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Abstract  

Cancer cells express unique RNA transcripts; however, the factors determining their translation 

have remained unclear. We recently developed open reading frame (ORF) dominance as a 

measure that correlates with coding potential of RNAs. Upon calculating the ORF dominance of 

cancer-specific transcripts across 24 human tumor types, 14 exhibited significantly higher ORF 

dominance in cancer than in normal tissues. In organoid-based mouse genetic models, ORF 

dominance increased with carcinogenesis. Gene ontology analysis revealed that gene sets with 

increased ORF dominance were associated with cell proliferation, while those with decreased 

ORF dominance were linked to DNA damage response. Translatome analyses demonstrated that 

elevated ORF dominance during carcinogenesis resulted in higher translation frequencies of 

ribosome-bound RNAs. As cancer progressed, ORF dominance showed that the boundary 

between coding and noncoding transcripts became blurred prior to distant metastasis, indicating 

decreased proliferative cell populations and increased generation of RNA isoforms that 
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potentially translate neoantigens before the development of metastatic tumors. These findings 

suggest that cancer evolution leads to dynamic changes in ORF dominance, resulting in global 

translational alterations in transcriptomes. 

 

Keywords: cancer-specific transcripts/long-read RNA sequencing/open reading frame 

dominance/organoid carcinogenesis model/translatome 

 

Introduction 

RNAs are traditionally categorized as either coding RNAs, which are translated into proteins, or 

noncoding RNAs. However, recent findings (Huang Y et al., 2021) have challenged this binary 

classification by identifying bifunctional RNAs that possess both coding and noncoding functions. 

For instance, our research revealed that NCYM, a cis-antisense gene of the MYCN oncogene, was 

initially classified as a noncoding RNA in the NCBI nucleotide database but is actually translated 

into a protein, functioning as both a coding and noncoding RNA (Suenaga et al., 2014; Shoji et 

al., 2015; Kaneko et al., 2015; Suenaga et al., 2020). Even a well-known algorithm (Wang et al., 

2013) predicts NCYM to be noncoding (Suenaga et al., 2022), and an accurate method to 

determine its dual nature as an RNA has not yet been established. To address this issue, we 

developed a novel index called open reading frame dominance (ORF dominance) (Suenaga et al., 

2022) that correlates with coding potential. Our investigation also revealed that while prokaryotes 

clearly separate the relative frequency distribution of ORF dominance between coding and 

noncoding RNAs, eukaryotes exhibit partial overlap, potentially facilitating the emergence of 

bifunctional RNAs. Moreover, we observed an increased overlap in ORF dominance distributions 

between coding and noncoding RNAs in endangered species, suggesting a connection to species 

evolution (Suenaga et al., 2022). 
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The relationship between the processes of carcinogenesis and biological evolution has long been 

debated owing to their striking similarities. Seminal studies from the 1970s demonstrated that 

most cancers originate from a single neoplastic cell and evolve through a selection process of 

somatic mutations, favoring the survival of the most proliferative population (Nowell, 1976). 

Subsequent research revealed that tumors consist of genetically distinct subclones with diverse 

characteristics, challenging the notion of linear clonal evolution (Dexter et al., 1978). The 

application of population genetics concepts further expanded our understanding of tumors as 

subjects to natural and artificial selection, including the acquisition of resistance to therapy within 

different subclones (Heppner, 1984). Recent advancements have introduced macroevolutionary 

phenomena such as chromothripsis and age-dependent carcinogenesis, which cannot be fully 

explained by Darwinian evolutionary theory (Vendramin et al., 2021); however, an accurate 

method for describing cancer evolution remains to be established. 

 

Given that cancer tissues express RNA isoforms distinct from normal cells, which play roles in 

cancer initiation and progression (Vitting-Seerup et al., 2017; Kahraman et al., 2020; Karakulak 

et al., 2021; Climente-González et al., 2017; Kahles et al., 2018), the significance of 

understanding the transcriptome through RNA sequencing continues to grow. In conventional 

genome sequencing, short-read sequencing (SR-seq) is utilized to read shorter fragments (up to 

approximately 150 bp) and reconstruct the original sequence by mapping the reads to a reference. 

In contrast, long-read sequencing (LR-seq) has gained popularity, enabling the sequencing of tens 

of thousands of base pairs at once, while SR-seq is now used to refer to traditional sequencing 

methods. LR-seq allows direct sequencing of full-length RNA isoforms, whereas conventional 

SR-seq, which only maps to known references, can detect approximately 20%–40% of the total 
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transcript (Sharon et al., 2013; Tilgner et al., 2014). Consequently, LR-seq has facilitated the 

identification of novel cancer-specific isoforms across various cancer types (Chen et al., 2019; 

Huang KK et al., 2021; Oka et al., 2021; Fang et al., 2021; Veiga et al., 2022). 

 

Therefore, the combination of LR-seq and ORF dominance is expected to enhance transcriptome 

analysis and offer new insights into cancer evolution. In light of these data, we have reevaluated 

cancer evolution using ORF dominance, a valuable tool for describing biological evolution. 

 

Materials and Methods 

ORF dominance 

In this study, ORFs were defined as sequence segments that start with AUG and end with either 

UAA, UAG, or UGA in the 5ʹ to 3ʹ direction of the three reading frames in the RNA sequence. 

ORF dominance, as defined by Suenaga et al. (2022) (Figure S1), is expressed by the following 

formula: 

ORF dominance ＝ !!"#$
!!"#$"∑ !%"#$&'

&()
 

Here, lpORF represents the length of primary ORF (pORF), and lsORF represents the length of 

secondary ORF (sORF). ORF dominance values range from 0 to 1. 

 

To calculate the ORF dominance of individual RNAs, we utilized sequence information obtained 

from RNA sequencing. When analyzing data from public databases or previously published 

articles, we determined RNA sequence information using Ensembl transcript IDs or Refseq 

transcript IDs and subsequently calculated ORF dominance. Ensembl transcript IDs were 

collected as of November 2019, while Refseq transcript IDs were collected as of April 2018. 

During the analysis of the LR-seq data, we identified multiple isoforms that mapped to the same 
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Ensemble transcript ID. In such cases, we selected the longest isoform to calculate ORF 

dominance. Additionally, we computed the average ORF dominance of all the detected isoforms 

for further analysis. We plotted the relative frequency distribution of ORF dominance calculated 

from the entire RNA dataset and compared the peak positions and graph shapes. 

 

Obtaining transcriptome data 

We obtained transcriptome data for ORF dominance analysis from published and public databases. 

Cancer-specific most dominant transcripts (cMDTs) and normal tissue transcripts (nMDTs) 

corresponding to cMDTs in 24 cancer types were obtained from Kahraman et al. (2020) 

previously published database (Table S1). To ensure high mapping accuracy, we only included 

data with a one-to-one correspondence, excluding cases with multiple nMDTs mapped to a cMDT. 

