

1 The basis of antigenic operon fragmentation in *Bacteroidota* and 2 commensalism

3
4 Nicholas C. Bank¹, Vaidhvi Singh¹, Brandon Grubb¹, Blake McCourt⁴, Aaron Burberry⁴, Kyle D. Roberts^{1,5}, &
5 Alex Rodriguez-Palacios^{1,2,3,5,6}
6

7 ¹Division of Gastroenterology and Liver Disease, Case Western Reserve University School of Medicine,
8 Cleveland, OH, USA

9 ²Digestive Health Research Institute, Case Western Reserve University School of Medicine, USA

10 ³University Hospitals Research and Education Institute, University Hospitals Cleveland Medical Center,
11 Cleveland, OH, USA

12 ⁴Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA

13 ⁵Germ-Free and Gut Microbiome Core, Case Western Reserve University, Cleveland, OH, USA

14 ⁶Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH,
15 USA
16

17 **Correspondence:** ARP, axr503@case.edu
18

19 **Keywords:** *Escherichia coli*, *Salmonella*, O-antigen, *Alistipes*, *Prevotella*, *Bacteroides*, *Parabacteroides*

20 **Contributors:** NCB and ARP conceptualized the analysis, analyzed the data and wrote the manuscript. VS
21 contributed with data analysis and manuscript writing. VS and KR assisted with LPS experiments. BG
22 assisted with peritonitis model experiments. BM and AB assisted with cytokine experiments. ARP leads the
23 program for identification of pathogenic bacteria in severe surgical Inflammatory Bowel Disease/Crohn's
24 Disease. All authors approved the final version of the manuscript.

25 **Acknowledgements.** This project was supported by 1) NIH grant R21 DK118373 to A.R.-P., entitled
26 "Identification of pathogenic bacteria in Crohn's disease." and 2) Crohn's & Colitis Foundation Student
27 Research Fellowship Award #932611 to Nicholas Bank, entitled "Molecular Immunology of *Parabacteroides*
28 *distasonis* in Crohn's Disease and Role of Strain Diversity in Macrophage Activation. Partial support earlier
29 originated for A.R.-P. from a career development award and recently from a Litwin Pioneers award from the
30 Crohn's and Colitis Foundation.

31 **Conflict of Interest:** The authors declare they have no conflicts of interest.
32

33 **Abstract**

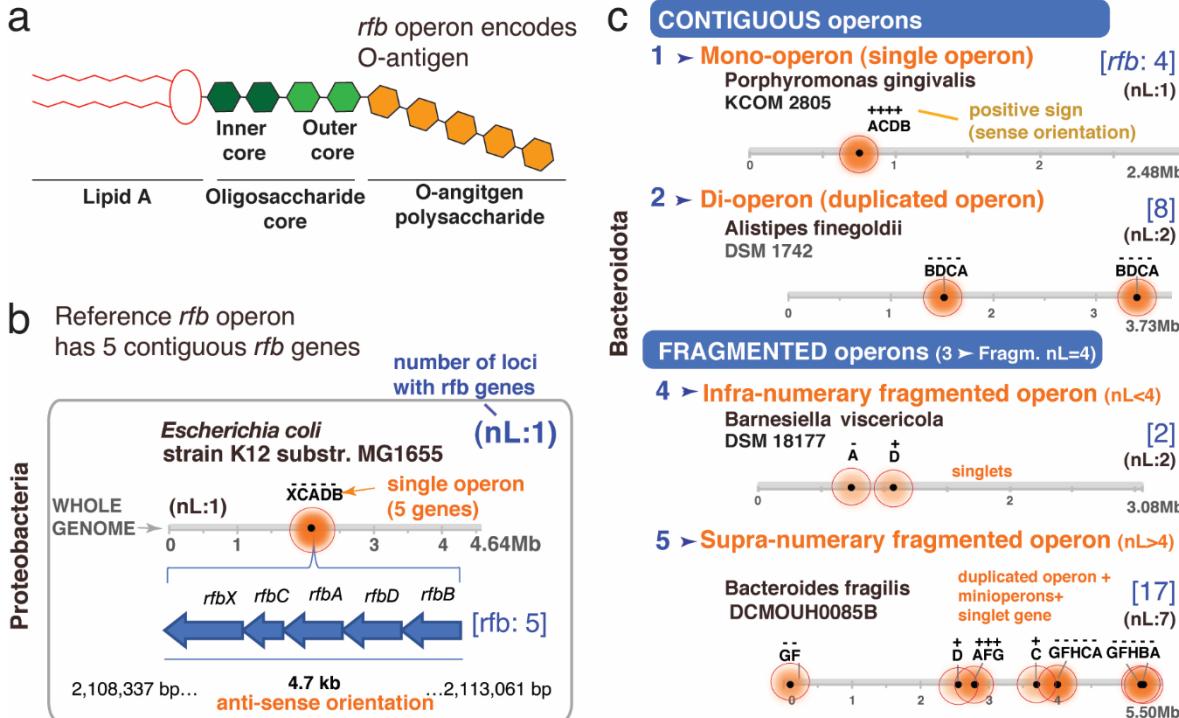
34 The causes for variability of pro-inflammatory surface antigens that affect gut
35 commensal/opportunistic dualism within the phylum *Bacteroidota* remain unclear (1, 2). Using the classical
36 lipopolysaccharide/O-antigen 'rfb operon' in *Enterobacteriaceae* as a surface antigen model (5-gene-cluster
37 *rfbABCDX*), and a recent *rfbA*-typing strategy for strain classification (3), we characterized the
38 architecture/conservancy of the entire *rfb* operon in *Bacteroidota*. Analyzing complete genomes, we
39 discovered that most *Bacteroidota* have the *rfb* operon fragmented into non-random gene-singlets and/or
40 doublets/triplets, termed 'minioperons'. To reflect global operon integrity, duplication, and fragmentation
41 principles, we propose a five-category (infra/supernumerary) cataloguing system and a Global Operon
42 Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon
43 fragmentation is driven by intra-operon insertions of predominantly *Bacteroides*-DNA
44 (*thetaiotaomicron/fragilis*) and likely natural selection in specific micro-niches. *Bacteroides*-insertions, also
45 detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could
46 explain why *Bacteroidota* have fewer KEGG-pathways despite large genomes (4). DNA insertions
47 overrepresenting DNA-exchange-avid species, impact functional metagenomics by inflating gene-based
48 pathway inference and overestimating 'extra-species' abundance. Using bacteria from inflammatory gut-wall
49 cavernous micro-tracts (CavFT) in Crohn's Disease (5), we illustrate that bacteria with supernumerary-
50 fragmented operons cannot produce O-antigen, and that commensal/CavFT *Bacteroidota* stimulate
51 macrophages with lower potency than *Enterobacteriaceae*, and do not induce peritonitis in mice. The
52 impact of 'foreign-DNA' insertions on pro-inflammatory operons, metagenomics, and commensalism offers
53 potential for novel diagnostics and therapeutics.
54
55
56
57

58 **Introduction**

59 An operon is a functional unit of DNA that consists of a cluster of contiguous genes, transcribed
60 together to control cell functions, including the production of the O-antigen component of
61 lipopolysaccharides (LPS), which is widely present and variable in gram-negative bacteria. The phylum
62 *Bacteroidota* (*Bacteroidetes*), composed primarily of gram-negative gut commensals (6-10), is also known
63 to have several opportunistic pathogenic species ('pathobionts') (11-19), which for unclear reasons have
64 commensal/pathogenic dualism. Concerningly, species from the phylum have been proposed as future
65 probiotics because some strains modulate gut immunity locally (6, 20, 21) or influence the susceptibility to
66 chronic extra-intestinal diseases (e.g., *Parabacteroides goldsteinii* attenuates obstructive pulmonary
67 disease (15).

68 The precise role of *Bacteroidota* in chronic inflammatory bowel diseases (IBD), namely Crohn's
69 disease (CD), remains undefined (22). Supporting a pathogenic role in IBD complications, we recently
70 discovered that the inflamed bowel of patients with surgical/severe CD have cavitating 'cavernous fistulous
71 tract' micropathologies (CavFT) resembling cavern formations, harboring cultivable bacteria, including
72 *Escherichia coli* and *Bacteroidota* (5, 23). Focused on a few CavFT species, genomic analyses of
73 consecutive *Bacteroidota* isolates (*Parabacteroides distasonis*) from unrelated patients that underwent
74 surgery for CD suggested, for the first time, that certain bacteria (from a novel lineage in NCBI databases)
75 are adapting to CavFTs, swapping large fragments of DNA with *Bacteroides*, and are likely transmissible in
76 the community (23). To classify *P. distasonis* and other cultivable *Bacteroidota*, and to facilitate the orderly
77 study of such commensal/pathogenic dualism in the phylum, we recently proposed the use of the *rfbA* gene
78 for genotyping *Bacteroidota*. Of interest, *rfbA*-typing suggested that historical *P. distasonis* strains isolated
79 from pathological sources belonged to one of four *rfbA* types (3).

80 Compared to the lipid A gene *lpxK* (which was highly conserved), *rfbA*-typing studies demonstrated
81 that the O-antigen (*rfb*) genes are sufficiently variable to be better associated with the variable pathogenic
82 potential of *Bacteroidota* for bacterial genotypic classification. Since lipid A in *Bacteroidota* induces lower
83 TLR4 inflammatory activation (6, 15, 21, 24) compared to *E. coli*, and since the role of O-antigen/LPS in
84 *Bacteroidota* is poorly understood (20), herein, we conducted an expanded typing analysis across all genes
85 of the *rfb* operon in *Bacteroidota* using *i*) existing complete genomes and NCBI genome databases, *ii*) new
86 genomes sequenced from CavFT, *iii*) the classical *Enterobacteriaceae* *rfb* operon contiguity as referent, and
87 *vi*) using *Parabacteroides* and *Alistipes* as emerging pathogenic/probiotic models (1, 2) to identify potential
88 genomic features impacting surface antigens favoring *Bacteroidota* commensal/pathobiont dualism.


89 **Results**

90 **The classic *rfb* operon is contiguous in *Enterobacteriaceae*.** As a referent to illustrate the
91 arrangement of *rfb* genes involved in the O-antigen synthesis operon in *Enterobacteriaceae*, we analyzed
92 reference genomes from *E. coli*, *Klebsiella variicola*, and *Salmonella enterica*. A schematic of the LPS/O-
93 antigen molecule is shown in [Figure 1A](#). In *E. coli* K12, [Figure 1B](#) illustrates the contiguous arrangement of
94 five genes which functionally enable the *en bloc* transcription of the *rfb* operon (*rfbABCDX*). Regardless of
95 transcriptional orientation (positive/negative sense), other *Enterobacteriaceae* have the same contiguous
96 arrangement of the *rfb* genes. Notably, while the length of *rfb* operons vary across this family, bacteria
97 predominantly have at least four genes (*rfbABCD*), organized contiguously, with sporadic singly duplicated
98 genes. Contiguity is so conserved within the family that *Salmonella* spp. have operons with up to 15
99 consecutive *rfb* genes ([Supplementary Figure 1A-B](#)).

100 **The *rfb* operon in *Bacteroidota* is often fragmented into 'minioperons'.** To assess the spatial
101 integrity of the *rfb* operon in *Bacteroidota*, we next examined the *rfb* gene profile (presence/absence) in
102 available complete genomes. Analysis revealed that the *rfb* genes in *Parabacteroides*, *Bacteroides*, and
103 *Prevotella* were not contiguous but fragmented and dispersed throughout the genome. In contrast, *Alistipes*,
104 *Porphyromonas* and *Odoribacter* have *rfb* operons composed of the same primordial genes as
105 *Enterobacteriaceae* (*rfbACDB*), being intact and/or duplicated, supporting their genomic potential to be
106 functionally capable of LPS-proinflammatory induction. Within the phylum, operon fragmentation products,
107 herein referred to as *rfb* "minioperons", result in various combinations of *rfb* singlet genes and
108 doublets/triplets with variable orientations (sense: +; antisense: -, [Supplementary Figure 1C](#)). With *E. coli*
109 as referent, using four *rfb* genes (n=4) as the median maximum number of contiguous genes observed
110 among *Bacteroidota* in this study, herein we propose that *rfb* operons in *Bacteroidota* can be classified into
111 at least five categories: *i*) Mono-operon (single contiguous operon, regardless of numbers of genes in
112 cluster/locus), *ii*) Di-operon (duplicated operon), *iii*) fragmented normo-numerary operon (operon
113 fragmented with 4 *rfb* clusters/loci, nL=4), *iv*) fragmented infra-numerary operon (nL<4 clusters/loci), and *v*)
114 fragmented supernumerary operon (nL>4 clusters/loci; [Figure 1C](#)). Used alongside a baseline referent, this
115 system of categorization and cataloguing may be applied to any operon system.

