

1 **Dynamic phytomeric growth contributes to local adaptation in**
2 **barley**

3 Yongyu Huang^{1*}, Andreas Maurer², Ricardo F. H. Giehl¹, Shuangshuang Zhao¹, Guy
4 Golan¹, Venkatasubbu Thirulogachandar^{1,3}, Guoliang Li¹, Yusheng Zhao¹, Corinna
5 Trautewig¹, Axel Himmelbach¹, Andreas Börner¹, Murukarthick Jayakodi¹, Nils
6 Stein^{1,4}, Martin Mascher^{1,5}, Klaus Pillen² & Thorsten Schnurbusch^{1,2}

7 ¹Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT
8 Gatersleben, 06466 Seeland, Germany.

9 ²Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of
10 Agricultural and Nutritional Sciences, 06120 Halle, Germany.

11 ³Present address: Institute for Plant Genetics, Cluster of Excellence on Plant Sciences
12 (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany.

13 ⁴Center for Integrated Breeding Research (CiBreed), Georg-August-University, Göttingen,
14 Germany.

15 ⁵German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig,
16 Germany.

17 *Correspondence: huang@ipk-gatersleben.de (Y.H.)

18 **ORICDS**

19 Yongyu Huang: 0000-0002-7476-1350

20 Andreas Maurer: 0000-0002-2916-7475

21 Ricardo F. H. Giehl: 0000-0003-1006-3163

22 Shuangshuang Zhao: 0000-0002-1842-8756

23 Guy Golan: 0000-0002-5255-393X

24 Venkatasubbu Thirulogachandar: 0000-0002-7814-5475

25 Guoliang Li: 0000-0002-1190-9725

26 Yusheng Zhao: 0000-0001-6783-5182

27 Corinna Trautewig:

28 Axel Himmelbach: 0000-0001-7338-0946

29 Andreas Börner: 0000-0003-3301-9026

30 Murukarthick Jayakodi: 0000-0003-2951-0541

31 Nils Stein: 0000-0003-3011-8731

32 Martin Mascher: 0000-0001-6373-6013

33 Klaus Pillen: 0000-0003-4646-6351

34 Thorsten Schnurbusch: 0000-0002-5267-0677

35 **Summary**

36 Vascular plants segment their body axis with iterative nodes of lateral branches and
37 internodes. Appropriate node initiation and internode elongation are fundamental to
38 plant fitness and crop yield formation; but how they are spatiotemporally coordinated
39 remains elusive. We show that in barley (*Hordeum vulgare* L.), selections under
40 domestication have extended the apical meristematic phase to promote node
41 initiation, but constrained subsequent internode elongation. In both vegetative and
42 reproductive axes, internode elongation displays a dynamic proximal – distal gradient,
43 and among subpopulations of domesticated barleys at the global range, node
44 initiation and proximal internode elongation are associated with latitudinal and
45 longitudinal gradients, respectively. Genetic and functional analysis suggest that, in
46 addition to their converging roles in node initiation, flowering time genes are
47 repurposed to specify the dynamic internode elongation. Our study provides an
48 integrated view of barley node initiation and internode elongation, and suggests that
49 plant architecture has to be recognized as dynamic phytomeric units in the context of
50 crop evolution.

51

52 **Keywords:** phytomers; architecture; barley; initiation; elongation; flowering time
53 genes; adaptation

54 **Introduction**

55 Plant architecture is the outcome of several successive developmental processes
56 that can be classified into two sequential and coordinated morphogenetic events:
57 organogenesis and extension¹. Organogenesis stems from the indeterminate, self-
58 renewing meristems (stem cells) that give rise to different types of lateral organs (e.g.,
59 leaves and flowers) and axillary bud(s), plus the subtending internodes. These apex-
60 derived organs form a functional unit, called phytomer² that iterates and extends itself
61 several rounds until the apex abscises/aborts (indeterminate growth) or terminates
62 into a specialized structure (determinate growth). Consequently, a plant's architecture
63 is a mosaic arrangement of different phytomers. Despite an individual's genetic
64 uniformity, these mosaic phytomers can adopt various shapes in response to
65 exogenous environmental constraints by, for example, altering the meristematic
66 determinacy or internode elongation^{3,4}. Studying plant architecture is therefore of
67 fundamental importance to understand plant developmental biology and
68 environmental adaptation.

69 Barley (*Hordeum vulgare* L.) is a diploid inbreeding species and can be considered
70 as a model of the *Triticeae* crops, including also wheat (*Triticum* sp.) and rye (*Secale*
71 *cereale* L.). Plant architecture of barley consists of a two-ranked (distichous)
72 arrangements of both leaves and floral organs (spikelets) on the alternate sides of
73 vegetative culms and the reproductive axis (rachis), respectively. In this context, the
74 barley's main body axis represents a simple and continuous segmentation of
75 phytomers wherein both vegetative and reproductive organs co-exist at the opposite
76 ends (Fig. 1a). As an economically important crop that is usually grown at a high-
77 planting density where canopy shade is prevalent (e.g., ~300 plants/m² in Europe),
78 genetic modification aiming at improving barley's plant architecture may need to be
79 implemented in the direction of high community uniformity with stable grain yield
80 formation⁵. Yet, individual yield maximization may sometimes conflict with community
81 performance^{6,7}, in particular, for less lodging-tolerant crops like barley⁸. Therefore, a
82 more fundamental understanding of how barley plant architecture is controlled is of
83 high agricultural relevance.

84 Signals orchestrating plant architecture appear to act on several phytohormones and
85 their cross-talks, among which gibberellin (GA) has a fundamental and essential role
86 for cell elongation^{3,9}. In particular, mutant alleles in the GA biosynthesis or signaling

87 pathways have been demonstrated to improve grain yield potential during the 'Green
88 Revolution' of wheat and rice (*Oryza sativa* L.) in the 1960s¹⁰. Other phytohormones
89 such as brassinosteroids (BRs), jasmonate (JA) and ethylene were also found to
90 modulate internode elongation via the GA pathway^{11,12,13,14,15}. However, GA by itself
91 is not essential for organogenesis¹⁶; instead, the florigen/antiflorigen, encoded by the
92 *FLOWERING LOCUS T (FT)/TERMINAL FLOWER 1 (TFL1)* family genes, are a key
93 determinant of organ number by modifying the phase durations and expression of
94 organ identity genes¹⁷. In barley, the activation of, e.g., *HvFT1* is modulated by
95 several endogenous and exogenous cues and their cross-talks, such as circadian
96 clock, photoperiod and temperature (i.e., vernalization)^{18,19,20,21,22}. Mutations in any of
97 these flowering time genes frequently result in changes of both vegetative and
98 reproductive phytomeric iterations²³, presumably via modulating meristematic
99 determinacy²⁴. In fact, floral induction is often coupled with an increase of GA
100 concentration in the vegetative apex; consequently, many flowering plants elongate
101 their internodes only after floral induction²⁵, suggesting a cooperative action of the
102 two hormonal systems [GA and (anti-) florigen] during morphogenesis. Still, how
103 phytomer initiation and elongation are coordinated during morphogenesis remains
104 less understood.

105 Here, we systemically investigated phytomer initiation and elongation by focusing on
106 node number and internode length from the vegetative culms and reproductive spikes
107 of barley (Supplementary Fig. S1). We used a series of wild barley (*Hordeum vulgare*
108 subsp. *spontaneum*) introgression lines (ILs) in the background of cv. Barke (an elite
109 two-rowed cultivar)²⁶, as well as a diversity panel of cultivated barleys (spring-type,
110 six-rowed, hereafter D6S) representing the three major global-wide subpopulations
111 relative to the center of barley origin (i.e., Eastern, Western and Ethiopian clades)²⁷
112 (Supplementary Table 1). The underlying assumption is that over thousands of years
113 of barley evolution, the spread and fixation of beneficial alleles may have enabled a
114 fine-tuning of barley plant architecture to better adapt to the local environments or
115 high-density agricultural practices. Our results suggest that the barley plant (entity) is
116 compartmentized into dynamic phytomeric units, with distinct flowering time genes
117 functionally repurposed to determine their initiation and/or elongation. We provide
118 evidence that proximal internode elongation, a previously underexplored functional
119 trait, is associated with both plant adaptation and reproductive efficiency (spikelet
120 survival).

121 **Results**

122 **A more compact inflorescence architecture under domestication**

123 We primarily focused on reproductive traits in an initial survey for phenotypic diversity
124 in the 25 wild barley founder parents of the HEB-25 population²⁶ (Supplementary Fig.
125 2a,b). We found that all inflorescence meristems from wild barley spikes were
126 developmentally arrested and degenerated much earlier compared to cv. Barke;
127 consequently, wild barleys had both lowered potential rachis node number (PRN) at
128 the maximum yield potential stage²⁸ and lowered final rachis node number (FRN) at
129 the anthesis stage. Notably, spike length (SL) was largely unchanged, consequently,
130 wild barleys had longer rachis internode length (RIL) than cv. Barke. We conclude
131 that evolution under domestication may have overall extended the apical
132 meristematic phase to promote node initiation, but compromised the subsequent
133 internode elongation, resulting in a more compact inflorescence architecture. To
134 further uncover the genetic underpinnings of these events, we selected four sub-
135 families comprising 247 introgression lines (ILs) based on both the phenotypic and
136 genotypic diversity of the wild barley gene pool (Supplementary Fig. 2c).

137 **An oscillatory pattern of internode elongation**

138 Barley culm internodes elongate successively in an acropetal direction, with the distal
139 one (peduncle) being the shortest during spikelet differentiation stages, but becoming
140 the longest after anthesis^{3,12}. The initial assumption was that without exogenous
141 constraints, internode elongation would follow a linear pattern considering the
142 continuity of indeterminate growth¹. By measuring culm internode length of ~1,260
143 plants from the selected 247 ILs (~5 replicates per genotype) at the anthesis stage,
144 we found that internode length showed a oscillating decline from distal to proximal
145 ends of the main axis. The overall pattern, however, did not follow a purely linear
146 function, but rather displayed an ‘inverse-S’ curve that could be better explained by a
147 nonlinear cubic function (Fig. 1b and Supplementary Fig. 3a-c). Accordingly, culm
148 internode elongation could be broadly trisected into distal, central and proximal
149 compartments. Further examinations of ~1,025 plants (~4 replicates per genotype)
150 from the D6S panel demonstrated an overall conserved oscillatory pattern, but with
151 distinct proximal – distal amplitudes intersecting at the central zone of the culm. The
152 wild barley ILs tended to have longer internodes towards the distal end, and shorter

153 internodes towards the proximal end compared to the D6S counterparts, and this
154 pattern is independent of the total node number.

155 Interestingly, based on the measurement of 25 individual spikes from the wild barley
156 ILs, we could also observe an oscillatory elongation pattern for the rachis internodes,
157 but with distinct distributive amplitudes compared to the vegetative culms (Fig. 1c).
158 Collectively, our in-depth phenotypic observations uncovered a previously
159 unrecognized oscillatory pattern for internode elongation, and suggest that culm
160 growth is compartmentalized.

161 **Phytomer initiation and elongation are highly related**

162 We next examined the relationship between phytomer initiation and elongation. The
163 underlying assumption was that morphogenesis (e.g., the establishment of a
164 phytomer) is composed of hierarchical and sequential developmental cascades,
165 wherein functions of initiation genes can influence the later differentiation and
166 elongation^{29,30,31}. In the barley inflorescence, spikelet (rachis node) initiation and its
167 subsequent growth are molecularly decoupled due to pre-anthesis tip
168 degeneration^{23,32}, we therefore used PRN as a quantitative readout of reproductive
169 node initiation. We estimated the oscillation amplitude (AMP) for culm internodes by
170 considering the deviation of the observed culm length from the expected linear
171 pattern (Methods and Supplementary Fig. 3d,e). Moreover, to better account for
172 differences in node number among accessions, we harmonized each accession by
173 trisecting its culm while applying a moving average strategy to estimate the average
174 lengths of distal (DIL), central (CIL) and proximal (PIL) internodes (Methods and
175 Supplementary Fig. 4). Other phenotypic details were summarized in Supplementary
176 Fig. 1. In total, 14 traits representing node initiation and internode elongation were
177 used, which showed a high repeatability ranging from 0.65 to 0.97, and a broad
178 phenotypic variation (Supplementary Fig. 5, Supplementary Table 1 and 2).

179 Based on a principal component analysis (PCA) in the ILs, node number and
180 internode length associated traits were largely separated by PC1 (40.2%), suggesting
181 that plants with more nodes tended to have shorter internodes and *vice versa* (Fig.
182 1d). Indeed, a strong and negative correlation between node number and internode
183 length was observed for both culms ($R^2 = 0.34$) and spikes ($R^2 = 0.32$). PCA also
184 indicated a high correlation between the growth of vegetative and reproductive
185 phytomers. For example, internode length ($R^2 = 0.23$) and node number ($R^2 = 0.31$)

186 in the culm and the spike were positively correlated (Supplementary Fig. 6a-d). AMP
187 together with several internode length-related traits, further occupied the PC2 axis,
188 which could explain 22.2% of the trait variations. A correlation analysis revealed that
189 only distal internodes (i.e., peduncle and DIL) were significantly correlated with AMP,
190 but not the central or proximal counterparts, indicating that a disproportional
191 elongation of the peduncle might contribute to higher AMP. Indeed, we found that
192 internode lengths were spatially correlated, and that elongation of distal internodes
193 appeared to be largely independent from their proximal counterparts (Supplementary
194 Fig. 6e), revealing a high degree of independency for distal and proximal internode
195 elongation. Finally, peduncle diameter (PD), the outcome of horizontal internode
196 expansion, showed high positive loading on PC1 that was opposite to internode
197 length, indicating an opposing regulation of vertical and horizontal growth.

198 Because plant height (total culm length, or TIL) is determined by both node number
199 (INN) and internode length, we assessed the relative contribution of INN and each
200 length component (DIL, CIL, PIL) to TIL (Fig. 1e). Using a multiple linear regression,
201 we found that INN, DIL, CIL and PIL together could explain ~90% ($R^2 = 92.6\%$ in the
202 D6S and 89.1% in the ILs) of TIL variation. While INN's contribution to TIL remained
203 similar in both populations, the relative contribution of each length component varied:
204 from the ILs to the D6S, we observed a decline from 41.9% to 21.0% for DIL, and an
205 increase from 3.2% to 21.8% for PIL. Considering the counteracting relationship
206 between node initiation and internode elongation, this result provided evidence that
207 barely can dynamically adjust the growth (both initiation and elongation) of different
208 phytomeric units to stabilize the overall plant height.

209 **Evolutionary and genetic basis of node initiation and internode 210 elongation**

211 We sequenced (3 – 50 fold coverages) the genomes of the D6S population and
212 obtained 22,405,297 bi-allelic SNPs (minor allele frequency $\geq 5\%$), which then
213 clustered the D6S into the three well-defined subpopulations²⁷ (hereafter Eastern,
214 Western and Ethiopian barleys) (Methods and Fig. 2a,b). A pairwise comparison of
215 the phenotypes among the three subpopulations demonstrated an overall
216 geographical relevance for the traits assayed (Fig. 2c,d). For example, a latitudinal
217 cline of phytomeric initiation traits (INN and PRN) was observed from the
218 comparisons of Ethiopian barleys with the other two subpopulations, which was likely

219 due to a slight delay in flowering time of Ethiopian barleys under the greenhouse
220 condition. Furthermore, Ethiopian barleys had longer distal internodes (DIL and PL)
221 and higher final spikelet number (FRN) compared with the other two subpopulations.
222 In contrast, the trans-Eurasian comparison (Eastern vs. Western) revealed that, DTH,
223 INN, PRN, as well as DIL and PL, were not significantly different; instead, major
224 difference was observed for PIL, AMP and PD. That said, compared to Western
225 barleys, Eastern barleys had a ‘dwarf and sturdy’ plant architecture due to
226 suppressed proximal internode elongation. Importantly, among the vegetative culm
227 variables, PIL was negatively correlated ($r = -0.31$, $P=4.24\times10^{-7}$) with spikelet survival,
228 a key reproductive trait that is indicative of grain yielding efficiency^{23,33,34,35}
229 (Supplementary Fig. 7). Finally, using a P_{ST} - F_{ST} comparison strategy³⁶ (Methods), we
230 found that the observed morphological differences among different subpopulations
231 were too large to be explained by random genetic drift ($P_{ST}>>F_{ST}$) (Fig 2c, right),
232 suggesting that selections drove the observed morphological divergences, and thus
233 favored local adaptation.

234 We next sought to understand the genetic basis of these 14 traits by performing a
235 genome-wide association study (GWAS) (Supplementary Table 3 - 5). For the wild
236 barley ILs, we detected 90 QTLs ($P \leq 1e^{-3}$), which explained 5.8 – 52.3% of the
237 phenotypic variances, with wild barley alleles overall reducing node number, but
238 promoting internode elongation in the cv. Barke background (Supplementary Fig. 8).
239 For the D6S panel, we detected 30,363 marker-trait association events ($P \leq 1e^{-5}$),
240 and further clumped them into 468 chromosomal regions ranging from ~10-kb to ~10-
241 Mb with a median of ~2.6-Mb encompassing 2,560 high-confidence genes. Plotting
242 the QTLs from both populations (D6S and ILs) onto the barley chromosomes showed
243 that, their genomic distributions appeared to have high degree of proximity (or
244 overlap), which were preferentially distributed towards the distal ends of each
245 chromosome (Fig. 3a). GO enrichment analysis of the 2,560 genes identified in the
246 D6S indicated that they were mainly involved in biological processes such as
247 photoperiodism, response to cold, hypersensitive response, and GA homeostasis
248 that could be modulated by flowering time genes (Supplementary Fig. 9,
249 Supplementary Table 6). To interrogate this, we conducted a gene-based analysis by
250 focusing on a list of putative flowering time genes according to studies with
251 *Arabidopsis* (268 in total, including several well-known genes highlighted in Fig. 3a,

252 **Methods**). Based on a lambda (λ) analysis³⁷, we found that SNPs located within 200-
253 kb of these genes tended to have higher level of significance for the two initiation
254 traits INN and PRN compared to genome-wide random SNPs (Fig. 3b), confirming
255 the converging roles of flowering time genes in meristematic determinacy and
256 phytomeric iterations^{23,24}. Interestingly, DTH *per se* was not the most significantly
257 associated trait by the variations of flowering time genes; instead, several elongation-
258 related traits including AMP, CIL and PIL, tended to have greater reductions in the *p*-
259 values (Fig. 3b). Because PIL was insignificantly correlated with DTH (Supplementary
260 Fig. 7b, right), these results suggested that flowering time genes could have broader
261 biological relevance for phenotypic variations in internode elongation (e.g., PIL and
262 CIL), which we propose as a functional repurposing (or adopted for a different
263 purpose other than DTH, see below) (Fig. 3c).

264 Finally, we found that Ethiopian barleys had a relative higher genetic diversity (π) of
265 flowering time genes than the genome-wide background, whereas Eastern barleys
266 showed the opposite trend (Fig. 3d). This result confirmed the contribution of
267 flowering time gene variations in range-wide geographical adaptation³⁸, and
268 suggested a different selective strength of these genes presumably due to
269 contrasting environmental variables (i.e., photoperiod and temperature) across the
270 broad geographical space.

271 In summary, our genetic analysis identified *a priori* candidates underpinning barley
272 architectural adaptation. Below we detailed three examples to demonstrate an
273 uncoupled relationship for phytomer initiation and elongation: one for node initiation
274 detected in the D6S, one for internode elongation detected in both populations, and
275 the last one for both initiation and elongation detected in the ILs.

276 **A single amino acid substitution in HvELF3 promotes node initiation 277 during the northward dispersal of barley**

278 One locus on chr1H detected in the D6S panel was found to be highly associated
279 with PRN ($P = 6.61 \times 10^{-7}$) and DTH ($P = 4.03 \times 10^{-9}$), marginally associated with INN
280 ($P = 5.98 \times 10^{-6}$), but insignificantly associated with elongation-related traits (Fig. 4a-c).
281 Plants with the minor allele (see below) at this locus were taller than those with the
282 major allele due to more INN (Supplementary Fig. 10a). This locus contained the
283 barley *EARLY FLOWERING3* (*HvELF3*) gene, which encodes a component of the
284 circadian clock acting as a DTH repressor^{18,19,21}. Previous results indicated that

285 *HvELF3* reduced function mutations accelerated reproductive transition, and
286 facilitated short-season adaptation in 2-rowed spring barleys^{19,21}. However, analysis
287 of the sequence variation at *HvELF3* from the D6S revealed that the GWAS hit was
288 not caused by any of the induced mutations reported previously. Instead, we found a
289 non-synonymous SNP from the top SNPs, resulting in an amino acid substitution
290 from Glycine (G) to Tryptophan (W) at position 669 closed to the C-terminus (here
291 after G669W) (Fig. 4b). This substitution appeared to be located in a putative prion-
292 like domain (PrD) previously found to be essential for thermal responsiveness in
293 *Arabidopsis*, and ELF3 variants lacking the PrD domain showed a constitutively
294 repression of flowering³⁹. We found that W669-type had a narrower PrD domain than
295 the G669-type based on a silico prediction⁴⁰ (Supplementary Fig. 10b), and
296 consistently, W669-type plants showed delayed DTH, more PRN and INN compared
297 to those with G669-type (Fig. 4c), suggesting that W669 is a gain-of-function
298 mutation. To test this, we introduced either *HvELF3*^{G669} or *HvELF3*^{W669} in the
299 *Arabidopsis* *elf3-1* mutant³⁹. We found that both variants could complement the *elf3-1*
300 mutant phenotypes in terms of leaf number and flowering time at both 22°C and 27°C
301 growth conditions (Fig. 4d and Supplementary Fig. 10c). Although no significant
302 Genotype-by-Environment interaction was observed (ANOVA, $P = 0.24$), *HvELF3*^{W669}
303 transformed plants tended to have better complementation than that of *HvELF3*^{G669}.
304 While other factors may influence the thermal responsiveness, our cross-species
305 complementation data supported G669W as a functional variation.