The data included mutation information for cMDTs (MutationInfo), which we used to examine 

the association between mutation status and ORF dominance. The mutations were classified into 

6 categories based on their position: 5'UTR, CDS, 3'UTR, Core promoter, Splice site, and 

Enhancer. However, the data did not provide classification information for coding noncoding 

transcripts. 

 

For cancer-specific transcript data obtained through LR-seq, we retrieved information on aberrant 

splicing of isoforms in lung adenocarcinoma specimens and lung adenocarcinoma cell lines from 

a previous report by Oka et al. (2021). Similarly, the classification of coding noncoding transcripts 

was not provided in this data. The cell line data included information on driver mutations, which 

we also incorporated into our analysis. Additionally, we collected data on hepatocellular 

carcinoma (HCC)-specific isoforms in HCC from a previous study by Chen et al. (2019), focusing 

on isoforms with RefSeq IDs. We divided the analysis based on coding noncoding categorization, 
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as provided in these data. As these publications did not correspond directly to normal and cancer 

tissues, we used ORF dominance distributions of all coding or noncoding RNAs registered in 

Refseq as controls for comparison. 

 

To examine transcript data related to neoantigens, we obtained isoform data for candidate 

neoantigens from a previous report by Xiang et al. (2021). Additionally, we acquired isoform data 

for tumor-specific antigens (TSAs) translated from noncoding gene exons from the study by 

Laumont et al. (2018), considering only isoforms assigned with an Ensembl transcript ID. To 

ensure data accuracy, we excluded isoforms with multiple Ensembl transcript IDs from the 

analysis. 

 

We obtained transcriptome and clinical data of TCGA colorectal cancers from cBioPortal 

(https://cbioportal-datahub.s3.amazonaws.com/coadread_tcga_pub.tar.gz) and a previous report 

by the Cancer Genome Atlas Network (2012), respectively. The data included TNM 

classifications for each specimen, which we used to investigate the association between TNM 

classification and ORF dominance. 

 

Transcriptome data were obtained from the study by Ono et al. (2021), which analyzed tissue 

diversity changes within tumors at the single-cell level using a mouse colon cancer organoid 

model. We separately obtained gene expression levels, sample classifications, and Ensembl 

transcript IDs from the authors. Samples with multiple transcripts transcribed from a single gene 

were excluded from the analysis since the expression level information was measured on a gene-

by-gene basis. 

 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.02.543339doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.02.543339
http://creativecommons.org/licenses/by/4.0/


 8 

We acquired data from a previous report by Aoto et al. (2017) on a skin carcinogenesis mice 

model. The gene expression levels were reported in Ensembl gene IDs, and we selected mouse 

genes registered in Ensembl with only one transcript ID transcribed from each gene ID for 

inclusion in the analysis. 

 

Mouse experiments 

We obtained wild-type C57BL/6J mice and immunodeficient nude BALB/cAnu/nu mice from 

Nippon Clare and Japan SLC, respectively. KrasLSL-G12D/+ and Trp53flox/flox mice were obtained 

from Jackson Laboratory (Bar Harbor, ME, USA). Mice with a C57BL/6J background were bred 

to generate compound mutant mice with KrasLSL-G12D/+; Trp53flox/flox. Approval for safety measures 

to prevent proliferation and ensure animal welfare was obtained from the safety committee for 

recombinant DNA experiments and the animal experiment safety committee at the Chiba Cancer 

Center. 

 

Mouse organoid carcinogenesis model 

We utilized a mouse organoid carcinogenesis model to recapitulate tumor formation as previously 

described (Ochiai et al., 2019; Matusura et al., 2020). Briefly, we established organoids from liver 

and pancreatic tissues from 3- to 5-week-old KrasLSL-G12D/+; Trp53flox/flox compound mutant mice. 

Bile duct and pancreatic organoids were cultured in a primary culture setup. The organoids were 

grown in a 3D configuration between two layers of Matrigel (Corning, Corning, NY, USA) in 12-

well plates. The culture medium consisted of penicillin-streptomycin (Fujifilm Wako Pure 

Chemical, Osaka, Japan), Fungizone (Fujifilm Wako Pure Chemical), L-glutamine (Thermo 

Fisher Scientific, Waltham, MA, USA), 50 ng/ml EGF (Peprotech, Rehovot, Israel), 100 ng/ml 

Noggin (Peprotech), 10 μM Y27632 (Fujifilm Wako Pure Chemical), and 1 μM Jagged-1 
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(AnaSpec, Fremont, CA, USA) in Advanced DMEM/F12 (Thermo Fisher Scientific). Passaging 

was performed every 4–8 days at a 1:3 dilution. We used a lentiviral vector, LV-Cre pLKO.1 

(Addgene plasmid 25997), which encodes Cre-recombinase in the backbone of the pLKO.1 vector, 

for in vitro removal of the Stop codon flanked by two LoxP sequences. Successful genetic 

recombination was confirmed via genomic PCR. Subsequently, the organoids were 

subcutaneously inoculated into nude mice to induce tumor formation. The control group utilized 

the backbone vector pLKO.1. After approximately 8 weeks, the subcutaneous tumors were 

excised, and organoid culture was reestablished. 

 

RNA sequencing 

To isolate organoid cells from the Matrigel layer, we depolymerized the Matrigel using Cell 

Recovery Solution (Corning). Total RNA was extracted from the isolated organoid cells using the 

RNeasy Mini Kit (QIAGEN, Hilden, Germany). For SR-seq, we performed sequencing on the 

Illumina NextSeq 500 platform and mapped the reads to the GRCm38 reference genome. LR-seq 

involved IsoSeq sequencing on a PacBio Sequel IIe instrument, followed by generation of Hi-Fi 

consensus reads. IsoSeq3 analysis was conducted using SMRTLink (version 11.0.0.146107), with 

the option of clustering barcoded samples separately. After IsoSeq3 analysis, the processed high-

quality LR-seq sequences were mapped to the mm10 mouse genome using GMAP (version 2017-

11-15). The sequences were annotated with Gencode release M25 (GRCm38.p6) using SQANTI 

3 (version 5.0) with default parameters and the option of allowing the usage of transcript IDs non-

related with PacBio’s nomenclature enabled. Following the process of SQANTI annotation, 

artifact isoforms were filtered with SQANTI3’s default rule-based filtering parameters. Major 

associated transcripts were sorted by their length of reference isoforms, and the longest one was 

selected as the representative Ensembl transcript for reporting purposes. 
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Whole-genome sequencing 

To isolate organoid cells from the Matrigel layer, Cell Recovery Solution (Corning) was used to 

depolymerize the Matrigel. DNA extraction from the isolated organoid cells was carried out using 

the DNeasy Blood & Tissue kit (QIAGEN). Macrogen Japan was contracted for DNA sequencing 

services. Whole-genome sequencing was conducted using the Illumina NovaSeq 6000 platform, 

and the reads were mapped to the GRCm38 reference genome. 