117 Envisioning the potential combinatorial variability for the O-antigen via the theoretical pairwise
 118 combination of *rfb* genes in *Bacteroidota*, we next determined that mathematical permutations of
 119 minioperons could yield thousands of possible combinations unlikely to yield functional O-antigen
 120 polysaccharides (Supplemental Figure 2A), which proves technically challenging to verify experimentally
 121 for all bacteria by requiring innumerable grow conditions.

122

123
 124 **Figure 1. The *rfb* operon in *Enterobacteriaceae* is contiguous, but in *Bacteroidota* it is often**
 125 **fragmented into 'minioperon'.** **A)** Lipopolysaccharide (LPS) and O-antigen schematics. **B)** Classical *rfb*
 126 operon with 5 contiguous genes in *E. coli* K12 (*rfb*XABCD; XCADB; [rfb:5]). Horizontal lines represent the
 127 bacterial genome length, distribution of *rfb* genes/operons (shaded circles; darker = more genes) and *rfb*
 128 gene orientation (+, sense; -, antisense). nL: n of *rfb* clusters or gene singlet loci. Note
 129 orientations/duplications. **C)** Five categories of operon arrangement & 'minioperon' fragmentation in
 130 *Bacteroidota*. **Supplementary Figure 1C** illustrates in context *rfb* operons/fragmentation for *Alistipes*,
 131 *Bacteroides*, *Parabacteroides*, *Prevotella*, *Paraprevotella*, *Barnesiella*, *Tannerella*, *Odoribacter* and
 132 *Porphyromonas*.

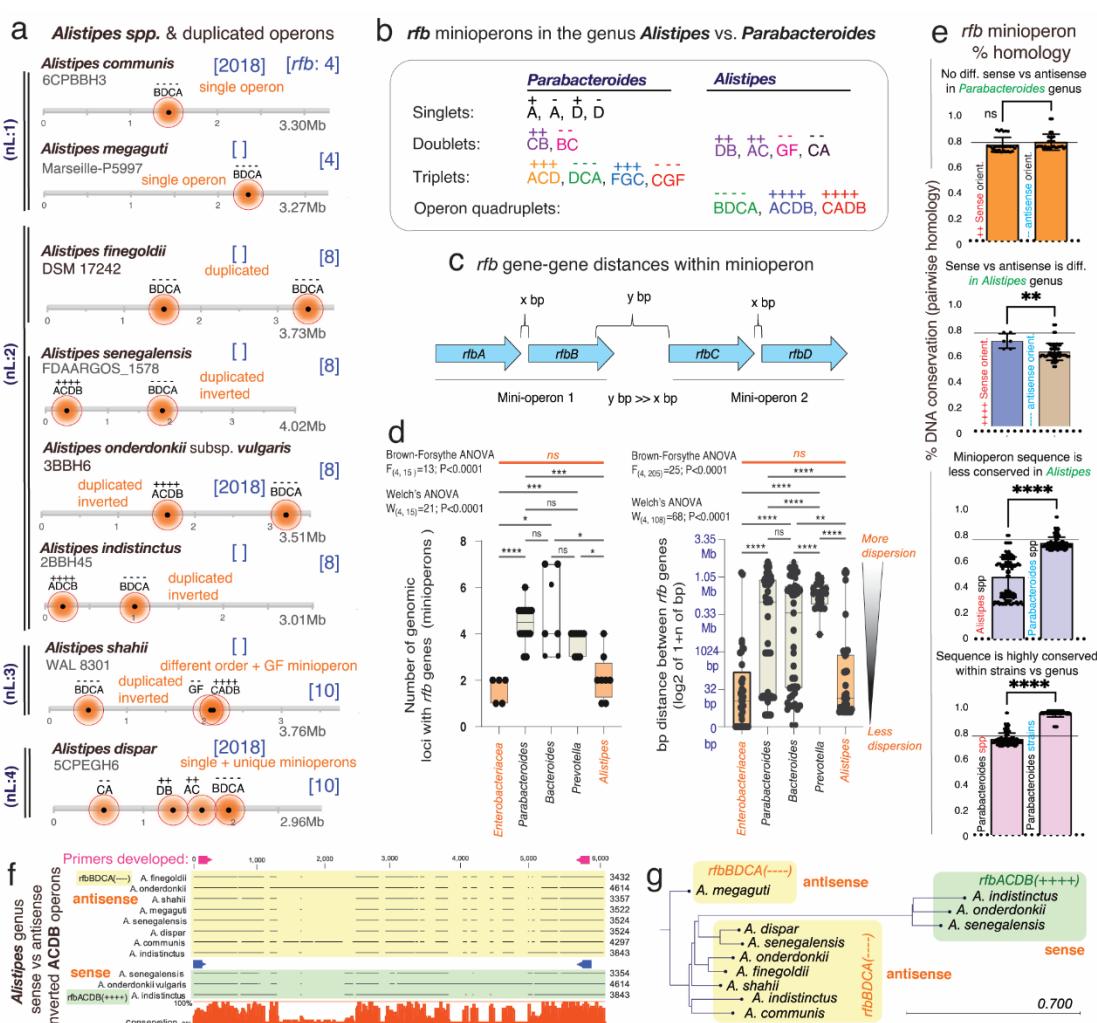
133
 134 **Minioperon patterns in *Parabacteroides* suggests *rfb* gene distancing mechanism.** Since the
 135 study of potential operon fragmentation mechanisms could be better achieved using strains with fully
 136 sequenced genomes, we next conducted an arrangement analysis to determine if *rfb* operon fragmentation
 137 was common within any given species and if they followed statistically significant patterns among unrelated
 138 strains of the same species. Using *P. distasonis* as a model *Bacteroidota* species and strain ATCC8503
 139 (peritonitis, USA/1935) as the referent species for the genus *Parabacteroides*, analyses revealed that *P.*
 140 *distasonis* have their *rfb* operons invariably fragmented (12/12, Fisher's exact P<0.00001), following unique
 141 patterns of gene combinations, duplications, or orientations that are significantly more likely to be
 142 supernumerary than infra-numerary (Fisher's exact P=0.0001, Figures 2A and 1C). These findings suggest
 143 that some species are more likely to gain *rfb* loci (*P. distasonis*), compared to others which could be more
 144 likely to lose *rfb* loci (*Barnesiella viscericola*).


145 Fragmentation patterns were also highly conserved among *P. distasonis*. Specifically, *rfbA* and *rfbD*
 146 genes were present in minioperons or as singlets, whereas the genes *rfbB*, *rfbC*, *rfbG* and *rfbF* were
 147 exclusively present only as doublet- or triplet-minioperon arrangements (Figure 2B). Based on such
 148 conservancy, *P. distasonis* strains belong to at least two distinctive phylogenetic clades (Figure 2C,
 149 **Supplementary Figure 2B**), suggesting that not all *P. distasonis* would be the same, and emphasizing the
 150 need to better classify *Bacteroidota* isolates for functional studies.

151 Mechanistically insightful, outside of this species we found that a unique combination and
 152 distancing of two *rbf* minioperons (*rbfFGC*->*rbfA*; abbreviation for *rbfFGC*(+++)) positive-sense triplet
 153 followed by a *rbfA*(+) positive-sense singlet), overrepresented in some *P. distasonis* strains (n=6/12,
 154 Fisher's exact P<0.001, vs. numerous other possibilities), was also present in a *B. thetaiotaomicron* strain
 155 CL15T119C52 (Figure 2D), a phenomenon not previously reported in the literature.

156 Considering that *B. thetaiotaomicron* lacks LPS-polysaccharide formation (25) and has anti-
 157 inflammatory and immunomodulatory properties (18, 19), the presence of such *rbfFGC*->*rbfA* fragmentation
 158 pattern in both *P. distasonis*/*B. thetaiotaomicron* suggests a mechanism for operon fragmentation that could
 159 explain beneficial effects for both species/strains (2). Remarkably, an inter-genus *rbfFGC*->*rbfA* pattern,
 160 exclusively present in *P. distasonis* strains of CavFT origin and CL11T00C22 (5), have conserved
 161 minioperon sequences but variable inter-minioperon *rbfFGC*->*rbfA* distances, suggesting that DNA insertion
 162 within the flanking *rbf* genes could be the reason for gene-gene separation in an ongoing permissible
 163 process of gene exchange between *P. distasonis* and *B. thetaiotaomicron*.

164 Of novelty, variable inter-minioperon orientations for the same *rbfFGC*->*rbfA* pattern in other *P.*
 165 *distasonis* genomes (APCS2/PD, FDAARGOS_615, and CL06T03C10) suggest the existence of conserved
 166 *rbfFGC*->*rbfA* inversions with a pivot point in the inter-minioperon *rbfFGC*->*rbfA* region. This observation
 167 indicates that such a potential gene-gene separation mechanism is highly conserved, yet variable.
 168 Furthermore, it offers an evolutionary explanation to the presence of unique arrangements across certain
 169 strains, lineages, or possible niches that could reflect favored co-habitation of both genera, genetic
 170 exchange, selection, and niche adaptation (notice the red vs. black arrows for *rbfFGC*->*rbfA* in Figures 2A
 171 & 2D).


172 To elucidate the effect of minioperons on LPS/O-antigen production and structure, we opted to
 173 verify the presence/absence of the O-antigen polysaccharide in *P. distasonis* CavFT-hAR46, under five
 174 unique growth conditions, as a cultivable *Bacteroidota* model with 5 *rbf* minioperon fragments (vs. *E. coli*
 175 with one *rbf* operon). Of functional importance, the classical *rbf* operon in *E. coli* effectively produced a
 176 typical O-antigen/polysaccharide as expected in all conditions, with repeated bands between 41 and 53 kb
 177 in SDS-PAGE (Figure 2E) (26, 27). However, as expected for a *P. distasonis* strain with supernumerary *rbf*
 178 fragmentations, *P. distasonis* did not yield O-antigen polysaccharides in any of the conditions, suggesting
 179 that supernumerary *rbf* fragmentations are likely to be non-functional (5/5 vs. 0/5, Fisher's exact P=0.0079).
 180 As a result, lipooligosaccharide products (LOS) were produced instead of LPS, similar to what has recently
 181 been described for *B. thetaiotaomicron* (25).

183 **Figure 2. The occurrence, patterns and inversions of *rbf* minioperons in *P. distasonis* and *B. thetaiotaomicron* suggests mechanism of operon fragmentation in Bacteroidota.** **A)** Fragmentation of
 184 *rbf* operon in *P. distasonis* is in modern times supernumerary compared to ATCC8503 strain from
 185 USA/1933. **B)** Fragmentation has resulted in conserved singlet, doublet/triplet patterns in *P. distasonis*. **C)**
 186 Heatmap clustering of *P. distasonis* strains based on *rbf* minioperon shows distinct clades. Additional
 187 information is available in **Supplementary Figure 2B**. **D)** Unique *rbfFGC*->*rbfA* minioperon distancing
 188 pattern (downward red/black arrows and solid circles) in *B. thetaiotaomicron* is also present in novel CavFT
 189 strains of *P. distasonis* from gut wall lesions in Crohn's disease. Notice the orientation sense and patterns.
 190 **E)** SDS-PAGE of LPS extract analysis of *E. coli* and *P. distasonis* CavFT-46 shows that *P. distasonis* is
 191 unable to produce O-antigen polysaccharides in diverse growth conditions (Fisher's exact P=0.079).
 192

193 **The *rbf* operon in *Alistipes* is intact or duplicated suggesting benefit for survival.** Contrasting
 194 *Parabacteroides*, the *Alistipes* genus primarily exhibits no operon fragmentation. Unique conserved
 195 organization and orientation was observed in all examined *Alistipes* species which have 4-gene contiguous
 196 *rbf* operons (*BDCA* or *CADB*; **Figure 3A**). When fragmentation was present (*A. shahii*, *A. dispar*), *Alistipes*
 197 have minioperon doublets (*rbfCA*, *DB*, *AC*, *GF*) not seen in *Parabacteroides*, further supporting that genus-
 198 specific mechanisms of operon fragmentation or conservation vary across *Bacteroidota*.
 199

200 Intriguingly, as a major difference within other *Bacteroidota*, most *Alistipes* species have duplicated
 201 operons (5/8 vs. 1/22, *B. fragilis*, Fisher's exact P=0.0018), indicating that the genus has genomic potential
 202 for enhanced O-antigen production and possibly pro-inflammatory LPS effects that could be necessary or
 203 beneficial for *Alistipes* adaptation/survival. Alternatively, operon duplication with minimal fragmentation
 204 suggests that *i*) fragmentation is non-sustainable or rather deleterious for *Alistipes*, and/or *ii*) its genetic
 205 mechanisms of operon maintenance allow for operon variability (duplication, inversions, sequence), but not
 206 for gene-operon separation, unlike *Parabacteroides* in which fragmentation predominates (12/12 vs. 2/8, *A.*
 207 *shahii* & *A. dispar*, Fisher's exact P=0.0049). No *rbf* singlets were observed in *Alistipes*.

