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Abstract

The causes for variability of pro-inflammatory surface antigens that affect gut
commensal/opportunistic dualism within the phylum Bacteroidota remain unclear (1, 2). Using the classical
lipopolysaccharide/O-antigen ‘rfb operon’ in Enterobacteriaceae as a surface antigen model (5-gene-cluster
rfbABCDX), and a recent rfbA-typing strategy for strain classification (3), we characterized the
architecture/conservancy of the entire rfb operon in Bacteroidota. Analyzing complete genomes, we
discovered that most Bacteroidota have the rfb operon fragmented into non-random gene-singlets and/or
doublets/triplets, termed ‘minioperons’. To reflect global operon integrity, duplication, and fragmentation
principles, we propose a five-category (infra/supernumerary) cataloguing system and a Global Operon
Profiling System for bacteria. Mechanistically, genomic sequence analyses revealed that operon
fragmentation is driven by intra-operon insertions of predominantly Bacteroides-DNA
(thetaiotaomicron/fragilis) and likely natural selection in specific micro-niches. Bacteroides-insertions, also
detected in other antigenic operons (fimbriae), but not in operons deemed essential (ribosomal), could
explain why Bacteroidota have fewer KEGG-pathways despite large genomes (4). DNA insertions
overrepresenting DNA-exchange-avid species, impact functional metagenomics by inflating gene-based
pathway inference and overestimating ‘extra-species’ abundance. Using bacteria from inflammatory gut-wall
cavernous micro-tracts (CavFT) in Crohn’s Disease (5), we illustrate that bacteria with supernumerary-
fragmented operons cannot produce O-antigen, and that commensal/CavFT Bacteroidota stimulate
macrophages with lower potency than Enterobacteriaceae, and do not induce peritonitis in mice. The
impact of ‘foreign-DNA’ insertions on pro-inflammatory operons, metagenomics, and commensalism offers
potential for novel diagnostics and therapeutics.
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Introduction

An operon is a functional unit of DNA that consists of a cluster of contiguous genes, transcribed
together to control cell functions, including the production of the O-antigen component of
lipopolysaccharides (LPS), which is widely present and variable in gram-negative bacteria. The phylum
Bacteroidota (Bacteroidetes), composed primarily of gram-negative gut commensals (6-10), is also known
to have several opportunistic pathogenic species (‘pathobionts’) (11-19), which for unclear reasons have
commensal/pathogenic dualism. Concerningly, species from the phylum have been proposed as future
probiotics because some strains modulate gut immunity locally (6, 20, 21) or influence the susceptibility to
chronic extra-intestinal diseases (e.g., Parabacteroides goldsteinii attenuates obstructive pulmonary
disease (15).

The precise role of Bacteroidota in chronic inflammatory bowel diseases (IBD), namely Crohn’s
disease (CD), remains undefined (22). Supporting a pathogenic role in IBD complications, we recently
discovered that the inflamed bowel of patients with surgical/severe CD have cavitating ‘cavernous fistulous
tract’ micropathologies (CavFT) resembling cavern formations, harboring cultivable bacteria, including
Escherichia coli and Bacteroidota (5, 23). Focused on a few CavFT species, genomic analyses of
consecutive Bacteroidota isolates (Parabacteroides distasonis) from unrelated patients that underwent
surgery for CD suggested, for the first time, that certain bacteria (from a novel lineage in NCBI databases)
are adapting to CavFTs, swapping large fragments of DNA with Bacteroides, and are likely transmissible in
the community (23). To classify P. distasonis and other cultivable Bacteroidota, and to facilitate the orderly
study of such commensal/pathogenic dualism in the phylum, we recently proposed the use of the rfbA gene
for genotyping Bacteroidota. Of interest, rfbA-typing suggested that historical P. distasonis strains isolated
from pathological sources belonged to one of four rfbA types (3).

Compared to the lipid A gene IpxK (which was highly conserved), rfbA-typing studies demonstrated
that the O-antigen (rfb) genes are sufficiently variable to be better associated with the variable pathogenic
potential of Bacteroidota for bacterial genotypic classification. Since lipid A in Bacteroidota induces lower
TLR4 inflammatory activation (6, 15, 21, 24) compared to E. coli, and since the role of O-antigen/LPS in
Bacteroidota is poorly understood (20), herein, we conducted an expanded typing analysis across all genes
of the rfb operon in Bacteroidota using i) existing complete genomes and NCBI genome databases, ii) new
genomes sequenced from CavFT, iii) the classical Enterobacteriaceae rfb operon contiguity as referent, and
vi) using Parabacteroides and Alistipes as emerging pathogenic/probiotic models (1, 2) to identify potential
genomic features impacting surface antigens favoring Bacteroidota commensal/pathobiont dualism.

Results

The classic rfb operon is contiguous in Enterobacteriaceae. As a referent to illustrate the
arrangement of rfb genes involved in the O-antigen synthesis operon in Enterobacteriaceae, we analyzed
reference genomes from E. coli, Klebsiella variicola, and Salmonella enterica. A schematic of the LPS/O-
antigen molecule is shown in Figure 1A. In E. coli K12, Figure 1B illustrates the contiguous arrangement of
five genes which functionally enable the en bloc transcription of the rfb operon (rfbABCDX). Regardless of
transcriptional orientation (positive/negative sense), other Enterobacteriaceae have the same contiguous
arrangement of the rfb genes. Notably, while the length of rfb operons vary across this family, bacteria
predominantly have at least four genes (rfbABCD), organized contiguously, with sporadic singly duplicated
genes. Contiguity is so conserved within the family that Salmonella spp. have operons with up to 15
consecutive rfb genes (Supplementary Figure 1A-B).

The rfb operon in Bacteroidota is often fragmented into ‘minioperons’. To assess the spatial
integrity of the rfb operon in Bacteroidota, we next examined the rfb gene profile (presence/absence) in
available complete genomes. Analysis revealed that the rfb genes in Parabacteroides, Bacteroides, and
Prevotella were not contiguous but fragmented and dispersed throughout the genome. In contrast, Alistipes,
Porphyromonas and Odoribacter have rfb operons composed of the same primordial genes as
Enterobacteriaceae (fbACDB), being intact and/or duplicated, supporting their genomic potential to be
functionally capable of LPS-proinflammatory induction. Within the phylum, operon fragmentation products,
herein referred to as rfb “minioperons”, result in various combinations of rfb singlet genes and
doublets/triplets with variable orientations (sense: +; antisense: -, Supplementary Figure 1C). With E. coli
as referent, using four rfb genes (n=4) as the median maximum number of contiguous genes observed
among Bacteroidota in this study, herein we propose that rfb operons in Bacteroidota can be classified into
at least five categories: i) Mono-operon (single contiguous operon, regardless of numbers of genes in
cluster/locus), ii) Di-operon (duplicated operon), iij) fragmented normo-numerary operon (operon
fragmented with 4 rfb clusters/loci, nL=4), iv) fragmented infra-numerary operon (nL<4 clusters/loci), and v)
fragmented supernumerary operon (nL>4 clusters/loci; Figure 1C). Used alongside a baseline referent, this
system of categorization and cataloguing may be applied to any operon system.
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Envisioning the potential combinatorial variability for the O-antigen via the theoretical pairwise
combination of rfb genes in Bacteroidota, we next determined that mathematical permutations of
minioperons could yield thousands of possible combinations unlikely to yield functional O-antigen
polysaccharides (Supplemental Figure 2A), which proves technically challenging to verify experimentally
for all bacteria by requiring innumerable grow conditions.
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Figure 1. The rfb operon in Enterobacteriaceae is contiguous, but in Bacteroidota it is often
fragmented into ‘minioperon’. A) Lipopolysaccharide (LPS) and O-antigen schematics. B) Classical rfb
operon with 5 contiguous genes in E. coli K12 (fbXABCD,; XCADB; [rfb:5]). Horizontal lines represent the
bacterial genome length, distribution of rfb genes/operons (shaded circles; darker = more genes) and rfb
gene orientation (+, sense; -, antisense). nL: n of rfb clusters or gene singlet loci. Note
orientations/duplications. C) Five categories of operon arrangement & ‘minioperon’ fragmentation in
Bacteroidota. Supplementary Figure 1C illustrates in context rfb operons/fragmentation for Alistipes,
Bacteroides, Parabacteroides, Prevotella, Paraprevotella, Barnesiella, Tannerella, Odoribacter and
Porphyromonas.

