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Key Points Summary

Measurements of muscle fascicle length via ultrasound are often used to infer changes in
serial sarcomere number, such as increases following chronic stretch or resistance
training, and decreases with aging or muscle disuse

The present study used a rat model of casting the plantar flexor muscles in a stretched
position to investigate directly whether ultrasound-derived fascicle length can accurately
detect adaptations in serial sarcomere number

Ultrasound detected an ~11% increase in soleus fascicle length, but measurements on
dissected fascicles showed the actual increase in serial sarcomere number was only ~6%;
therefore, measurements of ultrasound-derived fascicle length can overestimate serial

sarcomere number adaptations by as much as 5%
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Abstract

Ultrasound-derived measurements of muscle fascicle length (FL) are often used to infer
increases (chronic stretch or training) or decreases (muscle disuse or aging) in serial sarcomere
number (SSN). Whether FL adaptations measured via ultrasound can truly approximate SSN
adaptations has not been investigated. We casted the right hindlimb of 15 male Sprague-Dawley
rats in a dorsiflexed position (i.e., stretched the plantar flexors) for 2 weeks, with the left
hindlimb serving as a control. Ultrasound images of the soleus, lateral gastrocnemius (LG), and
medial gastrocnemius (MG) were obtained with the ankle at 90° and full dorsiflexion for both
hindlimbs pre and post-cast. Following post-cast ultrasound measurements, legs were fixed in
formalin with the ankle at 90°, then muscles were dissected, and fascicles were teased out for
measurement of sarcomere lengths via laser diffraction and calculation of SSN. Ultrasound
detected an 11% increase in soleus FL, a 12% decrease in LG FL, and an 8-11% increase in MG
FL for proximal fascicles and at full dorsiflexion. These adaptations were partly reflected by
SSN adaptations, with a 6% greater soleus SSN in the casted leg than the un-casted leg, but no
SSN differences for the gastrocnemii. Weak relationships were observed between
ultrasonographic measurements of FL and measurements of FL and SSN from dissected
fascicles. Our results showed that ultrasound-derived FL measurements can overestimate an
increase in SSN by ~5%. Future studies should be cautious when concluding a large magnitude
of sarcomerogenesis from ultrasound-derived FL measurements, and may consider applying a

correction factor.
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Introduction

Characterization of a muscle’s serial sarcomere number (SSN) gives insight into
properties of biomechanical function (Lieber & Fridén, 2000; Narici et al., 2016; Hinks et al.,
2022a). To that end, B-mode ultrasound is often used in humans to measure fascicle length (FL)
and infer SSN adaptations at a smaller scale, such as increases in FL following resistance
training (Blazevich et al., 2007; Franchi et al., 2014; Hinks et al., 2021) or decreases in FL with
age and disuse (Williams & Goldspink, 1978; Narici et al., 2003; de Boer et al., 2008; Power et
al., 2013). In animals, SSN can be estimated more precisely by dividing average sarcomere
length (SL) measured via laser diffraction by the length of a dissected fascicle (Butterfield et al.,
2005; Chen et al., 2020; Hinks et al., 2022b). Unfortunately, direct measurement of SL in
humans is invasive (Lieber et al., 1997; Boakes et al., 2007), and often prohibitively costly and
not accessible (Lichtwark et al., 2018; Adkins et al., 2021). However, inferring SSN adaptations
via ultrasound-derived measurements of FL. may be problematic because apparent increases or
decreases in FL could be due to longer or shorter SLs, respectively, at the joint angle in which
FL was measured (Pincheira et al., 2021). The relationship between SSN and FL may also
depend on the region of muscle, with the human tibialis anterior displaying greater SSN in
proximal fascicles due to a shorter SL (Lichtwark et al., 2018). Collectively, the relationship
between SSN and ultrasound-derived FL may depend on the joint angle and region of muscle at
which measurements are taken. Whether FL adaptations measured via ultrasound truly
approximate SSN adaptations has not been investigated.

Assessment of FL in rodents via ultrasound is less common than in humans, but not
unfounded. Peixinho and colleagues developed reliable methods for assessment of muscle

architecture via ultrasound in the rat plantar flexors (Peixinho et al., 2011, 2014).
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Ultrasonography of the rat plantar flexors also has enough sensitivity to detect morphological
adaptations (Peixinho et al., 2014; Mele et al., 2016). These previous studies, however, only
assessed pennation angle (PA) and muscle thickness, leaving characterization of ultrasound-
derived FL adaptations in rats unclear. Altogether, rodent models present an opportunity to
assess the sensitivity of ultrasound measurements of FL in detecting actual SSN adaptations.

The present study assessed the validity of ultrasound as a tool to detect adaptations in
SSN. To do this, we immobilized the rat plantar flexors in a lengthened position—an
intervention that rapidly increases soleus SSN (Tabary et al., 1972; Williams & Goldspink, 1978;
Soares et al., 2007; Aoki et al., 2009). We hypothesized that the ability for ultrasound-derived
FL measurements to characterize adaptations in SSN would vary depending on the joint angle at

which ultrasound measurements are obtained and the region of muscle.
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104  Methods

105  Animals

106 Fifteen male Sprague-Dawley rats (sacrificial age ~19 weeks) were obtained (Charles
107  River Laboratories, Senneville, QC, Canada). Approval was given by the University of Guelph’s
108  Animal Care Committee and all protocols followed CCAC guidelines (AUP #4905). Rats were
109  housed at 23°C in groups of three and given ad-libitum access to a Teklad global 18% protein
110 rodent diet (Envigo, Huntington, Cambs., UK) and room-temperature water. The right leg was
111  immobilized in dorsiflexion for 2 weeks to place the plantar flexor muscles, in particular the
112 soleus, in a lengthened position (Soares et al., 2007; Aoki et al., 2009). Per previous
113 investigations of SSN adaptations in immobilized rat muscle, the contralateral limb served as a
114  control (Heslinga & Huijing, 1993; Gomes et al., 2004). Ultrasound images of the lateral
115  gastrocnemius (LG), medial gastrocnemius (MG), and soleus were obtained at ~17 weeks of age
116  (pre-immobilization) and ~19 weeks of age (post-immobilization).

