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Abstract

As a single reference genome cannot possibly represent all the variation present across
human individuals, pangenome graphs have been introduced to incorporate population
diversity within a wide range of genomic analyses. Several data structures have been
proposed for representing collections of genomes as pangenomes, in particular graphs.
In this work we collect all publicly available high-quality human haplotypes and
constructed the largest human pangenome graphs to date, incorporating 52 individuals
in addition to two synthetic references (CHM13 and GRCh38). We build variation
graphs and de Bruijn graphs of this collection using five of the state-of-the-art tools:
Bifrost, mdbg, Minigraph, Minigraph-Cactus and pggb. We examine differences in
the way each of these tools represents variations between input sequences, both in terms
of overall graph structure and representation of specific genetic loci. This work sheds
light on key differences between pangenome graph representations, informing end-users
on how to select the most appropriate graph type for their application.

1 Introduction

In recent years, the majority of studies on human genetics have been conducted on the
basis of comparing new samples against a single, standard reference sequence. This
reference sequence is a linear succession of nucleotides that acts as a blueprint of the
human genome. It is routinely used to align raw sequencing data to it in order to find
variations between genomes, e.g. single-nucleotide polymorphisms (SNPs), insertions or
deletions (indels). It also is the backbone of the UCSC Genome Browser [16] which
enables inspection of genomic and epigenomic features. Despite updates that have
improved the quality of the human reference sequence in the last two decades, its linear
form severely limits the ability to capture population genetic diversity. For instance the
locations of frequently observed structural variations cannot be easily integrated into a
linear reference. To see this, consider the difficulty of designing a suitable coordinate
system in the presence of (possibly nested) structural variants. Having a single genome
as reference sequence also introduces an observational bias towards the chosen alleles
that were integrated into that sequence, negatively impacting many primary analyses
such as reads mapping, variant calling, genotyping and haplotype phasing. As a result
our ability to precisely characterize structural variants, SNPs and small indels is
limited [5,/12,/30]. The current version of the reference genome (GRCh38) is estimated
to miss up to 10% of our species genetic information [28§].
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Improvements in sequencing data quality and length, as well as genome assembly
methods, are providing a fast expanding collection of haplotype-resolved human genome
assemblies. If adequately combined together, these high-quality individual genomes may
offer an powerful alternative to the linear reference. There now is an active line of
research on pangenomes, i.e. data structures that represent a collection of genomic
sequences to be analyzed jointly or to form a reference [532]. Pangenome-based
approaches have already been successfully applied to short reads mapping and
genotyping [8,/30]. These results pave the way for new applications, e.g. genome-wide
association studies, where more precise identification of variants can improve the scope
of genetic studies in aging, human diseases, and cancer [5}32].

Several pangenomic data structures have been proposed: multiple sequence
alignments, de Bruijn graphs, cyclic and acyclic variation graphs, and haplotype-centric
models that use the Burrows-Wheeler transform [5]. Each of these approaches aim to
represent a collection of genomic sequences in an efficient way, to store, visualize, and
retrieve differences of interest between the considered genomes. Graph-based
pangenome data structures, such as the de Bruijn graph and the variation graph,
appear so far to be the most advanced in their ability to handle large amounts of input
data. They are capable of representing tens to hundreds of human haplotypes
simultaneously. Variations graphs use a sequence graph and a list of paths to store
input haplotypes, while de Bruijn graphs store all haplotype k-mers annotated by their
haplotype(s) of origin.

Scaling pangenome graph data structures to store hundreds of genomes is a challenge
that requires significant computational resources and engineering efforts. Many software
tools have been created, here we briefly describe major ones. Pantools [27] and
Bifrost [18] are two methods that have been developed to generate pangenomes for
analysis on large collections of genomes, mostly for applications in phylogenetics and
bacterial genomics. The PanGenome Graph Builder (pggb) |11], Minigraph-Cactus
and TwoPaCo [23] are methods for building general-purpose pangenome graphs.
Minigraph [21] builds a particular type of pangenome graph by aligning sequences in an
iterative way to a reference template. Minimizer-space de Bruijn graphs (mdbg) [9] are
variants of de Bruijn graphs that can efficiently represent very large collections of
bacterial pangenomes (e.g. 600,000 bacteria).

Many human pangenomes have been generated, e.g. using Pantools [27] (7 genomes),
Minigraph [21] (94 haplotypes), Minigraph-Cactus [2,|17] and pggb [22] (94 single
chromosomes), and TwoPaCo [23] (100 simulated genomes). Lastly, a draft version of a
human reference pangenome constructed using pggb and the Minigraph-Cactus
pipeline has appeared in a very recent article from the Human Pangenome Reference
Consortium [22]. In this article we provide a comprehensive view of whole-genome
human pangenomics through the lens of five methods that each implement a different
graph data structure: Bifrost, mdbg, Minigraph Minigraph-Cactus and pggb. We
examine several features of pangenome graphs, in particular their scalability and how
they represent genetic diversity. To this end we collected all publicly available
high-quality human haplotypes (section , and attempted to construct pangenomes of
various complexity with each selected tool (section .

