

1 **Ultrasonographic measurements of fascicle length overestimate adaptations in serial**
2 **sarcomere number**
3

4 Avery Hinks¹, Martino Franchi^{2,3}, Geoffrey A. Power^{1*}

5
6 ¹Department of Human Health and Nutritional Sciences, College of Biological Sciences,
7 University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada
8

9 ²Department of Biomedical Sciences, Human Neuromuscular Physiology Laboratory, University
10 of Padua, Padua, Italy
11

12 ³CIR-MYO Myology Centre, University of Padua, Padua, Italy
13
14

15 **Original Research Article**
16
17
18
19
20

21 *Running head:* Muscle architecture of ultrasound-derived versus dissected fascicles
22
23
24
25

26 ***Correspondence**
27 Geoffrey A. Power PhD.

28 Neuromechanical Performance Research Laboratory
29 Department of Human Health and Nutritional Sciences
30 College of Biological Sciences
31 University of Guelph, Ontario, Canada
32 Telephone: 1-519-824-4120 x53752
33 Email: gapower@uoguelph.ca

36 **Key Points Summary**

37 • Measurements of muscle fascicle length via ultrasound are often used to infer changes in
38 serial sarcomere number, such as increases following chronic stretch or resistance
39 training, and decreases with aging or muscle disuse
40 • The present study used a rat model of casting the plantar flexor muscles in a stretched
41 position to investigate directly whether ultrasound-derived fascicle length can accurately
42 detect adaptations in serial sarcomere number
43 • Ultrasound detected an ~11% increase in soleus fascicle length, but measurements on
44 dissected fascicles showed the actual increase in serial sarcomere number was only ~6%;
45 therefore, measurements of ultrasound-derived fascicle length can overestimate serial
46 sarcomere number adaptations by as much as 5%

47

48 **Abstract**

49 Ultrasound-derived measurements of muscle fascicle length (FL) are often used to infer
50 increases (chronic stretch or training) or decreases (muscle disuse or aging) in serial sarcomere
51 number (SSN). Whether FL adaptations measured via ultrasound can truly approximate SSN
52 adaptations has not been investigated. We casted the right hindlimb of 15 male Sprague-Dawley
53 rats in a dorsiflexed position (i.e., stretched the plantar flexors) for 2 weeks, with the left
54 hindlimb serving as a control. Ultrasound images of the soleus, lateral gastrocnemius (LG), and
55 medial gastrocnemius (MG) were obtained with the ankle at 90° and full dorsiflexion for both
56 hindlimbs pre and post-cast. Following post-cast ultrasound measurements, legs were fixed in
57 formalin with the ankle at 90°, then muscles were dissected, and fascicles were teased out for
58 measurement of sarcomere lengths via laser diffraction and calculation of SSN. Ultrasound
59 detected an 11% increase in soleus FL, a 12% decrease in LG FL, and an 8-11% increase in MG
60 FL for proximal fascicles and at full dorsiflexion. These adaptations were partly reflected by
61 SSN adaptations, with a 6% greater soleus SSN in the casted leg than the un-casted leg, but no
62 SSN differences for the gastrocnemii. Weak relationships were observed between
63 ultrasonographic measurements of FL and measurements of FL and SSN from dissected
64 fascicles. Our results showed that ultrasound-derived FL measurements can overestimate an
65 increase in SSN by ~5%. Future studies should be cautious when concluding a large magnitude
66 of sarcomerogenesis from ultrasound-derived FL measurements, and may consider applying a
67 correction factor.

68

69 **Key Words:** *Ultrasound, Sarcomere, Casting, Immobilization, Fascicle, Rats, Pennation angle*

70 **Introduction**

71 Characterization of a muscle's serial sarcomere number (SSN) gives insight into
72 properties of biomechanical function (Lieber & Fridén, 2000; Narici *et al.*, 2016; Hinks *et al.*,
73 2022a). To that end, B-mode ultrasound is often used in humans to measure fascicle length (FL)
74 and infer SSN adaptations at a smaller scale, such as increases in FL following resistance
75 training (Blazevich *et al.*, 2007; Franchi *et al.*, 2014; Hinks *et al.*, 2021) or decreases in FL with
76 age and disuse (Williams & Goldspink, 1978; Narici *et al.*, 2003; de Boer *et al.*, 2008; Power *et*
77 *al.*, 2013). In animals, SSN can be estimated more precisely by dividing average sarcomere
78 length (SL) measured via laser diffraction by the length of a dissected fascicle (Butterfield *et al.*,
79 2005; Chen *et al.*, 2020; Hinks *et al.*, 2022b). Unfortunately, direct measurement of SL in
80 humans is invasive (Lieber *et al.*, 1997; Boakes *et al.*, 2007), and often prohibitively costly and
81 not accessible (Lichtwark *et al.*, 2018; Adkins *et al.*, 2021). However, inferring SSN adaptations
82 via ultrasound-derived measurements of FL may be problematic because apparent increases or
83 decreases in FL could be due to longer or shorter SLs, respectively, at the joint angle in which
84 FL was measured (Pincheira *et al.*, 2021). The relationship between SSN and FL may also
85 depend on the region of muscle, with the human tibialis anterior displaying greater SSN in
86 proximal fascicles due to a shorter SL (Lichtwark *et al.*, 2018). Collectively, the relationship
87 between SSN and ultrasound-derived FL may depend on the joint angle and region of muscle at
88 which measurements are taken. Whether FL adaptations measured via ultrasound truly
89 approximate SSN adaptations has not been investigated.

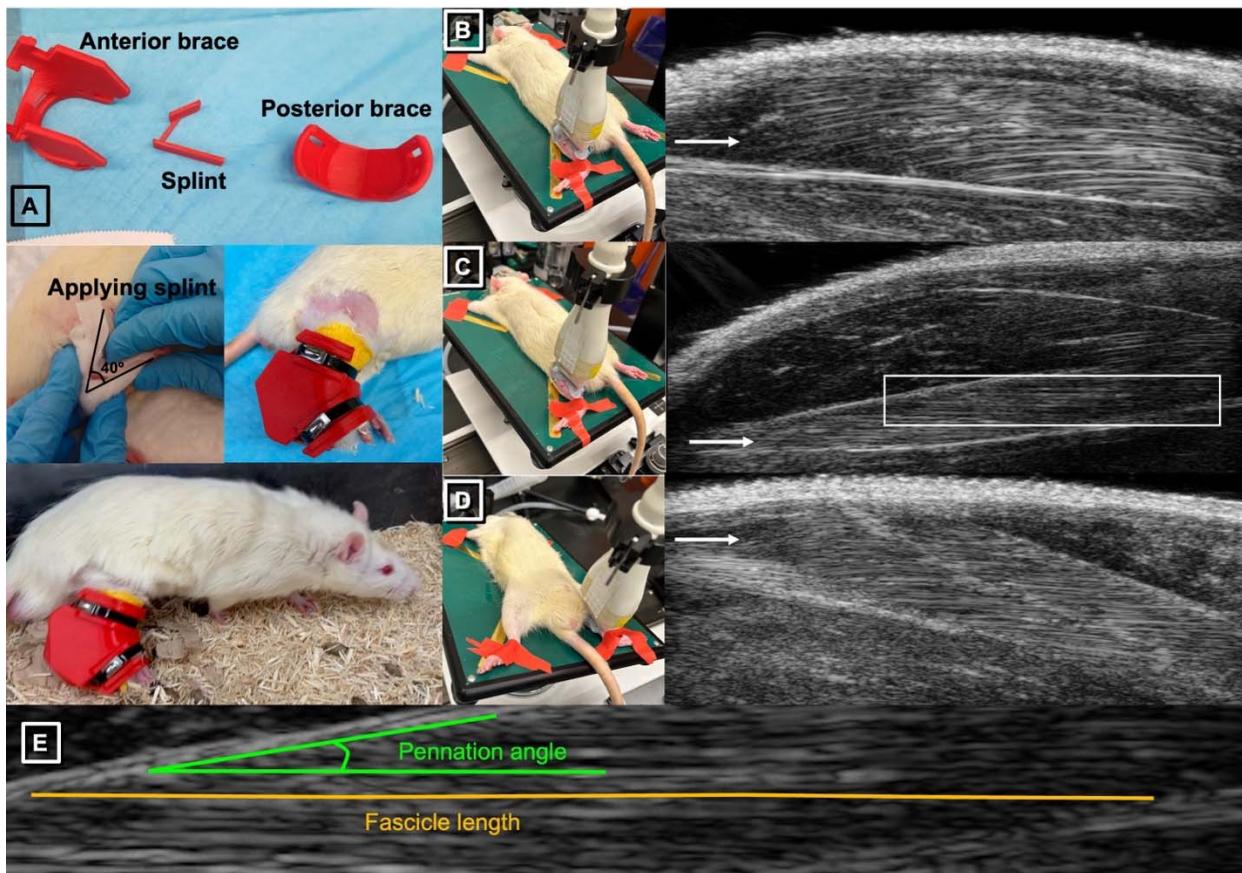
90 Assessment of FL in rodents via ultrasound is less common than in humans, but not
91 unfounded. Peixinho and colleagues developed reliable methods for assessment of muscle
92 architecture via ultrasound in the rat plantar flexors (Peixinho *et al.*, 2011, 2014).

93 Ultrasonography of the rat plantar flexors also has enough sensitivity to detect morphological
94 adaptations (Peixinho *et al.*, 2014; Mele *et al.*, 2016). These previous studies, however, only
95 assessed pennation angle (PA) and muscle thickness, leaving characterization of ultrasound-
96 derived FL adaptations in rats unclear. Altogether, rodent models present an opportunity to
97 assess the sensitivity of ultrasound measurements of FL in detecting actual SSN adaptations.

98 The present study assessed the validity of ultrasound as a tool to detect adaptations in
99 SSN. To do this, we immobilized the rat plantar flexors in a lengthened position—an
100 intervention that rapidly increases soleus SSN (Tabary *et al.*, 1972; Williams & Goldspink, 1978;
101 Soares *et al.*, 2007; Aoki *et al.*, 2009). We hypothesized that the ability for ultrasound-derived
102 FL measurements to characterize adaptations in SSN would vary depending on the joint angle at
103 which ultrasound measurements are obtained and the region of muscle.

104 **Methods**

105 *Animals*


106 Fifteen male Sprague-Dawley rats (sacrificial age ~19 weeks) were obtained (Charles
107 River Laboratories, Senneville, QC, Canada). Approval was given by the University of Guelph's
108 Animal Care Committee and all protocols followed CCAC guidelines (AUP #4905). Rats were
109 housed at 23°C in groups of three and given ad-libitum access to a Teklad global 18% protein
110 rodent diet (Envigo, Huntington, Cambs., UK) and room-temperature water. The right leg was
111 immobilized in dorsiflexion for 2 weeks to place the plantar flexor muscles, in particular the
112 soleus, in a lengthened position (Soares *et al.*, 2007; Aoki *et al.*, 2009). Per previous
113 investigations of SSN adaptations in immobilized rat muscle, the contralateral limb served as a
114 control (Heslinga & Huijing, 1993; Gomes *et al.*, 2004). Ultrasound images of the lateral
115 gastrocnemius (LG), medial gastrocnemius (MG), and soleus were obtained at ~17 weeks of age
116 (pre-immobilization) and ~19 weeks of age (post-immobilization).

