

1 **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell
2 resolution**

3

4 Kieran Koch-Laskowski¹, Ki-Suk Kim^{2,3}, Maigen Bethea², Kelly N. Z. Fuller², Darleen A.
5 Sandoval^{2,3}, Praveen Sethupathy^{1,3}

6

7 **Summary**

8 The gut plays a key role in regulating metabolic health. Dietary factors disrupt intestinal
9 physiology and contribute to obesity and diabetes, whereas bariatric procedures such as vertical
10 sleeve gastrectomy (VSG) cause gut adaptations that induce robust metabolic improvements.
11 However, our understanding of these adaptations at the cellular and molecular levels remains
12 limited. In a validated murine model, we leverage single-cell transcriptomics to determine how
13 VSG impacts different cell lineages of the small intestinal epithelium. We define cell type-
14 specific genes and pathways that VSG rescues from high-fat diet perturbation and characterize
15 additional rescue-independent changes brought about by VSG. We show that Paneth cells have
16 increased expression of the gut peptide Reg3g after VSG. We also find that VSG restores
17 pathways pertaining to mitochondrial respiration and cellular metabolism, especially within crypt-
18 based cells. Overall, our study provides unprecedented molecular resolution of VSG's
19 therapeutic effects on the gut epithelium.

20

21 **Keywords**

22 Single-cell transcriptomics, intestine, obesity, bariatric surgery, vertical sleeve gastrectomy

23

24

25

26

27

28

29

30

31

¹ Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, 14850, USA

² Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, 80045 USA

³ Current affiliation: Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee, 38163, USA

Indicates co-senior authorship

Correspondence: pr46@cornell.edu and darleen.sandoval@cuanschutz.edu

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

32 **Introduction**

33 Energy homeostasis is maintained by physiological activity coordinated across organ
34 systems. A significant contributor is the gastrointestinal tract, which serves as the primary site
35 for nutrient intake amidst a dynamic mechanical, chemical, and microbial environment. Systemic
36 energy balance relies in part on the gut's ability to adapt to ever-changing conditions, an
37 endeavor initiated by the intestinal epithelium.

38 Gut epithelial cells serve as a critical interface with the luminal environment. Lining the
39 small intestine, they form crypt and villus structures that continuously renew from proliferating
40 stem cells at the crypt base. From there, unique lineages differentiate and carry out specialized
41 functions throughout the crypt-villus axis. Major cell types include: enterocytes, which comprise
42 the majority of the small intestinal epithelium and facilitate nutrient digestion and absorption;
43 goblet and tuft cells, which secrete mucus and contribute to mucosal immunity, respectively;
44 Paneth cells, which support the crypt niche and generate antimicrobial peptides; and lastly
45 enteroendocrine cells (EECs), which release a variety of hormones in response to luminal
46 stimuli to help coordinate whole-body metabolism^{1,2}. Given the vast heterogeneity both between
47 and within these lineages, a growing number of studies have leveraged single-cell
48 transcriptomic technology to deepen our understanding of the mechanisms underlying gut
49 health and metabolic homeostasis^{3,4}.

50 Perturbations in the intestinal epithelium have been linked to the pathogenesis of
51 metabolic disease. For example, recent single-cell investigations have reported early and
52 advanced epithelial maladaptations following consumption of diets high in fat and/or sugar^{5,6}.
53 These studies are part of a larger effort to identify novel therapeutic targets for diet-induced
54 obesity, a complex phenotype associated with serious comorbidities, such as type 2 diabetes;
55 cardiovascular, liver, and musculoskeletal diseases; and mental health disorders⁷. The growing
56 prevalence of obesity and its collective impact on global mortality impose disproportionate
57 burdens on different facets of society⁸. Thus, further research is urgently needed to determine
58 how the gut may be adapted to improve overall public health.

59 Among the current treatment strategies for obesity and metabolic disease, bariatric
60 surgery produces the most profound effects on weight loss and other metabolic parameters,
61 highlighting the therapeutic potential of the gut⁹⁻¹¹. One of the most commonly performed
62 bariatric procedures is vertical sleeve gastrectomy (VSG), which achieves significant metabolic
63 improvements within one year post-surgery¹². Despite its effectiveness, VSG is an invasive
64 procedure not without risk, involving resection of ~80% of the stomach along the greater
65 curvature. This anatomical manipulation is known to induce small intestinal epithelial

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

66 adaptations, particularly within the EEC lineage, that have been previously investigated by us¹³
67 and others¹¹ for their possible roles in ameliorating metabolic disease. However, a
68 comprehensive picture of how other cell types of the small intestinal epithelium respond to VSG
69 has yet to be established.

70 Here, we aimed to define the overall cellular and molecular landscape of the small
71 intestinal epithelium upon treatment of diet-induced obesity by bariatric surgery. Using a single-
72 cell transcriptomic approach with a validated murine model of VSG, we identified all major cell
73 lineages along the crypt-villus axis and noted cell type-specific genes and pathways rescued by
74 VSG following dietary perturbation. Our results provide greater resolution in localizing changes
75 previously observed after VSG (such as recovered expression of the gut peptide Reg3g¹⁴). We
76 also reveal nuclear and mitochondrial genes involved in cellular respiration that are rescued in
77 crypt-based lineages. Altogether, this unprecedented view highlights how adaptations among
78 specific cell types may affect gut epithelial homeostasis, taking one step closer towards the
79 discovery of more targeted, less invasive treatment strategies for metabolic disease.

80

81 **Results**

82 **VSG produces robust metabolic improvements in a validated mouse model**

83 To better understand how diet and bariatric surgery impact the small intestinal
84 epithelium, we first initiated male C57BL/6J mice on a 16-week high-fat diet (HFD) regimen
85 followed by surgical intervention (**Figure 1A**). Upon induction of diet-induced obesity, HFD fed
86 mice underwent vertical sleeve gastrectomy (VSG), resulting in improved metabolic outcomes
87 compared to their sham-operated counterparts as expected from previous studies in both
88 murine models^{15,16} and human patients^{10,17}. Within one-week post-surgery, HFD VSG animals
89 lost significantly more body weight than HFD sham mice, reaching weights comparable to that
90 approached those of a parallel group of sham mice fed a low-fat diet (LFD) (**Figure 1B**). Both
91 HFD groups consistently outweighed the LFD mice in fat and lean mass, while weight loss
92 induced by VSG was attributable to reduced fat but not lean mass (**Figure 1C**). As seen
93 previously^{15,18,19}, transient differences in food intake occurred following surgery but ultimately
94 waned until all animals consumed similar amounts by three weeks post-surgery; however, HFD
95 sham mice had higher energy intake than LFD-fed mice due to differences in dietary caloric
96 density (**Figure 1D**). While HFD sham mice demonstrated robust oral glucose intolerance
97 relative to the LFD group, VSG animals showed improved blood glucose levels comparable to
98 those observed in LFD fed mice (**Figure 1E**). Altogether, the metabolic improvements observed

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

99 here in body weight/composition and glucose tolerance align with expectations established in
100 the bariatric surgery field and confirm our experimental cohort as a valid model of murine VSG.
101

102 **Dietary and surgical interventions induce minimal changes in intestinal epithelial
103 morphometry and cellular composition**

