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Abstract 48 

Glucagon-like peptide 1 (GLP-1) improves angiogenesis, but the mechanism remains unclear.  To 49 

address this question, we conducted a metabolomics analysis in bone marrow-derived endothelial 50 

progenitor cells (EPCs) isolated from T1DM mice treated with or without GLP-1(32-36) amide, 51 

an end-product of GLP-1. GLP-1(32-36) treatment recovered glycolysis. In addition, GLP-1(32-52 

36) treatment rescued diabetic ischemic lower limbs and EPCs dysfunction by regulating 53 

PFKFB3-driven glycolytic flux capacity and mitochondrial dynamics. The effects of GLP-1(32-54 

36) were abolished in mice lacking a functional GLP-1 receptor (Glp1r-/-), which could be 55 

partially rescued in EPCs transiently expressing GLP-1R. GLP-1(32-36) treatment activated the 56 

eNOS/cGMP/PKG pathway, increased glycolysis, and enhanced EPCs angiogenesis. Taken 57 

together, these findings suggest that GLP-1(32-36) could be used as a monotherapy or add-on 58 

therapy with existing treatments for DPAD. 59 

Graphical abstract 60 
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MAIN TEXT 75 

1. Introduction 76 

Peripheral arterial disease (PAD), a severe chronic complication of diabetes, is 77 

characterized by the narrowing and occlusion of arteries supplying the lower extremities 78 

(1). Although PAD typically presents as claudication, it can progress to critical limb 79 

ischemia and may eventually require amputation (2). Given that diabetic patients are at a 80 

fourfold greater risk of developing PAD than the general population, there is likely a close 81 

relationship between hyperglycemia and vascular complications (3). Recent studies reveal 82 

that incretins such as glucagon-like peptide 1 (GLP-1) play a role in modulating 83 

angiogenesis beyond their function in glycemic control (4, 5). 84 

GLP-1 is a naturally occurring hormone that plays a vital role in regulating glucose 85 

homeostasis by stimulating insulin secretion (6). It is produced by enteroendocrine L cells 86 

located in the distal ileum and colon, and is found in two molecular forms, GLP-1 (7-37) 87 

and GLP-1 (7-36) amide, which bind to a specific G-protein coupled receptor called GLP-88 

1R (7, 8). However, they are rapidly degraded by the enzyme dipeptidyl peptidase-4 89 

(DPP-4) after their release into the bloodstream, resulting in the formation of amino-90 

terminally truncated peptides, such as GLP-1(9-37) and GLP-1(9-36) amide (9). GLP-1(9-91 

36) amide can enter cells by penetrating the cell membrane, where it is internally cleaved 92 

in the C-terminal region by an intracellular endopeptidase such as neutral endopeptidase 93 

24.11 (NEP 24.11), leading to the production of the nonapeptide GLP-1 (28-36) and the 94 

pentapeptide GLP-1(32-36) amide (10) (Fig. 1A). 95 

Several GLP-1 peptides and their metabolites are reported to have a cardiovascular 96 

protective effect. For example, GLP-1(9-36) has been shown to improve human aortic 97 

endothelial cell viability in response to hypoxia via a NO-dependent mechanism (11). 98 

GLP-1(9-36) has also been found to reduce high glucose-induced mitochondrial ROS 99 

generation in human endothelial cells (12). GLP-1(28-36) activates the AC-cAMP 100 

signaling pathway, changes the metabolic status of vascular cells, and plays a role in 101 

cardiovascular protection (13). GLP-1 (32-36), the major end-product of GLP-1 102 

proteolysis in addition to the nonapeptide, has been found to decrease body weight, 103 

increase energy consumption, and reduce β-cell apoptosis in obese mice (14, 15). 104 

However, whether GLP-1 (32-36) has a beneficial effect on diabetic vascular endothelial 105 

injury remains unclear. 106 

By binding to its receptor (GLP-1R) expressed in various organs, including 107 

pancreatic islets, heart, lungs, and brain stem, GLP-1 activates the cAMP-dependent signal 108 
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transduction pathway to promote glucose-dependent insulin secretion by β-cells and 109 

improve nutrient utilization in peripheral organs (16). While GLP-1 metabolites have been 110 

found to exert beneficial effects when administered parenterally, their mechanisms of 111 

action are not fully understood (17-20). GLP-1 has been shown to protect against heart 112 

