AR8} -mCherry-PEST) or BMP activity (P_{IBRE4} -
517 mCherry-PEST) at distinct loci using separate piggyBac transformations. An additional
518 constitutive marker (P_{CMV} -TagBFP) marked overall gastruloid morphology. At t=48 h (i.e. just

519 prior to CHIR application), we observed spontaneous activity in both pathways (**Figure 6B**;
520 **Figure S6A-B**). Whereas BMP-active cells were dispersed throughout the gastruloid cross-
521 section, Nodal activity appeared to be predominantly localized to a single domain. At 72 h post-
522 seeding, immediately following CHIR stimulation, Nodal activity still showed a localized spatial
523 pattern but with diminished amplitude (**Figure S6A**); conversely, BMP activity was elevated
524 throughout the gastruloid at 72 h (**Figure S6B**). Finally, by 96 h post-seeding, both Nodal and
525 BMP activity were reduced to uniform low levels (**Figure S6A-B**). These measurements
526 demonstrate that although Wnt signaling evolves from an initially uniform state in our gastruloid
527 protocol, the Nodal and BMP pathways also exhibit early signaling dynamics and cell-to-cell
528 variability. Interestingly, this heterogeneity resolves to a uniform Nodal/BMP-off state by the
529 time that Wnt signaling becomes spatially organized.

530

531 To understand whether the early heterogeneity in Nodal/BMP signaling might carry
532 information about cells' future A-P position, we prepared gastruloids from both Nodal- and
533 BMP-Recorder cell lines, recorded signaling activity with a 3 h pulse of doxycycline from 45–48
534 h, and imaged the final recordings in elongated gastruloids at 120 h (**Figure 6C**). Mapping the
535 positional distribution of GFP-labeled cells indeed revealed that the descendants of early Nodal-
536 high and BMP-high cells indeed occupied specific positions along the A-P axis (**Figure 6D-E**).
537 Cells labeled based on their Nodal activity were enriched in the anterior compartment of the final
538 gastruloid; conversely, cells labeled with a BMP recording during the same window mapped
539 onto the posterior domain. Remarkably, these opposing distributions of signaling-active cells
540 from the two pathways suggest that gastruloids recapitulate the opposing Nodal/BMP patterning
541 system found *in vivo*, despite lacking spatial pre-patterns of either signal from extraembryonic

542 tissues. We performed additional Nodal/BMP labeling experiments at later times (**Figure S6C**),
543 revealing that later BMP signaling continued to be associated with posterior signaling over time
544 whereas Nodal signaling shifted to mark medial positions. In both cases, GFP labeling was lost
545 as both pathways became inactive by 84-96 h.

546

547 Our data indicates that posterior positions in a final, elongated gastruloid are enriched for
548 cells with high BMP signaling and low Nodal signaling at 48 h, as well as high cumulative Wnt
549 signaling from 96 h onward. We next hypothesized that there might be a causal link between
550 these sequential signaling states – that is, early differences in Nodal/BMP signaling might
551 produce subsequent differences in Wnt signaling. To test this hypothesis, we established
552 sequential stimulation protocols to first activate Nodal/BMP signaling and then monitor
553 subsequent changes in Wnt pathway activity. We first grew gastruloids from Wnt-recorder cells
554 that also expressed the instantaneous Wnt reporter, treated them with recombinant Activin A (a
555 Nodal analog) or BMP4 from 24-72 h post-seeding, and measured their Wnt pathway
556 transcriptional activity by flow cytometry at 72 and 96 h (**Figure 6F**). We found that cells' initial
557 Wnt response to CHIR stimulation was unaffected by Nodal/BMP pre-stimulation, with both
558 treatment conditions still showing high, uniform Wnt responses at 72 h (**Figure S6E-F**).
559 However, the duration of Wnt signaling following CHIR washout was sensitive to cells' prior
560 Nodal signaling state: Activin A pretreatment produced a consistent and dose-dependent change
561 in Wnt signaling levels at 96 h, with a larger fraction of Wnt-off cells at increasing Activin A
562 doses (**Figure 6G-H**). In contrast, BMP pretreatment exerted a more ambiguous effect. In
563 gastruloids, BMP pretreatment partially reduced the magnitude of Wnt signaling in all cells but
564 did not produce a bimodal response of distinct Wnt-on and Wnt-off subpopulations (**Figure**

565 **S6F**). Subsequent experiments in cultured mESCs revealed that BMP could either potentiate or
566 inhibit Wnt activity in a complex, dose- and time-dependent manner (**Figure S6G**), consistent
567 with recent data from human ESCs⁴¹. Based on these data, we concluded that cells with high
568 early Nodal signaling experience a more rapid loss in Wnt activity after CHIR washout. This
569 ordered progression of cell signaling also matches the spontaneous activity in both pathways in
570 gastruloids, with heterogeneous early Nodal activity followed by bimodal Wnt populations that
571 sort to distinct anterior and posterior domains.

572

573 We reasoned that if Nodal activity decreased the probability of cells retaining a Wnt-high
574 state, then gastruloids pretreated with increasing doses of Nodal should have fewer Wnt-high
575 cells, resulting in a smaller posterior domain of Wnt activity. To test this prediction, we again
576 pre-treated gastruloids with variable amounts of Activin A from 24-72 h, but this time we
577 recorded Wnt activity at $t_{\text{dox}} = 96$ h and traced the fates of Wnt-labeled cells until $t_f = 120$ h.
578 Gastruloids grown without Activin A pretreatment continued to form a small anterior domain
579 from which Wnt recording at 96 h was excluded (**Figure 6I**, left), matching with our previous
580 results (**Figure 3B-C**; **Figure 4B**). Consistent with our prediction, pretreatment with increasing
581 doses of the Nodal analog Activin A altered these proportions to produce gastruloids with
582 smaller Wnt-high posterior domains (**Figure 6I-J**). These data demonstrate a causal effect of
583 Nodal pretreatment on the balance of anterior and posterior fates in the developing gastruloid.

584

585 Taken together, our experiments reveal an ordered sequence of signaling events that are
586 associated with gastruloid symmetry breaking. Cell-to-cell differences in Nodal and BMP
587 activity are already present in early mESC cell spheroids by 48 h post-seeding, prior to the CHIR

588 pulse that initiates symmetry breaking and polarization through the Wnt pathway. These early
589 signaling events go on to alter cells' Wnt activity at 96 h, a time point where Nodal and BMP
590 activity are no longer present, and alter the balance of anterior and posterior positional identity in
591 the resulting gastruloid. In the vertebrate embryo, spatial pre-patterning of Nodal and BMP is
592 used to define the coordinate system for gastrulation and axis formation. Our data reveals that
593 gastruloids can use the same signaling network for polarization without an extraembryonic
594 prepattern, suggesting that the same signaling network also possesses the capacity for self-
595 organization of an anterior-posterior axis.

596

597 **Discussion**

598 During embryonic development, a complex body plan emerges from comparatively simple
599 initial conditions. Understanding how early cell signaling dynamics encode this complexity is a
600 fundamental question in developmental biology. Programs of morphogenesis are frequently
601 guided by spatially localized cues (e.g., from extra-embryonic tissues) which define patterned
602 signaling domains. The case of the gastruloid offers a remarkable counter-example: mouse
603 embryonic stem cells can self-organize a body axis *in vitro* even without any exogenous
604 patterning cues. How do differences in cellular states break symmetry to define future
605 differences in cells' final positions or gene expression patterns?

606

607 Here we trace the signaling histories of mouse stem cells to explore how early heterogeneity
608 in signaling pathway activity predicts future spatial patterning of the gastruloid body axis, an
609 experimentally tractable *in vitro* model of developmental symmetry breaking. Our approach
610 hinges on precise measurements of two kinds of information: (1) observing instantaneous

611 patterns of signaling activity, and (2) making “recordings” of prior signaling activity at specific
612 times to observe cells’ eventual position conditioned on their earlier activity states (i.e., ‘fate
613 information’). We identify a set of gastruloid culture conditions under which we observe the
614 onset of symmetry breaking in the Wnt signaling pathway, which progresses from an initial
615 uniform state to intermixed domains of cells with either high or low Wnt activity. Synthetic Wnt-
616 Recorder gene circuits reveal that this transition to bi-modality is accompanied by the emergence
617 of fate information in Wnt signaling, such that cells’ Wnt signaling states at this time predict
618 their future organization along the anterior-posterior axis. Only cells that have entered the Wnt-
619 low state go on to form the gastruloid’s anterior domain and contribute to endoderm and
620 endothelial fates, whereas Wnt-high cells occupy posterior positions and populate mesodermal
621 and ectodermal lineages. We further show that the emergence of heterogeneity in Wnt signaling
622 is influenced by prior heterogeneity in TGF β signaling (e.g., Nodal and BMP pathway activity).
623

624 Our data suggests that an ordered sequence of signaling and cell rearrangement events drive
625 gastruloid symmetry breaking (**Figure 7**). Pre-existing heterogeneity in spontaneous Nodal/BMP
626 signaling is already present in spheroids of mouse embryonic stem cells, possibly due to
627 stochastic gene expression or culture geometry (e.g. whether cells occupy exterior or interior
628 positions in colonies). These pre-existing differences alter the duration of Wnt signaling
629 following the application of a uniform CHIR pulse. The resulting Wnt-high and Wnt-low
630 subpopulations express different adhesion molecules which may facilitate their spatial sorting
631 into anterior and posterior domains, where they go on to assume distinct cell fates. Once the
632 sorting process resolves in a single pole of Wnt activity, gastruloids can begin axial elongation
633 through asymmetric expression of additional inductive cues such as FGF^{17,21}.

634

635 How does this self-organizing model of axial morphogenesis relate to the program executed
636 by the embryo? While the signaling pathways involved (Nodal, BMP and Wnt) appear to be
637 largely conserved, their geometric organization is clearly different. In the mouse embryo, extra-
638 embryonic sources of signaling ligands and inhibitors define separate anterior and posterior
639 signaling compartments³⁹. Studies in the zebrafish embryo have shown that spatially restricted
640 sources of Nodal and BMP are sufficient to induce a complete secondary anterior-posterior axis⁶.
641 Our results suggest that exogenous initial patterning of signaling domains is not strictly required
642 to organize axial morphogenesis. The cell sorting dynamics we observe during gastruloid
643 symmetry-breaking may represent a back-up or supplementary program which can refine cellular
644 positions downstream of signaling gradients^{8,42}. Alternatively, it may play the role of an
645 amplifier *in vivo* by converting weak initial asymmetries into persistent, all-or-none responses at
646 the level of Wnt signaling activity, transcriptional identity, and cell position. Future studies
647 examining the correspondence between gastruloid development and specific cell and tissue
648 transformations in the embryo will be essential for further establishing the correct biological
649 interpretation of gastruloid self-organization.

650

651 Our model also includes a potentially surprising role for Nodal signaling compared to prior
652 studies in two-dimensional stem cell models. Whereas previous models suggest that it could
653 either be a facilitator of Wnt signaling⁴⁰, or a downstream effector with a BMP → Wnt → Nodal
654 signaling hierarchy⁴³, we find that spontaneous Nodal signaling can act upstream of Wnt to
655 decrease the duration of stimulus response. While this regulatory role is not anticipated by the
656 aforementioned models of Wnt and Nodal signaling, it is consistent with the Nodal's role as a

657 morphogen in the mouse embryo. By limiting Wnt activity, Nodal signaling patterns the anterior
658 compartment of the gastruloid, just as it labels the anterior-most compartment of the primitive
659 streak (i.e., the node)^{39,44}.

660

661 We emphasize that many components of our proposed model still await detailed
662 investigation. For example, it is unknown how the initial heterogeneity in Nodal and BMP
663 signaling activity is established; both stochastic gene expression and mechanical boundary
664 conditions may play a role in setting up this heterogeneity. Many molecular connections also
665 remain to be elucidated, such as the mechanistic relationship between prior TGF β signaling and
666 the duration of Wnt signaling after CHIR removal; to what extent specific adhesion molecules
667 contribute to cell sorting; and to what extent cell movements are coordinated by long-range
668 intracellular signals (e.g. Wnt inhibitors)²¹. Also, while Wnt signaling at 96 h is predictive of
669 future cell positions and fates within the gastruloid, it is also possible that information is also
670 specified by cells' transcriptional states independently of Wnt. The relative contribution of Wnt-
671 dependent and Wnt-independent information remains to be investigated.

672

673 Finally, we note that our study describes symmetry breaking in just one context – gastruloids
674 prepared using culture conditions that initially exhibit homogeneous Wnt activity, and which
675 recapitulate a posterior-biased (node-to-tail) portion of the mouse embryo's A-P axis. Other
676 routes to symmetry breaking may be observed in other contexts. For example, a recent study
677 reported differences in Wnt activity between inner and outer cells in the gastruloid even during
678 the CHIR pulse¹⁶, suggesting that Wnt symmetry-breaking has already occurred under those
679 conditions. It may also be the case that the molecular logic of axial self-organization differs in

680 more anterior compartments⁴⁵ or in other model organisms^{46,47}. Addressing the processes at work
681 in different cellular contexts will be essential to form a complete description of the molecular
682 and physical processes underlying vertebrate axial polarization.