The rest of this article is structured as follows. We describe in more details the
human haplotypes and pangenome construction tools in the Section 3. In Section 4 we
focus specifically on two HLA loci in order to observe fine-grain difference between the
methods. In Section 5 we examine other characteristics of the methods such as their
ability to perform dynamic updates, remain stable under permutation of inputs, being
accessible to downstream applications and ability to visualize the generated graphs.
Finally we discuss in Section 6 an overall assessment of the tools and some perspectives.
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Table 1. Description of the three datasets generated to test the scalability of
the tools

Data sources: ! Google Brain Genomics; 2 Human Pangenome Reference Consortium;
1000 Genomes Project; * Telomere to Telomere Consortium.

3

Haplotypes Project Bases
2 Google! 5.9 Gbp
10 Google, HPRC? 30 Gbp
104 Google, HPRC, 1KG?, T2T* 313.6 Gbp

2 Methods

2.1 Datasets and haplotypes collection

In order to evaluate the state of current human pangenome representations, we sought
to build a human pangenome that contains all publicly available high-quality human
haplotypes. We collected from two different sources 102 different haplotypes from the
genome of 51 individuals, and also used the two reference genomes, GRCh38 from the
Genome Reference Consortium (GRC) [26] and CHM13 v2.0 cell line of the T2T
Consortium [24]. Five haplotypes correspond to Google Brain Genomics
DeepConsensus [3] assembly dataset: they are hifiasm assemblies of PacBio Hi-Fi reads
corrected with DeepConsensus. The average of their N50 is 37,99 Mbp. The remaining
haplotype assemblies as well as the T2T reference are from the Human Pangenome
Reference Consortium (HPRC) year-1 freeze [32], and GRCh38 is from the GRC. Their
average N50 is 40.3 Mbp. Since HG002 is contained in the DeepConsensus data, the
HPRC HGO002 haplotypes were not used. The origin and the sex of the individuals are
diverse to aim for a fair representation of the diversity in human population: out of 51
total individuals, 21 are males and 30 are females and they represent 14 different ethnic
groups, from US to Africa and Asia.

To evaluate the scalability of pangenome construction tools, we created three
datasets of increasing size: 1) 2 haplotypes from the same individual, HG006, 2) 10
haplotypes from 5 different individuals (HG002, HG003, HG004, HG006 and HG00735)
and finally 3) all of the 104 haplotypes. To test whether the order of the input
sequences matters, we considered various random orderings for the 10 haplotypes in
Dataset 2. Since Minigraph needs a reference sequence as fist haplotype in order to
correctly build the graph, we generated specific 2 and 10 haplotypes datasets with the
first haplotype replaced by the reference genome CHM13. This was applied to the
Minigraph-Cactus pipeline as well as it uses Minigraph variation graphs.

2.2 Pangenome graph construction tools

We evaluated tools that generate graph pangenomes as variation graphs and colored
compacted de Bruijn graphs. Variation graphs are generally locally acyclic while de
Bruijn graphs have cycles. In variation graphs, nodes represent sequences and edges
represent immediate sequence adjacency without overlap. Variation graphs are generally
easier to visualize and to interpret while challenging to construct at scale and, apart
from pggb, require a reference genome. In de Bruijn graphs (dBG), nodes are k-mers
(string of length k) and edges are (k-1)-overlaps between nodes. In practice, dBGs are
represented in a compact way where all nodes along unbranching paths are compacted
into unitigs. The resulting graph is called compacted De Bruijn Graph, where nodes are
unitigs and edges represent (k-1)-overlaps. As shown in Figure|l] de Bruijn graphs
result in large graphs that pose visualization and interpretation challenges, in particular
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Figure 1. The complete pangenome construction scheme and visualization.
A, The overall workflow, using 5 different tools on 3 different datasets; B, complete 104
haplotypes variation graph built by Minigraph; C, focus on part of HLA (MHC) region
in chromosome 6 from panel B; D, focus on DRB1-5 locus of HLA from panel C; E,
complete 10 haplotypes variation graph built with pggb; F, 10 haplotypes variation graph
built with Minigraph-Cactus; G, 104 haplotypes pangenome mdbg; H, 10 haplotypes
Bifrost dBG. All graphs except those produced by Minigraph have been simplified
using gfatools and rendered using Bandage. VG is for variation graph.
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as there is no alignment to a reference.