306 The G-variant at ELF3 appeared to be restricted to plant species inhabiting at colder
307 climates (Supplementary Fig. 10b). Importantly, we found that the W669 allele was
308 almost absent from wild barleys (1 out of 100)⁴¹, but had been emerged at higher
309 frequency along with the increase of latitude (northward expansion), in particular, in
310 winter barleys (Fig. 4e), suggesting that W669, which delayed reproductive transition,
311 may facilitate winter survival during northward expanding. Affirming this, wild barley
312 ELF3 alleles (G669-type) accelerate plant development^{42,43}. We extended our
313 analysis to the whole IPK barley Genebank, whose diversity space could be best
314 represented by the first two axes of a PCA corresponding to longitudinal (PC1:
315 Eastern versus Western) and latitudinal (PC2: Ethiopian versus others) gradients,
316 respectively²⁷. We found that the G669W variant was highly correlated with the PC2
317 eigenvalue, but not that of PC1 (Fig. 4f and Supplementary Fig. 10d), supporting an
318 important role of *HvELF3* G669W variation for latitudinal adaptation. Collectively, our

319 results indicate that HvELF3 G669W extended the barley phenology (seasonal timing
320 of the lifecycle) to facilitate more phytomeric iterations, and suggest an uncoupled
321 regulation for internode elongation and node initiation/flowering time.

322 **A super-locus with divergent haplotypes that cumulatively compact plant
323 architecture during the eastward dispersal of barley**

324 We next focused on a large genomic segment encompassing ~100-Mb mainly
325 associated with internode elongation, such as rachis (in both populations) and culm
326 (in D6S) (Fig. 5a). Multiple physically close peaks (P1 – P5) appeared in this large
327 segment, and notably, peaks for culm DIL, CIL and PIL recapitulated their spatial
328 relationships. For example, shared peaks were detected for DIL – CIL (P2) and CIL –
329 PIL (P5), but not for DIL – PIL. In addition, we also detected both PIL- and CIL-
330 specific peaks, the later was co-localized with *HvAPETALA2* (*HvAP2*), a gene known
331 for controlling both rachis and culm internode length^{12,44} and was coincided with the
332 P4 region detected in the ILs. A previous study suggested that variations in *HvAP2*'s
333 *microRNA172* (*miR172*) binding site resulted in lower *HvAP2* expression and shorter
334 internode length. However, no sequence variations within the *miR172* region were
335 found from the founder parents of the wild barley ILs, nor did any of the GWAS peaks
336 can be tagged by the *miR172* variations. We speculated that *HvAP2* was unlikely the
337 only causal gene. Indeed, we detected at least eight independent linkage
338 disequilibrium (LD) blocks ($r^2 \geq 0.4$) within this region in the D6S, including the five
339 shared peaks (P1-P5) (Fig. 5a, bottom). Importantly, we were able to identify diverse
340 allelic combinations in both the wild barley ILs and the D6S, which when more alleles
341 were stacked, showed an additive increase of rachis internode length (RIL) in the wild
342 barley ILs, but an additive decrease of internode length in the D6S (Fig. 5b,c); the
343 additive effect was not observed for initiation traits (Supplementary Fig. 11). This
344 result indicated that multiple independent causal genes for internode elongation were
345 present within the segment, and that domesticated and wild barley alleles likely
346 represented different functional status. Consistently, analysis of the allele frequency
347 based on the GWAS peak SNPs in each of the five blocks showed that the minor
348 alleles were almost exclusively from wild barleys and were preferentially distributed in
349 Eastern barleys (Fig. 5d). We observed a relatively high haplotype diversity across
350 the interval in the domesticated barleys compared to the wild barleys (Fig. 5e),
351 making it difficult to exclude any significant SNPs as tags of other contributing
352 variants. Thus, we postulate that this ~100-Mb genomic segment is a super-locus

353 that contained multiple independent functional haplotypes (including *HvAP2*)
354 attributing to the mosaic introgression blocks, which cumulatively compacted plant
355 architecture of Eastern domesticated barleys.

356 Because GA is known to determine internode elongation in a dosage dependent
357 manner, which would fit an additive mode of action observed above^{16,18,45}, we
358 searched for genes related to GA metabolisms within the interval as *a priori*
359 candidates. We found at least six candidates (Fig. 5a), including one encoding for
360 GA2ox8 homologue in the P1 region, and five for *ent*-kaurene synthases (KSs)
361 participating in the GA biosynthetic pathway⁴⁶ in the P2 region (Supplementary Fig.
362 12). All of these candidate genes were found to carry either non-synonymous or
363 nonsense mutations specific to Eastern barleys. Similarly, we found Eastern barley-
364 specific mutations in the *HvAP2* gene, suggesting that mutations outside the *miR172*
365 binding site of *HvAP2* could have functional consequence. Taken together, our
366 genetic studies revealed that internode elongation is largely regulated by additive
367 genetic pathways presumably via modulating GA homeostasis; they further
368 showcased multi-functional haplotypes in one super-locus cumulatively contributing
369 to quantitative trait variation, which may have implications for other GWAS – causal
370 gene studies.

371 **The PPD-H1 – SDW1 regulatory module coordinates node initiation and
372 internode elongation**

373 Our last example focused on two loci with large effects detected in the wild barley ILs:
374 one for both node initiation and internode elongation, and was coincided with the
375 *PPD-H1* gene on chr2H; the other on chr3H specifically for internode length, and was
376 coincided with *SDW1* encoding a GA20ox2 involved in gibberellin (GA) biosynthesis
377 (Fig. 6a). When using the above-mentioned PCA loadings (PC1 and PC2) as trait
378 variables, these two loci together explained 71.9% of PC1 variation and 54% of PC2
379 variation (Supplementary Fig. 13a). Both *PPD-H1* and *SDW1* were supposed to be
380 non-functional (or reduced functional) in cv. Barke, but fully functional in all the four
381 wild barleys based on the functional mutations reported previously^{20,47,48}. Intriguingly,
382 we observed a cumulative shift of the main effects for the two loci on the spatial culm
383 internode elongation (Fig. 6a). For example, wild barley *SDW1* alleles had a major
384 effect on DIL, but *PPD-H1* became the dominant one for PIL variation. Importantly,
385 both loci showed a synergistic epistasis interaction for PIL, and additive effect for RIL

386 or DTH reported previously (Fig. 6b)²⁶. The spatial effects on internode elongation for
387 this two loci also applied to the rachises, as functional alleles at both loci promoted
388 longer central-proximal rachis internodes (Supplementary Fig. 13b).

389 Our genetic analysis also revealed that both *PPD-H1* and *SDW1* loci were
390 significantly associated with AMP, but with opposite effects. Consequently, stacking
391 both loci offset each other's effect on AMP (Fig. 6b). Because distal and proximal
392 internode elongations were oppositely associated with AMP during flowering
393 (Supplementary Fig. 6e), we hypothesized that proximal internode elongation
394 modulated by PPD-H1 may balance the distal counterparts, resulting in a plant
395 architecture with more evenly spaced nodes and internodes. To further interrogate
396 this, we compared the phenotypes of a *PPD-H1* near isogenic line (BW281; carrying
397 the photoperiod sensitive, functional *PPD-H1* allele) and the wild-type control
398 (Bowman, hereafter BW). Under long-day conditions (16h of light), BW281 overall
399 had shorter plants and spikes mainly due to a severe reduction of phytomer number.
400 However, further measurements for each of the internodes demonstrated that
401 internode length was increased in BW281, in particular, from the proximal ends.
402 Importantly, differences for node initiation and internode elongation among BW281
403 and BW became insignificant while shortening the day-length (Fig. 7a,b and
404 Supplementary Fig. 13c), suggesting that functional PPD-H1 (BW281) could integrate
405 photoperiod signals to coordinate both node initiation and internode elongation (in
406 particular, the proximal internodes).

407 The additive or synergistic (i.e., for proximal internodes) genetic relationship between
408 *PPD-H1* and *SDW1* may suggest a molecular interaction of both genes for internode
409 elongation. Indeed, analysis of transcriptomic data generated from developing spikes
410 of cv. Scarlett and S42-IL107 (a Scarlett NIL carrying the photoperiod sensitive *PPD-*
411 *H1* allele)⁴⁹ revealed that PPD-H1 positively regulated *SDW1* gene expression in a
412 photoperiod-dependent manner (Fig. 7c, left), and likewise, S42-IL107 produced
413 longer rachis internodes than Scarlett (Supplementary Fig. 13b). Moreover, we found
414 that *SDW1* was highly co-expressed with *PPD-H1* in more diverse tissue types
415 comprising a broad range of spike developmental stages⁵⁰ (Fig. 7c and
416 Supplementary Fig. 14a). Interestingly, *SDW1* was found to be more highly
417 expressed in the central sections of developing spikes in both BW and *tip sterile 2.b*
418 (*tst2.b*), a mutant with premature rachis internode elongation²³. A similar gene

419 expression pattern for *PPD-H1*, however, was only observed in *tst2.b*, which was
420 consistent with the rachis internode elongation patterns along the spike
421 ([Supplementary Fig. 14b,c](#)). We previously showed that *PPD-H1* mRNA was
422 detected in the inflorescence vasculature during spike development²³. Importantly,
423 *SDW1* mRNA *in-situ* signals were also detected in inflorescence vasculatures and
424 rachis internodes ([Fig. 7d](#)), which was consistent with its function in rachis elongation.
425 We then tested whether *PPD-H1* may regulate *SDW1* expression via interacting with
426 *SDW1*'s regulatory regions. Analysis of chromatin accessibility in *SDW1* revealed
427 several accessible regions that could potentially be the binding targets of upstream
428 transcription factors ([Supplementary Fig. 15](#)). In a dual luciferase (LUC) assay, we
429 observed a ~2 folds increase of the LUC activity from the co-incubations of *PPD-H1*
430 with the distal region and the promoter, in respect to those from *ppd-H1*, albeit the
431 distal region being less transcriptionally active ([Fig. 7e](#)), indicating a transcriptional
432 activation of *SDW1* by *PPD-H1* during internode elongation.

433 Altogether, these results demonstrate that the phytomer initiation gene *PPD-H1* is
434 repurposed to regulate internode elongation via the GA pathway acting through the
435 vasculature. This may have broad implications in plant architectural redesign for
436 proximal culm internodes and spike compactness.

437 **Discussion**

438 In this study, we systematically investigated phytomer initiation and elongation
439 patterns and their genetic underpinnings, and made three fundamental discoveries:

440 First, compared with rice and maize, inflorescences of domesticated barleys are
441 simplified spike-type inflorescences remarkably resembling their wild progenitor^{51,52}.
442 We found that one key syndrome under domestication is the extension of the apex
443 meristematic phase (indeterminate growth), resulting in more phytomer iterations
444 ([Supplementary Fig. 2](#)). This process is coupled with a proportional restriction of the
445 subsequent internode elongation, which is aligned with the general tendency of corps
446 to have more compact stature with more floral organs compared to their wild
447 progenitors¹⁶.

448 Second, we showed that phytomer elongation is an oscillatory process and is
449 spatially partitioned into distal, central and proximal compartments. This represents a
450 marked advance from previous work, because we are able to define an

451 underexplored, functional and pillar feature of internode elongation beneath the
452 canopy, whose genetic underpinnings and biological implications are different
453 compared to the distal counterparts (i.e., peduncle). Importantly, this proximal
454 internode growth has undergone a directional selection during barley adaptation. It
455 can be postulated that a similar lengthening rule may apply to other cereal crops,
456 such as wheat and rye, considering the overall conserved phenology of these
457 species⁵³.

458 Third, our genetic analysis pointed to a functional repurposing of flowering time
459 genes for internode elongation. This is because the architecture of all cereal crops,
460 including barley studied here, are segmented into functional phytomeric units. That
461 current floral induction model of mobile signals from leaf to shoot apex is not
462 sufficient to explain the dynamic patterns of different phytomeric elongations, which
463 usually take place after the floral induction. In fact, throughout the lifecycle, many
464 traits such as seed size, that without having direct contacts with the floral induction
465 window, can still be photoperiodically controlled via flowering time gene^{54,55}. The
466 current genetic studies may thus allow a deeper understanding of the dynamic
467 growth strategies in cereal crops.

468 **Proximal internode as an underexplored functional trait**

469 Architecturally, height increase may confer fitness advantages under natural
470 conditions, such as benefiting pollinations and outcompeting neighbors for light,
471 which is largely achieved through the flowering induced elongation of distal
472 internodes (i.e., peduncle)³. However, under the monoculture farming environment,
473 plant cultivation is usually driven towards the direction of community uniformity and
474 stable yield formation⁷. This would require plants to be able to stabilize their growth in
475 response to the heterogeneous environment at different growth stages. For example,
476 during the pre-anthesis spikelet initiation/differentiation stages, stem elongation
477 usually starts at the proximal internodes instead of the distal counterparts. At this
478 particular developmental window, proximal internodes are spatiotemporally proximate
479 to many unique stress regimes beneath the canopy layer, such as light (discussed
480 below), temperature and moisture. In this context, appropriate switching down of the
481 environmental response machinery, thereby dampening plants' growth plasticity, may
482 benefit community performance. In particular, shorter proximal internode is
483 associated with higher spikelet survival (Supplementary Fig. 7), and because longer

484 internodes would mean extra inputs³, it can be speculated that the shortening of the
485 proximal internodes may enable more resource reallocation to the developing spikes,
486 thereby improving spikelet survival. Another implication for proper proximal internode
487 elongation is its direct relevance to lodging because the bending and breaking of the
488 stems usually takes place near the ground level, and longer internode is considered
489 to be unfavorable for lodging resistance. Since lodging remains a common problem in
490 barley compared to rice and wheat cultivars⁸. Our work may therefore provide a
491 conceptual framework to enhance the genetic gains of proximal internode growth for
492 a sustainable grain yield.

493 **Light regime as a driving force for dynamic vertical growth**

494 The vertical growth portioning of the internodes immediately suggests light regimes
495 (e.g., red/far-red, R/FR, light ratio) as possible driving forces for selection considering
496 the light gradient at different canopy layers⁵⁶. This is aligned to recent findings
497 demonstrating that increasing canopy light transmission can shorten the proximal –
498 central internodes in both rice and wheat^{57,58}. Indeed, vertical light gradient had
499 already been established at the tillering/elongation stages, and became more evident
500 at the anthesis stage under the greenhouse conditions (Supplementary Fig. 16). In
501 fact, barley PHYTOCHROMES (PhyA – C) homologs were amongst the candidate list
502 for different internode elongations in the present study (Fig. 3, i.e., PhyA for AMP on
503 4HS; PhyB for CIL/PIL on 4HL and PhyC for CIL on 5HL). Other photoreceptor genes,
504 including CRYPTOCHROME1 (CRY1), were also found to be within the QTL region
505 for DIL and PL on 2HL. Light perceived by these photoreceptors can induce a series
506 of physiological changes, e.g. the endogenous clock synchronization and
507 photoperiod responses⁵⁹. One scenario is that different internodes may have to
508 synchronize their own clock period to match to the vertical dynamic light gradient,
509 resulting in the oscillatory elongation of internodes. This is aligned to a recent finding
510 that different field microenvironments due to self-shading can lead to an adjustment
511 of the endogenous clock from different leaves, thereby impacting agronomic
512 performance⁶⁰. In this context, the shorter proximal internodes observed in Eastern
513 barleys (many are naked barleys from the Tibetan Plateau) could be due to a local
514 adaptation to the high solar radiation such as seen in the Tibetan Plateau⁶¹, during
515 which the photoperiodic response machinery has to be switched down⁶². Consistent
516 with this view, our data also suggested that photoperiod insensitivity is coupled with
517 shorter proximal culm internode. The fact that flowering time is insignificantly different

518 between the Eastern and Western barleys under our greenhouse conditions (long-
519 day), may further suggest that the photoperiodic control of internode elongation can
520 be uncoupled from flowering time variation, which is aligned to a recent research in
521 rice demonstrating that photoperiodic response and GA-dependent internode
522 elongation can be uncoupled⁶³. In this scenario, the barley flowering time gene *PPD-*
523 *H1* is repurposed to determine proximal internode elongation via (in part) *SDW1*
524 mediated GA pathway.

525 **Balancing the phytomer initiation and elongation trade-off to optimize
526 height**

527 Plant height is polygenically controlled in many cereal crop species^{64,65,66,67,68}. It is
528 unclear, however, to what extents these height-related QTLs can be explained by the
529 initiation and elongation processes. In the present study using barley as a model, it is
530 shown that initiation (number) and elongation (length) could each explain ~40% and
531 ~50% of height variation, respectively. Given the trade-off relationship of initiation and
532 elongation (Fig. 1d), we argue that by measuring the overall adult plant entity as the
533 quantitative readout, it may not be sufficient to recapitulate the whole developmental
534 consequences. Affirming this argument is that the *PPD-H1* gene, which was found to
535 be negatively associated with plant height (TIL) in the present study and in a previous
536 study in wheat⁶⁹, is in fact a positive regulator of internode elongation (i.e., proximal
537 culm or rachis). Our trait-specific case studies of *HvELF3* (initiation) and the super-
538 locus (elongation) may introduce additional levels of complexity for height. While it
539 has been widely accepted that plant height is the outcome of GA level increases, the
540 increasing process can be dynamic. For example, in *Arabidopsis*, GA first acts
541 positively for floral induction, then negatively for inflorescence branching⁷⁰; similarly,
542 the GA signaling protein DELLA negatively controls meristem size independent of
543 height⁷¹. One legitimate thought is that GA levels need to be repeatedly reset
544 throughout the continuum of plant development, and the timing of this resetting is
545 maintained by the genetic hierarchy of flowering time genes. Thus, genetic
546 reshufflings of beneficial mutations, recurring over thousands of years of crop
547 evolution, have enable a dynamic adjustments of GA levels at different
548 developmental phases or phytomeric units, thereby balancing the initiation and
549 elongation trade-offs (Fig. 8).

550 In conclusion, our results demonstrate that segmented plants have developed the
551 capacity to heterochronically modify the growth of different functional units
552 (phytomers) during their lifecycles. We propose that plant architecture has to be
553 recognized as dynamic phytomeric units instead of a uniform entity, particularly when
554 studying how plants interact with the heterogeneous environments in the context of
555 crop evolution.

556 Materials and Methods

557 Plant materials, growth conditions and phenotyping

558 The 25 wild barley founder parents, together with the 247 wild barley introgression
559 lines, are from a previous research²⁶. Wild barley parents for the selected lines are
560 HID003, HID065, HID294, and HID359, respectively. The 358 six-rowed spring
561 barleys were selected from the Federal *Ex-situ* Gene Bank hosted at the Leibniz
562 Institute of Plant Genetics and Crop Plant Research (IPK)²⁷, which were described
563 elsewhere^{23,33}, and were supposed to carry functional *PPD-H1* allele based on the
564 SNP22 reported previously²⁰. *PPD-H1* sensitive lines (BW281) and S41-IL107 were
565 described previously⁷².

566 Phenotyping of the wild barley ILs and the D6S population was conducted under
567 controlled greenhouse conditions (photoperiod: 16h / 8h, light / dark; temperature: 20°C
568 / 16°C, light / dark) at winter season between 2019 and 2022 at the IPK. To
569 phenotype the full set of the D6S panel (358 lines) in a space-limited glasshouse
570 condition, we split the whole panel into two sequential experiments (exp#1, 128
571 accessions, started at December 2019; exp#2, 256 accessions, started at December
572 2020), with 25 accessions overlapped between each. We collected only the last two
573 internode length from exp#1, and all culm length data in exp#2. BLUEs and raw
574 phenotypic data of the wild barley ILs and the D6S were given at ([Supplementary](#)
575 [Table1](#) and [2](#)). Barley grains were germinated in a 96-well planting tray for 2 weeks,
576 vernalized at 4°C for four weeks, acclimatized at 15°C for a week, and finally
577 transplanted into 9 cm² square pots until maturity. To estimate the effects of different
578 photoperiods on plant development, barley grains were directly sown in 9 cm² square
579 pots in the growth chambers at three continuous photoperiods (8h, 12h and 16h;
580 temperature: 16°C / 12°C, light / dark).