117

118  Unilateral Immobilization

119 Using gauze padding, vet wrap, and a 3D-printed brace and splint, the right hindlimb of
120  each rat was immobilized in dorsiflexion (40° ankle angle; full plantar flexion = 180°) (Figure
121 1A). Casts were inspected daily and repaired/replaced as needed. The toes were left exposed to

122 monitor for swelling (Aoki et al., 2009).
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123
Anterior brace
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Spllnt ~ ‘
Fascicle length
124 -

125  Figure 1: A. Example images of applying the splint and brace for the dorsiflexion cast. B-D.
126  Setup and example of ultrasound images obtained from the left lateral gastrocnemius (B), soleus
127 (C), and medial gastrocnemius (D), with the ankle fixed at 90° using tape. White arrows indicate
128  the muscle of interest in each image. E corresponds to the area highlighted by the white box in C
129  and shows representative tracings of fascicle length (orange) and pennation angle (green).

130

131  Ultrasonography

132 Ultrasound measurements were obtained from the right and left hindlimbs at pre-
133 immobilization (no more than 1 week prior to first applying the casts) and post-immobilization
134 (immediately following cast removal).

135 A UBM system (Vevo 2100; VisualSonics, Toronto, ON, Canada) operating at a centre

136  frequency of 21 MHz was used to acquire images of the soleus, LG, and MG, with a lateral
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137  resolution of 80 um and an axial resolution of 40 um (Mele et al., 2016). A 23-mm long probe
138  was used, allowing acquisition of images displaying muscle fascicles from end to end. During
139  piloting, image acquisition was optimized with an image depth of 15 mm for the soleus and LG
140 and 16 mm for the MG, both allowing a maximum frame rate of 16 Hz. Prior to image
141  acquisition, rats were anesthetized using isoflurane. With the knee fully extended, tape was used
142 to fix the ankles at two different positions for image acquisition: 1) 90°; and 2) full dorsiflexion.
143 All ultrasound images were acquired by the same individual (A.H.). Images of the LG and soleus
144  were obtained with the rat in a prone position and the hindlimb externally rotated, with the probe
145  overlying the lateral aspect of the posterior shank (Figure 1B-C). Images of the MG were
146  obtained with the rat in a supine position and the hindlimb externally rotated, with the probe
147  overlying the medial aspect of the posterior shank (Figure 1D). The probe position was carefully
148  adjusted to obtain the clearest possible view of fascicles in all of the proximal, middle, and distal
149  regions of the muscle. Throughout image acquisition, the probe was stabilized by a crane with
150  fine-tune adjustment knobs, minimizing pressure and limiting the error associated with human
151  movement.

152 Ultrasound images were analysed using Imagel software (Franchi et al., 2020). ImagelJ’s
153  multisegmented tool allowed careful tracing of the fascicle paths from end to end in measuring
154 FL. Two measurements of FL and PA were obtained from each of the proximal, middle, and
155  distal regions of each muscle (i.e., six FL and PA measurements per muscle). PA was defined as
156  the angle between the fascicle and the aponeurosis at the fascicle’s distal insertion point. All FL
157 and PA measurements were obtained by the same experimenter (A.H.), who was blinded to the
158  results until all measurements pre- and post-immobilization were obtained. During piloting,

159  across three separate image acquisitions on the same rat, the coefficients of variation (standard


https://doi.org/10.1101/2023.06.02.543410
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.02.543410; this version posted June 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

160  deviation / mean x 100%) for FL averaged among two measurements at each region of muscle

161  were all <10% (Table 1), which indicates low variation among repeated measures.
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163

Table 1: Coefficients of variation for fascicle length across three separate image acquisitions on the same rat