104 With substantial weight loss observed over five weeks after surgery, we next collected
105 small intestinal tissue samples to assess how diet and surgery affect the gross morphometry
106 and cellular composition of the epithelium. Focusing on the jejunum as a key site for nutrient
107 absorption, we found no changes in crypt depth between HFD and LFD sham animals,
108 consistent with a previous long-term obesogenic diet study in mice⁶. While VSG induced a slight
109 increase in crypt depth, this trend was non-significant (**Figure 2A**). Villus height tended to rise
110 with HFD feeding and showed an additional non-significant increase with VSG (**Figure 2B**).
111 These findings generally replicate our recent murine VSG study¹³, in which we observed no
112 major differences in small intestinal epithelial morphometry between VSG and sham animals.
113 Given the emphasis we and others have already placed on surgery-induced adaptations within
114 the enteroendocrine lineage^{11,13}, we decided to expand our focus here on how VSG affects
115 other secretory cell types, specifically goblet and Paneth cells. Analogous to our morphometric
116 findings, we observed modest increases in alcian blue-stained goblet cells in the crypts and villi
117 of HFD VSG mice (**Figure 2C-D**). For crypt-based Paneth cells, we saw a mild decrease in
118 Lyz1+ cells in HFD sham mice compared to LFD animals, which was rescued by VSG (**Figure**
119 **2E**). Overall, our histological results revealed subtle intestinal epithelial responses to different
120 dietary and surgical contexts.

121

122 **Single-cell transcriptomic analysis defines the epithelial molecular landscape at high
123 resolution following VSG**

124 To delve further into how the gut adapts to a chronic HFD and treatment by VSG, we
125 leveraged single-cell RNA-sequencing to perform, to our knowledge, the first cell type-specific
126 investigation of the small intestinal epithelial transcriptome following bariatric surgery. Upon
127 conclusion of our dietary and surgical interventions, we isolated jejunal epithelial samples from
128 each of the three experimental groups (pooled from at least two biological replicates per group)
129 and submitted separate crypt- and villus-enriched single-cell suspensions for sequencing
130 (**Figure 1A**). The resulting datasets were quality control filtered, integrated, normalized, and
131 analyzed through a series of bioinformatic steps (**Figure 3A**), which are detailed in the Methods
132 section. Following computational exclusion of contaminating ambient RNA, doublets, and low-

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

133 quality cells, our overall dataset comprised 24,511 cells across 19 distinct clusters. Highly
134 enriched genes in each of these clusters were then overlapped with known markers of different
135 intestinal epithelial lineages (as annotated in a previous single-cell survey of the small intestine³)
136 to assign each cluster to a specific cell type (**Figure 3B**). Two clusters were defined as immune
137 cells and subsequently removed to focus downstream analyses on epithelial cell types. This left
138 a total of 21,844 intestinal epithelial cells among 17 clusters. Importantly, high-quality cells from
139 each dietary (HFD or LFD) or surgical (VSG or sham) condition, as well as each compartment
140 (crypts or villi), were represented proportionally throughout the dataset (**Supplementary Figure**
141 **1**). We established confidence in the assigned cell type identities by analysis of specific marker
142 genes, including *Sis*⁺ enterocytes, *Lgr5*⁺ stem cells, *Muc2*⁺ goblet cells, *Lyz1*⁺ Paneth cells,
143 *Dclk1*⁺ tuft cells, and *Chga*⁺ EECs (**Figure 3C**). Furthermore, the cell type assignments aligned
144 with expectations regarding cell cycle state and differentiation status; stem and progenitor cells
145 expressed markers of active cell cycling whereas differentiated lineages displayed greater
146 maturation by pseudotime analysis (**Figure 3D**). With this robust single-cell dataset in hand, we
147 proceeded to study how HFD and VSG impact gene expression across each gut epithelial cell
148 type.

149

150 **Differential expression analysis highlights cell type-specific genes perturbed by HFD and**
151 **rescued by VSG**

152 For each individual cell type cluster, we asked two questions: (1) what genes are
153 differentially expressed by HFD, and (2) what genes change in expression with VSG? This
154 yielded two lists of differentially expressed genes (DEGs) per cluster, which we compared to
155 see if the same genes downregulated by HFD were upregulated by VSG, and vice versa. We
156 grouped these overlapping DEGs into one of two categories, termed “rescue” or “specificity.”
157 “Rescue” was defined as the fraction of DEGs altered by HFD and changed in the opposite
158 direction by VSG. “Specificity” was defined as the fraction of DEGs changed by VSG that fall
159 into the rescue category (distinct from VSG-induced DEGs unrelated to dietary perturbation)
160 (**Figure 4A**). To compare the extent of “rescue” and “specificity” across different cell types, we
161 first applied filtering criteria to each DEG list ($P < 0.05$, $P_{adj} < 0.20$, $\log_{2}FC > |0.50|$). Among all
162 clusters localized to the crypt compartment, 734 genes were differentially expressed after HFD
163 (646 down, 88 up), and 912 after VSG (772 up, 140 down). In villus-relevant clusters, there
164 were 1496 HFD DEGs (669 down, 827 up), and 4714 VSG DEGs (2314 up, 2400 down).
165 Visualizing these proportions in a cluster-specific manner revealed higher overall levels of
166 rescue and specificity in crypts compared to villi, and this pattern was driven predominantly by

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

167 genes downregulated by HFD and upregulated by VSG (**Figure 4B, Supplemental Figure 2**).
168 Specific clusters that exemplified this trend include crypt-based stem and Paneth cells (as
169 opposed to villus enterocyte clusters) (**Figure 4C**). And while the EEC lineage showed
170 comparable degrees of rescue and specificity between crypt and villus compartments, we found
171 that most genes rescued in EECs were distinct between crypts and villi, with the few shared
172 being predominantly mitochondrial-encoded (**Supplemental Figure 3A-B**).

173 Given the critical role of the crypt in maintaining overall intestinal epithelial
174 homeostasis²⁰, we further examined the genes rescued in the stem and Paneth clusters
175 (**Supplemental Figure 3C**). In both cell types, genes related to cellular metabolism, such as
176 *Cox7a2* and *Gapdh*, were rescued to a similar extent (**Figure 4D**). Other genes were rescued
177 by VSG to a greater extent in stem versus Paneth cells, such as *Gpx4*, which encodes an
178 enzyme that mitigates harmful lipid peroxidation²¹, and *Prap1*, which codes for a protein that
179 protects gut epithelial cells from apoptotic insults²². Genes that showed more Paneth-centric
180 rescue effects included *Ldha*, which encodes a key enzyme in glycolysis leading to the
181 production of lactate²³, and *Reg3g*, which codes for an antimicrobial peptide that was recently
182 shown to be required for metabolic improvements induced by VSG or a fiber-enriched diet¹⁴.
183 (**Figure 4D**). We sought to leverage our single-cell data to follow up on this finding and narrow
184 down the intestinal epithelial lineage(s) that likely drive increased *Reg3g* expression following
185 VSG. Across nearly all clusters spanning the crypt-villus axis, *Reg3g* was downregulated by
186 HFD; however, *Reg3g* expression returned to LFD-comparable levels most prominently in
187 Paneth cells and villus tuft cells after VSG (**Figure 4E**).
188

189 **Pathways enriched among rescued genes underscore diet- and surgery-induced changes
190 in nutrient absorption and metabolic function**

191 To comprehensively survey the biological relevance of our single-cell expression results,
192 we performed pathway enrichment analysis^{24,25} of DEG sets derived from each cell cluster along
193 the crypt-villus axis. We first analyzed VSG-induced DEGs (filtered as previously described) to
194 understand the effects of surgery alone on the epithelium. We then repeated these enrichment
195 analyses with only genes “rescued” by VSG. In villus enterocytes, villus EECs, and some crypt-
196 based goblet cells, genes downregulated by VSG were significantly enriched in pathways
197 related to digestion and absorption of major macronutrients, vitamins, and minerals as well as
198 cholesterol metabolism and PPAR signaling (**Figure 5A-B**). Of the VSG downregulated genes
199 in the “rescue” category, digestion and absorption of fat and vitamins, cholesterol metabolism,
200 and PPAR signaling remained top hits in most of the same villus clusters (**Figure 5A**). These

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

201 findings suggest that VSG not only rescues HFD-induced defects in fat absorption and
202 metabolism but also suppresses other macronutrient absorption pathways.

