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Abstract. CRISPR-based genome editing technologies have revolutionised the field of molecular biology,

offering unprecedented opportunities for precise genetic manipulation. However, off-target effects remain

a significant challenge, potentially leading to unintended consequences and limiting the applicability of

CRISPR-based genome editing technologies in clinical settings. Current literature predominantly focuses

on point predictions for off-target activity, which may not fully capture the range of possible outcomes and

associated risks. Here, we present crispAI, a neural network architecture-based approach for predicting

uncertainty estimates for off-target cleavage activity, providing a more comprehensive risk assessment

and facilitating improved decision-making in single guide RNA (sgRNA) design. Our approach makes

use of the count noise model Zero Inflated Negative Binomial (ZINB) to model the uncertainty in the

off-target cleavage activity data. In addition, we present the first-of-its-kind genome-wide sgRNA efficiency

score, crispAI-aggregate, enabling prioritization among sgRNAs with similar point aggregate predictions by

providing richer information compared to existing aggregate scores. We show that uncertainty estimates of

our approach are calibrated and its predictive performance is superior to state-of-the-art in silico off-target

cleavage activity prediction methods.

Keywords: Genome Editing · CRISPR · Uncertainty Quantification · Deep Learning.

Introduction

CRISPR/Cas9 system (Clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein

9) first discovered in the immune mechanisms of bacterial and archeal species [1] and quickly became among the

most popular gene editing technologies recently with successful applications of editing eukaryotic genomes [2].
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CRISPR/Cas9 system has also been applied to knockout-screening studies [3], accelerating the understanding of

variant and gene functions by uncovering causal relations between mutations and phenotypes. Due to its high

efficiency, simpler design and easier operation procedures in comparison to earlier genome editing methods like

Zinc Finger Nucleases (ZFNs) and Transcription Activator-Like Effector Nucleases (TALENs), it is becoming a

standard in genome engineering field and has the potential to lead new treatments for genetic diseases [4].

The CRISPR/Cas9 system works by using a programmed single guide RNA (sgRNA) to direct the Cas9 enzyme

to a specific target sequence in the targeted DNA site. Once the Cas9 enzyme is bound to the target DNA,

it creates a double-strand break, which triggers natural repair mechanisms of the cell. This can result in the

targeted sequence being edited by deletion, insertion, or replacement, depending on the desired outcome. However

while CRISPR/Cas9 system operates on the targeted DNA region, cleavage may also occur at other genomic

loci with a DNA that is not fully complementary to the sgRNA and has several base mismatched sites with the

sgRNA. These cleavage effects, referred to as ‘off-target’ cleavage, are unintended and can be dangerous, resulting

in unintended changes in the genome, leading to unwanted gene mutations and potentially harmful effects [5].

The existence of the off-target cleavage phenomenon has been one of the key factors to limit the development

and applicability aspects of the CRISPR-based genome editing systems. Studies found out that few-mismatch

DNA sites are potentially recognizable by the sgRNA during the guiding process [6]. Also, the off-target effects

have been shown to be dependent on many other factors such as nucleosome occupancy, chromatin accessibility

and both binding and heteroduplex energy parameters of the sgRNA of choice [7]. However, there are many

potential sgRNA sequences that can direct the system for the intended cleavage effect to take place and hence

one of the key design aspects of CRISPR-based systems is to evaluate and assess the error profile of the sgRNA

of interest.

Up to date, many off-target cleavage activity prediction tools have been proposed to predict the potential

off-target activity of a given sgRNA-target pair (i.e., targeted DNA site and corresponding single guide RNA

sequences). These algorithms use the data generated by experimental CRISPR off-target detection assays,

such as GUIDE-seq [8], CHANGE-seq [9], DIGENOME-seq [10], CIRCLE-seq [11], and predict a point score

for off-target cleavage activity for a given sgRNA-target pair based on the training data. These tools can be

divided into two main categories: (i) Conventional Machine Learning-based models and (ii) Deep Learning-based
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models. Conventional machine learning models have been extensively used for on- and off-target prediction in

CRISPR/Cas9. Various algorithms such as random forest, SVM [12], logistic regression [13], gradient boosting [14],

and ensemble learning [15] have been employed to predict off-target activity. While conventional machine learning

models have shown promising results, recent studies using deep learning techniques have demonstrated even

better performance [16]. These models utilize novel sequence encoding strategies, feature engineering approaches

by introducing physical features [17], class rebalancing techniques, and attention mechanisms [18] to improve

prediction performance. While several models have been developed, most of them are primarily dedicated to

the classification task, aiming to predict the activity status of the sgRNA-target interface. Notably, MOFF

score [19] stands out as a top-performing model which tackles the regression task of predicting the activity level

of the sgRNA-target interface, which is the focus in this article as well. For a more detailed review of the current

literature Sherkatghanad et al. [20] presented a detailed overview of machine learning and deep learning-based

studies for on/off-target activity prediction task for CRISPR/Cas9 systems.

It is worth noting that, the imbalance in CRISPR off-target prediction data poses a significant challenge, as the

number of true off-target sites recognized by whole-genome detection techniques is much smaller than that of all

possible nucleotide mismatch loci [20,21]. This imbalance can make training routine machine learning models

difficult, resulting in high accuracies for the majority class but poor performance for the minority class, which is

of greater interest in this context because it represents the actual off-target sites that can lead to unintended

consequences in genome editing [14]. These point predictions, while informative, may not fully capture the

range of possible outcomes or the associated risks in the editing process. To the best of our knowledge, the

only other study that incorporates uncertainty estimates into the off-target cleavage activity prediction task

is Kirillov et al. [22], where authors trained a Gaussian Process Regression model. Incorporating uncertainty

estimates into predictive models would facilitate the identification and prioritization of potential off-target sites,

especially when they have similar point off-target activity predictions. By considering the uncertainty estimates,

researchers and practitioners can differentiate between sites with similar point predictions and prioritize those

with lower uncertainty, thereby reducing the chances of unforeseen off-target effects. This prioritization strategy,

enabled by uncertainty estimates, would lead to improved validation and optimized guide RNA design, reducing

potential risks associated with CRISPR-based genome editing applications. Additionally, genome-wide off-target
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detection methods encounter various experiment-specific limitations that can affect their sensitivity. One of

the key contributing factors responsible from the highly imbalanced nature of the off-target data produced

by such detection techniques stems from the fact that these methods rely on Next Generation Sequencing

