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Abstract 
Background 
With the continuous advances in third-generation sequencing technology and the increasing affordability 
of next-generation sequencing technology, sequencing data from different sequencing technology 
platforms is becoming more common. While numerous benchmarking studies have been conducted to 
compare variant-calling performance across different platforms and approaches, little attention has been 
paid to the potential of leveraging the strengths of different platforms to optimize overall performance, 
especially integrating Oxford Nanopore and Illumina sequencing data.  

Results 
We investigated the impact of multi-platform data on the performance of variant calling through carefully 
designed experiments with a deep learning-based variant caller named Clair3-MP (Multi-Platform). 
Through our research, we not only demonstrated the capability of ONT-Illumina data for improved 
variant calling, but also identified the optimal scenarios for utilizing ONT-Illumina data. In addition, we 
revealed that the improvement in variant calling using ONT-Illumina data comes from an improvement in 
difficult genomic regions, such as the large low-complexity regions and segmental and collapse 
duplication regions. Moreover, Clair3-MP can incorporate reference genome stratification information to 
achieve a small but measurable improvement in variant calling. Clair3-MP is accessible as an open-source 
project at: https://github.com/HKU-BAL/Clair3-MP. 

Conclusions 
These insights have important implications for researchers and practitioners alike, providing valuable 
guidance for improving the reliability and efficiency of genomic analysis in diverse applications. 

Keywords 
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Background 
The increasing affordability of sequencing technologies and the rapid evolution of variant-calling 
methods has opened the door to more research and applications for small variant calling in the human 
genome (1). It has become more common to possess sequencing data from different sequencing platforms 
to address a broader range of biological problems (2). Nowadays, the general approach to sequence a 
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genome is through next-generation sequencing (NGS) technology and third-generation sequencing (TGS) 
technology. The distinct error profiles and read length on different sequencing platforms have prompted 
benchmarking and discussion of variant calling using different sequencing data (3). Reads generated from 
NGS technology, like Illumina, are usually short (about 250 bp) and accurate. The methods developed for 
variant calling using Illumina data, such as GATK (4), have shown promising results in most of the 
human genome regions. However, due to the read length limitation, in regions that contain duplications 
longer than 1k bp, it is difficult to further improve variant calling with NGS reads, even with the 
development of new methods (3). On the other hand, TGS technology like Oxford Nanopore 
Technologies (ONT) and Pacific Biosciences (PacBio) generate reads ranging from thousands to 
hundreds of thousands of bases. TGS can produce longer sequences across repetitive and complex 
genomic regions to which Illumina reads have difficulty being mapped accurately (5), providing better 
coverage for the genome. DeepVariant (6) and Clair3 (7) are two leading deep-learning-based methods 
developed for variant calling supporting TGS data. However, ONT data provides lower indel-calling 
performance due to lower read accuracy, especially in the regions containing homopolymers (3). 
Therefore, researchers often utilize different platform data for different needs (3). 

There are studies that leverage the strength of different platforms to maximize the performance of variant 
calling (8). The DeepVariant hybrid model is the first variant caller that reported a case study for 
combining PacBio and Illumina sequencing data (6). It has shown improvements compared to variant-
calling performance using single-platform sequencing data (6). Ratatosk, a later published method for 
error correction, corrects ONT long reads with short reads using a de Bruijn graph to carry information 
between the two technologies, thus leveraging the benefits of both (9). However, to the best of our 
knowledge, there is no thorough study investigating the integration of ONT-Illumina data and ONT-
PacBio data in a deep-learning model for variant calling. On the other hand, although benchmarking for 
variant-calling approaches has revealed that ONT, Illumina PacBio data can lead to various types of 
performance in different genomic regions or at various coverage, the performance in these circumstances 
when data from different error profiles and read lengths are combined remains unanswered.  

Here, we present Clair3-MP (Multi-Platform) (Fig 1), which processes multi-platform data combinations, 
including ONT-Illumina, ONT-PacBio, and PacBio-Illumina, to perform variant calling. Clair3-MP 
features a neural network that supports multi-platform data and trains a series of new models, tailored to 
perform variant calling using different multi-platform data. In addition, Clair3-MP can incorporate 
reference genome stratification information by including a stratification channel in its input tensors. This 
channel encodes the platform preference into the neural network and enables better variant-calling 
performance for multi-platform data. 