117

118 *Unilateral Immobilization*

119 Using gauze padding, vet wrap, and a 3D-printed brace and splint, the right hindlimb of
120 each rat was immobilized in dorsiflexion (40° ankle angle; full plantar flexion = 180°) (Figure
121 1A). Casts were inspected daily and repaired/replaced as needed. The toes were left exposed to
122 monitor for swelling (Aoki *et al.*, 2009).

123

124

125 **Figure 1: A.** Example images of applying the splint and brace for the dorsiflexion cast. **B-D.**
126 Setup and example of ultrasound images obtained from the left lateral gastrocnemius (B), soleus
127 (C), and medial gastrocnemius (D), with the ankle fixed at 90° using tape. White arrows indicate
128 the muscle of interest in each image. **E** corresponds to the area highlighted by the white box in C
129 and shows representative tracings of fascicle length (orange) and pennation angle (green).

130

131 *Ultrasonography*

132 Ultrasound measurements were obtained from the right and left hindlimbs at pre-
133 immobilization (no more than 1 week prior to first applying the casts) and post-immobilization
134 (immediately following cast removal).

135 A UBM system (Vevo 2100; VisualSonics, Toronto, ON, Canada) operating at a centre
136 frequency of 21 MHz was used to acquire images of the soleus, LG, and MG, with a lateral

137 resolution of 80 μm and an axial resolution of 40 μm (Mele *et al.*, 2016). A 23-mm long probe
138 was used, allowing acquisition of images displaying muscle fascicles from end to end. During
139 piloting, image acquisition was optimized with an image depth of 15 mm for the soleus and LG
140 and 16 mm for the MG, both allowing a maximum frame rate of 16 Hz. Prior to image
141 acquisition, rats were anesthetized using isoflurane. With the knee fully extended, tape was used
142 to fix the ankles at two different positions for image acquisition: 1) 90°; and 2) full dorsiflexion.
143 All ultrasound images were acquired by the same individual (A.H.). Images of the LG and soleus
144 were obtained with the rat in a prone position and the hindlimb externally rotated, with the probe
145 overlying the lateral aspect of the posterior shank (Figure 1B-C). Images of the MG were
146 obtained with the rat in a supine position and the hindlimb externally rotated, with the probe
147 overlying the medial aspect of the posterior shank (Figure 1D). The probe position was carefully
148 adjusted to obtain the clearest possible view of fascicles in all of the proximal, middle, and distal
149 regions of the muscle. Throughout image acquisition, the probe was stabilized by a crane with
150 fine-tune adjustment knobs, minimizing pressure and limiting the error associated with human
151 movement.

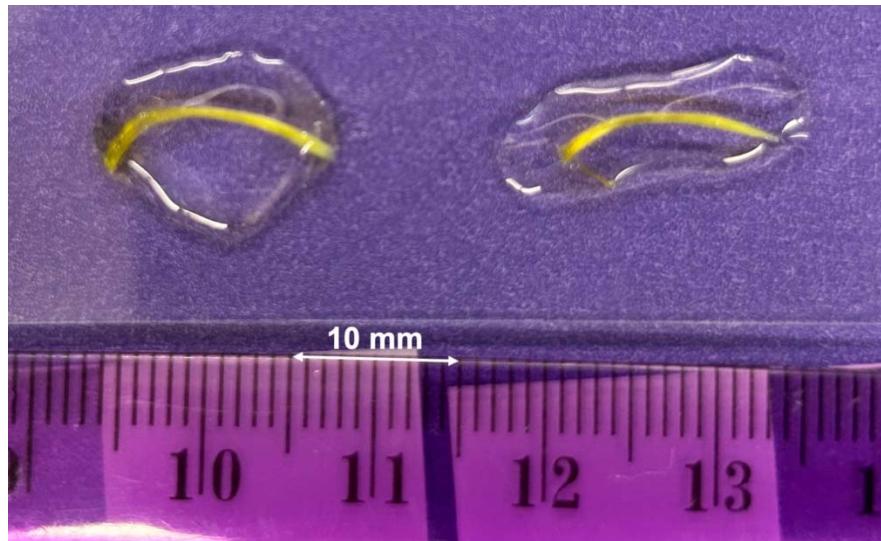
152 Ultrasound images were analysed using ImageJ software (Franchi *et al.*, 2020). ImageJ's
153 multisegmented tool allowed careful tracing of the fascicle paths from end to end in measuring
154 FL. Two measurements of FL and PA were obtained from each of the proximal, middle, and
155 distal regions of each muscle (i.e., six FL and PA measurements per muscle). PA was defined as
156 the angle between the fascicle and the aponeurosis at the fascicle's distal insertion point. All FL
157 and PA measurements were obtained by the same experimenter (A.H.), who was blinded to the
158 results until all measurements pre- and post-immobilization were obtained. During piloting,
159 across three separate image acquisitions on the same rat, the coefficients of variation (standard

160 deviation / mean \times 100%) for FL averaged among two measurements at each region of muscle
161 were all $<10\%$ (Table 1), which indicates low variation among repeated measures.

Table 1: Coefficients of variation for fascicle length across three separate image acquisitions on the same rat

Lateral gastrocnemius										
Day	Proximal FL 1 (mm)	Proximal FL 2 (mm)	Proximal FL Average (mm)	Middle FL 1 (mm)	Middle FL 2 (mm)	Middle FL Average (mm)	Distal FL 1 (mm)	Distal FL 2 (mm)	Distal FL Average (mm)	Total FL Average (mm)
1	11.79	11.79	11.79	12.96	13.10	13.03	12.69	12.00	12.34	12.39
2	10.25	12.75	11.50	12.78	13.59	13.19	12.26	13.68	12.97	12.55
3	12.56	11.30	11.93	12.61	13.03	12.82	14.56	12.85	13.70	12.82
CV (%)			1.88			1.43			5.23	1.72
Soleus										
Day	Proximal FL 1 (mm)	Proximal FL 2 (mm)	Proximal FL Average (mm)	Middle FL 1 (mm)	Middle FL 2 (mm)	Middle FL Average (mm)	Distal FL 1 (mm)	Distal FL 2 (mm)	Distal FL Average (mm)	Total FL Average (mm)
1	10.27	10.69	10.48	11.82	12.11	11.97	10.62	10.12	10.37	10.94
2	10.66	10.66	10.66	12.51	10.58	11.55	11.12	9.73	10.42	10.88
3	10.60	10.44	10.52	11.29	10.43	10.86	10.79	10.39	10.59	10.66
CV (%)			0.91			4.88			1.10	1.37
Medial gastrocnemius										
Day	Proximal FL 1 (mm)	Proximal FL 2 (mm)	Proximal FL Average (mm)	Middle FL 1 (mm)	Middle FL 2 (mm)	Middle FL Average (mm)	Distal FL 1 (mm)	Distal FL 2 (mm)	Distal FL Average (mm)	Total FL Average (mm)
1	10.52	11.93	11.23	12.42	13.47	12.94	13.06	12.50	12.50	12.32
2	11.11	12.36	11.74	12.33	13.56	12.95	13.45	12.91	13.18	12.62
3	10.66	10.88	10.77	11.86	13.60	12.73	13.76	12.31	13.04	12.18
CV (%)			4.31			0.99			2.80	1.84

FL = fascicle length


164 *Serial Sarcomere Number Estimations*

165 Following the post-immobilization ultrasound measurements, rats were sacrificed, and
166 the hindlimbs were amputated and fixed in 10% phosphate-buffered formalin with the ankle
167 pinned at 90° and the knee fully extended. After fixation for 1-2 weeks, the muscles were
168 dissected and rinsed with phosphate-buffered saline. The muscles were then digested in 30%
169 nitric acid for 6-8 hours to remove connective tissue and allow for individual muscle fascicles to
170 be teased out (Butterfield *et al.*, 2005; Hinks *et al.*, 2022b).

171 For each muscle, two fascicles were obtained from each of the proximal, middle, and
172 distal regions of the muscle (i.e., six fascicles total per muscle). Dissected fascicles were placed
173 on glass microslides (VWR International, USA), then FLs were measured using ImageJ software
174 (version 1.53f, National Institutes of Health, USA) from pictures captured by a level, tripod-
175 mounted digital camera, with measurements calibrated to a ruler in plane with the fascicles
176 (Supplemental Figure S1). Sarcomere length measurements were taken at six different locations
177 proximal to distal along each fascicle via laser diffraction (Coherent, Santa Clara, CA, USA)
178 with a 5-mW diode laser (25 μm beam diameter, 635 nm wavelength) and custom LabVIEW
179 program (Version 2011, National Instruments, Austin, TX, USA) (Lieber *et al.*, 1984), for a total
180 of 36 sarcomere length measurements per muscle. Serial sarcomere numbers was calculated as:

181 *Serial sarcomere number = fascicle length / average sarcomere length*

182

183

184 **Supplemental Figure S1:** Example of distal fascicles from the right lateral gastrocnemius used
185 for measurement of dissected fascicle length and calculation of serial sarcomere number, with
186 fascicles positioned in the same plane as a ruler used to set the scale.

187

188 *Statistical Analysis*

189 Statistical analyses were conducted using GraphPad Prism 9.5.1. To investigate variation
190 in ultrasound-derived FL and PA, three-way analysis of variance (ANOVA) (time [pre-
191 immobilization, post-immobilization] \times joint position [90 degrees, full dorsiflexion] \times region
192 [proximal, middle, distal]) was performed for each muscle from each leg, with Geisser-
193 Greenhouse corrections for sphericity. For each dissected muscle, a two-way ANOVA (leg
194 [casted, un-casted] \times region [proximal, middle distal]) was used to investigate variation in SSN,
195 SL, and FL, with Geisser-Greenhouse corrections for sphericity. For all ANOVAs, where
196 interactions or effects of region were detected, pairwise comparisons (two-tailed paired t-tests)
197 were performed with a Bonferroni correction for multiplicity. Two-tailed, paired t-tests
198 compared muscle wet weights between the casted and un-casted leg, with a Bonferroni
199 correction for multiplicity. For all significant t-tests, the effect size was reported as Cohen's d.
200 Significance was set at $\alpha = 0.05$.

201 Linear regression was used to investigate the relationship between: 1) ultrasound-derived
202 FL at 90° post-cast and FL of dissected fascicles; 2) ultrasound-derived FL at each joint angle
203 post-cast and SSN of dissected fascicles; and 3) adaptations in ultrasound-derived FL (as %
204 change pre to post-cast) at each joint angle and adaptations in SSN of dissected fascicles (as %
205 change from the un-casted to the casted leg).

206 **Results**

207 *Effects of region, joint position, and time on fascicle length measured via ultrasound*

208 Three-way ANOVA results for FL measured via ultrasound are presented in Table 2.

209 For all muscles, there were effects of joint position, with FL increasing from a 90° ankle
210 angle to full dorsiflexion (Table 2; Figures 2-4). For the gastrocnemii, there were effects of
211 region, with FL increasing from proximal to distal (Table 2; Figures 2 and 4).