 

Western blotting 

Matrigel depolymerization was performed using Cell Recovery Solution (Corning). Subsequently, 

organoids were lysed in RIPA (radio-immunoprecipitation assay) buffer supplemented with 1 M 

NaF, 0.1 M Na3VO4, 1 M βGP, and Protease Inhibitor Cocktail (Nacalai Tesque, Kyoto, Japan). 

The lysates were subjected to sodium dodecyl sulfate-polyacrylamide gel electrophoresis under 

reducing conditions, followed by transfer to polyvinylidene difluoride membranes (Millipore, 

Burlington, MA, USA) using a semi-dry transfer system. Membranes were blocked overnight at 

4 °C in Tween buffer containing 5% dry milk for 90 min before reaction, followed by incubation 

with primary antibodies. The primary antibodies used were Raly (A302-070A, Bethyl Lab, 

1:2,000) and α-tubulin (T5168, Sigma-Aldrich, 1:10,000). 

 

Creation of a list of oncogenes and tumor suppressor genes 

Genes classified as oncogenes or tumor suppressor genes were identified using the UniProt 

database (https://www.uniprot.org/). Specifically, genes registered under the keywords 

"protooncogene" (KW-0656) or "tumor suppressor" (KW-0043) were categorized accordingly. 
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Gene ontology analysis 

We employed the DAVID Functional Annotation Tool (DAVID 2021–Dec. 2021) 

(https://david.ncifcrf.gov/summary.jsp) for performing gene ontology analysis (GO analysis). 

Gene sets were created using transcript IDs, and the Functional Annotation Chart with default 

settings provided by DAVID was utilized for result analysis. A Benjamini value <0.05 was 

considered statistically significant.  

 

AHA-mediated ribosome isolation 

We employed the AHARIBO technique, which utilizes AHA (an analog of methionine) to 

incorporate it into proteins during translation. This allowed us to pull down complexes of 

ribosomes, RNA, and proteins involved in translation by binding them to AHA-coated beads 

(Minati et al., 2021). The AHARIBO kit protocol (Funakoshi, Tokyo, Japan) was followed for the 

experiment. 

To initiate the procedure, we switched the medium of the organoids in culture to a methionine-

free medium (Thermo Fisher Scientific). After 40 min of culture, AHA was added and incubated 

for 10 min. Following this, the medium was removed and the organoids were washed with PBS. 

To collect the cells from the Matrigel, the Matrigel was depolymerized using Cell Recovery 

Solution (Corning). The collected cells were then lysed using a kit containing lysis buffer. The 

ligand-coated beads were bound to the lysate, and the resulting bead-cell complex was collected 

using a magnetic rack. The collected bead suspension was incubated with 10% Sodium Dodecyl 

Sulfate and Proteinase K (Fujifilm Wako Pure Chemical) at 37 °C for 60 min. The supernatant 

was collected, and RNA was extracted using RNeasy mini (QIAGEN) for RNA sequencing. 

Similarly, for protein analysis, the beads were reacted with the cell lysate and collected using a 

magnetic rack. The collected bead suspension was subjected to LC-MS analysis following a 
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thorough wash with urea washing solution (AHARIBO kit). 

 

Quantitative real time RT-PCR 

RNA was extracted using the AHARIBO kit, and cDNA synthesis was performed using 

SuperScript II with random primers (Invitrogen, Waltham, MA, USA). Quantitative real-time 

PCR was conducted on a StepOnePlus™ Real-Time PCR System (Thermo Fisher Scientific) with 

SYBR green. The following primer sets were used: Raly (5′-GTGCTCGGGCTCCTCAC-3′ and 

5′-GGACATGGTGTTCACCCGC-3′) and Rn18s (5′-GTAACCCGTTGAACCCCATT-3′ and 5′-

CCATCCAATCGGTAGTAGCG-3′). The expression of the Raly gene was normalized to Rn18s 

RNA levels. 

 

LC-MS 

To digest proteins, we added 500 ng of trypsin/Lys-C Mix (CAT# V5072, Promega, Madison, WI, 

USA) to the beads soaked in 50 mM Tris-HCl pH 8.0. The mixture was gently mixed at 37 °C 

overnight. The resulting digested sample (supernatant) was collected in a new 1.5 ml tube. The 

collected sample was then treated with 20 mM tris (2-carboxyethyl) phosphine at 80 °C for 10 

min for reduction, followed by alkylation using 30 mM iodoacetamide at room temperature for 

30 min while protecting it from light. The alkylated sample was acidified with 20 μL of 5% 

trifluoroacetic acid (TFA) and desalted using a STAGE tip (CAT# 7820-11200, GL Sciences, 

Tokyo, Japan) according to the manufacturer's protocol. After desalting, the sample was dried 

using a centrifugal evaporator (miVac Duo concentrator, Genevac, Ipswich, UK). The dried 

sample was then dissolved in 2% ACN containing 0.1% TFA. 

 

For peptide analysis, the peptides were directly injected onto a 75 μm × 12 cm nanoLC nano-
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capillary column (Nikkyo Technos, Tokyo, Japan) at 50 °C. Separation was achieved using a 60 

min gradient at a flow rate of 200 nl/min with an UltiMate 3000 RSLCnano LC system (Thermo 

Fisher Scientific). Peptides eluting from the column were analyzed using a Q Exactive HF-X 

(Thermo Fisher Scientific) for DIA-MS. MS1 spectra were collected in the range of 495–745 m/z 

at a resolution of 15,000, with an automatic gain control (AGC) target of 3e6 and a maximum 

injection time of 23 ms. MS2 spectra were collected at a resolution of 30,000 in the range of more 

than 200 m/z, with an AGC target of 3e6, maximum injection time set to "auto," and a normalized 

collision energy of 23%. The isolation width for MS2 was set to 4 m/z, and window placements 

optimized by Scaffold DIA 3.2.1 were used with window patterns of 500–740 m/z. 

 

For MS file analysis, we used DIA-NN (version: 1.8.1, https://github.com/vdemichev/DiaNN) 

(Demichev, et al., 2020) to search against the in silico mouse spectral library. The spectral library 

was generated from the mouse protein sequence database (proteome ID UP000000589, 21,986 

entries, downloaded on November 26, 2021) using DIA-NN. Parameters for generating the 

spectral library were as follows: precursor m/z range of 490–750; fragment ion m/z range of 200–

1,800; precursor charge range of 2–4; peptide length range of 7–45; digestion enzyme of trypsin; 

missed cleavages of 1; and enabled features included "C Carbamidomethylation," "n-term M 

excision," "deep learning-based spectra, RTs and IMs prediction," and "FASTA digest for library-

free search/library generation." The DIA-NN search parameters included neural network 

classification in single-pass mode, quantification strategy of robust LC (high precision), mass 

accuracy of 10 ppm, MS1 accuracy of 10 ppm, protein inference based on genes, and enabled 

features such as "MBR," "no shared spectra," "unrelated runs," "use isotopologues," and 

"heuristic protein inference." The protein identification threshold was set at 1% or less for both 

precursor and protein FDRs. 
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Results 

Changes in ORF dominance during carcinogenesis 

To gain insights into the significance of changes in ORF dominance during carcinogenesis, we 

calculated the ORF dominance of transcriptomes obtained from normal and cancer tissues and 

compared their distributions. 