e Bifrost constructs dynamic, coloured compacted de Bruijn Graphs (¢cdBG). It
first generates a standard dBG using an efficient variant of Bloom Filters and
then computes the compacted dBG from it. Colors, i.e. identifiers representing
the sample origin of each k-mer are added by storing an array per k-mer. A
human genome cdBG typically consists of a single large connected component, as
common k-mers are shared between chromosomes. This pangenome representation
contains all the variations present in input sequences.

e mdbg builds a variant of de Bruijn graphs called a minimizer-space de Bruijn
Graph (mdbg), which is efficient to construct as it only considers a small fraction
of the input nucleotides. Color information is currently not supported in the
implementation. Similarly to Bifrost, a mdbg also typically represents a human
genome as a single large connected component, albeit with orders of magnitude
less nodes. Minimizer-space de Bruijn graphs mostly discard small variants, yet
are sensitive to heterozygosity which creates branches in the graph.

e Minigraph constructs a directed, bidirected and acyclic variation graph iteratively
by mapping new haplotypes using a combination of the minimap2 tool and the
graph wavefront alignment algorithm. The first input sequence acts as a backbone
for the whole representation. The sample(s) of each node are stored in a rGFA
output file. Minigraph considers only variations longer than 50 bps hence it is
oblivious to isolated SNPs and small indels: even if it produces base-level
alignment for contigs, the graphs are not a base-level resolution. The resulting
graph is divided into connected components that correspond to the chromosomes
present in the first given input genome.

e Minigraph-Cactus is a variation graph construction pipeline that combines
Minigraph to generate a structural variations graph and Cactus base aligner to
generate base-level pangenome graphs of a set of input assemblies and embed
haplotypes paths. Cactus [2] is a highly accurate and scalable reference-free
multiple whole-genome alignment tool, that in this pipeline considers the reference
sequence used by Minigraph to ensure that the resulting variation graph is
acyclic. The final graph is further normalized using GFAffix [7]. The pipeline
allows to generate multiple graphs, one for each chromosome, or produce a single
graph that includes inter-chromosomal variants.

e pggb is a directed acyclic variation graph construction pipeline rather than a single
tool. It calls three different tools: pairwise base-level alignment of haplotypes
using wifmash [15], graph construction from the alignments with seqwish [10],
graph sorting and normalization with smoothxg and GFAffix [7,{13]. The resulting
variation graph represents variations of all lengths present in the input sequences.

3 Scalability and characteristics of pangenome graph
construction tools

We ran the above five tools on the three datasets of Table[l} and compared their
computational performance as well as characteristics of the produced pangenome graphs.
The goal is to assess the ability of each method to scale to data available in the near
future, i.e. thousands or even millions of human genomes [28|.
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Table 2. URL, version, pangenome representation and parameters of the
three analyzed tools.
pgeb/0.2.0 used wimash v0.7.0, seqwish v0.7.3 and smoothxg v0.6.1.

‘ Tool Github repository Graph type Version Parameters ‘

Bifrost pmelsted/Bifrost De Bruijn graph 1.0.5 -k100 -c

pggb pangenome/pggh variation graph 0.2.0 -p 98 -s 10000 -k 311 -G 13033,13117

-00.03-v-t8-T8-A-Z

Minigraph 1h3/Minigraph variation graph 0.18 -CXggs

Minigraph-Cactus ComparativeGenomics  variation graph 2.2.3 —maxLen 10000 —delFilter 10000000

Toolkit/cactus
mdbg ekimb/rust-mdbg De Bruijn graph 1.0.1 -k 10 -d 0.0001 ~minabund 1 —reference

3.1 Computational metrics

The performance of each tool is evaluated in terms of running time, peak memory, disk
space required by the output data structure (graph and annotations). We also
compared the number of nodes, edges and connected components as indicators of the
complexity of the graph. Results are displayed in Table

In terms of running time, mdbg is two orders of magnitude faster than other tools on
all considered datasets, taking around two minutes on the H2 dataset and half an hour
on H104. Bifrost is the second fastest on H104 (18 hours), and Minigraph is the
second fastest on H2 (8 minutes). Minigraph-Cactus takes one order of magnitude
more time than Minigraph. We could not obtain graphs for pggb and
Minigraph-Cactus on H104 as for the first execution did not finish after 2 weeks and
the second returns an error.

In terms of memory usage, mdbg consistently uses less than half the memory of other
tools (31 GB on H104), followed by Minigraph (61 GB on H104). On H2 all tools used
between 8 and 66 GB of memory.

All tools used reasonable disk space to store the resulting graph, < 12 GB for H10
and < 38 GB for H104. Although Minigraph-Cactus and pggb retain all variations
and are the only two tools able to reconstruct the input haplotypes directly from the
graph, they are the second and third most efficient in term of disk space (for
Minigraph-Cactus, 3.6 GB on H2 and 7 GB on H10). While Bifrost and Minigraph
perform all computation in memory, pggb, Minigraph-Cactus, and mdbg store
intermediate files on disk, taking comparable space to the input size (up to 3x for
Minigraph-Cactus).