Lateral gastrocnemius

Proximal Proximal FL. | Proximal FL Middle FL. | Middle FL. | Middle FL Distal FL Distal FL Distal FL Total FL
Day FL 1 (mm) 2 (mm) Average (mm) 1 (mm) 2 (mm) Average (mm) | 1 (mm) 2 (mm) Average (mm) | Average (mm)
1 11.79 11.79 11.79 12.96 13.10 13.03 12.69 12.00 12.34 12.39
2 10.25 12.75 11.50 12.78 13.59 13.19 12.26 13.68 12.97 12.55
3 12.56 11.30 11.93 12.61 13.03 12.82 14.56 12.85 13.70 12.82
CV (%) 1.88 1.43 5.23 1.72
Soleus
Proximal Proximal FL. | Proximal FL Middle FL. Middle FL. | Middle FL Distal FL. Distal FL. Distal FL. Total FL
Day FL 1 (mm) 2 (mm) Average (mm) 1 (mm) 2 (mm) Average (mm) 1 (mm) 2 (mm) Average (mm) | Average (mm)
1 10.27 10.69 10.48 11.82 12.11 11.97 10.62 10.12 10.37 10.94
2 10.66 10.66 10.66 12.51 10.58 11.55 11.12 9.73 10.42 10.88
3 10.60 10.44 10.52 11.29 10.43 10.86 10.79 10.39 10.59 10.66
CV (%) 0.91 4.88 1.10 1.37
Medial gastrocnemius
Proximal Proximal FL. | Proximal FL Middle FL. Middle FL. Middle FL. Distal FL. Distal FL. Distal FL. Total FL
Day FL 1 (mm) 2 (mm) Average (mm) 1 (mm) 2 (mm) Average (mm) | 1 (mm) 2 (mm) Average (mm) | Average (mm)
1 10.52 11.93 11.23 12.42 13.47 12.94 13.06 12.50 12.50 12.32
2 11.11 12.36 11.74 12.33 13.56 12.95 13.45 12.91 13.18 12.62
3 10.66 10.88 10.77 11.86 13.60 12.73 13.76 12.31 13.04 12.18
CV (%) 4.31 0.99 2.80 1.84

FL = fascicle length

10
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164  Serial Sarcomere Number Estimations

165 Following the post-immobilization ultrasound measurements, rats were sacrificed, and
166  the hindlimbs were amputated and fixed in 10% phosphate-buffered formalin with the ankle
167  pinned at 90° and the knee fully extended. After fixation for 1-2 weeks, the muscles were
168  dissected and rinsed with phosphate-buffered saline. The muscles were then digested in 30%
169  nitric acid for 6-8 hours to remove connective tissue and allow for individual muscle fascicles to
170  be teased out (Butterfield et al., 2005; Hinks et al., 2022b).

171 For each muscle, two fascicles were obtained from each of the proximal, middle, and
172 distal regions of the muscle (i.e., six fascicles total per muscle). Dissected fascicles were placed
173 on glass microslides (VWR International, USA), then FLs were measured using ImagelJ software
174  (version 1.53f, National Institutes of Health, USA) from pictures captured by a level, tripod-
175 mounted digital camera, with measurements calibrated to a ruler in plane with the fascicles
176  (Supplemental Figure S1). Sarcomere length measurements were taken at six different locations
177  proximal to distal along each fascicle via laser diffraction (Coherent, Santa Clara, CA, USA)
178  with a 5-mW diode laser (25 um beam diameter, 635 nm wavelength) and custom LabVIEW
179  program (Version 2011, National Instruments, Austin, TX, USA) (Lieber et al., 1984), for a total
180  of 36 sarcomere length measurements per muscle. Serial sarcomere numbers was calculated as:
181 Serial sarcomere number = fascicle length / average sarcomere length

182

11
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183

184  Supplemental Figure S1: Example of distal fascicles from the right lateral gastrocnemius used
185  for measurement of dissected fascicle length and calculation of serial sarcomere number, with
186  fascicles positioned in the same plane as a ruler used to set the scale.

187

188  Satistical Analysis

189 Statistical analyses were conducted using GraphPad Prism 9.5.1. To investigate variation
190  in ultrasound-derived FL and PA, three-way analysis of variance (ANOVA) (time [pre-
191  immobilization, post-immobilization] X joint position [90 degrees, full dorsiflexion] X region
192  [proximal, middle, distal]) was performed for each muscle from each leg, with Geisser-
193 Greenhouse corrections for sphericity. For each dissected muscle, a two-way ANOVA (leg
194  [casted, un-casted] X region [proximal, middle distal] was used to investigate variation in SSN,
195 SL, and FL, with Geisser-Greenhouse corrections for sphericity. For all ANOVAs, where
196 interactions or effects of region were detected, pairwise comparisons (two-tailed paired t-tests)
197  were performed with a Bonferonni correction for multiplicity. Two-tailed, paired t-tests
198  compared muscle wet weights between the casted and un-casted leg, with a Bonferroni
199  correction for multiplicity. For all significant t-tests, the effect size was reported as Cohen’s d.

200  Significance was set at o = 0.05.

12
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201 Linear regression was used to investigate the relationship between: 1) ultrasound-derived
202  FL at 90° post-cast and FL of dissected fascicles; 2) ultrasound-derived FL at each joint angle
203  post-cast and SSN of dissected fascicles; and 3) adaptations in ultrasound-derived FL (as %
204  change pre to post-cast) at each joint angle and adaptations in SSN of dissected fascicles (as %

205  change from the un-casted to the casted leg).

13
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206  Results

207  Effects of region, joint position, and time on fascicle length measured via ultrasound

208 Three-way ANOVA results for FL measured via ultrasound are presented in Table 2.

209 For all muscles, there were effects of joint position, with FL increasing from a 90° ankle
210  angle to full dorsiflexion (Table 2; Figures 2-4). For the gastrocnemii, there were effects of
211  region, with FL increasing from proximal to distal (Table 2; Figures 2 and 4).

212 For ultrasound-derived FL of the un-casted LG, there was a joint position X time
213  interaction (Table 2). Pairwise comparisons showed that FL. decreased by 6% pre to post-cast
214 when measurements were performed at 90° (P = 0.0001, d = 0.45), but did not change according
215  to measurements performed at full dorsiflexion (P = 1.00) (Figure 2B).

216 For ultrasound-derived FL of the casted LG, there was an effect of time (Table 2), with
217  FL decreasing by 12% pre to post-cast (Figure 2C).