failure through the GLP-1R-mediated eNOS/cGMP/PKG pathway rather than the 113 

cAMP/PKA pathway (21). The mode of GLP-1(32-36) entry and its possible signaling 114 

mechanisms, if ever exist, remain unknown.  115 

It has been proposed that endothelial cells (ECs) play a critical role in maintaining 116 

vascular homeostasis and promoting angiogenesis by relying on glycolysis to produce 117 

more than 80% of their ATP (22-24). A recent study suggests that GLP-1 can regulate 118 

astrocytic glycolysis, which may contribute to its neuroprotective effects in Alzheimer's 119 

disease (25). Therefore, it is reasonable to hypothesize that GLP-1(32-36) may enhance 120 

glycolytic flux in ECs, thereby altering vessel sprouting and promoting angiogenesis.  121 

In this study, we demonstrate that GLP-1(32-36) administration has a direct effect on 122 

diabetic lower limb ischemia. We also demonstrate that GLP-1(32-36) has a causal role in 123 

improving fragile mitochondrial function and metabolism via the GLP-1R-mediated 124 

pathway, independent of its insulinotropic action. Specifically, we found that GLP-1(32-125 

36) promotes angiogenesis in endothelial progenitor cells (EPCs) exposed to high glucose 126 

and enhances blood perfusion in ischemic tissues in STZ-induced type 1 diabetic mice 127 

with hindlimb ischemia (HLI). We also show that GLP-1(32-36) improves mitochondrial 128 

dynamics and rescues glycolysis mediated by 6-phosphofructo-2-kinase/fructose-2,6-129 

bisphosphatase 3 (PFKFB3). We further demonstrate that GLP-1(32-36) rescues diabetic 130 

ischemic lower limbs by activating the GLP-1R-dependent eNOS/cGMP/PKG pathway. 131 

Our findings provide novel insights into the mechanisms underlying the beneficial effects 132 

of GLP-1(32-36) on DPAD and highlight its potential therapeutic value for non-diabetic 133 

patients due to its angiogenic effect that is independent of insulin regulation. 134 

2. Results  135 

2.1 GLP-1 (32-36) promotes blood perfusion and angiogenesis post-HLI in type 1 136 

diabetic mice independent of insulinotropic actions. 137 

We found that GLP-1(32-36) treatment protected human umbilical vein endothelial 138 

cells (HUVECs) from high glucose (HG)-induced reduction in tuber formation 139 

(Supplementary Fig. 1), indicating improved HUVEC integrity and function. Unlike GLP-140 

1(7-36), GLP-1(32-36) does not stimulate insulin secretion from insulinoma 1 (INS-1) cell 141 

under either high or low glucose conditions, suggesting that the angiogenic capability of 142 
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this pentapeptide is independent of insulinotropic action (Fig. 1B). To investigate whether 143 

GLP-1(32-36) promotes angiogenesis in vivo, we used STZ-induced type 1 diabetic mice 144 

(T1DM) as a murine model of unilateral hind limb ischemia (HLI) to examine the 145 

therapeutic potential of GLP-1(32-36) on angiogenesis according to previous protocols 146 

(26-28) (Supplemental Fig. 2). The mice were treated with GLP-1(32-36) (1μmol/kg/d), 147 

GLP-1(7-36) (1μmol/kg/d), or PBS by daily intraperitoneal (i.p.) infusion and the blood 148 

flow recovery was evaluated by using a PeriCam Perfusion Speckle Imager (PSI) at day 0, 149 

3, 7, 14, 21, 28 days after HLI surgery (Supplementary Table. 1). GLP-1(7-36) here was 150 

used as a control for angiogenic drug (28). GLP-1(32-36) treatment markedly recovered 151 

blood flow, companied with improved neovascularization in ischemic tissue (Fig. 2A). 152 

The effect of the pentapeptide in promoting neovascularization was characterized by 153 

enhanced CD31 expression in ischemic gastrocnemius muscle, as shown by Western 154 

blotting and immunofluorescence staining (Fig. 2B-E). To investigate the effect of GLP-155 

1(32-36) on EPC mobilization in response to tissue ischemia, we examined the numbers of 156 

double positive Sca-1+/Flk-1+ cells in mononuclear fraction of peripheral blood from 157 

T1DM mice by flow cytometry. Administration of GLP-1(32-36) into tissue ischemia 158 

T1DM mice substantially augmented EPC mobilization on day 3 and peaked on day 7 159 

after HLI (Fig. 2F-G). These results demonstrate that GLP-1(32-36) is superior to GLP-160 