581 We followed an alpha lattice design to control for possible environmental variabilities
582 in the greenhouse, such as different table edges and air conditioner positions. All
583 phenotypic data were collected from the main culm. 4 (D6S) or 5 (wild barley ILs)
584 replicates per genotype were collected. We examined the potential rachis node
585 number (PRN) according to²⁸, which was done under a stereo microscope
586 (AxioVision, SE64 Rel. 4.9.1). Final rachis node number (FRN) was counted at
587 anthesis stage. Length-related traits were directly measured with a ruler. Peduncle
588 diameter was measured with a digital caliper. Trait repeatability (W^2) was estimated

589 as $W^2 = \sigma_g^2 / (\sigma_g^2 + \sigma_\epsilon^2/n)$ where σ_g^2 is the genotypic variance estimated by ANOVA,
590 σ_ϵ^2 is the residual error variance, and n is the number of replicates per genotype. All
591 phenotypic analyses were done under R (R-3.6.1).

592 **Estimation of culm internode length variables**

593 The expression form of indeterminacy can be described as a continuous growth
594 process without constraints, which would expect the newly initiated phytomer to be a
595 simple carbon copy (e.g., length, diameter, biomass) of the previous one¹. Barley
596 shoot apex growth is indeterminate before the transition to the reproductive stage.
597 Thus, the underlying assumption is that the expected length of each culm internode
598 (\hat{L}_i) is linearly increased from the proximal ($i = 1$) to the distal ($i = n$) ends, which can
599 be expressed as $\hat{L}_i = a\hat{L}_{i-1} + b$. By estimating the degree of deviation (sum of
600 residuals) of the observed length (L_i) to the fitted expected length (\hat{L}_i)
601 ([Supplementary Fig. 3c](#)), culm internode length oscillation amplitude (AMP) can be
602 estimated as:

$$AMP = \frac{\sum_{i=1}^n |L_i - \hat{L}_i|}{TIL}$$

603 Where TIL is the total culm internode length, which was normalized to reduce the
604 effect of plant height (i.e., AMP can be independent of height).

605 Due to a variation of node number among lines, and even within the same line with
606 genetic uniformity, it is not applicable to estimate variations of every internode length.
607 It is also not comparable when considering only the few top/bottom internodes
608 because of the mismatched counterparts caused by node number variation (i.e.,
609 second internode is the central one from plants having 4 nodes, but it can be the
610 distal one from those having 8 or 9 nodes). However, based on the elongation
611 patterns in ([Fig. 1b](#) and [Supplementary Fig. 3](#)), it becomes clear that plants culm
612 elongation follows a trisection rule, regardless of the node number. This trisection
613 rule appears to divide the main culm into three compartments: distal, central and
614 proximal. To facilitate genetic studies, we therefore estimated the average length
615 from the distal (DIL), central (CIL) and proximal (PIL) internodes by using the moving
616 average strategy ([Supplementary Fig. 4](#)). To determine the relative attribution of each
617 height component (INN, DIL, CIL and PIL) to total culm length (TIL), we first fit a
618 multiple regression model as described in ([Fig. 1e](#)), and then performed the R^2

619 variance decomposition using the Lindeman, Merenda and Gold (lmg) relative
620 importance algorithm implemented in the relaimpo R package⁷³.

621 **Whole-genome resequencing, SNP calling and population structure**

622 High quality genomic DNA was isolated and used for library construction using the
623 Nextera DNA Flex library kit. Library preparation and whole-genome sequencing
624 using the Illumina NovaSeq 6000 device at IPK Gatersleben involved standard
625 protocols from the manufacturer (Illumina, Inc., San Diego, CA, United States). The
626 sequencing adapter sequences and low-quality bases were trimmed using cutadapt
627 (v1.15)⁷⁴. The trimmed reads were then mapped to the Morex reference genome (V2)
628 using minimap2 (v2.20)⁷⁵. Read alignments were sorted by Novosort (v3.06.05)
629 (<http://www.novocraft.com/products/novosort/>) and then, BCFtools (v1.15.1)⁷⁶ was
630 used to call SNPs, which resulted in 49,526,992 unfiltered SNPs, with 22,405,297 of
631 them having a minor allele frequency of more than 5%.

632 For population phylogenetic analysis, we first pruned the SNP matrix (22,405,297)
633 using PLINK⁷⁷ (parameters: --indep-pairwise 50 5 0.2), with a window size of 50
634 SNPs and step size of 5 SNPs, which we obtained 850,398 independent SNPs ($r^2 <$
635 0.2). Phylogenomic tree was constructed based on the distance matrix calculated by
636 PHYLIP 3.68 (<https://evolution.genetics.washington.edu/phylip.html>), and visualized
637 under iTOL⁷⁸ (<https://itol.embl.de/>). PCA was performed with PLINK⁷⁷ using the whole
638 SNP data.

639 **P_{ST} – F_{ST} comparison**

640 To investigate whether the degree of the phenotypic differentiation observed between
641 different barley subpopulations could be excluded from the possibility of random
642 genetic drifts, we conducted a P_{ST} – F_{ST} comparison⁷⁹. P_{ST} is a phenotypic analog of
643 F_{ST} . A $P_{ST} >> F_{ST}$ suggests that the observed quantitative trait difference would have
644 exceeded the expectation of the influence due to genetic drift, which is indicative of
645 selection. P_{ST} is measured as the amount of phenotypic variances explained by

646 genetic group membership: $P_{st} = \sigma_{GB}^2 / (\sigma_{GB}^2 + \sigma_{GW}^2)$, where σ_{GB}^2 and σ_{GW}^2 are

647 morphological additive genetic variance components between and within
648 subpopulations, respectively. Because barley is a strictly selfing diploid plant species,
649 which means all polymorphic loci are supposed to be homozygous, there is no need
650 to multiply within-population variance σ_{GW}^2 by 2⁷⁹. Calculation of P_{ST} was done using

651 the R package pstat v.1.2⁸⁰. We performed 1000 replicates of bootstrap resampling
652 to define the confidence interval of each phenotype. Genome-wide estimates of F_{st}
653 from the comparisons of different subpopulations were obtained using VCFtools⁸¹ by
654 considering the 22,405,297 bi-allelic SNPs (minor allele frequency $\geq 5\%$).

655 **Association mapping**

656 For genome-wide association study (GWAS) in the wild barley introgression lines, we
657 used a simple linear regression model by considering the family information as a
658 covariate, and a significant cutoff as $P < 1 \times 10^{-3}$, which was similar to a previous
659 research⁸². GWAS in the D6S was done by considering a set of 22,405,297 bi-allelic
660 SNPs. We used a linear mixed model that incorporated pairwise genetic similarities
661 (kinship matrix) as the random effect and additional population structure informed by
662 a principal component analysis (PC1 – 5) as the fixed effect. We ran the GWAS using
663 the software GEMMA⁸³, with a less stringent significant cutoff at $P < 1 \times 10^{-5}$.

664 **Haplotype analysis**

665 LD measurements and visualization for SNPs were done with the R package
666 LDheatmap⁸⁴. To graphically visualize the genotypes within the super-locus (~100-
667 Mb), we used a sliding window strategy with a window size of 10-Mb and step size of
668 1-Mb to compress the huge data. In each window, the tested population was forcibly
669 clustered into two groups (assuming all loci are bi-allelic in a diploid species) using
670 the k-means clustering algorithm in R. Major and minor clusters were represented in
671 orange and grey colors in the graphical genotype. Barley accessions were
672 hierarchically clustered according to the resultant genotype of each window (100
673 windows in total) with the R function hclust. The clustered accessions were colored
674 according to their subpopulation status based on genome-wide SNPs
675 (Supplementary Fig. 12a). A median-joining haplotype network analysis of the 7
676 prime candidates within the super-locus was constructed and visualized using
677 PopART (v1.7)⁸⁵. For this, SNPs within the genomic regions (from start to stop
678 codons) of each genes from the 100 wild and 200 domesticated barleys reported
679 previously⁴¹ were used.

680 **Candidate genes functional enrichment**

681 To summarize the associated candidate genes, significant SNPs for the 14 traits
682 were binned together based on pairwise linkage disequilibrium (LD) decay using the
683 clumping function in PLINK⁷⁷ (parameters: --clump-p1 1×10^{-5} , --clump-p2 1×10^{-4} ,

684 --clump-r2 0.3, --clump-kb 5000, --clump-allow-overlap). Thus, for every SNP (index
685 SNP) with $P < 1 \times 10^{-5}$, pairwise r^2 values were calculated for SNPs within the 5-Mb
686 surrounding the index SNP (± 2.5 Mb); SNPs with an $r^2 \geq 0.3$ and having a $P < 1 \times$
687 10^{-4} were clumped into bins. Singleton bins without additional SNPs that fell into the
688 criteria were discarded. We recovered 468 bins ranging from ~10-kb to ~10-Mb, with
689 a median of ~2.6-Mb, and encompassing 2,559 high-confidence genes based on
690 Morex reference v2⁸⁶. We used the closest homologs in *Arabidopsis* by considering
691 the highest hit of BLASTP search (e-value < 1e-5) against the TAIR10 dataset.
692 Functional enrichment analysis was done using Metascape (<https://metascape.org/>)⁸⁷
693 with default settings. All candidate genes were summarized in **Supplementary Table**
694 **5**.

695 **Flowering time genes**

696 *Arabidopsis* flowering time genes were extracted from the FLOR-ID database
697 (<http://www.phytosystems.ulg.ac.be/florid/>) as reported previously⁸⁸, which included
698 306 experimentally validated genes participating in diverse pathways (latest updated:
699 2015-09-23). We identified the flowering time gene orthogroups between barley and
700 *Arabidopsis* using OrthoFinder 2.4.1⁸⁹ with default settings. This allowed us to define
701 a set of 268 postulated non-redundant flowering time genes in barley. Major known
702 genes in barley, including *HvFT1* (VRN-H3), *HvCEN*, *PPD-H1*, *VRN-H2*, *HvELF3* and
703 *HvCO1* were amongst the list (**Supplementary Table 7**), suggesting a high degree of
704 conservation on flowering time control. Morex reference has a natural deletion at the
705 VRN-H2 locus, we postulated the VRN-H2 physical position using the flanking
706 sequences of the breakpoints, which was estimated to be at ~618.6Mb in chr4H of
707 Morex v2.

708 To test for whether variations in flowering time genes were more likely to be
709 associated with phytomer initiation and elongation traits in respect to the genome-
710 wide random subset of SNPs, we used a Lambda (λ) analysis³⁷:

$$\lambda = \frac{99^{\text{th}} \text{ Percentile}[-\text{LOG}_{10}(\text{Reduced FDR adjusted } p\text{-values})]}{99^{\text{th}} \text{ Percentile}[-\text{LOG}_{10}(\text{Genomewide FDR adjusted } p\text{-values})]}$$

711 For this, SNPs within 200-kb of the 268 flowering time genes were used (n =
712 280,687). New False Discovery Rate (FDR)-adjusted P -values were calculated using
713 the Benjamini and Hochberg method⁹⁰, and the adjusted top 1% most significant
714 SNPs (99th percentile) were then used to compared with the genome-wide SNPs.

715 We then repeated the random subset for 1,000 times with the same SNP number,
716 and estimated the λ distributions for each trait.

717 **Cross-species ELF3 complementation**

718 Binary constructs carrying the full length coding sequences of one of the two barley
719 *ELF3* (2298-bp) variants (669G and 669W) and the native *A. thaliana* *ELF3* promoter
720 (3542-bp) were assembled, and independently transformed into the *elf3-1* mutant³⁹
721 through the floral dipping method. Three independent homozygous transgenic lines
722 for each construct were isolated by phosphinothricin selection.

723 **Determination of the PPD-H1 – SDW1 regulatory axis**

724 To examine the regulation of *SDW1* by PPD-H1, we tested the possibility of gene co-
725 expressions using RNA-seq data from previous studies^{23,49,50}. We used Kallisto
726 software⁹¹ to estimate the transcript abundances (TPM) of *PPD-H1*
727 (*HORVU.MOREX.r2.2HG0088300.1*) and *SDW1*
728 (*HORVU.MOREX.r2.3HG0256590.1*) using Morex genome annotation V2⁸⁶ as a
729 reference. Putative *cis*-regulatory regions of *SDW1* was estimated with Assay for
730 Transposase-Accessible Chromatin sequencing (ATAC-seq) data reported
731 previously⁹². Data processing, read mapping (to Morex reference V2) and accessible
732 chromatin regions identification were done according to⁹².

733 We next tested direct regulation of *SDW1* by PPD-H1 using the dual luciferase assay
734 in barley protoplasts. We PCR amplified three potential regulatory regions of *SDW1*
735 from wild-type BW, including the distal region (Dre, ~1.8-kb, about 50-kb upstream),
736 the promoter region (Pro, ~2-kb) and the second intron region (Int, ~1.4-kb), and then
737 cloned them independently into the pGreenII 0800-LUC vector⁹³ to generate the
738 *pSDW1^{Int/Dre/Pro}-LUC* constructs (reporters). Full-length coding regions (1977-bp) of
739 *PPD-H1* gene from BW281 (functional) or BW (reduced functional) were cloned into
740 the pGreenII 62-SK vector equipped with a 35S promoter (effectors). To isolate
741 barley protoplasts, 7-day-old etiolated seedlings were hand cut into ~0.5mm pieces
742 with a razor blade, and digested with a freshly prepared enzyme solution
743 (Macerozyme, Cellulase R10, Duchefa) for 6h under darkness with 60 rpm shaking
744 (25°C). Tissues were washed with 50 mL W5 solution [154 mM NaCl, 125 mM CaCl₂,
745 5 mM KCl, 2 mM MES (pH=5.7)] 3 times before resuspending with appropriate
746 volume of W5 solution (500 μ l per transformation). A 40% PEG-mediated
747 transformation was then applied to deliver the vector combinations into the isolated

748 protoplasts, followed by one more washing step with 880 μ l W5 solution, and then
749 resuspended with 1 mL W5. Transformed protoplasts were kept under darkness
750 (25°C) for 16h before the lysis of the cells. Luciferase and renillia luciferase (REN, for
751 normalization) activities were detected with a Dual-Luciferase Reporter Assay
752 System (Promega, E1910) under the GloMax Discover plate reader system from
753 Promega. Primers used in the dual-LUC assays were given in [Supplementary Table](#)
754 [8](#).

755 **RNA *in situ* hybridization**

756 SDW1-specific sequence (402-bp) was PCR-amplified from total cDNA of BW and
757 cloned into the pGEM-T cloning vector. The resulting plasmid was used as a
758 template for preparing sense (negative control) and antisense probes. A fusion
759 primer set containing a 20-bp T7 promoter sequence (5'-
760 TAATACGACTCACTATAGGG-3') before the forward primers of sense probes or
761 reversed primer of antisense probes were used. PCR products were then purified
762 and served as templates for in vitro reverse transcription with T7 RNA polymerase.
763 For *in situ* hybridization, spike samples were fixed overnight with FAA (50% ethanol,
764 5% acetic acid and 3.7% formaldehyde) at 4°C, followed by dehydration with ethanol
765 series (50, 70, 85, 95 and 100%) and then embedded with Paraplast Plus (Kendall,
766 Mansfield, MA). A microtome was used to slice the samples (8 μ m thick), which were
767 then mounted onto Superfrost plus slides. Tissue pre-treatment, hybridization,
768 washing and coloration were done as described previously⁹⁴. Primers for amplifying
769 the probe sequences are given in [Supplementary Table 8](#).

770 **Data availability**

771 For the raw whole genome resequencing reads of the D6S panel (358 lines), 168 will
772 be released in conjunction with an upcoming publication; 47 are from a previous
773 publication⁴¹; 143 have been submitted to the European Nucleotide Archive database
774 under project id XXX. The unfiltered VCF variant files of the 358 barley lines have
775 been submitted to European Variation Archive database under project id XXX.
776 Genotypic data of the wild barley ILs has been deposited at e!DAL
777 (<https://doi.org/10.5447/ipk/2019/20>)⁹⁵.

778 **Acknowledgements**

779 We thank A. Püschel, K. Wolf, M. Schnurbusch and M. Püschel for their excellent
780 technical support; R. Kamal and N. Shanmugaraj for their dedications in spike
781 dissection and data collection; E. Geyer and his team for their tremendous and
782 tireless support on the greenhouse management; R. Hoffie and I. Otto for assisting
783 the barley protoplast transformation; H. Wang for helps in measuring the LUC/REN

784 activity; S. G. Milner for selecting the barley panel; I. Walde for expert technical
785 assistance in DNA sequencing; Y. Jiang for suggestions on GWAS; A. Fiebig for raw
786 data submission; P.A. Wigge for sharing the *elf3-1* seeds. We are grateful to all
787 members of the Schnurbusch Lab at IPK for fruitful discussions, from which this
788 research concept was stimulated. Research conducted in the laboratory of T.S.
789 received financial support by a European Research Council (ERC) grant entitled
790 'LUSH SPIKE' (ERC-2015-CoG, agreement 681686), the European Fund for
791 Regional Development (EFRE) and the State of Saxony-Anhalt within the ALIVE
792 project (grant ZS/2018/09/94616), the HEISENBERG Program of the German
793 Research Foundation (DFG, grant Nos. SChN 768/8-1 and SChN 768/15-1), and the
794 IPK core budget.

795 **Author contributions**

796 Y.H. conceived the study and performed most of the experiments and data analysis.
797 T.S. supervised the study. Y.H. wrote the first draft of the manuscript and T.S.
798 reviewed & edited the manuscript, with input from all the other authors. A.M. and Y.H.
799 conducted association mapping analysis. R.F.H.G. conducted cross-species ELF3
800 complementation. G.G. provided intelligence input about internode elongation and
801 crop adaptation. S.Z., V.T., C.T. and Y.H. performed greenhouse phenotyping. S.Z.
802 conducted *in situ* hybridization experiment. C.T. conducted a PCR-based selection of
803 functional *PPD-H1* in the D6S population. G.L. and Y.Z. conducted greenhouse
804 experimental design and phenotypic data analysis. A.B conducted SSD of the D6S
805 population before sequencing. A.H. conducted in-house whole-genome sequencing.
806 M.J. did the SNP calling. N.S. supervised the IPK in-house sequencing platform. M.M.
807 did the selection of the D6S population and WGS analysis. K.P. supervised the
808 construction of the wild barley introgression lines.

809 **Competing interests**

810 The authors declare no competing interests.

811 **References**

- 812 1. Barthélémy D, Caraglio Y. Plant Architecture: A Dynamic, Multilevel and Comprehensive
813 Approach to Plant Form, Structure and Ontogeny. *Annals of Botany* **99**, 375-407 (2007).
- 814 2. Forster BP, Franckowiak JD, Lundqvist U, Lyon J, Pitkethly I, Thomas WTB. The Barley
815 Phytomer. *Annals of Botany* **100**, 725-733 (2007).
- 816 3. McKim SM. Moving on up – controlling internode growth. *New Phytologist* **226**, 672-678
817 (2020).
- 818 4. Harder LD, Strelin MM, Clocher IC, Kulbaba MW, Aizen MA. The dynamic mosaic phenotypes
819 of flowering plants. *New Phytologist* **224**, 1021-1034 (2019).
- 820 5. Naylor REL, Stokes DT, Matthews S. Biomass, shoot uniformity and yield of winter barley. *The
821 Journal of Agricultural Science* **131**, 13-21 (1998).
- 822 6. Weiner J. Looking in the Wrong Direction for Higher-Yielding Crop Genotypes. *Trends in Plant
823 Science* **24**, 927-933 (2019).
- 824 7. Abbai R, Singh VK, Snowdon RJ, Kumar A, Schnurbusch T. Seeking Crops with Balanced Parts
825 for the Ideal Whole. *Trends in Plant Science* **25**, 1189-1193 (2020).
- 826 8. Dockter C, Hansson M. Improving barley culm robustness for secured crop yield in a changing
827 climate. *Journal of Experimental Botany* **66**, 3499-3509 (2015).
- 828 9. Sachs RM. Stem Elongation. *Annual Review of Plant Physiology* **16**, 73-96 (1965).
- 829 10. Hedden P. The genes of the Green Revolution. *Trends Genet* **19**, 5-9 (2003).
- 830 11. Hattori Y, *et al.* The ethylene response factors SNORKEL1 and SNORKEL2 allow rice to adapt
831 to deep water. *Nature* **460**, 1026-1030 (2009).
- 832 12. Patil V, *et al.* APETALA2 control of barley internode elongation. *Development* **146**, dev170373
833 (2019).
- 834 13. Dockter C, *et al.* Induced Variations in Brassinosteroid Genes Define Barley Height and
835 Sturdiness, and Expand the Green Revolution Genetic Toolkit. *Plant Physiology* **166**, 1912-
836 1927 (2014).
- 837 14. Tong H, *et al.* Brassinosteroid regulates cell elongation by modulating gibberellin metabolism
838 in rice. *Plant Cell* **26**, 4376-4393 (2014).

852

853 15. Unterholzner SJ, *et al.* Brassinosteroids Are Master Regulators of Gibberellin Biosynthesis in
854 Arabidopsis. *The Plant Cell* **27**, 2261-2272 (2015).

855 16. Eshed Y, Lippman ZB. Revolutions in agriculture chart a course for targeted breeding of old
856 and new crops. *Science* **366**, eaax0025 (2019).