683

684 Through this work, we have deployed synthetic gene circuits to define the consequential
685 signaling events for cells' subsequent fates and positions. We demonstrated that three such
686 circuits – Wnt-, Nodal-, and BMP-Recorder – are orthogonal to one another, capture information
687 with time resolution < 6 h, and permit long-term tracing of subsequent cell populations by
688 imaging and single-cell RNA sequencing. However, these signal-recording circuits are by no
689 means the most sophisticated designs one may envision. A broad range of DNA-based signal
690 recorders have been developed that encode signaling information as CRISPR-induced mutations
691 or recombinase-encoded outcomes^{48–50}. While the recombinase circuits implemented here
692 sacrifice information bandwidth (each cell only implements two fluorescent states, for a total of
693 one 1 bit of information), they excel in recording efficiency (nearly 100% of cells labeled during
694 a 3 h recording) and temporal resolution (labeling in as little as 1 h). In the context of the
695 gastruloid, additional information could also be gained by seeding mosaic gastruloids from
696 multiple mESC lines that each contain a different recording circuit⁵¹. Pairs of split recombinases
697 could also be used to realize complex logic or multiplexed recordings within single cells⁵².
698 Eventually, optimized CRISPR-based recorders may enable high-bandwidth recording of a great
699 many morphogen signals in parallel. We anticipate that molecular signal recording will represent
700 a powerful strategy to decipher principles of biological self-organization.

701

702 **Methods**

703 **Plasmids and cloning**

704 Linear DNA fragments were amplified via PCR using CloneAmp HiFi PCR premix (Takara
705 Bio, 639298). PCR products were cut from agarose gels and purified using the Nucleospin gel
706 purification kit (Takara Bio, 240609). Plasmids were assembled from linear fragments using In-
707 Fusion HD (Takara Bio, 638910) and amplified in Stellar chemically competent *E. coli* (Takara
708 Bio, 636763) via ampicillin-resistant selection. Plasmid DNA was extracted by miniprep
709 (Qiagen, 27104). All plasmid verification was performed by Sanger sequencing (Azenta) or
710 nanopore sequencing (Plasmidsaurus).

711

712 Expression vectors were cloned into a piggyBac vector plasmid containing 5' and 3' flanking
713 repeats to facilitate PBase insertion²⁸. Plasmids encoding Cre recombinase, the 'stoplight'
714 recording locus, and the Wnt-sensitive TOPFlash enhancer (P_{TCF/LEF}) were purchased from
715 Addgene (#89573, # 62732, and #12456, respectively). Sentinel enhancers responding to
716 transcriptional output from Activin/Nodal (P_{AR8}) and BMP (P_{IBRE4}) were subcloned from AR8-
717 Cerulean and IBRE4-Cerulean constructs generously shared by Kenneth Zaret. Plasmids
718 generally contained a constitutively expressed fluorescent protein to serve as a selection marker
719 during cell line generation.

720

721 **Cell culture**

722 All reported experiments were performed using cell lines derived from E14tg2a mouse
723 embryonic stem cells (ATCC CRL-1821). E14tg2a was first thawed and plated on mitotically
724 inactivated feeder cells (Millipore Sigma PMEF-DR4-M) in basal growth media comprising
725 GMEM (Millipore Sigma, G6148) supplemented with 10% ESC qualified fetal bovine serum

726 (R&D Systems, S10250), 1x GlutaMAX (Gibco, 35050-061), 1x MEM non-essential amino
727 acids (Gibco, 11140- 470 050), 1 mM sodium pyruvate (Gibco, 11360-070), 100 μ M 2-
728 mercaptoethanol (Gibco, 471 21985-023), and 100 units/mL penicillin/streptomycin (Gibco,
729 15140-122). After reconstitution, E14tg2a cells were trypsinized and passaged onto a 25 cm²
730 tissue culture flask coated with 0.1% gelatin and grown ‘2i + LIF’ media comprising basal
731 growth media further supplemented with 1000 units/mL LIF (Millipore 473 Sigma, ESG1107), 2
732 μ M PD0325901 (Tocris, 4192), and 3 μ M CHIR99021 (Tocris, 4423).

733

734 Propagation of cell lines was thereafter performed in 2i + LIF media on gelatin-coated tissue
735 culture plastic unless otherwise noted. Cells were maintained between 20% and 75% confluence.
736 Passaging was performed by aspirating remaining growth media, washing in phosphate buffered
737 saline (Gibco, 14190144), and trypsinizing for 5 minutes at 37 C (TrypLE Express, Gibco,
738 12605028). Trypsin was quenched with 2i + LIF media, and cells were then pelleted by
739 centrifugation at 135 rcf for 5 minutes. Residual trypsin and media were then aspirated and
740 replaced with fresh media prior to replating in a fresh tissue culture vessel. Passage ratios varied
741 from 1:5 to 1:10.

742

743 **Cell line generation**

744 Engineered mESC lines were generated using the piggyBac random integration system. A
745 chassis cell line was first grown to low-to-mid confluence (30-50%) in a 35 mm dish in 2i + LIF
746 media. Transfection mixtures were prepared in 250 μ L Gibco OptiMEM (Fisher Scientific 31-
747 985-070) and further comprised 5 μ L Lipofectamine STEM transfection reagent (ThermoFisher
748 STEM00001), 2080 ng vector plasmid, and 420 ng PBase ‘helper’ plasmid (System

749 Biosciences). After preparation, transfection mixtures were equilibrated at room temperature for
750 30 minutes. Immediately preceding transfection, chassis cell cultures were then given fresh 2i +
751 LIF media. Transfection mixture was then added dropwise to chassis cells, and gently mixed via
752 rocking.

753

754 Cultures were propagated for at least 4 days following transfection, by which vector
755 expression is predominantly driven by genomically-integrated constructs. Cells were then
756 trypsinized into a single-cell suspension for fluorescently activated cell sorting (Sony SH800).

757 Cytometry events were first sorted for single cells based on scattering profiles, and then
758 transformed cells were identified via fluorescent signals. Candidate clonal cultures were
759 generated by sorting single cells into separate wells of a 96-well plate. Following sorting,
760 colonies remained unperturbed for 7-10 days, after which they were assessed via microscopy to
761 identify promising candidates via fluorescent intensity and colony morphology (i.e. preferring
762 round colonies with smooth boundaries). Candidate clonal colonies were then identified and
763 supplemented with an additional 150 μ L of 2i + LIF media, and fed every other day until 14 days
764 post-seeding. At 14 days, promising clones were trypsinized and passaged onto a 12-well plate.
765 Lines which remained viable were then further expanded and functionally assessed.

766

767 **Signal recording benchmarking**

768 Signal recording cell lines were benchmarked in adherent cultures grown on gelatin-coated
769 tissue culture plastic. Minimum recording window measurements (**Figure 2C**) and doxycycline
770 concentration calibration (**Figure S2A**) were performed in steady-state 2i + LIF media. All other
771 measurements were performed in N2B27 basal media, supplemented with doxycycline, CHIR, or

772 recombinant morphogen proteins according to the experimental condition. Media was exchanged
773 to fresh N2B27 at least 24 h prior to recording experiments to allow cells to equilibrate to basal
774 media conditions. For Wnt recorder fidelity testing (**Figure 2C**), Wnt dose response (**Figure**
775 **S2B**), and morphogen crosstalk experiments (**Figure 2E**), morphogen signals were added to
776 media simultaneously with the onset of the doxycycline recording window, and then washed out
777 following cessation of the doxycycline recording window. Cells were expanded for at least 24 h
778 following cessation of doxycycline treatment and then assayed via flow cytometry.

779

780 **Gastruloid protocol**

781 Gastruloids were grown in N2B27 media comprising 1:1 mixture of DMEM/F-12 (Gibco,
782 11320033) and neurobasal medium (Gibco, 21103049), supplemented with 100 µM 2-
783 mercaptoethanol, 1:100 N-2 (Gibco, 17502048), 1:50 B-27 (Gibco, 17504044), and 100
784 units/mL penicillin/streptomycin (Gibco, 15140-122). Seed cultures were maintained in 2i + LIF
785 media prior to gastruloid formation to minimize pre-existing heterogeneity in early stage
786 gastruloids which may bias symmetry breaking. For ‘LIF only’ preculture gastruloids, cells were
787 transferred from 2i LIF media to media without either PD0325901 or CHIR99021 for 6 days (2
788 passages) prior to gastruloid formation.

789

790 To form gastruloids, seed cultures were trypsinized, pelleted, and then washed twice with
791 phosphate-buffered saline (separated by additional 5 minute centrifugations at 135 rcf) to remove
792 residual CHIR 99021. Following the second PBS wash, cells were resuspended in N2B27 media
793 and transferred to the cell sorter for fluorescence-activated cell sorting. Sorting events were gated
794 for single cells based on scattering profiles. For signal recording gastruloids, cells were further

795 gated against GFP expression to avoid contamination from the small fraction of cells (~0.1%)
796 which had already excised DsRed. To form gastruloids, 200 single cells were sorted into each of
797 the 60 central wells of a 96-well round-bottom ultra-low attachment microplates (Corning,
798 7007). Central wells were pre-filled with 40 μ L of N2B27 to receive cells. To minimize the
799 effects of evaporation at the edges of the plate, the perimeter wells were filled with 150 μ L PBS
800 supplemented with 1000 units/mL penicillin/streptomycin.

801

802 Following seeding, gastruloids were transferred to a cell culture incubator and left
803 unperturbed for 48 h unless otherwise noted. At $t = 48$ h, gastruloids were fed with 150 μ L of
804 N2B27 media further supplemented with 3 μ M CHIR to stimulate Wnt activity. At $t = 72$ hours,
805 150 μ L of CHIR-containing media was removed from gastruloid wells, and then the gastruloids
806 were fed with 150 μ L of fresh N2B27 media without CHIR. A similar feeding (150 μ L media
807 remoed, 150 μ L fresh N2B27 added) was performed every 24 hours for the remained of
808 gastruloid morphogenesis. Signal recording during gastruloid morphogenesis was performed via
809 the transient addition of 150 μ L media supplemented with 100 ng/mL doxycycline. Recording
810 windows were either 90 min (for Wnt recording) or 3 h (for BMP and Nodal). Doxycycline was
811 washed out with two successively 150 μ L media changes, leading to a total dilution of
812 approximately 1:20 (sufficient to bring the doxycycline concentraton below the recording threshold
813 defined in **Figure S2A**).

814

815 Gastruloids were assayed either by imaging or by flow cytometry. To prepare samples for
816 imaging, gastruloids were fixed for 2 h in 4% PFA at 4 °C on a nutator. Samples were then
817 washed twice in PBS to remove PFA, and either transferred for immunofluorescence labeling or

818 immediately transferred to a glass-bottom 96 well plate for imaging. To assess gastruloids via
819 flow cytometry, gastruloids were first pooled into a 1.5 mL Eppendorf tube, centrifuged (500
820 rcf, 3 min), washed in PBS, and then trypsinized in 100 μ L of TrypLE Express at 37 °C.
821 Gastruloids were trypsinized for 3 minutes, retrieved and triturated to dislodge gastruloids, and
822 returned to 37 for an additional 3 minutes to complete digestion. Trypsinization was then
823 quenched with 300 μ L of N2B27, after which samples were immediately assayed via flow
824 cytometry.

825

826 **Immunofluorescence**

827 Gastruloid staining was performed according to previously reported protocols¹⁷. Briefly,
828 cohorts of PFA fixed gastruloids were pooled into single wells of ultra low-attachment 96 well
829 plates and washed twice with PBS to remove any residual PBS. All buffer exchanges were
830 performed under a dissection microscope to maximize buffer turnover while minimizing sample
831 loss due to accidental aspiration. Gastruloids were permeabilized overnight at 4 °C with nutation
832 in PBSFT buffer (89.8% phosphate buffered saline, 10% fetal bovine serum, and 0.2% Triton X-
833 100). PBSFT was then removed and exchanged for PBSFT containing dilutions of primary
834 antibodies against targets of interest. Primary dilutions used were: 1:200 for rabbit anti-Pcdh19
835 (abcam ab191198); 1:100 for rabbit anti-Aldh1a2 (abcam ab156019); and 1:200 for rabbit anti-
836 Cdh1 (Cell Signaling Technology 3195T). Primary antibody incubation was performed overnight
837 at 4 °C with nutation. Following primary incubations, samples were treated with PBSFT for three
838 consecutive washes. Additional 3x serial wash sequences were performed two additional times,
839 with 1 hour of nutation spacing each wash sequence, for 9 total washes. Samples were then
840 incubated with fluorescently conjugated secondary antibodies (Goat anti-rabbit Alexa Fluor 647

841 conjugate, Invitrogen A27040) diluted 1:500 in PBSFT overnight at 4 °C with nutation.
842 Following secondary antibody incubation, samples were again washed nine times following the
843 same protocol described above. Samples were then transferred to a glass bottom 96-well plate for
844 imaging (Cellvis P96-1.5H-N).

845

846 **Image processing and quantification**

847 All imaging data reported were acquired on a Nikon Eclipse Ti confocal microscope with a
848 600 Prior linear motorized stage, a Yokogawa CSU-X1 spinning disk, an Agilent laser line
849 module 601 containing 405, 488, 561 and 650nm lasers, and an iXon DU897 EMCCD camera.
850 Images were acquired as three-dimensional hyperstacks using Nikon elements and converted to
851 maximum intensity projections in ImageJ. For low-signal regimes ($P_{TCF/LEF}$ -GFP live imaging,
852 late stage gastruloid $P_{TCF/LEF}$ -iRFP patterns) median filtering was performed (2 to 5 pixel kernel)
853 to denoise and improve contrast. Near-infrared images were further background subtracted to
854 correct for a heterogeneous background field using a sample-free background image.