1(7-36) in rescuing angiogenic function and blood perfusion in ischemic limb of STZ-161 

induced diabetic mice without an effect on insulin secretion. 162 

2.2 GLP-1(32-36) protects mitochondria from high glucose-induced damage by 163 

enhancing glycolytic metabolism 164 

Endothelial metabolism plays an important role in regulating angiogenesis and 165 

mitochondrial membrane remodeling is highly responsive to changes in cell 166 

metabolism(29). As EPCs are considered to control the angiogenic switch of many 167 

physiological and pathologic processes, such as neovascularization (30), we assessed 168 

whether GLP-1(32-36) plays a role in improving angiogenesis by regulating mitochondrial 169 

dynamics and metabolism. Mice primary bone marrow EPCs (mEPCs) from T1DM mice 170 

or T1DM mice injected with GLP-1(32-36) were isolated and cultured, and the 3- to 5-171 

passage mEPCs were used for further experiments. (Supplementary Figure 3). 172 

Ultrastructure examination revealed significant increase in elongated mitochondria of 173 

mEPCs from STZ-induced diabetic mice treated with GLP-1(32-36), whereas 174 

mitochondria from diabetic mice were mostly round or circular (Fig. 3A, B). HG-175 

stimulated accumulation of mitochondrial ROS and loss of mtDNA content were 176 
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suppressed by GLP-1(32-36) treatment (Fig. 3C, D). GLP-1(32-36) also reversed the 177 

effect of HG on mitochondrial membrane potential as well as basal and maximal oxygen 178 

consumption rate (OCR) in EPCs from T1DM mice (Fig. 3E-H).  179 

By metabolomic analysis, we observed that GLP-1(32-36) treatment induced a 180 

compensatory increase in glycolysis in mEPCs from T1DM mice as demonstrated by 181 

increased glycolytic metabolites such as L-lactate, D-fructose 1,6-bisphosphate (FDP), 182 

dihydroxyacetone phosphate (DHAP), and phosphoenolpyruvate (PEP) (Fig. 4A-B). Eight 183 

of the ten genes involved in the aerobic glycolytic pathway were significantly up-184 

regulated by GLP-1(32-36) (Supplementary Table 2, Fig. 4C), including PFKFB3 (6-185 

phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3) which is engaged in the rate-186 

limiting step in glycolysis for increased pyruvate production. The extra pyruvate generated 187 

could be directed to lactate rather than to the TCA cycle by upregulation of Lactate 188 

dehydrogenase A (LDHA) (Fig. 4D). Seahorse assay also confirmed that GLP-1(32-36) 189 

enhanced glycolytic flux (extracellular acidification rate [ECAR]) (Fig. 4E-F). These data 190 

demonstrate that GLP-1(32-36) may ameliorate HG-induced excessive mitochondrial 191 

fission by resorting to aerobic glycolysis. 192 

2.3 GLP-1(32-36) improves angiogenesis via PFKFB3-mediated glycolysis. 193 

As PFKFB3 is a well-known glycolytic activator(31), we explored whether PFKFB3 194 

is required for the therapeutic function of GLP-1(32-36) in preventing EPCs angiogenesis 195 

disorder. mEPCs were treated with GLP-1(32-36)，followed with the PFKFB3-specific 196 

inhibitor PFK15 (32) for 30 min. GLP-1(32-36) treatment remarkably upregulated 197 

PFKFB3 protein levels and the phosphorylated form of eNOS, which was suppressed by 198 

PFK15 treatment (Fig. 5A-C). PFK15 treatment also suppressed GLP-1(32-36)-induced 199 

NO secretion, tube formation, and migration area of EPCs (Fig. 5D-F). Taken together, 200 

these findings suggest that GLP-1(32-36) recuperates angiogenesis by activating PFKFB3-201 

mediated glycolysis.  202 

2.4 GLP-1R is required for angiogenetic function of GLP-1(32-36). 203 

To test whether GLP-1R deletion interrupts GLP-1(32-36)-induced 204 

neovascularization in T1DM, we established Glp1r knockout mice (Glp1r-/- mice) by the 205 

CRISPR/Cas9 technology (Supplementary Fig 4, 5, Fig. 6A).  The Glp1r-/- mice were 206 

allocated into four groups and one group infused with 1 x 106 mBM-EPCs overexpressing 207 