858 17. Taoka K-I, *et al.* 14-3-3 proteins act as intracellular receptors for rice Hd3a florigen. *Nature*
859 **476**, 332-335 (2011).

861 18. Boden SA, *et al.* *EARLY FLOWERING3* Regulates Flowering in Spring Barley by Mediating
862 Gibberellin Production and *FLOWERING LOCUS T* Expression. *The Plant Cell* **26**, 1557-1569
863 (2014).

865 19. Faure S, *et al.* Mutation at the circadian clock gene *EARLY MATURITY 8* adapts domesticated
866 barley (*Hordeum vulgare*) to short growing seasons. *Proc Natl Acad Sci U S A* **109**, 8328-8333
867 (2012).

869 20. Turner A, Beales J, Faure S, Dunford RP, Laurie DA. The Pseudo-Response Regulator *Ppd-H1*
870 Provides Adaptation to Photoperiod in Barley. *Science* **310**, 1031-1034 (2005).

872 21. Zakhrebekova S, *et al.* Induced mutations in circadian clock regulator *Mat-a* facilitated short-
873 season adaptation and range extension in cultivated barley. *Proceedings of the National
874 Academy of Sciences* **109**, 4326-4331 (2012).

876 22. Deng W, *et al.* Direct links between the vernalization response and other key traits of cereal
877 crops. *Nature Communications* **6**, 5882 (2015).

879 23. Huang Y, *et al.* A molecular framework for grain number determination in barley. *Science
880 Advances* **9**, eadd0324 (2023).

882 24. Melzer S, Lens F, Gennen J, Vanneste S, Rohde A, Beeckman T. Flowering-time genes
883 modulate meristem determinacy and growth form in *Arabidopsis thaliana*. *Nature genetics*
884 **40**, 1489-1492 (2008).

886 25. King RW, Evans LT. Gibberellins and Flowering of Grasses and Cereals: Prizing Open the Lid of
887 the “Florigen” Black Box. *Annual Review of Plant Biology* **54**, 307-328 (2003).

889 26. Maurer A, *et al.* Modelling the genetic architecture of flowering time control in barley
890 through nested association mapping. *BMC Genomics* **16**, (2015).

892 27. Milner SG, *et al.* Genebank genomics highlights the diversity of a global barley collection.
893 *Nature Genetics* **51**, 319-326 (2019).

895 28. Thirulogachandar V, Schnurbusch T. 'Spikelet stop' determines the maximum yield potential
896 stage in barley. *J Exp Bot* **72**, 7743-7753 (2021).

898

899 29. Mizukami Y, Fischer RL. Plant organ size control: *AINTEGUMENTA* regulates growth and cell
900 numbers during organogenesis. *Proc Natl Acad Sci USA* **97**, 942-947 (2000).

901

902 30. Inzé D, De Veylder L. Cell Cycle Regulation in Plant Development. *Annual Review of Genetics*
903 **40**, 77-105 (2006).

904

905 31. Waddington SR, Cartwright PM, Wall PC. A Quantitative Scale of Spike Initial and Pistil
906 Development in Barley and Wheat. *Annals of Botany* **51**, 119-130 (1983).

907

908 32. Bonnett O. Inflorescences of maize, wheat, rye, barley, and oats: Their initiation and
909 development. *Bulletin (University of Illinois (Urbana-Champaign campus) Agricultural*
910 *Experiment Station), Champaign, IL*, p 721 (1966).

911

912 33. Kamal R, Muqaddasi QH, Zhao Y, Schnurbusch T. Spikelet abortion in six-rowed barley is
913 mainly influenced by final spikelet number, with potential spikelet number acting as a
914 suppressor trait. *Journal of Experimental Botany* **73**, 2005-2020 (2022).

915

916 34. Kirby EJM, Appleyard M. Cereal development guide. 2nd Edition. *Book*, (1984).

917

918 35. Thirulogachandar V, Koppolu R, Schnurbusch T. Strategies of grain number determination
919 differentiate barley row types. *Journal of Experimental Botany* **72**, 7754-7768 (2021).

920

921 36. Brommer JE. Whither Pst? The approximation of Qst by Pst in evolutionary and conservation
922 biology. *Journal of Evolutionary Biology* **24**, 1160-1168 (2011).

923

924 37. Parvathaneni RK, *et al.* The regulatory landscape of early maize inflorescence development.
925 *Genome biology* **21**, 1-33 (2020).

926

927 38. Russell J, *et al.* Exome sequencing of geographically diverse barley landraces and wild
928 relatives gives insights into environmental adaptation. *Nature Genetics* **48**, 1024-1030 (2016).

929

930 39. Jung J-H, *et al.* A prion-like domain in ELF3 functions as a thermosensor in Arabidopsis.
931 *Nature* **585**, 256-260 (2020).

932

933 40. Lancaster AK, Nutter-Upham A, Lindquist S, King OD. PLAAC: a web and command-line
934 application to identify proteins with prion-like amino acid composition. *Bioinformatics* **30**,
935 2501-2502 (2014).

936

937 41. Jayakodi M, *et al.* The barley pan-genome reveals the hidden legacy of mutation breeding.
938 *Nature* **588**, 284-289 (2020).

939

940 42. Zhu Z, *et al.* An exotic allele of barley EARLY FLOWERING 3 contributes to developmental
941 plasticity at elevated temperatures. *Journal of Experimental Botany*, (2022).

942

943 43. Zahn T, *et al.* Novel exotic alleles of EARLY FLOWERING 3 determine plant development in
944 barley. *Journal of Experimental Botany*, (2023).

945

946 44. Houston K, *et al.* Variation in the interaction between alleles of HvAPETALA2 and
947 microRNA172 determines the density of grains on the barley inflorescence. *Proc Natl Acad
948 Sci U S A* **110**, 16675-16680 (2013).

949

950 45. Youssef HM, *et al.* VRS2 regulates hormone-mediated inflorescence patterning in barley.
951 *Nature Genetics* **49**, 157-161 (2017).

952

953 46. Sun T, Kamiya Y. The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of
954 gibberellin biosynthesis. *The Plant Cell* **6**, 1509-1518 (1994).

955

956 47. Xu Y, *et al.* Characterization of the sdw1 semi-dwarf gene in barley. *BMC Plant Biology* **17**,
957 (2017).

958

959 48. Sharma R, *et al.* On the origin of photoperiod non-responsiveness in barley. (ed^(eds)).
960 bioRxiv (2020).

961

962 49. Digel B, Pankin A, von Korff M. Global Transcriptome Profiling of Developing Leaf and Shoot
963 Apices Reveals Distinct Genetic and Environmental Control of Floral Transition and
964 Inflorescence Development in Barley. *The Plant Cell* **27**, 2318-2334 (2015).

965

966 50. Thiel J, *et al.* Transcriptional landscapes of floral meristems in barley. *Science Advances* **7**,
967 eabf0832 (2021).

968

969 51. Harlan JR, Zohary D. Distribution of Wild Wheats and Barley. *Science* **153**, 1074-1080 (1966).

970

971 52. Haas M, Schreiber M, Mascher M. Domestication and crop evolution of wheat and barley:
972 Genes, genomics, and future directions. *Journal of Integrative Plant Biology* **61**, 204-225
973 (2019).

974

975 53. McMaster GS. Phytomers, phyllochrons, phenology and temperate cereal development. *The
976 Journal of Agricultural Science* **143**, 137-150 (2005).

977

978 54. Yu B, *et al.* Photoperiod controls plant seed size in a CONSTANS-dependent manner. *Nature
979 Plants*, 1-12 (2023).

980

981 55. Gendron JM, Staiger D. New Horizons in Plant Photoperiodism. *Annual Review of Plant
982 Biology* **74**, (2023).

983

984 56. Davis MH, Simmons SR. Far-red light reflected from neighbouring vegetation promotes shoot
985 elongation and accelerates flowering in spring barley plants. *Plant, Cell and Environment* **17**,
986 829-836 (1994).

987

988 57. Zhong X, *et al.* Basal internode elongation of rice as affected by light intensity and leaf area. *The Crop Journal* **8**, 62-70 (2020).

990

991 58. Golan G, Abbai R, Schnurbusch T. Exploring the trade-off between individual fitness and

992 community performance of wheat crops using simulated canopy shade. *Plant, Cell &*

993 *Environment*, (2022).

994

995 59. Jiao Y, Lau OS, Deng XW. Light-regulated transcriptional networks in higher plants. *Nature*

996 *Reviews Genetics* **8**, 217-230 (2007).

997

998 60. Dantas LLB, *et al.* Field microenvironments regulate crop diel transcript and metabolite

999 rhythms. *New Phytologist* **232**, 1738-1749 (2021).

1000

1001 61. Norsang G, Kocbach L, Tsoja W, Stammes JJ, Dahlback A, Nema P. Ground-based

1002 measurements and modeling of solar UV-B radiation in Lhasa, Tibet. *Atmospheric*

1003 *Environment* **43**, 1498-1502 (2009).

1004

1005 62. Liu X, *et al.* Journey to the east: Diverse routes and variable flowering times for wheat and

1006 barley en route to prehistoric China. *PLOS ONE* **12**, e0187405 (2017).

1007

1008 63. Gómez-Ariza J, *et al.* A transcription factor coordinating internode elongation and

1009 photoperiodic signals in rice. *Nature Plants* **5**, 358-362 (2019).

1010

1011 64. Li X, Li X, Fridman E, Tesso TT, Yu J. Dissecting repulsion linkage in the dwarfing gene *Dw3*

1012 region for sorghum plant height provides insights into heterosis. *Proceedings of the National*

1013 *Academy of Sciences* **112**, 11823-11828 (2015).

1014

1015 65. Würschum T, Langer SM, Longin CFH, Tucker MR, Leiser WL. A modern Green Revolution

1016 gene for reduced height in wheat. *The Plant Journal* **92**, 892-903 (2017).

1017

1018 66. Yano K, *et al.* Genome-wide association study using whole-genome sequencing rapidly

1019 identifies new genes influencing agronomic traits in rice. *Nature Genetics* **48**, 927-934 (2016).

1020

1021 67. Cosenza F, *et al.* Genetic mapping reveals new loci and alleles for flowering time and plant

1022 height using the double round-robin population of barley. *bioRxiv*, 2023.2001. 2012.523733

1023 (2023).

1024

1025 68. Peiffer JA, *et al.* The Genetic Architecture Of Maize Height. *Genetics* **196**, 1337-1356 (2014).

1026

1027 69. Börner A, Worland AJ, Plaschke J, Schumann E, Law CN. Pleiotropic Effects of Genes for

1028 Reduced Height (Rht) and Day-Length Insensitivity (Ppd) on Yield and its Components for

1029 Wheat Grown in Middle Europe. *Plant Breeding* **111**, 204-216 (1993).

1030

1031 70. Yamaguchi N, *et al.* Gibberellin acts positively then negatively to control onset of flower
1032 formation in *Arabidopsis*. *Science* **344**, 638-641 (2014).

1033
1034 71. Serrano-Mislata A, Bencivenga S, Bush M, Schiessl K, Boden S, Sablowski R. DELLA genes
1035 restrict inflorescence meristem function independently of plant height. *Nature Plants* **3**, 749-
1036 754 (2017).

1037
1038 72. Digel B, *et al.* Photoperiod-H1 (Ppd-H1) Controls Leaf Size. *Plant Physiology* **172**, 405-415
1039 (2016).

1040
1041 73. Grömping U. Relative importance for linear regression in R: the package relaimpo. *Journal of*
1042 *statistical software* **17**, 1-27 (2007).

1043
1044 74. Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads.
1045 *EMBnetjournal* **17**, 10 (2011).

1046
1047 75. Li H. Minimap2: pairwise alignment for nucleotide sequences. *Bioinformatics* **34**, 3094-3100
1048 (2018).

1049
1050 76. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and
1051 population genetical parameter estimation from sequencing data. *Bioinformatics* **27**, 2987-
1052 2993 (2011).

1053
1054 77. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising
1055 to the challenge of larger and richer datasets. *GigaScience* **4**, (2015).

1056
1057 78. Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and
1058 annotation of phylogenetic and other trees. *Nucleic acids research* **44**, W242-W245 (2016).

1059
1060 79. Leinonen T, Mccairns RJS, O'Hara RB, Merilä J. Q_{ST} - F_{ST} comparisons: evolutionary and
1061 ecological insights from genomic heterogeneity. *Nature Reviews Genetics* **14**, 179-190 (2013).

1062
1063 80. Da Silva SB, Da Silva A. Pstat: An R Package to Assess Population Differentiation in Phenotypic
1064 Traits. *R J* **10**, 447 (2018).

1065
1066 81. Danecek P, *et al.* The variant call format and VCFtools. *Bioinformatics* **27**, 2156-2158 (2011).

1067
1068 82. Prusty MR, *et al.* Genetic loci mediating circadian clock output plasticity and crop productivity
1069 under barley domestication. *New Phytol* **230**, 1787-1801 (2021).

1070
1071 83. Zhou X, Stephens M. Genome-wide efficient mixed-model analysis for association studies.
1072 *Nature Genetics* **44**, 821-824 (2012).

1073

1074 84. Shin J-H, Blay S, McNeney B, Graham J. LDheatmap: an R function for graphical display of
1075 pairwise linkage disequilibria between single nucleotide polymorphisms. *Journal of statistical*
1076 *software* **16**, 1-9 (2006).

1077

1078 85. Leigh JW, Bryant D. POPART: full-feature software for haplotype network construction.
1079 *Methods in Ecology and Evolution* **6**, 1110-1116 (2015).

1080

1081 86. Monat C, *et al.* TRITEX: chromosome-scale sequence assembly of Triticeae genomes with
1082 open-source tools. *Genome Biol* **20**, 284 (2019).

1083

1084 87. Zhou Y, *et al.* Metascape provides a biologist-oriented resource for the analysis of systems-
1085 level datasets. *Nature Communications* **10**, (2019).

1086

1087 88. Bouché F, Lobet G, Tocquin P, Périlleux C. FLOR-ID: an interactive database of flowering-time
1088 gene networks in *Arabidopsis thaliana*. *Nucleic Acids Research* **44**, D1167-D1171 (2015).

1089

1090 89. Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics.
1091 *Genome Biology* **20**, (2019).

1092

1093 90. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful
1094 approach to multiple testing. *Journal of the Royal statistical society: series B (Methodological)*
1095 **57**, 289-300 (1995).

1096

1097 91. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq quantification.
1098 *Nature Biotechnology* **34**, 525-527 (2016).

1099

1100 92. Lu Z, Marand AP, Ricci WA, Ethridge CL, Zhang X, Schmitz RJ. The prevalence, evolution and
1101 chromatin signatures of plant regulatory elements. *Nature Plants* **5**, 1250-1259 (2019).

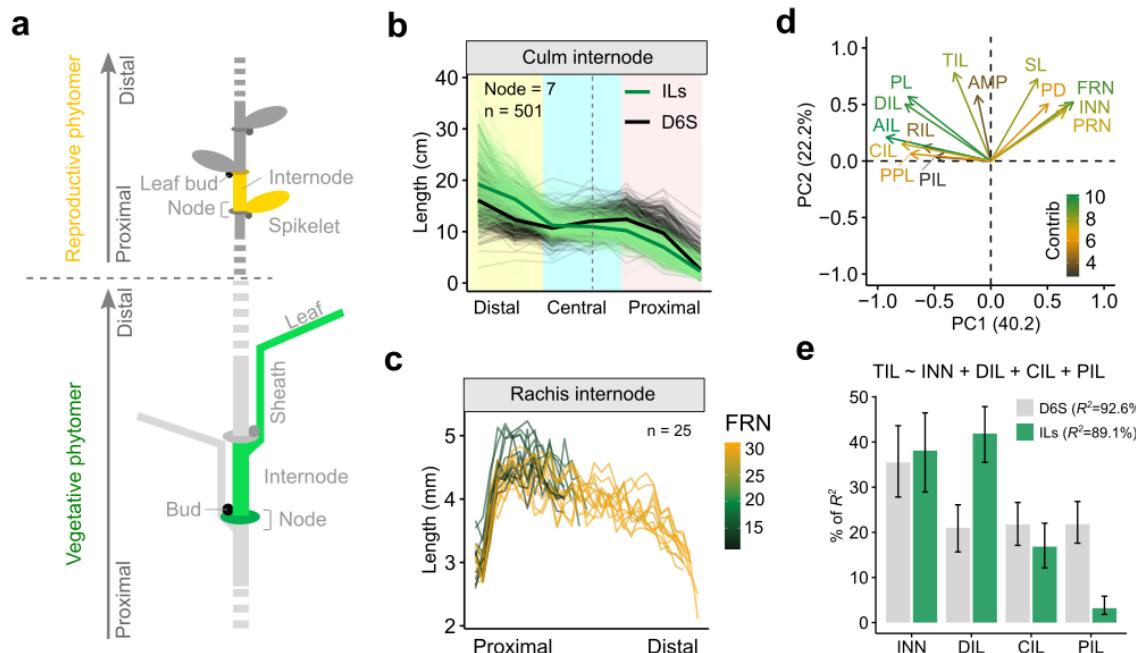
1102

1103 93. Hellens RP, *et al.* Transient expression vectors for functional genomics, quantification of
1104 promoter activity and RNA silencing in plants. *Plant Methods* **1**, 13 (2005).

1105

1106 94. Jackson D. In-situ hybridisation in plants. *A Practical Approach* (eds Gurr, S *et al*), 163–174
1107 (1992).

1108


1109 95. Maurer A, Pillen K. 50k Illumina Infinium iSelect SNP Array data for the wild barley NAM
1110 population HEB-25 e. *DAL—Plant Genomics and Phenomics Research Data Repository (PGP)*
1111 **10**, (2019).

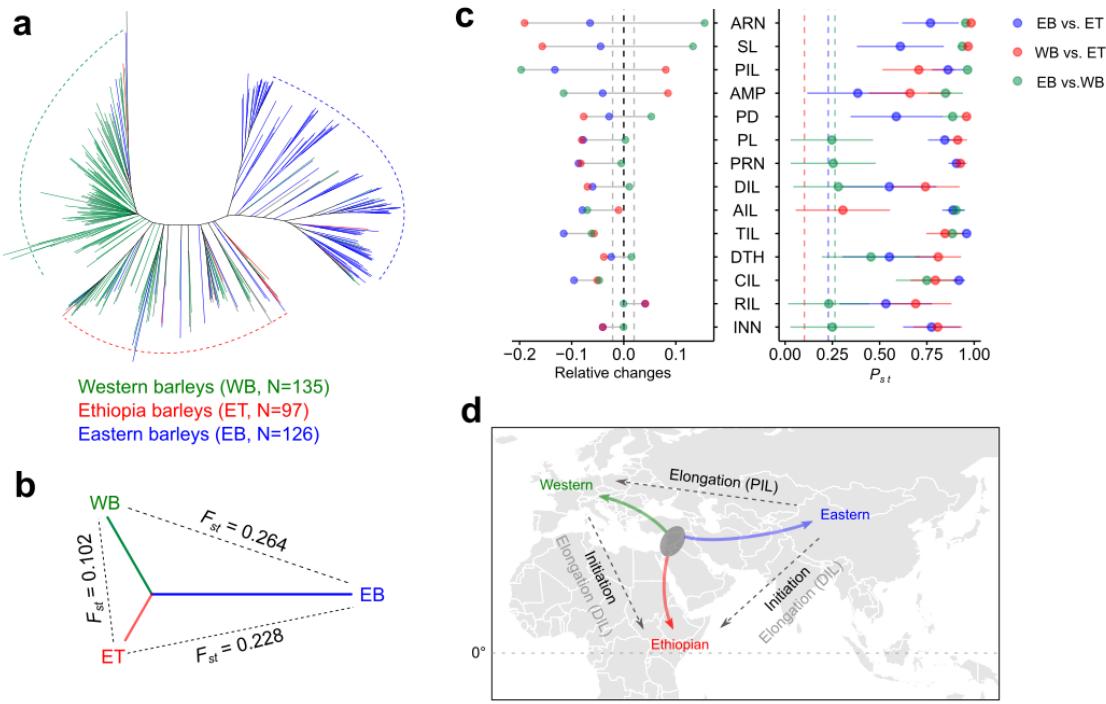
1112

1113

1114

1115 **Figures**

1116


1117 **Fig. 1: An oscillatory pattern of internode elongation and the node initiation –**
1118 **internode elongation relationship.**