(NGS)-based DNA sequencing assays which generally exhibit high sparsity, often encountered in microbiome,

bulk-, and single-cell RNA experiments [23,24]. These limitations hinder the ability to differentiate between

real biologically inactive off-target sites and technical errors, resulting in false negatives in the analysis for the

guide RNA of interest [25]. Addressing the highly imbalanced nature, and the uncertainty, of the off-target

cleavage data is crucial, particularly because mistaking an active off-target site for an inactive one can have

significant consequences. Such errors can disrupt cellular function or confound experimental interpretation,

whereas mistaking an inactive site for an active one may only necessitate designing another gRNA [14]. In this

work we present crispAI, to accurately predict the off-target cleavage activity in a probabilistic framework,

allowing for quantification of the uncertainty in the predictions and crispAI-aggregate to provide a probabilistic

genome-wide specificity estimate for a given sgRNA.

Results

Overview of crispAI

We designed crispAI to be a hybrid deep learning architecture based on the count distribution Zero-Inflated

Negative Binomial (ZINB), which accounts for highly imbalanced nature of the off-target cleavage data and models

the off-target cleavage activity in a probabilistic framework (Methods). Our architecture uses a combination of

Convolutional Neural Network (CNN) and bi-directional Long Short Term Memory (biLSTM) layers to extract

sequence-based features of the sgRNA-target pair, which are encoded using a binary matrix encoding scheme

first presented by Lin et al. [26]. We used an additional CNN layer to process physical descriptors of the sequence

context, namely: (i) Block Decomposition Method (BDM) score [27]; (ii) GC content; (iii) NuPoP Occupancy;

and (iv) NuPoP Affinity scores [28]. The importance of these descriptors for off-target cleavage activity has

been highlighted by a recent study [7]. Both sequence based features and physical descriptor features are used

to extract features related to the off-target cleavage activity of the sgRNA-target interface. The extracted

features are then concatenated in a late fusion fashion for the final Fully Connected (FC) layer to predict three
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parameters, µ, θ and σ, associated with the ZINB distribution. We trained the network weights based on a loss

function optimising the likelihood of the observed data. (Fig. 1).
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Fig. 1. Workflow Figure. Logical OR operation is employed to encode the sgRNA-target interface to a matrix of shape

(6, 23) where the first 4 rows represent sequence letters (i.e., ATGC) and the last 2 rows represent mismatch direction.

Physical descriptors of the sequence context such as: (i) BDM Score; (ii) GC content; (iii) NuPoP Occupancy; and (iv)

NuPoP Affinity are calculated and normalized values are encoded into a matrix of shape (4, 23) for each sequence position.

Then, the sequence encoding features are extracted with a series of Convolutional (Conv) layers followed by a Bi-LSTM

layer and features of physical descriptors are extracted with a Conv layer. Both extracted feature vectors are mapped to

128− d vector spaces with Fully Connected (FC) layers and are concatenated. The concatenated features are then passed

to a final FC layer to predict three parameters π, µ and θ.

Enabling uncertainty quantification for off-target activity prediction

Our proposed architecture, crispAI, models the off-target cleavage activity in a probabilistic framework. Hence,

making it possible to sample from the posterior off-target activity distributions conditioned on both the

sequence-based and physical features of the sgRNA-target interface. Fig. 2 depicts example distributions for

eight randomly selected test samples from the left-out test portion of the CHANGE-seq [9] dataset, where point

predictions and the ground truth CHANGE-seq detected off-target cleavage activity values are shown with

vertical lines.

We started evaluating crispAI by visualising the uncertainty estimates for individual sgRNA-target pairs on

the left-out test portion of the CHANGE-seq dataset [9]. CHANGE-seq is a highly scalable, Next Generation
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sgRNA: G G A C T G A G G G C C A T G G A C A C N G G
target:  T C A G A G G G T G C A G A G AT T C C T G G

sgRNA: G A T A A C T A C A C C G A G G A A A T N G G
target:  T T T G CTG G AG G A G A G AG G C CG G G

sgRNA: G T G G A G C G C A G T G G T C T C C G N G G
target:  G G AT C T C C G C C T T C C C A G C G G A G

sgRNA: G G C A T A C T C A T C T T T T T C A G N G G
target:  G A AG A A G T A A CG A CA AG T TCT G G

sgRNA: G G C C A G T A C C A C A G C A G G C T N G G
target:  A ATG G C G T G A A C C C G G G A G G C G G

sgRNA: G C T C G G G G A C A C A G G A T C C C N G G
target:  A A T G G C G T G A A C C C G G G A G G C G G

sgRNA: G G G C A A T G G A T T G G T C A T C C N G G
target:  C T C T G T C C T T C T G G T T G C T C A G G

sgRNA: G G G T A T T A T T G A T G C T A T T C N G G
target:  G G G G G C T CACT A G AG G G AG G A G G

Fig. 2. Example distributions for eight randomly selected sgRNA-target interfaces. Our approach, crispAI, enables

sampling from the posterior off-target activity distribution conditioned on the sequence-based features of the sgRNA-target

pair of interest. Vertical lines represent CnnCrispr score, CFD score, MIT score, MOFF score, CRISPR-Net score and

ground truth CHANGE-seq detected off-target cleavage activity frequencies.
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ba

c

Fig. 3. Depiction of crispAI-predicted uncertainty estimates on the test portion of the CHANGE-seq data. a. First, we

obtained the crispAI-predicted off-target activity distributions for samples with positive CHANGE-seq counts. Then we

calculated both the 95% confidence interval and the expected value (green) for each distribution and sorted the off-target

samples and associated predictions of CnnCrispr score (black), CFD score (blue), MIT score (red), MOFF score (purple),