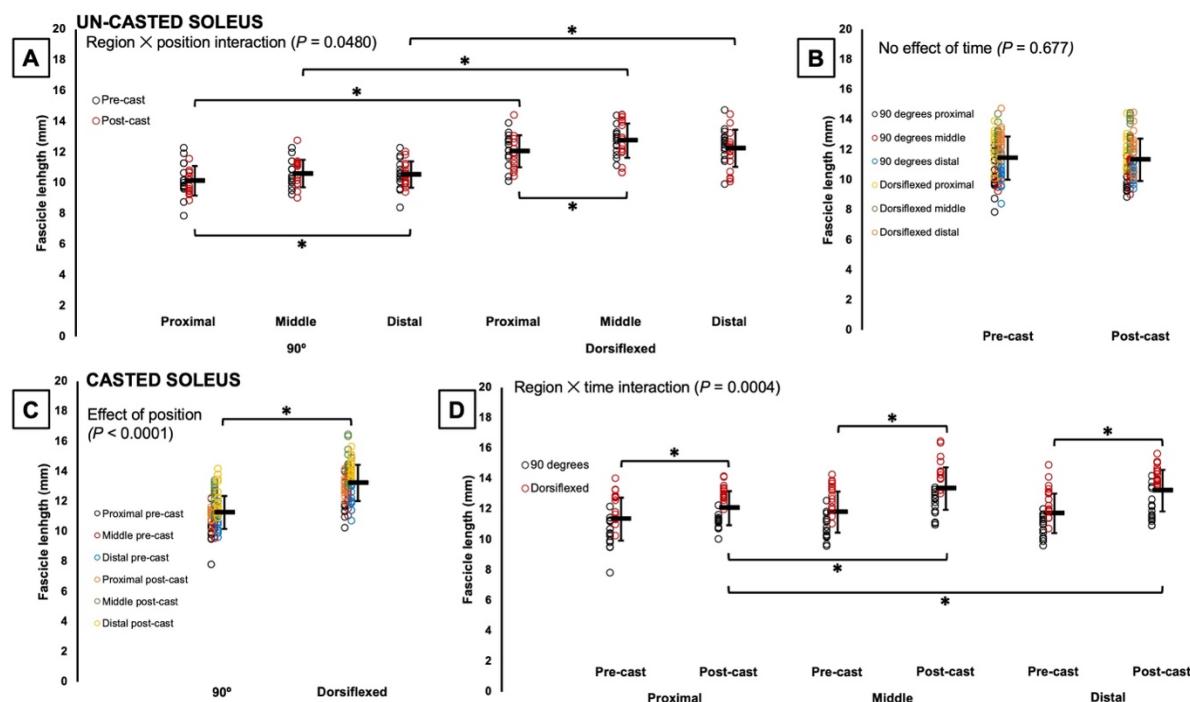
212 For ultrasound-derived FL of the un-casted LG, there was a joint position \times time
213 interaction (Table 2). Pairwise comparisons showed that FL decreased by 6% pre to post-cast
214 when measurements were performed at 90° ($P = 0.0001$, $d = 0.45$), but did not change according
215 to measurements performed at full dorsiflexion ($P = 1.00$) (Figure 2B).

216 For ultrasound-derived FL of the casted LG, there was an effect of time (Table 2), with
217 FL decreasing by 12% pre to post-cast (Figure 2C).

218

219

220 **Figure 2:** Fascicle length of the un-casted and casted lateral gastrocnemius (LG) measured via
221 ultrasound. For the un-casted LG, there was an effect of region (A) and an interaction between
222 joint position and time (B). For the casted LG, there were effects of region (C), joint position
223 (D), and time (E). *Significant difference between indicated means ($P < 0.05$). Data are
224 presented as mean \pm standard deviation.


225

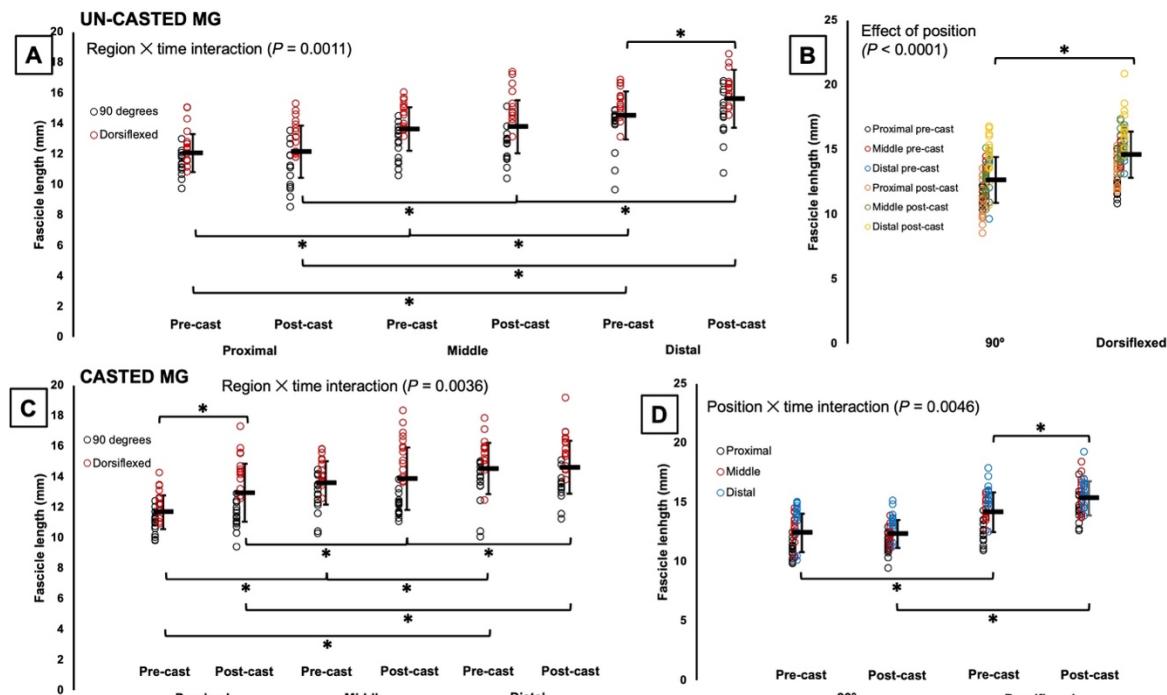
226 For ultrasound-derived FL of the un-casted soleus, there was a region \times joint position
227 interaction (Table 2). Pairwise comparisons showed distal fascicles were longer than proximal
228 fascicles when measured at 90° ($P = 0.0413$, $d = 0.44$), but proximal and middle FL did not
229 differ ($P = 0.194$), and middle and distal FL did not differ ($P = 1.00$) (Figure 3A). Conversely, in
230 measurements performed at full dorsiflexion, middle fascicles were longer than proximal
231 fascicles ($P = 0.0003$, $d = 0.65$), but proximal and distal FL did not differ ($P = 1.00$), and middle
232 and distal FL did not differ ($P = 0.0591$) (Figure 3A). FL of the un-casted soleus did not change
233 from pre to post-cast, with no effect of time (Figure 3B).

234 For the casted soleus, an effect of time showed that ultrasound-derived FL increased on
235 average by 11% pre to post-cast (Table 2). There was also a region \times time interaction. Pairwise

236 comparisons showed all regions of the soleus increased FL from pre to post-cast (proximal: $P =$
237 0.0301, $d = 0.57$; middle: $P < 0.0001$, $d = 1.12$; distal: $P < 0.0001$, $d = 1.13$) (Figure 3D). Pre-
238 cast, there were no regional differences in FL ($P = 0.0849-1.00$), but post-cast, middle ($P <$
239 0.0001; $d = 1.01$) and distal fascicles ($P < 0.0001$; $d = 0.91$) were longer than proximal fascicles
240 (Figure 3D). Accordingly, the increase in proximal FL from pre to post-cast was smaller (+6%)
241 than the increases in middle and distal FL (both +13%).

242

243


244 **Figure 3:** Fascicle length of the un-casted and casted soleus measured via ultrasound. For the un-
245 casted soleus, there was an interaction between region and position (A) and no effect of time (B).
246 For the casted soleus, there was an effect of position (C) and an interaction between region and
247 time (D). *Significant difference between indicated means ($P < 0.05$). Data are presented as
248 mean ± standard deviation.

249

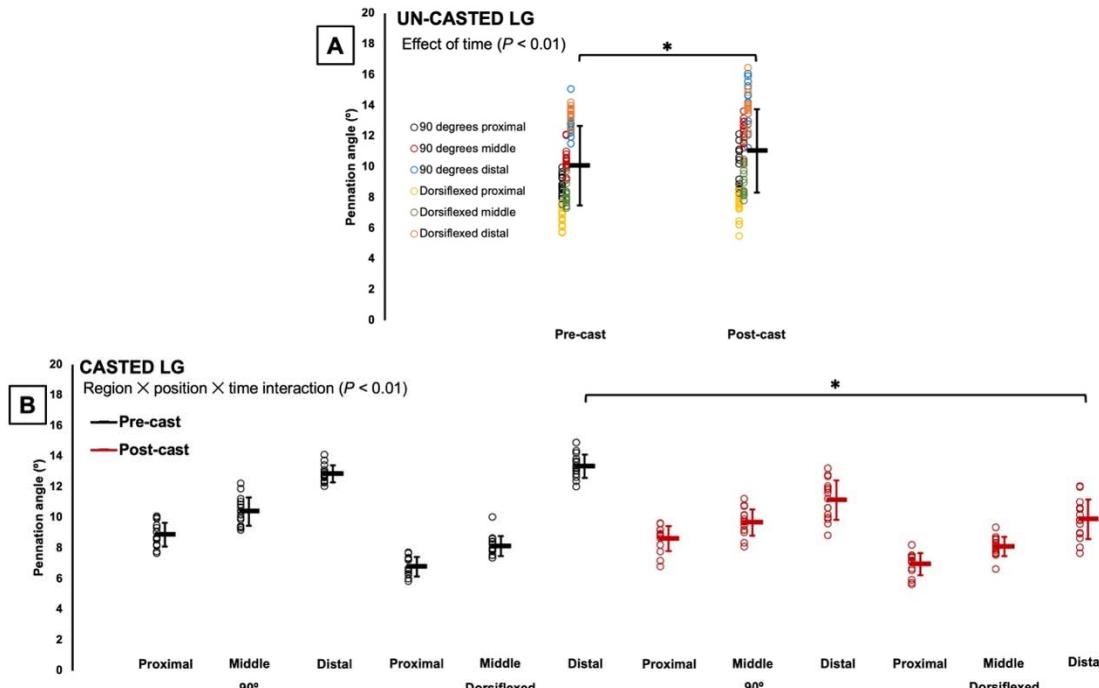
250 For ultrasound-derived FL of the un-casted MG, there was a region × time interaction
251 (Table 2), with distal FL increasing by 8% pre to post-cast ($P = 0.0330$, $d = 0.63$) (Figure 4A).

252 For ultrasound-derived FL of the casted MG, there was also a region \times time interaction
253 (Table 2), but with proximal FL increasing by 11% pre to post-cast ($P = 0.0028$, $d = 0.82$)
254 (Figure 4C). A joint position \times time interaction showed that measurements at 90° detected no
255 change in FL pre to post-cast ($P = 1.00$), but measurements at full dorsiflexion detected an 8%
256 increase in FL ($P = 0.0002$, $d = 0.76$) (Figure 4D).