855

856 Quantification was performed using custom software in MATLAB. Briefly, maximum
857 intensity projections were normalized on a [0,1] interval by first subtracting background
858 fluorescence and then dividing by the 99th percentile pixel value, each on a channel-by-channel
859 basis. For sparse images (e.g. sparse GFP labeling), the maximum pixel percentile was increased
860 to avoid over-amplification. Gastruloid segmentation was performed on a morphological image
861 generated by adding 488 nm and 561 nm excitation channel images (to account for total recorder
862 locus signal). Morphological images were binarized; manually trimmed to separate neighboring
863 gastruloids from co-segmenting; and then dilated, eroded, and filled to smoothen boundaries.

864 Individual gastruloids were linearized by first skeletonizing with the MATLAB bwskele()
865 function (MinBranchLength = 200). The resultant anterior-posterior axis trace was clipped if
866 necessary (to avoid over-fitting on boundary artifacts), and manually extended to the anterior and
867 posterior poles to create a curvilinear axis. The posterior pole of the axis was manually identified
868 based on gastruloid morphology and/or Wnt signaling activity, and the curvilinear axis was
869 assigned units of distance based on geodesic distance from the anterior pole computed by
870 bwdistgeodesic(). Pixels contained within a gastruloid segment were assigned an axial coordinate
871 based on the geodesic distance of the closest curvilinear axis point, and then binned over
872 intervals of $dL = 10$ microns. One-dimensional fluorescence profiles were computed by
873 averaging values within all gastruloid pixels corresponding to a single axial distance bin.

874

875 For Wnt recording quantification, fractional labeling profiles are reported as the ratio of the
876 average normalized GFP fluorescence to the sum of the average normalized GFP and average
877 normalized DsRed fluorescence. To average profiles over experimental replicates, profiles were
878 first rescaled onto a unit anterior-posterior axis $x/L = [0,1]$ with bins corresponding to 1% of the
879 overall axis length using linear interpolation. For each experimental condition, both mean values
880 and standard deviations were computed for each axial position. To compute the integrated Wnt
881 signaling activity:

$$882 \quad I(x) = \int_{t_0}^{t_f} W(x, t') dt'$$

883 (**Figure 3F**), fractional labeling profiles were first individually normalized to unit integral over
884 the A-P axis and then added from $t_{\text{dox}} = 96$ h to $t_{\text{dox}} = 120$ h. An additional profile from $t_f = 134$ h
885 was extracted from final P_{TCF/LEF}-iRFP fluorescence and similarly normalized to unit integral
886 along the A-P axis, and then added to the total integral $I(x)$ to capture the final signaling profile.

887

888 Spatial profiles of Wnt signaling in early gastruloids (**Figure S1F**) were quantified to assess
889 relative heterogeneity and polarization (**Figure 1G**). Gastruloids were first normalized and
890 segmented as described above. Images were then further denoised using a median filter (14 um x
891 14 um kernel) to remove high spatial frequency noise. Relative heterogeneity was determined by
892 computing the standard deviation of pixel intensities within a segmented gastruloid area.
893 Relative polarization was computed according to

894
$$P = \frac{COM_{Wnt} - COM_{morph}}{r_a}$$

895 Where COM_{morph} is the morphological center of mass (determined by EF1a-DsRed
896 fluorescence) and COM_{Wnt} is the center of mass of the Wnt activity pattern, and r_a is the
897 morphological semimajor axis length.

898

899 **Live Imaging**

900 Gastruloids were immobilized for live imaging via Matrigel embedding. To prepare Matrigel
901 matrix (Corning #356231), frozen aliquots were thawed overnight at 4 °C. Glass-bottom 35 mm
902 dishes (Cellvis D35-20-1.5-N) and pipette tips were chilled to temperature controlled cold room
903 at 4 C, and the central imaging well was then coated with Matrigel reagent. The Matrigel-coated
904 dish was then transferred to a metal surface on ice to prevent gelling. Gastruloids were then
905 collected and dispersed into cooled Matrigel while maintaining minimal media carryover
906 (roughly 10 µL volume). Approximately 6 to 12 gastruloids were embedded per experiment.
907 Gastruloids were manually separated via pipette manipulation to ensure even spacing, and then
908 transferred to 37 °C for 10 minutes to solidify the Matrigel matrix. 2 mL of prewarmed N2B27
909 medium was then added to the glass-bottom dish. The sample was then transferred to a

910 microscope-mounted environmental chamber (Okolab) to maintain appropriate temperature,
911 humidity, and CO₂ during imaging. Samples were imaged using a Nikon Eclipse Ti confocal
912 microscope. Movies were collected over 24 to 30 h time periods, with frames acquired once
913 every 10 minutes. Individual frames were acquired at 4 z-planes. Images were median filtered to
914 denoise and maximum-intensity projected to generate final movies.

915

916 **Single cell RNA sequencing**

917 To prepare gastruloids for single cell sequencing, samples were first pooled into a 1.5 mL
918 Eppendorf tube. At least 50 gastruloids were pooled for each experimental condition. Following
919 pooling, gastruloids were centrifugated (500 rcf for 3 minutes), washed in PBS, re-centrifugated
920 (500 rcf for 3 minutes), and then resuspended in 100 µL trypsin and transferred to 37°C. After 3
921 minutes, the gastruloid-trypsin mixture was retrieved, triturated to dislodge gastruloids, and then
922 returned to 37°C for an additional 3 minutes. Samples were then quenched with 300 µL N2B27
923 media, and immediately transferred to a cell sorter (Sony SH800). For 96-hour gastruloids,
924 cytometer events corresponding to single cells were identified based on light scattering profiles
925 and then recovered into 500 µL of N2B27 media. For 120-hour gastruloids, single cell events
926 were further gated based on GFP fluorescence and recovered into two separate recovery tubes
927 (each containing 500 µL N2B27 media). Recovered cells were immediately centrifugated (500
928 rcf for 5 min), and then resuspended in 50 µL of PBS. A 10 µL fraction was then stained for
929 dead cells with trypan blue and automatically counted (Invitrogen Countess) to assess density
930 and viability of recovered cells. Samples were then diluted to a target cell density of 1000
931 cells/µL. Both 96-hour and 120-hour samples maintained over 80% cell viability by this step.

932

933 Following dilution in PBS, cells were kept on ice and transferred to a Chromium Controller
934 (10x Genomics) to generate gel-in-bead emulsions (GEM) for single cell RNA labeling.
935 Microfluidic chip lanes (Chip K, 10x Genomics) were loaded to a target recovery of 5000
936 cells/lane. We used the Single Cell 5' v2 Reagent Kit (10x Genomics) to enable optional direct
937 capture of non-polyadenylated mRNAs from synthetic reporter genes. Following GEM
938 formation, the RT reaction was performed with mastermix supplemented with direct capture
939 primer targeting iRFP (5 pmol per sample lane):

940 5'- AAGCAGTGGTATCAACGCAGAGTACCTCTTCCATCACGCCGATCTG – 3'

941
942 Gene expression (GEx) libraries were then generated from sample cDNA according to
943 manufacturer protocol. Briefly, cDNA samples were fragmented and selected for a target size via
944 double-sized magnetic bead selection (Beckman-Coulter SPRIselect). Samples were then ligated
945 with adaptor oligos and PCR-amplified with dual library indices for sample demultiplexing.
946 Library concentrations were assessed by fluorometry (Qubit) and size distributions were
947 measured with automated electrophoresis (Agilent Bioanalyzer). Samples were pooled to target
948 equal concentration and submitted for pooled sequencing on an Illumina NovaSeq SP 100nt
949 Flowcell v1.5. The library was sequenced to a depth of 47,000 reads/cell.
950

951 **Single cell RNA sequencing data analysis**

952 Raw FastQ files were demultiplexed by Dr. Wei Wang at the Princeton Genomics Core
953 Facility. The Mm10_2020 transcriptome was modified to include BFP, iCre, iRFP , rTTA, and
954 the “Stoplight Recorder” as additional elements for alignment in the analysis pipeline, as per 10x
955 documentation. Demultiplexed files were then individually converted to counts tables using the

956 10x CellRanger 6.0.1 Pipeline per outlined documentation. All jobs were submitted through the
957 Princeton LSI gencomp2 computing cluster.

958

959 Single cell mRNA count matrices were analyzed with the Single cell analysis in Python
960 (Scanpy) toolkit. For 120 h datasets, GFP-positive and GFP-negative libraries were conjoined
961 into a single dataframe retaining conditional labels. Initial filtering was performed to exclude
962 genes detected in fewer than 3 cells, and cells with either fewer than 500 genes or fewer than
963 3000 total assigned reads. Secondary filtering was performed to exclude cells with either greater
964 than 8% counts corresponding to mitochondrial genes or greater than 30% counts corresponding
965 to ribosomal RNA. Counts were then normalized to 10,000 counts/cell, log-transformed,
966 regressed to remove variation contributed by cell cycle-associated genes. Highly variable genes
967 were then normalized to zero mean and unit variance, batch corrected, and decomposed via PCA.
968 A nearest-neighbor graph was computed on the top 40 principal components using a 20-member
969 local neighborhood, and visualized by Uniform Manifold Approximation and Projection
970 (UMAP). Cell types were identified by Leiden clustering (resolution = 0.4 for 96 h data;
971 resolution = 0.6 for 120 h data).

972

973 Leiden clusters were associated with previously annotated reference cell types by comparing
974 differentially expressed marker genes between both datasets. Mean logarithmized expression of
975 genes within each cluster was compared to overall mean via t-test. Candidate marker genes for
976 each cluster were ranked according to test statistics and filtered for p-values < 0.01, and then up
977 to 50 top ranked genes were retained as marker genes for each Leiden cluster. Marker genes
978 were then compared to a reference atlas³² comprising 30 marker genes for previously annotated

979 embryonic cell types to determine overlap of shared markers between Leiden clusters and
980 reference atlas cell types. The statistical likelihoods of observed overlaps were computed by
981 comparing overlap degrees to the binomial probability of drawing the same number of common
982 genes from a random list of all unique atlas marker genes.

983

984 Signal recording fractions within Leiden clusters were calculated by comparing relative
985 distributions of cell types across recording conditions. For each cluster k , we calculated the
986 conditional probability that a cell would occupy cluster k given its recording condition g_{\pm} as:

987

$$P(k|g_{\pm}) = \frac{N(k|g_{\pm})}{\sum_k N(k|g_{\pm})}$$

988 An overall relative labeling statistic for each cluster was then computed by comparing
989 conditional probabilities across recording values:

990

$$f_k = \frac{P(k|g_+)}{P(k|g_+) + P(k|g_-)}$$

991

992 **Author Contributions**

993 Conceptualization, H.M.M., M.M.C., and J.E.T.; Methodology, H.M.M., S.S., M.M.C., and
994 J.E.T.; Investigation, H.M.M.; Funding, H.M.M., J.E.T.; Writing and Editing, H.M.M. and
995 J.E.T.; Supervision, J.E.T., B.A.

996

997 **Acknowledgements**

998 The authors thank all members of the Toettcher lab, particularly Evan Underhill, for
999 insightful comments and suggestions. We also thank Alfonso Martinez-Arias for helpful
1000 discussions and feedback on the manuscript; Ken Zaret for sharing reporter plasmid constructs;

1001 Aaron Lin for advice on single-cell sequencing; and the Lewis Sigler Institute Genomics Core
1002 Facility team for technical support (Wei Wang, Jennifer Miller, and Jean Arly Volmar). This
1003 work was supported by Lewis Sigler Scholars program and the NSF Center for the Physics of
1004 Biological Function PHY1734030 (H.M.M.); NIH grant T32GM007388 (S.C.S.); NSF
1005 RECODE grant 2134935, NIH grant U01DK127429, and a Vallee Scholars award (J.E.T.).

1006

1007 **Competing Interests**

1008 J.E.T. is a scientific advisor for Prolific Machines and Nereid Therapeutics. B.A. is an
1009 advisory board member for Arbor Biotechnologies and Tessera Therapeutics and holds equity in
1010 Celsius Therapeutics. H.M.M. is a cofounder and scientific advisor for C16 Biosciences. The
1011 remaining authors declare no conflicts of interest.

1012

1013 References

1014 1. Spemann, H., and Mangold, H. (1924). über Induktion von Embryonalanlagen durch
1015 Implantation artfremder Organisatoren. *Archiv f mikr Anat u Entwicklungsmechanik* *100*, 599–
1016 638. 10.1007/BF02108133.

1017 2. Fauny, J.-D., Thisse, B., and Thisse, C. (2009). The entire zebrafish blastula-gastrula
1018 margin acts as an organizer dependent on the ratio of Nodal to BMP activity. *Development* *136*,
1019 3811–3819. 10.1242/dev.039693.

1020 3. Turing, A.M. (1952). The Chemical Basis of Morphogenesis. *Philosophical Transactions*
1021 of the Royal Society of London. Series B, *Biological Sciences* *237*, 37–72.

1022 4. Kondo, S., and Miura, T. (2010). Reaction-Diffusion Model as a Framework for
1023 Understanding Biological Pattern Formation. *Science* *329*, 1616–1620. 10/bhd5cf.