203 Conversely, genes upregulated by VSG were significantly enriched in a wide range of
204 metabolic pathways. These included oxidative phosphorylation in crypt and villus clusters in
205 addition to other crypt-based pathways such as glycolysis, fatty acid metabolism, and mTORC1
206 signaling (**Figure 5C-D**). Pathways pertaining to reactive oxygen species (ROS) and Myc
207 targets also emerged as significant hits across crypt and villus lineages, specifically in stem and
208 secretory cells for the former and both absorptive and secretory clusters for the latter (**Figure**
209 **5C-D**). Taken together, these results point to mitochondrial activity and biogenesis²⁶ as possible
210 mechanisms of VSG-induced metabolic improvements in the gut. Of the VSG upregulated
211 genes in the “rescue” category, recovery of metabolic pathways was most pronounced in crypt-
212 based goblet, stem, and Paneth cells (**Figure 5D**). Given the importance of metabolic regulation
213 within the crypt to overall epithelial homeostasis²⁷⁻³⁰, we performed more expansive pathway
214 enrichment analyses focused on stem and Paneth cells. We found that pathways related to the
215 TCA cycle and electron transport chain, ATP biosynthesis, and mitochondrial complex assembly
216 were among the most over-represented among genes rescued by VSG (**Figure 5E**). Notably,
217 these results were based on nuclear-encoded genes, which prompted us to next explore
218 changes in mitochondrial-encoded genes.

219

220 **VSG ameliorates defects in crypt-based mitochondrial gene expression induced by**
221 **chronic HFD**

222 To further investigate how HFD and VSG affect mitochondria within intestinal epithelial
223 crypts, we compared the expression levels of all 13 mitochondrial protein-coding genes among
224 our three experimental groups in both the stem and Paneth clusters. We observed perturbed
225 expression of electron transport chain components with HFD as well as rescue of expression by
226 VSG, especially among Complex I and Complex IV genes (**Figure 6A**). Several were rescued in
227 both stem and Paneth clusters (e.g., *mt-Co1*), whereas others were more prominently rescued
228 in one of the cell types (e.g., *mt-Nd6* in stem and *mt-Atp8* in Paneth).

229 Differences in cell and data quality can account for variance in the number of reads
230 mapping to mitochondrial genes and introduce bias to our expression analyses. A stringent
231 filtering threshold for mitochondrial reads (<20%) was applied across all single-cell datasets,
232 which suggests that the aforementioned results are not likely caused by technical issues.
233 Nonetheless, to make sure of this, we repeated the differential expression analysis while
234 explicitly accounting for the per-cell proportion of reads mapping to the mitochondrial genome

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

235 as a covariate. Indeed, we still found that mitochondrial protein-coding genes are among the
236 most downregulated DEGs after HFD and the most upregulated after VSG (**Figure 6B**).

237 Altogether, our single-cell findings have led to the development of the following working
238 model (**Figure 6C**), which proposes how the small intestinal epithelium adapts to HFD-induced
239 obesity and treatment by VSG: (1) HFD elicits expression changes in villus enterocytes to
240 accommodate increased fat digestion and metabolism at the expense of other macronutrients
241 such as carbohydrates; (2) VSG reduces global macronutrient digestion and absorption in villus
242 enterocytes and also programs them for increased oxidative phosphorylation; (3) among crypt-
243 based stem and Paneth cells, nuclear-encoded genes involved in glycolysis, mitochondrial
244 function, and metabolic activity are impaired by HFD and rescued by VSG; and (4) stem and
245 Paneth mitochondrial-encoded genes (especially in the complex I and IV pathways) are among
246 the most prominently rescued by VSG.

247

248 **Discussion**

249 A variety of gut epithelial cell types sense and respond to environmental cues. Exposure
250 to external factors, particularly dietary components, can adjust the balance of absorptive,
251 defensive, and secretory functions distributed among these cells – either productively to
252 maintain homeostasis or maladaptively to incite disease. In mice fed a diet high in fat and/or
253 sugar, the intestinal epithelium shows a hyperproliferative response with lineage allocation
254 skewed towards absorptive enterocytes at the expense of secretory lineages like EECs. These
255 adaptations occur with both short- and long-term dietary interventions and correlate with defects
256 in whole-body metabolism^{5,6}. From a therapeutic perspective, growing evidence suggests that
257 the metabolic improvements observed after bariatric surgery arise from various changes in not
258 only gut anatomy but also epithelial physiology¹¹. Indeed, while post-surgical adaptations in gut
259 endocrine signaling and their therapeutic effects continue to be explored, pharmacological
260 approaches that recapitulate such outcomes have received increasing attention as attractive
261 alternatives to treat metabolic disease⁹. Despite these advances, our understanding of how
262 dietary and surgical interventions act through the gut to influence metabolic health remains
263 limited.

264 To address this knowledge gap, we performed a high-resolution transcriptomic analysis
265 of the small intestinal epithelium following VSG, one of the most common bariatric surgical
266 procedures performed worldwide¹². The current study builds on our previous efforts to
267 characterize how VSG impacts epithelial differentiation via bulk RNA-sequencing of sorted
268 intestinal stem cells¹³. Here, we leveraged single-cell technology to comprehensively survey the

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

269 transcriptome of murine epithelial cells spanning the crypt-villus axis, both upon development of
270 diet-induced obesity and after treatment by VSG. We identified all major epithelial lineages and
271 revealed cell type-specific changes in gene expression between high- and low-fat diet-fed as
272 well as VSG versus sham-operated mice. By comparing differential expression patterns
273 resulting from these dietary and surgical interventions, we specified genes and pathways that
274 VSG rescues from HFD perturbation and defined additional diet-independent changes of VSG.
275 This drew our attention to crypt-based cell lineages, which showed greater proportions of rescue
276 compared to villus cell types, particularly with genes downregulated by HFD and upregulated
277 after VSG.

278 Given that epithelial differentiation and homeostasis are orchestrated by the crypt
279 niche²⁰, we further examined our single-cell results to determine how VSG-induced rescue of
280 stem and Paneth cell genes might initiate adaptive changes within the gut. Several notable
281 findings emerged. First, we distinguished patterns of rescued gene expression across different
282 cell types (e.g., genes rescued in both stem and Paneth cells) in addition to expression rescued
283 predominantly within specific lineages (e.g., genes rescued to a greater extent in either stem or
284 Paneth cells). Among the latter group of genes, we expanded on a recent observation by Shin
285 *et al.*, who found that VSG increases expression of Reg3g, an antimicrobial peptide necessary
286 to improve gut and metabolic function following dietary fiber supplementation and bariatric
287 surgery¹⁴. While upregulation of *Reg3g* by VSG was observed broadly throughout the small
288 intestine, we localized this effect mainly within Paneth cells and saw a concomitant trend toward
289 rescued Paneth cell number via Lyz1 immunofluorescence. Next, we also noted crypt-centric
290 rescue of genes relevant for a variety of metabolic pathways, such as glycolysis, oxidative
291 phosphorylation, fatty acid metabolism, and mTORC1 signaling. Focusing on stem and Paneth
292 cells, we noticed that VSG rescues both nuclear and mitochondrially encoded genes related to
293 the electron transport chain, ATP biosynthesis, and assembly of mitochondrial complexes
294 (especially complex I and IV). Altogether, our results suggest that chronic HFD impairs specific
295 cell types along with the collective metabolic profile of the crypt niche and that these defects are
296 ameliorated by VSG.