257

258

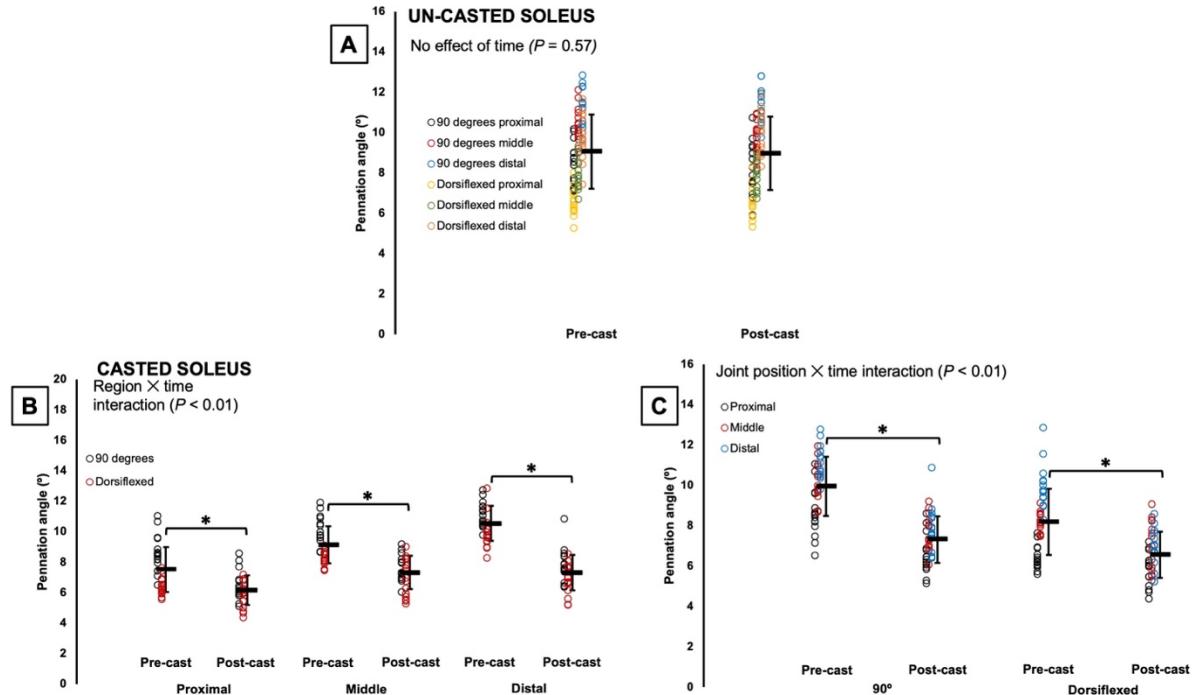
259 **Figure 4:** Fascicle length of the un-casted and casted medial gastrocnemius (MG) measured via
260 ultrasound. For the un-casted MG, there was an interaction between region and time (A) and an
261 effect of position (B). For the casted MG, there were interactions between region and time (C)
262 and position and time (D). *Significant difference between indicated means ($P < 0.05$). Data are
263 presented as mean \pm standard deviation.


264

265 *Effect of time on pennation angle measured via ultrasound*

266 Three-way ANOVA results for PA measured via ultrasound are presented in Table 3.

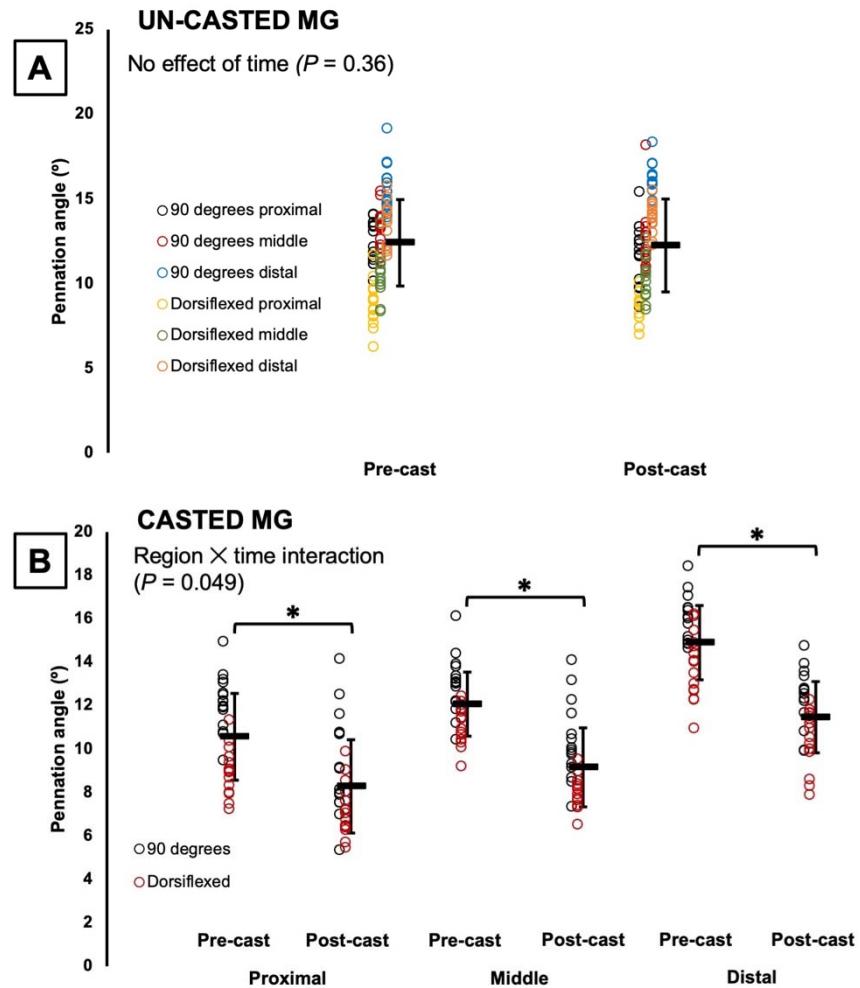
267 For the un-casted LG, there was an effect of time (Table 3) such that PA increased by
268 ~10% pre to post-cast (Figure 5A). For the casted LG, there was a region \times joint position \times time


269 interaction (Table 3). Pairwise comparisons showed a 26% decrease in PA pre to post-cast only
270 in distal fascicles at full dorsiflexion ($P < 0.0001$, $d = 3.24$) (Figure 5B).

271
272 **Figure 5:** Changes in pennation angle of the un-casted (A) and casted (B) lateral gastrocnemius
273 (LG) from pre to post-cast. *Significant difference between indicated means ($P < 0.05$). Data are
274 presented as mean \pm standard deviation.

275
276 For the un-casted soleus, like with FL, time did not affect PA, with no changes pre to
277 post-cast (Table 3; Figure 6A). For the casted soleus, there were interactions of region \times time and
278 joint position \times time (Table 3). Pairwise comparisons showed that at all regions of muscle, and
279 both joint angles, PA of the casted soleus decreased (9-31%) pre to post-cast ($P < 0.0001$ - 0.0005 ,
280 $d = 1.08$ - 2.78) (Figure 6B-C).

281



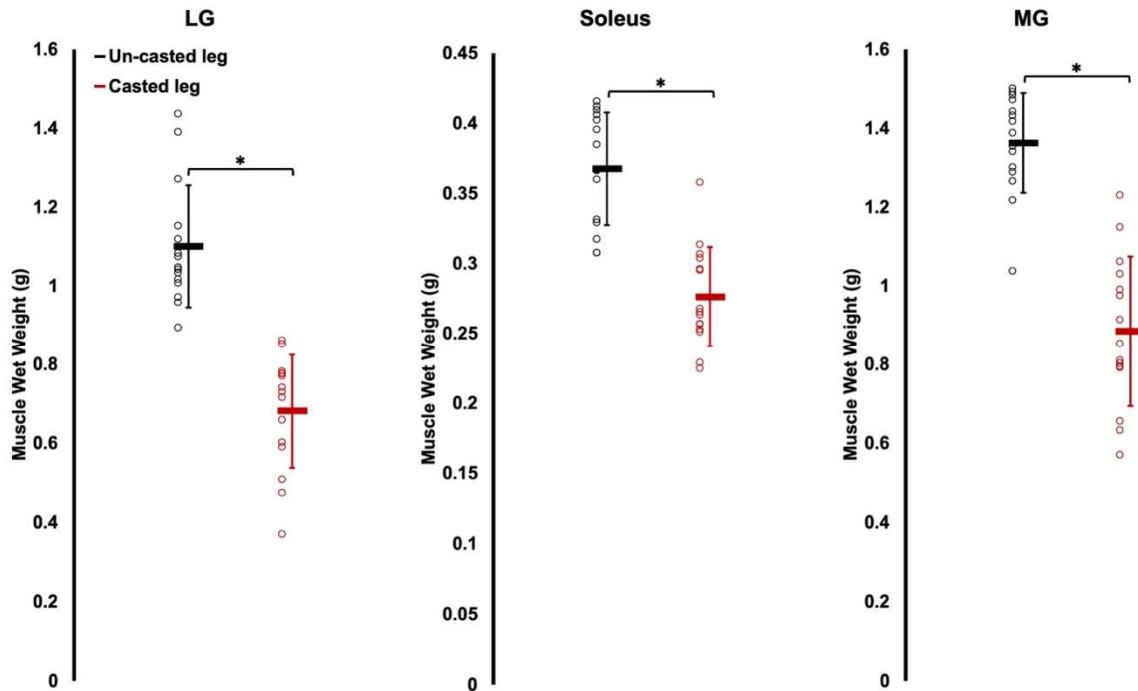
283 **Figure 6:** Changes in pennation angle of the un-casted (A) and casted (B-C) soleus from pre to
284 post-cast. *Significant difference between indicated means ($P < 0.05$). Data are presented as
285 mean \pm standard deviation.

286

287 For the un-casted MG, time did not affect PA, with no changes pre to post-cast (Table 3;
288 Figure 7A). For the casted MG, there was a region \times time interaction (Table 3), and pairwise
289 comparisons showed that at all three regions of the muscle, PA decreased by $\sim 20\%$ pre to post-
290 cast ($P < 0.0001-0.0003$, $d = 1.10-2.05$) (Figure 7B).