218

14
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220  Figure 2: Fascicle length of the un-casted and casted lateral gastrocnemius (LG) measured via
221  ultrasound. For the un-casted LG, there was an effect of region (A) and an interaction between
222 joint position and time (B). For the casted LG, there were effects of region (C), joint position
223 (D), and time (E). *Significant difference between indicated means (P < 0.05). Data are
224 presented as mean + standard deviation.

225

226 For ultrasound-derived FL of the un-casted soleus, there was a region X joint position
227  interaction (Table 2). Pairwise comparisons showed distal fascicles were longer than proximal
228  fascicles when measured at 90° (P = 0.0413, d = 0.44), but proximal and middle FL did not
229  differ (P = 0.194), and middle and distal FL did not differ (P = 1.00) (Figure 3A). Conversely, in
230  measurements performed at full dorsiflexion, middle fascicles were longer than proximal
231  fascicles (P =0.0003, d = 0.65), but proximal and distal FL did not differ (P = 1.00), and middle
232 and distal FL did not differ (P = 0.0591) (Figure 3A). FL of the un-casted soleus did not change
233 from pre to post-cast, with no effect of time (Figure 3B).

234 For the casted soleus, an effect of time showed that ultrasound-derived FL increased on

235  average by 11% pre to post-cast (Table 2). There was also a region x time interaction. Pairwise

15
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236  comparisons showed all regions of the soleus increased FL from pre to post-cast (proximal: P =
237 0.0301, d = 0.57; middle: P < 0.0001, d = 1.12; distal: P < 0.0001, d = 1.13) (Figure 3D). Pre-
238  cast, there were no regional differences in FL (P = 0.0849-1.00), but post-cast, middle (P <
239 0.0001; d=1.01) and distal fascicles (P < 0.0001; d = 0.91) were longer than proximal fascicles
240  (Figure 3D). Accordingly, the increase in proximal FL from pre to post-cast was smaller (+6%)

241  than the increases in middle and distal FL (both +13%).
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244  Figure 3: Fascicle length of the un-casted and casted soleus measured via ultrasound. For the un-
245  casted soleus, there was an interaction between region and position (A) and no effect of time (B).
246  For the casted soleus, there was an effect of position (C) and an interaction between region and
247  time (D). *Significant difference between indicated means (P < 0.05). Data are presented as
248  mean =+ standard deviation.

249
250 For ultrasound-derived FL of the un-casted MG, there was a region X time interaction

251  (Table 2), with distal FL increasing by 8% pre to post-cast (P =0.0330, d = 0.63) (Figure 4A).
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For ultrasound-derived FL of the casted MG, there was also a region X time interaction
(Table 2), but with proximal FL increasing by 11% pre to post-cast (P = 0.0028, d = 0.82)
(Figure 4C). A joint position X time interaction showed that measurements at 90° detected no
change in FL pre to post-cast (P = 1.00), but measurements at full dorsiflexion detected an 8%

increase in FL (P =0.0002, d = 0.76) (Figure 4D).
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Figure 4: Fascicle length of the un-casted and casted medial gastrocnemius (MG) measured via
ultrasound. For the un-casted MG, there was an interaction between region and time (A) and an
effect of position (B). For the casted MG, there were interactions between region and time (C)
and position and time (D). *Significant difference between indicated means (P < 0.05). Data are
presented as mean + standard deviation.

Effect of time on pennation angle measured via ultrasound
Three-way ANOVA results for PA measured via ultrasound are presented in Table 3.
For the un-casted LG, there was an effect of time (Table 3) such that PA increased by

~10% pre to post-cast (Figure 5A). For the casted LG, there was a region X joint position X time
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interaction (Table 3). Pairwise comparisons showed a 26% decrease in PA pre to post-cast only

in distal fascicles at full dorsiflexion (P < 0.0001, d = 3.24) (Figure 5B).
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Figure 5: Changes in pennation angle of the un-casted (A) and casted (B) lateral gastrocnemius
(LG) from pre to post-cast. *Significant difference between indicated means (P < 0.05). Data are
presented as mean = standard deviation.

For the un-casted soleus, like with FL, time did not affect PA, with no changes pre to

post-cast (Table 3; Figure 6A). For the casted soleus, there were interactions of region x time and

joint position x time (Table 3). Pairwise comparisons showed that at all regions of muscle, and

both joint angles, PA of the casted soleus decreased (9-31%) pre to post-cast (P < 0.0001-0.0005,

d = 1.08-2.78) (Figure 6B-C).
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Figure 6: Changes in pennation angle of the un-casted (A) and casted (B-C) soleus from pre to
post-cast. *Significant difference between indicated means (P < 0.05). Data are presented as
mean + standard deviation.

For the un-casted MG, time did not affect PA, with no changes pre to post-cast (Table 3;

Figure 7A). For the casted MG, there was a region X time interaction (Table 3), and pairwise

comparisons showed that at all three regions of the muscle, PA decreased by ~20% pre to post-

cast (P < 0.0001-0.0003, d = 1.10-2.05) (Figure 7B).
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293  Figure 7: Changes in pennation angle of the un-casted (A) and casted (B) medial gastrocnemius
294  (MQ) from pre to post-cast. *Significant difference between indicated means (P < 0.05). Data are
295  presented as mean + standard deviation.

296

297  Muscle wet weight in the casted versus un-casted leg

298 The LG, soleus, and MG of the casted leg weighed 62%, 33%, and 54% less,
299  respectively, than the muscles of the un-casted leg (P < 0.0001, d = 2.42-2.96) (Figure 8).