Through our experiments integrating ONT and Illumina reads in Clair3-MP, we observed that sufficient 
coverage of ONT data (i.e., 30x) improves variant-calling performance compared to using only data from 
either platform. Variant calling using multi-platform data containing 30x ONT and Illumina data at 10x, 
20x, and 30x can achieve an F1 score of +0.0545, +0.0058, and +0.0010, respectively, compared to Clair3 
with Illumina data at 10x, 20x, and 30x. However, the improvement is not consistent when there is less 
ONT data in the multi-platform data. Therefore, we recommend performing variant calling using Clair3-
MP with ONT-Illumina data with at least 30x coverage of ONT data. On the other hand, variant calling 
using multi-platform data containing 10x Illumina and ONT data at 10x, 20x, and 30x can achieve an F1 
score of +0.0379, +0.0520, +0.0545, respectively, compared to Clair3 with 10x Illumina data. This 
suggests that with low coverage of Illumina data, additional ONT data at any coverage can guarantee 
improved variant calling with Clair3-MP. We further stratified the variant-calling results of Clair3-MP 
with 30x ONT and 30x Illumina and compared them to Clair3 with 30x ONT or 30x Illumina to observe 
the area of improvement in a setting that contains enough data for both platforms. The stratification 
analysis reveals that the increased variant-calling performance in Clair3-MP with ONT and Illumina data 
stems from an improvement in difficult genomic regions. We observed that there are increased SNP and 
Indel F1 scores of Clair3-MP with ONT and Illumina data compared to Clair3 with ONT or Illumina in 
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these difficult regions: large low-complexity regions (SNPs: from 0.9963 or 0.9844 to 0.9973, Indels: 
from 0.9392 or 0.9661 to 0.9679), segmental duplication regions (SNPs: from 0.9565 or 0.9177 to 0.9653, 
Indels: from 0.9022 or 0.9300 to 0.9566), and collapse duplication regions (SNPs: from 0.7797 or 0.4263 
to 0.8578, Indels: from 0.8069 or 0.6686 to 0.8444). Therefore, the Clair3-MP model was adjusted to 
include a new feature about whether a variant candidate is in a difficult region. The adjusted Clair3-MP 
model resulted in a small improvement (SNPs: from 0.9984 to 0.9985, Indels: 0.9736 to 0.9745), showing 
that the indication of difficult regions further enhances variant-calling predictions. Our experiments 
containing data from PacBio revealed that variant-calling performance is high in most cases, with F1 
scores of at least 0.9957 when using Clair3-MP with PacBio as part of the multi-platform data or Clair3 
with PacBio data only. We also found that there was an improvement in Indels calling with additional 
Illumina data in Clair3-MP with PacBio data (Clair3 with PacBio: 0.9933, Clair3-MP with PacBio and 
Illumina: 0.9969). Our work found improvements in using multi-platform data in deep-learning neural 
networks for variant calling. Researchers are encouraged to use Clair3-MP when using sequencing data 
from different platforms for variant calling and to be aware of the efficiency of using multi-platforms 
under various coverage and genomic contexts. 

Results 
To find the best strategies for variant calling with multi-platform data, we performed whole-genome 
variant-calling experiments with various coverage of different combinations of Illumina, Pacbio, and 
ONT sequencing data downloaded from Genome-In-A-Bottle (GIAB) (10). We compared the results 
between Clair3 and Clair3-MP, and Clair3 call variants from single-platform data and Clair3-MP call 
variants from multi-platform data. The evaluation was also stratified to different genomic regions for 
deeper insights into variant-calling performance. We also benchmarked the impact of adding the 
stratification information into a neural network in this section. All running commands are available in the 
Supplementary Note. 

Data description 
We conducted the experiments with the datasets collected in the GIAB Ashkenazi Jewish trio (HG002-
child, HG003-father, and HG004-mother). The ONT sequencing data was obtained from the Human 
Pangenome Reference Consortium (HPRC) (11) with r9.4.1 chemistry and PromthION flowcell, with 
high coverage in three samples, HG002 (~65x), HG003 (~77x), and HG004 (~80x), which were base-
called via Guppy5. The Illumina sequencing data, obtained from precisionFDA (3), were sequenced on 
the NovaSeq 6000 System with a 2x151 bp high coverage PCR-free library. All three samples had 
coverage of 35x. The PacBio sequencing data was also from precisionFDA (3) from the Sequel II System 
with 2.0 chemistry and coverage of 35x for all three samples. The BAM files were obtained using the 
respective alignment software based on the platform of the sequencing data. Minimap2 (12) was applied 
to ONT data. Burrows-Wheeler Aligner (BWA)(13) was used for Illumina data, and pbmm2 (12) was 
used for PacBio data. All alignments used the GRCh38 human reference build. The commands for BAM 
files generation can be found in the Supplementary Note. For the Clair3-MP models, each multi-platform 
combination has its own trained model. For training each multi-platform model, we used the nine 
following coverages: 10x-10x, 10x-20x, 10x-30x, 20x-10x, 20x-20x, 20x-30x, 30x-10x, 30x-20x, and 
30x-30x. We designed the training data in various coverage combinations to establish a model for 
improving robustness. HG002 and HG004 samples were used for training the Clair3-MP model. HG003 
data were preserved for testing and were downsampled to 10x, 20x, and 30x. Downsampling operations 
for both training and testing datasets were carried out using Samtools (14). The related commands can 
also be found in the Supplementary Note. We downloaded the GIAB benchmark variant set version 4.2.1 
as the ground truth variant sets for HG002, HG003, and HG004. The training and benchmark were 
constrained in the high-confidence regions also provided by the GIAB 4.2.1 benchmark set for each 
GIAB sample. 
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Evaluation method 
The results obtained by Clair3-MP on multi-platform data and Clair3 on single-platform data were 
evaluated using the Illumina’s Haplotype Comparison Tools (aka. hap.py) (15). The code and parameters 
of hap.py can be found at https://github.com/Illumina/hap.py. We used Precision, Recall, and F1-score 
metrics to assess the variant-calling performance. The results included performances at SNP and Indel 
and were stratified based on the genome stratification (version v3.1) defined by GIAB (15). 