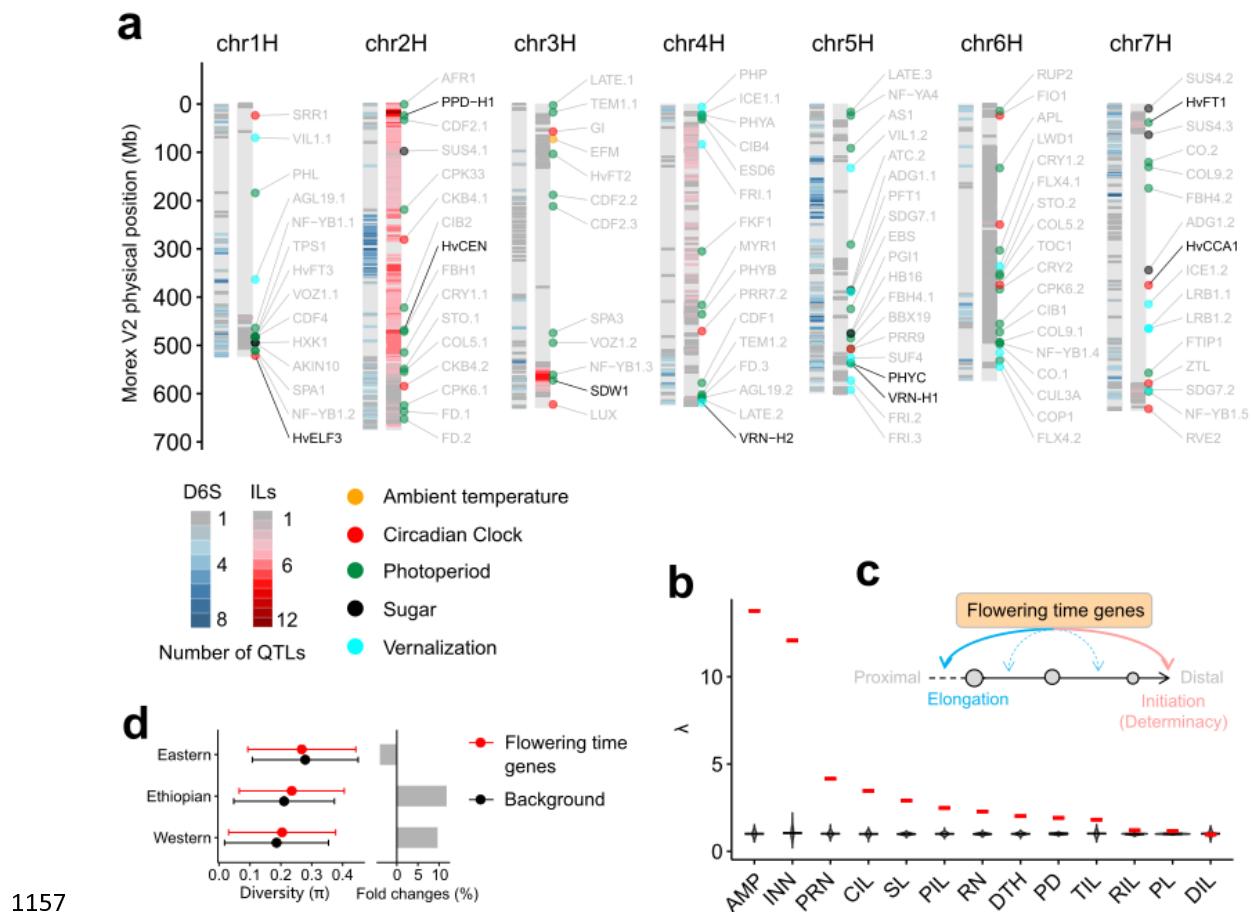
1119 **a.** Schematic representation of phytomeric structure from a barley vegetative culm
1120 and reproductive spike based on². A vegetative culm phytomer and a reproductive
1121 spikelet phytomer is highlighted with green and orange colors, respectively. Drawings
1122 are not to scale.

1123 **b, c.** Pattern of internode elongation from culms (b) and rachises (c). Plants with a
1124 node number of 7 are shown in (b).

1125 **d.** Loading plot of PC1 and PC2 from the 14 phenotypes representing node initiation
1126 and internode elongation. Note that initiation and elongation related traits are largely
1127 separated based on the first two PCs. DIL, distal internode length; CIL, central
1128 internode length; PIL, proximal internode length; AIL, average internode length; PL,
1129 peduncle length; PPL, percentage of peduncle length; TIL, total culm internode length;
1130 AMP, culm length oscillatory amplitude; SL, spike length; PD, peduncle diameter;
1131 FRN, final rachis node number; INN, culm node number; PRN, potential rachis node
1132 number.

1133 **e.** Relative importance INN, DIL, CIL and PIL to total culm length (TIL). A multiple
1134 linear regression analysis is formulated on the top of the bar plot. Upper and lower
1135 bound of the error bars are 95% confidence intervals based on 1000 bootstrap
1136 replicates.

1137


1138 **Fig. 2: Evolution of phytomer initiation and elongation**

1139 **a.** An unrooted neighbor-joining tree clusters the 358 barleys (D6S) into three
 1140 subpopulations corresponding to Eastern (green), Western (blue) and a mix clade
 1141 (red, Ethiopian clade).

1142 **b.** Pairwise comparisons of the genetic differentiation among the three
 1143 subpopulations based on Fixation index (F_{ST}).

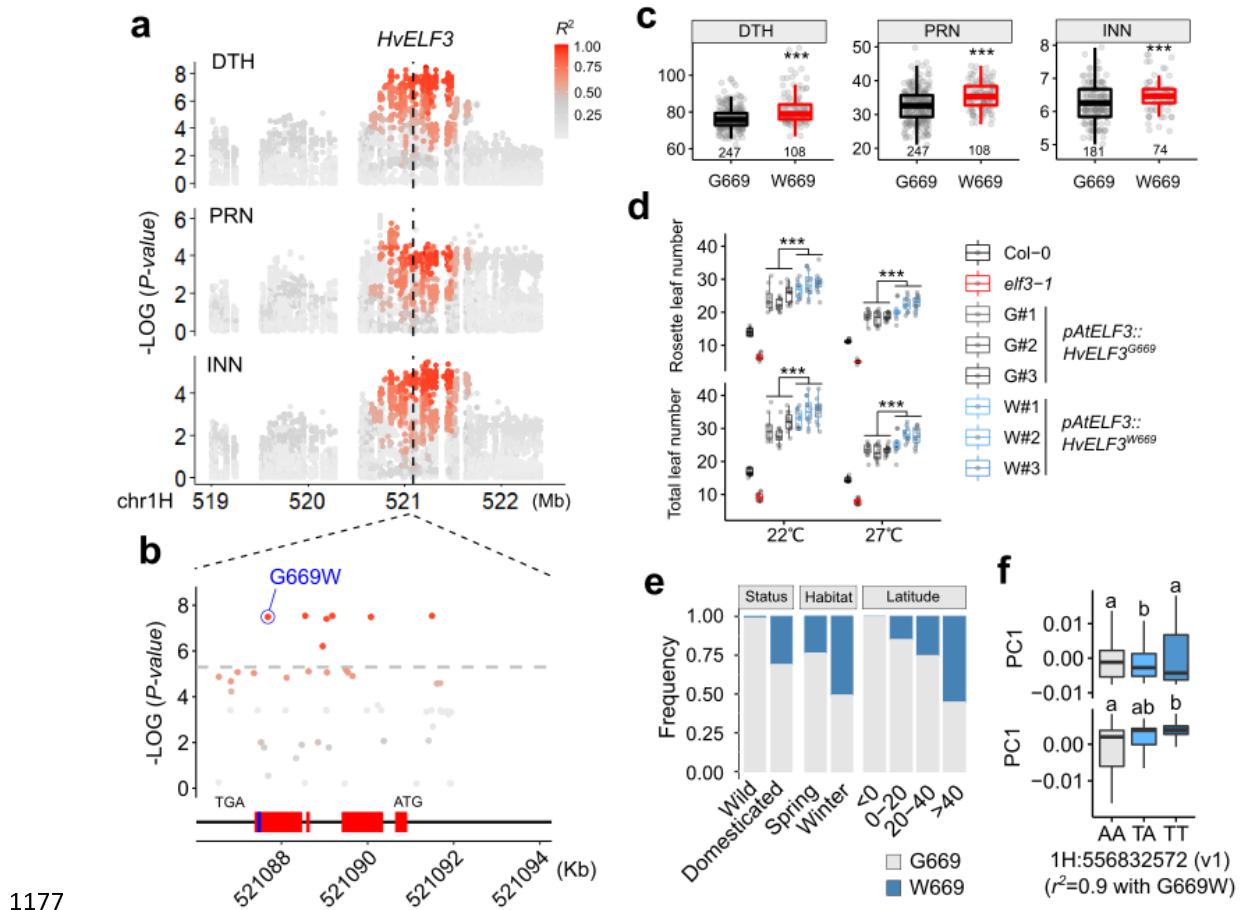
1144 **c.** Pairwise comparisons of the phenotypic differentiation among the three
 1145 subpopulations. Left panel shows the relative phenotypic changes. Grey dashed lines
 1146 mark the significant levels determined from two-tailed Student's t -test at $P < 0.05$.
 1147 Right panel shows the phenotypic differentiation (P_{ST}) versus genetic differentiation
 1148 (F_{ST}). Colored dashed lines indicate the between populations mean F_{ST} . Error bars are
 1149 95% confidence intervals ($CI_{0.95}$) for the phenotypic P_{ST} based on 1,000 permutations.
 1150 EB, ET and WB: Eastern, Ethiopian and Western barleys.

1151 **d.** A simplified schematic diagram summarizing how phytomer initiation and
 1152 elongation are changed during barley evolution based on the current phenotypic
 1153 dissections. The grey oval highlights the proximate site of the Fertile Crescent where
 1154 barley was first domesticated. We highlighted prominent phenotypic changes
 1155 between subpopulations in black. Direction of the arrows point to the subpopulations
 1156 with higher phenotypic values. Grey horizontal dashed line indicates the equator.

1158 **Fig. 3: Genetic architecture of phytomer initiation and elongation.**

1159 **a.** QTL density detected in D6S and ILs for the 14 traits. Barley homologs of
1160 *Arabidopsis* flowering time genes from the FLOR-ID database are illustrated along
1161 the 7 barley chromosomes. To improve visualization, we only show genes interacting
1162 with environmental cues, or circadian clock (112 out of 268), and highlight those that
1163 have been experimentally validated in barley with black.

1164 **b.** SNP effects of flowering time genes (268 in total) compared to the genome-wide
1165 random SNPs. Lambda (λ) values of SNPs within 200-kb of the 268 flowering time
1166 gens (280,687 in total) are showed in red, violin plots are the distribution of λ values
1167 from 1,000 iterations of random SNPs.


1168 **c.** Schematic diagram depicting the functional repurposing of flowering time genes in
1169 determining internode elongation based on the summary statistics in **(b)**. Flowering
1170 time genes are converged on node initiation (or meristematic determinacy^{23,24},
1171 indicated in pink curved arrow), and are repurposed to control internode elongation.

1172 Note that the unequal contributions of flowering time genes to different internode

1173 elongation (e.g., PIL and CIL) may led to a spatial unevenness of internode length, or
1174 higher amplitude (AMP), as observed in **(b)**.

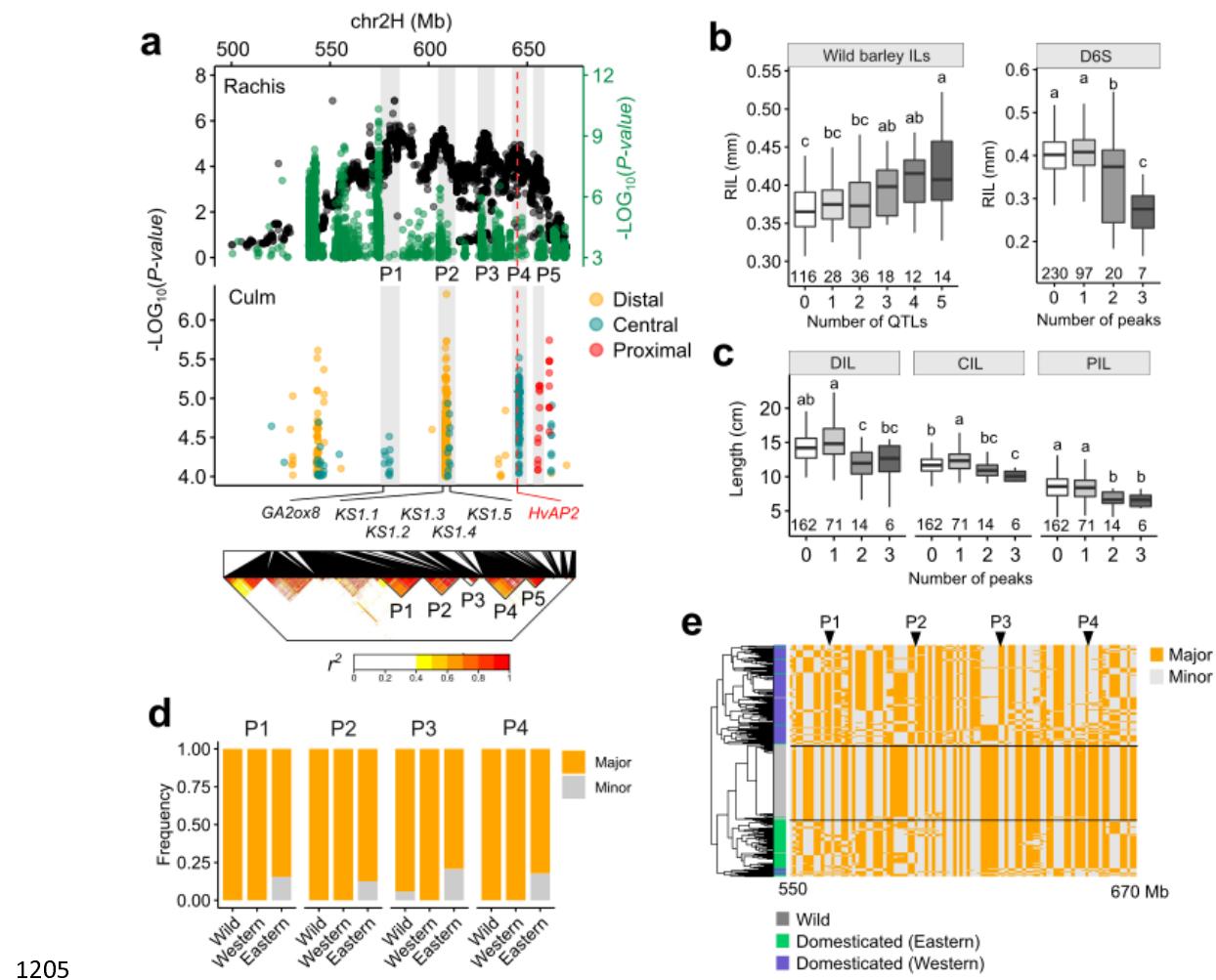
1175 **d.** Genetic diversity (π) of the 268 flowering time genes in different subpopulations.

1176

1177
1178 **Fig. 4: HvELF3 G669W variant contributes to more phytmeric iterations and**
1179 **northward expansion in domesticated barleys.**

1180 **a – c.** *HvELF3* natural variation is associated with DTH and phytomer initiation (PRN
1181 and INN). Local Manhattan plot (a) showing the association of the *HvELF3* locus on
1182 DTH and initiation traits. Relationship (R^2) of the peak SNP with the adjacent SNPs
1183 are showed. *HvELF3* physical position is indicated with dashed line. A non-
1184 synonymous SNP resulting in Glycine (G) to Tryptophan (W) substitution at position
1185 669 of *ELF3* protein is highly associated with the traits (b), with 669W showing
1186 delayed DTH and more phytmeric iterations (c). Red boxes indicate exons of
1187 *HvELF3*, blue box indicates the putative PrD domain.

1188 **d.** Complementation test of *HvELF3* variants (669G and 669W) in *Arabidopsis elf3-1*
1189 mutant at different temperatures. Three independent events (#1 - #3) for each
1190 construct at T_2 generation are used the phenotypic comparison.


1191 **e.** Allelic frequency of *HvELF3* G669W in different barley populations or geographical
1192 latitudes. We used the 300 re-sequenced barleys, including 100 wild barleys and 200
1193 diverse domesticated barleys⁴¹, for the comparisons of domestication status

1194 (domesticated versus wild) or growth habitat (spring versus winter); we used capital
1195 latitudes from the D6S for the latitudinal comparison.

1196 **f.** Correlation of HvELF3 G669W variation with eigenvalues of the first two PCs (PC1
1197 and PC2) representing the global domesticated barley diversity in the IPK Genebank
1198 collection ($n = 19,778$ ²⁷). Note that the direct G669W SNP was not present in the
1199 GBS-based SNP matrix (Morex v1), we used the closely linked GBS SNP
1200 (1H:556832572, $r^2=0.9$) as a proxy of HvELF3 G669W.

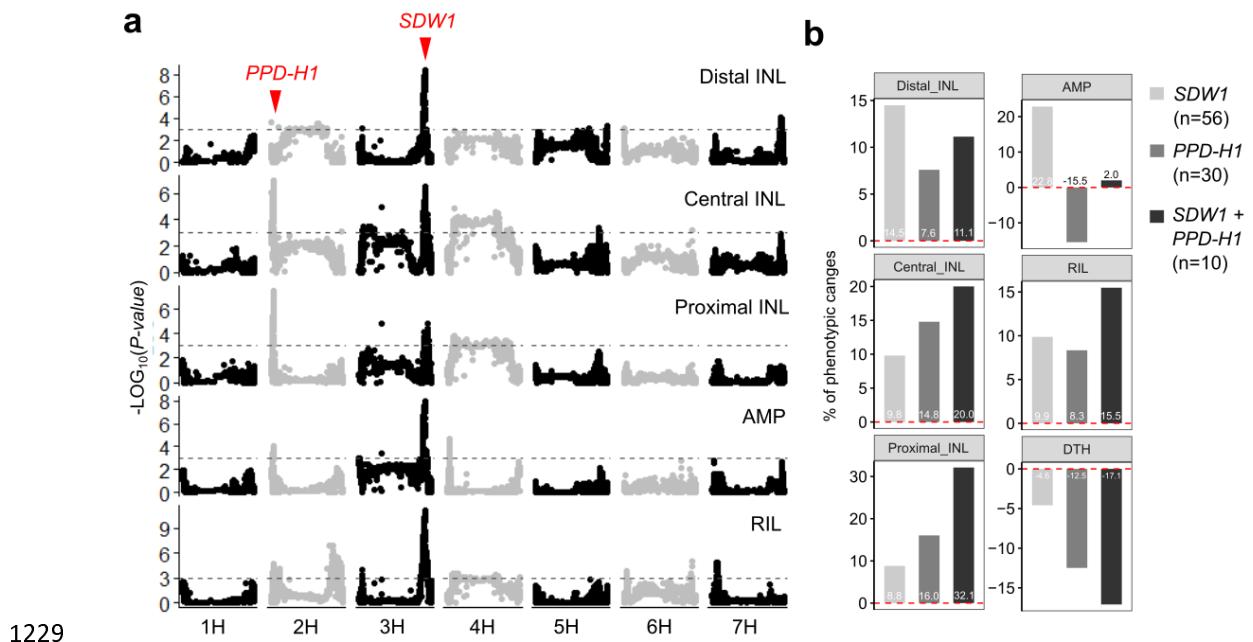
1201 Significant levels in **c** and **d** are determined from two-tailed Student's *t*-test. *** $P <$
1202 0.001. $n = 11$ or 12 replicates in **d**. Letters above the boxplot in **(f)** represent
1203 statistical significance from ANOVA followed by Tukey's HSD test ($P < 0.01$).

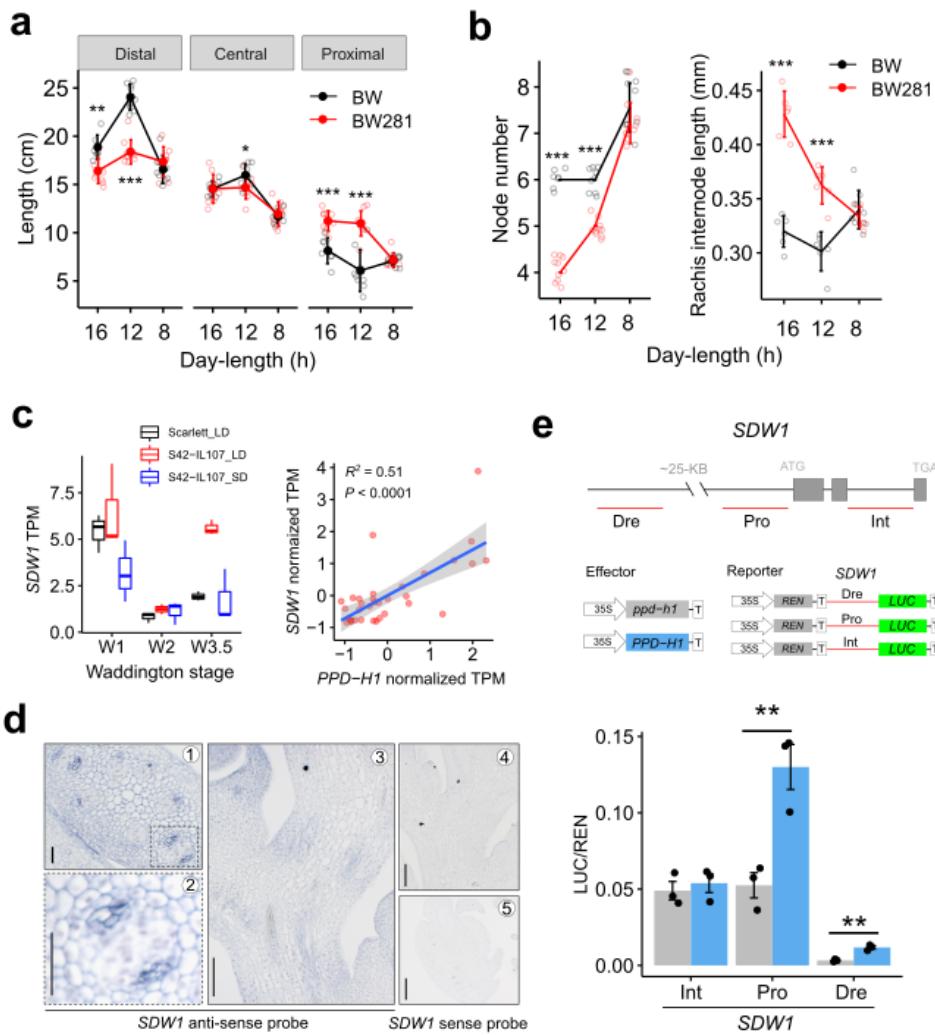
1204

1205

Fig. 5: Identification of a super-locus associated with internode length.