1024 5. Muller, P., Rogers, K.W., Jordan, B.M., Lee, J.S., Robson, D., Ramanathan, S., and
1025 Schier, A.F. (2012). Differential Diffusivity of Nodal and Lefty Underlies a Reaction-Diffusion
1026 Patterning System. *Science* *336*, 721–724. 10.1126/science.1221920.

1027 6. Xu, P.-F., Houssin, N., Ferri-Lagneau, K.F., Thisse, B., and Thisse, C. (2014).
1028 Construction of a Vertebrate Embryo from Two Opposing Morphogen Gradients. *Science* *344*,
1029 87–89. 10.1126/science.1248252.

1030 7. Toda, S., Blauch, L.R., Tang, S.K.Y., Morsut, L., and Lim, W.A. (2018). Programming
1031 self-organizing multicellular structures with synthetic cell-cell signaling. *Science* *361*, 156–162.
1032 10.1126/science.aat0271.

1033 8. Tsai, T.Y.-C., Sikora, M., Xia, P., Colak-Champollion, T., Knaut, H., Heisenberg, C.-P.,
1034 and Megason, S.G. (2020). An adhesion code ensures robust pattern formation during tissue
1035 morphogenesis. *Science* *370*, 113–116. 10.1126/science.aba6637.

1036 9. Hannezo, E., and Heisenberg, C.-P. (2019). Mechanochemical Feedback Loops in
1037 Development and Disease. *Cell* *178*, 12–25. 10.1016/j.cell.2019.05.052.

1038 10. Turner, D.A., Girgin, M., Alonso-Crisostomo, L., Trivedi, V., Baillie-Johnson, P.,
1039 Glodowski, C.R., Hayward, P.C., Collignon, J., Gustavsen, C., and Serup, P. (2017).
1040 Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of
1041 spatially localised signalling in gastruloids: mammalian embryonic organoids. *Development* *144*,
1042 3894–3906.

1043 11. Beccari, L., Moris, N., Girgin, M., Turner, D.A., Baillie-Johnson, P., Cossy, A.-C.,
1044 Lutolf, M.P., Duboule, D., and Arias, A.M. (2018). Multi-axial self-organization properties of
1045 mouse embryonic stem cells into gastruloids. *Nature* *562*, 272–276. 10.1038/s41586-018-0578-0.

1046 12. van den Brink, S.C., Alemany, A., van Batenburg, V., Moris, N., Blotenburg, M., Vivié,
1047 J., Baillie-Johnson, P., Nichols, J., Sonnen, K.F., Martinez Arias, A., et al. (2020). Single-cell
1048 and spatial transcriptomics reveal somitogenesis in gastruloids. *Nature* *582*, 405–409.
1049 10.1038/s41586-020-2024-3.

1050 13. Sheng, G., Martinez Arias, A., and Sutherland, A. (2021). The primitive streak and
1051 cellular principles of building an amniote body through gastrulation. *Science* *374*, abg1727.
1052 10.1126/science.abg1727.

1053 14. Beddington, R.S. (1994). Induction of a second neural axis by the mouse node.
1054 *Development* *120*, 613–620. 10.1242/dev.120.3.613.

1055 15. Baillie-Johnson, P., Brink, S.C. van den, Balayo, T., Turner, D.A., and Arias, A.M.
1056 (2015). Generation of Aggregates of Mouse Embryonic Stem Cells that Show Symmetry
1057 Breaking, Polarization and Emergent Collective Behaviour In Vitro. *JoVE (Journal of Visualized*
1058 *Experiments*), e53252. 10.3791/53252.

1059 16. Suppinger, S., Zinner, M., Aizarani, N., Lukonin, I., Ortiz, R., Azzi, C., Stadler, M.B.,

1060 Vianello, S., Palla, G., Kohler, H., et al. (2023). Multimodal characterization of murine

1061 gastruloid development. *Cell Stem Cell.* 10.11016/j.stem.2023.04.018.

1062 17. Underhill, E.J., and Toettcher, J.E. (2023). Control of gastruloid patterning and

1063 morphogenesis by the Erk and Akt signaling pathways. *bioRxiv.*

1064 18. Hashmi, A., Tlili, S., Perrin, P., Lowndes, M., Peradziryi, H., Brickman, J.M., Arias,

1065 A.M., and Lenne, P.-F. (2022). Cell-state transitions and collective cell movement generate an

1066 endoderm-like region in gastruloids. *Elife* 11, e59371.

1067 19. Petersen, C.P., and Reddien, P.W. (2009). Wnt Signaling and the Polarity of the Primary

1068 Body Axis. *Cell* 139, 1056–1068. 10.11016/j.cell.2009.11.035.

1069 20. Anlaş, K., Gritti, N., Oriola, D., Arató, K., Nakaki, F., Lim, J.L., Sharpe, J., and Trivedi,

1070 V. (2021). Dynamics of anteroposterior axis establishment in a mammalian embryo-like system.

1071 2021.02.24.432766. 10.1101/2021.02.24.432766.

1072 21. Anand, G.M., Megale, H.C., Murphy, S.H., Weis, T., Lin, Z., He, Y., Wang, X., Liu, J.,

1073 and Ramanathan, S. (2023). Controlling organoid symmetry breaking uncovers an excitable

1074 system underlying human axial elongation. *Cell* 186, 497-512.e23. 10.11016/j.cell.2022.12.043.

1075 22. Liu, P., Wakamiya, M., Shea, M.J., Albrecht, U., Behringer, R.R., and Bradley, A.

1076 (1999). Requirement for Wnt3 in vertebrate axis formation. *Nat Genet* 22, 361–365.

1077 10.1038/11932.

1078 23. Korinek, V., Barker, N., Morin, P.J., van Wichen, D., de Weger, R., Kinzler, K.W.,

1079 Vogelstein, B., and Clevers, H. (1997). Constitutive Transcriptional Activation by a β -Catenin-

1080 Tcf Complex in APC $^{-/-}$ Colon Carcinoma. *Science* 275, 1784–1787.

1081 10.1126/science.275.5307.1784.

1082 24. Ying, Q.L., Wray, J., Nichols, J., Batlle-Morera, L., Doble, B., Woodgett, J., Cohen, P.,
1083 and Smith, A. (2008). The ground state of embryonic stem cell self-renewal. *Nature* *453*, 519–
1084 523. 10.1038/nature06968.

1085 25. Kretzschmar, K., and Watt, F.M. (2012). Lineage Tracing. *Cell* *148*, 33–45.
1086 10.1016/j.cell.2012.01.002.

1087 26. van de Moosdijk, A.A.A., van de Grift, Y.B.C., de Man, S.M.A., Zeeman, A.L., and van
1088 Amerongen, R. (2020). A novel Axin2 knock-in mouse model for visualization and lineage
1089 tracing of WNT/CTNNB1 responsive cells. *Genesis* *58*, e23387. 10.1002/dvg.23387.

1090 27. Reijmers, L.G., Perkins, B.L., Matsuo, N., and Mayford, M. (2007). Localization of a
1091 Stable Neural Correlate of Associative Memory. *Science* *317*, 1230–1233.
1092 10.1126/science.1143839.

1093 28. Yusa, K., Zhou, L., Li, M.A., Bradley, A., and Craig, N.L. (2011). A hyperactive
1094 piggyBac transposase for mammalian applications. *Proc Natl Acad Sci U S A* *108*, 1531–1536.
1095 10.1073/pnas.1008322108.

1096 29. Serup, P., Gustavsen, C., Klein, T., Potter, L.A., Lin, R., Mullapudi, N., Wandzioch, E.,
1097 Hines, A., Davis, A., Bruun, C., et al. (2012). Partial promoter substitutions generating
1098 transcriptional sentinels of diverse signaling pathways in embryonic stem cells and mice. *Disease
1099 Models & Mechanisms* *5*, 956–966. 10.1242/dmm.009696.

1100 30. Das, A.T., Tenenbaum, L., and Berkhout, B. (2016). Tet-On Systems For Doxycycline-
1101 inducible Gene Expression. *Curr Gene Ther* *16*, 156–167.
1102 10.2174/1566523216666160524144041.

1103 31. Yang, Y.S., and Hughes, T.E. (2001). Cre stoplight: a red/green fluorescent reporter of
1104 Cre recombinase expression in living cells. *Biotechniques* *31*, 1036, 1038, 1040–1041.
1105 10.2144/01315st03.

1106 32. Grosswendt, S., Kretzmer, H., Smith, Z.D., Kumar, A.S., Hetzel, S., Wittler, L., Klages,
1107 S., Timmermann, B., Mukherji, S., and Meissner, A. (2020). Epigenetic regulator function
1108 through mouse gastrulation. *Nature* *584*, 102–108. 10.1038/s41586-020-2552-x.

1109 33. van den Brink, S.C., Alemany, A., van Batenburg, V., Moris, N., Blotenburg, M., Vivié,
1110 J., Baillie-Johnson, P., Nichols, J., Sonnen, K.F., Martinez Arias, A., et al. (2020). Single-cell
1111 and spatial transcriptomics reveal somitogenesis in gastruloids. *Nature* *582*, 405–409.
1112 10.1038/s41586-020-2024-3.

1113 34. Niederreither, K., Subbarayan, V., Dollé, P., and Chambon, P. (1999). Embryonic
1114 retinoic acid synthesis is essential for early mouse post-implantation development. *Nat Genet* *21*,
1115 444–448. 10.1038/7788.

1116 35. Yaman, Y.I., and Ramanathan, S. (2023). Controlling human organoid symmetry
1117 breaking reveals signaling gradients drive segmentation clock waves. *Cell* *186*, 513–527.e19.
1118 10.1016/j.cell.2022.12.042.

1119 36. Chal, J., and Pourquié, O. (2017). Making muscle: skeletal myogenesis in vivo and in
1120 vitro. *Development* *144*, 2104–2122. 10.1242/dev.151035.

1121 37. Steinberg, M.S. (1962). On the mechanism of tissue reconstruction by dissociated cells, i.
1122 population kinetics, differential adhesiveness, and the absence of directed migration*.
1123 *Proceedings of the National Academy of Sciences* *48*, 1577–1582. 10.1073/pnas.48.9.1577.

1124 38. Tsai, T.Y.-C., Garner, R.M., and Megason, S.G. (2022). Adhesion-Based Self-
1125 Organization in Tissue Patterning. *Annual Review of Cell and Developmental Biology* *38*, 349–
1126 374. 10.1146/annurev-cellbio-120420-100215.

1127 39. Bardot, E.S., and Hadjantonakis, A.-K. (2020). Mouse gastrulation: coordination of tissue
1128 patterning, specification and diversification of cell fate. *Mech Dev* *163*, 103617.
1129 10.1016/j.mod.2020.103617.

1130 40. Massey, J., Liu, Y., Alvarenga, O., Saez, T., Schmerer, M., and Warmflash, A. (2019).
1131 Synergy with TGF β ligands switches WNT pathway dynamics from transient to sustained during
1132 human pluripotent cell differentiation. *Proc Natl Acad Sci U S A* *116*, 4989–4998.
1133 10.1073/pnas.1815363116.

1134 41. Camacho-Aguilar, E., Yoon, S., Ortiz-Salazar, M.A., and Warmflash, A. (2022).
1135 Combinatorial interpretation of BMP and WNT allows BMP to act as a morphogen in time but
1136 not in concentration. 2022.11.11.516212. 10.1101/2022.11.11.516212.

1137 42. Pinheiro, D., Kardos, R., Hannezo, É., and Heisenberg, C.-P. (2022). Morphogen gradient
1138 orchestrates pattern-preserving tissue morphogenesis via motility-driven unjamming. *Nat. Phys.*
1139 *18*, 1482–1493. 10.1038/s41567-022-01787-6.

1140 43. Chhabra, S., Liu, L., Goh, R., Kong, X., and Warmflash, A. (2019). Dissecting the
1141 dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate
1142 patterning in human gastruloids. *PLOS Biology* *17*, e3000498. 10.1371/journal.pbio.3000498.

1143 44. Conlon, F.L., Lyons, K.M., Takaesu, N., Barth, K.S., Kispert, A., Herrmann, B., and
1144 Robertson, E.J. (1994). A primary requirement for nodal in the formation and maintenance of the
1145 primitive streak in the mouse. *Development* *120*, 1919–1928. 10.1242/dev.120.7.1919.

1146 45. Girgin, M.U., Broguiere, N., Mattolini, L., and Lutolf, M.P. (2021). Gastruloids
1147 generated without exogenous Wnt activation develop anterior neural tissues. *Stem Cell Reports*
1148 16, 1143–1155. 10.1016/j.stemcr.2021.03.017.

1149 46. Cheng, T., Xing, Y.-Y., Liu, C., Li, Y.-F., Huang, Y., Liu, X., Zhang, Y.-J., Zhao, G.-Q.,
1150 Dong, Y., Fu, X.-X., et al. (2023). Nodal coordinates the anterior-posterior patterning of germ
1151 layers and induces head formation in zebrafish explants. *Cell Rep* 42, 112351.
1152 10.1016/j.celrep.2023.112351.

1153 47. Fulton, T., Trivedi, V., Attardi, A., Anlas, K., Dingare, C., Arias, A.M., and Steventon,
1154 B. (2020). Axis Specification in Zebrafish Is Robust to Cell Mixing and Reveals a Regulation of
1155 Pattern Formation by Morphogenesis. *Curr Biol* 30, 2984-2994.e3. 10.1016/j.cub.2020.05.048.