209 **Figure 3. The *rfb* operon in *Alistipes* is contiguous and duplicated suggesting evolutionary benefit.**
210 **A)** *Alistipes* has contiguous *rfb* operons with frequent duplication and less common incorporation of *rfb*
211 minioperon duplets. **B)** Patterns of conserved minioperons in *Alistipes* differ from *Parabacteroides*. **C)**
212 Schematics of gene-gene *rfb* distances measured within and between minioperons. **D)** *Parabacteroides* and
213 *Bacteroides* demonstrate the greatest variance in number of *rfb* operon fragments and gene-gene
214 distances. *Alistipes* and *Enterobacteriaceae* are similarly contiguous. Intergene distances for
215 *Parabacteroides*, *Bacteroides* and *Prevotella* were greater than *Enterobacteriaceae* (0.54 ± 0.84 Mb,
216 0.49 ± 0.86 Mb, 0.34 ± 0.32 Mb, respectively, vs. 0.13 ± 0.46 Mb, $P < 0.001$). *Alistipes* gene distribution is similar
217 to *Enterobacteriaceae* (0.17 ± 0.49 Mb, $P = 0.79$). **E)** Minioperon sequence homologies for *Alistipes* vs.
218 *Parabacteroides* based on minioperon orientation between and within genera/species. Two tailed-T tests
219 $P < 0.01$ **, $P < 0.001$ ***. **F)** Alignment and **G)** phylogeny based on *rfb* operon sequences. Note that *Alistipes*
220 clusters are driven by the sense/antisense orientation of the operons.
221

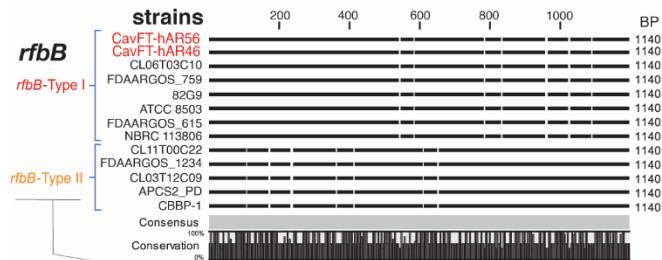
222 The *rfb* minioperon types in *Alistipes* and *Parabacteroides* indicate that gene patterns and
223 orientations are unique and vary, being potentially useful as signatures for lineage identification and
224 classification (Figure 3B). When we quantified the magnitude of fragmentation (gene-gene distances in
225 number of nucleotides) across genera, we found that *Parabacteroides*, *Bacteroides* and *Prevotella* had
226 similarly more fragmentation on average than *Enterobacteriaceae* ($P < 0.001$, $P = 0.0151$, $P = 0.010$,
227 respectively), but not *Alistipes* compared to *Enterobacteriaceae* (2.1 vs. 1.6, $P = 0.89$, Figure 3C-D).

228 **Minioperon conservation in *P. distasonis* encompasses 85 years of history.** Using
229 *Parabacteroides* and *Alistipes* as genus models for *Bacteroidota* (1, 2), we then quantified the *rfb* sequence
230 conservation (% similarity among strains)(3), since conservation indicates functional/evolutionary
231 advantages (28). Analysis showed that, irrespective of orientation, the doublet *rfbCB* sequences, present in
232 80% of *P. distasonis*, and the *rfbACD* triplets have homologies ranging from 72 to 99.8% ($77.5 \pm 5.15\%$),
233 contrasting the much lower operon similarities across *Alistipes* (range 27.5 to 83.7%; $50 \pm 16.4\%$, $P < 0.001$;
234 Supplementary Figure 3).

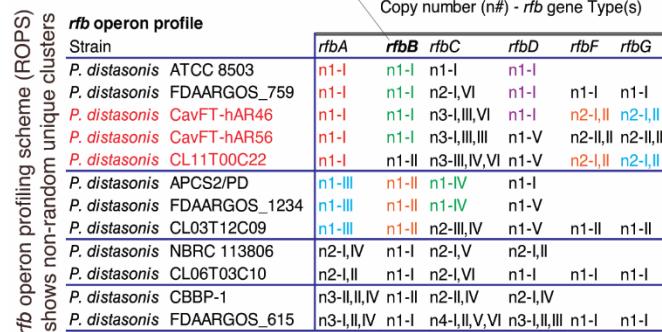
235 Considering that the *P. distasonis* strains examined in this study span 85 years and various
236 geographic locations, from ATCC8503 (USA, c.1933) to 82G9 (South Korea, c.2018), the high minioperon
237 sequence similarity ($P < 0.001$ Figure 3E) indicates well-conserved genomic features across time and
238 space. However, this conservation cannot explain the observed *rfbFGC*->*rfbA* variability. Instead, it implies
239 that an independent genomic mechanism might be responsible for generating modern *rfbFGC*->*rfbA*
240 variants over time, which were not present in the founding strain ATCC8503, 85 years ago.

241 Although the operons in *Alistipes* are more similarly organized (BDCA) than *Parabacteroides*, the
242 sequences are more variable, depending on operon orientation (Figure 3F-G). Of interest, duplicated
243 minioperons in *Parabacteroides* are virtually identical, which contrasts the sequence dissimilarity seen
244 among duplicated *rfb* operons in *Alistipes* (T-Test $P = 0.039$, Figure 3E). The variable homologies across
245 *Alistipes* indicate that they may *i*) produce a more variable array of LPS/O-antigens, with at least two
246 different types of O-antigens if operons are duplicated, and/or *ii*) have higher virulence *in vivo*. Given the
247 emergence of *Alistipes* as an emerging genus in human diseases (1), we developed PCR primers for
248 *rfbBDCA/ACDB* operons to facilitate their future study in *Alistipes* (Supplementary Table 1).

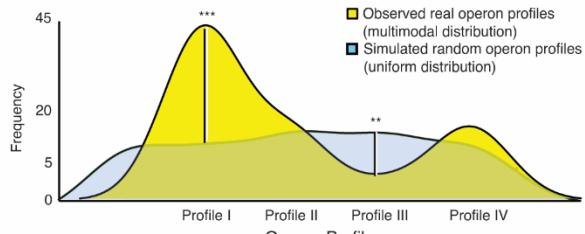
249 **Genome 'rfb operon profiling' shows minioperon occurrence is not random.** To further
250 characterize the *rfb* genes and the genome-wide operon patterns in *Bacteroidota*, we propose a global 'rfb
251 operon profiling' system (GOPS). Using our *rfbA*-typing methodology (3) and *P. distasonis* strains as a
252 model, we showed that it is possible to discern the strains examined based on distinct genotypes for each
253 *rfb* gene (*rfbB*-types n=2, *rfbC*-types n=6, *rfbD*-types n=4, *rfbF*-types n=2, *rfbG*-types n=2, Figure 4A &
254 Supplementary Figure 4). By applying the previous scheme to generate a combined alphabetic-numeric
255 profile of the entire *rfb* operon, accounting for both copy number and *rfb* genotype, we generated summary
256 profiles for testing (Figure 4B). Of note, this system may be broadly applied to type other operon genes.
257 Remarkably, the GOPS profiles identified were determined to be reproducible, favoring profiles that are
258 statistically different from random profiles, supporting the assumption that minioperon arrangements have
259 been selected over time (Figure 4C).

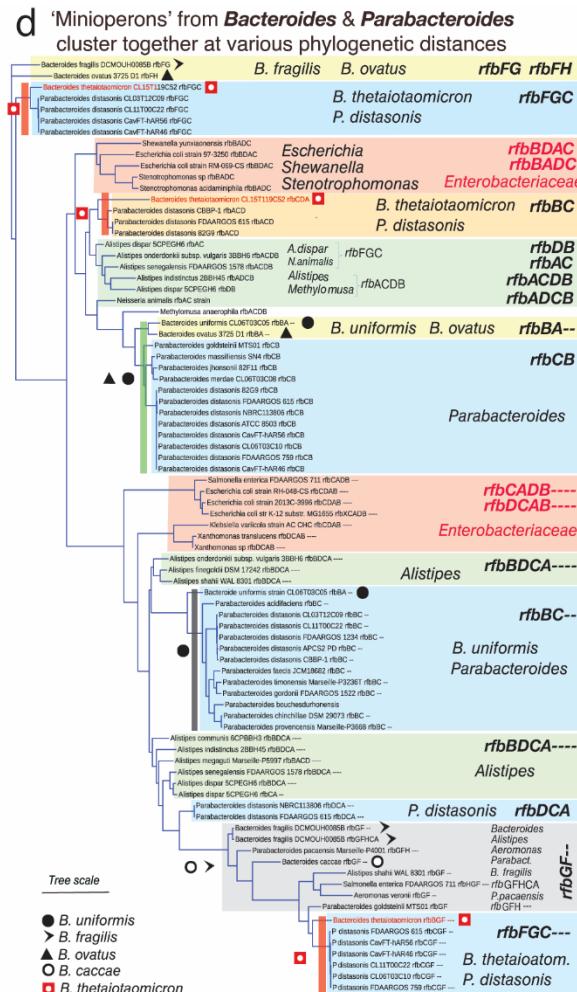

260 **Minioperons from *Bacteroides thetaiotaomicron* and *Parabacteroides* cluster together.**
261 Considering the challenges of examining all *Bacteroidota* minioperons with current operon mapping tools
262 (29-32) and the high prevalence of incomplete draft genomes, we next used the NCBI-BLAST database to
263 further investigate if the observed minioperon patterns were *i*) non-random, and *ii*) either widespread across
264 various phyla in the NCBI database or exclusive to particular genera or species. Using *P. distasonis*

265 minioperon sequences, we found that the *rbf* doublets and triplets are limited to *P. distasonis* strains
 266 exhibiting $\geq 99\%$ coverage. Low-matching hits for *rbf* operons/minioperons present with lower ($\leq 24\%$)
 267 sequence coverage were more similar to *Bacteroides* species (*B. thetaiotaomicron*, *B. caccae*, *B.*
 268 *cellulosilyticus*) and more distant ($\leq 3\%$ coverage) from *Proteobacteria*, suggesting that the evolution of O-
 269 antigen in *Parabacteroides* has been closer to *Bacteroides* than to *Proteobacteria* (Supplementary Table
 270 2). Phylogenetic analysis of mini/operons from *Enterobacteriaceae* and *Bacteroidota* with the best
 271 BLAST/NCBI sequences (lowest E-scores) further illustrates the well-conserved nature of *Bacteroides* spp.
 272 minioperons across genera, and the little similarity to *Proteobacteria* (Figure 4D).


273 Of utmost evolutionary interest, a specific strain of *B. thetaiotaomicron*
 274 (CLT5T119C52/USA/c.2018) clustered in three distinct clades (*rbfFGC*, *BC*, and *FGD*) with *P. distasonis*,
 275 including CavFT strains. This finding indicates that *Parabacteroides/Bacteroides* clusters are likely to have
 276 a common ancestor or high affinity for DNA exchange and horizontal 'operon' transfer (Figure 4D). These
 277 *Parabacteroides/Bacteroides* minioperon clades also harbored *B. uniformis* or *B. ovatus*, but not *Alistipes* or
 278 *Enterobacteriaceae*.