CRISPR-Net score (gray) along with the ground truth CHANGE-seq (red cross) detected activity (normalized between 0

and 1) in the increasing order, based-on the predicted Upper Confidence Bound (UCB) values. Due to vast imbalance

of low-activity samples (e.g., y < 0.07) the confidence interval plot is splitted to two parts. b. Part a. is repeated for

cleavage activity values greater than 0.07. c. Observed vs. Predicted confidence level plot is depicted as the uncertainty

diagnostics plot. For benchmarking, we generated baseline uncertainty estimates by training Random Forest and Quantile

Regression models on the same training portion of the CHANGE-seq dataset.
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Sequencing (NGS)-based in vitro genome-wide Cas9 off-target detection assay which includes both epigenetic

and genetic impact. Authors identified 202, 043 off-target sites for 110 sgRNAs on 13 therapeutically relevant loci

in human primary T-cells. We randomly splitted 10% of the CHANGE-seq dataset for testing obtaining 168, 465

samples in total. First, we obtained posterior parameters of the respective ZINB distributions conditioned on

the sgRNA-target pair features for each sample using crispAI on the left-out test portion of the CHANGE-seq

dataset. We sampled corresponding posterior distributions many times to obtain empirical Probability Mass

Functions (PMFs) for each sample. Then, we obtained CnnCrispr score [16], CFD score [12], MIT score [29],

MOFF score [19], CRISPR-Net score [26] on the same test portion for comparison with the ground truth

CHANGE-seq detected activity values and expected value of the crispAI-predicted PMFs. We sorted the test

samples and all associated point predictions along with the ground truth values based on their predicted Upper

Confidence Bound values (UCB). Fig. 3a. shows the confidence intervals of crispAI-predicted posterior PMFs,

point predictions of competing methods and the expected value of the predicted PMFs and the ground truth

CHANGE-seq detected activity values. We observed that predicted intervals accurately captured the ground

truth cleavage activity values for almost all of the samples. For on-target sites and highly active off-target sites

(e.g., activity frequency > 0.25) the posterior distributions yielded very high 95% CI UCBs reaching up-to

maximum activity frequency, which is expected since the detected frequency value highly depends on the number

of other detected off-target sites for the same guide RNA instead of the individual features of the interface itself

for highly active off-target sites and on-target sites [9]. Additionally, we observed that the expected values of

crispAI-predicted PMFs closely resembled the ground truth activity values, whereas CnnCrispr score, CFD score,

MIT score and CRISPR-Net scores are generally far off while MOFF score is somewhat better at distinguishing

between minimal activity and highly active sites. Due to vast imbalance between minimal activity off-target

sites (e.g., < 0.007) and higher activity off-target sites we splitted the comparison into two parts. Fig.3b. shows

the samples with ground truth CHANGE-seq detected activity values > 0.007 for better visibility.

Ideally, in single guide RNA design, a maximum cleavage activity on the targeted site with minimum activity on

off-target sites is desired. Hence, Upper Confidence Bounds (UCB) of uncertainty estimates for the prediction of

on-target activity task are not of concern and should be set to maximum activity value possible, measuring

the Lower Confidence Bound (LCB) accordingly for the desired Confidence Interval (CI). Similarly, for LCB of
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uncertainty estimates for the prediction of off-target activity task are not of concern and should be set to lowest

activity value possible - again, measuring the UCB for off-targets accordingly for the desired CI. Therefore, we

set LCBs of all off-target samples at minimum activity (i.e., 0) and we measured the UCB at 95% CI.

Next, to evaluate the quality of the uncertainty estimates of crispAI using the same test portion of the CHANGE-

seq dataset, we computed the diagnostic calibration measure for uncertainty estimates proposed by Kuleshov

et al. [30]. Proposed diagnostic measure suggests that a well-calibrated uncertainty forecast should contain

N−percent of samples in N−percent confidence interval. By plotting the observed confidence level against

the expected confidence level, we produced the proposed diagnostic plot, in which well-calibrated uncertainty

estimates are expected to produce a straight line. For comparison with baseline uncertainty estimates, we trained

Random Forest regressor and Quantile Regression models on the same data crispAI is trained. Figure 3c. depicts

diagnostic lines for each method. We observed that diagnostic plot of crispAI-predicted CI levels is similar to

the ideal calibration line, while baseline uncertainty estimates are far off.

Improving in silico CRISPR/Cas9 off-target cleavage activity prediction performance with

crispAI

To evaluate the predictive performance of crispAI, we used 5 test datasets: (i) left-out test portion of the

CHANGE-seq dataset [9]; (ii) GUIDE-seq dataset [8]; (iii) SITE-seq dataset [31]; and the datasets presented

in Chuai et al. [32] (iv) HEK293T cell-line; and (v) K562 cell-line (Datasets). CHANGE-seq is a scalable,

automatable tagmentation-based method for measuring the genome-wide activity of Cas9 in vitro. GUIDE-seq

is a method for globally detecting DNA double-stranded breaks introduced by CRISPR RNA-guided nucleases

(RGNs), using the capture of double-stranded oligodeoxynucleotides to identify off-target cleavage activities.