300
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302  Figure 8: Comparison of muscle wet weight between the casted and un-casted leg for the lateral
303  gastrocnemius (LG), soleus, and medial gastrocnemius (MG). *Significant difference between
304 indicated means (P < 0.05). Data are presented as mean + standard deviation.

305

306  Serial sarcomere number, sarcomere length, and fascicle length of the dissected fascicles in the
307  casted versus non-casted leg

308 Two-way ANOVA results for SSN, SL, and FL of the dissected fascicles are shown in
309  Table 4. There were no region x leg interactions for any muscles.

310 For the LG, there were effects of leg (Table 4) on SL and FL of dissected fascicles such
311  that they were 3% and 6% shorter, respectively, in the casted LG (Figure 9B-C). SSN did not
312 differ between the casted and un-casted LG (Figure 9A). There were effects of region on SSN,
313  SL, and FL. SSN increased from proximal to middle to distal (P <0.0001, d = 1.30-3.24) (Figure
314  9D), and FL followed a similar trend (P < 0.0001, d = 1.58-2.04) but with no difference between
315  proximal and middle FL (P = 0.0521) (Figure 9F). Conversely, SL decreased from proximal to

316  middle to distal (P < 0.0001-0.0016, d = 0.90-2.41) (Figure 9E).
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318  Figure 9: Effects of time (A to C) and effects of region (D to F) on serial sarcomere number (A
319  and D), sarcomere length (B and E), and fascicle length (C and F) of the lateral gastrocnemius
320  from dissected fascicles. *Significant difference between indicated means (P < 0.05). Data are
321  presented as mean + standard deviation.

322

323 For the soleus, there were no effects of region on SSN, SL, or dissected FL, indicating no
324  regional differences (Table 4). There was an effect of leg on soleus SSN (Table 4) such that SSN
325  was 6% greater in the casted leg (Figure 10A). There was a similar effect of leg on FL (Table 4),
326  with a 6% increase (Figure 10C). Soleus SL did not differ between the casted and un-casted leg
327  (Table 4; Figure 10B).

328
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330  Figure 10: Effects of time on serial sarcomere number (A), sarcomere length (B), and fascicle
331 length (C) of the soleus from dissected fascicles. *Significant difference between indicated
332 means (P < 0.05). Data are presented as mean + standard deviation.

333

334 For the MG, there were effects of leg on SL and dissected FL (Table 4) such that they
335  were 2% and 4% shorter, respectively, in the casted MG (Figure 11B-C). SSN did not differ
336  between the casted and un-casted MG (Figure 11A). There were effects of region on SSN, SL,
337 and FL (Table 4). SSN followed the same pattern as in the LG, increasing from proximal to
338  middle to distal (P < 0.0001-0.0127, d = 0.79-1.42) (Figure 11D). FL only differed between
339  proximal and distal fascicles, with distal fascicles being longer (P = 0.0044, d = 0.43) (Figure
340  11F). Like with the LG, SL decreased from proximal to middle to distal (P < 0.0001-0.0481, d =
341  0.52-1.49) (Figure 11E).

342
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344  Figure 11: Effects of time (A to C) and effects of region (D to F) on serial sarcomere number (A
345  and D), sarcomere length (B and E), and fascicle length (C and F) of the medial gastrocnemius
346  from dissected fascicles. *Significant difference between indicated means (P < 0.05). Data are
347  presented as mean + standard deviation.

348

349  Relationships between adaptations in fascicle length measured via ultrasound and adaptationsin
350 serial sarcomere number and fascicle length measured from dissected fascicles

351 For the soleus, significant positive relationships were found between ultrasound-derived
352 FL at 90° and FL of dissected fascicles (Figure 12A) and SSN (Figure 12D), and between
353  ultrasound-derived FL at full dorsiflexion and SSN (Figure 12G). For the LG, there was only a
354  relationship between ultrasound-derived FL at 90° and FL of dissected fascicles (Figure 12B),

355  and no relationships among these measures were observed for the MG (Figure 12C, F, I).
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357  Figure 12: Relationships between ultrasound-derived fascicle length at 90° and fascicle length of
358 dissected fascicles (A-C), ultrasound-derived fascicle length at 90° and SSN (D-F), and
359  ultrasound-derived FL at full dorsiflexion and SSN (G-I) for the soleus, lateral gastrocnemius
360 (LG), medial gastrocnemius (MG). *Significant relationship (P < 0.05).

361

362 There were no relationships between the % change in ultrasound-derived FL from pre to
363  post-cast and the % change in SSN from the un-casted to casted leg for the LG, soleus, or MG
364 (Table 5).

365 When regression analyses were performed across all muscles together, the % change in

366  ultrasound-derived FL measured with the ankle at 90° explained 28% of the variation in the %
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367 change in SSN from dissected fascicles (Figure 13A). This relationship was lessened when using
368  ultrasound-derived FL at full dorsiflexion, only explaining 10% of the variation in SSN

369  adaptations (Figure 13B).
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372 Figure 13: For all muscles combined, relationships between the % change in ultrasound-derived
373  fascicle length (FL) from pre to post-cast as measured with the ankle at 90° (A) and full
374  dorsiflexion (B) and the % change in serial sarcomere number (SSN) from the un-casted to
375  casted leg determined from dissected fascicles. *Significant relationship (P < 0.05).