 

Using a dataset of 24 cancer types from Kahraman et al. (2020), which included cancer-specific 

cMDTs and corresponding nMDTs in normal tissues, we initially compared the ORF dominance 

distributions of all cMDTs and nMDTs regardless of cancer type. We observed a significant shift 

toward higher ORF dominance values in cMDTs compared to nMDTs (Figure 1A). Next, we 

focused on transcripts derived from oncogenes and tumor suppressor genes within cMDTs and 

compared them to nMDTs. We found that the ORF dominance of cMDTs significantly increased 

only for oncogenes (Figure 1B). Additionally, when comparing ORF dominance by cancer type, 

cMDTs showed significantly higher values in 14 out of 24 cancer types, while three cancer types 

(bladder transitional cell carcinoma (Bladder-TCC), chronic lymphocytic leukemia (Lymph-CLI), 

bone and soft tissue leiomyosarcoma (Bone-Leiomyo)) exhibited lower ORF dominance. No 

significant differences were detected among seven other cancer types (Figure 1C). 

 

These findings indicate an overall increasing trend in transcript ORF dominance during 

carcinogenesis, specifically elevated ORF dominance for oncogenes and cancer type-specific 

transcripts. 

 

Furthermore, GO analysis of gene sets with ORF dominance changes exceeding 0.1 between 
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nMDT and cMDT revealed that genes with increased ORF dominance were associated with the 

Golgi apparatus, endoplasmic reticulum, cell junctions, and cell cycle (Table S2), while those 

with decreased ORF dominance were related to the mitochondrion, DNA damage, and DNA 

repair (Table S3). Similarly, analyzing the 14 cancer types with increased ORF dominance showed 

that gene sets with elevated ORF dominance were associated with the Golgi apparatus, 

endoplasmic reticulum, and cell junctions, whereas those with decreased ORF dominance were 

linked to the mitochondrion, DNA damage, and DNA repair (Table S4, S5). Likewise, for the 

three cancer types with decreased ORF dominance (Bladder-TCC, Lymph-CLI, and Bone-

Leiomyo), the gene sets with decreased ORF dominance were associated with the mitochondrion 

(Table S6). These results suggest that changes in ORF dominance may be associated with 

physiological functions involved in carcinogenesis, such as organelles, the cell cycle, and DNA 

damage response. 

 

To examine the relationship between changes in ORF dominance and genetic mutations, we 

compared the ORF dominance distributions of nMDT and cMDT among isoforms with and 

without mutations. The results showed a significant shift toward higher ORF dominance values 

irrespective of the presence or absence of mutations (Figure S2A). Additionally, investigating the 

association between the change in ORF dominance and mutation location revealed a significant 

increase in ORF dominance when mutations were present in the 5' UTR, 3' UTR, and CDS regions. 

However, no change in ORF dominance was detected when mutations occurred in regulatory 

regions such as the core promoter, enhancer, and splice sites (Figure S2B).  

 

LR-seq reveals high-resolution ORF dominance changes 

The data presented above are derived from SR-seq data obtained from the Pan-Cancer Analysis 
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of Whole Genomes (PCAWG) project (Kahraman et al., 2020). Notably, no detectable changes in 

ORF dominance were observed in lung adenocarcinoma (Lung-AdenoCA) and hepatocellular 

carcinoma (Liver-HCC) based on these findings. However, recent studies utilizing LR-seq (Oka 

et al., 2021; Chen et al., 2019) have identified cancer-specific isoforms in samples and cell lines 

of these cancer types. Consequently, we reevaluated ORF dominance using these new datasets 

and observed a significant shift toward higher values in numerous lung adenocarcinoma samples 

and cell lines (Figure S3). In the lung adenocarcinoma cell line data, all cell lines carrying KRAS 

mutations exhibited a marked shift in ORF dominance, whereas those with NRAS or EGFR 

mutations did not demonstrate a significant change (Figure S3A). Conversely, in hepatocellular 

carcinoma, a significant shift toward lower values in ORF dominance was observed (Figure S3B). 

These outcomes indicate that LR-seq exhibits high sensitivity in detecting changes in ORF 

dominance. 

 

Moreover, recent studies (Xiang et al., 2021; Laumont et al., 2018) have identified neoantigens 

translated from cancer-specific isoforms across different cancer types. Since ORF dominance was 

originally developed as an indicator of coding potential encompassing noncoding transcripts 

(Suenaga et al., 2022), it is likely to serve as a valuable predictor of neoantigens. To validate this, 

we calculated the ORF dominance based on the data reported in the aforementioned studies and 

observed significantly high ORF dominance in the isoforms of each neoantigen candidate (Figure 

S4).  

 

Changes in ORF dominance in a mouse model of organoid carcinogenesis 

To examine the changes in ORF dominance during pure carcinogenesis, we compared normal and 

cancer cells with matched backgrounds derived from the same mouse cells. Specifically, we 
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lentivirally transduced KrasLSL-G12D/+; Trp53flox/flox mouse bile duct organoids in vitro with either 

Cre or the empty vector pLKO.1 to obtain KrasG12D/+; Trp53-/- (hereafter referred to as Cre 

organoids) and normal controls (V organoids). When both types of organoids were inoculated into 

nude mice, subcutaneous (SC) tumors only developed from the Cre organoids. We obtained two 

clones of subcutaneous tumor-derived organoids (SC1/SC2 organoids) from two independent 

experiments (Figure 2A-C). Total RNA was extracted from these four organoids, and RNA 

sequencing (LR-seq) was performed. In the analysis, transcripts were classified as coding RNA 

or noncoding RNA during annotation, and the distribution of ORF dominance was analyzed for 

each. 

 

The results showed no significant differences in the ORF dominance distribution of the organoids 

before (V) and after (Cre) genetic engineering, for both coding and noncoding RNAs. However, 

the ORF dominance distribution of the transcripts before (Cre) and after tumorigenesis (SC1, 

SC2) exhibited a significant shift toward higher values for both coding and noncoding RNAs 

(Figure 2D and Figure S5). Additionally, GO analysis of gene sets with ORF dominance changes 

greater than 0.1 revealed that gene sets with increased ORF dominance were associated with 

Golgi apparatus, endoplasmic reticulum, mitosis, cell division, and cell cycle (Table S7), similar 

to the results obtained in human cancers. Gene sets related to mRNA processing, DNA damage, 

and DNA repair were enriched in gene sets with both increased and decreased ORF dominance 

(Table S7 and S8). 