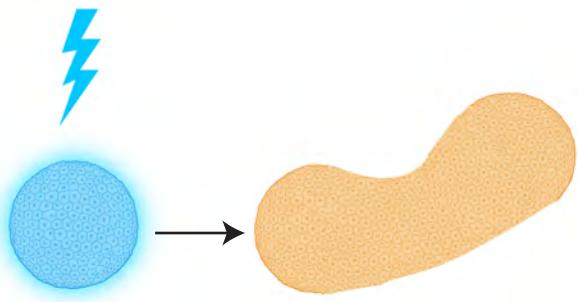
1156 48. Choi, J., Chen, W., Minkina, A., Chardon, F.M., Suiter, C.C., Regalado, S.G., Domcke,
1157 S., Hamazaki, N., Lee, C., Martin, B., et al. (2022). A time-resolved, multi-symbol molecular
1158 recorder via sequential genome editing. *Nature* 608, 98–107. 10.1038/s41586-022-04922-8.

1159 49. Chen, W., Choi, J., Nathans, J.F., Agarwal, V., Martin, B., Nichols, E., Leith, A., Lee, C.,
1160 and Shendure, J. (2021). Multiplex genomic recording of enhancer and signal transduction
1161 activity in mammalian cells. *bioRxiv*, 2021–11.

1162 50. Bhattacharai-Kline, S., Lear, S.K., Fishman, C.B., Lopez, S.C., Lockshin, E.R., Schubert,
1163 M.G., Nivala, J., Church, G.M., and Shipman, S.L. (2022). Recording gene expression order in
1164 DNA by CRISPR addition of retror barcodes. *Nature* 608, 217–225. 10.1038/s41586-022-
1165 04994-6.

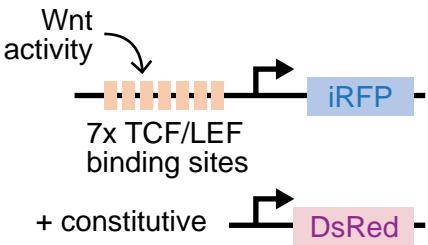
1166 51. Wehmeyer, A.E., Schüle, K.M., Conrad, A., Schröder, C.M., Probst, S., and Arnold, S.J.
1167 (2022). Chimeric 3D gastruloids – a versatile tool for studies of mammalian peri-gastrulation
1168 development. *Development* 149, dev200812. 10.1242/dev.200812.

1169 52. Weinberg, B.H., Pham, N.T.H., Caraballo, L.D., Lozanoski, T., Engel, A., Bhatia, S., and

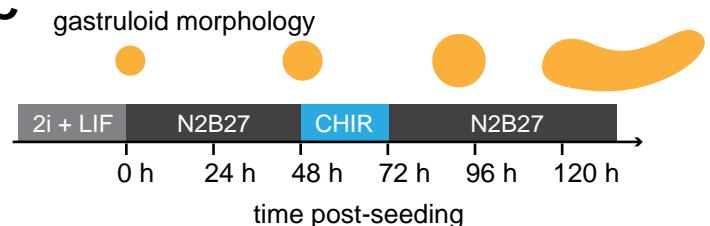

1170 Wong, W.W. (2017). Large-scale design of robust genetic circuits with multiple inputs and

1171 outputs for mammalian cells. *Nat Biotechnol* 35, 453–462. 10.1038/nbt.3805.

1172

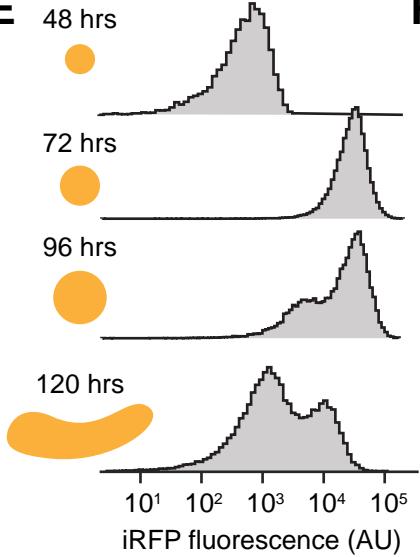

1173

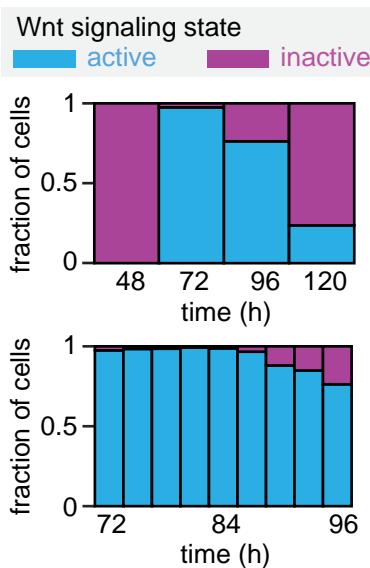
A

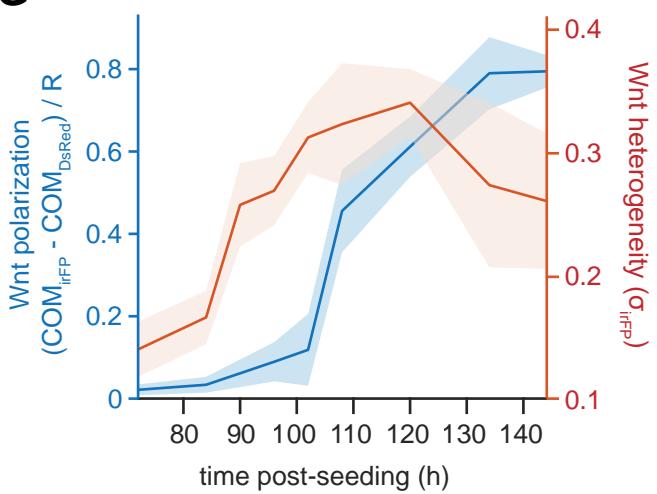


How does a uniform stimulus generate a polarized response?

B


C


D


E

F

G

1174 **Figure 1: Dynamics of Wnt symmetry breaking and polarization during gastruloid**

1175 **morphogenesis.** **(A)** Illustration of gastruloid self-organization phenomenon: a transient,

1176 spatially uniform stimulus somehow triggers the formation of a polarized morphology without an

1177 exogenous pre-pattern. **(B)** A clonal mESC line was engineered to report Wnt activity through

1178 the expression of a destabilized iRFP downstream of Wnt-sensitive TCF/LEF enhancer sites. **(C)**

1179 ‘Symmetry-breaking’ protocol for gastruloid generation. mESC cultures were maintained in

1180 2i+LIF culture media until immediately before gastruloid formation to suppress pre-existing

1181 heterogeneity in Wnt activity. Gastruloids were formed from 200 initial cells/gastruloid seeded

1182 using a cell sorter, and treated with 3 μ M CHIR between $t=48$ and 72 h to stimulate

1183 morphogenesis. **(D)** Dynamics of Wnt activity patterns during gastruloid morphogenesis.

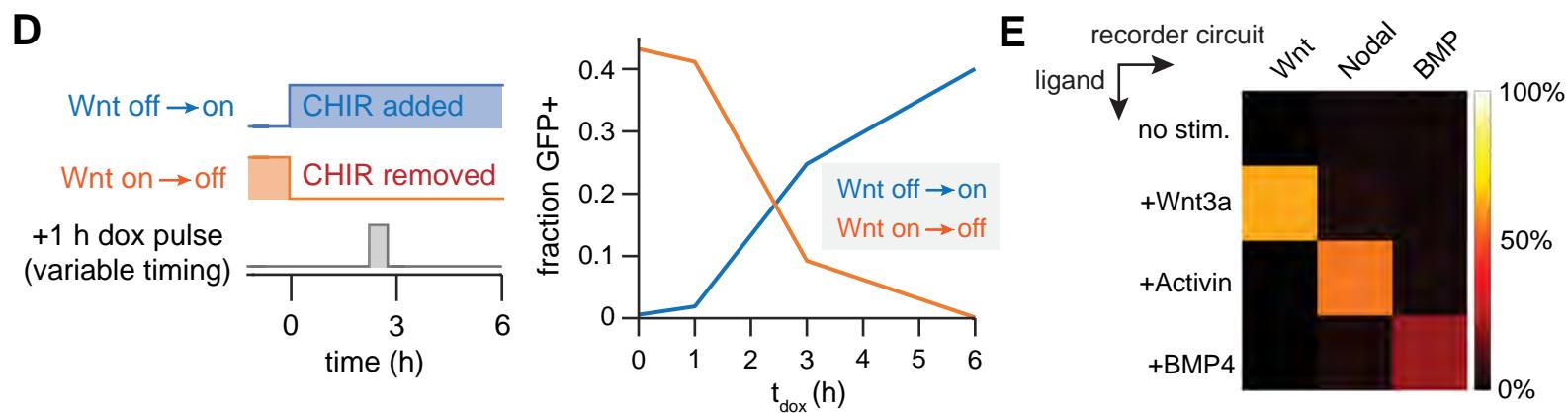
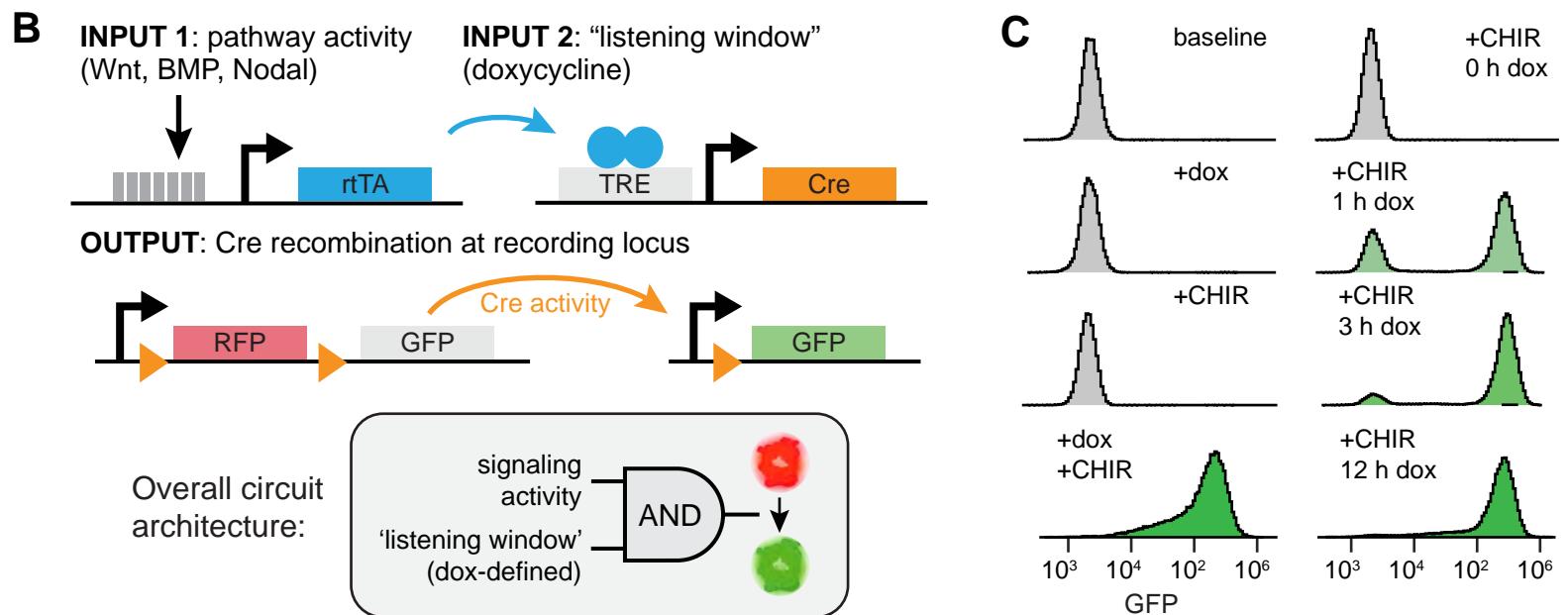
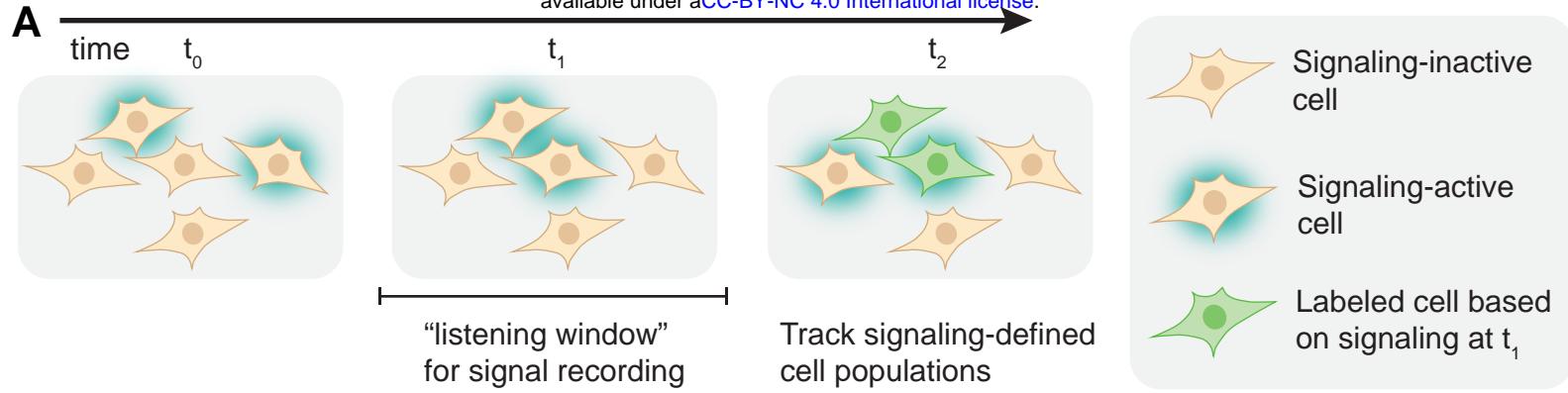
1184 Samples were fixed at variable timepoints and imaged to measure spatial distributions of Wnt