26


https://doi.org/10.1101/2023.06.02.543410
http://creativecommons.org/licenses/by-nc-nd/4.0/

376

Table 2: Three-way ANOVA results for ultrasound-derived fascicle length

Effect of region Effect of joint Effect of time Region x joint Region x time Joint position X | Region x joint
position position interaction time interaction | position x time
interaction interaction
F P F P F P F P F P F P F P
LG Un- 393.80 | <0.0001* | 215.10 | <0.0001* | 3.99 0.0819 3.01 0.0655 | 0.08 0.921 17.79 | 0.0014* | 0.01 0.970
casted
Casted | 271.00 | <0.0001* | 269.10 | <0.0001* | 50.10 | <0.0001* | 2.43 0.106 3.02 0.0649 | 0.60 0.414 3.08 0.0954
Soleus | Un- 10.49 | 0.0022* | 148.90 | <0.0001* | 0.09 0.677 3.39 0.0480* | 2.07 0.145 1.13 0.296 0.67 0.426
casted
Casted | 24.83 | <0.0001* | 236.80 | <0.0001* | 27.64 | 0.0003* | 0.15 0.861 10.57 | 0.0004* | 0.17 0.662 0.26 0.629
MG Un- 101.20 | <0.0001* | 99.57 | <0.0001* | 1.43 0.240 1.39 0.266 8.75 0.0011* | 2.70 0.132 1.69 0.214
casted
Casted | 120.30 | <0.0001* | 159.80 | <0.0001%* | 3.62 0.0844 1.03 0.369 6.91 0.0036* | 14.30 | 0.0046* | 4.13 0.0596

377

378

Table 3: Three-way ANOVA results for ultrasound-derived pennation angle

Effect of region Effect of joint Effect of time Region x joint Region x time Joint position x Region x joint
position position interaction | interaction time interaction position X time
interaction
F P F P P F P F P F P F P
LG Un- 371.09 | <0.0001* | 101.59 | <0.0001* | 69.40 | <0.0001* | 44.15 | <0.0001* 232 0.117 2.69 0.126 0.43 0.568
casted
Casted | 274.65 | <0.0001* | 147.66 | <0.0001* | 55.73 | <0.0001* | 3591 | <0.0001* 32.54 | <0.0001* | 0.63 0.391 12.81 0.0013*
Soleus | Un- 245.15 | <0.0001* | 163.54 | <0.0001* | 0.24 0.570 4.02 0.0292* 1.18 0.321 1.16 0.285 0.46 0.543
casted
Casted | 73.30 | <0.0001* | 85.29 | <0.0001% | 122.94 | <0.0001* | 1.05 0.362 20.55 | <0.0001* | 20.29 | 0.0009* 2.28 0.144
MG Un- 132.70 | <0.0001* | 140.88 | <0.0001* | 0.81 0.357 451 0.0201* 3.13 0.0593 1.37 0.260 0.11 0.767
casted
Casted | 139.24 | <0.0001* | 182.18 | <0.0001* | 80.12 | <0.0001* | 2.02 0.152 3.34 0.0499* 0.20 0.634 1.28 0.278
379
380 Table 4: Two-way ANOVA results for serial sarcomere number, sarcomere length, and fascicle length of dissected fascicles
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381

382
383

384

_ Effect of region Effect of leg Region x leg interaction
F P F P F P
LG SSN 108.91 <0.0001* 4.57 0.0507 0.67 0.502

SL 61.46 <0.0001* 8.37 0.0118* 2.77 0.0959

FL 55.00 <0.0001* 11.57 0.0043* 0.17 0.793

Soleus SSN 1.39 0.267 33.02 <0.0001* 0.68 0.475
SL 1.26 0.291 0.14 0.713 0.64 0.514

FL 3.06 0.0639 22.94 0.0003* 0.10 0.871

MG SSN 21.30 <0.0001* 0.99 0.336 1.01 0.374
SL 18.36 <0.0001* 6.27 0.0253* 1.02 0.373

FL 7.77 0.0111% 5.03 0.0416* 0.62 0.541

Table S: Relationships between % change in ultrasound-derived fascicle length (FL) from pre to post-cast and % change in

serial sarcomere number of dissected fascicles from the un-casted to casted leg

Serial
Sarcomere
Number

Ultrasound-derived FL at 90°

Ultrasound-derived FL at full dorsiflexion

R’ P R’ P
LG 0.04 0.462 0.02 0.659
Soleus 0.13 0.180 0.06 0.381
MG 0.01 0.666 0.03 0.547

LG = lateral gastrocnemius; MG = medial gastrocnemius
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385  Discussion

386 Immobilizing the rat ankle in full dorsiflexion for 2 weeks, the present study investigated
387  whether ultrasound-derived FL measurements can accurately depict SSN adaptations. Ultrasound
388  detected an 11% increase in soleus FL, a 12% decrease in LG FL, and (depending on the joint
389  angle and region of muscle) an 8% increase in MG FL. These adaptations were partly reflected
390 by the SSN measurements obtained from dissected fascicles, with a 6% greater soleus SSN in the
391  casted leg than the un-casted leg, but no differences in SSN for the gastrocnemii. Our results
392  indicate that ultrasonographic measurements of FL can overestimate SSN adaptations.