 

Additionally, we performed similar analysis using mouse pancreatic organoids with the KrasLSL-

G12D/+; Trp53flox/flox allele to obtain V, Cre, and SC organoids as previously described in our study 

(Matsuura et al., 2020). After LR-seq analyses, we examined the ORF dominance distributions. 
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The ORF dominance distributions after genetic engineering (Cre) were significantly shifted 

toward higher values in both coding RNA and noncoding RNA, compared to the distributions in 

V organoids (Figure S6). Similar to human cancers and cholangiocarcinoma organoid models, the 

gene sets with increased ORF dominance after genetic engineering (Cre) were associated with 

Golgi apparatus, endoplasmic reticulum, cell junction, and cell cycle (Table S9). Gene sets related 

to mRNA processing, mitochondrion, and autophagosomes were enriched in gene sets with both 

increased and decreased ORF dominance (Table S9 and S10). After tumorigenesis (SC), gene sets 

related to Golgi apparatus and endoplasmic reticulum were enriched in genes with both increased 

and decreased ORF dominance (Table S11 and S12), while gene sets related to cell cycle, cell 

division, and mitosis were predominantly enriched in decreased ORF dominance. These results 

indicate that the timing of ORF dominance elevation differs among different tissues even when 

the same genetic mutations are employed for carcinogenesis. Moreover, certain gene sets with 

altered ORF dominance share common functions (e.g., Golgi apparatus, endoplasmic reticulum, 

and cell cycle), while others are tissue-specific (e.g., autophagosomes). 

 

RNA sequence changes inducing alternations of ORF dominance 

Using the LR-seq method in a mouse bile duct organoid model, we investigated changes in ORF 

dominance for all transcripts during the process of carcinogenesis. The analysis revealed that the 

percentage of transcripts with increased ORF dominance rose during in vivo tumorigenesis 

(Cre→SC) compared to in vitro genetic engineering (V→Cre), while the percentage of transcripts 

with decreased ORF dominance declined during tumorigenesis (Cre→SC) compared to genetic 

engineering (V→Cre) (Figure S7A). Approximately 50% of all transcripts exhibited altered ORF 

dominance during tumorigenesis (Cre→SC), whereas around 40% of the transcripts showed 

altered ORF dominance at the time of genetic engineering (V→Cre), with a similar rate of 
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increase and decrease. Consequently, the overall distribution of ORF dominance remained 

unchanged during genetic engineering (V→Cre) (Figure 2D). Notably, a significant proportion of 

transcripts with elevated ORF dominance during tumorigenesis (Cre→SC) resulted from a 

reduction in the cumulative length of all sORFs, rather than elongation of the pORF (Figure S7B, 

left). Conversely, transcripts with decreased ORF dominance were more likely to be attributed to 

pORF shortening (Figure S7B, right). 

 

It is known that shortening of the 3' untranslated region (3'UTR) enhances the expression of 

proteins encoded by oncogenes (Mayr et al., 2009), while intronic polyadenylation contributes to 

the inactivation of tumor suppressor genes and DNA repair genes (Lee et al., 2018; Dubbury et 

al., 2018). Therefore, we further analyzed the causes of increased and decreased ORF dominance 

by focusing on oncogenes and tumor suppressor genes, but the results did not significantly differ 

from the overall analysis (Figure S7C). Enrichment analysis of gene sets with increased ORF 

dominance and shortened cumulative sORF lengths, as well as gene sets with decreased ORF 

dominance and shortened pORF, revealed an enrichment of genes related to the Golgi apparatus, 

endoplasmic reticulum, mitosis, cell cycle, cell division, DNA repair, and DNA damage (Table 

S13 and S14). 

 

To explore the potential contributions of genomic mutations to the elevation of ORF dominance 

after tumorigenesis, whole-genome sequencing was performed on the four organoids (Figure S8). 

The number of mutations increased following tumorigenesis (Figure S8A); however, no 

significant changes were observed in the types of mutations (Figure S8B). 

 

Elevation of ORF dominance contributes to enhanced translation 
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In our previous study (Suenaga et al., 2022), we reported an association between ORF dominance 

and translation efficiency during spermatogenesis in the testis. Based on this finding, we 

hypothesized that an increase in ORF dominance may lead to enhanced translation during 

carcinogenesis, potentially resulting in increased protein expression. To investigate this, we 

examined genes exhibiting a significant increase in ORF dominance during tumorigenesis 

(Cre→SC) in a mouse cholangiocarcinoma model (Table S15). Among these genes, we selected 

Raly due to its known oncogenic functions (Sun et al., 2020; Cornella et al., 2017) and its mRNA 

levels showing no significant changes (Table S15 and Figure 3A). After tumorigenesis (SCs), the 

ORF dominances of Raly mRNA increased due to 3'UTR shortening (Figure 3A), and this was 

accompanied by elevated protein expression levels (Figure 3B). To further investigate the 

translation process, we extracted RNAs bound to ribosomes, which were actively translating 

nascent peptides, from the organoids using AHARIBO. Subsequently, we quantified the Raly 

mRNA bound to ribosomes and the newly translated Raly protein using RT-qPCR and LC-MS, 

respectively. While the amount of Raly mRNA bound to ribosomes in SCs showed a decrease 

compared to Cre (Figure 3C), the level of newly translated Raly protein was higher in SCs (Figure 

3D), indicating that increased ORF dominance is associated with augmented translation of Raly. 

 

To gain a comprehensive understanding of the relationship between ORF dominance and 

translation, we conducted a thorough analysis of RNAs bound to ribosomes that were actively 

translating nascent peptides using AHARIBO combined with LR-seq. We also calculated the ORF 

dominance based on the RNA sequences (Figure 4A and Figure S9). The distributions of ORF 

dominance for ribosome-bound RNAs revealed a shift toward lower values in coding transcripts 

(Figure 4A, left), while noncoding transcripts showed a shift toward higher values, although the 

shift in SC2 noncoding RNAs was not statistically significant (Figure 4A, right). The elevation 
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of ORF dominance following tumorigenesis in coding transcripts (Cre < SCs, bulk) was mirrored 

in RNAs bound to translating ribosomes (Cre < SC1 < SC2, AHA). However, the elevation of 

noncoding RNAs (Cre < SCs, bulk) was only evident in SC1 noncoding RNAs bound to 

ribosomes, not in SC2 (Cre ≈ SC2 < SC1, AHA). These results suggest that changes in ORF 

dominance within the transcriptome are only partially reflected in RNAs bound to translating 

ribosomes, and the extent of this reflection varies across different tumors. The prominent shift in 

coding RNAs was observed in SC2, while the shift in noncoding RNAs was notable in SC1. 