Performance on ONT-Illumina 
First, we benchmarked the Clair3-MP performance using both ONT and Illumina data with single 
platform data via Clair3. Fig. 2 shows the overall performance of variant calling using Clair3-MP with 
ONT-Illumina data, Clair3 with Illumina data or ONT data at different coverages. Fig. 2C indicates that 
with 30x coverage of ONT as part of the multi-platform data, the variant-calling performance was better 
than using either ONT or Illumina data at any coverage. The F1 scores of variant calling using Clair3-MP 
with multi-platform data that contains 30x ONT and Illumina data at 10x, 20x, and 30x, were 0.9880, 
0.9938, and 0.9947, respectively (Table 1). However, the F1 scores of variant calling using Clair3 with 
Illumina data at 10x, 20x, and 30x were 0.9335, 0.988, and 0.9937, while the F1 scores using Clair3 with 
ONT data at 10x, 20x, and 30x were 0.9301, 0.9631 and 0.9696, respectively. The improvement in variant 
calling demonstrates the capability of Clair3-MP to combine ONT and Illumina data for higher 
performance. On the other hand, a decrease in the performance for variant calling that contains less ONT 
data suggests that lower-coverage ONT data might introduce background noise to calling, as there could 
be less or even no read support for variant candidates (Figs. 2A and 2B). 
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Table 1. The overall performance of variant calling using single- and multi-platform data (ONT and 
Illumina).  

 
Caller ONT 

Coverage 
Illumina 
Coverage Precision Recall F1 score 

Single-
platform data 

(ONT or 
Illumina) 

Clair3 

10x / 0.9605 0.9016 0.9301 
20x / 0.9816 0.9453 0.9631 
30x / 0.9857 0.9541 0.9696 

/ 10x 0.9240 0.9432 0.9335 
/ 20x 0.9893 0.9867 0.9880 
/ 30x 0.9950 0.9923 0.9937 

Multi-
platform data      

(ONT-
Illumina) 

Clair3-
MP 

10x 10x 0.9822 0.9609 0.9714 
10x 20x 0.9852 0.9725 0.9788 
10x 30x 0.9860 0.9739 0.9799 
20x 10x 0.9910 0.9800 0.9855 
20x 20x 0.9938 0.9894 0.9916 
20x 30x 0.9946 0.9906 0.9926 
30x 10x 0.9931 0.9830 0.9880 
30x 20x 0.9959 0.9917 0.9938 
30x 30x 0.9966 0.9929 0.9947 

The table shows the precision, recall and F1 score of variant calling using single-platform and multi-
platform data at different coverage.  

To investigate the impact of ONT or Illumina data as additional data for variant calling, we further 
present the benchmark results as a marginal graph and divide the results at the SNP and Indel level. Fig. 3 
shows marginal graphs of the F1 score of variant calling comparing Clair3 with single-platform data and 
Clair3-MP with ONT-Illumina data at different coverage by variant type. As Fig. 3A, we concluded that 
with insufficient coverage of Illumina data (i.e., less than 15x), additional 10x or more ONT data 
significantly improves variant-calling performance. With sufficient coverage of Illumina data (i.e., more 
than 15x), the additional ONT data is no longer favorable for variant calling unless there is relatively high 
coverage of ONT (i.e., 20x). An additional 10x ONT even diminishes the performance due to the quality 
of the variant candidates generated by 10x ONT data. However, SNPs and Indel have different 
performance trends (Figs. 3B and 3C). The addition of more than 10x ONT data to any coverage of 
Illumina results in improved SNP-calling performance. On the other hand, we observed an improvement 
in Indel calling when there was insufficient coverage of Illumina data and high coverage of ONT data. 
When there is more than 15x Illumina data, additional ONT data at any coverage decreases the Indel-
calling performance. The different trends between SNPs and Indel calling suggest that the additional 
cover for the genome by long ONT reads can increase SNP-calling performance (Fig. 4), while the Indel 
errors in ONT data, even with high coverage, affect Indel calling in multi-platform variant calling. Fig. 4 
shows the alignments in the Integrative Genomics Viewer (IGV) (16) that contain true SNP cases, 
showing that ONT reads provide a broader range of cover for the regions that Illumina reads have trouble 
being mapped to.  

Figs. 3D, 3E, and 3F show line charts of the F1 score of variant calling comparing Clair3 with ONT data 
and Clair3-MP with ONT-Illumina data at different coverage by variant type. Other than in SNP calling 
using sufficient coverage of ONT data (i.e., 30x) with low coverage of Illumina data (i.e., 10x), any 
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additional Illumina data can increase the variant-calling performance using only ONT data. This indicates 
that additional and accurate Illumina reads can improve calling by providing strong and positive signals, 
especially in Indel calling, unless the Illumina data is at such low coverage that it decreases the SNP 
calling performed by high coverage of ONT data. 

Performance of various stratification regions on ONT-Illumina 
We further divided the performance results for ONT-Illumina into different reference genome regions to 
explore the reference impact when using multi-platform data. The reference genome regions 
(stratification) were obtained from GIAB. There are 10 major types of stratification: Low Complexity, 
Functional Technically Difficult, Genome Specific, Functional Regions, GC Content, Mappability, Other 
Difficulties, Segmental Duplications, Union, Ancestry, and XY. The stratification analysis was conducted 
using a testing datasets of 30x ONT and 30x Illumina from GIAB HG003.  