GLP-1R (Ad-GLP-1R) or the Lv-NC control lentiviral vector via tail vein injection 208 

(Supplementary Fig 6). GLP-1(32-36) treatment had marginal effect on blood perfusion in 209 

the Glp1r-/- mice and those receiving control lentivirus (EPCs/Lv-NC), but time-210 
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dependently increased blood perfusion in mice received EPCs/Ad-GLP-1R from day 3 to 211 

21 after transplantation (Fig. 6B-C). The benefit of EPC/Ad-GLP-1R was demonstrated by 212 

increased expression of CD31, an endothelial cell marker, in ischemic gastrocnemius 213 

muscle measured 28 days after HLI (Fig. 6D-E). These findings indicate that GLP-1(32-214 

36)-mediated angiogenesis in T1DM mice after HLI is dependent on GLP-1R expression. 215 

2.5 GLP-1R binds to, but is not required for, GLP-1(32-36) entry into endothelial 216 

progenitor cells. 217 

To address the question whether GLP-1(32-36) undergoes cellular uptake via GLP-218 

1R, a Cy5-tagged GLP-1(32-36) probe (Cy5-GLP-1(32-36)) was used for fluorescent 219 

tracing (Supplementary Table 1, Supplementary Fig 7). Confocal imaging showed that 220 

Cy5-GLP-1(32-36) entered EPCs with the strongest intracellular signals observed within 221 

30 min (Supplementary Fig 8). Interestingly, while treating the cells with endocytosis 222 

inhibitor Dyngo-4A almost completely blocked abrogate Cy5-GLP-1(32-36) 223 

internalization, deletion of GLP-1R had no significant effect on Cy5-GLP-1(32-36) entry 224 

into the cells, implicating that GLP-1(32-36) penetration is independent of GLP-1R (Fig. 225 

7A-B).  226 

To determine binding to GLP-1R is necessary for the angiogenetic effect of GLP-227 

1(32-36), we conducted an affinity pull-down experiment with biotinylated GLP-1(32-36) 228 

(BIOT (32-36)) (Supplementary Table 3). In agreement with the finding of others (33), we 229 

found  that the pentapeptide bound to GLP-1R (Fig. 7C). Global docking analysis revealed 230 

that GLP-1(32-36) bound to the GLP-1 binding site of GLP-1R for all crystal structures 231 

(Figure 7D-F). These data suggest that interaction with GLP-1R, though is not involved in 232 

GLP-1(32-36) entry into the cells, is required for activation of GLP-1R-mediated pathway 233 

to play its subsequent angiogenetic effect. 234 

2.6 GLP-1(32-36) exerts its angiogenetic effect through the eNOS/cGMP/PKG pathway 235 

via GLP-1R 236 

Human EPCs (hEPCs) were isolated from cord blood for its richness in EPCs (34), 237 

cells were isolated and identified by specific EPCs markers as previously described (35) 238 

(Supplementary Fig. 9). We found that GLP-1(32-36) increased generation of cGMP but 239 

not cAMP (Supplementary Fig 10), indicating that the pentapeptide might activate the 240 

eNOS/cGMP/PKG pathway to exert angiogenesis. Downregulation of GLP-1R by siRNA 241 

silencing attenuated GLP-1(32-36)-induced cGMP increase and NO formation 242 

(Supplementary Fig. 6B; Fig. 8A-B). Suppressing GLP-1R also recued GLP-1(32-36)-243 

stimulated p-eNOS and PKG expression (Fig. 8C-E). GLP-1(32-36) treatment resecured 244 
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HG-induced impairement in tube formation and migration, but this effect was suppressed 245 

by GLP-1R downregulation (Fig. 8E-F). These data uncover a mechanism whereby GLP-246 

1(32-36) improves angiogenesis in HG-exposed EPCs. 247 

2.7 GLP-1R is involved in mitochondrial dynamics and GLP-1(32-36)-mediated 248 

glycolysis. 249 

We examined the potential effect of GLP-1(32-36) on mitochondrial biogenesis in 250 

EPCs treated the GLP-1R antagonist (exendin (9-39)). GLP-1(32-36) recovered the 251 

mitochondrial morphology, which is blocked by exendin (Supplementary. 11A-E). 252 