Minioperon patterns in Parabacteroides suggests rfb gene distancing mechanism. Since the
study of potential operon fragmentation mechanisms could be better achieved using strains with fully
sequenced genomes, we next conducted an arrangement analysis to determine if rfb operon fragmentation
was common within any given species and if they followed statistically significant patterns among unrelated
strains of the same species. Using P. distasonis as a model Bacteroidota species and strain ATCC8503
(peritonitis, USA/1935) as the referent species for the genus Parabacteroides, analyses revealed that P.
distasonis have their rfb operons invariably fragmented (12/12, Fisher’s exact P<0.00001), following unique
patterns of gene combinations, duplications, or orientations that are significantly more likely to be
supernumerary than infra-numerary (Fisher’s exact P=0.0001, Figures 2A and 1C). These findings suggest
that some species are more likely to gain rfb loci (P. distasonis), compared to others which could be more
likely to lose rfb loci (Barnesiella viscericola).

Fragmentation patterns were also highly conserved among P. distasonis. Specifically, rfbA and rfbD
genes were present in minioperons or as singlets, whereas the genes rfbB, rfbC, rfbG and rfbF were
exclusively present only as doublet- or triplet-minioperon arrangements (Figure 2B). Based on such
conservancy, P. distasonis strains belong to at least two distinctive phylogenetic clades (Figure 2C,
Supplementary Figure 2B), suggesting that not all P. distasonis would be the same, and emphasizing the
need to better classify Bacteroidota isolates for functional studies.
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151 Mechanistically insightful, outside of this species we found that a unique combination and

152 distancing of two rfb minioperons (rfbFGC->rfbA; abbreviation for fbFGC(+++) positive-sense triplet

153 followed by a rfbA(+) positive-sense singlet), overrepresented in some P. distasonis strains (n=6/12,

154 Fisher's exact P<0.001, vs. numerous other possibilities), was also present in a B. thetaiotaomicron strain
155 CL15T119C52 (Figure 2D), a phenomenon not previously reported in the literature.

156 Considering that B. thetaiotaomicron lacks LPS-polysaccharide formation (25) and has anti-

157 inflammatory and immunomodulatory properties (18, 19), the presence of such rfbFGC->rfbA fragmentation
158 pattern in both P. distasonis/B thetaiotaomicron suggests a mechanism for operon fragmentation that could
159  explain beneficial effects for both species/strains (2). Remarkably, an inter-genus rfbFGC->rfbA pattern,
160  exclusively present in P. distasonis strains of CavFT origin and CL11T00C22 (5), have conserved

161 minioperon sequences but variable inter-minioperon rfbFGC->rfbA distances, suggesting that DNA insertion
162 within the flanking rfb genes could be the reason for gene-gene separation in an ongoing permissible

163 process of gene exchange between P. distasonis and B thetaiotaomicron.

164 Of novelty, variable inter-minioperon orientations for the same rfbFGC->rfbA pattern in other P.
165 distasonis genomes (APCS2/PD, FDAARGOS 615, and CL06T03C10) suggest the existence of conserved
166 rfbFGC->rfbA inversions with a pivot point in the inter-minioperon rfbFGC->rfbA region. This observation
167 indicates that such a potential gene-gene separation mechanism is highly conserved, yet variable.

168 Furthermore, it offers an evolutionary explanation to the presence of unique arrangements across certain
169  strains, lineages, or possible niches that could reflect favored co-habitation of both genera, genetic

170  exchange, selection, and niche adaptation (notice the red vs. black arrows for fbFGC->rfbA in Figures 2A
171 & 2D).

172 To elucidate the effect of minioperons on LPS/O-antigen production and structure, we opted to

173 verify the presence/absence of the O-antigen polysaccharide in P. distasonis CavfT-hAR46, under five

174 unique growth conditions, as a cultivable Bacteroidota model with 5 rfb minioperon fragments (vs. E. coli
175  with one rfb operon). Of functional importance, the classical rfb operon in E. coli effectively produced a

176 typical O-antigen/polysaccharide as expected in all conditions, with repeated bands between 41 and 53 kb
177  in SDS-PAGE (Figure 2E) (26, 27). However, as expected for a P. distasonis strain with supernumerary rfb
178 fragmentation, P. distasonis did not yield O-antigen polysaccharides in any of the conditions, suggesting
179  that supernumerary rfb fragmentations are likely to be non-functional (5/5 vs. 0/5, Fisher's exact P=0.0079).
180  As aresult, lipooligosaccharide products (LOS) were produced instead of LPS, similar to what has recently
181  been described for B. thetaiotaomicron (25).
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Figure 2. The occurrence, patterns and inversions of rfb minioperons in P. distasonis and B.
thetaiotaomicron suggests mechanism of operon fragmentation in Bacteroidota. A) Fragmentation of
rfb operon in P. distasonis is in modern times supernumerary compared to ATCC8503 strain from
USA/1933. B) Fragmentation has resulted in conserved singlet, doublet/triplet patterns in P. distasonis. C)
Heatmap clustering of P. distasonis strains based on rfb minioperon shows distinct clades. Additional
information is available in Supplementary Figure 2B. D) Unique rfbFGC->rfbA minioperon distancing
pattern (downward red/black arrows and solid circles) in B. thetaiotaomicron is also present in novel CavFT
strains of P. distasonis from gut wall lesions in Crohn’s disease. Notice the orientation sense and patterns.
E) SDS-PAGE of LPS extract analysis of E. coli and P. distasonis CavFT-46 shows that P. distasonis is
unable to produce O-antigen polysaccharides in diverse growth conditions (Fisher's exact P=0.079).