3.2 Different tools yield different pangenome graphs topologies

Graph metrics such as the number of nodes, edges and connected components provide
useful insights on the level of detail of the represented variations and on the complexity
and accessibility of the information inside the pangenome.

The number of graph nodes varies between 17,000 and 11 millions for the H2 dataset
across all tools. In all cases, the number of nodes is at least 3 orders of magnitude
smaller than the number of bases in the haplotypes, indicating that pangenome graphs
are effective at compressing linear parts of the haplotypes. Tools which discard
variations (Minigraph and mdbg) yield in the order of 10*~10° nodes across all datasets,
while tools which retain all variation (Bifrost, Minigraph-Cactus and pggb) yield in
the order of 106-107 nodes. In all cases going from the H10 dataset to the H104 dataset
increases the number of nodes by 5x, indicating that graph complexity grows sublinearly
with the number of added haplotypes.

The number of connected components varies between 2 and 1402 across all methods
and datasets, and the number of large components (i.e. those with more than 1% of
total base pairs) varies between 1 and 30. If chromosomes were separated perfectly,
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Table 3. Time, memory, final disk space, nodes, edges, total connected components
and connected components with more than 1% of base pairs comparison of Bifrost,
mdbg, pgegb, Minigraph and Minigraph-Cactus for different number of haplotypes in
input. Minigraph-Cactus times include the Minigraph graph construction step. pggb
was not able to complete its execution on the largest dataset in more than 2 weeks thus
it is not considered. Minigraph-Cactus failed to compute the 104 HAP dataset.

‘ Haplotypes Metric Bifrost pggb Minigraph Minigraph-Cactus mdbg ‘
time (hh:mm:ss) 1:21:25 15:45:30 00:08:33 3:11:59 00:02:38
memory (GB) 53 24 38 66 8
disk space (GB) 4.8 4.3 2.9 3.6 4.4
2 nodes 9,482 k 8,492 k 34 k 10,851 k 17 k
edges 13,108 k. 11,503 k 48k 14,702 k 23 k
conn comp 2 1402 25 4 174
conn comp > 1% bp 1 30 24 4 24
time (hh:mm:ss) 2:27:29  117:08:09 2:03:29 15:57:05 00:05:46
memory (GB) 102 71 49 154 18
disk space (GB) 12 7.6 2.9 7 9.7
10 nodes 27,468 k 29,315 k 133 k 37,767 k 67 k
edges 37,584k 40,282k 190 k 51,595 k 93 k
conn comp 3 864 25 3 40
conn comp > 1% bp 1 5 24 3 1
time (hh:mm:ss) 18:38:28 — 46:22:00 — 00:31:38
memory (GB) 122 — 61 — 39
disk space (GB) 29.4 — 3.2 — 38
104 nodes 106,339 k 632 k 270 k
edges 293,339 k — 912 k — 396 k
conn comp 17 — 25 — 1097
conn comp > 1% bp 1 — 24 — 1

pangenome graphs should contain exactly 24 connected components (one per nuclear
chromosome, excluding mitochondria). Minigraph produces 24 large connected
components as the number of chromosomes in the reference CHM13 v2.0 (25 including
mitochondria). Bifrost and Minigraph-Cactus yield graphs with less than 25
connected components while mdbg and pggb have more than 25. In the Bifrost dBG,
the vast majority of sequences (>99.99%) are in a single giant component, as
chromosomes are joined because they share common k-mers. In mdbg such joining does
not occur on dataset H2, which has 24 large enough components (each containing > 1%
of bases), possibly due to the absence of long and similar enough regions between
chromosomes. Minigraph does not map any mitochondrial sequence from the input
haplotypes to the reference, while they do get included into Minigraph-Cactus graphs.
Even if it is common practice to analyze pangenomes chromosome by
chromosome [17.,[22], in this analysis we purposely used entire genomes as input instead.
This was done for two reasons: i) to highlight the scalability of the tools, and ii) because
separating chromosomes prevents the identification of inter-chromosomal inversions,
translocations, and transposable elements, even if most of the generated
inter-chromosomal events are probably alignment artifacts. The effects of this choice
can be seen in the pggb and the Minigraph-Cactus H10 variation graphs of Figure
In the pggb graph 19 chromosomes are linked into a single giant component, while
chromosomes 17, 18, 20, X, and Y are in other large components. This giant component
consists of 25 M nodes that contain 83% of the total basepairs. The remaining 859
components represent only 4.7% of the total bases due to small sequences in the input
haplotypes. In the Minigraph-Cactus graph all chromosomes are linked into a single
giant component except chromosome 18 that is in a separate component, and the sexual
chromosomes (X and Y) that are connected together into another component.
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4 Interpretation of variation in pangenome graphs:
focus on two HLA loci

The ability to detect and annotate variations among input haplotypes defines the scope
of each pangenome graph construction method. Previous work [4] recommends to build
graphs on a specific loci rather than the entire genome for the purpose of i) identifying
genomic diversity and ii) mapping raw reads to divergent regions, specifically
difficult-to-map repeats. Here we evaluate how pangenomes built from entire haplotypes
represent specific biologically relevant loci.