Inhibition of GLP-1R also interrupted the improvement of MMP and mitochondrial OCR 253 

level by pentapeptide (Supplementary. 11F-I). These results suggest that GLP-1R is 254 

involved in pentapeptide-mediated mitochondrial homeostasis.  255 

Given that PFKFB3 plays an important role in vessel sprouting by promoting 256 

glycolysis(31), we wondered if GLP-1R is involved in GLP-1(32-36)-mediated effects on 257 

metabolism. Suppressing GLP-1R by shRNA impaired ATP turnover, abolished the 258 

positive effect of GLP-1(32-36) on lactate accumulation (Fig. 9A-B), and blocked the 259 

effect of GLP-1(32-36) on glucose uptake (Fig. 9C-D). More importantly, downregulation 260 

of GLP-1R suppressed PFKFB3 expression (Fig. 9E-F). These data reveal that GLP-1R is 261 

responsible for GLP-1(32-36)-mediated glycolysis via PFKFB3. 262 

3. Discussion  263 

GLP-1(9-36) is known to improve hypoxia-impaired human aortic endothelial cell 264 

viability (11) and attenuate HG-triggered mitochondrial ROS generation in human 265 

endothelial cells (12). Of the two peptides cleaved from GLP-1(9-36) amide by NEP 266 

24.11(10), GLP-1(28-36) could activate the AC-cAMP signaling pathway and play a role 267 

in cardiovascular protection (13) and GLP-1 (32-36) may increase energy consumption, 268 

decrease body weight and decrease β-cell apoptosis in obese mice (14, 15). However, if 269 

and how GLP-1(32-36) contributes to protection of vascular endothelial injury remains 270 

unexplored. Using in vivo, ex vivo and in vitro models, we demonstrate that GLP-1(32-271 

36) is effective in rescuing angiogenic function, blood perfusion and promoted EPC 272 

mobilization in ischemic limb of STZ-induced diabetic mice independent of insulin 273 

release. Mechanistically, it recuperates angiogenesis by activating PFKFB3-mediated 274 

aerobic glycolysis and ameliorate excessive mitochondrial fission. Its interaction with 275 

GLP-1R is required for regulation of the glycolytic effect via PFKFB3 as well as for 276 

modulation of the eNOS/cGMP/PKG pathway to improve angiogenesis in high glucose-277 

exposed EPCs. This study explores the mechanism by which GLP-1(32-36) promotes 278 
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angiogenesis and establishes the theoretical basis for the clinical development and 279 

application of angiogenic agents in diabetic foot patients. 280 

PFKFB3 plays important roles in angiogenesis in several cell types (31). In cancer-281 

associated fibroblasts and tumor endothelial cells, PFKFB3 is known to modulate 282 

angiogenesis via activation of the aerobic glycolysis, and blockade of PFKFB3 reduces 283 

tumor angiogenesis(36), while its expression is increased markedly in beta cells from type 284 

1 diabetes patients as well as in human and rat islets exposed to cytokines(37), and in 285 

kidneys from diabetic mice(38). Transcriptionally, PFKFB3 expression is regulated 286 

negatively by PGC1α(39, 40) or Kruppel-like factor 2 (KLF2)(41), but positively by HIF-287 

1α in response to hypoxia(42, 43) . HIF1α itself could be activated by ROS (44) or 288 

endothelial cell-sourced NO in astrocytes(45). Because GLP-1(32-36) increased PFKFB3 289 

without affecting cAMP in HG-exposed EPCs, and PGC1α negatively regulates PFKFB3, 290 

it is less likely that the pentapeptide acts via the GLP-1R/cAMP/AMPK/PGC1α 291 

pathway(40, 46). Activation of HIF1α-PFKFB3 axis is believed to divert glucose 292 

metabolism in diabetic β-cells away from mitochondria for glycolysis(44). Therefore, we 293 

propose that GLP-1(32-36) exerts its pro-angiogenetic effect in the EPCs exposed to high 294 

glucose by activating PI3K/eNOS/cGMP/PKG pathway with enhanced glycolysis and 295 

improved mitochondrial homeostasis via PFKFB3 upregulation. This is based on the facts 296 

that GLP-1(32-36) could derepress a series of molecules PI3K, NO/eNOS, cGMP and 297 