SITE-Seq is a biochemical method for identifying off-target cleavage sites of CRISPR-Cas9 RNA-guided

endonucleases through the selective enrichment and sequencing of adapter-tagged DNA ends. We inputted

sgRNA sequence, target sequence and associated coordinates of each sgRNA-target pair in the mentioned

datasets to crispAI pipeline, and obtained crispAI-predicted posterior off-target activity score distributions as

depicted in Fig.4a.
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Fig. 4. Off-target cleavage effect prediction with crispAI. a. Input/Output schematic representation of crispAI. 23−bp

sgRNA and target DNA sequences with target DNA coordinates of the interface are inputs to our model. The model is

trained to predict ZINB associated posterior parameters conditioned on the inputs. The conditional posterior distribution

is then sampled. b. Predictive performance comparison of competing models on HEK293T, K562 cell-line datasets

and their unions comprising of n = 536, 120 and 656 samples respectively. Bar-plot displaying Spearman correlation

coefficient between the ground truth cleavage values in the respective datasets and the predictions of MOFF score,

CFD score, MIT score, CRISPR-Net score, CNNCrispr score and crispAI score. For performance comparison, expected

value of crispAI-predicted posterior distributions are used as point predictions. c. Similarly to part b. performance of

aforementioned methods are compared on CHANGE-seq, GUIDE-seq and SITE-seq datasets comprising of n = 168, 465,

443 and 6, 097 samples respectively. d. Box-plots represent coefficient of variation for each predicted posterior distribution

in all test datasets. Colorbar represents variances of CHANGE-seq, GUIDE-seq, HEK293T, K562 and SITE-seq datasets.
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We observed that point predictions obtained using the expected values of crispAI-predicted distributions,

significantly out-performed all of the competing tools with respect to Spearman correlation coefficient on all

test datasets except SITE-seq and performed second-best following CnnCrispr for this dataset. Specifically

we observed, 21.09%, 6.92% and 17.77% improvements over the best models in HEK293T, K562 and union

of the two test datasets respectively (Fig.4b). Similarly for the CHANGE-seq and the GUIDE-seq datasets

we observed, 19.51%, 10.76% improvements over best performing tools MOFF and CRISPR-Net respectively

and 12.01% deterioration on SITE-seq dataset performing second best behind best performing tool CnnCrispr.

Additionally, we plotted 5 box-plots, one for each dataset, illustrating the distribution of Coefficient of Variation

of crispAI-predicted distributions to compare with the variances of the ground truth cleavage activity values

given in the datasets. We observed increased median lines and 3rd quartile lines as the variance of the dataset

increases as expected.

Effects of mismatches and off-target activity on the uncertainty of the predictions.

To investigate whether crispAI-predicted off-target activity distributions captured effects of number of mis-

matched positions in sgRNA-target pair and the ground truth assay detected off-target activity values for the

CRISPR/Cas9 system, we used the left-out test portion of CHANGE-seq dataset and stratified the samples

with respect to: (i) the base-pair mismatch count between the sgRNA and target sequences; and (ii) detected

CHANGE-seq frequency and plotted the stratified folds with respect to the coefficient of variation of the

associated crispAI-predicted off-target activity distributions.

We observed a consistent decrease in the coefficient of variation span as the mismatch count decreased from

6 to 0. (Fig. 5b). This result is expected since, as the number of allowed mismatches between sgRNA and

target sequences increases, allowed degree of freedom for other sequence-based factors, that are shown to be

correlated with higher off-target cleavage activity, increases (e.g., GC content, mismatch location) yielding a

higher coefficient of variation in predicted off-target activity distributions.

We observed a similar trend for the ground truth CHANGE-seq detected activity values for 4 different coefficient

of variation intervals (i.e., [0, 10], [10, 20], [20, 30], [30, 40]), where the detected frequency values for crispAI-

predicted distributions with lower coefficient of variation values are higher than those with higher coefficient of
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ba

c

N/A

N/
A

Fig. 5. Similar to Fig. 4d coefficient of variation for each crispAI-predicted posterior off-target activity distribution on

the test portion of the CHANGE-seq dataset are plotted against ground truth CHANGE-seq detected off-target activity

and number of mismatched positions between sgRNA and DNA sequences of the associated sample. a. CHANGE-seq

detected off-target activity values are depicted with box-plots for associated coefficient of variation intervals. Box-plots

show the increase in CHANGE-seq detected off-target activity is associated with increase in coefficient of variation. b.

Scatter plot illustrating the relationship between coefficient variation and number of mismatched positions between

sgRNA-target pair indicating higher uncertainty as the number of mismatches increase. c. Grid-plot shows the coefficient

of variation of the crispAI-predicted off-target cleavage activity distributions stratified with respect to types and positions

of mismatches between sgRNA-target pairs on the test portion of the CHANGE-seq dataset. Certain mismatch types,

such as T→G, and PAM-proximal mismatches yielded higher uncertainty.
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variation values. (Fig. 5b) The relationship between ground truth CHANGE-seq detected off-target cleavage

activity and the coefficient of variation of the crispAI-predicted distributions implies that as off-target cleavage

activity decreases, our model’s confidence in its predictions for the associated sgRNA-target pair increases.

This phenomenon is advantageous as it indicates that crispAI is more certain and consistent in identifying

sgRNA-target pairs with lower off-target cleavage activity. Such sgRNA-target pairs exhibit more densely

distributed predicted probability distributions, suggesting a greater level of confidence in the predictions.

To investigate the effcet of location and type of the mismatches on the uncertainty of the off-target cleavage

activity, we stratified crispAI-predicted distributions on the test portion of the CHANGE-seq dataset with

respect to: the type of the mismatch (e.g., A→C - sgRNA base is A and target base is C) and the position of

the mismatch between sgRNA and target DNA sequences. Then we plotted the coefficient of variation of the

crispAI-predicted distributions for the stratified folds in Fig.5. We observed an increase in coefficient of variation

for PAM-proximal base loci as opposed to PAM-distal region. Additionally, we observed a significant increase in

uncertainty for some mismatch types compared to others. Specifically: T → G, T → C and C → G sgRNA

to target mismatch types. Recent studies widely reported that PAM-proximal mismatches are less tolerated

for the cleavage activity [6, 33, 34] meaning that PAM-proximal sequence-based variations have higher effect.

PAM-proximal mismatches yielded higher uncertainty in the crispAI-predicted cleavage activity distributions.

crispAI-aggregate score enables uncertainty aware genome-wide sgRNA specificity prediction

We developed crispAI-aggregate, the first-of-its-kind genome-wide sgRNA specificity score, to provide aggregate

score distributions for the sgRNA of interest. To calculate crispAI-aggregate distributions, we use Cas-OFFinder

[35] to search for potential off-target sites of the sgRNA of interest up-to N mismatches, where N is a

hyperparameter of the crispAI-aggregate score. Then the element-wise summation of crispAI-predicted posterior

cleavage activity distributions for all obtained off-target sites are element-wise divided by the crispAI-predicted

posterior cleavage activity distribution for the perfect homology target-site sequence (i.e., 0-mismatch target).