Fig. 5A shows SNP-calling performance with Clair3-MP combining 30x ONT and 30x Illumina data 
compared to using either ONT or Illumina data in Clair3 in eight stratification regions. The complete 
figures and tables stratifying the results of SNP calling into all the different genomic regions are in the 
Supplementary Figures S1 to S2 and Supplementary Tables S2 to S4. Fig. 4A shows that the SNP F1 
score of Clair3-MP 30x ONT-Illumina data (large repeat regions F1 score: 0.9973, satellites regions: 
0.9965, segmental duplications regions: 0.9653, segmental duplications region longer than 10K bp: 
0.9605) outperformed both Clair3 with 30x ONT data (large repeat regions F1 score: 0.9963, satellites 
regions: 0.9936, segmental duplication regions: 0.9565, segmental duplication regions longer than 10K 
bp: 0.9501) and Clair3 with 30x Illumina data (large repeat regions F1 score: 0.9844, satellites regions: 
0.9861, segmental duplications regions: 0.9177, segmental duplications regions longer than 10K bp: 
0.9087). The SNP F1 scores using either ONT or Illumina data with Clair3 have very similar values in the 
regions with GC content that is less than 30% or greater than 55%, which are 0.9947 and 0.9951. This 
shows that this region is well-covered by either ONT or Illumina and that SNP calling reaches a relatively 
high performance with Clair3. When ONT and Illumina are combined with Clair3-MP, the performance 
can be improved to 0.9975. This suggests that the integration of ONT and Illumina data in Clair3-MP can 
enhance SNP calling in regions using either data that already achieved relatively high performance. Also, 
compared to using only Illumina data for variant calling, Clair3-MP with ONT-Illumina data provides 
extra coverage for the genome from ONT’s long reads and leverages the strength of both datasets to 
further improve performance, even in difficult regions. 

On the other hand, we also found a list of regions that are challenging for Clair3-MP. Collapsed 
duplication FP regions and population CNV FP regions are both related to collapsed duplications errors in 
the GRCh38, recently identified and corrected by the T2T consortium (17). These regions are populated 
with paralog-specific variants (PSV) – variation among paralogous sequences, which impact short-read 
variant calling (18). In addition, the long segmental duplications with high sequence identity are a 
challenge for long-read mapping accuracy (18). Therefore, we found lower SNPs F1 scores using only 
ONT or Illumina data (collapsed duplication FP regions for either ONT or Illumina: 0.7797, 0.4263; 
population CNV FP regions: 0.9115, 0.7720). Although challenges for ONT and Illumina reads vary in 
this region, the combination of ONT and Illumina data demonstrates great improvement in SNP F1 scores 
(collapsed duplication FP regions: 0.8578; population CNV FP regions: 0.9299). Moreover, other difficult 
regions that are enriched by variants with excess heterozygosity, which are defined by the 
InbreedingCoeff from the gnomAD database, were found to contain numerous false positives in variant 
calling (17). This is also reflected by our benchmark – the precision for SNP calling with only Illumina 
data is 0.5022. Like the collapsed duplication regions, the precision of SNP calling using ONT-Illumina 
data was increased to 0.9223 in this region, leading to an improvement in the F1 score from 0.6192 to 
0.9261. This shows the capability of multi-platform data to improve variant-calling performance in 
difficult regions that are not accurately called by either single-platform dataset. 
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In contrast, Indel calling using both data sets decreased for most of the genomic regions due to the high 
indel error rate in ONT reads (Supplementary Figures S3 to S4 and Supplementary Tables S2 to S4). 
However, similar to the improvement for SNP calling, Fig. 5B shows that the indels F1 score of Clair3-
MP 30x ONT-Illumina data (large repeat regions F1-score: 0.9679, segmental duplication regions: 
0.9566, segmental duplication regions longer than 10K bp: 0.9524, collapsed duplication regions: 0.8444, 
population CNV FP regions: 0.8995) outperformed both Clair3 with 30x ONT data (large repeat regions 
F1 score: 0.9392, segmental duplication regions: 0.9022, segmental duplication regions longer than 10K 
bp: 0.8969, collapsed duplication regions: 0.8069, population CNV FP regions: 0.8667) and Clair3 with 
30x Illumina data (large repeat regions F1 score: 0.9661, segmental duplication regions: 0.9300, 
segmental duplication regions longer than 10K bp: 0.9232, collapsed duplication regions: 0.6686, 
population CNV FP regions: 0.7539). In addition, we found improvement in the indel F1 score in low 
mappability regions (Clair3 with ONT: 0.9066; Clair3 with Illumina: 0.9026; Clair3-MP with ONT-
Illumina: 0.9422). The improvement of Indel calling in these regions indicates that ONT and Illumina 
data can compensate for each other and that ONT reads do not introduce misleading signals for incorrect 
prediction. More importantly, in the regions that do not overlap with any tandem repeats or 
homopolymers, the ONT-Illumina data results in a slight improvement in the indel F1 score (Clair3 with 
ONT: 0.9758; Clair3 with Illumina: 0.9935; Clair3-MP with ONT-Illumina: 0.9938). This hints that the 
noise/misleading signals of Indel calling caused by the Indel error rate lie in the regions with tandem 
repeats and homopolymers. Although there are regions with a higher F1 score using Clair3-MP with 
ONT-Illumina data in indel calling, these regions account for only small parts of the genome, and the 
improvement cannot compensate for the lower performance in the other genomic regions.  