 

To investigate the mechanism underlying the shifts in ORF dominance upon ribosome binding, 

we examined other RNA features, such as transcript length and expression levels, as they are 

related to ribosome binding. Shorter transcripts have been associated with higher ORF dominance 

(Suenaga et al., 2022), whereas longer transcripts are linked to increased ribosome binding (Zeng 

and Hamada, 2018). This suggests the presence of an optimal transcript length for efficient 

translation. Consistently, the relative frequencies of transcript length for RNAs bound to 

translating ribosomes showed peaks around 3,000 bases for both coding and noncoding transcripts 

(Figure 4B, AHA). Additionally, cancer organoids (SCs) exhibited transcriptomes that 

approached this optimal transcript length compared to control samples (V and Cre). As previously 

reported, shorter transcripts demonstrated higher ORF dominance in both coding and noncoding 

transcripts (Figure 4C). Shortening transcripts was the primary mechanism for achieving optimal 

translation (Figure 4B). However, in cancer organoids, long coding transcripts (>4,000 bp) 

showed increased ORF dominance, whereas noncoding transcripts did not exhibit the same 

pattern (Figure 4C). This difference between coding and noncoding transcripts is likely due to the 

presence of functional ORFs in coding transcripts, which limits transcript shortening. No 

relationship was observed between RNA expression levels and ORF dominance or tumorigenesis 
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(Figure S10 and S11). 

 

Ribosomes translate peptides from both pORFs and sORFs. Our methodology (AHARIBO-LR-

seq) allowed us to extract and identify all RNAs translated from pORFs and/or sORFs. However, 

AHARIBO-LC-MS data specifically identified peptides from bona fide ORFs, as peptides from 

sORFs were either not registered in the database or were undetectable due to low stability. 

Consequently, we examined whether ORF dominance-shifts in ribosome-bound RNAs 

contributed to the translation of proteins from bona fide ORFs (Figure 5). The number of 

transcripts with evidence of translation from bona fide ORFs (+) was substantially higher than in 

those without evidence (-) in cancer organoids (SCs) (Figure 5A), aligning with the order of ORF 

dominance-shifts in RNAs bound to translating ribosomes (Figure 4A, Cre < SC1 < SC2, AHA). 

The reduction in transcripts without evidence of translation (-) in cancer organoids (Figure 5A) 

also corresponds to the observed decrease in sORFs (Figure S7B), indicating that the primary 

mechanism driving elevated ORF dominance after tumorigenesis involves a reduction in sORFs. 

Furthermore, the relationship between translational frequencies (the frequency of translation from 

bona fide ORFs) and ORF dominance approximated a linear function passing through 0.3 when 

ORF dominance was below 0.7 in cancer organoids (SCs) (Figure 5B), similar to the linear 

relationship observed between ORF dominance and coding potential within the same range (<0.7) 

(Suenaga et al., 2022). However, the linear relationship was not detected in the control (Cre) and 

the basal levels of translational frequencies were approximately 20% lower than those of cancer 

organoids. Only transcripts with the highest ORF dominance (> 0.9) in Cre showed comparable 

translational frequencies to those in SCs. Therefore, during carcinogenesis, the basal level of 

translation from RNA bound to ribosomes increased and ORF dominance-dependency of 

translational frequencies emerged. The amount of newly translated proteins per gene was higher 
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in cancer organoids (Figure 5C), reflecting the order of ORF dominance shifts (Figure 4A) and 

translational frequencies (Figure 5A) (Cre < SC1 < SC2). Notably, this elevation was only 

observed within the defined range of ORF dominance (< 0.7) (Figure 5B). These findings indicate 

that shifts in ORF dominance within the transcriptome contribute to enhanced translation in 

cancer organoids.  

 

Potential of ORF dominance analysis using SR-seq data 

To validate the efficacy of LR-seq in ORF dominance analysis, we compared the ORF dominance 

distributions using SR-seq data from the same RNA samples in a mouse cholangiocarcinoma 

model experiment (Figure S12). The SR-seq results revealed no significant difference in ORF 

dominance distribution between the four organoids for both coding and noncoding RNAs (Figure 

S12A). This led us to consider the possibility that RNAs with unchanged expression levels might 

introduce noise into the analysis, masking the results of RNAs with altered ORF dominance. To 

address this, we extracted RNAs with expression levels increased more than two-fold before and 

after genetic engineering (V→Cre) and tumorigenesis (Cre→SC1, Cre→SC2). We then 

compared the ORF dominance distributions again. The analysis of noncoding RNAs showed no 

significant difference, whereas in the analysis of coding RNAs, the ORF dominance distribution 

of RNAs with expression level changes after tumorigenesis (Cre→SC1, Cre→SC2) was higher 

than that of RNAs with expression level changes after genetic engineering (V→Cre) for 

upregulated RNAs (Figure S12B). These findings suggest that LR-seq can more accurately detect 

changes in ORF dominance compared to SR-seq. Furthermore, our results indicate that even with 

SR-seq data, changes in ORF dominance can be detected with high sensitivity by focusing on 

transcript data with altered RNA expression levels. 
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To explore the relationship between ORF dominance and intratumor diversity, we calculated ORF 

dominance using single-cell RNA sequencing data obtained via SR-seq (Ono et al., 2021). In a 

previous study, mouse colorectal cancer organoids were derived from single cells with APC 

knockdown and subcutaneously inoculated into nude mice to induce tumor formation. The 

organoids were then cultured again from the tumors and subjected to subcutaneous inoculation 

for secondary tumor formation and organoid reculturing. The organoid before inoculation into 

nude mice was referred to as time point 1 (Tp1), the organoid derived from the first tumor as Tp2, 

and the organoid derived from the second tumor as Tp3. Cell populations from each organoid 

were classified into three groups based on the expression levels of a group of marker genes: 

AntiEpi, cGMP/GC, and Dormant (Ono et al., 2021). AntiEpi represents an ancestral type 

persisting throughout cancer evolution (Tp1 to Tp3), while cGMP/GC and Dormant-types are 

newly emerged populations after Tp1. Human colorectal cancers with expression patterns 

resembling cGMP/GC and Dormant were associated with distant metastasis (Ono et al., 2021). 

We examined the expression levels of the three types at Tp2 or Tp3 compared to AntiEpi at Tp1 

and compared the ORF dominance distribution of transcripts with more than a two-fold increase 

in expression levels to those with no expression change (Figure 6A). No significant difference 

was observed at the bulk level (Figure 6A, top), but elevated ORF dominance was observed in 

the newly emerged populations at Tp2 (Figure 6A, left). Specifically, cGMP/GC showed elevated 

ORF dominance in both coding and noncoding transcripts, while Dormant-type showed higher 

ORF dominance only in coding transcripts. At Tp3, even AntiEpi showed higher ORF dominance 

in both coding and noncoding transcripts compared to Tp1 (Figure 6A, right). These results 

suggest that an increase in ORF dominance occurs in newly emerged cell populations (cGMP/GC 

and Dormant) followed by an increase in ORF dominance in pre-existing cell populations 

(AntiEpi). Human colorectal cancers were classified into three subgroups (Ono et al., 2021), and 
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we calculated the ORF dominance of transcripts with increased expression in the cGMP/GC or 

Dormant subgroups compared to the AntiEpi subgroup (Figure 6B). ORF dominance of coding 

transcripts was elevated in the cGMP/GC or Dormant subgroups, while no significant differences 

were observed in noncoding transcripts. Therefore, consistent with the mouse model, an elevation 

in ORF dominance was observed in the metastatic subgroups (cGMP/GC and Dormant) of human 

colorectal cancers. 