The rfb operon in Alistipes is intact or duplicated suggesting benefit for survival. Contrasting
Parabacteroides, the Alistipes genus primarily exhibits no operon fragmentation. Unique conserved
organization and orientation was observed in all examined Alistipes species which have 4-gene contiguous
rfb operons (BDCA or CADB; Figure 3A). When fragmentation was present (A. shahii, A. dispar), Alistipes
have minioperon doublets (fbCA, DB, AC, GF) not seen in Parabacteroides, furthers supporting that genus-
specific mechanisms of operon fragmentation or conservation vary across Bacteroidota.

Intriguingly, as a major difference within other Bacteroidota, most Alistipes species have duplicated
operons (5/8 vs. 1/22, B. fragilis, Fisher’'s exact P=0.0018), indicating that the genus has genomic potential
for enhanced O-antigen production and possibly pro-inflammatory LPS effects that could be necessary or
beneficial for Alistipes adaptation/survival. Alternatively, operon duplication with minimal fragmentation
suggests that j) fragmentation is non-sustainable or rather deleterious for Alistipes, and/or ii) its genetic
mechanisms of operon maintenance allow for operon variability (duplication, inversions, sequence), but not
for gene-operon separation, unlike Parabacteroides in which fragmentation predominates (12/12 vs. 2/8, A.
shahii & A. dispar, Fisher's exact P=0.0049). No rfb singlets were observed in Alistipes.
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Figure 3. The rfb operon in Alistipes is contiguous and duplicated suggesting evolutionary benefit.
A) Alistipes has contiguous rfb operons with frequent duplication and less common incorporation of rfb
minioperon duplets. B) Patterns of conserved minioperons in Alistipes differ from Parabacteroides. C)
Schematics of gene-gene rfb distances measured within and between minioperons. D) Parabacteroides and
Bacteroides demonstrate the greatest variance in number of rfb operon fragments and gene-gene
distances. Alistipes and Enterobacteriaceae are similarly contiguous. Intergene distances for
Parabacteroides, Bacteroides and Prevotella were greater than Enterobacteriaceae (0.54+0.84Mb,
0.4910.86Mb, 0.3410.32Mb, respectively, vs. 0.13£0.46Mb, P<0.001). Alistipes gene distribution is similar
to Enterobacteriaceae (0.17+0.49Mb, P=0.79). E) Minioperon sequence homologies for Alistipes vs.
Parabacteroides based on minioperon orientation between and within genera/species. Two tailed-T tests
P<0.01 **, P<0.001 ***. F) Alignment and G) phylogeny based on rfb operon sequences. Note that Alistipes
clusters are driven by the sense/antisense orientation of the operons.

The rfb minioperon types in Alistipes and Parabacteroides indicate that gene patterns and
orientations are unique and vary, being potentially useful as signatures for lineage identification and
classification (Figure 3B). When we quantified the magnitude of fragmentation (gene-gene distances in
number of nucleotides) across genera, we found that Parabacteroides, Bacteroides and Prevotella had
similarly more fragmentation on average than Enterobacteriaceae (P <0.001, P=0.0151, P=0.010,
respectively), but not Alistipes compared to Enterobacteriaceae (2.1 vs. 1.6, P=0.89, Figure 3C-D).

Minioperon conservation in P. distasonis encompasses 85 years of history. Using
Parabacteroides and Alistipes as genus models for Bacteroidota (1, 2), we then quantified the rfb sequence
conservation (% similarity among strains)(3), since conservation indicates functional/evolutionary
advantages (28). Analysis showed that, irrespective of orientation, the doublet fbCB sequences, present in
80% of P. distasonis, and the rfbACD triplets have homologies ranging from 72 to 99.8% (77.51£5.15%),
contrasting the much lower operon similarities across Alistipes (range 27.5 to 83.7%; 50+16.4%, P<0.001;
Supplementary Figure 3).

Considering that the P. distasonis strains examined in this study span 85 years and various
geographic locations, from ATCC8503 (USA, ¢.1933) to 82G9 (South Korea, ¢.2018), the high minioperon
sequence similarity (P<0.001 Figure 3E) indicates well-conserved genomic features across time and
space. However, this conservation cannot explain the observed rfbFGC->rfbA variability. Instead, it implies
that an independent genomic mechanism might be responsible for generating modern rfbFGC->rfbA
variants over time, which were not present in the founding strain ATCC8503, 85 years ago.

Although the operons in Alistipes are more similarly organized (BDCA) than Parabacteroides, the
sequences are more variable, depending on operon orientation (Figure 3F-G). Of interest, duplicated
minioperons in Parabacteroides are virtually identical, which contrasts the sequence dissimilarity seen
among duplicated rfb operons in Alistipes (T-Test P=0.039, Figure 3E). The variable homologies across
Alistipes indicate that they may i) produce a more variable array of LPS/O-antigens, with at least two
different types of O-antigens if operons are duplicated, and/or ii) have higher virulence in vivo. Given the
emergence of Alistipes as an emerging genus in human diseases (1), we developed PCR primers for
rfbBDCA/ACDB operons to facilitate their future study in Alistipes (Supplementary Table 1).

Genome ‘rfb operon profiling’ shows minioperon occurrence is not random. To further
characterize the rfb genes and the genome-wide operon patterns in Bacteroidota, we propose a global ‘rfb
operon profiling’ system (GOPS). Using our rfbA-typing methodology (3) and P. distasonis strains as a
model, we showed that it is possible to discern the strains examined based on distinct genotypes for each
rfb gene (rfbB-types n=2, rfbC-types n=6, rfbD-types n=4, rfbF-types n=2, rfbG-types n=2, Figure 4A &
Supplementary Figure 4). By applying the previous scheme to generate a combined alphabetic-numeric
profile of the entire rfb operon, accounting for both copy number and rfb genotype, we generated summary
profiles for testing (Figure 4B). Of note, this system may be broadly applied to type other operon genes.
Remarkably, the GOPS profiles identified were determined to be reproducible, favoring profiles that are
statistically different from random profiles, supporting the assumption that minioperon arrangements have
been selected over time (Figure 4C).