279


a The *rbf* genes due to insertions/deletions can be genotyped/clustered


b

C *rbf* operon profiling illustrates non-random selection of some types

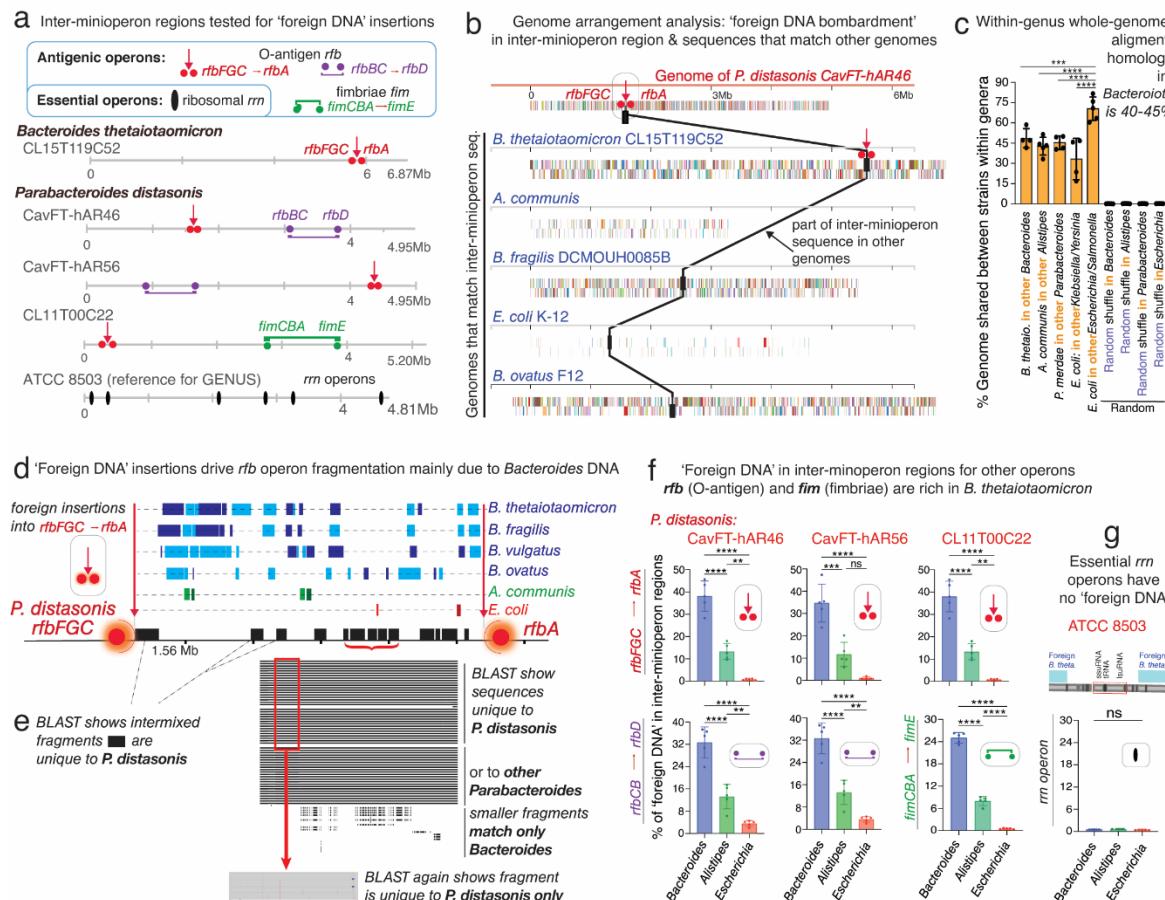

280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291

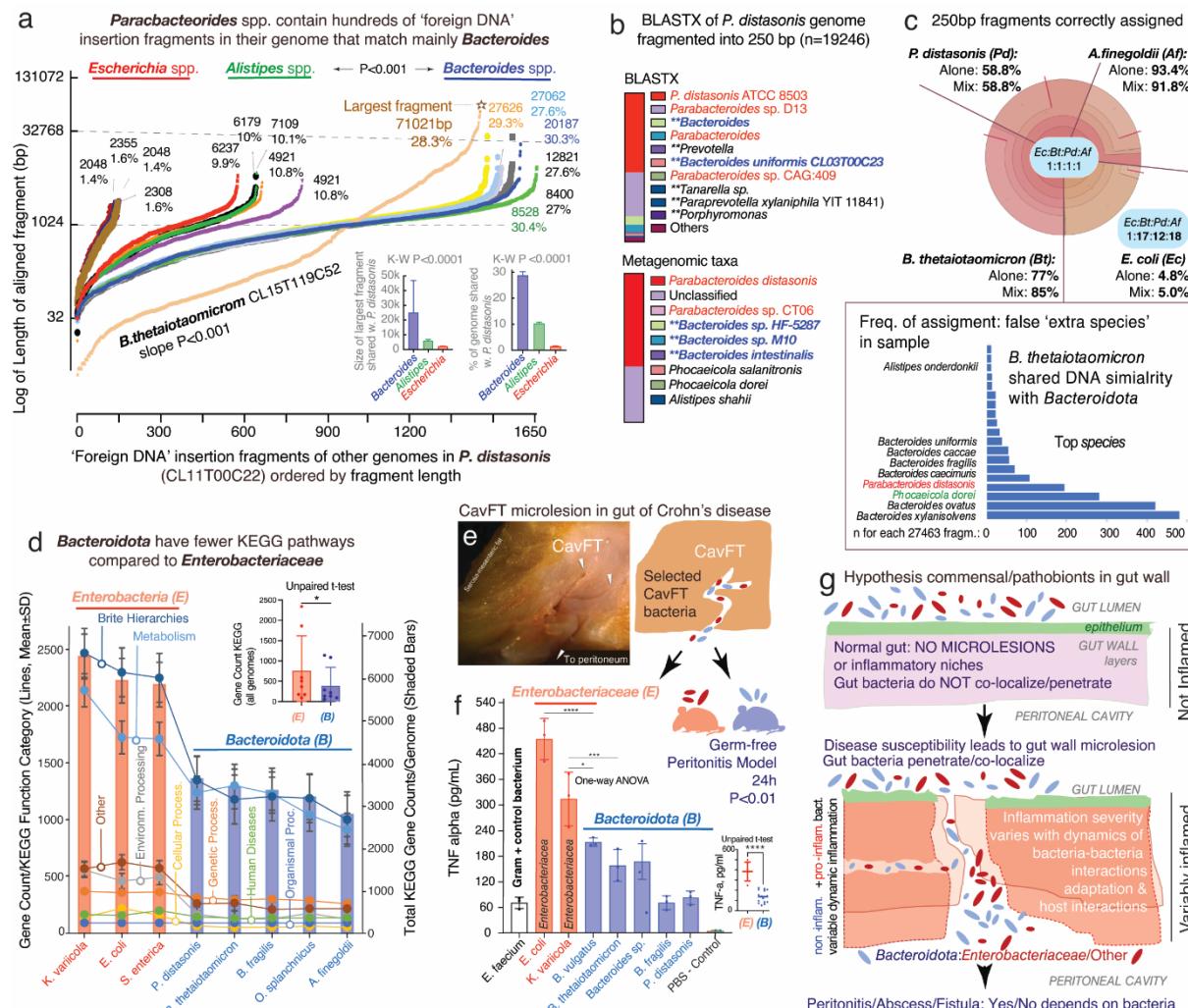
Figure 4. 'Rfb-Operon Profiling' indicates non-random selection and minioperon similarity between Parabacteroides and Bacteroides, namely *B. thetaiotaomicron*. A) Gaps and insertions in *rbf* gene sequences designate different *rbf*-types using protocols described for *rbfA*-typing (3). **Supplementary Figure 4** illustrates the *rbf*-typing of *rbfC/D/F/G*. **B)** Example of global *rbf* operon profiling system (ROPS) for *P. distasonis*. **C)** Density plots between random and real *rbf* operon profiles in *P. distasonis*. Observed types are statistically different from a random (uniform) distribution (**, *** for $P < 0.05$ and $P < 0.01$, respectively). **D)** Phylogenetics across *Bacteroidota* and *Enterobacteriaceae* based on *rbf* mini/operon sequences. Remarkably, several *Bacteroides* species, but namely *B. thetaiotaomicron* CLT5T119C52, cluster together with several *Parabacteroides*, especially *P. distasonis*, irrespective of minioperon considered (red squares; further details in *Supplementary Figures 5*).

292 **Operon fragmentation through 'foreign DNA' insertions from *Bacteroides*.** Given the known
 293 high-frequency of horizontal gene transfer (HGT) between *Bacteroides* and gram-negative microbes in the
 294 gut (33), the presence of *rfb* minioperons in *Bacteroidota* could indicate that sharing certain *rfb* patterns
 295 could reflect adaptation/selection benefits. However, such HGT exchange theory could not explain the
 296 observed genus-specificity and low frequency of minioperons in other taxa. Therefore, we hypothesized that
 297 the cumulative insertion of 'foreign DNA' between *rfb* genes could account for the fragmentation of operons
 298 and the variable *rfbFGC*->*rfbA* separation distances observed in **Figure 2A-D**. We further hypothesized that
 299 the genetic exchange in *Bacteroidota* could be a specialized event, confined to niches with compatible
 300 species, rather than occurring randomly in the gut. Supported by clades in **Figure 4D** (containing
 301 *Bacteroides* matching *Parabacteroides* of CavFT origin), this exchange could explain the low representation
 302 of *rfb* minioperons in NCBI. Testing these hypotheses, we first performed whole genome rearrangement
 303 analysis to quantify the percentage of genome matching sequences and their fragment sizes. We then
 304 examined the sequences located within fragmented *rfbFGC*->*rfbA* minioperons and select surface antigenic
 305 fimbriae inter-minioperon regions as depicted in **Figure 5A**.

306 Genome rearrangement analyses showed that 30-45% of the *P. distasonis* genome sequence, in
 307 various fragment sizes, match that of *B. thetaiotaomicron*, confirming the two strains belong to different
 308 clades at genome scales. However, such finding also emphasizes the potential for disruptive random
 309 'foreign DNA' insertions into operons, since genome alignment showed that the largest shared DNA
 310 fragment was also present in other *Bacteroides* (**Figure 5B-C**). Of mechanistic interest, we found that the
 311 DNA present in the inter-minioperon *rfbFGC*->*rfbA* sequences represent an overlapping mixture of DNA
 312 that matched primarily *Bacteroides* (27-45%; *B. thetaiotaomicron*, *B. fragilis*, *P. ovatus*), with limited
 313 similarity to *Alistipes* or *E. coli*, and no evidence of similarity to random sequences (shuffled genomes;
 314 **Figure 5C-D**). Notably for *P. distasonis*, the entire inter-minioperon sequence represents the combination
 315 of 'foreign' *Bacteroides* DNA intermixed with DNA sequences verified by BLAST as pure *P. distasonis*
 316 (**Figure 5D-E**). This suggests that, over time, such inter-minioperon sequences have either become specific
 317 for *P. distasonis*, or they represent insertions of 'foreign DNA' from other *P. distasonis*. Examination of *rfb*
 318 inter-minioperon regions in other strains and in the antigenic fimbriae (*fim*) minioperons in *P. distasonis*
 319 strain CL11T00C22 (strain with most complete set of *fim* genes (34), **Figure 5F**) confirmed the same
 320 pattern of *Bacteroides* predominance.