291

292

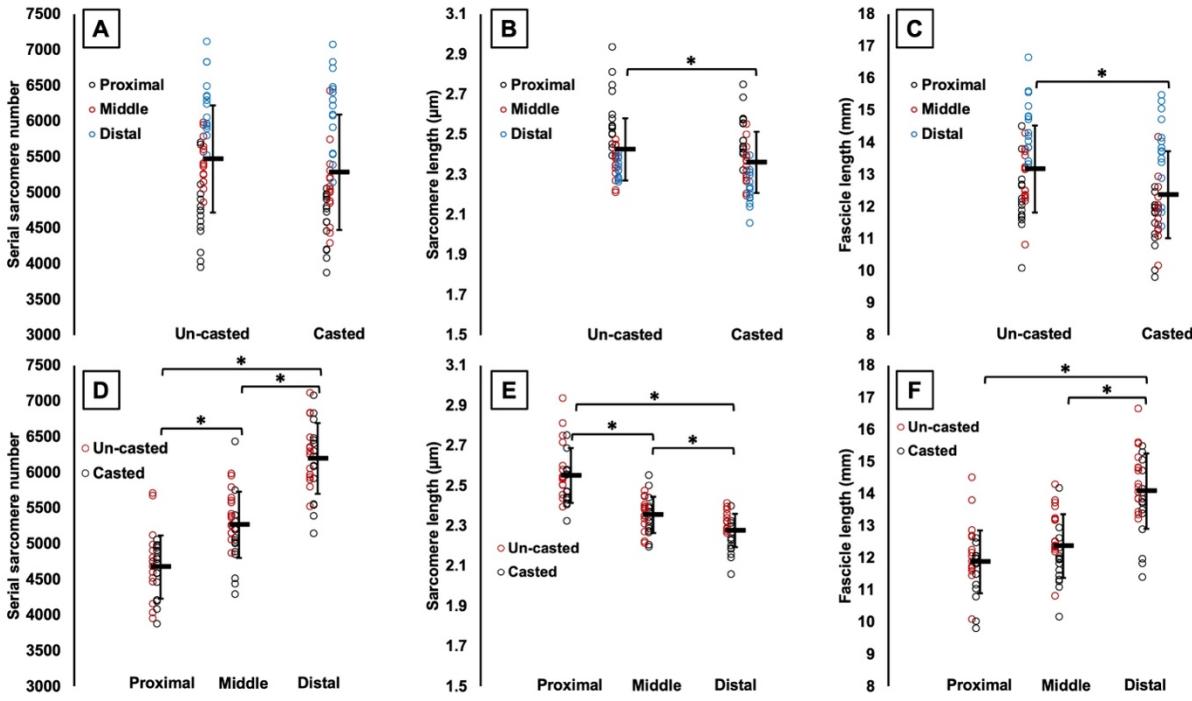

293 **Figure 7:** Changes in pennation angle of the un-casted (A) and casted (B) medial gastrocnemius
294 (MG) from pre to post-cast. *Significant difference between indicated means ($P < 0.05$). Data are
295 presented as mean \pm standard deviation.

296

297 *Muscle wet weight in the casted versus un-casted leg*

298 The LG, soleus, and MG of the casted leg weighed 62%, 33%, and 54% less,
299 respectively, than the muscles of the un-casted leg ($P < 0.0001$, $d = 2.42-2.96$) (Figure 8).

300

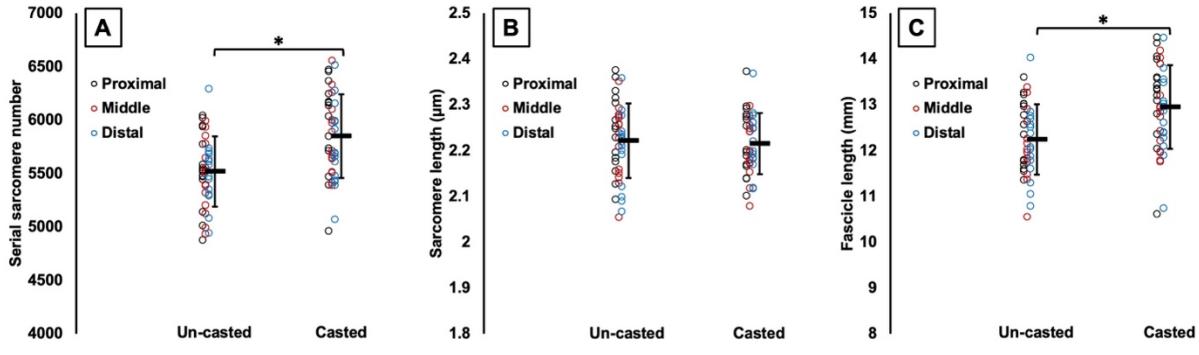


301
302 **Figure 8:** Comparison of muscle wet weight between the casted and un-casted leg for the lateral
303 gastrocnemius (LG), soleus, and medial gastrocnemius (MG). *Significant difference between
304 indicated means ($P < 0.05$). Data are presented as mean \pm standard deviation.

305
306 *Serial sarcomere number, sarcomere length, and fascicle length of the dissected fascicles in the*
307 *casted versus non-casted leg*

308 Two-way ANOVA results for SSN, SL, and FL of the dissected fascicles are shown in
309 Table 4. There were no region \times leg interactions for any muscles.

310 For the LG, there were effects of leg (Table 4) on SL and FL of dissected fascicles such
311 that they were 3% and 6% shorter, respectively, in the casted LG (Figure 9B-C). SSN did not
312 differ between the casted and un-casted LG (Figure 9A). There were effects of region on SSN,
313 SL, and FL. SSN increased from proximal to middle to distal ($P < 0.0001$, $d = 1.30-3.24$) (Figure
314 9D), and FL followed a similar trend ($P < 0.0001$, $d = 1.58-2.04$) but with no difference between
315 proximal and middle FL ($P = 0.0521$) (Figure 9F). Conversely, SL decreased from proximal to
316 middle to distal ($P < 0.0001-0.0016$, $d = 0.90-2.41$) (Figure 9E).

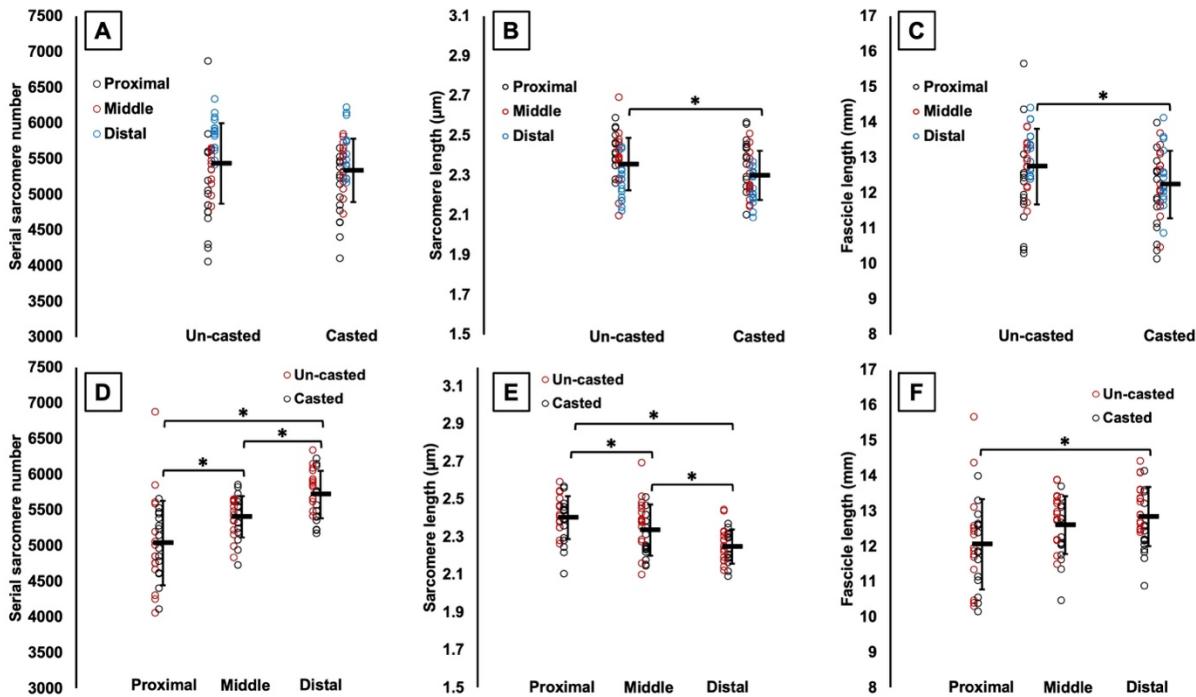

317

318 **Figure 9:** Effects of time (A to C) and effects of region (D to F) on serial sarcomere number (A
319 to C) and sarcomere length (B and E), and fascicle length (C and F) of the lateral gastrocnemius
320 from dissected fascicles. *Significant difference between indicated means ($P < 0.05$). Data are
321 presented as mean \pm standard deviation.

322

323 For the soleus, there were no effects of region on SSN, SL, or dissected FL, indicating no
324 regional differences (Table 4). There was an effect of leg on soleus SSN (Table 4) such that SSN
325 was 6% greater in the casted leg (Figure 10A). There was a similar effect of leg on FL (Table 4),
326 with a 6% increase (Figure 10C). Soleus SL did not differ between the casted and un-casted leg
327 (Table 4; Figure 10B).

328

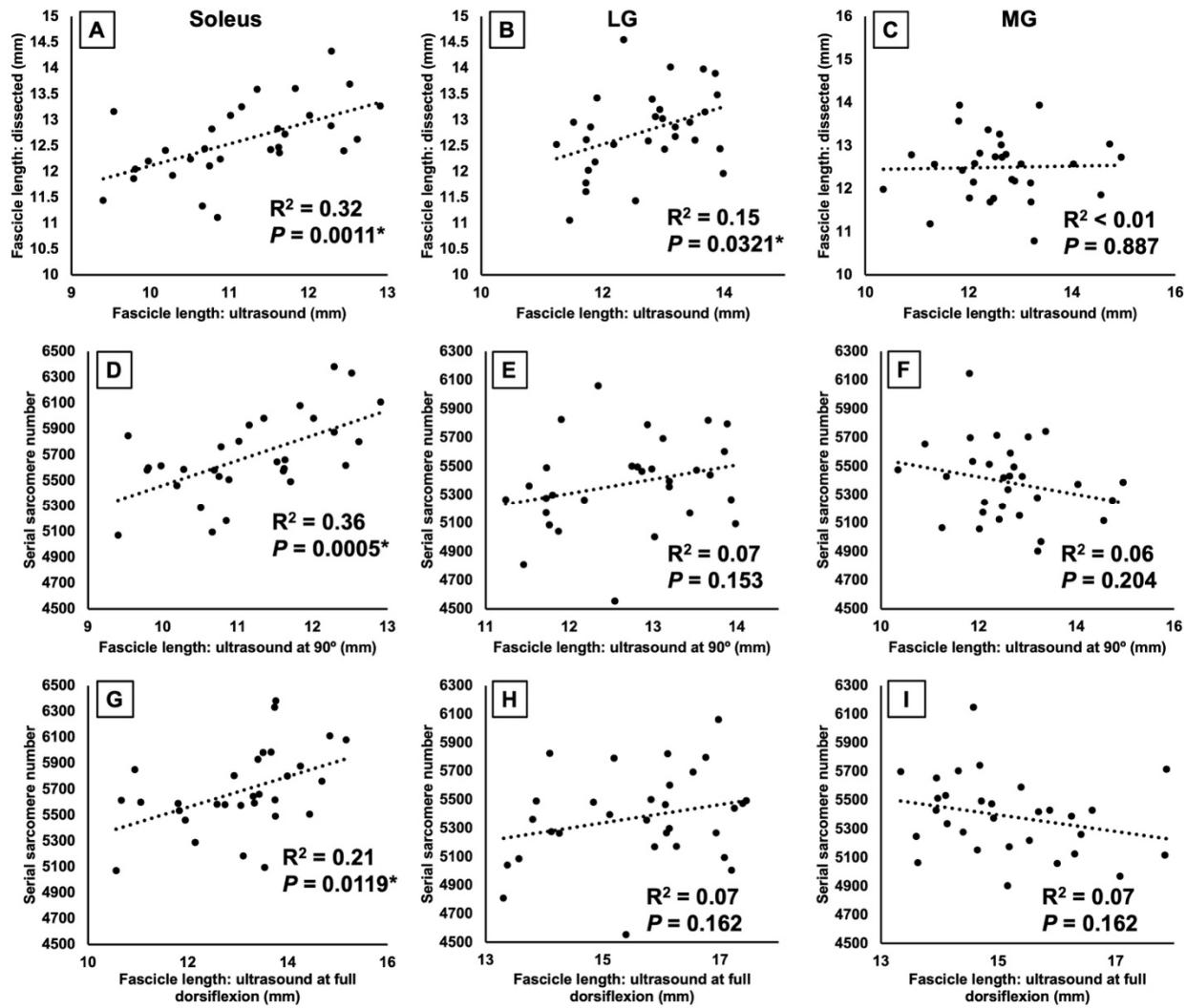

329

330 **Figure 10:** Effects of time on serial sarcomere number (A), sarcomere length (B), and fascicle
331 length (C) of the soleus from dissected fascicles. *Significant difference between indicated
332 means ($P < 0.05$). Data are presented as mean \pm standard deviation.