297 Previous studies have pointed to mitochondrial dysfunction within various tissues and
298 organs, including the intestine³¹, the liver³², skeletal muscle³³, and adipose depots^{34,35}, as
299 potential contributors to metabolic disease pathogenesis. Bariatric surgery has also been shown
300 to improve mitochondrial function in both preclinical models and patients³⁶⁻³⁸, though outside the
301 context of the intestine. Our study emphasizes the underexplored role of intestinal epithelial cell
302 metabolism in shaping the gut and overall metabolic health following dietary and surgical

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

303 intervention. This coincides with a mounting body of evidence underscoring crypt metabolic
304 activity as a crucial, conserved regulator of intestinal differentiation and homeostasis^{29,39,40}. The
305 discoveries in this area have highlighted the importance of stem cell mitochondrial respiration
306 supported by glycolytic products (e.g., lactate) from Paneth cells^{28,30}. In line with this, we found
307 that HFD reduces while VSG rescues Paneth cell expression of *Ldha*, which encodes a catalytic
308 subunit of the glycolytic enzyme lactate dehydrogenase²³. Furthermore, within stem cells we
309 observed more prominent rescue of genes involved in mitigation of oxidative stress (e.g.,
310 *Gpx4*²¹) and apoptotic insults (e.g., *Prap1*²²), which broadly pertain to mitochondrial function.
311 These findings suggest that diet and bariatric surgery may induce gut adaptations through
312 transcriptional changes that uniquely affect the metabolic profiles of different crypt-based
313 lineages.

314 However, our data also prompted us to rethink the idea of strict stem- and Paneth-
315 specific metabolic compartmentalization, as we noted more generalized rescue of other protein-
316 coding components of oxidative metabolism and glycolysis across both cell types (e.g., *Cox7a2*,
317 mitochondrially encoded electron transport chain genes, and *Gapdh*). Moreover, although
318 mitochondrial respiration has been suggested as the main metabolic identity of stem cells³⁰, a
319 recent study has demonstrated the importance of glycolysis within *Lgr5*⁺ cells. Specifically, the
320 authors showed that ablation of the glycolytic enzyme hexokinase 2 within this cell population
321 was sufficient to perturb intestinal stem self-renewal and differentiation⁴¹. Another study used
322 live-cell imaging to reveal a metabolic gradient that shifts from glycolysis to oxidative
323 phosphorylation with cell proliferation and differentiation, respectively, along the crypt-villus
324 axis⁴². Thus, a more nuanced perspective should be considered when weighing the relative
325 contributions of different metabolic pathways and how they may dynamically impact the function
326 of specific cell types over time. Future studies are needed to define how glycolytic and
327 mitochondrial activity interact within and between different cell types to regulate overall intestinal
328 homeostasis.

329 Beyond the cellular and transcriptomic changes observed in the crypts, diet- and
330 surgery-induced adaptations in villi were mostly centered around enterocytic nutrient
331 processing. VSG downregulated genes associated with macronutrient digestion and absorption,
332 including those related to lipid handling and fat metabolism that were shown by us and others to
333 be upregulated by HFD^{5,6}. At the same time, VSG increased expression of genes involved in
334 oxidative phosphorylation across nearly all villus cell clusters, supporting the previously
335 suggested metabolic trajectory of oxidative metabolism in mature, differentiated cells as
336 opposed to glycolytic activity in proliferating, developing cells. These molecular changes

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

337 coincided with subtle increases in crypt depth, villus height, and goblet cell number after VSG,
338 which may reflect ways in which dietary and surgical interventions affect rates of epithelial
339 differentiation and turnover through metabolic adjustments across cell lineages. Nonetheless,
340 we acknowledge the need to interpret our findings carefully among several experimental factors,
341 such as the specific mouse model used, the intestinal region interrogated, as well as the dietary
342 composition and duration implemented during the study intervention. Other studies have drawn
343 different conclusions. For example, while we saw no significant diet-induced changes in jejunal
344 epithelial histomorphometry or secretory cell quantification here, others have reported
345 increases, decreases, or no changes in these parameters, likely arising from differing study
346 designs^{5,6,43–45}. Therefore, our results do not definitively specify the effects of HFD and VSG on
347 the gut but rather add to a growing picture of how the intestinal epithelium differentially responds
348 to various contexts.

349 We recognize several limitations of our study. First, while there are known sex-
350 dependencies in the development of diet-induced metabolic disease^{46,47} as well as in treatment
351 outcomes by bariatric surgery¹⁶, we focused only on male mice to minimize the impact of
352 additional covariates in our single-cell analyses. Future studies should build on existing work⁴⁸
353 to explore potential sex differences in gut adaptations initiated by diet and surgery. In addition,
354 our single-cell analysis of certain cell types, such as EECs, was limited by their rarity in the
355 epithelium. Follow up single-cell studies can leverage sorting or enrichment strategies to study
356 changes more carefully in enteroendocrine gene expression and subtype profiling following
357 bariatric surgery. Finally, we understand and appreciate that our findings conveyed here are
358 restricted to the transcriptomic level of gene expression, which we hope will inspire future
359 investigations into other aspects of gene regulation and protein function that are altered by
360 VSG.

361 In conclusion, we present a comprehensive single-cell transcriptomic survey of the
362 murine jejunal epithelium following treatment of diet-induced metabolic disease by VSG. We
363 identified changes in gene expression within specific lineages throughout the crypt-villus axis,
364 notably VSG-induced rescue of genes perturbed by HFD. Overall, our study contributes to
365 resolving the potential cellular and molecular mechanisms that underlie gut adaptations and
366 advances efforts to find more effective, less invasive ways to treat metabolic disease.

367

368 **Acknowledgements**

369 The authors give their wholehearted thanks to the staff at the following core facilities for their
370 invaluable assistance in this study: the Genomics and Microarray Core (Cancer Center Support

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

371 Grant (P30CA046934), the Histology Core, and the Colorado Nutrition Obesity Research Center
372 (NORC, DK048520) at the University of Colorado Anschutz Medical Campus; as well as the
373 Animal Health Diagnostic Center Histology Core, the Institute of Biotechnology, and the
374 Bioinformatics Facility at Cornell University. We also greatly appreciate our colleague, Dr. Matt
375 Kanke, for his support and expertise in single-cell transcriptomic analyses as well as Danielle
376 Leander for her surgical support. Figures were created with [BioRender.com](https://biorender.com) and Adobe
377 Illustrator.

378

379 **Author Contributions**

380 Conceptualization, K.K-L., K-S.K., D.A.S., and P.S.; Investigation, K.K-L., K-S.K., M.B., and
381 K.F.; Formal Analysis, K.K-L. and K-S.K.; Visualization, K.K-L. and K-S.K.; Writing – Original
382 Draft, K.K-L.; Writing – Review & Editing, K.K-L., K-S.K., M.B., K.F., D.A.S., and P.S.;
383 Supervision, D.A.S., P.S.; Funding Acquisition, K.K-L., K-S.K., D.A.S., and P.S.