Finally, crispAI-aggregate is defined as the logarithm of the obtained conditional distribution (Methods).

To evaluate crispAI-aggregate score, firstly we obtained the sgRNA specificity data curated by Fu et al. [19] on

CHANGE-seq, TTISS [36] and GUIDE-seq datasets - providing specificity scores for 108, 59 and 10 sgRNAs

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 21, 2024. ; https://doi.org/10.1101/2023.06.02.543468doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.02.543468
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 Ozden et al.

respectively. We used sgRNAs in these dataset as inputs to crispAI-aggregate pipeline with maximum number

of mismatches up-to N = 5 and obtained crispAI-aggregate distributions for all sgRNAs. To compare the

performance of crispAI-aggregate score with other competing aggregation methods, we take expectations of the

predicted distributions and obtained point predictions for the specificity aggregation task. Bar-plots in Fig.6a

illustrates the performance of competing aggregate scores: MOFF-aggregate, CRISPR-Net, CFD, Elevation-

aggregate, CRISPRoff, CNN std and crispAI-aggregate against Spearman correlation coefficient with respect

to ground truth specificity values given in the curated dataset calculated based-on ground truth sequencing

reads from respective in vitro assays. We observed that crispAI-aggregate significantly out-performed existing

scores on CHANGE-seq and GUIDE-seq datasets with 14.27% and 6.99% improvements over best performing

tools, MOFF and CRISPR-Net respectively and performed above average with 25.39% deterioration below

MOFF-aggregate in Spearman correlation on sgRNAs in TTISS dataset, where average deterioriation among

other methods is 41.26% below MOFF-aggregate score in Spearman correlation on this dataset.

Additionally, we visualised the Cumulative Distribution Functions (CDF) of the obtained crispAI-aggregate

distributions for all 108 sgRNAs in the CHANGE-seq dataset in Fig.6b and annotated the CDFs with a

colorbar depending on the associated ground truth specificity value. We observed that sgRNAs exhibiting

higher specificity yielded crispAI-aggregate distributions with CDFs where the distribution is more densely

populated around lower crispAI-aggregate score values (right-skewed PMFs), whereas sgRNAs exhibiting lower

specificity yielded crispAI-aggregate distributions with CDFs where the distribution is more densely populated

around higher crispAI-aggregate score values (left-skewed PMFs). This result supports our findings since lower

crispAI-aggregate score values indicate higher specificity in sgRNAs.

To further evaluate the crispAI-aggregate score, we obtained all 2, 408 sgRNAs presented in the Avana library [12]

targeting non-essential genes. Similarly to Fig.6, we obtained crispAI-aggregate distributions for all sgRNAs,

again using N = 5. Then, we created 8 bins in total using the ground-truth Log Fold Change (LFC) values

present in the Avana library obtaining bins from −2.3 to 0.9 LFC values associated with all analysed sgRNAs.

The ridgeline plot in Fig.7a illustrates the expected values of obtained crispAI-aggregate distributions for each

bin. Similarly to Fig.6b for sgRNAs with higher LFC values expected values of crispAI-aggregate distributions
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a b

Fig. 6. Genome-wide uncertainty aware sgRNA specificity prediction with crispAI-aggregate score. a. Genome-wide

sgRNA specificity score, crispAI-aggregate score, is defined as the logarithm of the ratio between sum of crispAI-predicted

off-target scores up-to N mismatches and the on-target sequence, where N is a hyperparameter of the score. For the plots

herein N = 5 is used. a. Bar-plot represents the Spearman correlation between sgRNA specificity, as presented in [19],

and predicted aggregate scores by MOFF-aggregate, CRISPR-Net, CFD, Elevation-aggregate, CRISPRoff, CNN std and

crispAI-aggregate on CHANGE-seq, TTISS and GUIDE-seq datasets with n = 108, 59 and 10 sgRNAs respectively. b.

Cumulative Distribution Functions (CDFs) of predicted crispAI-aggregate score distributions are depicted. The colorbar

represents the sgRNA specificty of the associated CDF in the respective dataset.
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are more skewed and more densely populated around lower crispAI-aggregate score values. More specifically for

the obtained bins we observed 6.092, 5.166, 4.454, 4.069, 3.373, 2.821, 2.840 and 3.333 mean crispAI-aggregate

scores with −2.14, −1.66, −1.28, −0.89, −0.48, −0.09, 0.19 and 0.5 average LFC values respectively. Additionally,

we measured MOFF-aggregate score for the same bins, bar plot in Fig.7b shows the average MOFF-aggregate

scores 4.148, 3.575, 2.880, 2.266, 1.203, 0.234, 0.076 and 0.958 for each LFC bin in the respective order.

a c

b

Fig. 7. Prioritization of sgRNA specificity with crispAI-aggregate score. a. Ridgeline plot for expected values of crispAI-

aggregate score distributions on 2, 408 sgRNAs given in the Avana library [12]. First, we searched genome-wide for up

to 5 mismatch off-target sites for all 2, 408 sgRNAs using CasOffFinder, obtaining n samples in total, and calculated

crispAI-aggregate scores for each sgRNA. Then, we used associated Log Fold Change (LFC) values for each sgRNA to

obtain 8 bins with different bin ranges based on LFC values. The ridgeline plot depicts expected crispAI-aggregate score

for each LFC bin. b. Bar-plot representing the average MOFF-aggregate scores for the bins used in a. c. Histograms

depict crispAI-aggregate score for two similar LFC sgRNAs targeting CSH1 and SPACA7 genes, with −0.305 and −0.294

LFC values in the Avana Library respectively. The expected value of predicted crispAI-aggregate score distributions are

4.055 and 4.012 in the respective order.
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The genome-wide specificity distributions produced by crispAI-aggregate enables distinguishing between sgRNAs

with similar point predictions. To demonstrate this histograms in Fig.7c depicts crispAI-aggregate score

distributions for two sgRNAs targeting CSH1 and SPACA7 genes with LFC values −0.305 and −0.294 in the

Avana library and the mean values of crispAI-aggregate scores are calculated as 4.055 and 4.012 respectively.