Minioperons from Bacteroides thetaiotaomicron and Parabacteroides cluster together.
Considering the challenges of examining all Bacteroidota minioperons with current operon mapping tools
(29-32) and the high prevalence of incomplete draft genomes, we next used the NCBI-BLAST database to
further investigate if the observed minioperon patterns were i) non-random, and i) either widespread across
various phyla in the NCBI database or exclusive to particular genera or species. Using P. distasonis
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265 minioperon sequences, we found that the rfb doublets and triplets are limited to P. distasonis strains
266  exhibiting 299% coverage. Low-matching hits for rfb operons/minioperons present with lower (s24%)
267 sequence coverage were more similar to Bacteroides species (B. thetaiotaomicron, B. caccae, B.
268 cellulosilyticus) and more distant (£3% coverage) from Proteobacteria, suggesting that the evolution of O-
269  antigen in Parabacteroides has been closer to Bacteroides than to Proteobacteria (Supplementary Table
270 2). Phylogenetic analysis of mini/operons from Enterobacteriaceae and Bacteroidota with the best
271 BLAST/NCBI sequences (lowest E-scores) further illustrates the well-conserved nature of Bacteroides spp.
272 minioperons across genera, and the little similarity to Proteobacteria (Figure 4D).
273 Of utmost evolutionary interest, a specific strain of B. thetaiotaomicron
274  (CLT5T119C52/USA/c.2018) clustered in three distinct clades (rfbFGC, BC, and FGD---) with P. distasonis,
275 including CavFT strains. This finding indicates that Parabacteroides/Bacteroides clusters are likely to have
276  acommon ancestor or high affinity for DNA exchange and horizontal ‘operon’ transfer (Figure 4D). These
277 Parabacteroides/Bacteroides minioperon clades also harbored B. uniformis or B. ovatus, but not Alistipes or
278  Enterobacteriaceae.
279
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281  Figure 4. ‘Rfb-Operon Profiling’ indicates non-random selection and minioperon similarity between
282  Parabacteroides and Bacteroides, namely B. thetaiotaomicron. A) Gaps and insertions in rfb gene
283 sequences designate different rfb-types using protocols described for rfbA-typing (3). Supplementary
284  Figure 4 illustrates the rfb-typing of rfbC/D/F/G. B) Example of global rfb operon profiling system (GOPS)
285 for P. distasonis. C) Density plots between random and real rfb operon profiles in P. distasonis. Observed
286  types are statistically different from a random (uniform) distribution (**, *** for P<0.05 and P<0.01,
287 respectively). D) Phylogenetics across Bacteroidota and Enterobacteriaceae based on rfb mini/operon
288 sequences. Remarkably, several Bacteroides species, but namely B. thetaiotaomicron CLT5T119C52,
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291



https://doi.org/10.1101/2023.06.02.543472
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.02.543472; this version posted June 2, 2023. The copyright holder for this preprint (which

292

321

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

Operon fragmentation through ‘foreign DNA’ insertions from Bacteroides. Given the known
high-frequency of horizontal gene transfer (HGT) between Bacteroides and gram-negative microbes in the
gut (33), the presence of rfb minioperons in Bacteroidota could indicate that sharing certain rfb patterns
could reflect adaptation/selection benefits. However, such HGT exchange theory could not explain the
observed genus-specificity and low frequency of minioperons in other taxa. Therefore, we hypothesized that
the cumulative insertion of ‘foreign DNA’ between rfb genes could account for the fragmentation of operons
and the variable fbFGC->rfbA separation distances observed in Figure 2A-D. We further hypothesized that
the genetic exchange in Bacteroidota could be a specialized event, confined to niches with compatible
species, rather than occurring randomly in the gut. Supported by clades in Figure 4D (containing
Bacteroides matching Parabacteroides of CavFT origin), this exchange could explain the low representation
of rfb minioperons in NCBI. Testing these hypotheses, we first performed whole genome rearrangement
analysis to quantify the percentage of genome matching sequences and their fragment sizes. We then
examined the sequences located within fragmented rfbFGC->rfbA minioperons and select surface antigenic
fimbriae inter-minioperon regions as depicted in Figure 5A.

Genome rearrangement analyses showed that 30-45% of the P. distasonis genome sequence, in
various fragment sizes, match that of B. thetaiotaomicron, confirming the two strains belong to different
clades at genome scales. However, such finding also emphasizes the potential for disruptive random
‘foreign DNA' insertions into operons, since genome alignment showed that the largest shared DNA
fragment was also present in other Bacteroides (Figure 5B-C). Of mechanistic interest, we found that the
DNA present in the inter-minioperon rfbFGC->rfbA sequences represent an overlapping mixture of DNA
that matched primarily Bacteroides (27-45%; B. thetaiotaomicron, B. fragilis, P. ovatus), with limited
similarity to Alistipes or E. coli, and no evidence of similarity to random sequences (shuffled genomes;
Figure 5C-D). Notably for P. distasonis, the entire inter-minioperon sequence represents the combination
of foreign’ Bacteroides DNA intermixed with DNA sequences verified by BLAST as pure P. distasonis
(Figure 5D-E). This suggests that, over time, such inter-minioperon sequences have either become specific
for P. distasonis, or they represent insertions of ‘foreign DNA’ from other P. distasonis. Examination of rfb
inter-minioperon regions in other strains and in the antigenic fimbriae (fim) minioperons in P. distasonis
strain CL11T00C22 (strain with most complete set of fim genes (34), Figure 5F) confirmed the same
pattern of Bacteroides predominance.
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Figure 5. Fragmentation of nonessential operons is driven by insertions of ‘foreign DNA’, mainly
Bacteroides. A) Schematics of O-antigen (rfb), fimbriae (fim) and ribosomal (rrn) gene operons tested for
DNA insertions. B) Example of P. distasonis inter-minioperon DNA fragment found in other genomes. C) %
of DNA from one species common to the genome of 4-5 other species within the genus. D) Schematics
showing source of ‘foreign DNA’ insertions into the fbFGC->rfbA space separating the rfb genes in P.
distasonis. E) ‘Pure’ P. distasonis DNA fragments intermixed within inter-minioperon ‘foreign DNA’
insertions. F) Genus sources and % of ‘foreign DNA’ fragmenting the rfb and fim minioperons in P.
distasonis, as in Figure 5A. Bacteroides (B. thetaiotaomicron, B. fragilis, B. ovatus, B. vulgatus) are the
main source of ‘foreign DNA bombardment’ (P<0.0001 vs. Alistipes and Escherichia). Additional information
is available in Supplementary Table 3. G) Ribosomal operons (rrn, deemed essential) are not fragmented
in P. distasonis, despite presence of ‘foreign DNA’ in vicinity. *, **, *** for P<0.01, P<0.001, P<0.0001,
respectively. Supplementary Table 4 shows rm operons are not fragmented in other genera, i.e.,
Prevotella, Bacteroides, Alistipes, and Porphyromonas.

No fragmentation in ribosomal operons. Lastly, to determine if operon fragmentation also
affected essential genes, we examined ribosomal rrn operons (~5000bp containing highly conserved 16S,
23S and 5S rRNA/tRNA genes). We i) assessed rrn operon integrity, and /i) quantified the amount of B.
thetaiotaomicron DNA found in or near the rrn operons of diverse genomes; as an analytical control, we
also quantified the amount of B. thetaiotaomicron DNA found in randomly generated 5000bp-loci. Analysis
revealed that none of the P. distasonis rrn operons studied (encompassing 21 rRNAs and interspersed
tRNA genes) were fragmented or contained B. thetaiotaomicron (Fisher's exact P=0.0081, vs. randomly
selected loci; 0/7 vs. 12/20; Figure 5G), despite being exposed to the same ‘foreign DNA insertion
pressure’, which was inferred by comparing the average distance of the nearest B. thetaiotaomicron DNA
insertion to the rm operon (vs. distances to randomly generated locus coordinates; T-test P=0.79).
Interestingly, multiple large spans (50,000+bp) of bacterial genome were found to be free of B.
thetaiotaomicron DNA which could be considered as a future strategy to identify essential operons.