Performance with the addition of stratification information to Clair3-MP 
This section describes the benchmarking results of adding stratification information as a feature to the 
Clair3-MP full-alignment model. Based on the “Stratification on ONT-Illumina” results, we observed that 
the performance of Clair3-MP with ONT-Illumina data varies across different genomic regions and 
improved in difficult regions. We investigated whether using various genomic information for multi-
platform data can further improve variant-calling performance. We integrated the stratification 
information, which is interpreted as whether the variant candidate is in a difficult genomic region defined 
by the GIAB BED file, into Clair3-MP and trained a new ONT-Illumina model from GIAB HG002 data. 
We compared the newly trained model (with stratification information) with the original Clair3-MP 
model and tested their performance at the sequencing data of 30x ONT and 30x Illumina from HG003 
chromosome 20, which has always been excluded from model training. Fig. 6 is the F1 score of SNPs and 
Indel calling using the original Clair3-MP model compared to the Clair3-MP model with the stratification 
information added. It shows that including the information about whether the variant candidate is in a 
difficult genomic region for prediction yields comparable results. Adding the stratification increases the 
performance of SNPs (original Clair3-MP: 0.9984, new Clair3-MP: 0.9985) and Indel calling in Clair3-
MP (original Clair3-MP: 0.9736, new Clair3-MP: 0.9745). This small but measurable improvement 
provides the important message that if a variant candidate is in a difficult region, Clair3-MP not only 
combines the ONT and Illumina data, but also allocates them based on the difficulty of the region, for 
best variant-calling performance. 

Performance on ONT-PacBio and PacBio-Illumina 
In this section, we present variant-calling performance using Clair3-MP with multi-platform data 
involving PacBio data. Featuring long- and high-read accuracy, PacBio was benchmarked with a high F1 
score (>0.99) in variant calling (3). We explored the effect of using PacBio data as a part of the data 
within a multi-platform framework. We trained two new models for ONT-PacBio and PacBio-Illumina 
data and tested the performance with HG003 data. We compared the performance of the newly trained 
models with Clair3. The execution commands are available in the Supplementary Note.  

.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2023. ; https://doi.org/10.1101/2023.05.31.543184doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.543184
http://creativecommons.org/licenses/by-nd/4.0/


   
 

8 
 

Fig. 7 is a column chart that shows the F1 score in variant calling in three areas – overall performance, 
SNP calling and Indel calling – with different data combinations. We found that Clair3-MP with PacBio 
and other platform data achieved results comparable to Clair3 with PacBio data. Variant-calling 
performance was high, with at least a 0.9957 F1 score in most cases when PacBio was part of the multi-
platform data or as single-platform data. Of note, Indel calling using Clair3-MP with PacBio-Illumina 
data had an F1 score of 0.9969, which was higher than 0.9933 using Clair3 with PacBio data. This 
suggests that due to the higher indel error rate in PacBio data compared to Illumina data, additional 
sufficient and accurate Illumina data containing fewer indel errors can improve the performance in Indel 
calling with Clair3-MP, but not in SNP calling. However, Clair3-MP with ONT-PacBio had a worse 
performance in variant calling than Clair3 with PacBio (PacBio: 0.9990, ONT-PacBio: 0.9986) and Indel 
calling (PacBio: 0.9933, ONT-PacBio: 0.9771). The decrease in indel-calling performance echoes back to 
the impact of ONT discussed earlier, whereby the indel error rate affected Indel calling in multi-platform 
data. The slight decrease in SNP calling suggests that Clair3-MP still has room for improvement to 
eliminate noise from the ONT reads.  

Discussion 
Through a series of extensive experimental investigations conducted in diverse scenarios, we 
demonstrated that the utilization of multi-platform data with Clair3-MP leads to a notable improvement in 
variant calling. Our results show that Clair3-MP exhibits robust performance across datasets of varying 
error profiles and coverage. By stratifying the variant calling results from Clair3-MP with ONT-Illumina 
data (both at 30x), we also found that an even higher performance in SNP calling by Clair3-MP with 
ONT-Illumina arises primarily from an improvement in large tandem repeat regions, satellite regions, 
segmental duplication regions, collapsed duplication regions, and GC content regions. The improvement 
shows that Clair3-MP can leverage the strength of both data sets to reach higher performance. Although 
overall Indel calling using Clair3-MP with ONT-Illumina data is affected by noise introduced by a higher 
indel error rate in the ONT reads, we found that Clair3-MP achieves better Indel calling in the large 
tandem repeat regions, low Illumina-read mappability regions, and segmental duplication and collapsed 
duplication regions. Based on our stratification analysis, we concluded that Clari3-MP with ONT-
Illumina data can attain better variant-calling performance in challenging genomic regions than Clair3 
with ONT or Illumina data can. Given this conclusion, we adjusted the Clair3-MP model to include 
information about whether a variant candidate is in a difficult region to further enhance the variant-calling 
performance. Adding stratification improves the capability of Clair3-MP with ONT-Illumina data for 
variant calling in the new model, and the capability to leverage both datasets can be adjusted based on the 
genomic region. The high performance in variant calling by Clair3 with PacBio data prompted us to 
investigate whether the inclusion of data from additional platforms could yield even better performance in 
Clair3-MP. We ensured that the combinations used in Clair3-MP provided sufficient data coverage. We 
observed that adding 30x Illumina data to 30x PacBio data in Clair3-MP resulted in higher performance 
in Indel calling than Clair3 with PacBio data. However, the impact of Illumina and ONT reads on SNP 
calling, and overall variant calling in ONT-PacBio data highlights the need for further refinement of the 
Clair3-MP model to mitigate noise from these sources. 