4.1 Extraction of HLA-E and a complex HLA region from
complete pangenome graphs

We extracted from complete pangenomes the regions corresponding to two loci of the
Human Leukocyte Antigen complex, also known as HLA. These regions are highly
medically relevant as they contain many disease-associated variants [6]. The first locus
is the HLA-E gene, that is part of the nonclassical class I region genes, spanning 4,8 kbp
and is relatively conserved across populations. It has been shown to have significant
association with hospitalization and ICU admission as a result of COVID-19

infection [31]. The second is an HLA complex region comprising the HLA-A gene, part
of the classical, highly polymorphic class I region. It is around 58 kbp long and contains
the HLA-U, HLA-K, HLA-H, and HCG4B genes. We extracted these two regions from
pangenome graphs using a custom script that yields a subgraph corresponding to a
given set of sequences and their variation. The script uses a different recommended
method for each of the pangenome graph types. In a nutshell, we extracted regions
using exact coordinates when possible, and and resorted to sequence-to-graph alignment
otherwise (see Appendix section for details). While on variation graphs and mDBGs
nearby nodes of an aligned region correspond to variations of the locus, this is not
always true for standard dBGs. Extracting accurate and complete loci representation is
an unsolved challenge for dBGs.

4.2 HLA-E: a low complexity region

Figure [2 shows how the different tools represent HLA-E over datasets H2, H10 and
H104. As expected, Minigraph does not detect any variation, since the SNPs that
characterize the region are too small to be considered in the construction steps of their
algorithm. pggb, on the contrary, has 2 SNPs in H2 and 3 in H10. Bifrost detects the
same SNPs as pggb in H2 and H10. Both of them represent the exact same variations
and render the same haplotypes paths. mdbg captures the heterozygosity of a large
region containing the HLA-E locus as the number of samples grows. As the mdbg graph
is built in minimizer space, nodes represent long genomic segments (in the order of
hundreds of thousand of base-pairs). In H10 and H104,the minimizer-space
representations of the haplotypes are identical; however differences in flanking regions of
the graph create variations that are captured in extra nodes that are also extracted in
this region. On H2, Minigraph-Cactus detects 3 variations as the dataset used is
different, containing the CHM13 reference and just one haplotype of HG006 (as in
Minigraph), as discussed in Sectio

Figure [2] also illustrates how pangenome complexity grows with the number of
genomes: the Bifrost H104 subgraph has the most variation across all methods,
highlighting that dBGs represent variations exhaustively in large graphs. On the other
hand, pggb has the most straightforward method for extracting subgraphs, and also
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represents variants exhaustively in datasets H2 and H10, but could not scale to the
H104 dataset.

HLA-E LOCUS COMPARISON

TOOL METRIC 2 HAPLOTYPES 10 HAPLOTYPES 104 HAPLOTYPES

region
BIFROST
nodes 9 13 58
edges 10 15 75
region
b— %—(L_
nodes 1 5 9
edges 0 4 8
region
L | L L |
MINIGRAPH

nodes 1 1 1
edges 0 0 0

region

MINIGRAPH
CACIDS nodes 10 10

edges 12 12

region

nodes 7 10

edges 8 12

Figure 2. Representations of the HLA-E locus by five graph construction methods over
three increasing large human pangenomes. Nodes highlighted in red contain part of the
locus sequence. The numbers of nodes and edges displayed below each graph concerns
the whole subgraph (both red and grey nodes). Minigraph, on H2, H10 and H104, and
mdbg, on H2, have only a portion of one node highlighted since the 4.8k bp region is
contained inside a single, long node.

4.3 HLA complex locus: high complexity region

Figure [3]is the counterpart of Figure [2| for the complex locus part. In this case the
overall interpretability of the region is more challenging, as the number and the
structure of the variations is different than in HLA-E. It is also more difficult to
compare across tools. Base-level variations, e.g. SNPs, are not visually recognizable in
Figure [3|in the methods that retain them (i.e. pggb, Minigraph-Cactus and Bifrost)
due to the large sizes of graphs.