384

385 **Grants**

386 This work was supported by the National Institutes of Health, National Institute of Diabetes and
387 Digestive and Kidney Diseases (R01DK121995 and R01DK107282 to D. Sandoval,
388 K01DK129367 to K.S. Kim), the NIH Office of Research Infrastructure Programs
389 (F30OD031914 to K. Koch-Laskowski), as well as the American Diabetes Association (1-19-
390 IBS-252 to D. Sandoval and 1-16-ACE-47 to P. Sethupathy).

391

392 **Declaration of Interests**

393 The authors declare no competing interests.

394

395 **Methods**

396 ***In vivo* studies**

397 Five-week-old male C57BL/6J mice (n=20) were purchased from the Jackson Laboratory
398 (Bar Harbor, ME, USA) and were individually housed in a 12-hour light/dark cycle environment
399 with ad libitum access to water and food. The animal room was maintained at a temperature of
400 25°C with 50%-60% humidity. Following an acclimation period, mice were assigned to receive
401 either a 10% LFD (Research Diet; catalog D12450J) or a 60% HFD (Research Diet; catalog
402 D12492) for a duration of 16 weeks before surgical intervention.

403 Mice were matched for body weight and body fat, then subjected to sham or VSG
404 surgery as previously described¹⁵. Briefly, mice fed a 60% HFD (n=5) were anesthetized, and a

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

405 small laparotomy incision was made in the abdominal wall. The lateral 80% of the stomach
406 along the greater curvature was excised, and sleeve was created using a simple continuous
407 suture (8-0 Prolene). Simple interrupted sutures were occasionally utilized to reinforce the
408 strength of the sleeve. Sham surgery was performed on LFD-fed mice (n=6) and HFD-fed mice
409 (n=6) by applying gentle pressure on the stomach with blunt forceps. During the initial 3 days
410 following surgery, the animals were fed a DietGel® boost (Clear H2O Inc, Westbrook, ME, USA)
411 and subsequently returned to their original LFD or HFD.

412 Body weight and food intake were monitored for 5 weeks post-surgery. Body
413 composition was assessed before and 5 weeks after surgery using an EchoMRI instrument
414 (EchoMRI LLC, Houston, TX, USA). At the 4-week mark post-surgery, an oral glucose tolerance
415 test (OGTT) was conducted after a 5- to 6- hour fast, orally administering a 2 g/kg dose of a
416 50% dextrose solution.

417 All animal studies were performed according to an approved protocol by the Institutional
418 Animal Care and Use Committee (IACUC) at the University of Colorado Anschutz Medical
419 Campus as well as protocols outlined in the National Institutes of Health (NIH) guide for the care
420 and use of laboratory animals (NIH Publications No. 8023, revised 1978).

421

422 Small intestinal crypt/villus collections and single-cell isolations

423 Five weeks post-surgery, overnight-fasted mice were euthanized via CO₂ inhalation. The
424 abdominal cavity was promptly opened, and the small intestine was collected and divided into
425 three segments (duodenum, jejunum and ileum). Subsequently, the segments were flushed with
426 ice-cold PBS (Gibco, ThermoFisher, Waltham, MA, USA) to remove luminal contents. A small
427 portion of each segment (~0.5 cm) was isolated for histologic analysis. Each jejunal segment
428 was opened longitudinally and placed in individual tubes containing cold DMEM (ThermoFisher)
429 before immediate processing with a solution of 3mM EDTA (Sigma-Aldrich, St. Louis, MO, USA)
430 in PBS for cell dissociation. During processing in the EDTA/PBS solution, the intestinal
431 segments were manually scrapped and subsequently filtered through a 70 µm cell strainer to
432 separate crypts from villi.

433 For single-cell dissociation, the crypts and villi were resuspended separately in a cold
434 solution of 0.04% bovine serum albumin (BSA)/PBS, followed by processing with 0.3 U/ml
435 dispase/HBSS, DNase1/FBS, and 0.04% BSA/PBS solutions (all reagents purchased from
436 Sigma-Aldrich). The viability of and number of dissociated crypt and villus cells were measured
437 using the ThermoFisher ViCell counter (ThermoFisher), with an average viability of 71% for
438 crypts and 66% for villus cells. Approximately 3.0×10^7 crypt cells and 3.5×10^7 villus cells from

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

439 each sample were pooled (n=3 for LFD-sham and HFD-sham, n=2 for HFD-VSG) and diluted to
440 a concentration of 1000 cells/µL.

441

442 **Single-cell library preparation and sequencing**

443 Single-cell RNA-sequencing library preparation was performed by the Genomics and
444 Microarray Core at the University of Colorado Anschutz Medical Campus. Using the 10x
445 Genomics Chromium Next GEM 3' v3.1 kit, single-cell suspensions were processed by loading
446 roughly ~16,500 cells to capture a target number of 10,000 per sample with which to generate
447 libraries. Sequencing was run on the NovaSeq 6000 platform (Illumina, San Diego, CA, USA) to
448 obtain at least 50,000 reads per cell.

449

450 **Single-cell transcriptomic analysis pipeline**

451 FASTQ files were generated from the raw single-cell sequencing data and aligned to the
452 mouse genome (mm10) via CellRanger (v.6.0.0). To help ensure that our transcriptomic signal
453 originated from productive gel beads-in-emulsion rather than ambient cell-free transcripts, raw
454 and filtered gene/count matrices produced by CellRanger were processed through SoupX⁴⁹ via
455 the default parameters of the autoEstCont method. The estimated background contamination
456 fractions (rho) for each sample were as follows: LFD sham crypts = 0.030, LFD sham villi =
457 0.046, HFD sham crypts = 0.279, HFD sham villi = 0.165, HFD VSG crypts = 0.035, HFD VSG
458 villi = 0.021. Corrected matrices with ambient RNA removed were initialized in Seurat (v4.1)⁵⁰
459 for all downstream quality control and analysis steps. First, multiplets were computationally
460 accounted for and removed via scDlbFinder⁵¹. Next, low-quality cells with less than 750 genes
461 detected or greater than 20% of reads mapping to mitochondrial genes were filtered out. With
462 the remaining high-quality cells, samples were normalized and integrated using the standard
463 Seurat SCTransform (v2)^{52,53} workflow based on the 2000 most variable genes while controlling
464 for the number of genes per cell and the proportion of mitochondrial reads mapped. Subsequent
465 clustering visualizations projected via UMAP were derived from 30 principal component analysis
466 dimensions at a resolution of 0.4 and later customized to different color palettes using ggplot2.
467 Highly enriched genes in each cluster were determined by the FindAllMarkers function in
468 Seurat, which identified the most upregulated genes compared to all other clusters; marker
469 enrichment was defined as having a log fold change of at least 0.50 via MAST⁵⁴ with per-cell
470 gene number and mitochondrial reads as covariates. Cell types were assigned to each cluster
471 based on overlap of enriched genes with known markers of each intestinal epithelial lineage as
472 annotated previously by Haber et al³. Additional overlap with immune cell markers (e.g., Gzma,

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

473 *Gzmb, Itgae, Ccl5, Cd7, Cd69, Cd3g, Cd8a*) identified two immune clusters that were removed
474 from subsequent analyses. Focusing on epithelial clusters, cells were assigned a cell-cycle
475 score based on expression of G2/M and S phase markers via Seurat's CellCycleScoring
476 function. Pseudotime analysis was performed on Seurat-defined clusters via Monocle3⁵⁵ with
477 root nodes originating in the stem cell cluster.