393 Our values for muscle wet weight, SSN, SL, FL, and ultrasound-derived PA are within
394  previously reported ranges for the rat soleus (Booth, 1977; Soares et al., 2007; Peixinho €t al.,
395  2011; Mele et al., 2016; Chen et al., 2020; Hinks et al., 2022b) and gastrocnemii (Booth, 1977;
396  Woittiez et al., 1986; Ochi et al., 2007; Peixinho et al., 2011; Mele et al., 2016; Power €t al.,
397  2021).

398

399  Sretch-induced adaptation in serial sarcomere number

400 The soleus of the casted leg had a 6% greater SSN than the un-casted leg, which is
401  consistent with findings from previous studies that immobilized the soleus in a stretched position
402  in rats, mice, and cats (Tabary et al., 1972; Williams & Goldspink, 1978; Spector €t al., 1982;
403  Shah et al., 2001; Soares et al., 2007; Kinney et al., 2017). This serial sarcomere addition is
404  believed to occur to restore optimal actin-myosin overlap and reduce sarcomeric passive tension
405  in the stretched position (Williams & Goldspink, 1978; Davis et al., 2020; Hinks et al., 2022a).
406  The increase in rat soleus SSN we observed after 2 weeks of immobilization was notably lower

407  (+6%, from 5518 to 5850 sarcomeres) than the increase reported by Soares et al. (2007) after
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408  immobilizing the soleus in a stretched position for just 4 days (+29%, 6338 to 8174 sarcomeres).
409  This discrepancy may be attributed to the more extreme ankle angle they used for
410  immobilization, described as “total dorsiflexion,” while we immobilized the ankle at 40°.
411  Additionally, we did not observe a difference in SSN between the casted and un-casted legs for
412 the gastrocnemii. The gastrocnemii are biarticular muscles, crossing the ankle and the knee.
413  Spector et al. (1982) immobilized the knee in full extension and the ankle at 45°, and observed a
414 20% increase in MG SSN. While we immobilized the ankle at a similar angle (40°), we did not
415 immobilize the knee, allowing movement of the gastrocnemii at that joint, which likely tempered
416  the stretch stimulus imposed by dorsiflexion for those muscles.

417

418  Immobilization-induced atrophy

419 Our casting intervention induced atrophy in the gastrocnemii and soleus, as evidenced by
420  lower muscle wet weights in the casted leg. Measurements of PA provided by ultrasound align
421  with these findings, showing decreased PA from pre to post-cast in all three muscles, which may
422  reflect the loss of sarcomeres in parallel (Wisdom et al., 2015; Jorgenson et al., 2020). The
423 reduced muscle weight was more pronounced in the gastrocnemii (—54-62%) than the soleus (—
424 33%). Considering the soleus had a 6% greater SSN in the casted than the un-casted leg, an
425  increase in SSN due to stretch may have lessened the overall loss of muscle tissue, limiting the
426  loss to only sarcomeres in parallel. A similar result was observed by Spector et al. (1982), with a
427  smaller reduction in soleus wet weight when immobilizing in a stretched position (—14%) than a
428  shortened position (—48%), and the former increasing SSN while the latter decreased SSN. The

429  gastrocnemii in the present study did not appear to experience an increase in SSN, therefore, the

30


https://doi.org/10.1101/2023.06.02.543410
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.06.02.543410; this version posted June 6, 2023. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

430  loss of parallel sarcomeres may not have been made up for by stretch-induced serial sarcomere
431  addition, resulting in a greater loss of muscle weight.

432

433  Canthe un-casted leg be used as a valid control ?

434 In the un-casted soleus, no differences in FL or PA were detected by ultrasound from pre
435  to post-cast, validating the use of the un-casted soleus as a SSN control in the present study and
436  previous studies (Williams & Goldspink, 1978; Heslinga & Huijing, 1993; Shah et al., 2001;
437  Gomes et al., 2004; Kinney et al., 2017). In the un-casted gastrocnemii, however, ultrasound
438  measurements suggest some adaptations may have occurred, possibly due to the un-casted leg
439  compensating for the added load (the cast) on the opposite leg during ambulation. In the un-
440  casted LG, ultrasound showed a 6% decrease in FL at 90°, accompanied by a 10% increase in
441  PA. Increased PA and sometimes a decrease in FL are often observed following training
442  emphasizing concentric contractions, and may reflect a reorganization of the muscle architecture
443  to add sarcomeres in parallel for greater force production (Butterfield et al., 2005; Franchi et al.,
444 2014).

445

446  Ultrasound-derived FL does not perfectly reflect adaptations in serial sarcomere number

447 Measurements of FL via ultrasound are often used to infer increases or decreases in SSN
448  (Narici et al., 2003; Blazevich et al., 2007; Franchi et al., 2014; Hinks et al., 2021). Inferring
449  SSN adaptations from ultrasound-derived FL may be problematic, however, because apparent
450  changes in FL may simply be due to changes in SL at the joint angle at which ultrasound
451  measurements are obtained. For example, Pincheira et al. (2021) observed an increase in biceps

452  femoris FL following 3 weeks of eccentric training as measured with the leg in full extension;
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453  however, microendoscopy revealed the increase in FL was only due to longer SLs at that joint
454  angle, not training-induced serial sarcomere addition. In research on animals, SSN adaptations
455  are often determined by calculating SSN from measurements of SL and FL from dissected
456  fascicles, then comparing between experimental and control muscles. The present study
457  investigated the relationship between these two most commonly used methodologies for
458  assessing SSN adaptations.