Although both the associated LFC values and the expected values of the predicted crispAI-aggregate distributions

are very close for these sgRNAs, obtained distributions are different. Specifically, the sgRNA targeting CSH1

gene yielded a wider crispAI-aggregate score distribution compared to the sgRNA targeting SPACA7 gene

with coefficient of variation values of 0.804 and 0.334. This finding suggests crispAI-aggregate score enables

prioritization among sgRNAs with similar point predictions by providing richer information for genome-wide

specificity prediction problem.

Discussion

The development of in silico predictive models for CRISPR/Cas9 off-target activity prediction has achieved

significant milestones in various approaches, including heuristic models, traditional machine learning models and

deep learning models. Heuristic models were among the early attempts to predict off-target activity [12,29,37,38],

relying on predefined rules and sequence patterns. While these models provided initial insights, they often lacked

generalizability and accuracy. The advent of learning models, such as traditional machine learning algorithms

like SVM, random forest, and logistic regression, brought improvements by leveraging data-driven approaches

[14,39–41]. These models incorporated features derived from sequence characteristics and demonstrated enhanced

prediction capabilities. However, with the emergence of deep learning models in the field, including convolutional

neural networks (CNNs) and recurrent neural networks (RNNs), the effectiveness and prediction capabilities

of the modelling efforts significantly improved [16, 26, 32, 42]. Deep learning models could effectively handle

large volumes of complex data, capturing intricate patterns and achieving superior performance in predicting

off-target activity. The development of deep learning-based prediction models also enabled utilization of physical

features modelling the off-target activity problem with more depth [17]. Accurately quantifying uncertainty in

off-target activity predictions is a crucial next milestone this study aims to address. While predictive models

have shown promising results in identifying potential off-target cleavage activity, they provide point predictions

without considering the associated uncertainty. Incorporating uncertainty estimates into these models would
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provide a more comprehensive understanding of the reliability and confidence of the predictions. It would enable

researchers and practitioners to differentiate between sites with similar point predictions but different levels

of uncertainty, allowing for better risk assessment and prioritization of potential off-target sites. Additionally,

quantifying uncertainty would enhance the transparency and communication of the prediction results, providing

stakeholders with a clearer understanding of the associated risks.

For sequencing data analysis, it is essential to acknowledge the heterogeneity of zeros, as they can originate

from diverse processes, introducing noise and uncertainty into the data. Thorough modeling is required to

address this phenomenon and ensure accurate interpretation of results. Two primary categories of zeros are

encountered: technical zeros and biological zeros [23]. Technical zeros arise from limitations in sample preparation

or sequencing, leading to partial or complete reduction in countable sequences. Examples include biases in

amplification, sequencing depth limitations, or batch effects. In contrast, biological zeros occur when a specific

sequence is genuinely absent from the biological system under investigation, such as unique bacterial strains in

different individuals or gene deletions in knockout experiments. Extensive research efforts have been devoted to

overcoming this type of challenge in various application domains. Researchers have developed sophisticated

techniques, including the use of technical components like zero-inflated distributions, to effectively model noisy

zero counts. These approaches have been applied in domains such as microbiome [43] studies, single-cell RNA

sequencing [24,44], and bulk RNA sequencing [45], enabling improved accuracy and insight in differential gene

expression analysis [46] and facilitating a deeper understanding of biological processes. In off-target activity

detection data, we use technical zeros to refer to the off-target sites that can not be captured due to the limited

sensitivity of the detection assays. To address the technical zero problem in the raw count version of off-target

activity data, we employed a count noise-modeling approach that utilized a Zero-Inflated Negative Binomial

(ZINB) distribution. This allowed us to accurately model the characteristics of the data, account for excessive

zeros, and incorporate uncertainty modeling.

Although our approach provides a more comprehensive risk assessment than traditional point predictions, it is

important to note that our modelling effort tackles the uncertainty problem by considering abundant number

of potential off-target sites, which is not suitable for modelling uncertainty in the on-target cleavage activity.

Hence, a limitation of crispAI is that it is not designed for on-target activity prediction. The current model does
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not share the limitation of all sequence-based models, whose predictions are solely based on the sgRNA-target

DNA sequence pair because they cannot differentiate between off-target activities of identical sgRNA-target

interfaces at different genomic loci. Whereas, crispAI incorporates physical features of the genomic loci at the

target region, using richer information compared to sequence-based models and allowing differentiation between

target regions with the same off-target sequence. Therefore, our method differentiates from the other uncertainty

aware Gaussian Process Regression (GPR)-based method [22] by sampling uncertainty estimates using physical

descriptors in addition to sequence-based features of the sgRNA-target context whereas GPR-based model is

unable to distinguish between target sites with the same off-target sequence.

We observed an increase in the coefficient of variations for the predicted activity distribution of sgRNA-target

DNA interfaces that had mismatches in the PAM-proximal region compared to the coefficient of variation we

observed for predicted activity distribution for interfaces with PAM-distal mismatches. This observed difference

in the coefficient of variation for the predicted distributions for the said interfaces is in concordance with the

different roles of PAM-proximal and PAM-distal base pairings have in the mechanism of the CRISPR/Cas9

based editing. Correct PAM-proximal base pairing is essential for initiating sgRNA-target DNA heteroduplex

formation and therefore the stable binding of the CRISPR/Cas9 complex to the target DNA loci. Therefore

PAM-proximal mismatches can adversely affect correct binding and subsequently off-target activity at the given

loci [47]. At the same time initiation of PAM-proximal base pairing is a stochastic process and this may explain

why it is more challenging to correctly predict the effect of PAM-proximal mismatches with high certainty [48].
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Material & Methods

Datasets

For the training of crispAI, we used CHANGE-seq dataset [9]. CHANGE-seq is a scalable, automatable

tagmentation-based method for measuring the genome-wide activity of Cas9 in vitro. Authors identified 201, 9434

off-taget sites on 110 sgRNAs across 13 therapeutically relevant loci in human primary T cells. Although

CHANGE-seq assay is a high sensitivity in vitro genome-wide off-target detection method [20], it is still not able

to detect all of the potential off-target sites due to limited sensitivity of the experimental apparatus. However,

studies suggested that off-target sites which have several mismatched positions with the respective sgRNA

sequence (i.e., up-to 6 base-pairs) are putative off-target sites and are potentially harmful.