‘Foreign DNA'’ insertions in Bacteroidota on metagenomic statistics. Ranking analysis of all
DNA fragments from 15 genomes that aligned to P. distasonis CL11T00C22, shown as dot plots in Figure
6A, illustrates that Bacteroides are the most likely sources of recent genomic exchange with
Parabacteroides based on the number and size of homologous DNA fragments. Especially intriguing is that
B. thetaiotaomicron strain CLT5T119C52, again, has the most distinctive sharing pattern (largest
number/longest fragments) with Parabacteroides, suggesting that DNA exchange is an active, still ongoing
interspecies process. Similar insertions of B. thetaiotaomicron DNA were also observed in other inter-
minioperon regions in other genera (B. fragilis, Barnesiella viscericola, P. intermedia, and A. shahii).
Analysis indicates that not all species are equally likely to receive B. thetaiotaomicron, further supporting
that inter-species exchange is not random across the phylum, but rather, driven by yet unknown pairing
factors among species that share environments where other Bacteroides may be DNA donors (B. fragilis, B.
ovatus; Supplementary Figure 6 & Supplementary Table 5).

With a large number of ‘foreign DNA’ insertions in the genome that could disrupt operons (n=1450-
1650, x-axis Figure 6A), there is also potential for impacting metagenomic results. In examining the
taxonomic assignment of inter-minioperon sequences using BLAST, we first illustrated the potential for
metagenomic overestimation (‘inflation’: calling of ‘extra species’ in a sample when they are not there).
BLAST suggests this could be important for strains avid to share DNA, but not for non-avid strains. While
numerous inter-minioperon sequences matched to several B. thetaiotaomicron strains in NCBI with 100%
coverage and >99% identity (81% of top hits), in a few cases (<4%) DNA matched other Bacteroides with
lower similarity (<85%), such as B. longzhouii or B. faecis, and B. fragilis (21.4% top hits, Supplementary
Table 6). Together, as illustrated in Figure 5D-E, analyses indicate DNA insertion similarity is more likely
with Bacteroides, being restricted to Bacteroidota. To expand these BLAST-derived inferences, we used the
BV-BRC metagenomics workflow for taxonomic classification of DNA sequences ‘in bulk’ to inspect entire
genomes. By fragmenting the genome of selected strains into equal nonoverlapping 250bp simulated
‘reads’, we determined, in-silico, that the species inferred from inter-minioperon sequence queries in NCBI
were also reproducible by metagenomics.

Since metagenomics uses sequences to deduce i) taxonomic composition using BLAST (nucleotide
database), or ii) taxonomic composition and pathways/functions using BLASTX (protein database), ‘foreign
DNA' insertions in Bacteroidota affect the accuracy of these tools. The impact of ‘foreign DNA’ insertions
can be visualized for both ‘individual absolute metagenomic’ analyses (fragmented genomes analyzed
individually, Figure 6B), and on ‘relative metagenomic analyses’ for a simulated community with four
genomes (A. finegoldii, B. thetaiotaomicron, P. distasonis, and E. coli, 1:1:1:1, 1X and 20X, Figure 6C).
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380  Although metagenomics aligns fragments/reads into contigs (algorithm assumption) and then finds their
381 best match in a database with genes representing selected reference strains (BV-BRC n=24868; 16840
382 species; 30573 taxon units), analysis shows the presence of DNA from numerous Bacteroidota, especially
383 the species shown by NCBI-BLAST in inter-minioperon regions. Top species for B. thetaiotaomicron
384 included B. xylannisolvens, B. ovatus, P. dorei and P. distasonis, further confirming inter-species affinity for
385 selective genetic sharing. Diagnostically relevant, and as anticipated, results also illustrate that
386 metagenomic workflows could overestimate diversity by suggesting the presence of ‘extra species’ not
387 actually present in a sample. Of note, the calling of ‘extra species’ by metagenomics depends largely on the
388  fragment length used; however, while the number of fragments called ‘extra species’ is reduced as
389  fragments get longer (from 100bp to 16000bp), the relative presence of ‘extra species’ increases with
390 fragment length (Pearson’s P<0.05), confirming overestimation and suggesting the need of algorithm
391 revision in current workflows.
392 Assessing communities in confined micro-niches will remain challenging using current
393 metagenomics, since underestimation of present species (‘deflation’: species underestimated in abundance
394 or deemed absent from sample) could also occur in cases where pathobionts/commensals coexist. For
395 example, our relative community analysis showed that if a species is largely under-assigned by
396 metagenomics (E. coli, ~4%, Figure 6C), there will be further overestimation of Bacteroidota ratios (12-to-
397  18-fold magnification vs. E. coli, Figure 6C and Supplementary Figure 7).
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399 Figure 6. Impact of ‘Foreign DNA’ insertions in Bacteroidota on metagenomics, antigenic operons
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average % of genome shared, inset bar plots). B) BlastX (protein) and metagenomic (nucleotide) taxonomic
analyses of 250bp-fragmented P. distasonis genome. Notice ‘extra species’ assigned by metagenomics
(inflation), reflecting ‘foreign DNA’ insertions/exchange across Bacteroidota, and not real presence of
species (inset bar plot). The n of ‘extra species’ varied with fragment length (Pearson corr. 0.84, P<0.05).
The performance of BLAST and BLASTX depends on bacterial genome (Supplementary Figure 8). C)
Metagenomic community simulation with Bacteroides, Parabacteroides, Alistipes, and Escherichia (1:1:1:1
genomes). Krona plot (relative abundances within hierarchies of metagenomic classifications (35))
illustrates E. coli sequences are poorly assigned to E. coli leading to relative ratio overestimation of
Bacteroidota abundance (1:17:12:18; see Krona plots for individual genomes (‘Alone’) in Supplementary
Figure 9). Bacteroides is commonly listed as ‘extra species’ (bar plot; complete list in Supplementary
Figure 7) D) KEGG pathway and total gene counts in Enterobacteriaceae and Bacteroidota, highlighting the
significant differences for Bacteroidota (details in Supplementary Table 7). E) Glycostaining of LPS
extracted from E. coli and P. distasonis cultured in different media. F) Average pro-inflammatory cytokine
secretion by bacteria in the stimulation, indicating that Bacteroidota release less pro-inflammatory cytokines
compared to Enterobacteriaceae. G) Hypothetical model of gut microlesions with colonization of
commensal/pathobionts modulating inflammation. Peritonitis model showed mice with Enterobacteriaceae
had fatal peritonitis, but not if receiving Bacteroidota B. thetaiotaomicron, B. fragilis, or P. distasonis.
*P<0.01; ****P<0.00001.