478 Within each intestinal epithelial cell cluster across the crypt-villus axis, differential
479 expression analysis between experimental groups (i.e., HFD VSG vs. HFD Sham, HFD Sham
480 vs. LFD Sham, and HFD VSG vs. LFD Sham) was performed using the FindMarkers function in
481 Seurat; significant differential expression of genes was determined via MAST⁵⁴. Changes in
482 mitochondrial gene expression were confirmed in a repeated analysis accounting for genes per
483 cell and percentage of mitochondrial reads as covariates. Differentially expressed genes
484 (DEGs) from each cluster were filtered ($P < 0.05$, $P_{adj} < 0.20$, $\log_{2}FC > |0.50|$) and
485 subsequently compared by diet (i.e., HFD sham vs. LFD sham) and surgery (i.e., HFD VSG vs.
486 HFD sham). These DEGs were further analyzed in a cluster-specific manner via a Venn
487 diagram approach to identify genes demonstrating reciprocal changes in expression overlapped
488 between dietary and surgical comparisons (see **Figure 4A**).

489 Pathway enrichment analysis was performed by inputting filtered DEG sets ($P < 0.05$,
490 $P_{adj} < 0.20$, $\log_{2}FC > |0.50|$) into Enrichr^{24,25}, a comprehensive online database of gene set
491 annotations and libraries. Adjusted P values for enrichment terms were manually collected and
492 projected by heatmap using ggplot2. Nutrient digestion and absorption pathways were derived
493 strictly from Enrichr's KEGG Human 2021 database. Metabolic pathways were initially surveyed
494 across all clusters via Enrichr's Molecular Signatures Database Hallmark 2020; further
495 investigation of metabolic pathways in the stem and Paneth clusters leveraged the BioPlanet
496 2019, WikiPathway 2021, and Reactome 2022 databases.

497

498 Histologic analysis

499 A small portion from each intestinal segment was fixed in 10% neutral-buffered formalin for
500 24 hours and submitted to the University of Colorado Histology Shared Resource for paraffin
501 embedding and slide preparation. All images were captured using a BX53 Olympus scope.
502 Morphometric analyses were performed by analyzing hematoxylin and eosin-stained sections in
503 ImageJ. Measurement of crypt depth and villus height spanned from the crypt base to the top of
504 the transit-amplifying zone then to the villus tip, respectively. Averaged morphometric values
505 were based upon inclusion of at least ten intact crypts and villi per animal in each experimental
506 group. Using Alcian blue-stained sections, goblet cells were quantified in both crypts and villi

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

507 through manual counting of positively labeled cells situated along the outline of the intestinal
508 epithelium. Alcian blue counts were averaged per animal within crypts and villi separately.
509 Paneth cell quantification was assessed via immunofluorescent staining for Lyz1. Here, sections
510 were deparaffinized using a series of xylene and ethanol solutions, rehydrated in cold water,
511 and permeabilized with methanol. After boiling in antigen retrieval solution (10mM citric acid,
512 0.05% v/v Tween-20, pH = 6.0) for 20 minutes, sections were blocked with 10% v/v normal goat
513 serum in PBS for 1 hour. Sections were incubated overnight with primary antibody (rabbit anti-
514 Lyz1, diluted 1:1000 in PBS with 1% w/v bovine serum albumin) at 4°C followed by a 1-hour
515 room temperature incubation with secondary antibody (goat anti-rabbit Alexa Fluor 594 diluted
516 1:1000 in PBS with 1%w/v bovine serum albumin). Nuclei were subsequently counterstained
517 with DAPI (diluted 1:1000 in PBS). Lyz1+ cells were manually quantified in intact crypts and
518 averaged per animal.

519

520 Statistics

521 Statistical analyses of *in vivo* data were performed using GraphPad Prism 9 (GraphPad
522 Software, San Diego, CA, USA). Body weight/composition, oral glucose tolerance testing, and
523 histological data were analyzed using ordinary one- or two-way ANOVA, as applicable, to
524 determine significant main effects and interactions between independent variables. Food intake
525 measurements were assessed through mixed-effects analysis. Significant differences (*P*adj <
526 0.05) were determined by Tukey's post hoc testing. Data are presented as mean ± SEM. Single-
527 cell RNA-sequencing analyses were performed using R. Differential gene expression outcomes
528 were determined via MAST⁵⁴ and were considered significant with *P* < 0.05 and *P*adj < 0.20.

529

530 References

- 531 1. Beumer, J. & Clevers, H. Cell fate specification and differentiation in the adult mammalian
532 intestine. *Nat. Rev. Mol. Cell Biol.* **22**, 39–53 (2021).
- 533 2. Gribble, F. M. & Reimann, F. Function and mechanisms of enteroendocrine cells and gut
534 hormones in metabolism. *Nat. Rev. Endocrinol.* **15**, 226–237 (2019).
- 535 3. Haber, A. L. *et al.* A single-cell survey of the small intestinal epithelium. *Nature* **551**, 333–
536 339 (2017).
- 537 4. Gehart, H. *et al.* Identification of Enteroendocrine Regulators by Real-Time Single-Cell
538 Differentiation Mapping. *Cell* **176**, 1158–1173.e16 (2019).
- 539 5. Enriquez, J. R. *et al.* A dietary change to a high-fat diet initiates a rapid adaptation of the
540 intestine. *Cell Rep.* **41**, 111641 (2022).
- 541 6. Aliluev, A. Diet-induced alteration of intestinal stem cell function underlies obesity and
542 prediabetes in mice. *3*, 35 (2021).
- 543 7. Heymsfield, S. B. & Wadden, T. A. Mechanisms, Pathophysiology, and Management of
544 Obesity. *N. Engl. J. Med.* **376**, 254–266 (2017).

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

545 8. Blüher, M. Obesity: global epidemiology and pathogenesis. *Nat. Rev. Endocrinol.* **15**, 288–
546 298 (2019).

547 9. Gimeno, R. E., Briere, D. A. & Seeley, R. J. Leveraging the Gut to Treat Metabolic Disease.
548 *Cell Metab.* **31**, 679–698 (2020).

549 10. Kim, K.-S. & Sandoval, D. A. Endocrine Function after Bariatric Surgery. in *Comprehensive*
550 *Physiology* 783–798 (American Cancer Society, 2017). doi:10.1002/cphy.c160019.

551 11. Seeley, R. J., Chambers, A. P. & Sandoval, D. A. The role of gut adaptation in the potent
552 effects of multiple bariatric surgeries on obesity and diabetes. *Cell Metab.* **21**, 369–378
553 (2015).

554 12. Welbourn, R. *et al.* Bariatric Surgery Worldwide: Baseline Demographic Description and
555 One-Year Outcomes from the Fourth IFSO Global Registry Report 2018. *Obes. Surg.* **29**,
556 782–795 (2019).

557 13. Kim, K.-S. *et al.* Vertical sleeve gastrectomy induces enteroendocrine cell differentiation of
558 intestinal stem cells through bile acid signaling. *JCI Insight* **7**, e154302 (2022).

559 14. Shin, J. H. *et al.* The gut peptide Reg3g links the small intestine microbiome to the
560 regulation of energy balance, glucose levels, and gut function. *Cell Metab.* **34**, 1765–
561 1778.e6 (2022).