1206 **a.** Dotplot showing the association signals for internode length. Black and green dots
 1207 from top panel are association signals detected in the wild barley ILs and the D6S
 1208 population, respectively. Five adjacent peaks (P1 – P5) supported by both
 1209 populations are highlighted with grey shadows. *HvAP2* position is marked with red
 1210 dashed line. Locations of prime candidates involving in GA metabolism are indicated.
 1211 Bottom panel shows a local linkage disequilibrium (LD) heatmap based on 1,034,167
 1212 SNPs (500 – 670-Mb) from the D6S population.


1213 **b, c.** Boxplots showing the effects of P1 – P5 on rachis internode length (RIL) (**b**) and
 1214 culm internodes (**c**). Wild barley alleles additively increase RIL, whereas
 1215 domesticated alleles additively decrease RIL, as well as culm internodes (DIL, CIL
 1216 and PIL). Note that no domesticated barleys with a stacking of up to four or five
 1217 peaks can be identified in the D6S population. Letters above boxplot represent
 1218


1219 statistical significance from one-way analysis of variance (ANOVA) followed by
1220 Tukey–Kramer honestly significant difference (HSD) tests.

1221 **d.** Allelic frequencies based on the GWAS peak SNPs from each of the four peaks
1222 (P1 – P4) in wild, Eastern and Western barleys. SNP data are extracted from a
1223 previous study⁴¹.

1224 **e.** Haplotype diversity within the super-locus in wild, Eastern and Western barley
1225 populations. Barley accessions are hierarchically clustered according to 170 binned
1226 polymorphic sites from 1,274,896 SNPs ([Methods](#)). Locations of P1 – P4 are
1227 indicated.

1228

1239

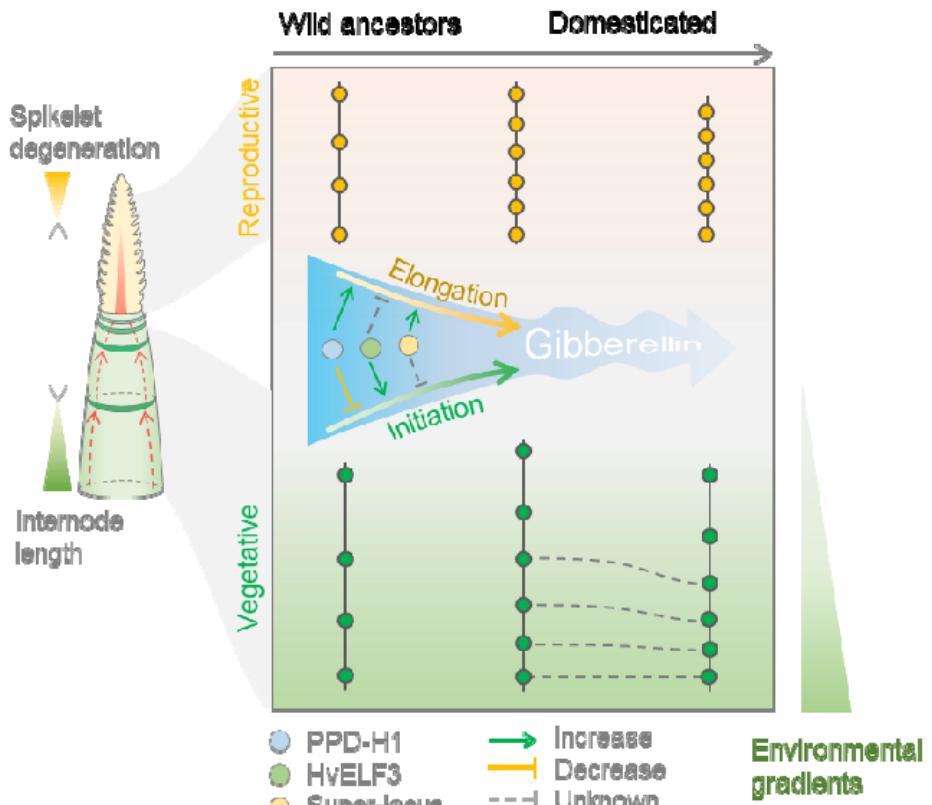
1240 **Fig. 7: PPD-H1 is molecularly coupled with SDW1.**

1241 **a.** Quantitative comparison of distal, central and proximal internode length under 16,
1242 12 or 8 hours (h) of day-length conditions.

1243 **b.** Quantitative comparison of culm node number (left panel) and average rachis
1244 internode length (right panel) under 16, 12 or 8 hours (h) of day-length conditions.

1245 **c.** PPD-H1 positively regulates SDW1 gene expression. Boxplot shows the SDW1
1246 transcripts in developing apices of a NIL-PPD-H1 (S42-IL107) and the control
1247 (Scarlett) under short day (SD) or long day (LD) conditions. Dotplot shows the co-
1248 expression of SDW1 and PPD-H1 across diverse tissue-types and developmental
1249 stages. RNA-seq data reported previously^{49,50} are used to estimate the transcripts
1250 (TPM) based on Morex annotation v2.

1251 **d.** SDW1 mRNA *in-situ* hybridization in developing rachis during the elongation stage
1252 (W5.5) of spike development. Transverse (**d1**, **d2** and **d5**) or longitudinal (**d3** and **d4**)

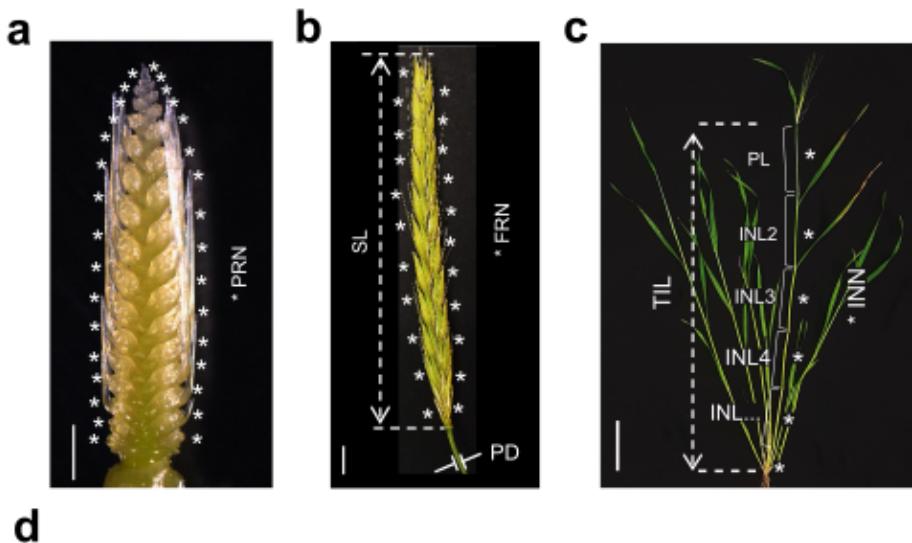

1253 sections hybridized with an anti-sense probe (**d1 – d3**) or a sense probe (**d4** and **d5**,
1254 control) of *SDW1* are shown. Scale bars: 20 μ m in **b1** and b2; 50 μ m in **d3 – d5**.

1255 **e.** Dual-LUC assay showing the direct activation of *SDW1* by PPD-H1. The diagram
1256 on the top depicts the regions used for the assay, including a distal regulatory region
1257 (Dre), the 2-kb promoter region (Pro) and the second intron (Int) of *SDW1*. ATAC-seq
1258 data reported previously⁹² are used to estimate the accessible chromatin regions of
1259 *SDW1*. Relative luciferase activities (LUC/REN) are determined in barley leaf
1260 protoplasts co-transfected with different effector and reporter constructs. Data are
1261 shown as mean \pm s.d. (n = 3 biological replicates).

1262 Significant levels in **(a)**, **(b)** and **(e)** are determined from two-tailed Student's *t*-test.

1263 * P < 0.05; ** P < 0.01; *** P < 0.001. n = 3 – 9 replicates.

1264



1265

1266 **Fig. 8: A proposed model depicting how phytomer initiation and elongation are**
1267 **changed under domestication or crop adaptation.**

1268 During the spikelet initiation/differentiation phase, proximal internode length is
1269 positively associated with tip spikelet degeneration, presumably due to extra inputs
1270 for elongations or transports (indicated with red dashed arrows). Wild barleys tend to
1271 have longer proximal internodes, and early tip degeneration. The transition from this
1272 'initiated less, elongated more' of wild ancestor to the 'initiated more, elongated less'
1273 of domesticated barley can be due to genetic reshufflings of flowering time genes that
1274 result in dynamic but overall reduction of GA levels, as demonstrated here three
1275 examples (the PPD-H1 – SDW1 axis, the superlocus, and the HvELF3¹⁸). The most
1276 prominent changes towards the 'semi-dwarf' stature of domesticated barleys in
1277 Eastern barleys are the shortening of proximal internodes (indicated with dashed
1278 lines).

1279

d

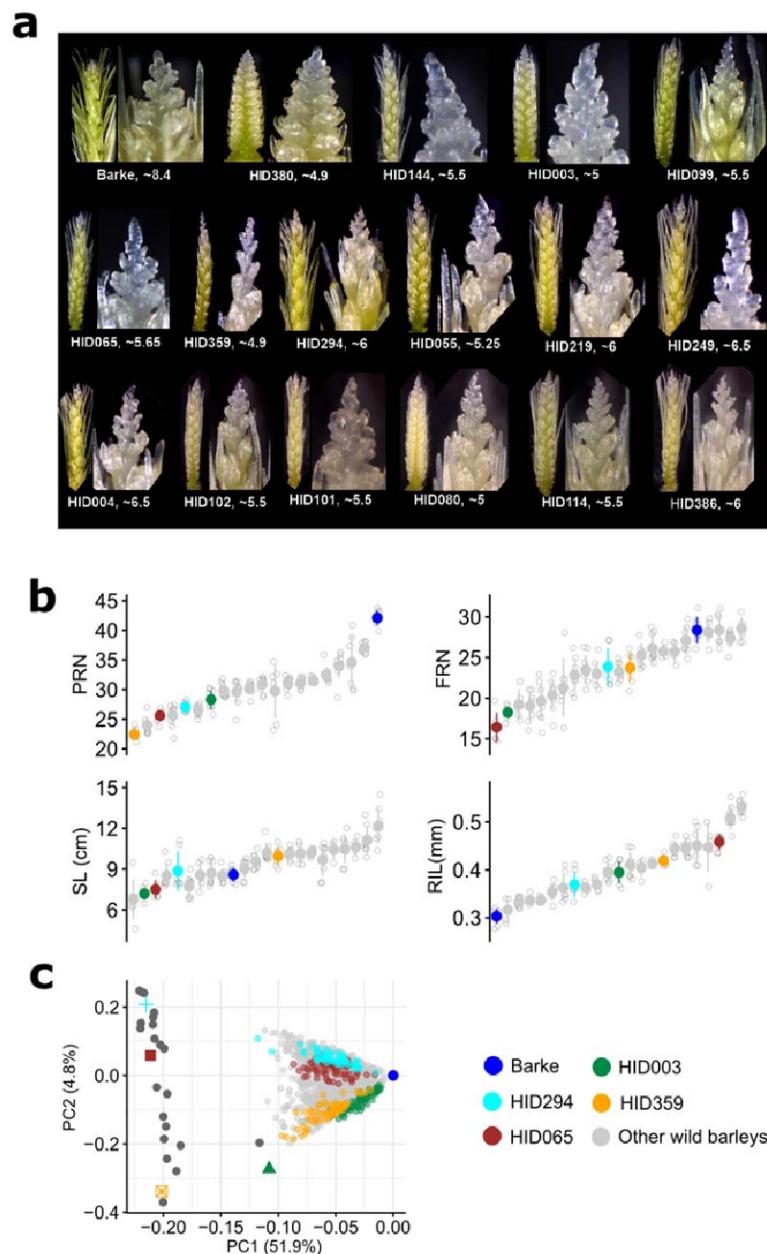
ID	Abb.	Name
1	PRN	Potential rachis node number
2	FRN	Final rachis node number
3	INN	Culm node number
4	SL	Spike length
5	RIL	Average rachis internode length
6	PD	Peduncle diameter
7	AMP	Culm length oscillatory amplitude
8	TIL	Total culm length
9	AIL	Average culm internode length
10	PL	Peduncle length
11	PPL	Percentage of peduncle length
12	DIL	Distal culm internode length
13	CIL	Central culm internode length
14	PIL	Proximal culm internode length

█ Direct measurement
█ Deduced traits

$$(5) \text{ RIL} = \frac{\text{SL}}{\text{ARN}}$$

$$(9) \text{ AIL} = \frac{\text{TIL}}{\text{INN}}$$

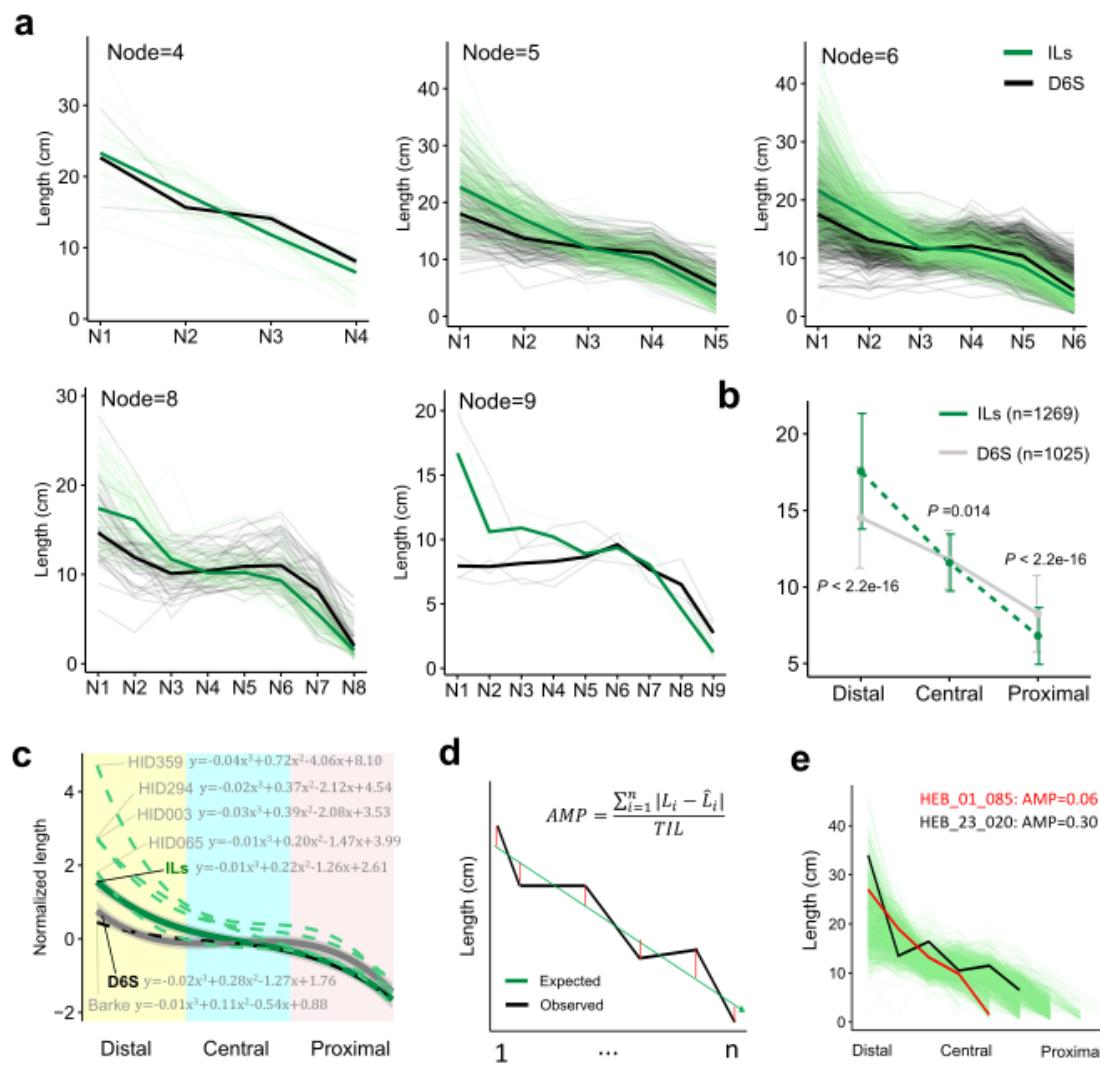
$$(11) \text{ PPL} = \frac{\text{PL}}{\text{TIL}}$$


1280

1281 **Fig. S1. Summary of the phenotypes.**

1282 **a – c.** Representative images showing the phenotyping for node initiation and
 1283 internode elongation related traits. Reproductive spikes at the maximum yield
 1284 potential stage (**a**) or anthesis stage (**b**) are used to determine potential rachis node
 1285 number (PRN) and final rachis node number (FRN), respectively. At anthesis stage,
 1286 vegetative culms (**c**) are used to collect other phenotypes. Scale bars: 1 mm (**a**), 1
 1287 cm (**b**) and 10 cm (**c**).

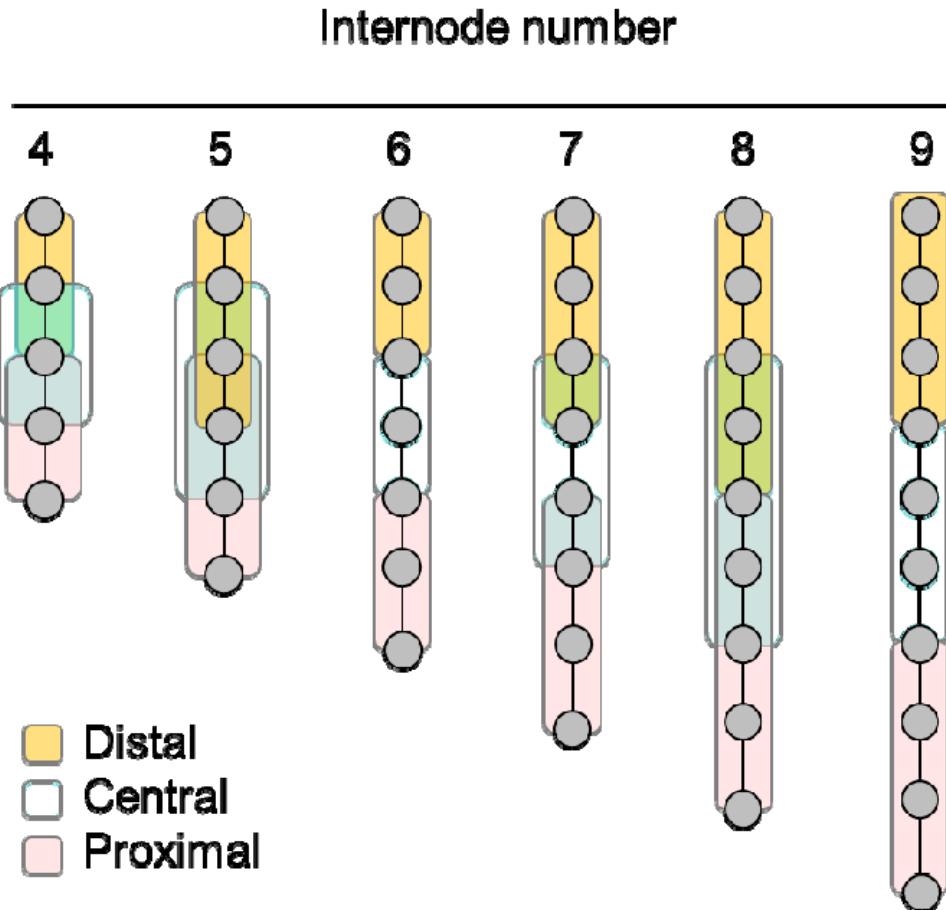
1288 **d.** Trait abbreviations (Abb.) and description of the deduced traits. Other deduced
 1289 traits (trait id 7, 12 – 14) are summarized in ([Supplementary Figs. 3 and 4](#)).