There are notable differences in how tools represent the variation, which is
well-illustrated in the H2 dataset. While Minigraph renders H2 as a single sequence
plus a large structural variant (SV) of ~ 52k bp, pggb separates it into two paths that
differ by = 54k bp in length. Bifrost represents a detailed bubble that contains many
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variations inside each path. In mdbg, even extracting the complete locus is a challenge
as many of the subgraph nodes were not selected by our procedure. Minigraph-Cactus
adds base level divergences between haplotypes on top of Minigraph SV graph.

These differences between representations are further accentuated in the H10 dataset.
For it, pggb tends to separate the haplotypes into different paths, Bifrost renders
consistently the same compacted representation and Minigraph neglects most of the

small differences but is able to display accurately the general picture, and

Minigraph-Cactus, as in H2, adds small variations on top of Minigraph structure.

TOOL METRIC 2 HAPLOTYPES 10 HAPLOTYPES 104 HAPLOTYPES
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Figure 3. Representations of the complex HLA region by five graph construction
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5 Uncovering characteristics of graphical pangenome
tools

The data structures generated by pangenome building tools are expected to facilitate
comparisons between the input genomes. In addition pangenome graphs should be
stored in such a way to be easily used by downstream applications. We identify 8
important features for pangenome graph construction tools: i) stability, ii) editability,
iii) accessibility by downstream applications, iv) haplotype compression performance v)
ease of visualization, vi) quality of metadata and annotation. Two other but important
features, scalability and interpretability of produced graphs, were already discussed in
Sections [3| and |4, Table |4 summarizes some of the following considerations on the
relative strength of the tools.

5.1 [Editability and dynamic updates

As more high quality assemblies will be generated in the near future, haplotypes may be
added to a pangenome, or replaced by improved versions. Updating an existing data
structure instead of rebuilding it from scratch is both computationally and energetically
efficient. However, many succinct data structures currently used in pangenome
representation are static, i.e. cannot be updated. Some methods allow a restricted set of
editing operations. Minigraph allows to add new haplotypes on top of an already built
graph. Bifrost provides C++ APIs to add or remove (sub-)sequences, k-mers and
colors from the ccdBG. pggb, using odgi [14], allows specific operations that delete and
modify nodes and edges and add and modify paths through the graph. As
Minigraph-Cactus can be opened with odgi, it supports the same operations as pggb.
The current mdbg implementation uses a dynamic hash table, but does not expose an
interface that supports updates.

5.2 Stability

Counter-intuitively, a pangenome graph construction tool may in some cases generate
different outputs when executed multiple times with the same haplotypes as input. This
unstability could be due to a permutation in the order of the sequences given as input,
or non-determinism in the construction algorithm. Yet in order to facilitate the
reproducibility of results, pangenome building tools should generate an unchanged
output from the same set of input sequences, independently of the particular run or the
order in which these are given. We performed two tests to evaluate tool stability: i) we
run the tools 3 times using as input the same H10 dataset and ii) we run the tools twice
on shuffled input sequences, i.e. changing the order of the haplotypes of H10.

Bifrost and mdbg constructed exactly the same pangenome on every test, as by
definition, de Bruijn graphs are stable. Minigraph generates identical graphs on
identical inputs, but generates slightly different graphs when the input is permuted.
Indeed the construction algorithm of Minigraph is order-sensitive as it augments the
existing graph structure by aligning the next given haplotype to it and adding divergent
sequences. Minigraph-Cactus generates slightly different graphs on identical input.
pegeb generated slightly different graphs while maintaining the same haplotype
sequences in the paths. The overall representation of the input genomes is therefore
preserved, while the topology of the variation graph varies. The first two of the three
phases of the pggb pipeline (all-vs-all alignment and graph imputation) produce the
same result on different runs with the same input but differences arise when the order of
the input haplotypes changes. Most of the differences in the graph topology are thus
due to the final smoothing steps.
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5.3 Accessibility by downstream applications

To facililate their adoption, pangenome representations should be easily processed by
downstream analyses. De Bruijn graphs are challenging to analyze due to their high
number of nodes, edges, and redundancy (the k — 1-overlaps between nodes). Though
De Bruijn graph representations usually support queries of presence/absence on nodes
(as in Bifrost), they lack tools able to perform more elaborate analyses such as those
discussed in Section [4], e.g. incorporating haplotype information at the k-mer level. On
the other hand, variations graphs with paths provide more flexibility, i.e. as in pggb and
Minigraph-Cactus with the odgi visualization toolkit. Finally in Minigraph, which
considers a narrower spectrum of variants, the absence of path information prevents
haplotype-level analysis; haplotypes would need to be manually mapped back to the
graph.

5.4 Haplotype compression

Building a graph pangenome can be seen also as a way to store, compact and retrieve
the input haplotypes. As the number of new assemblies is growing faster than the data
storing capacity, pangenomes can potentially help save storage space. This is
highlighted by the disk space reported in Table |3] which is consistently smaller than the
sum of haplotype sizes for all methods and datasets.