Many genome alignment-based methods [35,38,49] have been proposed for in silico discovery of the putative

off-target sites for a given sgRNA. We employed one of the most popular, light-weight tool CasOFFinder [35]

for this task owing to its ease of use and search speed. Specifically, we searched for putative off-target sites for

all 110 sgRNAs presented in CHANGE-seq dataset with up to 6 allowed base-pair mismatched positions with

the sgRNA sequence. We obtained a total of 1, 783, 801 putative off-target sites, yielding a total of 1, 581, 757

off-target sites that are not also in CHANGE-seq dataset.

To evaluate crispAI, we used 5 different test sets obtained with different assays. More specifically: (i) we randomly

splitted 10% of the CHANGE-seq dataset on human primary T-cells obtaining 168, 465 off-target sites for n

sgRNAs; (ii) GUIDE-seq dataset containing 443 off-target sites for n sgRNAs; (iii) SITE-seq dataset containing

6, 097 off-target sites for n sgRNAs; (iv) HEK293T and (v) K562 cell-lines datasets used in Chuai et al. [32]

containing 536 and 120 off-target sites for 12 and 18 sgRNAs respectively.

Modelling of crispAI

Problem formulation. Letting xs ∈ {0, 1}ms×ℓ, where ms and ℓ are feature dimension and sequence length

respectively, be the nucleotide sequence-based features of sgRNA-target pair interface, xp ∈ [0, 1]mp×ℓ, where

mp is feature dimension for physical features, denote the physical descriptor based features of sgRNA-target

pair interface and y ∈ R denote the cleavage read depth, we model off-target activity data generation process

with a Zero-Inflated Negative Binomial (ZINB) distribution. The ZINB distribution is an appropriate choice for
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modeling count data that is both highly sparse and overdispersed. A ZINB mixture model can be constructed

using two components: a point mass at zero, which represents the excessive number of undetected inactive

samples in the data, and a negative binomial component that models the count distribution. In the context

of off-target assay data for CRISPR-based editing technologies, the point mass at zero is expected to capture

the abundance of undetected inactive samples, while the negative binomial component is used to represent the

sequencing reads for active samples. Hence, we model y with the following set of parametric equations as:

NB(k;µ, θ) =
Γ (k + θ)

Γ (θ)

(
µ

µ+ θ

)k (
θ

µ+ θ

)θ

,

P(y|xs, xp) ∼ ZINB(k;π, µ, θ) = πδ0(k) + (1− π)NB(k;µ, θ)

(1)

fw : ({0, 1}ms×ℓ, [0, 1]mp×ℓ) → R3, x → (π, µ, θ, p) (2)

where ZINB(k;π, µ, θ) is the ZINB distribution with parameters π, µ and θ for the mixture coefficient representing

the point-mass (δ0) at 0, mean and dispersion of the negative binomial component (NB), respectively. We

model the parameters for the conditional distribution with a multi-input, multi-output parametric function

fw : ({0, 1}m×ℓ, [0, 1]mp×ℓ) → R3 with parameter set w. Note that the output space of the function fw is R3,

where three output dimensions represent π, µ and θ. Thus, using a data-set consisting of N samples in the form

of 3-tuples, D = {(xi
s, x

i
p, y

i)}Ni , we want to be able to calculate the posterior distribution of the cleavage score

y given the features xs, xp and the data D — that is P(y|xs, xp,D).

Encoding of the sequence-based sgRNA-target interface features. We used 4-bit one-hot-encoding

vectors representing the letters in the alphabet {A,G,C, T}. Using the one-hot-encoded representations for each

base in sgRNA and target sequences yields 4× 23 binary matrices for each sequence. Then we employed the

sgRNA-target pair encoding scheme proposed in Lin et al. [26]. We represent any sgRNA-target sequence pair

with a 6× 23 matrix as follows: First, both sgRNA and the target sequence is one-hot encoded. Then, obtained

binary matrices are merged via an element-wise OR operation. Hence, resulting 4× 23 binary matrix shows the

mismatches between sgRNA-target sequence pair. However, OR operation does not preserve the direction of the

mismatch. To help ameliorate this information loss, a two-bit direction channel is concatenated to the resulting

binary matrix. For example, at a base-pair loci, ‘0011 − 10’ represents the mismatch ‘G → C’; ‘0011 − 01’
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represents the mismatch ‘C → G’ and one-hot vector ‘0100− 00’ represents the matched loci ‘T → T ’, obtaining

a 6× 23 matrix for the sequence-based features of the sgRNA-target pairs.

Physical descriptors and encoding of the 147-bp sequence context of the target site. We used

147-bp sequence context on the off-target loci (i.e., 73-bp flank on each side of an off-target sequence position)

with a sliding window approach to obtain: (i) Nucleotide BDM score [27]; (ii) GC content; (iii) NuPoP occupancy

and (iv) NuPoP affinity scores [28] and normalized the obtained scores in the [0, 1] interval. Hence, we obtained

4× 23 matrix for physical descriptors of the off-target sequence context. GC count refers to the proportion of G

and C bases within the 147-bp sliding window, centered around a given off-target sequence position. Nucleotide

BDM is a training-free method to approximate the algorithmic complexity of a given DNA sequence. NuPoP

scores refer to a Hidden Markov Model (HMM), trained to estimate the nucleosome affinity and occupancy at

single base-pair resolution. For a more detailed discussion on the effects of these features to CRISPR-based

cleavage activity, we refer to Störtz et al. [17].