322 **Figure 5. Fragmentation of nonessential operons is driven by insertions of 'foreign DNA', mainly**
323 ***Bacteroides*.** **A)** Schematics of O-antigen (*rfb*), fimbriae (*fim*) and ribosomal (*rrn*) gene operons tested for
324 DNA insertions. **B)** Example of *P. distasonis* inter-minioperon DNA fragment found in other genomes. **C)** %
325 of DNA from one species common to the genome of 4-5 other species within the genus. **D)** Schematics
326 showing source of 'foreign DNA' insertions into the *rfbFGC*->*rfbA* space separating the *rfb* genes in *P.*
327 *distasonis*. **E)** 'Pure' *P. distasonis* DNA fragments intermixed within inter-minioperon 'foreign DNA'
328 insertions. **F)** Genus sources and % of 'foreign DNA' fragmenting the *rfb* and *fim* minioperons in *P.*
329 *distasonis*, as in **Figure 5A**. *Bacteroides* (*B. thetaiotaomicron*, *B. fragilis*, *B. ovatus*, *B. vulgatus*) are the
330 main source of 'foreign DNA bombardment' ($P < 0.0001$ vs. *Alistipes* and *Escherichia*). Additional information
331 is available in **Supplementary Table 3**. **G)** Ribosomal operons (*rrn*, deemed essential) are not fragmented
332 in *P. distasonis*, despite presence of 'foreign DNA' in vicinity. *, **, ***, for $P < 0.01$, $P < 0.001$, $P < 0.0001$,
333 respectively. **Supplementary Table 4** shows *rrn* operons are not fragmented in other genera, i.e.,
334 *Prevotella*, *Bacteroides*, *Alistipes*, and *Porphyromonas*.
335

336 **No fragmentation in ribosomal operons.** Lastly, to determine if operon fragmentation also
337 affected essential genes, we examined ribosomal *rrn* operons (~5000bp containing highly conserved 16S,
338 23S and 5S rRNA/tRNA genes). We *i*) assessed *rrn* operon integrity, and *ii*) quantified the amount of *B.*
339 *thetaiotaomicron* DNA found in or near the *rrn* operons of diverse genomes; as an analytical control, we
340 also quantified the amount of *B. thetaiotaomicron* DNA found in randomly generated 5000bp-loci. Analysis
341 revealed that none of the *P. distasonis* *rrn* operons studied (encompassing 21 rRNAs and interspersed
342 tRNA genes) were fragmented or contained *B. thetaiotaomicron* (Fisher's exact $P=0.0081$, vs. randomly
343 selected loci; 0/7 vs. 12/20; **Figure 5G**), despite being exposed to the same 'foreign DNA insertion
344 pressure', which was inferred by comparing the average distance of the nearest *B. thetaiotaomicron* DNA
345 insertion to the *rrn* operon (vs. distances to randomly generated locus coordinates; T-test $P=0.79$).
346 Interestingly, multiple large spans (50,000+bp) of bacterial genome were found to be free of *B.*
347 *thetaiotaomicron* DNA which could be considered as a future strategy to identify essential operons.


348 **'Foreign DNA' insertions in *Bacteroidota* on metagenomic statistics.** Ranking analysis of all
349 DNA fragments from 15 genomes that aligned to *P. distasonis* CL11T00C22, shown as dot plots in **Figure**
350 **6A**, illustrates that *Bacteroides* are the most likely sources of recent genomic exchange with
351 *Parabacteroides* based on the number and size of homologous DNA fragments. Especially intriguing is that
352 *B. thetaiotaomicron* strain CLT5T119C52, again, has the most distinctive sharing pattern (largest
353 number/longest fragments) with *Parabacteroides*, suggesting that DNA exchange is an active, still ongoing
354 interspecies process. Similar insertions of *B. thetaiotaomicron* DNA were also observed in other inter-
355 minioperon regions in other genera (*B. fragilis*, *Barnesiella viscericola*, *P. intermedia*, and *A. shahii*).
356 Analysis indicates that not all species are equally likely to receive *B. thetaiotaomicron*, further supporting
357 that inter-species exchange is not random across the phylum, but rather, driven by yet unknown pairing
358 factors among species that share environments where other *Bacteroides* may be DNA donors (*B. fragilis*, *B.*
359 *ovatus*; **Supplementary Figure 6 & Supplementary Table 5**).

360 With a large number of 'foreign DNA' insertions in the genome that could disrupt operons ($n=1450$ -
361 1650, x-axis **Figure 6A**), there is also potential for impacting metagenomic results. In examining the
362 taxonomic assignment of inter-minioperon sequences using BLAST, we first illustrated the potential for
363 metagenomic overestimation ('inflation': calling of 'extra species' in a sample when they are not there).
364 BLAST suggests this could be important for strains avid to share DNA, but not for non-avid strains. While
365 numerous inter-minioperon sequences matched to several *B. thetaiotaomicron* strains in NCBI with 100%
366 coverage and >99% identity (81% of top hits), in a few cases (<4%) DNA matched other *Bacteroides* with
367 lower similarity (<85%), such as *B. longzhouii* or *B. faecis*, and *B. fragilis* (21.4% top hits, **Supplementary**
368 **Table 6**). Together, as illustrated in **Figure 5D-E**, analyses indicate DNA insertion similarity is more likely
369 with *Bacteroides*, being restricted to *Bacteroidota*. To expand these BLAST-derived inferences, we used the
370 BV-BRC metagenomics workflow for taxonomic classification of DNA sequences 'in bulk' to inspect entire
371 genomes. By fragmenting the genome of selected strains into equal nonoverlapping 250bp simulated
372 'reads', we determined, *in-silico*, that the species inferred from inter-minioperon sequence queries in NCBI
373 were also reproducible by metagenomics.

374 Since metagenomics uses sequences to deduce *i*) taxonomic composition using BLAST (nucleotide
375 database), or *ii*) taxonomic composition and pathways/functions using BLASTX (protein database), 'foreign
376 DNA' insertions in *Bacteroidota* affect the accuracy of these tools. The impact of 'foreign DNA' insertions
377 can be visualized for both 'individual absolute metagenomic' analyses (fragmented genomes analyzed
378 individually, **Figure 6B**), and on 'relative metagenomic analyses' for a simulated community with four
379 genomes (*A. finegoldii*, *B. thetaiotaomicron*, *P. distasonis*, and *E. coli*, 1:1:1:1, 1X and 20X, **Figure 6C**).
9

380 Although metagenomics aligns fragments/reads into contigs (algorithm assumption) and then finds their
 381 best match in a database with genes representing selected reference strains (BV-BRC n=24868; 16840
 382 species; 30573 taxon units), analysis shows the presence of DNA from numerous *Bacteroidota*, especially
 383 the species shown by NCBI-BLAST in inter-minioperon regions. Top species for *B. thetaiotaomicron*
 384 included *B. xylanisolvans*, *B. ovatus*, *P. dorei* and *P. distasonis*, further confirming inter-species affinity for
 385 selective genetic sharing. Diagnostically relevant, and as anticipated, results also illustrate that
 386 metagenomic workflows could overestimate diversity by suggesting the presence of 'extra species' not
 387 actually present in a sample. Of note, the calling of 'extra species' by metagenomics depends largely on the
 388 fragment length used; however, while the number of fragments called 'extra species' is reduced as
 389 fragments get longer (from 100bp to 16000bp), the relative presence of 'extra species' increases with
 390 fragment length (Pearson's P<0.05), confirming overestimation and suggesting the need of algorithm
 391 revision in current workflows.

392 Assessing communities in confined micro-niches will remain challenging using current
 393 metagenomics, since underestimation of present species ('deflation': species underestimated in abundance
 394 or deemed absent from sample) could also occur in cases where pathobionts/commensals coexist. For
 395 example, our relative community analysis showed that if a species is largely under-assigned by
 396 metagenomics (*E. coli*, ~4%, **Figure 6C**), there will be further overestimation of *Bacteroidota* ratios (12-to-
 397 18-fold magnification vs. *E. coli*, **Figure 6C** and **Supplementary Figure 7**).

398
 399 **Figure 6. Impact of 'Foreign DNA' insertions in *Bacteroidota* on metagenomics, antigenic operons
 400 and bacteria-bacteria inflammatory interactions in a model of gut microlesions.** A) Plot of DNA
 401 fragments that align between *Parabacteroides* CL11T00C22 and *Bacteroides*, *Alistipes*, *Escherichia*
 402 genera (n=16) ordered by length of each aligning fragment. Notice genus-genus differences. B)
 403 *thetaiotaomicron* CL15T119C52 has unique pattern of abundant fragments (maximum fragment sizes and

404 average % of genome shared, inset bar plots). **B)** BlastX (protein) and metagenomic (nucleotide) taxonomic
405 analyses of 250bp-fragmented *P. distasonis* genome. Notice 'extra species' assigned by metagenomics
406 (inflation), reflecting 'foreign DNA' insertions/exchange across *Bacteroidota*, and not real presence of
407 species (inset bar plot). The n of 'extra species' varied with fragment length (Pearson corr. 0.84, P<0.05).
408 The performance of BLAST and BLASTX depends on bacterial genome ([Supplementary Figure 8](#)). **C)**
409 Metagenomic community simulation with *Bacteroides*, *Parabacteroides*, *Alistipes*, and *Escherichia* (1:1:1:1
410 genomes). Krona plot (relative abundances within hierarchies of metagenomic classifications (35))
411 illustrates *E. coli* sequences are poorly assigned to *E. coli* leading to relative ratio overestimation of
412 *Bacteroidota* abundance (1:17:12:18; see Krona plots for individual genomes ('Alone') in [Supplementary](#)
413 [Figure 9](#)). *Bacteroides* is commonly listed as 'extra species' (bar plot; complete list in [Supplementary](#)
414 [Figure 7](#)) **D)** KEGG pathway and total gene counts in *Enterobacteriaceae* and *Bacteroidota*, highlighting the
415 significant differences for *Bacteroidota* (details in [Supplementary Table 7](#)). **E)** Glycostaining of LPS
416 extracted from *E. coli* and *P. distasonis* cultured in different media. **F)** Average pro-inflammatory cytokine
417 secretion by bacteria in the stimulation, indicating that *Bacteroidota* release less pro-inflammatory cytokines
418 compared to *Enterobacteriaceae*. **G)** Hypothetical model of gut microlesions with colonization of
419 commensal/pathobionts modulating inflammation. Peritonitis model showed mice with *Enterobacteriaceae*
420 had fatal peritonitis, but not if receiving *Bacteroidota* *B. thetaiotaomicron*, *B. fragilis*, or *P. distasonis*.
421 *P<0.01; ****P<0.00001.

422
423 **Reduced KEGG pathways, TNF-alpha induction, and peritonitis by (CavFT) *Bacteroidota*.**
424 Since a widespread process of DNA insertions throughout the genome could affect the functionality of
425 various operons and genetic pathways, we next tested if such a phenomenon of operon disruption could be
426 visualized by observing a lower number of functional pathways using a pathways database. By using the
427 Kyoto Encyclopedia of Genes and Genomes (KEGG), a large-scale molecular dataset generated by
428 genome sequencing, high-throughput experiments, and manual curation to infer enzymatic pathways
429 across bacterial genomes (36), we confirmed that *Bacteroidota* have significantly less pathways than
430 *Enterobacteriaceae* (T-test, P<0.05). Although the database may be biased towards *Enterobacteriaceae*
431 due to more published evidence, [Figure 6D](#) demonstrates that selected *Bacteroidota* have significantly
432 fewer functional pathways responsible for 'metabolism' and 'environmental information processing', while
433 there was no difference for pathways responsible for 'organismal systems,' 'human diseases,' 'genetic
434 information processing,' and 'cellular processes', supporting that the findings are well-controlled for basic
435 pathways functions.

436 Of interest, when testing representative CavFT bacterial isolates derived from the gut wall of
437 patients with CD in our laboratory ([Figure 6E](#)), we determined that the overall inflammatory potential of
438 bacteria on murine macrophages was significantly reduced compared to *Enterobacteriaceae*. [Figure 6F](#)
439 shows that TNF-alpha production by macrophages cultured *in vitro* (RAW264.7 cells) exposed to heat-
440 treated bacterial extracts was about half the immune-proinflammatory potential observed for *E. coli* and
441 *Klebsiella variicola*. Controlling for the apoptotic effect that bacterial extracts could have on macrophages at
442 different extract dilutions, (measured using cell viability MTT assay), TNF-alpha data shows that
443 *Bacteroidota* isolates from CavFT have non-inflammatory antigenic phenotypes compared to
444 *Enterobacteriaceae* (e.g., O-antigen *rfb* operons) or *Enterococcus faecium* (gram-positive control). To
445 further validate *in vivo* the sub-inflammatory potential of CavFT *Bacteroidota*, we injected suspensions of
446 live bacteria into the peritoneal cavity of germ-free Swiss Webster mice to quantify their inflammatory
447 potential. Our peritonitis model, based on 270,000 real-time telemetry data points, revealed that the mice
448 receiving *E. coli* or *K. variicola* became febrile, then hypothermic, lethargic, and moribund within 24h post
449 injection, while mice receiving CavFT *Bacteroidota* only became transiently hypothermic following the
450 injection, overall being clinically normal or telemetrically less active until the end of study 24h post injection.

451 Based on evidence of antigenic operon fragmentation by *Bacteroides* and the reduced
452 proinflammatory potential of *Bacteroidota* *in vitro* and *in vivo*, [Figure 6G](#) depicts a hypothesis where
453 *Bacteroidota* invade, interact, and adapt to gut wall micro-niches where other enteric bacteria (e.g.,
454 *Enterobacteriaceae* and *Bacteroidota*) may be present and dynamically fluctuate to explain the cyclical
455 remission-flare dynamics of gut wall inflammation and complications in chronic bowel diseases like CD.