PKG which are involved in myocardial ischemic preconditioning(47), and increase 298 

expression of PFKFB3 possibly via NO activation of HIF1α (44) leading to 299 

glucometabolic reprogramming shown as diversion of pyruvate away from 300 

mitochondria(40, 43).  301 

GLP-1 is known to exert its effect through the unique GLP-1R in stimulating 302 

adenylate cyclase activity, and the resultant accumulation cyclic AMP (cAMP) leads to 303 

activation of protein kinase A (PKA), one of the multiple intracellular mediators in 304 

various tissue (48, 49). According to the ‘‘dual receptor theory’’ (16), GLP-1 may exert 305 

insulin mimetic actions on insulin-sensitive target tissues either by acting on GLP-1R to 306 

activate the pro-survival cAMP/PKA and PI3K/Akt pathways (49) or through an 307 

alternative mechanism independent of GLP-1R as seen with GLP-1(9-36) through a novel 308 

receptor/transporter(11, 16, 18). However, whether GLP-1R is involved in cellular uptake 309 

and activities of GLP-1(32-36), a further cleavage product derived from GLP-1(7-36) and 310 

GLP-1(9-36), has not been determined. We show that cellular entry of GLP-1(32-36) was 311 
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not affected by silencing of GLP-1R, but completely blocked by the dynamin inhibitor, 312 

suggesting that the pentapeptide enters the cell via endocytosis, as with most of the 313 

peptide hormones (33). By affinity pull-down and molecular docking analysis, we found 314 

that GLP-1R, though not required for GLP-1(32-36) uptake, might act as the binding 315 

partner. 316 

 Endothelial dysfunction in association with cGMP-NO insufficiency has been well 317 

established as an important correlate of heightened cardiovascular risk (50). NO is short-318 

lived and acts in autocrine and paracrine manners by elevating cGMP/PKG, thereby 319 

exerting cardioprotective effects on remodeling(51). NO synthase null mutant mice 320 

displayed markedly reduced mitochondrial content associated with significantly lower 321 

oxygen consumption and ATP content(52). We hypothesized that GLP-1(32-36) might 322 

mediate eNOS/cGMP/PKG-dependent mitochondrial biogenesis to promote angiogenesis 323 

via GLP-1R. In our study, GLP-1(32-36) stimulated cGMP (but not cAMP) production, 324 

promoted NO release, eNOS phosphorylation and PKG expression, and enhanced tube 325 

formation and migration, all of which were suppressed by downregulation of GLP-1R. 326 

These data support a mechanism whereby GLP-1(32-36) utilizes GLP-1R to modulate the 327 

eNOS/cGMP/PKG pathway, independent of G-protein signaling, to play its roles in 328 

angiogenesis and glycolysis. 329 

In addition, eNOS-derived NO is well known to tightly regulate mitochondrial 330 

functioning. In physiological concentrations, NO regulates mitochondrial network fusion 331 

by phosphorylating and inhibiting dynamin related GTPase (DRP1) through the sGC/PKG 332 

pathway(53). Our data also define the molecular mechanism of mitochondrial dynamics 333 

and metabolism mediated by GLP-1(32-36) through eNOS/cGMP/PKG pathway. Previous 334 

studies have showed that GLP-1 byproducts could target mitochondria upon entry into the 335 

cells. GLP-1(9-36) could reduce elevated levels of mitochondrial-derived ROS in 336 

Alzheimer’s disease model mice(54). GLP-1(28-36) prevents ischemic cardiac injury by 337 

inhibiting mitochondrial trifunctional protein-α(13). It has been proposed that its C-338 

terminal domain, VKGR amide, might contain a consensus mitochondrial targeting 339 

sequence(55). This suggests that GLP-1(32-36) might also play a role in regulating 340 

mitochondria fitness. We constructed Cy5-conjugated pentapeptide to visualize its 341 

internalization. Cy5-GLP-1(32-36) entered EPCs with the strongest intracellular signals 342 

observed within 30 min. Pharmacological inhibition of GLP-1R by chemical antagonists 343 

(exendin (9-39)) blunted peptides-regulated mitochondrial homeostasis and dynamics by 344 

tilting mitochondrial fission towards fusion. We found that GLP-1(32-36) rescues 345 
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mitochondrial morphology and protected oxidative stress injury from high glucose stress. 346 

These findings provide evidence that GLP-1(32-36) is involved in improvement of 347 

mitochondrial fitness.  348 

Since endothelial function is intrinsically linked to its metabolism(56, 57). ECs are 349 

atypical nonmalignant cells that surprisingly depend on glycolysis to synthesize＞80% of 350 

ATP even under well-oxygenated conditions(31, 58). We hypothesized that occurrence of 351 