The improvement in variant calling using Clair3-MP with ONT-Illumina validates the hypothesis that 
multi-platform data can leverage the strengths of different sequencing data. It has been previously 
discussed that for high coverage of ONT data, SNP calling demonstrated improved performance with 
developed methods due to its broader range of cover for the genome. Therefore, the additional 30x ONT 
data to Illumina data in Clair3-MP can compensate for the limitations of Illumina data for SNP calling, 
resulting in an improvement in overall calling performance. However, with additional ONT data of lower 
than 20x, the performance for variant calling using Clair3-MP with ONT-Illumina is not as improved as 
with the additional 30x ONT data. This indicates the relevance of coverage for the ONT data to variant-
calling improvement in Clair3-MP. ONT data with lower coverage lacks read support for the allele 
sequence (Supplementary Figure S5A) and even for the region (Supplementary Figure S5B), as it 
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introduces background noise in the neural network. Moreover, the decreased indel-calling performance in 
most of the coverage combinations, even with 30x ONT data, shows that the high indel error rate of ONT 
reads adversely impacts variant calling in Clair3-MP with ONT-Illumina data. We provide examples in 
Supplementary Figure S6 to illustrate how the presence of multiple insertion sequences supported by 
ONT data can introduce ambiguity to Illumina read signals, thereby affecting the quality of variant 
candidates. The histogram in Supplementary Figure S7 indicates how the quality scores have shifted in 
the indels called by all Clair3 with Illumina, Clair3 with ONT, and Clair3-MP with both data. The quality 
scores of indels from Clair3-MP show a decreasing trend compared to Clair3 with Illumina data, 
providing an overall understanding of how ambiguity among ONT data impacts the quality of indel 
calling. With the above conclusions and the message conveyed by Fig. 3, we recommend that researchers 
perform variant calling using Clair3-MP with ONT-Illumina data with at least 30x coverage of ONT data. 
If there is low coverage of Illumina data, additional ONT data at any coverage also guarantees 
improvement in variant calling with Clair3-MP. Moreover, the acquisition of additional Illumina data at 
any coverage level can be useful when only ONT data is available, as it has been confirmed to improve 
variant-calling performance. 

The stratification analysis provides valuable insights into variant calling using ONT-Illumina data. It is 
reasonable to believe that multi-platform data can leverage the strengths of the data and complement the 
weaknesses of each dataset. Through our stratification analysis, we found that the improvement in variant 
calling with Clair3-MP lies primarily in the difficult regions, which include the regions in which Illumina 
reads are susceptible to mapping and duplication resulting from incorrect mapping due to PSVs. Fig. 8 
shows two cases of true variants in the difficult regions of low mappability and collapse duplication. Fig. 
8A is a true SNP in the collapse duplication regions mapped by misaligned Illumina reads due to the PSA 
in the duplication sequences, and Fig. 8B is a true variant in a low mappability region, to which only 
ambiguous Illumina reads can map. In these cases, Clair3-MP leverages the strengths of confident variant 
candidates from the ONT data to compensate for the ambiguity in Illumina reads. In the regions in which 
Illumina data have sufficient coverage and high mapping quality, and in which variant calling in Clair3 
with only Illumina reads already provides adequate performance, the additional ONT data leads to a 
decrease in Indel calling performance, such as smaller low complexity regions shorter than 200 bp 
(Supplementary Figure S4). Stratifying the performance of multi-platform data for variant calling in 
different genomic contexts allows researchers to make informed decisions regarding the use of multi-
platform data to achieve optimal performance in their area of interest. 

The stratifying results clearly demonstrate the capability of Clair3-MP to improve variant calling in 
difficult genomic regions. To further leverage the strengths of multi-platform data, we adjusted the 
Clair3-MP model to incorporate information on whether a variant candidate is in a challenging genomic 
region. The success in improving variant-calling performance hints that a deep-learning network can take 
into account the genomic context information for higher accuracy. Fig. 9 shows the feature activation of a 
true variant called using only the adjusted Clair3-MP model. No features in the ONT or Illumina reads 
were activated in the Clair3-MP model, but the features in the Illumina reads were activated intensely in 
the Clair3-MP stratification model. The re-activation of features suggests that the inclusion of 
stratification information allows the network to recover true SNPs that were previously missed in the 
multi-platform data. 

In our study, we trained the PacBio-involved model to illustrate multi-platform effects when including the 
PacBio data in Clair3-MP. Our findings demonstrate that the inclusion of data from other platforms with 
PacBio data leads to comparable results, as Clair3 with PacBio achieved high performance. Therefore, we 
did not train a three-platform model. 

There are some challenges, and future work remains to be done to utilize multiple platform data. We 
benchmarked Clair3-MP only on whole genome sequencing (WGS) data. Other experiments combined 
both target region sequencing (like sequencing high-sequencing coverage at targeted sequencing regions) 
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and WGS (like using ONT or PacBio WGS). These designs challenge Clair3-MP for its unbalanced data 
coverage across the reference genome. In our future research, we aim to enhance the versatility of Clair3-
MP by enabling the automatic acceptance of unbalanced data, such as Illumina-only and ONT-only data, 
in training an ONT-Illumina MP model. However, the current design of Clair3-MP showed marginal 
improvement in in indel calling. This is due to the high indel error rate in ONT sequencing reads, which 
confuses the model from converging well. Some techniques, like sequence error correction, realignment, 
and alignment to consensus, may further improve the calling accuracy. 

Conclusions 
Our studies demonstrate the capability of combining multi-platform data for improving variant calling, 
and validate the strengths and weaknesses of variant calling using ONT and Illumina data, through 
various experiments with Clair3-MP. Clair3-MP with ONT-Illumina data outperformed Clair3 with ONT 
or Illumina data in difficult regions. In addition, the experiments at different coverage provide insights for 
research involving variant calling using sequencing data from different platforms. Combined with 
stratification analysis, researchers can decide what the best scenarios are for performing variant calling 
with multi-platform data based on the nature of the study. Building on the stratification results, we further 
modified the deep-learning model to better process multi-platform data based on the genomic region, 
resulting in improvements for both SNPs and indel calling.  