456 457 **Discussion**

458 To explore the causes of pro-inflammatory surface antigen variability affecting gut pathobiont
459 dualism within *Bacteroidota*, this study initially assessed the integrity of the *rfb* operon utilizing a selected
460 set of complete genomes. Validation of findings was achieved by extending the analysis to other genomes
461 and annotated sequence repositories, mainly using NCBI/BLAST. Of note, *Bacteroidota* have their *rfb*
462 operons either intact (*Odoribacter*, *Porphyromonas gingivalis*), duplicated (*Alistipes*) or, mainly, completely

463 or partially fragmented into 'minioperons', which can be classified into at least 5 categories using a broadly-
464 applicable operon cataloguing system ([Figure 1C](#)). Overall, minioperons are highly-conserved features
465 within genera, non-random, rare across NCBI databases, and form distinctive patterns sporadically shared
466 among distant species, indicating a common mechanism for operon fragmentation within the phylum. By
467 characterizing and cataloging *rbf* operon fragmentation patterns, we determined that the insertion of 'foreign
468 DNA' from other bacteria, mainly *Bacteroides*, could explain operon fragmentation as observed in *P.*
469 *distasonis* (supernumerary minioperon fragmentation), which was used together with *Alistipes* spp. as
470 model bacteria for hypothesis testing.

471 Intriguingly, the presence of *Bacteroides* 'foreign DNA' insertions between antigenic operon genes
472 (*rbf*, *fim*), but not essential ribosomal operons (*rrn*), implies that DNA insertions/operon damage favors
473 selection if effects allow bacterial survival. Indeed, previously observed patterns of operon disruption in
474 *Bacteroides* spp. have been linked to functional themes related to niche-habitat survival (37, 38),
475 suggesting a similar phenomenon may occur across *rbf* operons in *Bacteroidota*. Furthermore, prior
476 literature supports that, in addition to reductions/loss of the O-antigen (39, 40), *rbf* gene mutations influence
477 bacterial survival (41) and bacteriophage infection (42). While more research is needed to elucidate how *rbf*
478 gene dosage and structure influence LPS and/or other cellular KEGG ontology maps and functions in
479 *Bacteroidota*, our analyses demonstrated the lack of O-antigen production by *P. distasonis* under different
480 growth conditions and the lower TNF-alpha production induced by CavFT *Bacteroidota* isolated from CD
481 patients in our laboratory (14, 15), or the lack of induction of peritonitis, which contrast reports of severe
482 peritonitis due to *B. thetaiotaomicron* or *B. fragilis*, which are commonly seen in immunocompromised
483 individuals (43-46).

484 Of evolutionary interest, several *Bacteroides*, including the bacterium *B. thetaiotaomicron*
485 CL15T119C52 (human/feces/2018) were remarkably noted to cluster with *P. distasonis* CavFT strains (CD
486 patients/2019) based on conserved minioperons ([Figure 4](#)). This suggests there is preferential DNA
487 exchange among certain strains (namely *Bacteroides* as shown throughout the study, [Figures 5 and 6A](#)).
488 Our *in-silico* analyses, manual annotation, and experimental observations serve as a proof-of-principle for
489 the (primarily) *Bacteroides* DNA insertion mechanism of operon fragmentation and its potential impact on
490 metagenomics. Findings provide novel insights and opportunities for diagnostics and therapeutic
491 developments, especially considering that the most remarkable findings, such as the distancing of the
492 *rbfFGC->rbfA* minioperons, involve bacteria isolated from chronic inflammatory microenvironments in CD
493 patients. Our study for the first time examines and reports the genomic features of CavFTs in context with
494 other members of the phylum, also isolated from CavFTs, which could evolve and adapt into lineages that
495 may survive on/inside micro-niches in the inflamed gut wall (23).

496 In conclusion, our findings highlight that operon fragmentation provides novel mechanistic insights
497 for commensal adaptation and metagenomic applications. An improved understanding of *Bacteroidota rfb*
498 operons can provide valuable insights into bacterial genetics and their role in human health, as well as help
499 refine experimental strategies for studying host-pathogen interactions. Future studies on these interactions
500 or disease causality and operon integrity would benefit from combining bacterial isolation with genomic and
501 transcriptomic sequencing to assess KEGG-pathways functionality.

502 **Materials and methods**

503 **Genome Databases and Data Collection:** Genome wide genetic analyses for the *rbf* operon were
504 conducted on publicly available datasets and on reference strains sequenced in our laboratory that we
505 isolated from intramural cavernous lesions in the damaged bowel of Crohn's disease patients as previously
506 reported (5, 23). Only complete reference genomes of selected strains of human derived
507 *Enterobacteriaceae* (e.g., *E. coli* K12, as reference for the *rbf* operon), selected strains for representative
508 genera of the *Bacteroidota* phylum, all available reference strains for all species within the *Alistipes* and
509 *Parabacteroides*, and all available strains for the *Parabacteroides distasonis* species were used in this
510 study. National Center for Biotechnology Information (NCBI) GenBank and the Bacterial and Viral
511 Bioinformatics Resource Center (BV-BRC) were accessed for bacterial genomic data. Data collected from
512 each genome includes accession number, genome length, *rbf* gene copy number, nucleotide sequence,
513 location, and direction within the genome. All results of the *rbf* gene query were manually verified using
514 NCBI annotated graphical portals. Additional data was collected to find the closest homolog of conserved
515 minioperons in *P. distasonis*; We used the previously obtained FASTA sequences of *P. distasonis* *rbf*
516 minioperons as input queries in the nucleotide Basic Local Alignment Search Tool (BLAST) using default
517 settings under the nr/nt database, and BLAST hit result data and *rbf* gene sequence data for matching
518 organisms from homologue queries were subsequently collected.

519 **Visualization of *rbf* gene dosage and location:** The *rbf* genes for each genome were graphed
520 (using gene coordinates) along a linear axis representing each bacterial genome to visualize the respective
521

522 *rfb* operon distribution pattern in each bacterium. *Rfb* gene and minioperon/operon copy numbers for each
523 genome were used to generate heatmaps demonstrating relative *rfb* gene dosages. Heatmaps for *rfb* gene
524 dosages in *P. distasonis* strains were created using ClustVis (47) and a summary heatmap of *rfb* gene
525 dosages for all genomes was generated with the web tool Morpheus
526 (<https://software.broadinstitute.org/morpheus>).

527 **Homology Analyses:** Sequences of recurring doublets; *rfbCB*(++) and *rfbBC*(--), and of recurring
528 triplets; *rfbACD*(+++), *rfbDCA*(---), *rfbFGC*(+++), and *rfbCGF*(---), were collected and aligned with both their
529 respective doublets/triplets in *Parabacteroides* genomes as well as their respective reverse complements.
530 In *Alistipes* spp., sequences of its *rfbACDB*(++++)/*BDCA*(----) operons were aligned to determine
531 homologies at the species level. Of note, no consistent patterns of minioperons were observed in the
532 selected *Bacteroides* or *Prevotella* spp., thus no analyses could be performed to determine their respective
533 homologies. Sequence homology was performed using the Sequence Identity and Similarity (SIAS) tool
534 (<http://imed.med.ucm.es/Tools/sias.html>).

535 **Global *rfb* operon profiling system (GOPS) design:** DNA sequences for each *rfb* gene in
536 complete *P. distasonis* strain genomes were collected and aligned respectively (e.g., *rfbB* gene alignment,
537 *rfbC* gene alignment, etc.) in CLC Genomic Workbench (commercially available). Following our previously
538 developed *rfbA*-typing protocol (3), *rfb*-gene-types were designated for each *rfb* gene alignment. The
539 aggregate results of the copy number(s) and *rfb*-type(s) for each genome were used to construct an
540 example *rfb* operon profiling system, utilizing the nomenclature system previously proposed for *rfbA*-type
541 reporting in *Bacteroidota* (3).

542 **Intergene and *rfb* loci statistics:** The linear distance between each *rfb* gene was determined by
543 calculating the number of base pairs in between consecutive genes in each genome. *Rfb* loci were counted
544 in each genome, where a locus was determined to be a discrete location of either a single *rfb* gene or a
545 cluster of contiguous *rfb* genes (operons/minioperons). Statistical analyses were performed to determine if
546 *rfb* intergene linear distances and number of *rfb* gene loci differed significantly between the genera and
547 phyla examined. The range and variance of *rfb* intergene distances was also determined at the genus and
548 species level for *Parabacteroides* and *Alistipes*. Prior to statistical analysis, *rfb* intergene linear distance
549 data was log transformed. Transformed *rfb* intergene linear distances and *rfb* gene loci data were analyzed
550 using Brown-Forsythe ANOVA and Welch's ANOVA to determine if statistically significant differences
551 existed between the respective mean values of these data for *Enterobacteriaceae*, *Parabacteroides*,
552 *Bacteroides*, *Prevotella*, and *Alistipes*.

553 **Construction of phylogenetic trees:** The phylogenetic tree of whole genomes was made by
554 Bacterial and Viral Bioinformatics Resource Center (BV-BRC), under the default setting for codon tree
555 (which uses 100 amino acids) and nucleotide sequences from BV-BRC's global Protein Families to build an
556 alignment and then generate a tree based on the differences within those selected sequences. For the
557 phylogeny of *rfb* gene clusters (operons and minioperons), the nucleotide FASTA sequences encoding the
558 *rfb* operons and minioperons were downloaded from NCBI database. The multiple sequence alignments of
559 all nucleotide sequences were performed using the clustal omega
560 (<https://www.ebi.ac.uk/Tools/msa/clustalo/>) which was used for the construction of phylogenetic trees with
561 the maximum likelihood methods for evolutionary analysis by using Webserver IQ-Tree
562 (<http://iqtree.cibiv.univie.ac.at>) under default parameters of ultrafast bootstrap. The phylogenetic trees with
563 branches were built with iTOL (<https://itol.embl.de>).

564 **Primer design for amplification of the *Alistipes* spp. *rfbBDCA/ACDB* operon:** Primer design
565 was conducted by identifying left and right flanking regions of the *Alistipes* spp. *rfbBDCA/ACDB* operon
566 alignment of which were whole (i.e., no gaps or deletions) throughout all sequences. Then, from the
567 corresponding regions of the *rfbBDCA/ACDB* operon sequence alignment consensus sequence, left and
568 right flanks of approximately 20 base pair sequences were selected and entered into the Basic Local
569 Alignment Search Tool (BLAST) to confirm accuracy in identifying *Alistipes* spp. utilized in this study.

570 **Random sequences.** Random generation of genomes and the random shuffling of complete
571 genomes were conducted using Sequence Manipulation Suite software
572 (https://www.bioinformatics.org/sms2/shuffle_dna.html) with parameters that matched the %GC content of
573 relevant and selected species, including 43% GC content to mimic *Bacteroides* genomes (*B.*
574 *thetaiotaomicron* CL15T119C52: 43.07%, *B. fragilis* DCMOUH0085B: 43.61%, *B. ovatus* F-12: 41.98%, *B.*
575 *vulgatus* NCTC10583: 42.03%, and *B. dorei* MGYG-HGUT-02478: 42.04% for an average of 42.55%).

576 **Calculation of the gene combination of *rfb* minioperons:** For the bacterial genomes used in this
577 study, the number of potential *rfb* minioperon combinations for each bacterium was determined by
578 calculating the sum of the permutations of these minioperon gene combinations.