333

334 For the MG, there were effects of leg on SL and dissected FL (Table 4) such that they
335 were 2% and 4% shorter, respectively, in the casted MG (Figure 11B-C). SSN did not differ
336 between the casted and un-casted MG (Figure 11A). There were effects of region on SSN, SL,
337 and FL (Table 4). SSN followed the same pattern as in the LG, increasing from proximal to
338 middle to distal ($P < 0.0001$ - 0.0127 , $d = 0.79$ - 1.42) (Figure 11D). FL only differed between
339 proximal and distal fascicles, with distal fascicles being longer ($P = 0.0044$, $d = 0.43$) (Figure
340 11F). Like with the LG, SL decreased from proximal to middle to distal ($P < 0.0001$ - 0.0481 , $d =$
341 0.52- 1.49) (Figure 11E).

342


343

344 **Figure 11:** Effects of time (A to C) and effects of region (D to F) on serial sarcomere number (A
345 to C), sarcomere length (B and E), and fascicle length (C and F) of the medial gastrocnemius
346 from dissected fascicles. *Significant difference between indicated means ($P < 0.05$). Data are
347 presented as mean ± standard deviation.

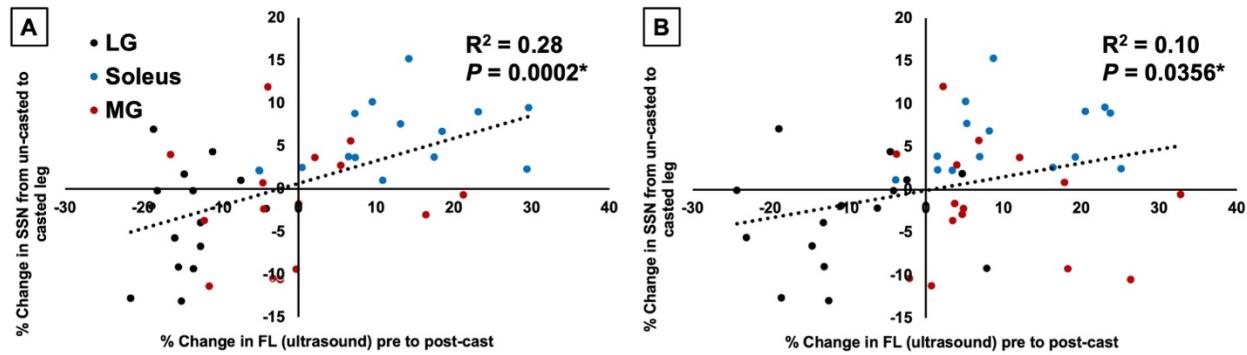
348

349 *Relationships between adaptations in fascicle length measured via ultrasound and adaptations in*
350 *serial sarcomere number and fascicle length measured from dissected fascicles*

351 For the soleus, significant positive relationships were found between ultrasound-derived
352 FL at 90° and FL of dissected fascicles (Figure 12A) and SSN (Figure 12D), and between
353 ultrasound-derived FL at full dorsiflexion and SSN (Figure 12G). For the LG, there was only a
354 relationship between ultrasound-derived FL at 90° and FL of dissected fascicles (Figure 12B),
355 and no relationships among these measures were observed for the MG (Figure 12C, F, I).

356

357 **Figure 12:** Relationships between ultrasound-derived fascicle length at 90° and fascicle length of
358 dissected fascicles (A-C), ultrasound-derived fascicle length at 90° and SSN (D-F), and
359 ultrasound-derived FL at full dorsiflexion and SSN (G-I) for the soleus, lateral gastrocnemius
360 (LG), medial gastrocnemius (MG). *Significant relationship ($P < 0.05$).


361

362 There were no relationships between the % change in ultrasound-derived FL from pre to
363 post-cast and the % change in SSN from the un-casted to casted leg for the LG, soleus, or MG
364 (Table 5).

365 When regression analyses were performed across all muscles together, the % change in
366 ultrasound-derived FL measured with the ankle at 90° explained 28% of the variation in the %

367 change in SSN from dissected fascicles (Figure 13A). This relationship was lessened when using
368 ultrasound-derived FL at full dorsiflexion, only explaining 10% of the variation in SSN
369 adaptations (Figure 13B).

370

371

372 **Figure 13:** For all muscles combined, relationships between the % change in ultrasound-derived
373 fascicle length (FL) from pre to post-cast as measured with the ankle at 90° (A) and full
374 dorsiflexion (B) and the % change in serial sarcomere number (SSN) from the un-casted to
375 casted leg determined from dissected fascicles. *Significant relationship ($P < 0.05$).

376

Table 2: Three-way ANOVA results for ultrasound-derived fascicle length

		Effect of region		Effect of joint position		Effect of time		Region × joint position interaction		Region × time interaction		Joint position × time interaction		Region × joint position × time interaction	
		F	P	F	P	F	P	F	P	F	P	F	P	F	P
LG	Un-casted	393.80	<0.0001*	215.10	<0.0001*	3.99	0.0819	3.01	0.0655	0.08	0.921	17.79	0.0014*	0.01	0.970
	Casted	271.00	<0.0001*	269.10	<0.0001*	50.10	<0.0001*	2.43	0.106	3.02	0.0649	0.60	0.414	3.08	0.0954
Soleus	Un-casted	10.49	0.0022*	148.90	<0.0001*	0.09	0.677	3.39	0.0480*	2.07	0.145	1.13	0.296	0.67	0.426
	Casted	24.83	<0.0001*	236.80	<0.0001*	27.64	0.0003*	0.15	0.861	10.57	0.0004*	0.17	0.662	0.26	0.629
MG	Un-casted	101.20	<0.0001*	99.57	<0.0001*	1.43	0.240	1.39	0.266	8.75	0.0011*	2.70	0.132	1.69	0.214
	Casted	120.30	<0.0001*	159.80	<0.0001*	3.62	0.0844	1.03	0.369	6.91	0.0036*	14.30	0.0046*	4.13	0.0596

377

378

Table 3: Three-way ANOVA results for ultrasound-derived pennation angle

		Effect of region		Effect of joint position		Effect of time		Region × joint position interaction		Region × time interaction		Joint position × time interaction		Region × joint position × time interaction	
		F	P	F	P	F	P	F	P	F	P	F	P	F	P
LG	Un-casted	371.09	<0.0001*	101.59	<0.0001*	69.40	<0.0001*	44.15	<0.0001*	2.32	0.117	2.69	0.126	0.43	0.568
	Casted	274.65	<0.0001*	147.66	<0.0001*	55.73	<0.0001*	35.91	<0.0001*	32.54	<0.0001*	0.63	0.391	12.81	0.0013*
Soleus	Un-casted	245.15	<0.0001*	163.54	<0.0001*	0.24	0.570	4.02	0.0292*	1.18	0.321	1.16	0.285	0.46	0.543
	Casted	73.30	<0.0001*	85.29	<0.0001*	122.94	<0.0001*	1.05	0.362	20.55	<0.0001*	20.29	0.0009*	2.28	0.144
MG	Un-casted	132.70	<0.0001*	140.88	<0.0001*	0.81	0.357	4.51	0.0201*	3.13	0.0593	1.37	0.260	0.11	0.767
	Casted	139.24	<0.0001*	182.18	<0.0001*	80.12	<0.0001*	2.02	0.152	3.34	0.0499*	0.20	0.634	1.28	0.278

379

380

Table 4: Two-way ANOVA results for serial sarcomere number, sarcomere length, and fascicle length of dissected fascicles

		Effect of region		Effect of leg		Region × leg interaction	
		F	P	F	P	F	P
LG	SSN	108.91	<0.0001*	4.57	0.0507	0.67	0.502
	SL	61.46	<0.0001*	8.37	0.0118*	2.77	0.0959
	FL	55.00	<0.0001*	11.57	0.0043*	0.17	0.793
Soleus	SSN	1.39	0.267	33.02	<0.0001*	0.68	0.475
	SL	1.26	0.291	0.14	0.713	0.64	0.514
	FL	3.06	0.0639	22.94	0.0003*	0.10	0.871
MG	SSN	21.30	<0.0001*	0.99	0.336	1.01	0.374
	SL	18.36	<0.0001*	6.27	0.0253*	1.02	0.373
	FL	7.77	0.0111*	5.03	0.0416*	0.62	0.541

381

382 **Table 5: Relationships between % change in ultrasound-derived fascicle length (FL) from pre to post-cast and % change in**
 383 **serial sarcomere number of dissected fascicles from the un-casted to casted leg**

		Ultrasound-derived FL at 90°		Ultrasound-derived FL at full dorsiflexion	
		R ²	P	R ²	P
Serial Sarcomere Number	LG	0.04	0.462	0.02	0.659
	Soleus	0.13	0.180	0.06	0.381
	MG	0.01	0.666	0.03	0.547

384 LG = lateral gastrocnemius; MG = medial gastrocnemius

385 **Discussion**

386 Immobilizing the rat ankle in full dorsiflexion for 2 weeks, the present study investigated
387 whether ultrasound-derived FL measurements can accurately depict SSN adaptations. Ultrasound
388 detected an 11% increase in soleus FL, a 12% decrease in LG FL, and (depending on the joint
389 angle and region of muscle) an 8% increase in MG FL. These adaptations were partly reflected
390 by the SSN measurements obtained from dissected fascicles, with a 6% greater soleus SSN in the
391 casted leg than the un-casted leg, but no differences in SSN for the gastrocnemii. Our results
392 indicate that ultrasonographic measurements of FL can overestimate SSN adaptations.

393 Our values for muscle wet weight, SSN, SL, FL, and ultrasound-derived PA are within
394 previously reported ranges for the rat soleus (Booth, 1977; Soares *et al.*, 2007; Peixinho *et al.*,
395 2011; Mele *et al.*, 2016; Chen *et al.*, 2020; Hinks *et al.*, 2022b) and gastrocnemii (Booth, 1977;
396 Woittiez *et al.*, 1986; Ochi *et al.*, 2007; Peixinho *et al.*, 2011; Mele *et al.*, 2016; Power *et al.*,
397 2021).