Reduced KEGG pathways, TNF-alpha induction, and peritonitis by (CavFT) Bacteroidota.
Since a widespread process of DNA insertions throughout the genome could affect the functionality of
various operons and genetic pathways, we next tested if such a phenomenon of operon disruption could be
visualized by observing a lower number of functional pathways using a pathways database. By using the
Kyoto Encyclopedia of Genes and Genomes (KEGG), a large-scale molecular dataset generated by
genome sequencing, high-throughput experiments, and manual curation to infer enzymatic pathways
across bacterial genomes (36), we confirmed that Bacteroidota have significantly less pathways than
Enterobacteriaceae (T-test, P<0.05). Although the database may be biased towards Enterobacteriaceae
due to more published evidence, Figure 6D demonstrates that selected Bacteroidota have significantly
fewer functional pathways responsible for 'metabolism' and 'environmental information processing’, while
there was no difference for pathways responsible for 'organismal systems,' 'human diseases,’ 'genetic
information processing,' and ‘cellular processes’, supporting that the findings are well-controlled for basic
pathways functions.

Of interest, when testing representative CavFT bacterial isolates derived from the gut wall of
patients with CD in our laboratory (Figure 6E), we determined that the overall inflammatory potential of
bacteria on murine macrophages was significantly reduced compared to Enterobacteriaceae. Figure 6F
shows that TNF-alpha production by macrophages cultured in vitro (RAW264.7 cells) exposed to heat-
treated bacterial extracts was about half the immune-proinflammatory potential observed for E. coli and
Klebsiella variicola. Controlling for the apoptotic effect that bacterial extracts could have on macrophages at
different extract dilutions, (measured using cell viability MTT assay), TNF-alpha data shows that
Bacteroidota isolates from CavFT have non-inflammatory antigenic phenotypes compared to
Enterobacteriaceae (e.g., O-antigen rfb operons) or Enterococcus faecium (gram-positive control). To
further validate in vivo the sub-inflammatory potential of CavFT Bacteroidota, we injected suspensions of
live bacteria into the peritoneal cavity of germ-free Swiss Webster mice to quantify their inflammatory
potential. Our peritonitis model, based on 270,000 real-time telemetry data points, revealed that the mice
receiving E. coli or K. variicola became febrile, then hypothermic, lethargic, and moribund within 24h post
injection, while mice receiving CavFT Bacteroidota only became transiently hypothermic following the
injection, overall being clinically normal or telemetrically less active until the end of study 24h post injection.

Based on evidence of antigenic operon fragmentation by Bacteroides and the reduced
proinflammatory potential of Bacteroidota in vitro and in vivo, Figure 6G depicts a hypothesis where
Bacteroidota invade, interact, and adapt to gut wall micro-niches where other enteric bacteria (e.g.,
Enterobacteriaceae and Bacteroidota) may be present and dynamically fluctuate to explain the cyclical
remission-flare dynamics of gut wall inflammation and complications in chronic bowel diseases like CD.

Discussion
To explore the causes of pro-inflammatory surface antigen variability affecting gut pathobiont
dualism within Bacteroidota, this study initially assessed the integrity of the rfb operon utilizing a selected
set of complete genomes. Validation of findings was achieved by extending the analysis to other genomes
and annotated sequence repositories, mainly using NCBI/BLAST. Of note, Bacteroidota have their rfb
operons either intact (Odoribacter, Porphyromonas gingivalis), duplicated (Alistipes) or, mainly, completely
11
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or partially fragmented into ‘minioperons’, which can be classified into at least 5 categories using a broadly-
applicable operon cataloguing system (Figure 1C). Overall, minioperons are highly-conserved features
within genera, non-random, rare across NCBI databases, and form distinctive patterns sporadically shared
among distant species, indicating a common mechanism for operon fragmentation within the phylum. By
characterizing and cataloging rfb operon fragmentation patterns, we determined that the insertion of ‘foreign
DNA'’ from other bacteria, mainly Bacteroides, could explain operon fragmentation as observed in P.
distasonis (supernumerary minioperon fragmentation), which was used together with Alistipes spp. as
model bacteria for hypothesis testing.

Intriguingly, the presence of Bacteroides ‘foreign DNA’ insertions between antigenic operon genes
(rfb, fim), but not essential ribosomal operons (rrn), implies that DNA insertions/operon damage favors
selection if effects allow bacterial survival. Indeed, previously observed patterns of operon disruption in
Bacteroides spp. have been linked to functional themes related to niche-habitat survival (37, 38),
suggesting a similar phenomenon may occur across rfb operons in Bacteroidota. Furthermore, prior
literature supports that, in addition to reductions/loss of the O-antigen (39, 40), rfb gene mutations influence
bacterial survival (41) and bacteriophage infection (42). While more research is needed to elucidate how rfb
gene dosage and structure influence LPS and/or other cellular KEGG ontology maps and functions in
Bacteroidota, our analyses demonstrated the lack of O-antigen production by P. distasonis under different
growth conditions and the lower TNF-alpha production induced by CavFT Bacteroidota isolated from CD
patients in our laboratory (14, 15), or the lack of induction of peritonitis, which contrast reports of severe
peritonitis due to B. thetaiotaomicron or B. fragilis, which are commonly seen in immunocompromised
individuals (43-46).

Of evolutionary interest, several Bacteroides, including the bacterium B. thetaiotaomicron
CL15T119C52 (human/feces/2018) were remarkably noted to cluster with P. distasonis CavFT strains (CD
patients/2019) based on conserved minioperons (Figure 4). This suggests there is preferential DNA
exchange among certain strains (namely Bacteroides as shown throughout the study, Figures 5 and 6A).
Our in-silico analyses, manual annotation, and experimental observations serve as a proof-of-principle for
the (primarily) Bacteroides DNA insertion mechanism of operon fragmentation and its potential impact on
metagenomics. Findings provide novel insights and opportunities for diagnostics and therapeutic
developments, especially considering that the most remarkable findings, such as the distancing of the
rfbFGC->rfbA minioperons, involve bacteria isolated from chronic inflammatory microenvironments in CD
patients. Our study for the first time examines and reports the genomic features of CavFTs in context with
other members of the phylum, also isolated from CavFTs, which could evolve and adapt into lineages that
may survive on/inside micro-niches in the inflamed gut wall (23).

In conclusion, our findings highlight that operon fragmentation provides novel mechanistic insights
for commensal adaptation and metagenomic applications. An improved understanding of Bacteroidota rfb
operons can provide valuable insights into bacterial genetics and their role in human health, as well as help
refine experimental strategies for studying host-pathogen interactions. Future studies on these interactions
or disease causality and operon integrity would benefit from combining bacterial isolation with genomic and
transcriptomic sequencing to assess KEGG-pathways functionality.

Materials and methods

Genome Databases and Data Collection: Genome wide genetic analyses for the rfb operon were
conducted on publicly available datasets and on reference strains sequenced in our laboratory that we
isolated from intramural cavernous lesions in the damaged bowel of Crohn’s disease patients as previously
reported (5, 23). Only complete reference genomes of selected strains of human derived
Enterobacteriaceae (e.g., E. coli K12, as reference for the rfb operon), selected strains for representative
genera of the Bacteroidota phylum, all available reference strains for all species within the Alistipes and
Parabacteroides, and all available strains for the Parabacteroides distasonis species were used in this
study. National Center for Biotechnology Information (NCBI) GenBank and the Bacterial and Viral
Bioinformatics Resource Center (BV-BRC) were accessed for bacterial genomic data. Data collected from
each genome includes accession number, genome length, rfb gene copy number, nucleotide sequence,
location, and direction within the genome. All results of the rfb gene query were manually verified using
NCBI annotated graphical portals. Additional data was collected to find the closest homolog of conserved
minioperons in P. distasonis; We used the previously obtained FASTA sequences of P. distasonis rfb
minioperons as input queries in the nucleotide Basic Local Alignment Search Tool (BLAST) using default
settings under the nr/nt database, and BLAST hit result data and rfb gene sequence data for matching
organisms from homologue queries were subsequently collected.