 

To investigate the relationship between ORF dominance and cancer progression, we calculated 

ORF dominance based on TNM classification (Table S16). We determined the ORF dominance 

of transcripts with increased expression levels in late stages (T1,2 vs T3,4; N0 vs N1, 2; M0 vs 

M1) within the three subgroups (Figure 7). Similar to the mouse model (Figure 6A), a prominent 

elevation in ORF dominance of noncoding transcripts was observed only in the cGMP/GC 

subtype at late stages of T and N. In contrast, the peaks of the ORF dominance distribution of 

coding transcripts shifted to lower values in AntiEpi and cGMP/GC at the late stages of T and N 

(Figure 7). Notably, no significant change in ORF dominance with cancer progression was 

detected in the Dormant subtype, which has the highest frequency of distant metastases (Ono et 

al., 2021). The ORF dominance distributions of coding transcripts remained unchanged in AntiEpi 

and cGMP/GC regardless of the presence of metastatic cancers. Transcript length remained 

largely unchanged during cancer progression, except for shorter noncoding and longer coding 

transcripts in the cGMP/GC subgroup at advanced stages of T and M, respectively (Figure S13). 

Based on these findings, we hypothesized that during cancer progression, there is an increase in 

ORF dominance in noncoding transcripts and a decrease in coding transcripts. These shifts in 

ORF dominance occur before the emergence of metastatic cancers without changes in transcript 

length. 
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To test this hypothesis, we analyzed transcriptome data from a mouse skin carcinogenesis model 

(Aoto et al., 2017) that enables the observation of multi-step carcinogenesis from papilloma to 

metastatic cancer. In this model, skin cancer was induced by treating mouse skin with DMBA 

(7,12-dimethylbenz(a)anthracene) and TPA (12-O-tetradecanoylphorbol-13-acetone). Coding 

transcripts from normal skin (NORM), papilloma (PAPI), carcinoma (CARC), and metastatic 

tumors (META) obtained from the same mice were analyzed. We calculated the ORF dominance 

of transcripts with more than a two-fold upregulation in expression at the PAPI, CARC, and 

META stages (Figure S14, left). ORF dominance was significantly elevated during tumor 

initiation (NORM→PAPI), and the peak of the ORF dominance distribution shifted to lower 

values during tumor promotion (PAPI→CARC), while the distribution remained largely 

unchanged during tumor progression (CARC→META). The distribution of transcript length 

showed no significant changes (Figure S14, right). 

 

Discussion 

In this study, we aimed to examine the role of ORF dominance in capturing the process of cancer 

evolution. In a previous report by Suenaga et al. (2022), we explored the association between 

ORF dominance calculated from transcriptome data of extant species and evolutionary 

phylogenetic trees. In this study, we compared ORF dominance between normal and cancerous 

tissues using publicly available patient-derived transcriptome data. We also investigated changes 

in ORF dominance during carcinogenesis and cancer progression using multiple mouse 

carcinogenesis models. 

 

Our findings revealed an overall increasing trend in ORF dominance during carcinogenesis for 
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both coding and noncoding transcripts (Figure 8). Gene ontology analysis of genes with elevated 

ORF dominance identified associations with the Golgi apparatus, endoplasmic reticulum, cell 

cycle, and mitosis. Conversely, decreased ORF dominance was associated with the mitochondrion, 

DNA damage, and DNA repair. Given that ORF dominance correlates with the translation 

frequency of ribosome-bound RNA, these fluctuations in gene translation likely contribute to 

carcinogenesis (Figure 8A). We observed high ORF dominance in noncoding RNAs that translate 

neoantigens, particularly with a peak around 0.25. Additionally, noncoding transcripts with 

increased expression in advanced human colorectal cancers exhibited a peak at 0.25 in ORF 

dominance. Therefore, noncoding RNAs with elevated ORF dominance could serve as promising 

candidates for RNA-based neoantigen translation and cancer immunotherapy in advanced cancers. 

Interestingly, elevations in ORF dominance were detected earlier in pancreatic organoids than in 

bile duct organoids. In mouse models of colorectal cancer and human colorectal cancers, elevated 

ORF dominance was associated with subgroups linked to metastasis (cGMP/GC and Dormant). 

These results suggest that increased ORF dominance may occur earlier in more aggressive cancer 

types or subtypes. 

 

Regarding overall transcriptome changes, approximately 50% of transcripts exhibited altered 

ORF dominance during carcinogenesis. This finding aligns with previous reports on transcript 

alterations such as alternative splicing and alternative polyadenylation, which are prevalent in 

cancer (Climente-González et al., 2017; Vitting-Seerup et al., 2017). Abnormalities in genome-

wide alternative polyadenylation in cancer have been reported to result in global 3'UTR 

shortening (Mayr et al., 2009; Mitschka et al., 2022; Desterro et al., 2020). The observed increase 

in ORF dominance in our mouse experiments, primarily driven by the shortening of sORF lengths, 

is consistent with the consequences of 3'UTR shortening. Moreover, the inactivation of DNA 
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repair genes through intron polyadenylation (Dubbury et al., 2018) is in line with our findings 

that reduced ORF dominance was associated with DNA damage and DNA repair, primarily due 

to pORF shortening. Therefore, ORF dominance serves as a useful indicator of RNA isoform 

changes during cancer evolution and provides insights into their impact on translation. 

 

Secondly, the elevation of ORF dominance during the oncogenic process was observed regardless 

of the presence of genetic mutations. Previous studies have attributed cancer-specific alternative 

splicing to dysregulated transcription rather than somatic mutations (Huang KK et al., 2021), and 

genetic mutations alone cannot explain splicing abnormalities (Kahraman et al., 2020), which 

aligns with our analysis using ORF dominance. Additionally, a previous report by Ono et al. 

(2021) suggested a decrease in the diversity of genomic mutations during Tp2 and Tp3 in a mouse 

colorectal cancer model, while the diversity of the transcriptome increased during the same time 

points. Although genetic mutations are major contributors to carcinogenesis, their contribution to 

changes in ORF dominance was not evident in our study. 

 

Lastly, contrasting carcinogenesis, a decrease in ORF dominance of coding RNAs was observed 

during cancer progression in a skin carcinogenesis model and in a human colorectal cancer 

subgroup (AntiEpi). Conversely, an increasing trend was detected for noncoding RNAs during 

cancer progression in human colorectal cancers. These changes occurred prior to distant 

metastasis. In other words, coding and noncoding RNAs exhibited diminishing molecular 

distinctions during cancer progression before the development of metastatic tumors, blurring the 

boundary between them (Figure 8B). In our analysis of biological evolution, we proposed that the 

blurring of the coding noncoding RNA boundary is associated with a decrease in effective 

population size and an increased risk of extinction, while also providing opportunities for the 
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emergence of new genes that enable species to adapt to new environments (Suenaga et al., 2022). 