562 15. Kim, K.-S. *et al.* Vertical sleeve gastrectomy induces enteroendocrine cell differentiation of
563 intestinal stem cells through bile acid signaling. *JCI Insight* (2022)
564 doi:10.1172/jci.insight.154302.

565 16. Hutch, C. R. *et al.* Diet-Dependent Sex Differences in the Response to Vertical Sleeve
566 Gastrectomy. *Am. J. Physiol.-Endocrinol. Metab.* (2021) doi:10.1152/ajpendo.00060.2021.

567 17. Schauer, P. R. *et al.* Bariatric Surgery versus Intensive Medical Therapy in Obese Patients
568 with Diabetes. <http://dx.doi.org/10.1056/NEJMoa1200225>
569 <https://www.nejm.org/doi/10.1056/NEJMoa1200225> (2012) doi:10.1056/NEJMoa1200225.

570 18. Evers, S. S. *et al.* Continuous glucose monitoring reveals glycemic variability and
571 hypoglycemia after vertical sleeve gastrectomy in rats. *Mol. Metab.* **32**, 148–159 (2020).

572 19. Stefater, M. A. *et al.* Sleeve Gastrectomy Induces Loss of Weight and Fat Mass in Obese
573 Rats, but Does Not Affect Leptin Sensitivity. *Gastroenterology* **138**, 2426–2436.e3 (2010).

574 20. Gehart, H. & Clevers, H. Tales from the crypt: new insights into intestinal stem cells. *Nat.*
575 *Rev. Gastroenterol. Hepatol.* **16**, 19–34 (2019).

576 21. Mayr, L. *et al.* Dietary lipids fuel GPX4-restricted enteritis resembling Crohn's disease. *Nat.*
577 *Commun.* **11**, 1775 (2020).

578 22. Wolfarth, A. A. *et al.* Proline-Rich Acidic Protein 1 (PRAP1) Protects the Gastrointestinal
579 Epithelium From Irradiation-Induced Apoptosis. *Cell. Mol. Gastroenterol. Hepatol.* **10**, 713–
580 727 (2020).

581 23. Wu, Q. *et al.* Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut
582 microbiome and alter thermogenesis. *Cell Metab.* **33**, 1988–2003.e7 (2021).

583 24. Chen, E. Y. *et al.* Enrichr: interactive and collaborative HTML5 gene list enrichment analysis
584 tool. *BMC Bioinformatics* **14**, 128 (2013).

585 25. Kuleshov, M. V. *et al.* Enrichr: a comprehensive gene set enrichment analysis web server
586 2016 update. *Nucleic Acids Res.* **44**, W90–97 (2016).

587 26. Morrish, F. & Hockenberry, D. MYC and Mitochondrial Biogenesis. *Cold Spring Harb.*
588 *Perspect. Med.* **4**, a014225–a014225 (2014).

589 27. Urbauer, E., Rath, E. & Haller, D. Mitochondrial Metabolism in the Intestinal Stem Cell
590 Niche—Sensing and Signaling in Health and Disease. *Front. Cell Dev. Biol.* **8**, 602814
591 (2021).

592 28. Ludikhuize, M. C. *et al.* Mitochondria Define Intestinal Stem Cell Differentiation Downstream
593 of a FOXO/Notch Axis. *Cell Metab.* **32**, 889–900.e7 (2020).

594 29. Rath, E., Moschetta, A. & Haller, D. Mitochondrial function — gatekeeper of intestinal
595 epithelial cell homeostasis. *Nat. Rev. Gastroenterol. Hepatol.* **15**, 497–516 (2018).

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

596 30. Rodríguez-Colman, M. J. *et al.* Interplay between metabolic identities in the intestinal crypt
597 supports stem cell function. *Nature* **543**, 424–427 (2017).

598 31. Guerbette, T., Boudry, G. & Lan, A. Mitochondrial function in intestinal epithelium
599 homeostasis and modulation in diet-induced obesity. *Mol. Metab.* **63**, 101546 (2022).

600 32. Fromenty, B. & Roden, M. Mitochondrial alterations in fatty liver diseases. *J. Hepatol.* **78**,
601 415–429 (2023).

602 33. Bakkman, L. *et al.* Reduced Respiratory Capacity in Muscle Mitochondria of Obese
603 Subjects. *Obes. Facts* **3**, 1–1 (2010).

604 34. Da Eira, D., Jani, S. & Ceddia, R. B. An obesogenic diet impairs uncoupled substrate
605 oxidation and promotes whitening of the brown adipose tissue in rats. *J. Physiol.* **601**, 69–82
606 (2023).

607 35. AlZaim, I., Eid, A. H., Abd-Elrahman, K. S. & El-Yazbi, A. F. Adipose tissue mitochondrial
608 dysfunction and cardiometabolic diseases: On the search for novel molecular targets.
609 *Biochem. Pharmacol.* **206**, 115337 (2022).

610 36. Sacks, J. *et al.* Effect of Roux-en-Y gastric bypass on liver mitochondrial dynamics in a rat
611 model of obesity. *Physiol. Rep.* **6**, e13600 (2018).

612 37. Fernström, M. *et al.* Improved Muscle Mitochondrial Capacity Following Gastric Bypass
613 Surgery in Obese Subjects. *Obes. Surg.* **26**, 1391–1397 (2016).

614 38. Nijhawan, S., Richards, W., O’Hea, M. F., Audia, J. P. & Alvarez, D. F. Bariatric surgery
615 rapidly improves mitochondrial respiration in morbidly obese patients. *Surg. Endosc.* **27**,
616 4569–4573 (2013).

617 39. McCauley, H. A. *et al.* Enteroendocrine Cells Protect the Stem Cell Niche by Regulating
618 Crypt Metabolism in Response to Nutrients. *Cell. Mol. Gastroenterol. Hepatol.*
619 S2352345X22002673 (2023) doi:10.1016/j.jcmgh.2022.12.016.

620 40. Deng, H., Takashima, S., Paul, M., Guo, M. & Hartenstein, V. Mitochondrial dynamics
621 regulates Drosophila intestinal stem cell differentiation. *Cell Death Discov.* **4**, 81 (2018).

622 41. Li, C. *et al.* Glycolytic Regulation of Intestinal Stem Cell Self-Renewal and Differentiation.
623 *Cell. Mol. Gastroenterol. Hepatol.* **15**, 931–947 (2023).

624 42. Stringari, C. *et al.* Metabolic trajectory of cellular differentiation in small intestine by Phasor
625 Fluorescence Lifetime Microscopy of NADH. *Sci. Rep.* **2**, 568 (2012).

626 43. Soares, A., Beraldi, E. J., Ferreira, P. E. B., Bazotte, R. B. & Butto, N. C. Intestinal and
627 neuronal myenteric adaptations in the small intestine induced by a high-fat diet in mice.
628 *BMC Gastroenterol.* **15**, 3 (2015).

629 44. Mah, A. T., Van Landeghem, L., Gavin, H. E., Magness, S. T. & Lund, P. K. Impact of diet-
630 induced obesity on intestinal stem cells: hyperproliferation but impaired intrinsic function that
631 requires insulin/IGF1. *Endocrinology* **155**, 3302–3314 (2014).

632 45. Beyaz, S. *et al.* High-fat diet enhances stemness and tumorigenicity of intestinal
633 progenitors. *Nature* **531**, 53–58 (2016).

634 46. Huang, K.-P. *et al.* Sex differences in response to short-term high fat diet in mice. *Physiol.*
635 *Behav.* **221**, 112894 (2020).