1185 signaling. **(E)** Single-cell Wnt activity levels were measured by flow cytometry. Histograms of

1186 Wnt activity indicate an initially uniform response to Wnt activation with CHIR at 72 h,

1187 followed by a bimodal response. **(F)** Quantification of the proportion of cells which are Wnt

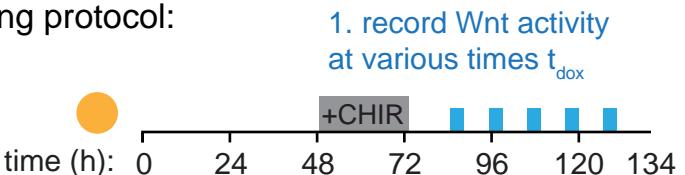
1188 active over time. A Wnt-inactive population is first detectable at $t = 90$ hours. **(G)** Quantification




1189 of heterogeneity and polarization in spatial patterns of Wnt activity during gastruloid

1190 morphogenesis ($n = 76$ gastruloids). Heterogeneity is reported as a normalized standard

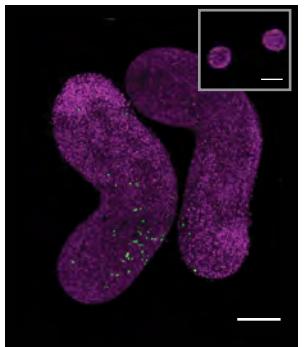
1191 deviation, and polarization is reported as a normalized distance between the center of mass

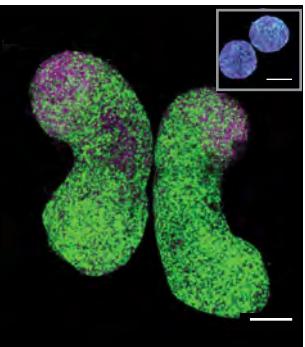
1192 (COM) of Wnt activity and morphological images. Quantification indicates an onset of


1193 heterogeneity at $t = 90$ h (consistent with flow cytometry), followed by polarization at $t = 108$ h.

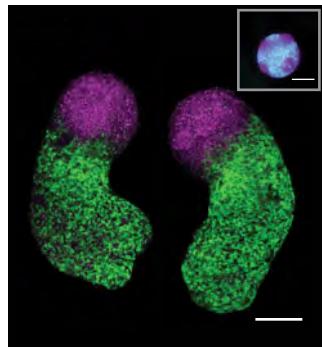
1194 **Figure 2: Recording morphogen signals with recombinase circuits. (A)** Illustration of signal
1195 recording design criteria. An ideal recorder would irreversibly label a signaling-defined
1196 population within a temporal ‘listening window’ of interest so that this population can be
1197 followed over time. **(B)** Schematic of recording circuit. An upstream transcription factor (rtTA)
1198 requires both signaling activity and small-molecule addition to drive recombinase expression,
1199 which in turn irreversibly changes the fluorophore in a ‘recording’ locus. **(C)** Characterization of
1200 a clonal Wnt recording cell line fidelity. 24 h incubation with both Wnt-activating CHIR (3 μ M)
1201 and listening window-defining doxycycline (2 μ g/mL) achieves complete GFP labeling (left,
1202 bottom). Treatment with either CHIR or doxycycline alone has no detectable labeling (left, top).
1203 A 1 h recording window is sufficient to achieve efficient labeling (right). **(D)** Characterization of
1204 switching kinetics of Wnt recorders in response to media changes. A 1 h doxycycline treatment
1205 was applied at variable lag times ($\Delta t = t_{dox} - t_0$) following a media change. Recorder performance
1206 approached steady-state media performance by $\Delta t = 6$ h. **(E)** Crosstalk assessment for 3 separate
1207 clonal lines recording Wnt, Activin/Nodal, and BMP pathway activity. All recording windows
1208 utilized 100 ng/mL doxycycline and 200 ng/mL morphogen concentration. Baseline conditions
1209 report labeling with only doxycycline in basal media (N2B27). Pseudocolors indicate relative
1210 proportion of cells labeled with GFP expression. Recording windows were 6 hours for Wnt and
1211 Nodal recorders and 3 h for the BMP recorder to account for differences in sensitivity.

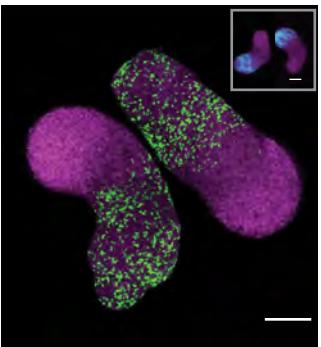
A


Signal recording protocol:


2. measure final position of Wnt-recorded cells at 134 h

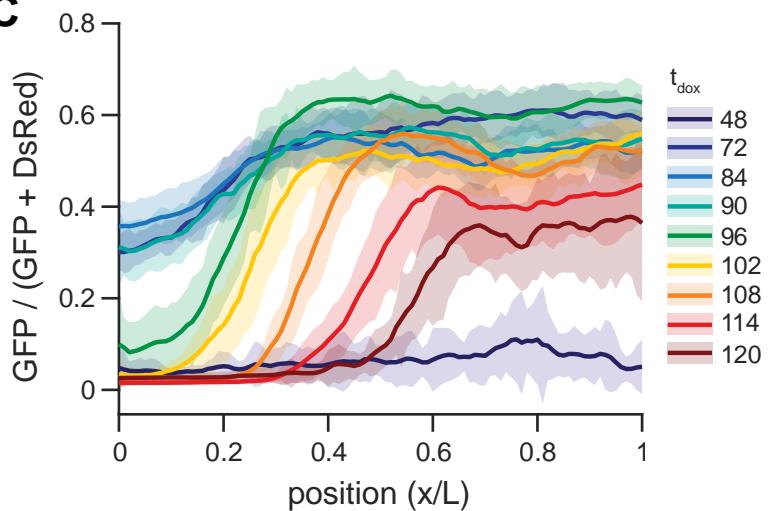
B


recording time $t_{\text{dox}} = 48 \text{ h}$


$t_{\text{dox}} = 72 \text{ h}$

$t_{\text{dox}} = 96 \text{ h}$

$t_{\text{dox}} = 120 \text{ h}$



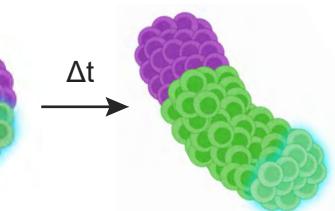
imaging time
 $t_f = 134 \text{ h}$

Wnt activity recorded at t_{dox}

Inset: instantaneous Wnt activity at t_{dox}

C

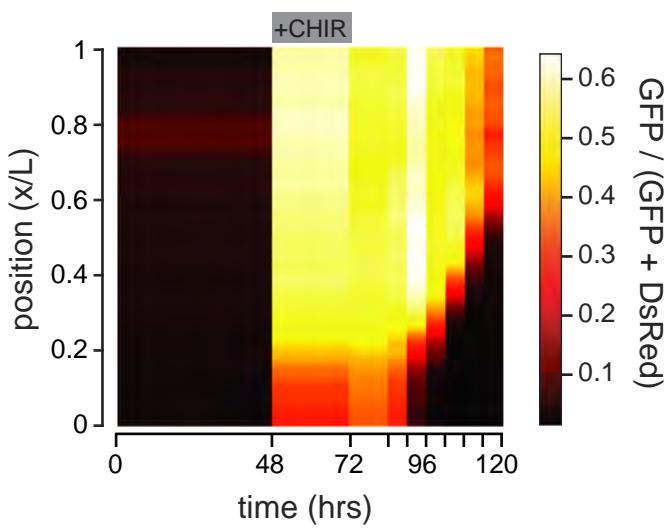
D


instantaneous Wnt signaling at 96 h...

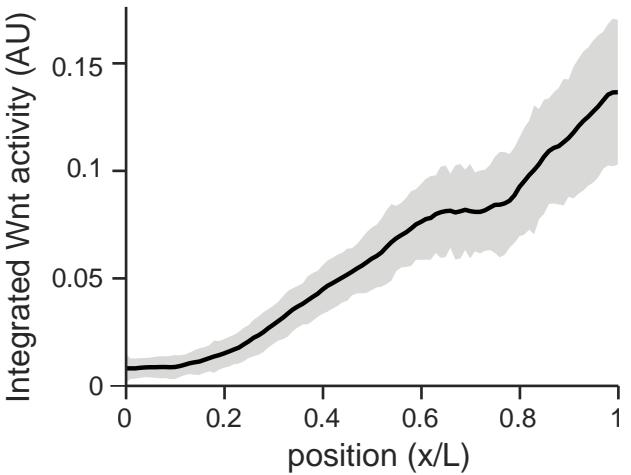
+dox

→

... predicts cells' future A-P position in elongated gastruloid

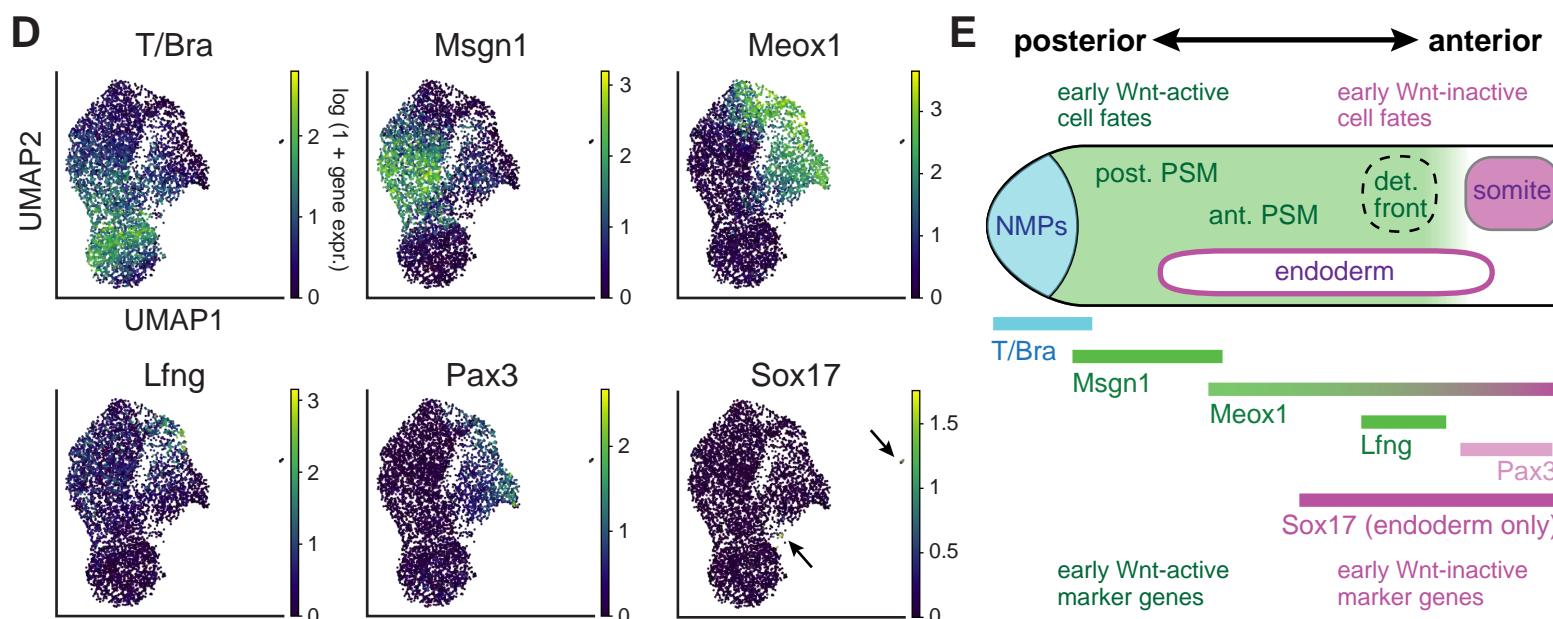
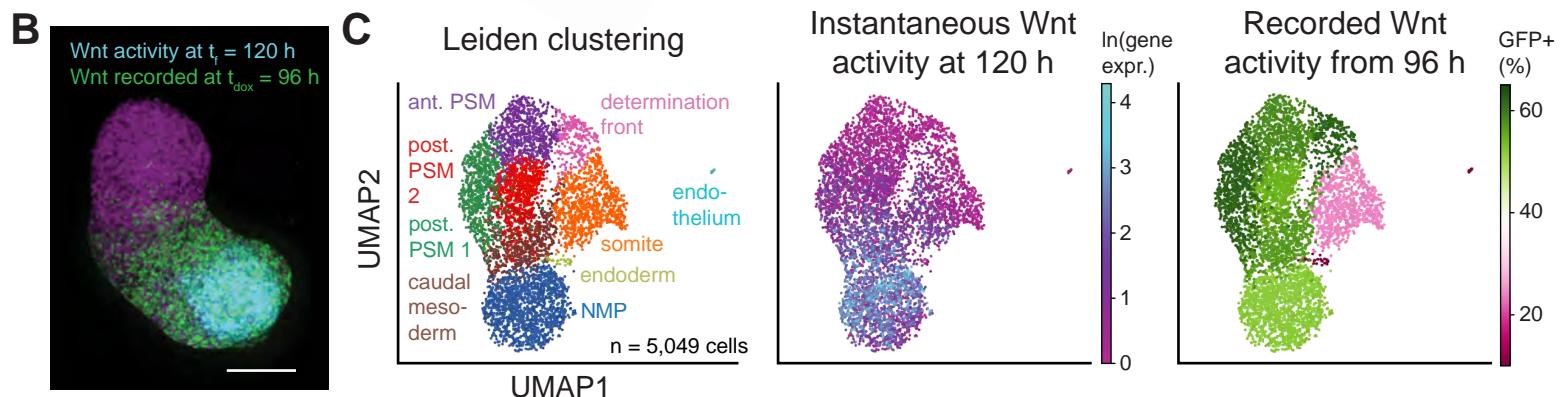
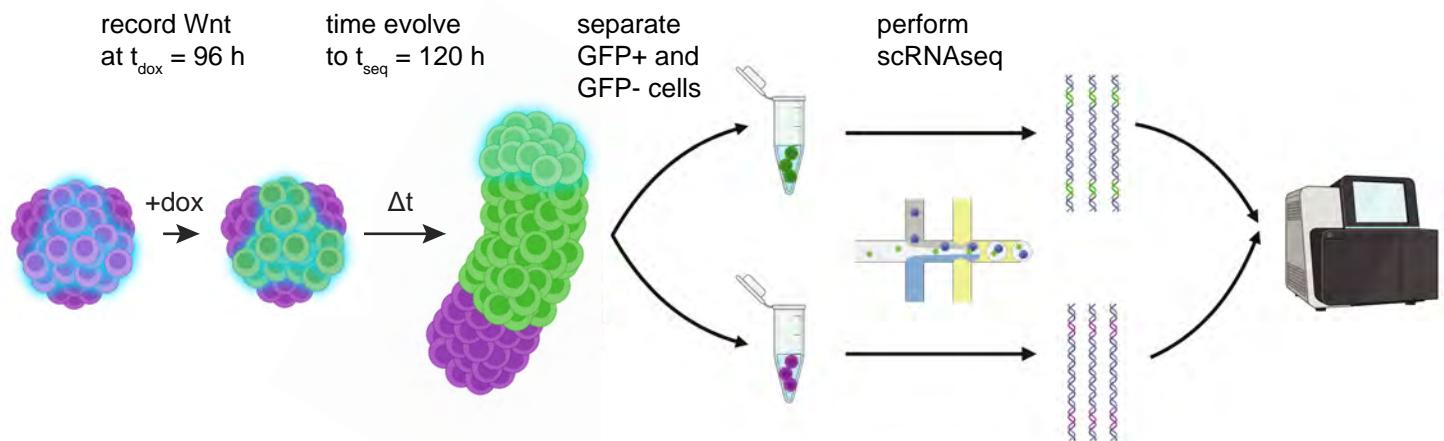