1290

1292 **Fig. S2. Spike morphology of the HEB-25 founder parents.**

1293 **a.** Representative spike images highlight the early suppression of apical meristem
1294 (inflorescence meristem) activity, and the accelerated tip degeneration from different
1295 wild barleys compared with cultivated barley Barke. Numbers below each spike
1296 represent spike developmental stage defined by Waddington.

1297 **b, c.** Summary of the spike phenotypes from the 25 wild barleys and Barke (**b**). Four
1298 selected sub-populations based on the phenotypic and genotypic diversity informed
1299 by a PCA plot (**c**) are highlighted with colors.

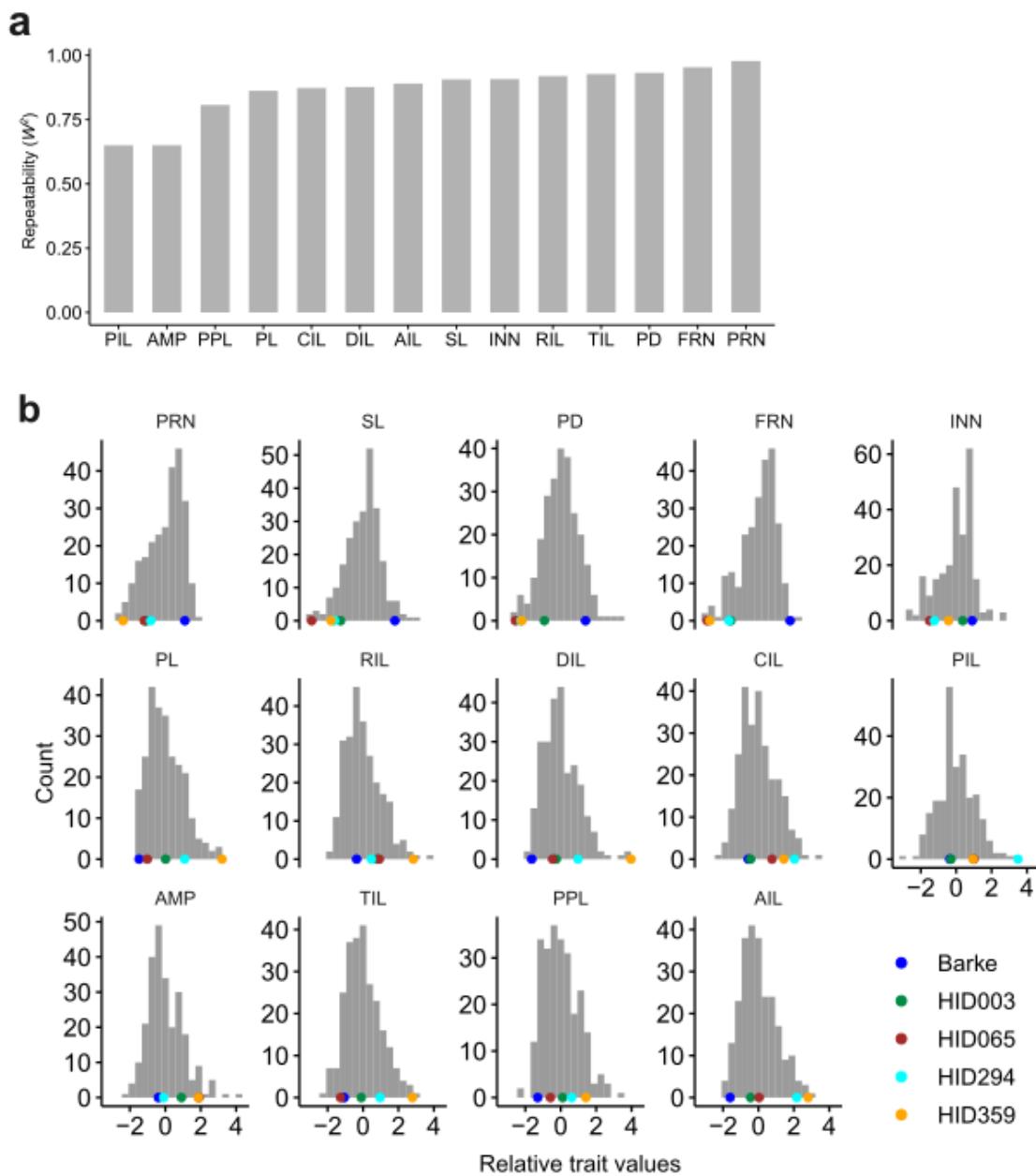

1300

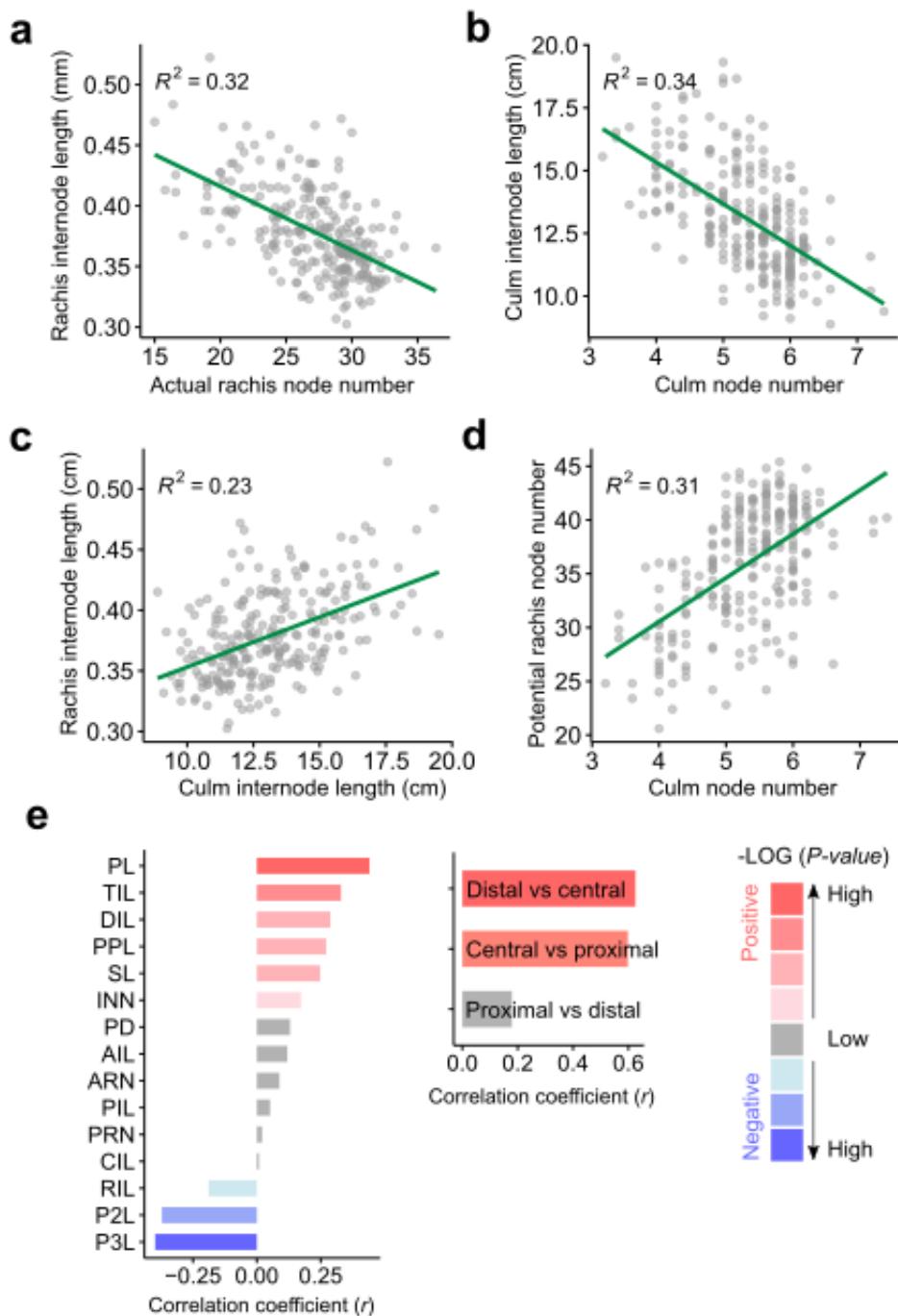
1301 **Fig. S3. Pattern of internode elongation from vegetative culms.**

1302 **a.** Pattern of internode elongation from culms with different node number. See also
1303 [Fig. 1b](#).

1304 **b.** A quartic function modeling the overall patterns of culm internode elongation form
1305 the D6S, ILs, as well as the parents. Note that the four wild barley parents overall
1306 have both longer distal (DIL) and proximal (PIL) internode length. Compare with wild
1307 barley ILs, D6S have shorter DIL, but longer PIL.

1308 **c, d.** Estimation of culm oscillatory elongation amplitude (AMP). A graphical depiction
1309 of using residuals (σ , red lines) to estimate AMP. See also [Methods](#). (d) illustrates
1310 two lines with high (black) or low (red) estimated AMP, in respect to the remaining ILs
1311 (green).

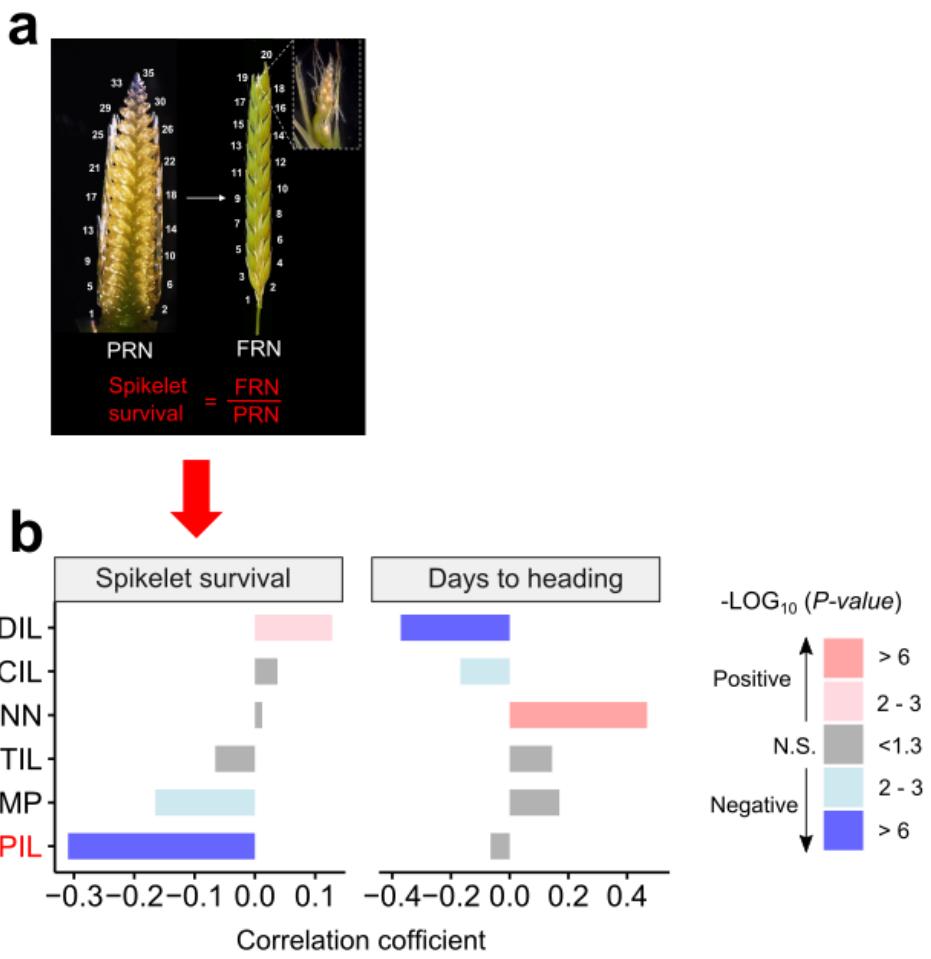



1312

1313 **Fig. S4. Estimation of distal, central and proximal internode length.**

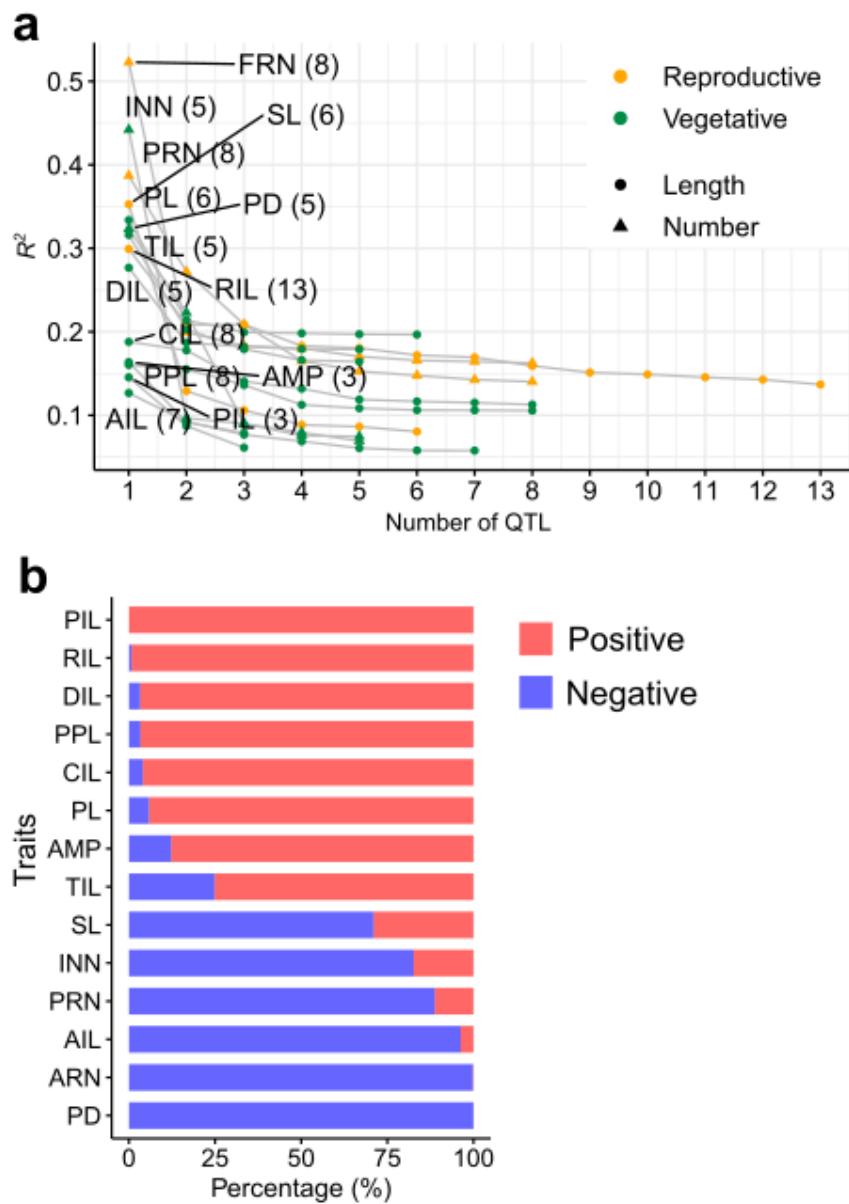
1314 A graphical depiction for the estimation of the average distal, central and proximal
1315 internode length by using a moving average strategy. Each grey dot represents a
1316 node. Lengths of the internodes within each color boxes are averaged to estimate the
1317 average length of distal, central and proximal internodes.

1318



1325

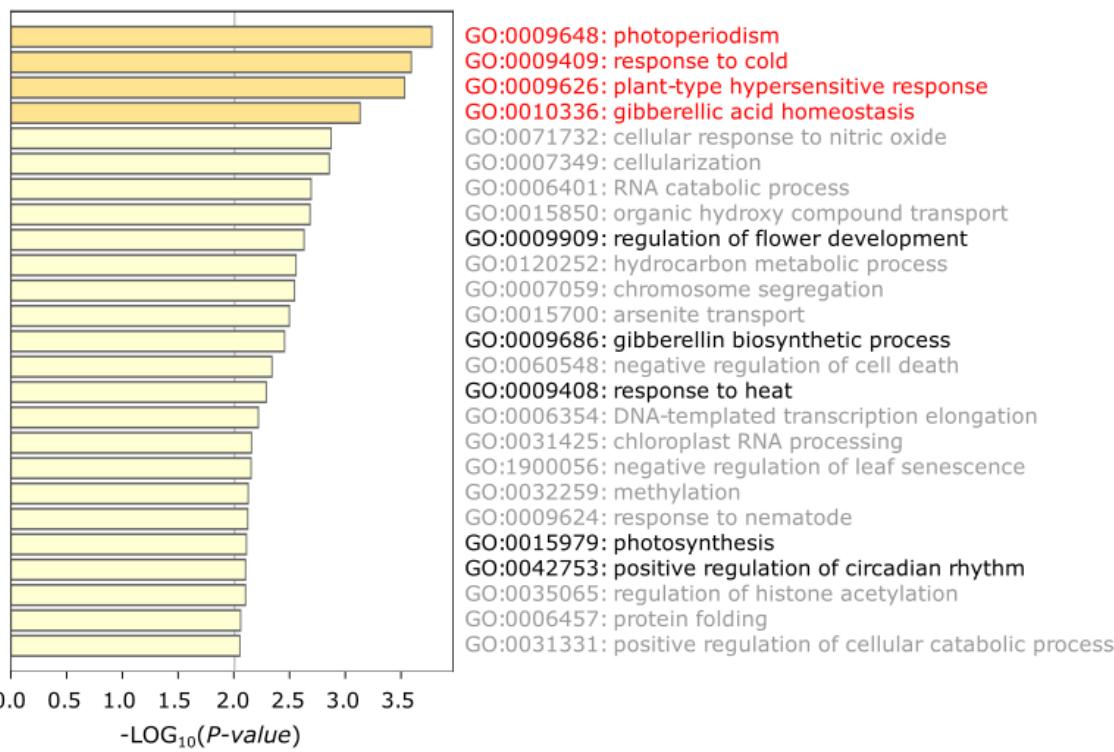
1326 **Fig. S6. Phenotypic relationship for node initiation and internode elongation.**


1327 **a – d.** Graphs showing the overall liner relationship from the comparisons of node
1328 initiation versus internode elongation (**a**, reproductive; **b** vegetative), or vegetative
1329 growth versus reproductive growth (**c**, internode length; **d**, node number).

1330 **e.** Relationships of AMP with other phenotypes (left) or among the distal – central –
1331 proximal internode length (right) based on the Pearson's correlation coefficient (r).
1332 Grey color indicates an insignificant correlation between the traits.

1334 **Fig. S7. Correlation analysis of vegetative culm variables with reproductive**
1335 **efficiency**

1336 Left panel depicts the calculation of reproductive efficiency, which is deduced from
1337 the fraction of final rachis node number (FRN) by potential rachis node number
1338 (PRN). Right panel shows the correlation coefficient of reproductive efficiency with
1339 different vegetative culm variables, including distal (DIL), central (CIL) and proximal
1340 (PIL) internode length, internode number (INN), total culm length (TIL) and the
1341 lengthen amplitude (AMP). Note that among these vegetative culm variables, PIL
1342 shows the strongest negative correlation with spikelet survival. Grey color indicates
1343 insignificant correlation.