579 **LPS Extraction and Glycoprotein Staining:** *P. distasonis* and *E. coli* were cultured in five different
580 conditions (BHI+ 5% Yeast Extract, 50% BHI Broth, BHI Broth+5% Yeast Extract with normal person heat-

581 killed feces, BHI+ 5% Yeast Extract with 4% bile and 50% BHI Broth with CD patient heat-killed feces) and
582 centrifuged at 2000g for 10 minutes. The supernatant was decanted and the masses of the pellets were
583 obtained. The LPS was extracted by LPS extraction kit (Sigma Aldrich Catalogue Number: MAK339) using
584 the manufacturer's instructions. In short, the cell pellets were resuspended in lysis buffer at a ratio of 100 μ L
585 of buffer for every 10 mg of cell pellet. The bacterial cells were lysed using a MP Fast-Prep 24
586 Homogenizer, using 4 rounds of shaking at 4 m/s for a duration of 20 seconds. The lysed pellets were then
587 centrifuged at 10000g for 5 minutes to sediment the cell debris. The supernatant containing LPS was
588 collected in a separate tube, to which proteinase K was added for a final concentration of 0.01 mg
589 proteinase K/ml. The solution was heated to 60°C and held for 60 minutes. Following this, the solution was
590 centrifuged at 10000g for 5 minutes, and the supernatant containing the free LPS was collected. The LPS
591 extracts were loaded into a NuPAGE 4-12% Bis-Tris Gel (NP0335BOX) along with commercially available
592 LPS (Sigma) derived from *E. coli*, as well as a pre-stained protein ladder. The gel bands were fixed by
593 incubating the gel in 50% Methanol for 30 minutes at room temperature. The gel was stained using a
594 commercially available Pierce™ Glycoprotein Staining Kit according to the manufacturer's instructions.
595 Briefly, the gel was then immersed in a 3% acetic acid solution and incubated for 10 minutes at room
596 temperature. The solution was removed and replaced with fresh acetic acid for another 10 minutes. The gel
597 was then submerged in the oxidizing solution and incubated for 15 minutes with agitation using an orbital
598 shaker. The gel was washed three times with 3% acetic acid for minutes. The gel was then transferred to
599 the glycoprotein staining solution and incubated for 15 minutes on an orbital shaker.

600 **TNF- α Stimulation Assay in RAW 264.7 cells:** The RAW 264.7 cells were flushed and cultured in
601 DMEM (Dulbecco's Modified Eagle's Medium (DMEM)) and supplemented with 10% FCS, NEAA, glutamax,
602 penicillin-streptomycin. Cells were plated for experiments after 6 days. Cells were plated at 4×10^4 cells
603 per well of a 96-well plate, and all cell lines were seeded 16 hours prior to challenging. The bacteria were
604 cultured, and pellets were resuspended in PBS. Each pellet was heat killed by placing in a heating block for
605 30 min at 95°C. To normalize the concentrations of each bacterial suspension, the OD600 value was taken.
606 The different dilutions (1:1, 1:5, 1:25 and 1:125 dilution) of the heat killed bacterial extract were added to the
607 RAW 264.7 cells, then the medium was collected after 18 h for testing by TNF enzyme-linked
608 immunosorbent assay.

609 **Peritonitis model.** To quantify the impact of bacteria on the ability to trigger inflammation *in vivo*,
610 we conducted studies with mice using a peritonitis model. Using fresh anaerobic bacterial preparations
611 (10^8 CFU/mL), each animal received an intraperitoneal injection of selected bacteria and underwent
612 continuous monitoring for 24h prior to being euthanized. Real time mobility in the cage measured with
613 subcutaneous RFID tags, response to stimuli, body temperature, mortality, and bacterial viability in the
614 peritoneal fluid were measured as main outcomes.

615 **Statistics.** Data analysis was conducted using parametric and non-parametric statistics using
616 parametric or non-parametric methods (e.g., student T-tests, ANOVAs) using the software STATA (v17), R,
617 and GraphPad, which was used primarily to make bar plots or boxplot illustrations where significance is
618 represented as asterisks based on the level of significance which was held at $p < 0.05$ (*), < 0.001 (**) and
619 < 0.0001 (***). Stata functions were used to assess multimodality (minioperon types observed vs. simulated
620 random) as previously reported in our laboratory (48). Together, data analysis represents over 636
621 analytical submissions made to the various bioinformatic resources described in this study.

622 **Assessing operon fragmentation.** Using the Bacterial and Viral Bioinformatics Resource Center
623 (BV-BRC; Bacterial and Viral Bioinformatics Resource Center) as the data source and genome alignment
624 tool, genomic homologies were first assessed between *P. distasonis* and representative members of
625 *Bacteroides*, *Alistipes*, and *Escherichia*, respectively, to test the hypothesis that genomic insertions were
626 not from random sources but rather derived primarily from *Bacteroides*. We then identified unique *rfb* order
627 series that were present across seemingly unrelated genomes (chronologically, geographically), including
628 the series '*rfbFGC* → *rfbA*', wherein a triplet (*rfbFGC*) is followed by a nearby separated singlet gene (*rfbA*).
629 Focused on *Bacteroides* and *P. distasonis* as recipient genomes, including CavFT strains, we examined
630 inter-minioperon DNA sequences (e.g., between *rfbFGC* and *rfbA*) to conduct genome-wide arrangement
631 analysis between such regions in *P. distasonis* and the genomes of *B. thetaiotaomicron*, other *Bacteroidota*,
632 and *E. coli* to quantify their genus-dependent potential as donors of 'foreign DNA'. Intra-phylum genome
633 homologies of *Enterobacteriaceae* were also measured as a referent. We assessed the genetic homologies
634 of three inter-minioperon segments (*rfbFGC* → *rfbA*, *rfbCB* → *rfbD*, *fimCBA* → *fimE*) present either
635 completely or uniquely across three *P. distasonis* strains (CavFT-hAR46, CavFT-hAR56, and
636 CL11T00C22). Whole genome homologies were then compared to inter-minioperon genetic homologies.
637 Next, selectivity of operon fragmentation was assessed in the *P. distasonis* ATCC 8503 reference genome,
638 for which 7 16S rRNA loci were annotated in BV-BRC. These 7 loci were compared with 20 randomly
639 generated loci of similar size to compare the amount of *B. thetaiotaomicron* DNA in or near each locus.

640 **Genome fragmentation alignment analysis.** We quantified and plotted the distribution of DNA
641 fragments detected by genome alignment ranked by fragment number (x-axis) vs. the size of each fragment
642 (y-axis) across 16 genomes (4 *Escherichia* spp., 5 *Alistipes* spp., and 7 *Bacteroides* spp.) individually
643 aligned to *P. distasonis* in BV-BRC.

644 **Assessment of fragmentation in other antigenic (fimbriae, *fim*) operons.** Recently, researchers
645 investigating the antigenic cell surface structure of *P. distasonis* identified fimbriae (*fim*) operon genes in
646 several strains (34), though there was again ample heterogeneity in the type and quantity of these genes
647 amongst the strains investigated, suggesting operon fragmentation could also occur for other functions. For
648 this analysis we used the *P. distasonis* CL11T00C22 strain genome as it contains the most complete set of
649 identified *fim* operon genes.

650 **Metagenomics of Bacteroidota.** Whole genome sequences of select *Bacteroidota* (and
651 *Escherichia coli* K-12 as referent) downloaded from NCBI were split into 250bp sequences using FASTA-
652 splitting software (https://www.bioinformatics.org/sms2/split_fasta.html) to approximate the range of *in vivo*
653 DNA samples which are commonly used for shotgun sequencing (49). The sequences for each respective
654 genome were then used as inputs for taxonomic classification in BV-BRC as well as for assessment of
655 matching protein sequences using BLASTX.

656 We validated our hypothesis using principles of genomic and metagenomics data analysis using
657 well-referenced and established methods that are readily accessible over the internet to the scientific
658 community (50-52). We used the Bacteria and Virus Bioinformatics Resources Center (BV-BRC) web
659 server as it integrates multiple analysis steps into single workflows (52), by combining the resources from
660 the former Pathosystems Resource Integration Center (PATRIC), the Virus Pathogen Database and
661 Analysis Resource (ViPR) and the Influenza Research Database (IRD) (50, 51). Analysis tools include
662 pipelines for read assembly, open reading frame prediction, and annotation with BLAST, and GO pathways
663 classifiers. The BV-BRC web server is an easy-to-use web-based interface for processing, annotation, and
664 visualization of genomic and functional metagenomics sequencing data, designed to facilitate the analysis
665 of data by non-bioinformaticians (52). Metagenomics results derived from Kraken2, are visualized via Krona
666 as a dynamic online feature for hierarchical data and prediction confidence (35). The BV-BRC online setting
667 provides scientists a fast open-source strategy to analyze raw sequences and generate complex
668 comparative analysis by selecting reference genomes or genomes uploaded by the user to an academic
669 account. Genome arrangement analysis was conducted using the tool 'Comparative Analysis tools'
670 available in beta version. Sequence and genome coordinate data can be examined as summary tables or
671 visually through colored interactive arrangement plots. BV-BRC facilitates effortless inspection of gene
672 function, clustering, and distribution. The webserver is available at <https://www.bv-brc.org/>.

673 **References**

1. Parker BJ, Wearsch PA, Veloo ACM, Rodriguez-Palacios A. The Genus *Alistipes*: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. *Front Immunol.* 2020;11:906. Epub 20200609. doi: 10.3389/fimmu.2020.00906. PubMed PMID: 32582143; PubMed Central PMCID: PMC7296073.
2. Ezeji J, Sarikonda D, Hopperton A, Erkkila H, Cohen D, Martinez S, et al. *Parabacteroides distasonis*: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. *GUT MICROBES*2021.
3. Bank NC, Singh V, Rodriguez-Palacios A. Classification of *Parabacteroides distasonis* and other Bacteroidetes using O- antigen virulence gene: RfbA-Typing and hypothesis for pathogenic vs. probiotic strain differentiation. *Gut Microbes.* 2022;14(1):1997293. Epub 2022/01/30. doi: 10.1080/19490976.2021.1997293. PubMed PMID: 35090379.
4. Nayfach S, Pollard KS. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. *Genome Biol.* 2015;16(1):51. Epub 20150325. doi: 10.1186/s13059-015-0611-7. PubMed PMID: 25853934; PubMed Central PMCID: PMC4389708.
5. Yang F, Kumar A, Davenport KW, Kelliher JM, Ezeji JC, Good CE, et al. Complete Genome Sequence of a *Parabacteroides distasonis* Strain (CavFT hAR46) Isolated from a Gut Wall-Cavitating Microlesion in a Patient with Severe Crohn's Disease. *Microbiol Resour Announc.* 2019;8(36). Epub 2019/09/05. doi: 10.1128/MRA.00585-19. PubMed PMID: 31488526; PubMed Central PMCID: PMC6728636.
6. Di Lorenzo F, Pither MD, Martufi M, Scarinci I, Guzmán-Caldentey J, Łakomiec E, et al. Pairing *Bacteroides vulgatus* LPS Structure with Its Immunomodulatory Effects on Human Cellular Models. *ACS Central Science.* 2020;6(9):1602-16. doi: 10.1021/acscentsci.0c00791.

698 7. Vatanen T, Kostic AD, d'Hennezel E, Siljander H, Franzosa EA, Yassour M, et al. Variation in
699 Microbiome LPS Immunogenicity Contributes to Autoimmunity in Humans. *Cell*. 2016;165(4):842-53.
700 PubMed PMID: 27133167.

701 8. Lindberg AA, Weintraub A, Zähringer U, Rietschel ET. Structure-activity relationships in
702 lipopolysaccharides of *Bacteroides fragilis*. *Rev Infect Dis*. 1990;12 Suppl 2:S133-41. Epub 1990/01/01. doi:
703 10.1093/clinids/12.supplement_2.s133. PubMed PMID: 2406867.

704 9. Rajilić-Stojanović M, de Vos WM. The first 1000 cultured species of the human gastrointestinal
705 microbiota. *FEMS Microbiol Rev*. 2014;38(5):996-1047. PubMed PMID: 24861948.

706 10. Eggerth AH, Gagnon BH. The *Bacteroides* of Human Feces. *J Bacteriol*. 1933;25(4):389-413. Epub
707 1933/04/01. doi: 10.1128/jb.25.4.389-413.1933. PubMed PMID: 16559622; PubMed Central PMCID:
708 PMC533498.

709 11. Chow J, Mazmanian SK. A pathobiont of the microbiota balances host colonization and intestinal
710 inflammation. *Cell Host Microbe*. 2010;7(4):265-76. doi: 10.1016/j.chom.2010.03.004. PubMed PMID:
711 20413095; PubMed Central PMCID: PMC2859213.

712 12. Awadel-Kariem FM, Patel P, Kapoor J, Brazier JS, Goldstein EJ. First report of *Parabacteroides*
713 *goldsteinii* bacteraemia in a patient with complicated intra-abdominal infection. *Anaerobe*. 2010;16(3):223-5.
714 Epub 20100206. doi: 10.1016/j.anaeobe.2010.01.001. PubMed PMID: 20139022.

715 13. Henthorne JC, Thompson L, Beaver DC. Gram-Negative Bacilli of the Genus *Bacteroides*. *J*
716 *Bacteriol*. 1936;31(3):255-74. doi: 10.1128/jb.31.3.255-274.1936. PubMed PMID: 16559884; PubMed
717 Central PMCID: PMC543711.