Methods 
Clair3-MP workflow 
Clair3-MP has two parts for variant callings: the first part generates high-quality candidates using Clair3’s 
pileup models to phase the input alignments independently based on the platform; and the second part 
takes all the phased alignments and pileup candidates extracted prior to the first part and loads them into 
the Clair3-MP full-alignment model for variant calling. As Fig. 1 shows, Clair3-MP took the alignments 
from two different sequencing platforms of the same sample. This approach extracts pileup candidates 
using Samtools mpileup (14) and processes them separately in Clair3's pileup models, which are tailored 
to the specific sequencing platforms. Then, the pileup calls are organized into variant calls (genotypes 0/1, 
1/1, and 1/2) and reference calls (0/0), and these two groups are ranked by variant quality (QUAL). The 
top 70% of heterozygous (genotype 0/1) SNP calls are used to phase the variants and haplotag the 
alignments using WhatsHap (19). The phased alignments are then fed as input for haplotype-aware full-
alignment calling. Lastly, all the pileup candidates are processed again in the designated full-alignment 
model trained for the platform combination to output one final variant set for this sample. To support the 
processing of alignments from different platform combinations, Clair3-MP trained a series of full-
alignment models, including ONT-Illumina, ONT-PacBio and PacBio-Illumina platform combinations.  

Clair3-MP’s Input/output 
As the pileup input is processed separately for each sequencing platform through Clair3’s pileup models, 
during the pileup calling, Clair3-MP utilizes the pileup input design as Clair3, which comprises 594 
integers – 33 genome positions with 18 features at each position. For full-alignment input, to incorporate 
details from different platforms, Clair3-MP designed a comprehensive full-alignment input comprising 
46,992 integers – eight channels of 33 genome positions and a maximum 178 reads on two platforms. We 
also attempted to integrate stratification information into full-alignment input to determine the 
contribution of genomic context to variant-calling performance.  Supported by the full-alignment model, 
which adds the stratification information channel, the input comprises 52,866 integers, with nine channels 
of features. The output of the pileup model contains only two tasks for efficiency, 21 genotypes, and 
zygosity, which are also included in the output of the full-alignment models with two more indel length 
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tasks. The details of the pileup and full-alignment features and output tasks are described in the 
Supplementary Note. 

Clair3-MP full-alignment model 
The Clair3-MP model is an N-to-1 model (N = the number of platforms) that can input all the alignments 
from different sequencing platforms for the same sample and output one set of variants (20). For each 
platform, the full-alignment information is converted into eight different feature channels: reference base, 
alternative base, strand information, mapping quality, base quality, candidate proportion, insertion base, 
and phasing information channels. An additional stratification information channel is appended using the 
Clair3-MP stratification model. The information from each platform is aggregated for each channel and 
used as input for the Clair3-MP model.  

Training the Clair3-MP model 
To train the Clair3-MP model with different platform combinations at various coverages, we first used the 
unified true variants from the Representation Unification module from Clair3 to phase the alignments of 
ONT, Illumina, and PacBio data. The phased alignments for each platform and each training sample were 
downsampled to 10x, 20x, and 30x for multiple coverage combinations. Then, the Clair3 pileup calling 
was performed for each downsampled and phased alignment. Each pileup calling candidates group was 
selected based on the ratio of 1:5 for variant calls and reference calls to avoid introducing a massive 
number of negative samples in model training. To train the model for each platform combination (i.e., 
ONT-Illumina, ONT-PacBio, PacBio-Illumina), we used the nine following coverages: 10x-10x, 10x-20x, 
10x-30x, 20x-10x, 20x-20x, 20x-30x, 30x-10x, 30x-20x, and 30x-30x.  

Training the Clair3-MP model with stratification information 
After conducting stratification analyses using the Clair3-MP pre-trained model, we found that the 
improvement in variant calling using Clair3-MP with ONT and Illumina data came mainly from 
improvements in difficult regions, which it is difficult to map accurately by the Illumina reads or contain 
true variants overlapped with the PSV. To account for this, an additional stratification channel was added 
to the Clair3-MP model, with a 50/100 value, indicating whether the variant candidate is in one of the 
difficult regions.  The difficult regions are defined by ‘alldifficultregions.bed.gz’ from GIAB stratification 
v2 for the GRCh38 reference genome. This stratification contains a union of difficult genomic regions, 
such as all tandem repeat regions, difficult-to-map regions, and segmental duplication regions. This 
stratification was selected after a series of attempts to include different unions of difficulties in the model. 
We retrained the new Clair3-MP stratification channel from scratch. The results are shown in the section 
“Performance when stratification information is added to Clair3-MP”. 