Instantaneous Wnt activity at 96 h

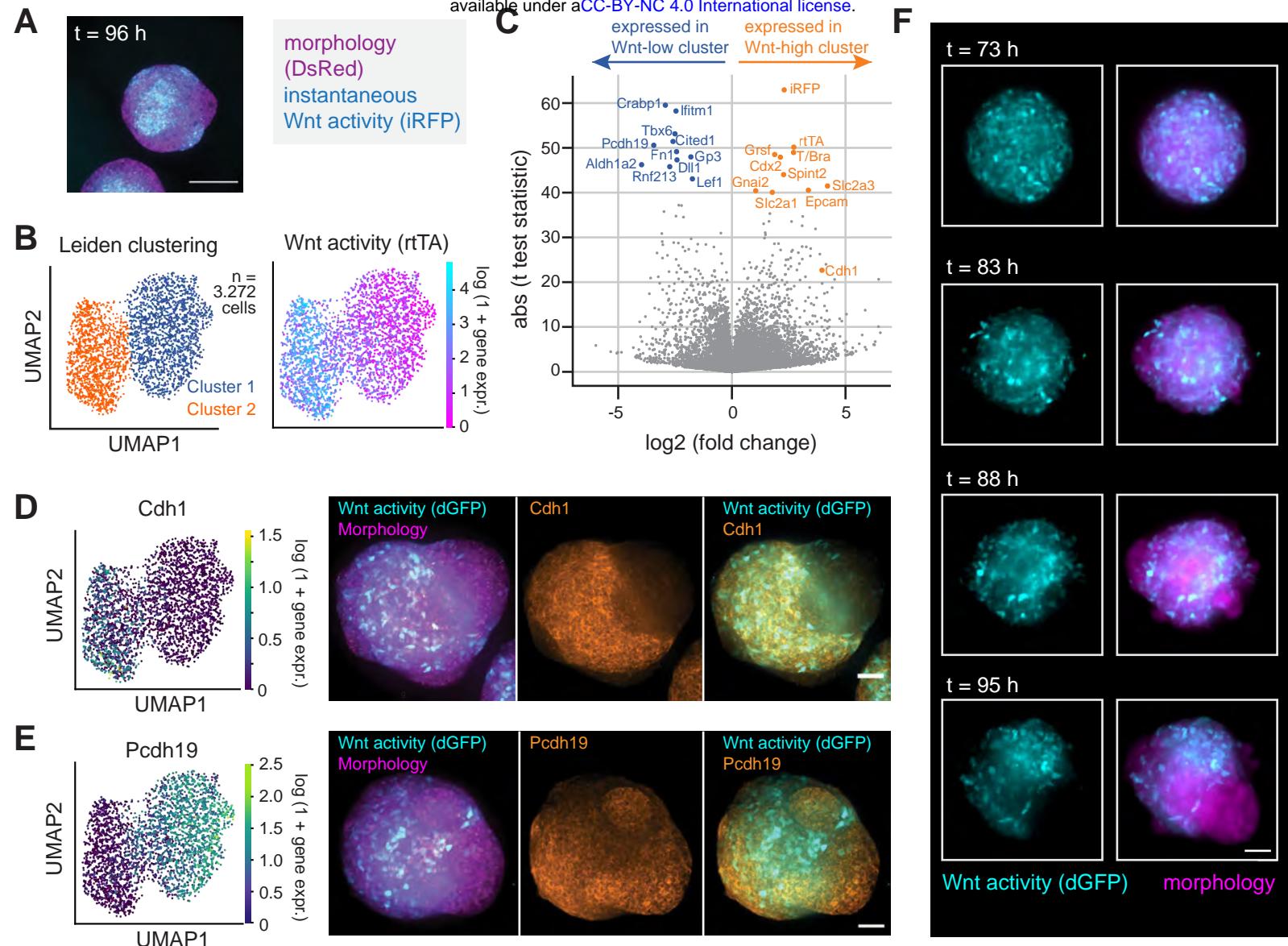

Recorded Wnt activity at $t_{\text{dox}} = 96 \text{ hrs}$

Recorded Wnt activity at $t_{\text{dox}} = 134 \text{ hrs}$

E

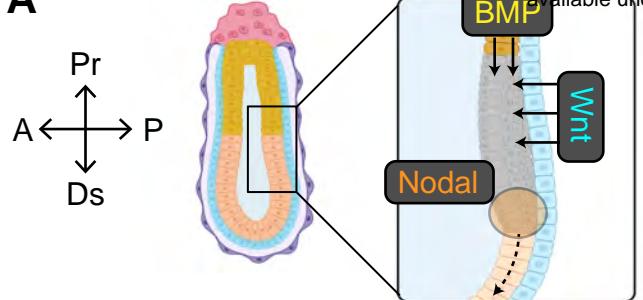




F



1212 **Figure 3: Mapping fate information encoded in Wnt signaling histories. (A)** Schematic of
1213 experimental design. Wnt histories are recorded by varying the onset time t_{dox} of a doxycycline-
1214 defined listening window (90 minutes, 200 ng/mL) during gastruloid morphogenesis. **(B)**
1215 Representative final images ($t_F = 134$ h) of gastruloids in which Wnt activity was recorded at
1216 different timepoints. Insets (top-right) show the corresponding pattern of instantaneous Wnt
1217 activity (**Figure. 1D**) during the queried listening window (scale bar = 200 μm). **(C)**
1218 Quantification of anterior-posterior (A-P) axial patterns of Wnt recorder labeling at different
1219 timepoints throughout gastruloid morphogenesis at 6 h temporal resolution ($n = 119$ gastruloids
1220 measured). Shaded regions indicate standard deviation as a function of A-P position. **(D)**
1221 Illustration of patterns corresponding to the ‘symmetry-breaking window’ at $t_{\text{dox}} = 96$ h, the first
1222 timepoint at which Wnt recording predicts a clear anterior-posterior separation of cell fates. The
1223 measurement of fate information within ‘patchy’ patterns of Wnt activity suggests cellular
1224 rearrangements contribute to gastruloid polarization. **(E)** Kymograph of the data presented in
1225 **Figure 1C** to visualize different Wnt dynamics corresponding to different spatial positions.
1226 Following the emergence of an anterior domain at $t_{\text{dox}} = 96$ h, Wnt signaling becomes
1227 progressively more restricted to the posterior domain. **(F)** Integrated Wnt signaling activity
1228 between $t = 96$ and $t = 134$ h shows a linear ‘temporal gradient’ associated with A-P fate.

A Signal recorders relate early signaling states to future transcriptional states



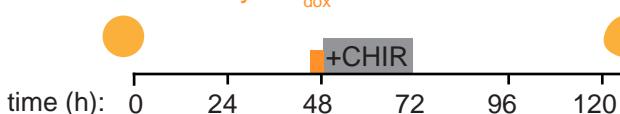
1229 **Figure 4: Mapping signaling histories in transcriptional space. (A)** Schematic of
1230 experimental design. Wnt signaling states are recorded in a 90 minute window initiated at t_{dox} ,
1231 and gastruloids are then grown to a later time t_{seq} . Gastruloids are then dissociated into single cell
1232 suspensions, and separated into GFP positive and negative signaling populations via fluorescence
1233 activated cell sorting (FACS). Sorted populations are then loaded into separate lanes of a
1234 Chromium controller (10x Genomics) to prepare for single-cell RNA sequencing (see Methods).
1235 Separate gene expression libraries are then prepared with distinct library indices to disambiguate
1236 signal recording conditions in pooled sequencing. **(B)** Representative image of a gastruloid at t_{seq}
1237 = 120 h, labeled according to signaling domains (scale bar = 200 μm). **(C)** Annotating cell type
1238 clusters with signaling information. Left: cell types identified by Leiden clustering within $t_{\text{seq}} =$
1239 120 h gastruloids. Middle: final Wnt activity distribution across cells as measured by P_{TCF/LEF}-
1240 rtTA expression. Final Wnt activity is concentrated within the neuromesodermal progenitor
1241 (NMP) cluster. Right: relative composition of Leiden clusters according to Wnt activity recorded
1242 at $t_{\text{dox}} = 96$ h. Wnt activity is broadly distributed throughout most clusters, but excluded
1243 substantially from the somite, endoderm, and endothelial clusters (see also **Methods**). **(D)**
1244 Single-cell expression levels of reference genes associated with gastrulation and axial
1245 morphogenesis. **(E)** Illustration of reference gene organization across the anterior-posterior axis
1246 during axial elongation and somitogenesis. The organization of reference gene expression
1247 (**Figure 1D**) aligns with inferred histories of Wnt activity (**Figure 1C**), suggesting that Wnt
1248 signaling histories predict transcriptionally defined cell fates along a spatially defined anterior-
1249 posterior axis.

1250 **Figure 5: Wnt signaling during symmetry breaking is associated with differential**
1251 **transcriptional and mechanical cell states.** **(A)** Wnt activity at $t = 96$ h is organized into
1252 ‘patchy’ patterns of local correlated domains lacking global polarization. **(B)** scRNAseq analysis
1253 of gastruloids collected at $t_{seq} = 96$ h. Left: Leiden clustering identified 2 cell types. Right: Wnt
1254 activity (as measured by $P_{TCF/LEF-rtTA}$ expression) was highly concentrated within cluster 2
1255 (‘Wnt active’) and excluded from cluster 1 (‘Wnt inactive’). **(C)** Volcano plot reveals genes
1256 which are differentially expressed between the two Leiden clusters. **(D-E)** Validation of
1257 differential cadherin expression between cell clusters by immunofluorescence. **(D)** The Wnt-
1258 active cell type is characterized by exclusive expression of E-Cadherin/Cdh1. **(E)** In contrast, the
1259 Wnt-inactive cell type is enriched for Protocadherin-19/Pcdh19, an alternative homotypic
1260 adhesion marker. **(F)** Still images from **Movie S1** illustrating dynamics of cellular
1261 rearrangements during Wnt polarization. These rearrangements sort cells from patchy expression
1262 domains into a globally polarized signaling axis (**Figure 3D**).