398

399 *Stretch-induced adaptation in serial sarcomere number*

400 The soleus of the casted leg had a 6% greater SSN than the un-casted leg, which is
401 consistent with findings from previous studies that immobilized the soleus in a stretched position
402 in rats, mice, and cats (Tabary *et al.*, 1972; Williams & Goldspink, 1978; Spector *et al.*, 1982;
403 Shah *et al.*, 2001; Soares *et al.*, 2007; Kinney *et al.*, 2017). This serial sarcomere addition is
404 believed to occur to restore optimal actin-myosin overlap and reduce sarcomeric passive tension
405 in the stretched position (Williams & Goldspink, 1978; Davis *et al.*, 2020; Hinks *et al.*, 2022a).
406 The increase in rat soleus SSN we observed after 2 weeks of immobilization was notably lower
407 (+6%, from 5518 to 5850 sarcomeres) than the increase reported by Soares *et al.* (2007) after

408 immobilizing the soleus in a stretched position for just 4 days (+29%, 6338 to 8174 sarcomeres).
409 This discrepancy may be attributed to the more extreme ankle angle they used for
410 immobilization, described as “total dorsiflexion,” while we immobilized the ankle at 40°.
411 Additionally, we did not observe a difference in SSN between the casted and un-casted legs for
412 the gastrocnemii. The gastrocnemii are biarticular muscles, crossing the ankle and the knee.
413 Spector *et al.* (1982) immobilized the knee in full extension and the ankle at 45°, and observed a
414 20% increase in MG SSN. While we immobilized the ankle at a similar angle (40°), we did not
415 immobilize the knee, allowing movement of the gastrocnemii at that joint, which likely tempered
416 the stretch stimulus imposed by dorsiflexion for those muscles.

417

418 *Immobilization-induced atrophy*

419 Our casting intervention induced atrophy in the gastrocnemii and soleus, as evidenced by
420 lower muscle wet weights in the casted leg. Measurements of PA provided by ultrasound align
421 with these findings, showing decreased PA from pre to post-cast in all three muscles, which may
422 reflect the loss of sarcomeres in parallel (Wisdom *et al.*, 2015; Jorgenson *et al.*, 2020). The
423 reduced muscle weight was more pronounced in the gastrocnemii (–54-62%) than the soleus (–
424 33%). Considering the soleus had a 6% greater SSN in the casted than the un-casted leg, an
425 increase in SSN due to stretch may have lessened the overall loss of muscle tissue, limiting the
426 loss to only sarcomeres in parallel. A similar result was observed by Spector *et al.* (1982), with a
427 smaller reduction in soleus wet weight when immobilizing in a stretched position (–14%) than a
428 shortened position (–48%), and the former increasing SSN while the latter decreased SSN. The
429 gastrocnemii in the present study did not appear to experience an increase in SSN, therefore, the

430 loss of parallel sarcomeres may not have been made up for by stretch-induced serial sarcomere
431 addition, resulting in a greater loss of muscle weight.

432

433 *Can the un-casted leg be used as a valid control?*

434 In the un-casted soleus, no differences in FL or PA were detected by ultrasound from pre
435 to post-cast, validating the use of the un-casted soleus as a SSN control in the present study and
436 previous studies (Williams & Goldspink, 1978; Heslinga & Huijing, 1993; Shah *et al.*, 2001;
437 Gomes *et al.*, 2004; Kinney *et al.*, 2017). In the un-casted gastrocnemii, however, ultrasound
438 measurements suggest some adaptations may have occurred, possibly due to the un-casted leg
439 compensating for the added load (the cast) on the opposite leg during ambulation. In the un-
440 casted LG, ultrasound showed a 6% decrease in FL at 90°, accompanied by a 10% increase in
441 PA. Increased PA and sometimes a decrease in FL are often observed following training
442 emphasizing concentric contractions, and may reflect a reorganization of the muscle architecture
443 to add sarcomeres in parallel for greater force production (Butterfield *et al.*, 2005; Franchi *et al.*,
444 2014).

445

446 *Ultrasound-derived FL does not perfectly reflect adaptations in serial sarcomere number*

447 Measurements of FL via ultrasound are often used to infer increases or decreases in SSN
448 (Narici *et al.*, 2003; Blazevich *et al.*, 2007; Franchi *et al.*, 2014; Hinks *et al.*, 2021). Inferring
449 SSN adaptations from ultrasound-derived FL may be problematic, however, because apparent
450 changes in FL may simply be due to changes in SL at the joint angle at which ultrasound
451 measurements are obtained. For example, Pincheira *et al.* (2021) observed an increase in biceps
452 femoris FL following 3 weeks of eccentric training as measured with the leg in full extension;

453 however, microendoscopy revealed the increase in FL was only due to longer SLs at that joint
454 angle, not training-induced serial sarcomere addition. In research on animals, SSN adaptations
455 are often determined by calculating SSN from measurements of SL and FL from dissected
456 fascicles, then comparing between experimental and control muscles. The present study
457 investigated the relationship between these two most commonly used methodologies for
458 assessing SSN adaptations.

459 We observed significant but weak relationships between ultrasound-derived FL at 90°
460 and FL of dissected fascicles (after being fixed at 90°) for the soleus and LG (Figure 12A-B).
461 *Kellis et al.* (2009) observed moderate to strong relationships between FL measured via
462 ultrasound and FL measured directly in the hamstrings of human cadavers. Our results may
463 differ from theirs because, after digesting the muscles in nitric acid, it was more difficult to
464 ensure that the same fascicles as the ultrasound images were being measured from the dissected
465 muscle, even though the same regional constraints (two fascicles from each of the proximal,
466 middle, and distal regions) were followed. Additionally, we observed relationships between
467 ultrasound-derived measurements of FL and actual SSN determined from dissected fascicles for
468 the soleus only, and between the % change in FL from pre to post-cast and the % change in SSN
469 from the un-casted to casted leg with all muscles together. In both cases, the relationships using
470 FL measured at full dorsiflexion were weaker than when using FL measured at 90°. Similar
471 findings were observed recently by *Werkhausen et al.* (2023), with the relationship between
472 ultrasound-derived FL and isokinetic force (i.e., a measure associated with SSN (*Drazan et al.*,
473 2019; *Hinks et al.*, 2022a)) being moderate or non-existent depending on the joint angle used
474 during ultrasound imaging. Collectively, our regression analyses demonstrate variability both

475 among muscles and between joint angles in the ability for ultrasound-derived FL to truly
476 represent SSN.

477 Overall, the soleus provided the best means for comparing ultrasound-derived FL
478 adaptations and adaptations in SSN, as the un-casted soleus did not appear to undergo any
479 compensatory adaptations. From the ultrasound measurements, we observed an ~11% increase in
480 soleus FL from pre to post-cast, however, the true increase in SSN from the un-casted to the
481 casted leg was only 6%. This serial sarcomere addition appeared to be driven by a 6% increase in
482 FL, as the un-casted and casted soleus had the same SL (~2.2 μ m) with the ankle fixed at 90°.
483 Interestingly, while ultrasound-derived FL averaged across muscle regions increased by 11%, the
484 increase in ultrasound-derived FL of proximal fascicles (+6%) was closer to the observed
485 increase in SSN, demonstrating regional variability in the accuracy of ultrasound-derived FL
486 measurements. Altogether, an increase in FL measured by ultrasound can indeed correspond to
487 an increase in SSN in the rat soleus, but may overestimate the increase in SSN by as much as
488 5%.

489

490 *Limitations of ultrasound that may contribute to a disconnect between ultrasound-derived FL
491 and actual SSN*

492 For the gastrocnemii, the distal fascicles were sometimes partly out of plane (Figure 1),
493 thus the trajectory of those fascicles to the deep aponeurosis was used to complete the
494 measurements of FL. This limitation likely contributed to the higher coefficients of variation for
495 the gastrocnemii compared to the soleus (Table 1), and may explain the lack of relationships
496 observed between ultrasound-derived FL and dissected FL and SSN for the gastrocnemii, but not
497 the soleus. It is also important to note that ultrasound images do not capture the contractile tissue

498 of muscle fascicles, but rather the perimysium, the sheath of connective tissue surrounding each
499 fascicle. During serial sarcomerogenesis, the connective tissue scaffolding must be constructed
500 before sarcomeres are added within that space (Kjær, 2004). Previous studies have reported no
501 changes (Williams *et al.*, 1988) or increases in intramuscular connective tissue content
502 (Ahtikoski *et al.*, 2001) following immobilization in a stretched position depending on the
503 duration of immobilization. Many studies also overlook that adaptations in connective tissue
504 structure (e.g., crosslinking, collagen fibril orientation, organization) may not be evident in
505 measures of only content, but can change during muscle remodelling as well (Kjær, 2004).
506 Connective tissue is digested in nitric acid before measurements are performed on dissected
507 fascicles, therefore, variability in connective tissue likely affects the ability for ultrasound to
508 capture FL of only contractile tissue. Furthermore, an ultrasound image only captures a fascicle
509 path in two dimensions, but the three-dimensional nature of fascicle curvature is well-
510 documented (Rana *et al.*, 2013; Raiteri *et al.*, 2016; Cameron *et al.*, 2023). Unless methods such
511 as three-dimensional ultrasound (Raiteri *et al.*, 2016) or magnetic resonance diffusion tensor
512 imaging (Cameron *et al.*, 2023) are used, the three-dimensional nature of FL can only be
513 accounted for when fascicles are dissected out of the muscle. In the present study, this two-
514 dimensional limitation of ultrasound is most evident in how dissected FLs of the soleus were
515 ~13% longer than ultrasound-derived FLs. There may be curvature in rat soleus fascicles that is
516 not captured in a lateral ultrasound scan, making fascicles appear shorter. Altogether, these
517 factors may have contributed to the disconnects between ultrasound-derived FL and actual SSN
518 in the present study, including the ~5% overestimation of sarcomerogenesis in the soleus, and
519 should be considered going forward in studies employing muscle ultrasound.

520

521 **Conclusion**

522 The present study investigated the relationship between the two most commonly used
523 methods of assessing longitudinal growth of skeletal muscle: 1) ultrasound-derived FL
524 measurements pre and post-intervention; and 2) comparison of SSN between an experimental
525 and a control muscle. We showed that ultrasound-derived FL overestimated SSN adaptations by
526 ~5%, with measurements in a neutral position predicting SSN better than measurements in a
527 stretched position. Future studies should consider these findings when concluding a large
528 magnitude of serial sarcomerogenesis based on ultrasound-derived FL taken at a set joint angle,
529 and may consider applying a correction factor to more closely approximate the actual SSN
530 adaptations.

531

532 **Acknowledgements**

533 This project was supported by the Natural Sciences and Engineering Research Council of
534 Canada (NSERC). No conflicts of interest, financial or otherwise, are declared by the authors.

535

536

537 **Conflict of interest statement**

538 No conflicts of interest, financial or otherwise, are declared by the authors.

539

540

541 **Ethics statement**

542 Approval was given by the University of Guelph's Animal Care Committee and all protocols
543 followed CCAC guidelines (AUP #4905).

544

545

546 **Data accessibility**

547 Individual values of all supporting data are available upon request.

548

549

550 **Grants**

551 This project was supported by the Natural Sciences and Engineering Research Council of
552 Canada (NSERC), grant number RGPIN-2017-06012.

553

554

555 **Author contributions**

556 A.H., M.V.F. and G.A.P. conceived and designed research; A.H. carried out animal husbandry
557 and training; A.H. performed experiments; A.H. analyzed data; A.H., M.V.F., and G.A.P.
558 interpreted results of experiments; A.H. prepared figures; A.H. and G.A.P. drafted manuscript;
559 A.H., M.V.F., and G.A.P. edited and revised manuscript; A.H., M.V.F., and G.A.P. approved
560 final version of manuscript.

561

562 **References**

563 Adkins AN, Dewald JPA, Garmirian LP, Nelson CM & Murray WM (2021). Serial sarcomere
564 number is substantially decreased within the paretic biceps brachii in individuals with
565 chronic hemiparetic stroke. *Proc Natl Acad Sci* **118**, e2008597118.