Visualization of rfb gene dosage and location: The rfb genes for each genome were graphed
(using gene coordinates) along a linear axis representing each bacterial genome to visualize the respective
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rfb operon distribution pattern in each bacterium. Rfb gene and minioperon/operon copy numbers for each
genome were used to generate heatmaps demonstrating relative rfb gene dosages. Heatmaps for rfb gene
dosages in P. distasonis strains were created using ClustVis (47) and a summary heatmap of rfb gene
dosages for all genomes was generated with the web tool Morpheus
(https://software.broadinstitute.org/morpheus).

Homology Analyses: Sequences of recurring doublets; rfbCB(++) and rfbBC(--), and of recurring
triplets; MbACD(+++), fbDCA(---), fbFGC(+++), and rfbCGF(---), were collected and aligned with both their
respective doublets/triplets in Parabacteroides genomes as well as their respective reverse complements.
In Alistipes spp., sequences of its fbACDB(++++)/BDCA(----) operons were aligned to determine
homologies at the species level. Of note, no consistent patterns of minioperons were observed in the
selected Bacteroides or Prevotella spp., thus no analyses could be performed to determine their respective
homologies. Sequence homology was performed using the Sequence Identity and Similarity (SIAS) tool
(http://imed.med.ucm.es/Tools/sias.html).

Global rfb operon profiling system (GOPS) design: DNA sequences for each rfb gene in
complete P. distasonis strain genomes were collected and aligned respectively (e.g., rfbB gene alignment,
rfbC gene alignment, etc.) in CLC Genomic Workbench (commercially available). Following our previously
developed rfbA-typing protocol (3), rfb-gene-types were designated for each rfb gene alignment. The
aggregate results of the copy number(s) and rfb-type(s) for each genome were used to construct an
example rfb operon profiling system, utilizing the nomenclature system previously proposed for rfbA-type
reporting in Bacteroidota (3).

Intergene and rfb loci statistics: The linear distance between each rfb gene was determined by
calculating the number of base pairs in between consecutive genes in each genome. Rfb loci were counted
in each genome, where a locus was determined to be a discrete location of either a single rfb gene or a
cluster of contiguous rfb genes (operons/minioperons). Statistical analyses were performed to determine if
rfb intergene linear distances and number of rfb gene loci differed significantly between the genera and
phyla examined. The range and variance of rfb intergene distances was also determined at the genus and
species level for Parabacteroides and Alistipes. Prior to statistical analysis, rfb intergene linear distance
data was log transformed. Transformed rfb intergene linear distances and rfb gene loci data were analyzed
using Brown-Forsythe ANOVA and Welch’s ANOVA to determine if statistically significant differences
existed between the respective mean values of these data for Enterobacteriaceae, Parabacteroides,
Bacteroides, Prevotella, and Alistipes.

Construction of phylogenetic trees: The phylogenetic tree of whole genomes was made by
Bacterial and Viral Bioinformatics Resource Center (BV-BRC), under the default setting for codon tree
(which uses 100 amino acids) and nucleotide sequences from BV-BRC's global Protein Families to build an
alignment and then generate a tree based on the differences within those selected sequences. For the
phylogeny of rfb gene clusters (operons and minioperons), the nucleotide FASTA sequences encoding the
rfb operons and minioperons were downloaded from NCBI database. The multiple sequence alignments of
all nucleotide sequences were performed using the clustal omega
(https://www.ebi.ac.uk/Tools/msal/clustalo/) which was used for the construction of phylogenetic trees with
the maximum likelihood methods for evolutionary analysis by using Webserver IQ-Tree
(http://igtree.cibiv.univie.ac.at/) under default parameters of ultrafast bootstrap. The phylogenetic trees with
branches were built with iTOL (https://itol.embl.de/).

Primer design for amplification of the Alistipes spp. fbBDCA/ACDB operon: Primer design
was conducted by identifying left and right flanking regions of the Alistipes spp. fbBDCA/ACDB operon
alignment of which were whole (i.e., no gaps or deletions) throughout all sequences. Then, from the
corresponding regions of the fbBDCA/ACDB operon sequence alignment consensus sequence, left and
right flanks of approximately 20 base pair sequences were selected and entered into the Basic Local
Alignment Search Tool (BLAST) to confirm accuracy in identifying Alistipes spp. utilized in this study.

Random sequences. Random generation of genomes and the random shuffling of complete
genomes were conducted using Sequence Manipulation Suite software
(https://www.bioinformatics.org/sms2/shuffle_dna.html) with parameters that matched the %GC content of
relevant and selected species, including 43% GC content to mimic Bacteroides genomes (B.
thetaiotaomicron CL15T119C52: 43.07%, B. fragilis DCMOUHO0085B: 43.61%, B. ovatus F-12: 41.98%, B.
vulgatus NCTC10583: 42.03%, and B. dorei MGYG-HGUT-02478: 42.04% for an average of 42.55%).

Calculation of the gene combination of rfb minioperons: For the bacterial genomes used in this
study, the number of potential rfb minioperon combinations for each bacterium was determined by
calculating the sum of the permutations of these minioperon gene combinations.

LPS Extraction and Glycoprotein Staining: P. distasonis and E. coli were cultured in five different
conditions (BHI+ 5% Yeast Extract, 50% BHI Broth, BHI Broth+5% Yeast Extract with normal person heat-
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killed feces, BHI+ 5% Yeast Extract with 4% bile and 50% BHI Broth with CD patient heat-killed feces) and
centrifuged at 20009 for 10 minutes. The supernatant was decanted and the masses of the pellets were
obtained. The LPS was extracted by LPS extraction kit (Sigma Aldrich Catalogue Number: MAK339) using
the manufacturer’s instructions. In short, the cell pellets were resuspended in lysis buffer at a ratio of 100 yL
of buffer for every 10 mg of cell pellet. The bacterial cells were lysed using a MP Fast-Prep 24
Homogenizer, using 4 rounds of shaking at 4 m/s for a duration of 20 seconds. The lysed pellets were then
centrifuged at 10000g for 5 minutes to sediment the cell debris. The supernatant containing LPS was
collected in a separate tube, to which proteinase K was added for a final concentration of 0.01 mg
proteinase K/ml. The solution was heated to 60°C and held for 60 minutes. Following this, the solution was
centrifuged at 10000g for 5 minutes, and the supernatant containing the free LPS was collected. The LPS
extracts were loaded into a NUPAGE 4-12% Bis-Tris Gel (NP0335BOX) along with commercially available
LPS (Sigma) derived from E. coli, as well as a pre-stained protein ladder. The gel bands were fixed by
incubating the gel in 50% Methanol for 30 minutes at room temperature. The gel was stained using a
commercially available Pierce™ Glycoprotein Staining Kit according to the manufacturer’s instructions.
Briefly, the gel was then immersed in a 3% acetic acid solution and incubated for 10 minutes at room
temperature. The solution was removed and replaced with fresh acetic acid for another 10 minutes. The gel
was then submerged in the oxidizing solution and incubated for 15 minutes with agitation using an orbital
shaker. The gel was washed three times with 3% acetic acid for minutes. The gel was then transferred to
the glycoprotein staining solution and incubated for 15 minutes on an orbital shaker.