In order to losslessly retrieve the input genomes from a pangenome, the
representation has to store all variations from the original haplotype sequences as paths
in the graph. pggb and Minigraph-Cactus fall into this category while the other three
considered tools do not store paths, or do not consider all variations, thus they are lossy.

Of note, the GBZ tool |29] enables graph pangenomes that store paths in the GFA
file format to be stored in a lossless compressed form. It uses a Graph Burrows-Wheeler
transformation to compress the graph in a more efficient way than using gzip [29].
Using GBZ, the pangenomes generated by pggb and Minigraph-Cactus are losslessly
compressed with space gains of 3.5-5x.

5.5 FEase of Visualization

Visualizing large graphs which exceed hundreds of thousands of node is a challenge that
exceeds the scope of pangenomics. The H104 pangenomes are difficult to visualize.
Among the visualization tools considered by the Human Pangenome Reference
consortium [32], only Bandage is able to display the Minigraph or mdbg H104 graphs,
which contains a few million nodes. We reduced the number of nodes and edges of pggb,
Minigraph-Cactus and Bifrost H10 graphs by collapsing isolated subgraphs
representing SNPs or indels up to 10k bp (using the command gfatools asm -b
10000 -u).

5.6 Quality of Metadata and Annotation

Augmenting pangenome structures with information from other omics data would
increase pangenome relevance in biological discoveries. As biobanks are rapidly growing,
more data is available on regulatory regions, transcriptomics, CNVs and other medically
relevant traits [1,19]. Pangenome data structures could leverage such information, and
some of the considered tools offer basic functionality in this sense. Bifrost provides a
function to link data to graph vertices through C++ APIs. pggb and
Minigraph-Cactus, using odgi, offer annotation capabilities through insertion of paths
or BED records. Minigraph and mdbg do not offer any annotation feature.
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Table 4. Relative strengths of five pangenome graph construction tools
Explanation of rows: 1) Efficacy of construction algorithm, measuring wall-clock time; 2)
degree to which variants (e.g. SNPs) are retained; 3) ability of a tool to perform well on
large datasets, both in comparison to other tools but also compared to smaller datasets;
4) ability to modify the produced data structure to add or remove haplotypes; 5) property
of producing the same result irrespective of perturbations, such as permutation of the
input order, and repeating the same run; 6) existence of tools (and operations) that can
be applied to the resulting graphs; 7) whether input haplotypes information is retained
by the tools, and if so, its space efficiency; 8) whether the entire graph can be directly
visualized and interpreted; 9) easiness of ’zooming in’ a specific genomic region and
interpret variants; 10) summarizes the functionalities provided by the tools to annotate
the pangenomes with genomic data.

Metric Bifrost pggb Minigraph-Cactus Minigraph mdbg
1) Construction speed eeo eo0o0 eo0o0 eeo0 XX}
2) Variations eee eee eee eeo0 eeo0
3) Scalablilty eee @00 eoo0 eeo0 eoe
4) Editability eee eeo0 eoo0 eeo0 eo0o0
5) Stability eee 00 00 eeo0 XX
6) Accessibility by downstream applications eo0o0 coe ece ee0 e0o0
7) Haplotype compression performance eeo0 xx Xy e0o0 e0o0
8) Ease of visualization eoo0 eeo0 eeo eoe eoe
9) Loci visualization and interpretability eo0o0 eeo0 eee ee0 eoo0
10) Metadata and annotation eeo0 eee eeo0 eo0o0 eo0o0

6 Discussion

Five state-of-the-art pangenome graphs construction tools were compared on the
representation of up to 104 human haplotypes. The approaches significantly differ in
terms of speed, graph size, and representation of variations. We find that it remains
computationally prohibitive to generate human pangenome graphs for hundreds of
haplotypes, especially while retaining all variations. Each approach has its own set of
strengths, and ultimately the choice of the method depends on the downstream
application. In addition, several takeaway points emerged from our analysis.

First, our focused analysis of HLA loci revealed that de Bruijn graphs and variation
graphs represent genomic variations equally well as pangenomes. While de Bruijn
graphs are faster to construct, more stable, and scale better in terms of input size, the
resulting graphs are challenging to interpret downstream. Variations graphs on the
other hand are more practical to analyze at the expense of a less efficient construction
step. Their visualization are more straightforward to interpret, mostly due to not
having cycles, and provide insights into loci differences.

Second, we can highlight two categories of pangenomic methods that have distinct
application domains. pggb, Minigraph-Cactus and Bifrost store all possible
variations, and keep haplotype information as paths or colors. They provide a complete
picture of the set of variations in the input genomes which makes them difficult to
analyze. Minigraph and mdbg generate ’sketched’ pangenome graphs that consider only
large variants, ignoring smaller differences, and are more efficient to construct and
visualize.