566 Ahtikoski AM, Koskinen SOA, Virtanen P, Kovanen V & Takala TES (2001). Regulation of
567 synthesis of fibrillar collagens in rat skeletal muscle during immobilization in shortened
568 and lengthened positions. *Acta Physiol Scand* **172**, 131–140.

569 Aoki MS, Soares AG, Miyabara EH, Baptista IL & Moriscot AS (2009). Expression of genes
570 related to myostatin signaling during rat skeletal muscle longitudinal growth: Myostatin
571 and Longitudinal Growth. *Muscle Nerve* **40**, 992–999.

572 Blazevich AJ, Cannavan D, Coleman DR & Horne S (2007). Influence of concentric and
573 eccentric resistance training on architectural adaptation in human quadriceps muscles. *J
574 Appl Physiol* **103**, 1565–1575.

575 Boakes JL, Foran J, Ward SR & Lieber RL (2007). Muscle adaptation by serial sarcomere
576 addition 1 year after femoral lengthening. *Clin Orthop* **456**, 250–253.

577 de Boer MD, Seynnes OR, di Prampero PE, Pišot R, Mekjavić IB, Biolo G & Narici MV (2008).
578 Effect of 5 weeks horizontal bed rest on human muscle thickness and architecture of
579 weight bearing and non-weight bearing muscles. *Eur J Appl Physiol* **104**, 401–407.

580 Booth FW (1977). Time course of muscular atrophy during immobilization of hindlimbs in rats.
581 *J Appl Physiol* **43**, 656–661.

582 Butterfield TA, Leonard TR & Herzog W (2005). Differential serial sarcomere number
583 adaptations in knee extensor muscles of rats is contraction type dependent. *J Appl Physiol*
584 **99**, 7.

585 Cameron D, Reiter DA, Adelnia F, Ubaida-Mohien C, Bergeron CM, Choi S, Fishbein KW,
586 Spencer RG & Ferrucci L (2023). Age-related changes in human skeletal muscle
587 microstructure and architecture assessed by diffusion-tensor magnetic resonance imaging
588 and their association with muscle strength. *Aging Celle* 13851.

589 Chen J, Mashouri P, Fontyn S, Valvano M, Elliott-Mohamed S, Noonan AM, Brown SHM &
590 Power GA (2020). The influence of training-induced sarcomerogenesis on the history
591 dependence of force. *J Exp Biol* **223**, jeb218776.

592 Davis JF, Khir AW, Barber L, Reeves ND, Khan T, DeLuca M & Mohagheghi AA (2020). The
593 mechanisms of adaptation for muscle fascicle length changes with exercise: Implications
594 for spastic muscle. *Med Hypotheses* **144**, 110199.

595 Drazan JF, Hullfish TJ & Baxter JR (2019). Muscle structure governs joint function: linking
596 natural variation in medial gastrocnemius structure with isokinetic plantar flexor
597 function. *Biol Open* **8**, bio.048520.

598 Franchi MV, Atherton PJ, Reeves ND, Flück M, Williams J, Mitchell WK, Selby A, Beltran
599 Valls RM & Narici MV (2014). Architectural, functional and molecular responses to
600 concentric and eccentric loading in human skeletal muscle. *Acta Physiol* **210**, 642–654.

601 Franchi MV, Fitze DP, Raiteri BJ, Hahn D & Spörri J (2020). Ultrasound-derived Biceps
602 Femoris Long Head Fascicle Length: Extrapolation Pitfalls. *Med Sci Sports Exerc* **52**,
603 233–243.

604 Gomes ARS, Coutinho EL, França CN, Polonio J & Salvini TF (2004). Effect of one stretch a
605 week applied to the immobilized soleus muscle on rat muscle fiber morphology. *Braz J
606 Med Biol Res* **37**, 1473–1480.

607 Heslinga JW & Huijing PA (1993). Muscle length-force characteristics in relation to muscle
608 architecture: a bilateral study of gastrocnemius medialis muscles of unilaterally
609 immobilized rats. *Eur J Appl Physiol* **66**, 289–298.

610 Hinks A, Davidson B, Akagi R & Power GA (2021). Influence of isometric training at short and
611 long muscle-tendon unit lengths on the history dependence of force. *Scand J Med Sci
612 Sports* **31**, 325–338.

613 Hinks A, Franchi MV & Power GA (2022a). The influence of longitudinal muscle fascicle
614 growth on mechanical function. *J Appl Physiol* **133**, 87–103.

615 Hinks A, Jacob K, Mashouri P, Medak KD, Franchi MV, Wright DC, Brown SHM & Power GA
616 (2022b). Influence of weighted downhill running training on serial sarcomere number and
617 work loop performance in the rat soleus. *Biol Open* **11**, bio059491.

618 Jorgenson KW, Phillips SM & Hornberger TA (2020). Identifying the Structural Adaptations
619 that Drive the Mechanical Load-Induced Growth of Skeletal Muscle: A Scoping Review.
620 *Cells* **9**, 1658.

621 Kellis E, Galanis N, Natsis K & Kapetanos G (2009). Validity of architectural properties of the
622 hamstring muscles: Correlation of ultrasound findings with cadaveric dissection. *J
623 Biomech* **42**, 2549–2554.

624 Kinney MC, Dayanidhi S, Dykstra PB, McCarthy JJ, Peterson CA & Lieber RL (2017). Reduced
625 skeletal muscle satellite cell number alters muscle morphology after chronic stretch but
626 allows limited serial sarcomere addition: Satellite Cells and Sarcomere Addition. *Muscle
627 Nerve* **55**, 384–392.

628 Kjær M (2004). Role of Extracellular Matrix in Adaptation of Tendon and Skeletal Muscle to
629 Mechanical Loading. *Physiol Rev* **84**, 649–698.

630 Lichtwark GA, Farris DJ, Chen X, Hodges PW & Delp SL (2018). Microendoscopy reveals
631 positive correlation in multiscale length changes and variable sarcomere lengths across
632 different regions of human muscle. *J Appl Physiol* **125**, 1812–1820.

633 Lieber RL & Fridén J (2000). Functional and clinical significance of skeletal muscle
634 architecture. *Muscle Nerve* **23**, 1647–1666.

635 Lieber RL, Ljung BO & Fridén J (1997). Intraoperative sarcomere length measurements reveal
636 differential design of human wrist extensor muscles. *J Exp Biol* **200**, 19–25.

637 Lieber RL, Yeh Y & Baskin RJ (1984). Sarcomere length determination using laser diffraction.
638 Effect of beam and fiber diameter. *Biophys J* **45**, 1007–1016.

639 Mele A, Fonzino A, Rana F, Camerino GM, De Bellis M, Conte E, Giustino A, Conte Camerino
640 D & Desaphy J-F (2016). In vivo longitudinal study of rodent skeletal muscle atrophy
641 using ultrasonography. *Sci Rep* **6**, 20061.

642 Narici M, Franchi M & Maganaris C (2016). Muscle structural assembly and functional
643 consequences. *J Exp Biol* **219**, 276–284.

644 Narici MV, Maganaris CN, Reeves ND & Capodaglio P (2003). Effect of aging on human
645 muscle architecture. *J Appl Physiol* **95**, 2229–2234.

646 Ochi E, Nakazato K & Ishii N (2007). Effects of Eccentric Exercise on Joint Stiffness and
647 Muscle Connectin (Titin) Isoform in the Rat Hindlimb. *J Physiol Sci* **57**, 1–6.

648 Peixinho CC, Martins NSF, de Oliveira LF & Machado JC (2014). Structural adaptations of rat
649 lateral gastrocnemius muscle–tendon complex to a chronic stretching program and their
650 quantification based on ultrasound biomicroscopy and optical microscopic images. *Clin
651 Biomech* **29**, 57–62.

652 Peixinho CC, Ribeiro MB, Resende CMC, Werneck-de-Castro JPS, de Oliveira LF & Machado
653 JC (2011). Ultrasound biomicroscopy for biomechanical characterization of healthy and
654 injured triceps surae of rats. *J Exp Biol* **214**, 3880–3886.

655 Pincheira PA, Boswell MA, Franchi MV, Delp SL & Lichtwark GA (2021). Biceps femoris long
656 head sarcomere and fascicle length adaptations after three weeks of eccentric exercise
657 training. *J Sport Health Sci* **11**, 43–49.

658 Power GA, Crooks S, Fletcher JR, Macintosh BR & Herzog W (2021). Age-related reductions in
659 the number of serial sarcomeres contribute to shorter fascicle lengths but not elevated
660 passive tension. *J Exp Biol* **224**, jeb242172.

661 Power GA, Makrakos DP, Rice CL & Vandervoort AA (2013). Enhanced force production in old
662 age is not a far stretch: an investigation of residual force enhancement and muscle
663 architecture. *Physiol Rep* **1**, e00004.

664 Raiteri BJ, Cresswell AG & Lichtwark GA (2016). Three-dimensional geometrical changes of
665 the human tibialis anterior muscle and its central aponeurosis measured with three-
666 dimensional ultrasound during isometric contractions. *PeerJ* **4**, e2260.

667 Rana M, Hamarneh G & Wakeling JM (2013). 3D fascicle orientations in triceps surae. *J Appl
668 Physiol* **115**, 116–125.

669 Shah SB, Peters D, Jordan KA, Milner DJ, Fridén J, Capetanaki Y & Lieber RL (2001).
670 Sarcomere number regulation maintained after immobilization in desmin-null mouse
671 skeletal muscle. *J Exp Biol* **204**, 1703–1710.

672 Soares AG, Aoki MS, Miyabara EH, DeLuca CV, Ono HY, Gomes MD & Moriscot AS (2007).
673 Ubiquitin-ligase and deubiquitinating gene expression in stretched rat skeletal muscle.
674 *Muscle Nerve* **36**, 685–693.

675 Spector SA, Simard CP, Fournier M, Sternlicht E & Edgerton' VR (1982). Architectural
676 Alterations of Rat Hind-Limb Skeletal Muscles Immobilized at Different Lengths. *Exp
677 Neurol* **76**, 94–110.

678 Tabary JC, Tabary C, Tardieu C, Tardieu G & Goldspink G (1972). Physiological and structural
679 changes in the cat's soleus muscle due to immobilization at different lengths by plaster
680 casts. *J Physiol* **224**, 231–244.

681 Werkhausen A, Gløersen Ø, Nordez A, Paulsen G, Bojsen-Møller J & Seynnes OR (2023).
682 Linking muscle architecture and function in vivo: conceptual or methodological
683 limitations? *PeerJ* **11**, e15194.

684 Williams PE, Catanese T, Lucey EG & Goldspink G (1988). The importance of stretch and
685 contractile activity in the prevention of connective tissue accumulation in muscle. *J Anat*
686 **158**, 109–114.

687 Williams PE & Goldspink G (1978). Changes in sarcomere length and physiological properties
688 in immobilized muscle. *J Anat* **127**, 459–468.

689 Wisdom KM, Delp SL & Kuhl E (2015). Use it or lose it: multiscale skeletal muscle adaptation
690 to mechanical stimuli. *Biomech Model Mechanobiol* **14**, 195–215.

691 Woittiez RD, Heerkens YF, Huijing PA, Rijnsburger WH & Rozendal RH (1986). Functional
692 morphology of the M. Gastrocnemius medialis of the rat during growth. *J Morphol* **187**,
693 247–258.

694

695