TNF-a Stimulation Assay in RAW 264.7 cells: The RAW 264.7 cells were flushed and cultured in
DMEM (Dulbecco's Modified Eagle's Medium (DMEM)) and supplemented with 10% FCS, NEAA, glutamax,
penicillin—streptomycin. Cells were plated for experiments after 6 days. Cells were plated at 4 x 10* cells
per well of a 96-well plate, and all cell lines were seeded 16 hours prior to challenging. The bacteria were
cultured, and pellets were resuspended in PBS. Each pellet was heat killed by placing in a heating block for
30 min at 95°C. To normalize the concentrations of each bacterial suspension, the OD600 value was taken.
The different dilutions (1:1, 1:5, 1:25 and 1:125 dilution) of the heat killed bacterial extract were added to the
RAW 264.7 cells, then the medium was collected after 18 h for testing by TNF enzyme-linked
immunosorbent assay.

Peritonitis model. To quantify the impact of bacteria on the ability to trigger inflammation in vivo,
we conducted studies with mice using a peritonitis model. Using fresh anaerobic bacterial preparations
(1078 CFU/mL), each animal received an intraperitoneal injection of selected bacteria and underwent
continuous monitoring for 24h prior to being euthanized. Real time mobility in the cage measured with
subcutaneous RFID tags, response to stimuli, body temperature, mortality, and bacterial viability in the
peritoneal fluid were measured as main outcomes.

Statistics. Data analysis was conducted using parametric and non-parametric statistics using
parametric or non-parametric methods (e.g., student T-tests, ANOVAs) using the software STATA (v17), R,
and GraphPad, which was used primarily to make bar plots or boxplot illustrations where significance is
represented as asterisks based on the level of significance which was held at p<0.05(*), <0.001(**) and
<0.0001(***). Stata functions were used to assess multimodality (minioperon types observed vs. simulated
random) as previously reported in our laboratory (48). Together, data analysis represents over 636
analytical submissions made to the various bioinformatic resources described in this study.

Assessing operon fragmentation. Using the Bacterial and Viral Bioinformatics Resource Center
(BV-BRC; Bacterial and Viral Bioinformatics Resource Center) as the data source and genome alignment
tool, genomic homologies were first assessed between P. distasonis and representative members of
Bacteroides, Alistipes, and Escherichia, respectively, to test the hypothesis that genomic insertions were
not from random sources but rather derived primarily from Bacteroides. We then identified unique rfb order
series that were present across seemingly unrelated genomes (chronologically, geographically), including
the series ‘fbFGC > rfbA’, wherein a triplet (rfbFGC) is followed by a nearby separated singlet gene (rfbA).
Focused on Bacteroides and P. distasonis as recipient genomes, including CavFT strains, we examined
inter-minioperon DNA sequences (e.g., between rfbFGC and rfbA) to conduct genome-wide arrangement
analysis between such regions in P. distasonis and the genomes of B. thetaiotaomicron, other Bacteroidota,
and E. coli to quantify their genus-dependent potential as donors of ‘foreign DNA'. Intra-phylum genome
homologies of Enterobacteriaceae were also measured as a referent. We assessed the genetic homologies
of three inter-minioperon segments (rfbFGC - rfbA, rfbCB >rfbD, fimCBA >fimE) present either
completely or uniquely across three P. distasonis strains (CavFT-hAR46, CavFT-hARS56, and
CL11T00C22). Whole genome homologies were then compared to inter-minioperon genetic homologies.
Next, selectivity of operon fragmentation was assessed in the P. distasonis ATCC 8503 reference genome,
for which 7 16S rRNA loci were annotated in BV-BRC. These 7 loci were compared with 20 randomly
generated loci of similar size to compare the amount of B. thetaiotaomicron DNA in or near each locus.
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Genome fragmentation alignment analysis. We quantified and plotted the distribution of DNA
fragments detected by genome alignment ranked by fragment number (x-axis) vs. the size of each fragment
(y-axis) across 16 genomes (4 Escherichia spp., 5 Alistipes spp., and 7 Bacteroides spp.) individually
aligned to P. distasonis in BV-BRC.

Assessment of fragmentation in other antigenic (fimbriae, fim) operons. Recently, researchers
investigating the antigenic cell surface structure of P. distasonis identified fimbriae (fim) operon genes in
several strains (34), though there was again ample heterogeneity in the type and quantity of these genes
amongst the strains investigated, suggesting operon fragmentation could also occur for other functions. For
this analysis we used the P. distasonis CL11T00C22 strain genome as it contains the most complete set of
identified fim operon genes.

Metagenomics of Bacteroidota. \Whole genome sequences of select Bacteroidota (and
Escherichia coli K-12 as referent) downloaded from NCBI were split into 250bp sequences using FASTA-
splitting software (https://www.bioinformatics.org/sms2/split fasta.html) to approximate the range of in vivo
DNA samples which are commonly used for shotgun sequencing (49). The sequences for each respective
genome were then used as inputs for taxonomic classification in BV-BRC as well as for assessment of
matching protein sequences using BLASTX.

We validated our hypothesis using principles of genomic and metagenomics data analysis using
well-referenced and established methods that are readily accessible over the internet to the scientific
community (50-52). We used the Bacteria and Virus Bioinformatics Resources Center (BV-BRC) web
server as it integrates multiple analysis steps into single workflows (52), by combining the resources from
the former Pathosystems Resource Integration Center (PATRIC), the Virus Pathogen Database and
Analysis Resource (ViPR) and the Influenza Research Database (IRD) (50, 51). Analysis tools include
pipelines for read assembly, open reading frame prediction, and annotation with BLAST, and GO pathways
classifiers. The BV-BRC web server is an easy-to-use web-based interface for processing, annotation, and
visualization of genomic and functional metagenomics sequencing data, designed to facilitate the analysis
of data by non-bioinformaticians (52). Metagenomics results derived from Kraken2, are visualized via Krona
as a dynamic online feature for hierarchical data and prediction confidence (35). The BV-BRC online setting
provides scientists a fast open-source strategy to analyze raw sequences and generate complex
comparative analysis by selecting reference genomes or genomes uploaded by the user to an academic
account. Genome arrangement analysis was conducted using the tool 'Comparative Analysis tools'
available in beta version. Sequence and genome coordinate data can be examined as summary tables or
visually through colored interactive arrangement plots. BV-BRC facilitates effortless inspection of gene
function, clustering, and distribution. The webserver is available at https://www.bv-brc.org/.
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