The observation that the coding noncoding RNA boundary is also blurred during cancer 

progression suggests that the number of proliferative cancer cells (effective population size) in 

cancer tissue may decrease as cancer progresses before the development of metastatic tumors. 

This notion aligns with the fact that genes associated with the cell cycle and mitosis exhibited 

decreased ORF dominance in pancreatic cancer models (SC), and the Dormant subtype, 

characterized by low proliferative ability (low effective population size), demonstrated the highest 

metastatic potential with no significant changes in ORF dominance following its emergence. 

 

In summary, our study elucidated the significance of changes in ORF dominance during cancer 

evolution as follows: 

(1) ORF dominance undergoes extensive changes during carcinogenesis, influencing the 

translation efficiency and resulting in increased expression of oncogenes related to cell 

proliferation and decreased expression of genes involved in DNA damage response. 

(2) Changes in ORF dominance during the carcinogenic process are not primarily driven by 

genetic mutations, but rather by other mechanisms such as epigenetic and/or transcriptional 

alterations. 

(3) The boundary between coding and noncoding RNA becomes blurred prior to the development 

of metastatic tumors. 

However, our study did not demonstrate whether genes affected by changes in ORF dominance 

actually play a role in carcinogenesis and cancer progression, which is a question that needs to be 

addressed in future research. The upstream regulatory mechanisms governing alterations in ORF 

dominance remain unknown. Therefore, accumulating and analyzing experimental data using 

ORF dominance as a starting point will be crucial for a deeper understanding of carcinogenesis 
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and cancer progression. 
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Figure legends: 

Figure 1. Distribution of ORF dominance in cancer-specific transcripts across 24 cancer 

types. Comparison between cMDT and nMDT. (A) Distribution of ORF dominance in all 

transcripts expressed in 24 cancer types. Solid line represents cMDT, dashed line represents 

nMDT. (B) Distribution of ORF dominance in oncogenes and tumor suppressor genes. (C) 

Changes in ORF dominance in cMDT indicated by increased (red line) or decreased (blue line) 

values. P-value was determined using the Mann–Whitney U test (***: P < 0.001, **: P < 0.01, 

*: P < 0.05, NS: not significant). 

 

Figure 2. Shift in ORF dominance distributions during carcinogenesis. (A) Experimental 

protocols for genetic manipulation of mouse organoids. (B) Phase contrast images of mouse 

organoids and genomic PCR analysis focused on Kras and p53 loci. (C) Representative images 

of developed tumors and hematoxylin & eosin (H&E) staining. V: vehicle, Cre: mutation-induced 

organoid by Cre recombinase. SC1/2: Subcutaneous tumor-derived organoid. (D) ORF 

dominance distribution of transcripts based on LR-seq data. P-value was determined using the 

Mann–Whitney U test (***: P < 0.001, **: P < 0.01, *: P < 0.05, NS: not significant). 

 

Figure 3. Enhanced translation of Raly protein due to increased ORF dominance of Raly 

transcripts. (A) Structure of Raly gene (left). Isoforms expressed in indicated organoids, along 

with their corresponding ORF dominance and mRNA expression levels (right). Dot lines and 
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colored rectangles represent introns and exons, respectively. mRNA expression levels were 

assessed by SR-seq, and fold changes were calculated relative to the expression levels in V. (B) 

Western blotting showing expression levels of Raly protein in the indicated organoids. α-tubulin 

was used as a loading control. (C) Amount of Raly mRNA bound to ribosome complexes 

measured by RT-qPCR after AHARIBO. Values were normalized to ribosome RNA, Rn18s. (D) 

Amount of newly translated Raly protein analyzed by LC-MS after AHARIBO. Total protein 

amounts were normalized before AHARIBO, and relative protein levels were determined by LC-

MS. 

 

Figure 4. Shift in ORF dominance of RNAs bound to ribosome complexes in mouse 

cholangiocarcinoma organoids. (A) ORF dominance distributions of coding (left) and 

noncoding (right) transcripts bound to ribosome complexes (AHA) in mouse bile duct organoids. 

Bold and dotted lines indicate all RNAs detected in the organoids (bulk, same data as Figure 2D) 

and RNAs detected after AHARIBO (AHA), respectively. Statistical significance was determined 

using the Mann–Whitney U test (***: P < 0.001, NS: not significant). (B) Relative frequencies 

of transcript length (nucleotide) in coding (left) and noncoding (right) transcripts. (C) 

Relationship between transcript length and ORF dominance in coding (left) and noncoding (right) 

transcripts. P-value was determined using Student's t-test. 

 

Figure 5. Relationship between ORF dominance and translation in the mouse 

cholangiocarcinoma model. (A) Total numbers of coding transcripts with (+) or without (-) 

evidence of translation from a bona fide ORF in mouse bile duct organoids. P-value was 

determined using Fisher's exact test. (B) Linear relationship between ORF dominance and relative 

frequency of coding transcripts with evidence of translation from a bona fide ORF. P-value was 
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determined using Fisher's exact test (***: P < 0.001, *: P < 0.05, NS: not significant). (C) 

Translation level per gene in the indicated organoids. Statistical significance was determined 

using the Mann–Whitney U test. Violin plots were generated using PlotsOfData (Postma et al., 

2019). 

 

Figure 6. ORF dominance distribution in three subtypes of mouse and human colorectal 

cancers. (A) ORF dominance distributions of transcripts in mouse colorectal carcinoma model 

with increased (solid line) or unchanged (dashed line) expression in three subtypes at time points 

2 (left) or 3 (right), compared to Anti-epithelial subtype (AntiEpi) at time point 1. Bulk tissue data 

at time points 2 (top left) and 3 (top right) were compared to bulk data at time point 1. Tp: time 

point. (B) ORF dominance distribution of transcripts with increased (solid line) or unchanged 

expression in cGMP/GC (left) or Dormant (right) subgroups, compared to AntiEpi subgroup in 

human colorectal cancers. P-value was determined using the Mann–Whitney U test (***: P < 

0.001, **: P < 0.01, *: P < 0.05, NS: not significant). 

 

Figure 7. Relationship between ORF dominance distribution and TNM classification. ORF 

dominance distributions of transcripts with increased (solid line) or unchanged (dashed line) 

expression in late grades of T (top), N (middle), and M (bottom) in the three subgroups of human 

colorectal cancers. P-value was determined using the Mann–Whitney U test (***: P < 0.001, **: 

P < 0.01, *: P < 0.05, NS: not significant). 

 

Figure 8. Model illustrating the relationship between ORF dominance and cancer initiation 

and progression. (A) Global changes in ORF dominance (ORF-D) during carcinogenesis and 

associated gene functions. (B) Changes in ORF dominance during cancer initiation and 
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progression. 
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