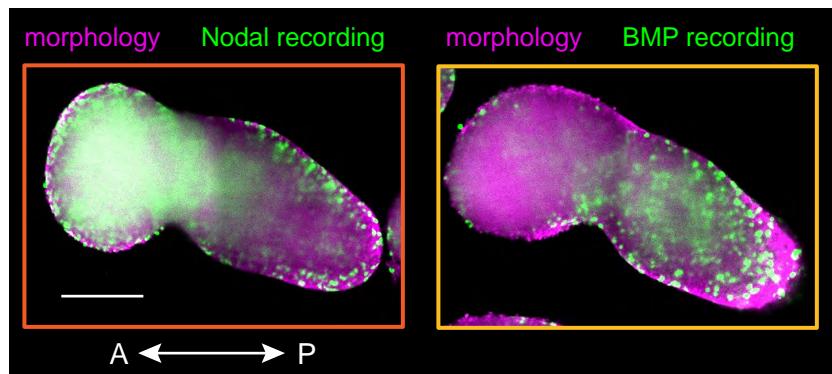
A

B morphology

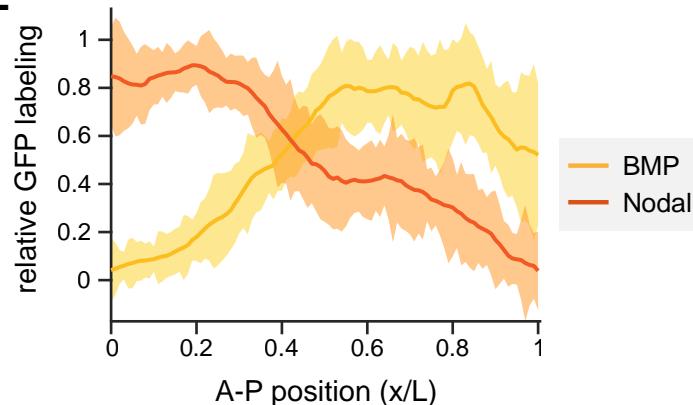
Nodal activity

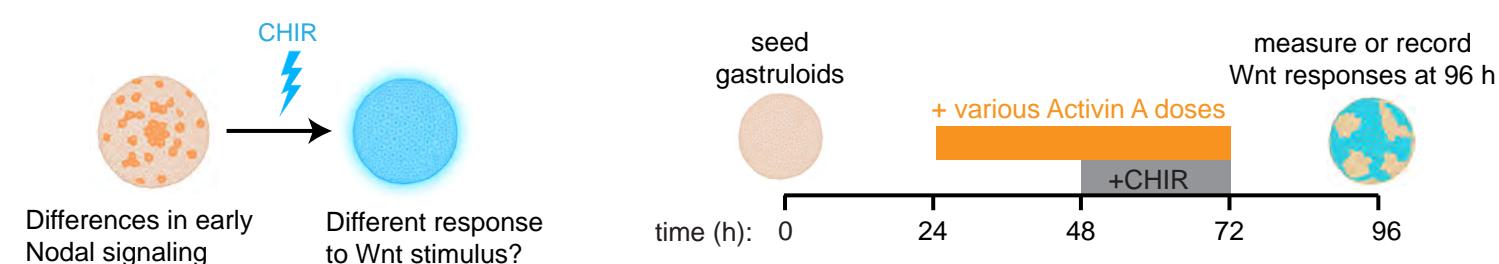

morphology

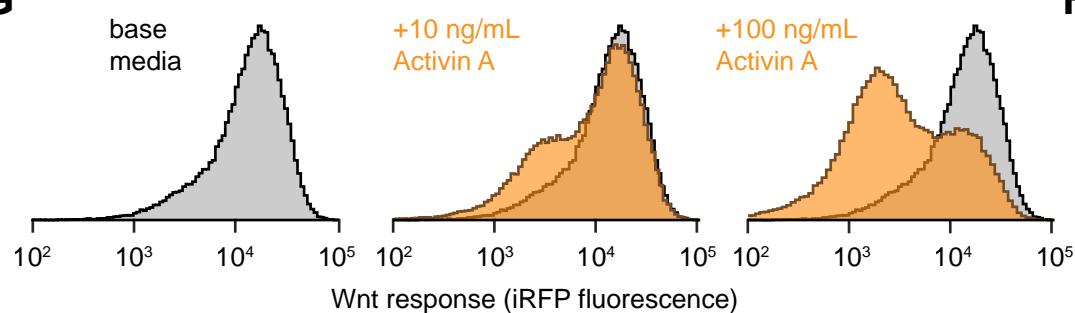
BMP activity

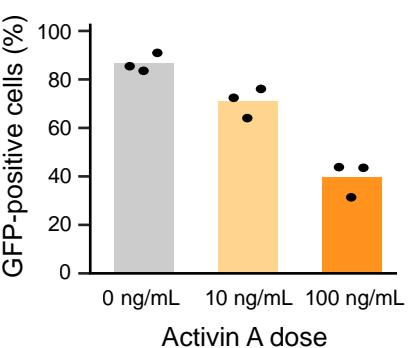

C

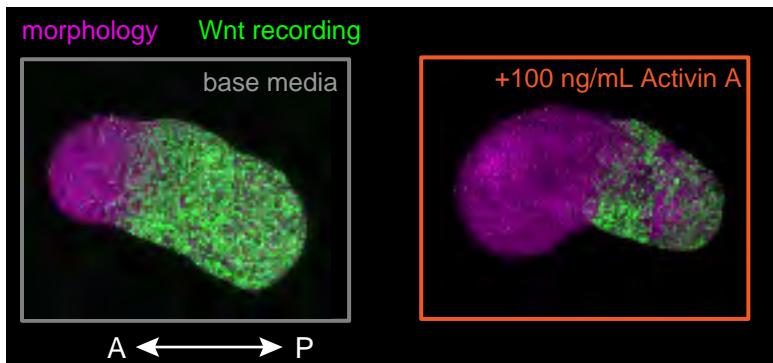
1. record Nodal/BMP activity at $t_{\text{dox}} = 48$ h

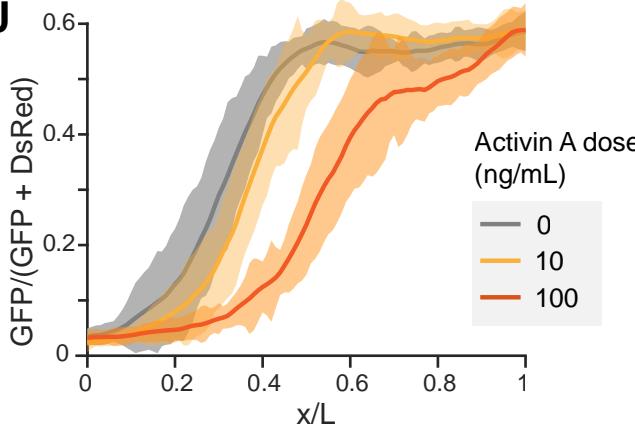

2. measure position of recorded cells at 120 h

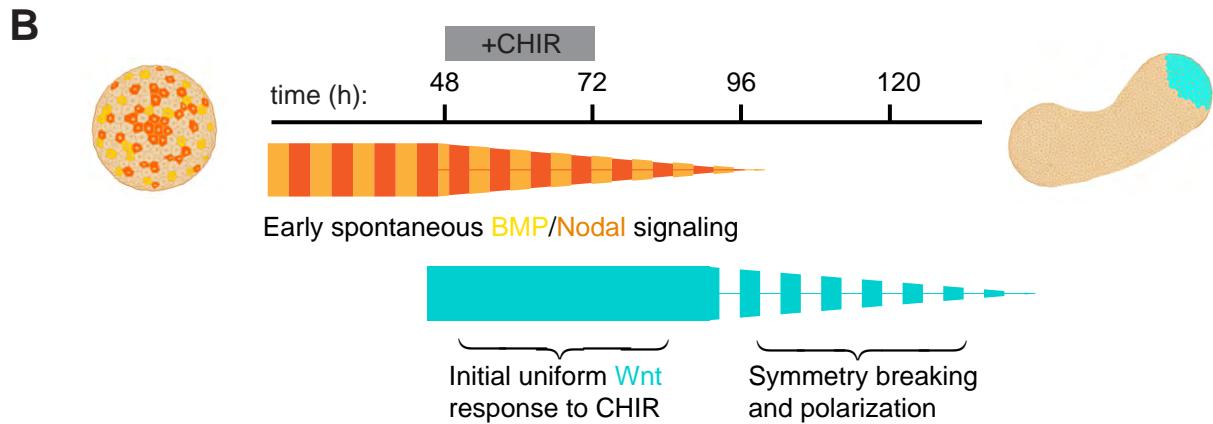
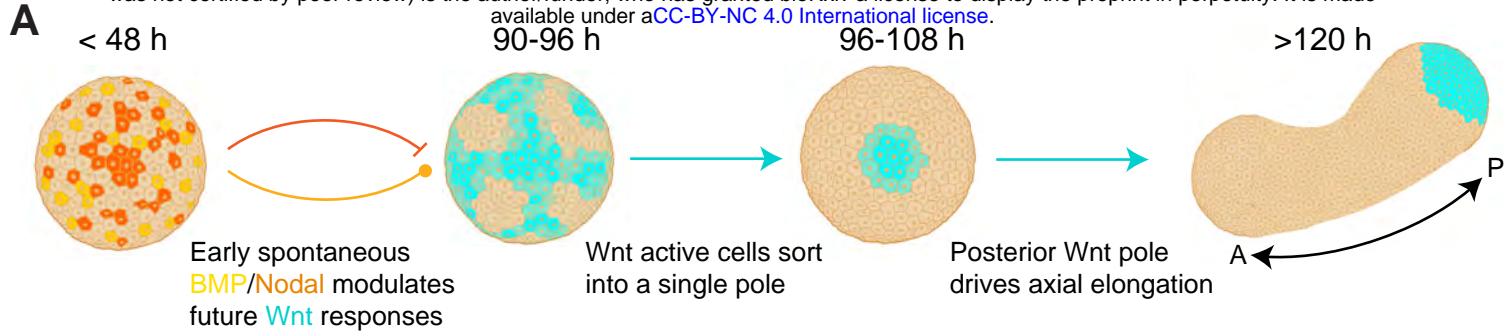

D Signal recording 45-48 h; imaged 120 h post-seeding


E


F


G


H



I Signal recording 96-97.5 h; imaged 120 h post-seeding

J

1263 **Figure 6: Early Nodal/BMP activity predicts and controls Wnt symmetry breaking (A)** In
1264 the mouse embryo, BMP and Wnt pathway signals interact in the posterior epiblast to initiate
1265 gastrulation. Nodal activity marks the anterior-most aspect of the resultant primitive streak (i.e.,
1266 the ‘node’). **(B)** Gastruloids show spontaneous signaling activity in both the Nodal and BMP
1267 pathways at $t = 48$ h, before Wnt activity is detectable. **(C)** Signal recording experimental design.
1268 Early Nodal or BMP activity was recorded immediately prior to the stimulation of Wnt activity
1269 with CHIR (3 h recording window from $t = 45$ -48 h; 200 ng/mL dox). **(D)** Representative images
1270 of final distribution ($t_f = 120$ h) of cells in which early Nodal/BMP activity was recorded,
1271 visualized through a medial optical section (scale bar = 200 μ m). **(E)** Quantification of fate
1272 information recorded from early Nodal and BMP activity reveals that these predict a future
1273 anterior-posterior axis prior to the observation of Wnt activity ($n = 22$ gastruloids total). **(F)** Left:
1274 Illustration of a model in which differences in early Nodal activity influences differential future
1275 responses to Wnt stimulation, thereby predicting future cell fates. Right: experimental design to
1276 assess this model. **(G)** Single-cell Wnt activity levels at $t = 96$ h measured by flow cytometry.
1277 Activin A pretreatment drives more cells into the iRFP-negative (i.e. ‘Wnt-inactive’) population
1278 in a dose-dependent manner. **(H)** Quantification of the fraction of iRFP-positive (i.e. ‘Wnt-
1279 active’) cells across $n = 3$ replicates for each treatment condition ($n = 30$ pooled gastruloids per
1280 condition per replicate). **(I)** Representative images of gastruloids in which Wnt activity was
1281 recorded at $t = 96$ -97.5 h and imaged at $t = 120$ h, with and without Activin A pretreatment.
1282 Scale bar = 200 μ m. **(H)** Quantification of Wnt recording patterns demonstrates that Activin A
1283 pretreatment expands the Wnt-inactive anterior region ($n = 42$ gastruloids total).

1284 **Figure 7: Proposed model of gastruloid symmetry breaking and polarization. (A)**

1285 Illustration of the phases of symmetry breaking. Initial spontaneous Nodal/BMP activity

1286 modulates the response of cells to a uniform CHIR stimulus, yielding a heterogenous Wnt

1287 pattern. The heterogeneity ultimately resolves into a single pole of Wnt activity which organizes

1288 subsequent axial elongation. **(B)** Approximate timeline of signaling dynamics in model. Dashed

1289 bars indicate heterogeneity between cells; width of lines indicate relative fraction of signaling-

1290 active cells within the gastruloid.