PAD could be accompanied with metabolic abnormalities and failure to establish timely 352 

metabolic switch might negatively affect the function of endothelial cells. We investigated 353 

the metabolite profiles between mEPCs from T1DM with GLP-1(32-36) treatment and 354 

from control T1DM (without treatment). The results showed that high glucose stress 355 

resulted in glycolysis disorder which was rescued by GLP-1(32-36). Seahorse data also 356 

show that GLP-1(32-36) could improve basal and maximal respiration and glycolysis in 357 

mEPCs exposed to high glucose. Transcription of key genes involved in the aerobic 358 

glycolytic pathway and lactate level were increased by GLP-1(32-36) treatment. The 359 

elongated mature mitochondria of GLP-1(32-36)-treated EPCs and increased glycolysis, 360 

as opposed to immature round mitochondria lacking mature cristae characteristic of 361 

hyperglycemia, illustrates the importance of efficient biosynthetic organelles and efficient 362 

energy metabolism to support EPC proliferation required for angiogenesis.   363 

Interestingly, we compared insulin secretion after treating GLP-1(7-36) and GLP-364 

1(32-36) with different concentration. GLP-1(7-36) stimulates glucose-dependent insulin 365 

secretion, whereas GLP-1(32-36) has only weak partial insulinotropic agonist activities. 366 

This not only elucidates the key role of GLP-1R in the action of GLP-1(32-36) but also 367 

suggested GLP-1(32-36) has self-governed angiogenesis ability independent of insulin 368 

release and blood glucose control, expanding the possibility of the pentapeptide improving 369 

angiogenesis in non-diabetic patients. 370 

In summary, we have found that GLP-1(32-36) functions in cooperation with GLP-371 

1R in mediating eNOS-cGMP-PKG signaling, mitochondrial homeostasis and metabolic 372 

functions of endothelial cells in favor of angiogenesis. GLP-1(32-36) prevents HG-373 

mediated mitochondrial fission, regulates metabolic reprogramming by enhanced PFKFB3 374 

expression and glycolysis, and improve EPCs angiogenesis. Our results are consistent with 375 

an emerging appreciation that GLP-1R mediated mitochondrial dynamics and energy 376 

metabolism plays a central role in endothelial angiogenesis. We believe that the 377 

mechanistic pathway uncovered here has potential impact, from the clinical perspective, 378 

on therapy of PAD, for which no approved therapies currently exist. GLP-1(32-36) may 379 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 5, 2023. ; https://doi.org/10.1101/2023.06.01.543344doi: bioRxiv preprint 

https://doi.org/10.1101/2023.06.01.543344
http://creativecommons.org/licenses/by-nc-nd/4.0/


  

offer supplementary protection against ischemic angiogenesis in instances where reduced 380 

blood flow-related mitochondrial fitness and glycolysis is compromised before apparent 381 

clinical manifestation.  382 

4. Materials and Methods 383 

The origins and specifications of the mice used in this study are detailed in the 384 

Supplemental Methods. Descriptions of detailed methods of T1DM in vivo (26) and 385 

mouse HLI models in vivo (59) are provided in the Supplemental Methods. Details on the 386 

isolation of mEPCs and hEPCs, and cell culture methods, including drug treatment 387 

regimens, are provided in the Supplemental Methods. All assays relevant to cAMP, 388 

cGMP, and Seahorse XFe96 extracellular flux measurements are detailed. Gene silencing 389 

using siRNA and Western blotting protocols are described in the Supplemental 390 

Information. 391 

4.1 Statistics 392 

Data are presented as mean ± SEM. Comparisons between two groups were 393 

performed by Student’s 2-tailed t test. Comparisons of data with three or more groups 394 

were performed using 1-way ANOVA with Tukey’s post hoc multiple comparisons. 395 

Repeated-measures ANOVA was performed when appropriate. All statistical analyses 396 

were performed in GraphPad Prism (Version 9.0). In all cases, differences were 397 

considered significant at *P < 0.05 and highly significant at **P < 0.01 and ***P < 0.001; 398 

ns means no significance. 399 

4.2 Study approval 400 

Experimental setups and animal care were permitted by the Animal Policy and 401 

Welfare Committee of Zhejiang University (ethical approval code:2021-NO.172). And for 402 

human studies, the work was approved by the Ethics Committee of Zhejiang University 403 

(ethical approval code: 2021-NO.0318) and carried out in accordance with the Declaration 404 

of Helsinki. All participants gave written informed consent. 405 
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