Third, every tool possesses an exclusive set of features. pggb facilitates downstream
analyses using the companion tool odgi. It allows to precisely extract and browse any
locus of interest. It is the only tool that generates variation graphs without a reference.
It also keeps a lossless representation of the input sequences. Minigraph generates a
pangenome graph based on a reference sequence taken as a backbone. Its shines in the
representation of complex structural variations, but does not include small or
inter-chromosomal variations. The pipeline Minigraph-Cactus, that uses the Cactus
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base aligner, can be used to add small level variations on top of the Minigraph graph
and to keep a lossless representation of the input sequences. Bifrost illustrates that
classical de Bruijn graphs are scalable, stable, dynamic, and store all variations.
However, extracting information from them remain a challenge. Lastly, mdbg is the
fastest construction method which generates an approximate representation of
differences between haplotypes.

In our view, future directions for human pangenomes building tools should focus on
tackling efficiency bottlenecks, aiming to represent hundreds to thousands of haplotypes.
Representations should further be lossless and represent the input haplotypes as paths
in the graph. Such features would unlock many other applications such as lossless
compression of haplotypes and cancer copy number variant analysis.

Finally, we recognize the need for more user-friendly tools that can be used by
biologists and that can translate complicated questions into graph queries. While odgi
begins to address these questions in variation graphs, other approaches have not yet
provided user-friendly interfaces. A package similar to odgi for de Bruijn graphs would
help fully realize their potential.

7 Benchmark infrastructure

Running time of pangenome construction tools was measured as wall clock time and
peak memory as maximum resident set size using the time command. Other metrics
were obtained with custom Python scripts. All benchmarks were performed on a
Supermicro Superserver SYS-2049U-TR4, with 3 TB RAM and 4 Intel SKL 6132
14-cores @ 2.6 GHz, using 8 cores.

Availability of data and materials

The scripts used to generate and analyse the pangenomes can be found at
https://github.com/frankandreace/CRHPG. Google Brain Genomic assemblies can
be found at
https://console.cloud.google.com/storage/browser/brain-genomics-public/
research/deepconsensus/publication/analysis/genome_assembly.

HPRC assemblies, CHM13 and GRCh38 can be found at https://s3-us-west-2.
amazonaws . com/human-pangenomics/index.html?prefix=working/.
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Supplementary material

7.1 Twopaco

We did not consider TwoPaCo as it is redundant with Bifrost. Both methods construct
the same de Bruijn graphs. TwoPaCo is a method for constructing ccdBG by finding
junction k-mers at the boundaries of unitigs or in branching nodes. It consists of two
main steps in which it approximates the dBG with a Bloom filter in order to reduce the
size of the problem and then runs a two pass highly parallel algorithm on it. It
constructs ccdBGs similar to Bifros ones. Bifrost is faster, supports edit operations,
and accepts also reads other than assemblies as input. We tested both tools on NCBI
datasets from three different known human variation regions part of the human
leukocyte antigen (HLA) complex: HLA-A, MICB and TAP1. These loci have different
number of sequences and have complexity and length. The resulting graphs have exactly
the same k-mer content and substantially equal topology. The difference is that
TwoPaCo considers sequences with IUPAC "N’ bases while Bifrost does not and that in
some cases TwoPaCo renders some unitigs split in two or more consecutive nodes.

7.2 Loci extraction method

For Bifrost and mdbg graphs, nodes corresponding to the input sequences are identified
with GraphAligner [25] and the subgraph is extracted using the Bandage reduce
function. As the aligned nodes are not expected to represent the full diversity of the
population in the pangenomes, the considered portion of the graph contains also nodes
up to a certain distance from the aligned ones: 2 for mdbg and 3 for Bifrost. This is an
arbitrary number based on the size of the sequences spelled by the nodes and on the
considered variations. Artifacts, mostly tips, that are not part of the locus of interest
are removed from Bifrost graphs with a custom python script. For Minigraph generated
graphs, the Minigraph own alignment function has been used to identify the nodes and
then Bandage is used to extract the subgraph. For pggb, first we generate a bed file of
the position of the region of interest in every haplotype used to construct the graph.
The ranges are derived from aligning them to the locus sequence(s) using minimap2 [20].
The graph corresponding to the region is then extracted using the odgi extract and
odgi view functions. For Minigraph-Cactus we use the same strategy as pggb, with
the difference that the bed file is only for the reference CHM13, present in the graph.

On a second round, the annotation of specific loci is accomplished by flagging the
nodes where the sequences of the locus/loci of interest align with the subgraph. This
allows for the highlighting of different sections within the subgraph, such as genes and
regulatory regions of interest.
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