List of abbreviations 
Indels: Insertions and deletions 

SNP: Single nucleotide polymorphism 

Clair3-MP: Clair3 Multi-Platform 
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.CC-BY-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted June 6, 2023. ; https://doi.org/10.1101/2023.05.31.543184doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.31.543184
http://creativecommons.org/licenses/by-nd/4.0/


   
 

12 
 

PacBio: Pacific Biosciences 
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BAM: Binary alignment map 
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Figures 

 

Fig. 1. Workflow of Clair3-MP with the ONT-Illumina module.  
We use ONT-Illumina as an example for calling using Clair3-MP. The platform mentioned in this 
example can be used on other platforms (e.g., Illumina, PacBio, and ONT). First, candidates from 
Samtools mpileup are extracted for both ONT and Illumina. Then, the ONT and Illumina pileup 
candidates are processed independently by the Clair3 pileup models using its respective and 
recommended parameters. The resulting high-quality candidates are used to phase the alignments in its 
respective platform, using WhatsHap. Finally, all the pileup candidates from the first step and the phased 
alignments are processed by the Clair3-MP model trained for ONT-Illumina data. 
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Fig. 2. Overall F1 scores for variant calling using ONT-Illumina and single-platform 
sequencing datasets at different coverage.  
A) 10x ONT and Illumina at 10x, 20x or 30x. B) 20x ONT and Illumina at 10x, 20x or 30x. C) 30x ONT 
and Illumina at 10x, 20x or 30x. Each subplot contains different coverage of ONT in the multi-platform 
data. The x-axis is the F1 score. The y-axis is the coverage of Illumina contained in the multi-platform 
data. The yellow row represents the F1 score of variant calling using only Illumina data with the coverage 
labeled on the y-axis. The red row represents the F1 score of variant calling using only ONT data with the 
coverage indicated by the subplot name. The green row indicates the F1 score of variant calling using 
ONT and Illumina data, together with the coverage indicated by the y-axis labels and subplot names. 
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Fig. 3. Marginal graph of the F1 score using single-platform data and ONT-Illumina data 
at different coverage. 
A) Overall F1 score in a comparison between Illumina data and ONT-Illumina data. B) SNP-calling F1 
score in a comparison between Illumina data and ONT-Illumina data. C) Indel-calling F1 score in a 
comparison between Illumina data and ONT-Illumina data. D) Overall F1 score in a comparison between 
ONT data and ONT-Illumina data. E) SNP-calling F1 score in a comparison between ONT data and 
ONT-Illumina data. F) Indel-calling F1 score in a comparison between ONT data and ONT-Illumina data. 
The x-axis indicates the coverage of a single-platform data included in the variant calling for combining 
and not combining the various coverage of data from the other platform. Each trend line indicates the 
coverage of the other platform data added in the variant calling in Clair3-MP. The intersections of the 
trend lines reveal the optimal case for combining ONT and Illumina data for variant calling. 
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Fig. 4. Two true variants called by Clair3-MP with ONT and Illumina (both at 30x) 
A) A true SNP that was called using ONT-Illumina data in Clair3-MP but not called using Illumina data 
in Clair3. This variant is at chr13:100081597; it is a homozygous T-to-C substitution. The region is not 
mapped by Illumina reads, even though there are reads supporting the allele sequence. By covering the 
regions that Illumina reads have trouble being aligned to, with ONT’s long reads, ONT-Illumina data 
increases the performance of SNP calling with Clair3-MP. B) A true SNP that was called using ONT-
Illumina data in Clair3-MP but not called using either ONT or Illumina data in Clair3. This variant is at 
chr10:54717216; it is a heterozygous C-to-T substitution. The region is mapped by ambiguous Illumina 
reads with mapping quality of 0, meaning that these reads can be mapped to other regions too. However, 
with only ONT data, there is not enough support for prediction. The variant was called when combining 
ONT and Illumina data, showing the capability of Clair3-MP to recover true variants that are not called 
using only ONT or Illumina data. 
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Fig. 5. The performance in stratifications for 30x ONT-Illumina data in comparison with 
ONT and Illumina data. 
A) SNP-calling performance in eight stratifications. B) Indel-calling performance in eight stratifications. 
The x-axis is the value for precision, recall and F1 score. The y-axis is the label for data used in the 
variant calling.   
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Fig. 6. The F1 score for variant calling, original Clair3-MP model v.s.Clair3-MP model 
with the stratification channel.  
The red column is the F1 score for variant calling using the original Clair3-MP model, and the yellow 
column indicates the F1 score for variant calling using the Clair3-MP model trained with the stratification 
information. 
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Fig. 7. The F1 score of variant calling using multi-platform data involving the PacBio and 
single-platform datasets.  
The red, yellow, and green columns indicate the F1 score of variant calling using only 30x PacBio data, 
30x Illumina data, and 30x ONT data, respectively. The blue column shows the F1 score of variant calling 
combining 30x PacBio and 30x Illumina data in Clair3-MP, and the pink column is the F1 score using 
30x PacBio and 30x ONT data. 
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Fig. 8. Two true variants in difficult regions, that were called using ONT-Illumina data in 
Clair3-MP. 

A) This variant is at chr3:75772913; it is a homozygous C-to-G substitution in the collapse duplication 
region. The Illumina reads are mapped incorrectly in this region due to PSVs, therefore this variant were 
not called only using Illumina data, but the ONT read can cover the region. Variant calling in this region 
with Illumina reads is problematic, so the addition of ONT data helps recover the SNP. B) This variant is 
at chr5: 176196642; it is a heterozygous C insertion in a low-mappability region. The region is mapped 
by ambiguous Illumina reads with mapping quality of 0, meaning that these reads, even with insertion 
sequences, can be mapped to other regions confidently as well.  
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Fig. 9. Activation graph of a true variant.  
This variant was called by the Clair3-MP model with the stratification feature but was not called in the 
original Clair3-MP model. The top rows of both graphs are the ONT reads, and the bottom rows are the 
Illumina reads.  
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