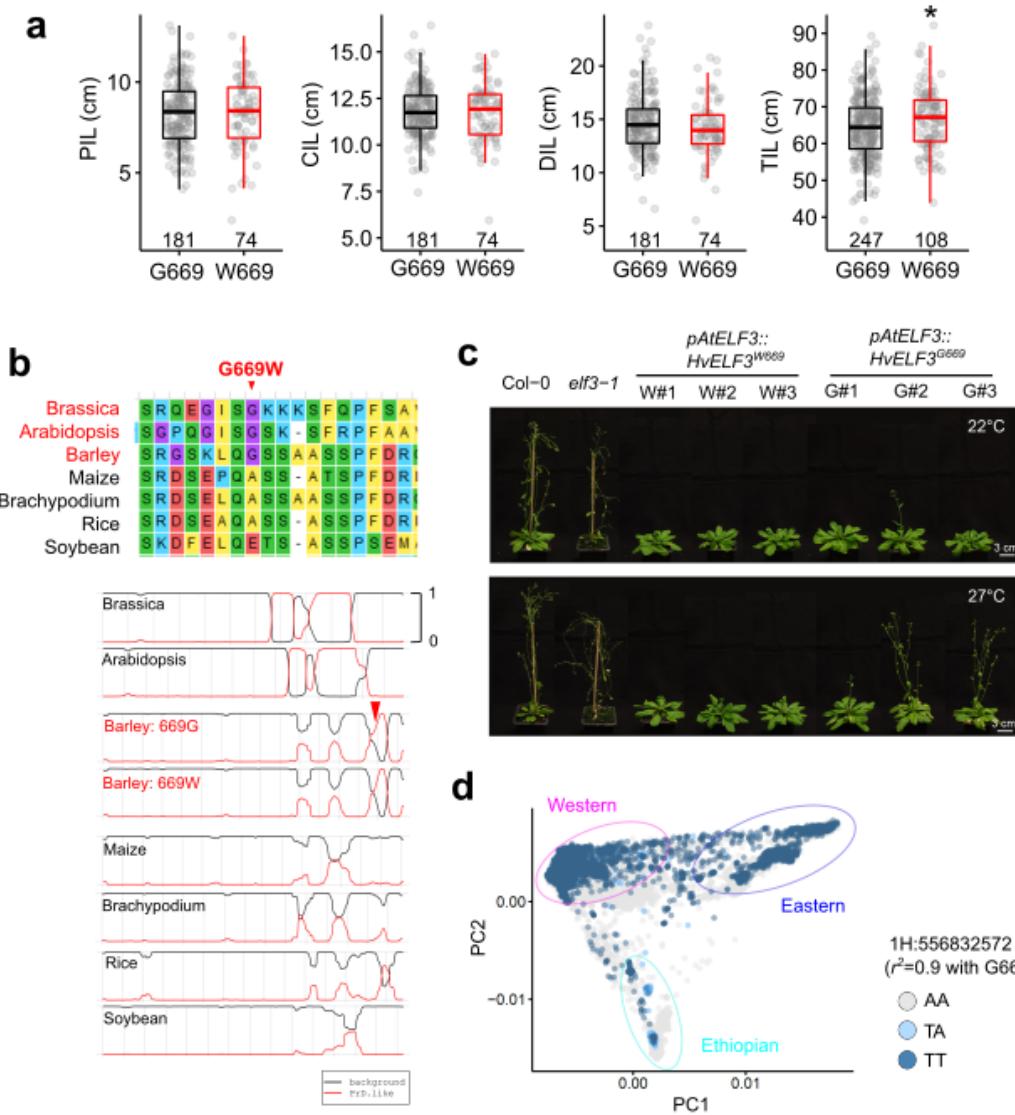

1344

1345 **Fig. S8. Summary of the quantitative trait loci (QTLs) identified in the ILs.**

1346 **a.** Distribution of phenotypic variation explained by each QTL (R^2) and the number of
1347 detected QTLs.

1348 **b.** Stacked bar graph showing the SNP effects on the phenotypes assayed. Positive
1349 or negative represent wild barley alleles will positively or negatively affect the traits
1350 under Barke background, respectively.

1351



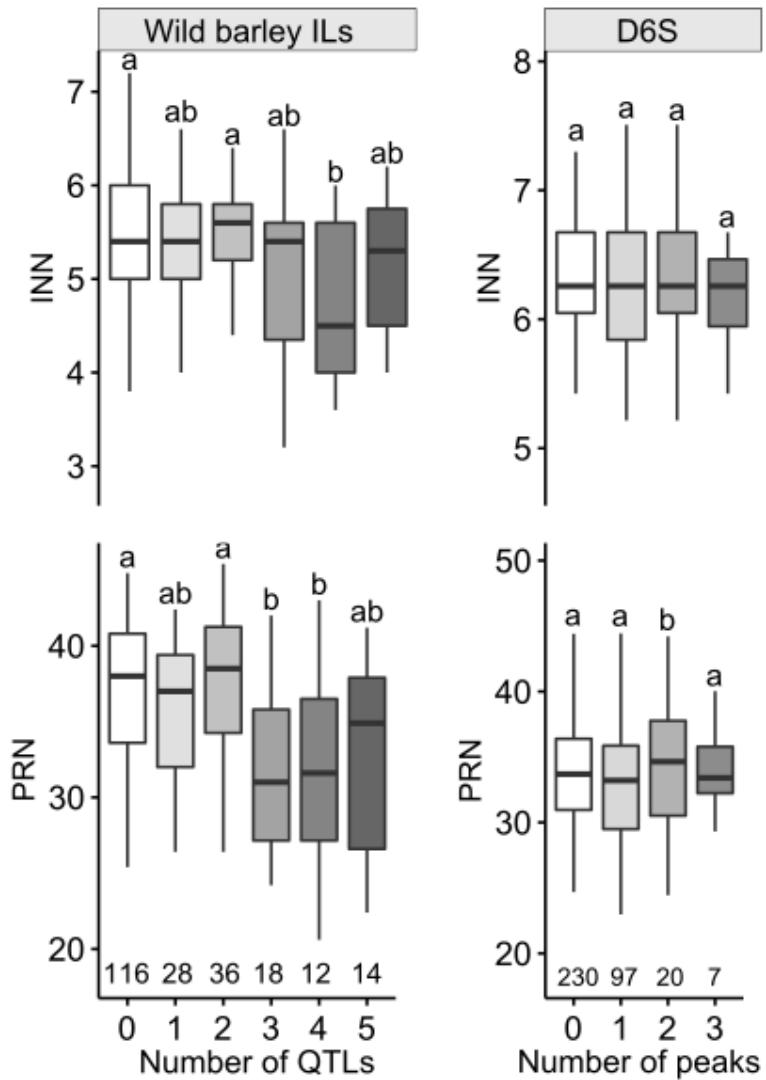
1352

1353 **Fig. S9. GO enrichment analysis of 2,560 GWAS candidates identified in the**
1354 **D6S**

1355 The closest barley homologs of *Arabidopsis* genes were first identified through a
1356 BLASTP search. Only the best hit of each gene (e-value<1e-05) was used.
1357 Functional enrichment analysis was done with Metascape (<https://metascape.org>).
1358 The top 4 enriched terms are highlighted with red color, other less significantly
1359 enriched terms potentially related to adaptation are highlighted with black.

1360

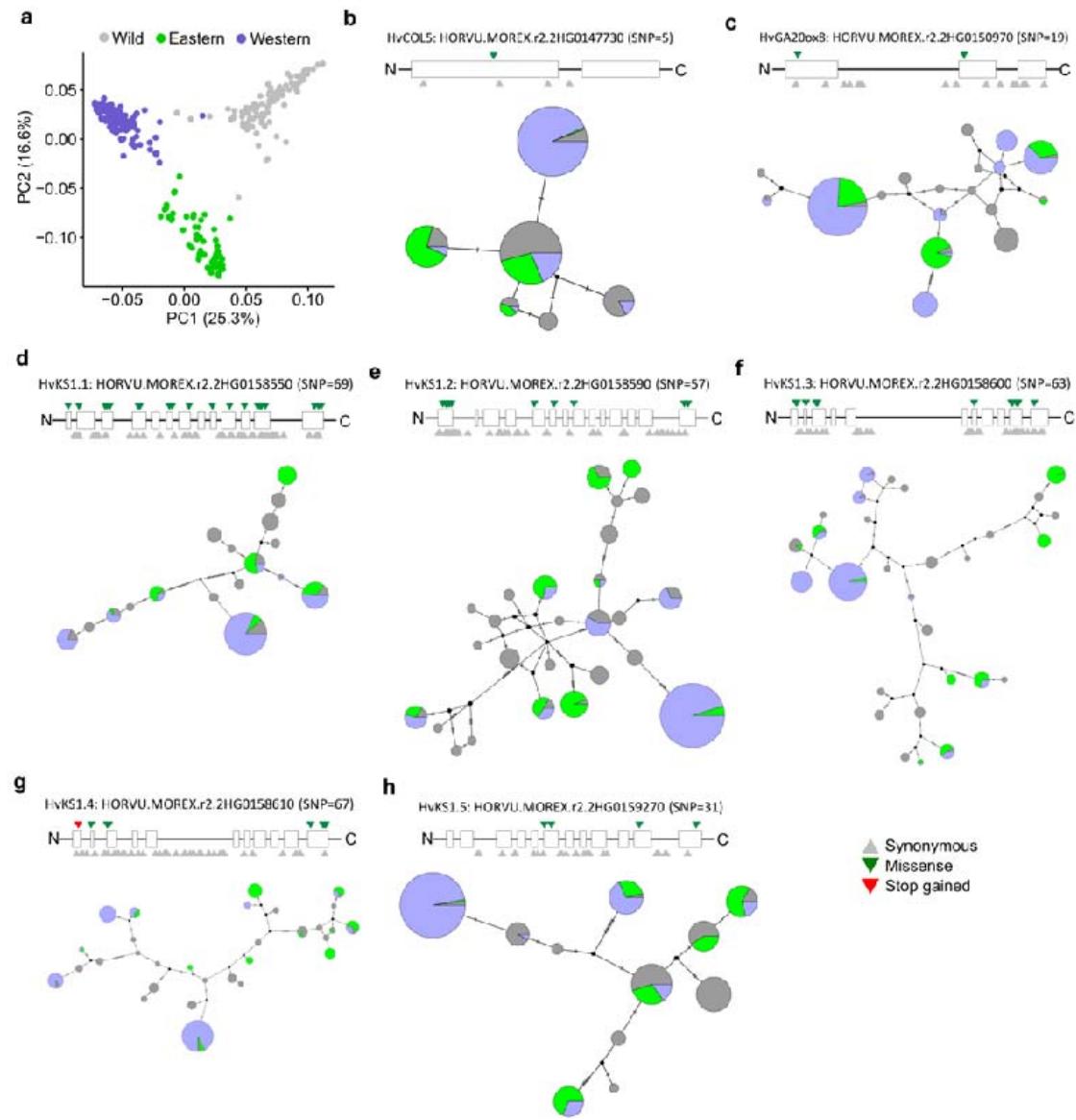
1361


Fig. S10. HvELF3 G669W variant and the functional consequence.

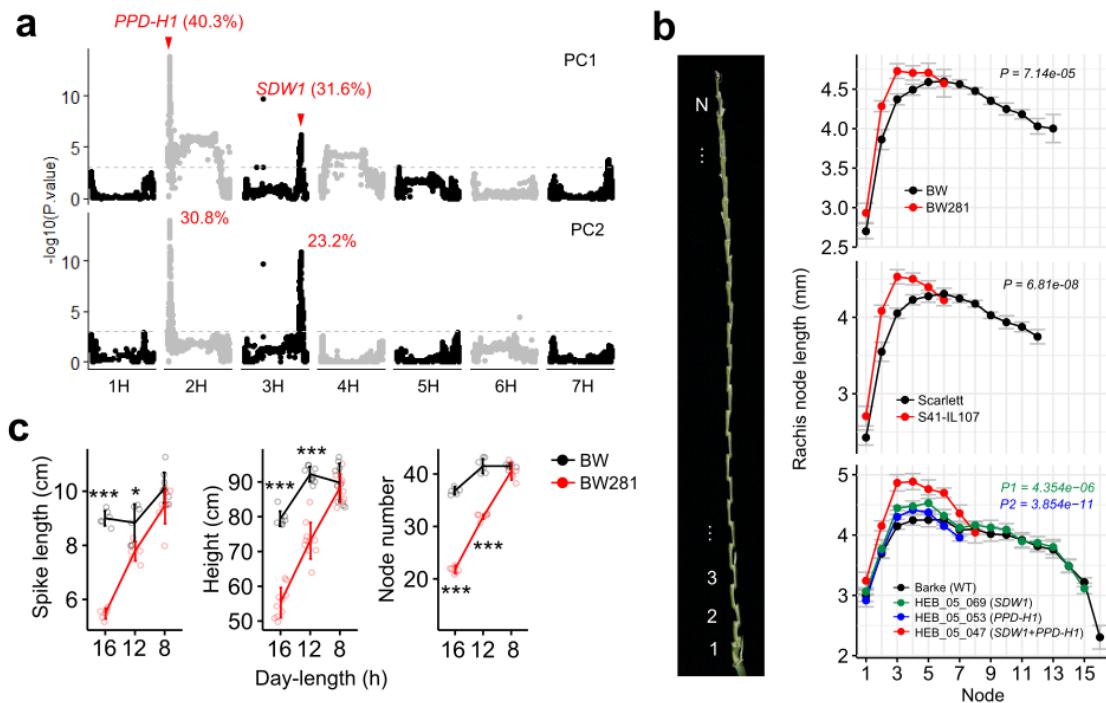
1362 **a.** Comparisons of internode elongation and total culm length. Note that only total
 1363 culm length (TIL) was significantly changed ($*P<0.05$) due to the G669W substitution,
 1364 but not internode elongation traits.

1365 **b.** The G669W is predicted to slightly narrow the prion domain (PrD). In silico
 1366 prediction was done using the Prion-Like Amino Acid Composition (PLAAC) algorithm
 1367 (<http://plaac.wi.mit.edu/>). Top panel shows the sequence alignment surrounding the G669W
 1368 mutation sites in 7 plant species with (red) or without (black) the PrD.

1369 **c.** Representative image showing the differential complementation of flowering time
 1370 for the *Arabidopsis* *elf3-1* mutant with barley *HvELF3^{669W}* or *HvELF3^{669G}* variants.


1372 **d. HvELF3 G669W variation is mainly associated with the PC2 axis that separate**
1373 **Ethiopian barleys from the remaining. See also Fig. 4f.**

1374
1375 **Fig. S11. Effect of the super-locus on phytomer initiation traits.**

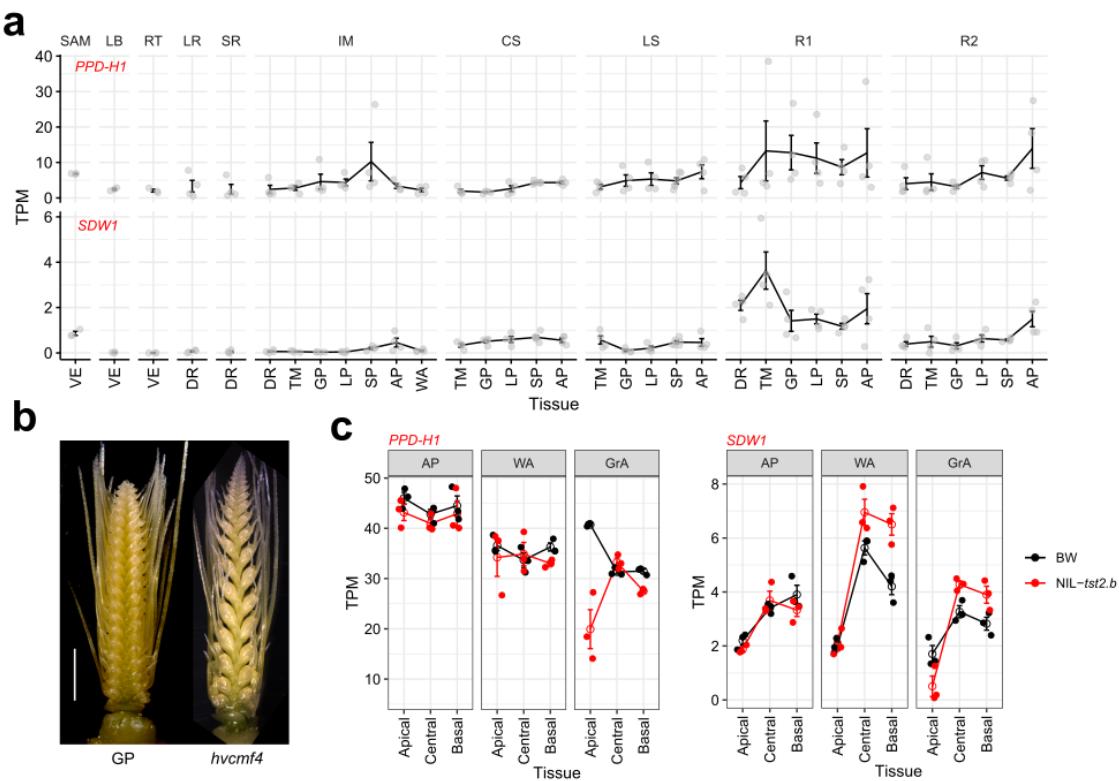

1376 Note that similar additive effect for internode elongation was not observed for node
1377 initiation (PRN and INN). Letters above boxplot represent statistical significance from
1378 one-way analysis of variance (ANOVA) followed by Tukey–Kramer honestly
1379 significant difference (HSD) tests.

1380

1393 gene exons. Synonymous SNPs are indicated with grey triangles below each gene
1394 model; SNPs that induce amino acid substitutions (non-synonymous) or gain of stop
1395 codon are indicated with green or red triangles above each gene model.

1396

1397

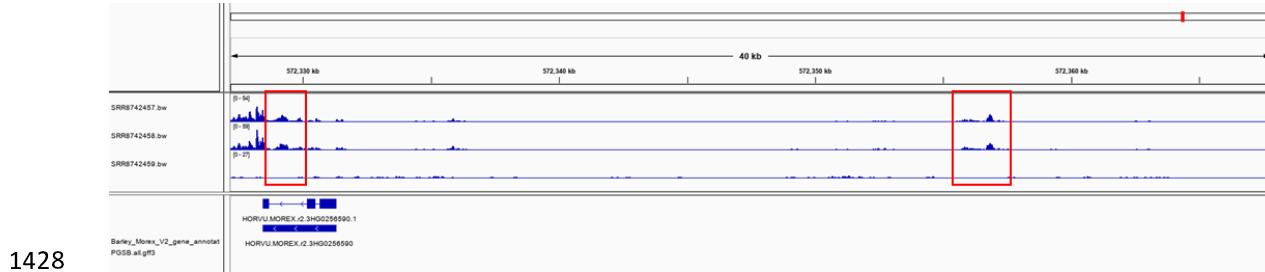

1398 **Fig. S13. Effects of wild barley alleles at the *PPD-H1* and *SDW1* loci.**

1399 **a.** Manhattan plots showing the associations of the *PPD-H1* and *SDW1* loci for the
1400 first (PC1) and second (PC2) PCA loadings based for the 14 traits. Percentage of
1401 variants explained by each loci (R^2) are indicated. Grey dashed lines are genome-
1402 wide threshold at $P = 0.001$.

1403 **b.** *PPD-H1* and *SDW1* positively controls rachis internode length. Left panel
1404 illustrates the measurement of rachis internode length (one side only). Measurements
1405 were conducted on two *PPD-H1* isogenic lines and their backgrounds [BW281 vs BW
1406 (top); S42-IL107 vs Scarlett (middle)], as well as selected introgression lines from the
1407 HEB-25 with different wild barley allele introgressions (bottom). Significant values
1408 were determined by ANOVA. $P1$ is from the comparison between HEB-05-047 and
1409 HEB-05-069; $P2$ is from the comparison between HEB-05-047 and HEB-05-053.

1410 **c.** Quantitative comparison of spike length (left), plant height (middle) and potential
1411 rachis node number (right) between BW and BW281 under 16, 12 or 8 hours (h) of
1412 day-length conditions. Significant levels are determined from two-tailed Student's t -
1413 test. * $P < 0.05$; *** $P < 0.001$. $n = 5 - 9$ replicates.

1414



1415

1416 **Fig. S14. SDW1 co-expresses with PPD-H1 from diverse tissues.**

1417 **a – c.** TPM values of *PPD-H1* and *SDW1* from floral meristems (SR, IM, CS, LS, R1
1418 and R2) and non-floral tissues (SAM, LB, RT and LR) in BW (a), or different spike
1419 sections at three developmental stages in BW and *tst2.b* mutant (Huang *et al.*, 2023)
1420 (b, c). SAM, shoot apical meristem; LB, leaf blade; RT, root tips; LR and SR, leaf-
1421 and spikelet ridges; IM, inflorescence meristem; CS and LS, central and lateral
1422 spikelet; R1, rachis; R2, whole spike sections; VE, vegetative stage; DR – WA: spike
1423 developmental stages ranging from double ridge (DR), triple-mound (TM), glume
1424 primordium (GP), lemma primordium (LP), stamen primordium (SP), awn primordium
1425 (AP) and white anther (WA); GrA, green anther stage. GP, Golden Promise. Scale
1426 bar: 2mm.

1427

1429 **Fig. S15. Accessible chromatin regions (ACRs) at *SDW1*.**

1430 A snapshot of the Integrated Genomics Viewer browser showing the landscape of
1431 ACRs around *SDW1*. ATAC-seq data from⁹⁰ are aligned to Morex reference v2.
1432 Identification of ACRs were done according to⁹⁰. Track 1 and 2 are ATAC-seq reads,
1433 track 3 is a control. Red frames are two ACRs at *SDW1*, together with the 2-kb
1434 promoter regions, are used for dual-LUC assay.

1435

1436

1437 **Fig. S16. Light regimes at different barley canopy layers from the greenhouse.**
1438 **a.** A representative image depicting the different canopy layers at tillering/stem
1439 elongation stage.
1440 **b.** Light regimes at different barley canopy layers during tillering/stem elongation or
1441 anthesis stages. A gradient descent of overall light intensity from Layer1 – Layer4
1442 (distal – proximal) is observed for both stages. Note that light penetrating to the
1443 proximal end becomes severely blocked along with growth (tilling – anthesis stage).

1444

1445 **Other supplementary information include:**

1446 **Table S1.** Line information and BLUE values of the phenotypic data

1447 **Table S2.** Raw phenotypic data

1448 **Table S3.** Summary of the QTLs detected in the wild barley population

1449 **Table S4.** Summary of the QTLs detected in the D6S population

1450 **Table S5.** Summary of the candidate genes identified in the D6S population

1451 **Table S6.** GO enriched terms of the candidate genes identified in the D6S

1452 **Table S7.** Flowering time genes orthogroups in *Arabidopsis* and barley

1453 **Table S8.** Primers used in this study

1454

1455