Architecture and training of crispAI. crispAI is an end-to-end multi-output CNN and bi-LSTM fusion

neural network specifically designed to quantify the uncertainty in off-target cleavage activity of sgRNA-target

pairs for CRISPR/Cas9 system. We show that crispAI architecture is able to increase performance on off-target

cleavage activity prediction task on different test sets, while providing uncertainty quantification in off-target

activity (Results).

crispAI architecture is designed to estimate the parameters of the ZINB distribution conditioned on the sgRNA-

target interface features. First, we input binary matrix encoding of the interface to a series of Convolutional

Neural Network (CNN) and bi-directional Long-Short Term Memory (bi-LSTM) layers simultaneously for both

spatial and temporal feature extraction. Specifically, we use 2 consecutive CNN layers with 128 and 32 kernels

with 1 and 3 filter sizes respectively and a bi-directional LSTM layer with 128 hidden neurons in each direction.

The output activations of the CNN layers are batch-normalized while the output of the last CNN layer is pooled

with a MaxPool layer of kernel size 2 and with a stride of 2. The obtained encodings are further processed with

two distinct 128-neuron Fully Connected (FC) layers individually. We then concatenate the final encodings

outputted by the FC layers into a single 256-dimensional vector. The final FC layer with 64 neurons processes

the concatenated vector and is inputted to 3 output neurons, one for each parameter of the ZINB distribution.
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We used ReLU activations for FC and CNN layers. The activation function choices for the individual output

neurons predicting 3 associated parameters for the ZINB distribution, π, µ and θ, are discussed below. The

architecture can be formulated through following equations:

Ecnn = ReLU(CNN(Xs)
3
i=1),

Es = ReLU(BiLSTM(Ecnn)),

Ep = ReLu(CNN(Xp))

Etotal = Concat(ReLU(FC1(Es)),ReLU(FC2(Ep))),

π = Logit(FCπ(ReLU((FC3(Etotal))))),

µ = Exp(FCµ(ReLU((FC3(Etotal))))),

θ = Exp(FCθ(ReLU((FC3(Etotal)))))

(3)

where Ecnn, Es, Ep and Etotal represent CNN encoding of the sequence-based features, biLSTM encoding of

the CNN extracted features, CNN encoding of physical descriptors and concatenated total encoding of the

sequence-based and physical descriptor features respectively. To ensure positivity on parameters π and µ, we

use exponential activations, and for drop-out parameter π, we use Logit activation for ease of integration with

Negative Log Likelihood (NLL) loss for ZINB distribution.

All network parameters in (1), are learned with a multi-task training framework using Stochastic Gradient

Descent (SGD) algorithm. To train the network weights, we use Negative Log Likelihood Loss of ZINB

(LZINB = NLLZINB) for three parameters of the ZINB distribution.

LZINB(π, µ, θ, y) = −
N∑
i=1

log
(
πδ0(yi) + (1− π)NB(yi;µ, θ)

)
, (4)

where all parameters in (4) are defined in Problem Formulation section.

We trained the crispAI architecture with the same training settings on all datasets. We splitted CHANGE-seq

and GUIDE-seq dataset into training, validation and testing sets with 70%, 20% and 10% respectively. For
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DeepCRISPR data we did not use a validation set and used the same hyper-parameter configurations we

discovered using the CHANGE-seq validation set. Hence, we applied a 80%-20% train-test split on the latter.

We used Adam optimizer [50] for optimization with a learning rate of 0.00001. We stopped the training with

early stopping, watching either the validation or training loss for 50-epochs, with a maximum epoch number of

500. We implemented crispAI on Python 3.9 using PyTorch [51]. Finally, we used SCVI-tools [52] to implement

the loss functions. The model is trained on a single 24G NVIDIA TITAN RTX GPU.

Genome-wide sgRNA specificity prediction with crispAI-aggregate score. We designed, the first of

its kind, crispAI-aggregate score for uncertainty-aware sgRNA genome wide specificity prediction, inspired by

MOFF-aggregate score [19]. First, we use CasOFFinder [35] to search putative off-target DNA sites up-to a

user specified (i.e., N = 5) number of mismatches genome-wide for the sgRNA of interest. Then, we obtain

crispAI-predicted cleavage activity distributions for each obtained putative off-target site. Then, we calculate

the ratio between the summation of the crispAI-predicted distributions of all of the detected off-target sites and

the crispAI-predicted distribution for the on-target site. Finally, crispAI-aggregate score for a given sgRNA is

defined as the log of the obtained ratio.

P(ysg|Xsg, N) = log

∑N
i=0 P(yi|xi

s, x
i
p)

P(yon|xon
s , xon

p )

 , (5)

where ysg, Xsg and N denote genome-wide specificity score, sequence-based features of the sgRNA of interest

and user specified maximum number of mismatches to search for genome-wide (5 by default). The variables on

the right hand side of (5) are defined in (1) and indexed by the off-target site indice in the nominator and the

on-target site indice in the denominator.

Code and Data Availability

All necessary scripts and data to replicate the results presented in figures are deposited to Zenodo https://

zenodo.org/records/10516069?token=eyJhbGciOiJIUzUxMiJ9.eyJpZCI6ImNmZjIxNWE0LTFmMTUtNGM5ZC1hYTliLWRiMmIwZGQxYWZmNCIsImRhdGEiOnt9LCJyYW5kb20iOiJkZjIwZWU4NmQxNWMyYWVjNTA2NzYxMzVmODZhMjk0MiJ9.

RNooX9OxDtMxVqnyuc78HX43FSY5pFY5vvY4dD5jD-Ib8IbS1VfUYDMhj6jnYA-jdCO21-IX4m6tkp7_ihpFCQ, the tool

and the trained model are available at https://github.com/furkanozdenn/crispr-offtarget-uncertainty.
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