718 14. Sun H, Guo Y, Wang H, Yin A, Hu J, Yuan T, et al. Gut commensal *Parabacteroides distasonis*
719 alleviates inflammatory arthritis. *Gut*. England: © Author(s) (or their employer(s)) 2023. No commercial re-
720 use. See rights and permissions. Published by BMJ.; 2023.

721 15. Lai H-C, Lin T-L, Chen T-W, Kuo Y-L, Chang C-J, Wu T-R, et al. Gut microbiota modulates COPD
722 pathogenesis: role of anti-inflammatory *Parabacteroides goldsteinii* lipopolysaccharide. *Gut*.
723 2022;71(2):309. doi: 10.1136/gutjnl-2020-322599.

724 16. Honda K, Littman DR. The microbiome in infectious disease and inflammation. *Annu Rev Immunol*.
725 2012;30:759-95. Epub 20120106. doi: 10.1146/annurev-immunol-020711-074937. PubMed PMID:
726 22224764; PubMed Central PMCID: PMC4426968.

727 17. Kverka M, Zakostelska Z, Klimesova K, Sokol D, Hudcovic T, Hrncir T, et al. Oral administration of
728 *Parabacteroides distasonis* attenuates experimental murine colitis through modulation of immunity
729 and microbiota composition. *Clin Exp Immunol*. 2011;163(2):250-9. Epub 2010/11/19. doi: 10.1111/j.1365-
730 2249.2010.04286.x. PubMed PMID: 21087444; PubMed Central PMCID: PMC3043316.

731 18. Kelly D, Conway S, Aminov R. Commensal gut bacteria: mechanisms of immune modulation.
732 *Trends in Immunology*. 2005;26(6):326-33. doi: <https://doi.org/10.1016/j.it.2005.04.008>.

733 19. Kelly D, Campbell JI, King TP, Grant G, Jansson EA, Coutts AG, et al. Commensal anaerobic gut
734 bacteria attenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γ and RelA. *Nature*
735 immunology. 2004;5(1):104-12.

736 20. Di Lorenzo F, De Castro C, Silipo A, Molinaro A. Lipopolysaccharide structures of Gram-negative
737 populations in the gut microbiota and effects on host interactions. *FEMS Microbiology Reviews*.
738 2019;43(3):257-72. doi: 10.1093/femsre/fuz002.

739 21. d'Hennezel E, Abubucker S, Murphy Leon O, Cullen Thomas W. Total Lipopolysaccharide from the
740 Human Gut Microbiome Silences Toll-Like Receptor Signaling. *mSystems*. 2017;2(6):e00046-17. doi:
741 10.1128/mSystems.00046-17.

742 22. Duvallet C, Gibbons SM, Gurry T, Irizarry RA, Alm EJ. Meta-analysis of gut microbiome studies
743 identifies disease-specific and shared responses. *Nature Communications*. 2017;8(1):1784. doi:
744 10.1038/s41467-017-01973-8.

745 23. Singh V, Rodriguez-Palacios A. Genomics of *Parabacteroides distasonis* from Gut-Wall Cavitating
746 Microlesions Suggest *Bacteroides* Resemblance and Lineage Adaptation in Crohn's Disease. [Manuscript
747 submitted for publication]2023.

748 24. Koh GY, Kane A, Lee K, Xu Q, Wu X, Roper J, et al. *Parabacteroides distasonis* attenuates toll-like
749 receptor 4 signaling and Akt activation and blocks colon tumor formation in high-fat diet-fed azoxymethane-
750 treated mice. *Int J Cancer*. 2018;143(7):1797-805. Epub 2018/04/27. doi: 10.1002/ijc.31559. PubMed
751 PMID: 29696632.

752 25. Jacobson AN, Choudhury BP, Fischbach MA. The biosynthesis of lipooligosaccharide from
753 *Bacteroides thetaiotaomicron*. *MBio*. 2018;9(2):e02289-17.

754 26. D'Souza JM, Samuel GN, Reeves PR. Evolutionary origins and sequence of the *Escherichia coli*
755 O4 O-antigen gene cluster *. *FEMS Microbiology Letters*. 2005;244(1):27-32. doi:
756 10.1016/j.femsle.2005.01.012.

757 27. Bäckhed F, Normark S, Schweda EKH, Oscarson S, Richter-Dahlfors A. Structural requirements for
758 TLR4-mediated LPS signalling: a biological role for LPS modifications. *Microbes and Infection*.
759 2003;5(12):1057-63. doi: [https://doi.org/10.1016/S1286-4579\(03\)00207-7](https://doi.org/10.1016/S1286-4579(03)00207-7).

760 28. Rocha EPC. The Organization of the Bacterial Genome. *Annual Review of Genetics*.
761 2008;42(1):211-33. doi: 10.1146/annurev.genet.42.110807.091653. PubMed PMID: 18605898.

762 29. Taboada B, Estrada K, Ciria R, Merino E. Operon-mapper: a web server for precise operon
763 identification in bacterial and archaeal genomes. *Bioinformatics*. 2018;34(23):4118-20. doi:
764 10.1093/bioinformatics/bty496.

765 30. Okuda S, Yoshizawa AC. ODB: a database for operon organizations, 2011 update. *Nucleic Acids
766 Res*. 2011;39(Database issue):D552-5. Epub 20101104. doi: 10.1093/nar/gkq1090. PubMed PMID:
767 21051344; PubMed Central PMCID: PMC3013687.

768 31. Taboada B, Ciria R, Martinez-Guerrero CE, Merino E. ProOpDB: Prokaryotic Operon DataBase.
769 *Nucleic Acids Res*. 2012;40(Database issue):D627-31. Epub 20111116. doi: 10.1093/nar/gkr1020. PubMed
770 PMID: 22096236; PubMed Central PMCID: PMC3245079.

771 32. Mao X, Ma Q, Zhou C, Chen X, Zhang H, Yang J, et al. DOOR 2.0: presenting operons and their
772 functions through dynamic and integrated views. *Nucleic Acids Research*. 2013;42(D1):D654-D9. doi:
773 10.1093/nar/gkt1048.

774 33. Groussin M, Poyet M, Sistiaga A, Kearney SM, Moniz K, Noel M, et al. Elevated rates of horizontal
775 gene transfer in the industrialized human microbiome. *Cell*. 2021;184(8):2053-67.e18. doi:
776 <https://doi.org/10.1016/j.cell.2021.02.052>.

777 34. Chamarande J, Cunat L, Alauzet C, Cailliez-Grimal C. In Silico Study of Cell Surface Structures of
778 Parabacteroides distasonis Involved in Its Maintenance within the Gut Microbiota. *International Journal of
779 Molecular Sciences*. 2022;23(16):9411.

780 35. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a Web browser.
781 *BMC Bioinformatics*. 2011;12:385. Epub 20110930. doi: 10.1186/1471-2105-12-385. PubMed PMID:
782 21961884; PubMed Central PMCID: PMC3190407.

783 36. Kanehisa M, Goto S, Kawashima S, Nakaya A. The KEGG databases at GenomeNet. *Nucleic
784 Acids Res*. 2002;30(1):42-6. doi: 10.1093/nar/30.1.42. PubMed PMID: 11752249; PubMed Central PMCID:
785 PMC99091.

786 37. Koropatkin NM, Cameron EA, Martens EC. How glycan metabolism shapes the human gut
787 microbiota. *Nature Reviews Microbiology*. 2012;10(5):323-35. doi: 10.1038/nrmicro2746.

788 38. Martens EC, Koropatkin NM, Smith TJ, Gordon JI. Complex Glycan Catabolism by the Human Gut
789 Microbiota: The Bacteroidetes Sus-like Paradigm *^{sup}</sup>. *Journal of Biological Chemistry*.
790 2009;284(37):24673-7. doi: 10.1074/jbc.R109.022848.

791 39. Klena JD, Schnaitman CA. Function of the rfb gene cluster and the rfe gene in the synthesis of O
792 antigen by *Shigella dysenteriae* 1. *Mol Microbiol*. 1993;9(2):393-402. Epub 1993/07/01. doi: 10.1111/j.1365-
793 2958.1993.tb01700.x. PubMed PMID: 7692219.

794 40. Liu D, Reeves PR. *Escherichia coli* K12 regains its O antigen. *Microbiology (Reading)*. 1994;140 (Pt 1):49-57. Epub 1994/01/01. doi: 10.1099/13500872-140-1-49. PubMed PMID: 7512872.

795 41. Boels IC, Beertwuyzen MM, Kosters MH, Van Kaauwen MP, Kleerebezem M, De Vos WM.
796 Identification and functional characterization of the *Lactococcus lactis* rfb operon, required for dTDP-
797 rhamnose Biosynthesis. *J Bacteriol*. 2004;186(5):1239-48. PubMed PMID: 14973085.

798 42. Liang J, Li X, Zha T, Chen Y, Hao H, Liu C, et al. DTDP-rhamnosyl transferase RfbF, is a newfound
799 receptor-related regulatory protein for phage phiYe-F10 specific for *Yersinia enterocolitica* serotype O:3.
800 *Scientific Reports*. 2016;6(1):22905. doi: 10.1038/srep22905.

801 43. Chao CM, Liu WL, Lai CC. Peritoneal dialysis peritonitis caused by *Bacteroides thetaiotaomicron*.
802 *Perit Dial Int*. 33. United States2013. p. 711-2.

803 44. Faur D, García-Méndez I, Martín-Alemany N, Vallès-Prats M. Mono-bacterial peritonitis caused by
804 *Bacteroides thetaiotaomicron* in a patient on peritoneal dialysis. *Nefrología (English Edition)*.
805 2012;32(5):694. doi: 10.3265/Nefrologia.pre2012.Jun.11568.

806 45. Chao CT, Lee SY, Yang WS, Chen HW, Fang CC, Yen CJ, et al. Peritoneal dialysis peritonitis by
807 anaerobic pathogens: a retrospective case series. *BMC Nephrol*. 2013;14:111. Epub 20130524. doi:
808 10.1186/1471-2369-14-111. PubMed PMID: 23705895; PubMed Central PMCID: PMC3666898.

809 46. Montravers P, Gauzit R, Muller C, Marmuse JP, Fichelle A, Desmonts JM. Emergence of antibiotic-
810 resistant bacteria in cases of peritonitis after intraabdominal surgery affects the efficacy of empirical
811 antimicrobial therapy. *Clin Infect Dis*. 1996;23(3):486-94. doi: 10.1093/clinids/23.3.486. PubMed PMID:
812 8879770.

813

814 47. Metsalu T, Vilo J. ClustVis: a web tool for visualizing clustering of multivariate data using Principal
815 Component Analysis and heatmap. *Nucleic Acids Research*. 2015;43(W1):W566-W70. doi:
816 10.1093/nar/gkv468.

817 48. Basson AR, Cominelli F, Rodriguez-Palacios A. 'Statistical Irreproducibility' Does Not Improve with
818 Larger Sample Size: How to Quantify and Address Disease Data Multimodality in Human and Animal
819 Research. *J Pers Med*. 2021;11(3). PubMed PMID: 33806843.

820 49. Alneberg J, Karlsson CMG, Divne A-M, Bergin C, Homa F, Lindh MV, et al. Genomes from
821 uncultivated prokaryotes: a comparison of metagenome-assembled and single-amplified genomes.
822 *Microbiome*. 2018;6(1):173. doi: 10.1186/s40168-018-0550-0.

823 50. Parrello B, Butler R, Chlenski P, Pusch GD, Overbeek R. Supervised extraction of near-complete
824 genomes from metagenomic samples: A new service in PATRIC. *PLoS One*. 2021;16(4):e0250092. Epub
825 20210415. doi: 10.1371/journal.pone.0250092. PubMed PMID: 33857229; PubMed Central PMCID:
826 PMC8049274.

827 51. Davis JJ, Wattam AR, Aziz RK, Brettin T, Butler R, Butler RM, et al. The PATRIC Bioinformatics
828 Resource Center: expanding data and analysis capabilities. *Nucleic Acids Res*. 2020;48(D1):D606-d12. doi:
829 10.1093/nar/gkz943. PubMed PMID: 31667520; PubMed Central PMCID: PMC7145515.

830 52. Olson RD, Assaf R, Brettin T, Conrad N, Cucinell C, Davis JJ, et al. Introducing the Bacterial and
831 Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. *Nucleic
832 Acids Res*. 2023;51(D1):D678-d89. doi: 10.1093/nar/gkac1003. PubMed PMID: 36350631; PubMed Central
833 PMCID: PMC9825582.