459 We observed significant but weak relationships between ultrasound-derived FL at 90°
460 and FL of dissected fascicles (after being fixed at 90°) for the soleus and LG (Figure 12A-B).
461 Kellis et al. (2009) observed moderate to strong relationships between FL measured via
462  ultrasound and FL measured directly in the hamstrings of human cadavers. Our results may
463  differ from theirs because, after digesting the muscles in nitric acid, it was more difficult to
464  ensure that the same fascicles as the ultrasound images were being measured from the dissected
465 muscle, even though the same regional constraints (two fascicles from each of the proximal,
466  middle, and distal regions) were followed. Additionally, we observed relationships between
467  ultrasound-derived measurements of FL and actual SSN determined from dissected fascicles for
468  the soleus only, and between the % change in FL from pre to post-cast and the % change in SSN
469  from the un-casted to casted leg with all muscles together. In both cases, the relationships using
470  FL measured at full dorsiflexion were weaker than when using FL measured at 90°. Similar
471  findings were observed recently by Werkhausen et al. (2023), with the relationship between
472  ultrasound-derived FL and isokinetic force (i.e., a measure associated with SSN (Drazan et al.,
473 2019; Hinks et al., 2022a)) being moderate or non-existent depending on the joint angle used

474  during ultrasound imaging. Collectively, our regression analyses demonstrate variability both
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475 among muscles and between joint angles in the ability for ultrasound-derived FL to truly
476  represent SSN.

477 Overall, the soleus provided the best means for comparing ultrasound-derived FL
478  adaptations and adaptations in SSN, as the un-casted soleus did not appear to undergo any
479  compensatory adaptations. From the ultrasound measurements, we observed an ~11% increase in
480  soleus FL from pre to post-cast, however, the true increase in SSN from the un-casted to the
481  casted leg was only 6%. This serial sarcomere addition appeared to be driven by a 6% increase in
482  FL, as the un-casted and casted soleus had the same SL (~2.2 um) with the ankle fixed at 90°.
483  Interestingly, while ultrasound-derived FL averaged across muscle regions increased by 11%, the
484  increase in ultrasound-derived FL of proximal fascicles (+6%) was closer to the observed
485 increase in SSN, demonstrating regional variability in the accuracy of ultrasound-derived FL
486  measurements. Altogether, an increase in FL measured by ultrasound can indeed correspond to
487  an increase in SSN in the rat soleus, but may overestimate the increase in SSN by as much as
488  5%.

489

490 Limitations of ultrasound that may contribute to a disconnect between ultrasound-derived FL
491  and actual SSN

492 For the gastrocnemii, the distal fascicles were sometimes partly out of plane (Figure 1),
493  thus the trajectory of those fascicles to the deep aponeurosis was used to complete the
494  measurements of FL. This limitation likely contributed to the higher coefficients of variation for
495  the gastrocnemii compared to the soleus (Table 1), and may explain the lack of relationships
496  observed between ultrasound-derived FL and dissected FL and SSN for the gastrocnemii, but not

497  the soleus. It is also important to note that ultrasound images do not capture the contractile tissue
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498  of muscle fascicles, but rather the perimysium, the sheath of connective tissue surrounding each
499  fascicle. During serial sarcomerogenesis, the connective tissue scaffolding must be constructed
500  before sarcomeres are added within that space (Kjar, 2004). Previous studies have reported no
501 changes (Williams et al., 1988) or increases in intramuscular connective tissue content
502  (Ahtikoski et al., 2001) following immobilization in a stretched position depending on the
503  duration of immobilization. Many studies also overlook that adaptations in connective tissue
504  structure (e.g., crosslinking, collagen fibril orientation, organization) may not be evident in
505 measures of only content, but can change during muscle remodelling as well (Kjaer, 2004).
506  Connective tissue is digested in nitric acid before measurements are performed on dissected
507  fascicles, therefore, variability in connective tissue likely affects the ability for ultrasound to
508  capture FL of only contractile tissue. Furthermore, an ultrasound image only captures a fascicle
509 path in two dimensions, but the three-dimensional nature of fascicle curvature is well-
510  documented (Rana et al., 2013; Raiteri et al., 2016; Cameron et al., 2023). Unless methods such
511  as three-dimensional ultrasound (Raiteri et al., 2016) or magnetic resonance diffusion tensor
512  imaging (Cameron et al., 2023) are used, the three-dimensional nature of FL can only be
513  accounted for when fascicles are dissected out of the muscle. In the present study, this two-
514  dimensional limitation of ultrasound is most evident in how dissected FLs of the soleus were
515 ~13% longer than ultrasound-derived FLs. There may be curvature in rat soleus fascicles that is
516  not captured in a lateral ultrasound scan, making fascicles appear shorter. Altogether, these
517  factors may have contributed to the disconnects between ultrasound-derived FL and actual SSN
518 in the present study, including the ~5% overestimation of sarcomerogenesis in the soleus, and
519  should be considered going forward in studies employing muscle ultrasound.

520
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Conclusion

The present study investigated the relationship between the two most commonly used
methods of assessing longitudinal growth of skeletal muscle: 1) ultrasound-derived FL
measurements pre and post-intervention; and 2) comparison of SSN between an experimental
and a control muscle. We showed that ultrasound-derived FL overestimated SSN adaptations by
~5%, with measurements in a neutral position predicting SSN better than measurements in a
stretched position. Future studies should consider these findings when concluding a large
magnitude of serial sarcomerogenesis based on ultrasound-derived FL taken at a set joint angle,
and may consider applying a correction factor to more closely approximate the actual SSN

adaptations.
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