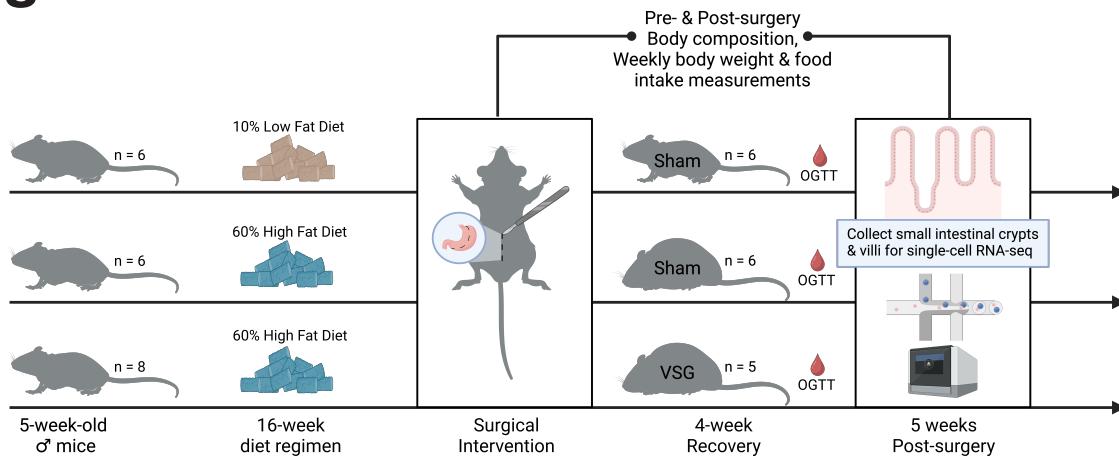
636 47. Millward, D. J. *et al.* Sex differences in the composition of weight gain and loss in
637 overweight and obese adults. *Br. J. Nutr.* **111**, 933–943 (2014).

638 48. Zhou, W., Davis, E. A., Li, K., Nowak, R. A. & Dailey, M. J. Sex differences influence
639 intestinal epithelial stem cell proliferation independent of obesity. *Physiol. Rep.* **6**, e13746
640 (2018).

641 49. Young, M. D. & Behjati, S. SoupX removes ambient RNA contamination from droplet-based
642 single-cell RNA sequencing data. *GigaScience* **9**, giaaa151 (2020).

643 50. Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573–3587.e29
644 (2021).

645 51. Germain, P.-L., Lun, A., Meixide, C. G., Macnair, W. & Robinson, M. D. Doublet
646 identification in single-cell sequencing data. (2022).


Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

647 52. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq
648 data using regularized negative binomial regression. *Genome Biol.* **20**, 296 (2019).
649 53. Choudhary, S. & Satija, R. Comparison and evaluation of statistical error models for scRNA-
650 seq. *Genome Biol.* **23**, 27 (2022).
651 54. Finak, G. *et al.* MAST: a flexible statistical framework for assessing transcriptional changes
652 and characterizing heterogeneity in single-cell RNA sequencing data. *Genome Biol.* **16**, 278
653 (2015).
654 55. Trapnell, C. *et al.* The dynamics and regulators of cell fate decisions are revealed by
655 pseudotemporal ordering of single cells. *Nat. Biotechnol.* **32**, 381–386 (2014).
656

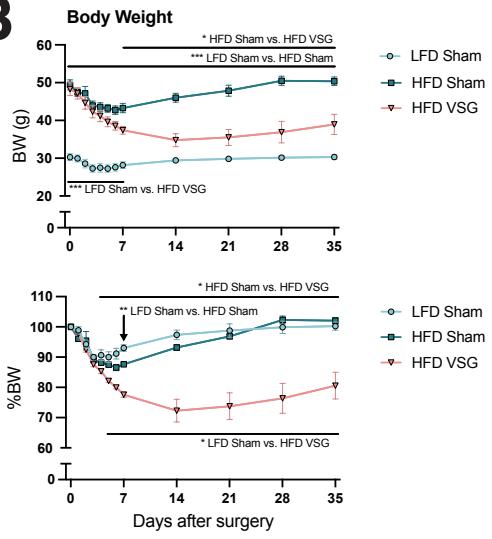
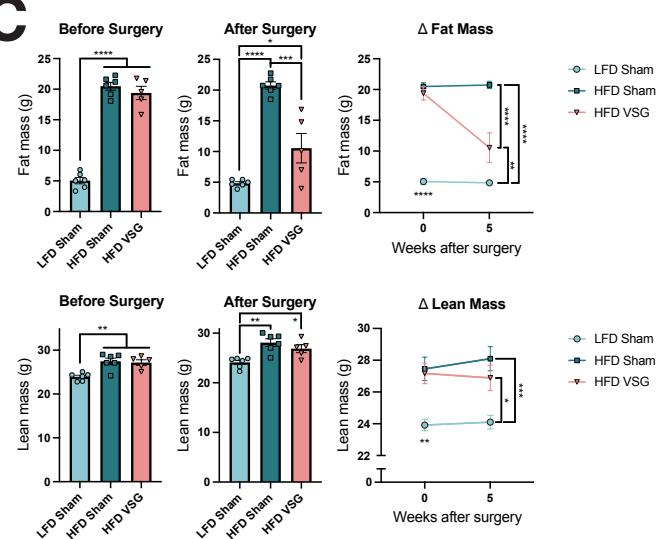
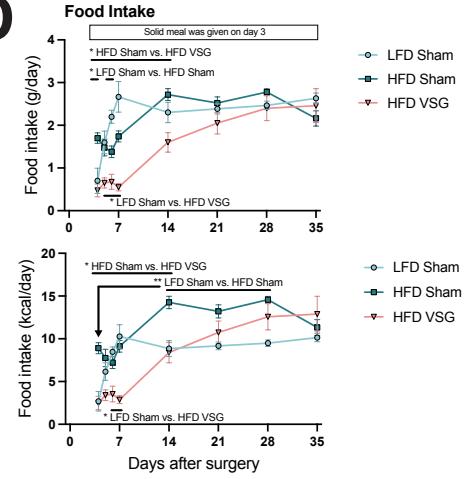
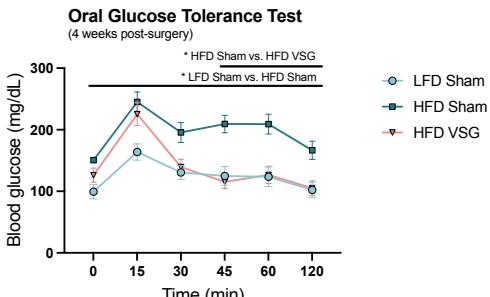

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

Figure 1


A


B


C

D

E

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

Figure 1: Vertical sleeve gastrectomy produces robust metabolic improvements in a validated mouse model.

(A) Experimental design. Male C57BL/6J mice were maintained on 60% HFD (n=14) or 10% LFD (n=6) for 16 weeks prior to surgical intervention. HFD-fed animals underwent VSG (n=5) or a sham procedure (n=6), while LFD-fed animals were sham treated (n=6). At five weeks post-surgery, mice were overnight fasted, and small intestinal crypts and villi were subsequently collected for single-cell RNA-seq.

(B) Body weight and percent body weight change. Animals were weighed daily for one week following surgery and weekly thereafter.


(C) Body composition. Fat and lean mass were measured before surgery and five weeks post-surgery.

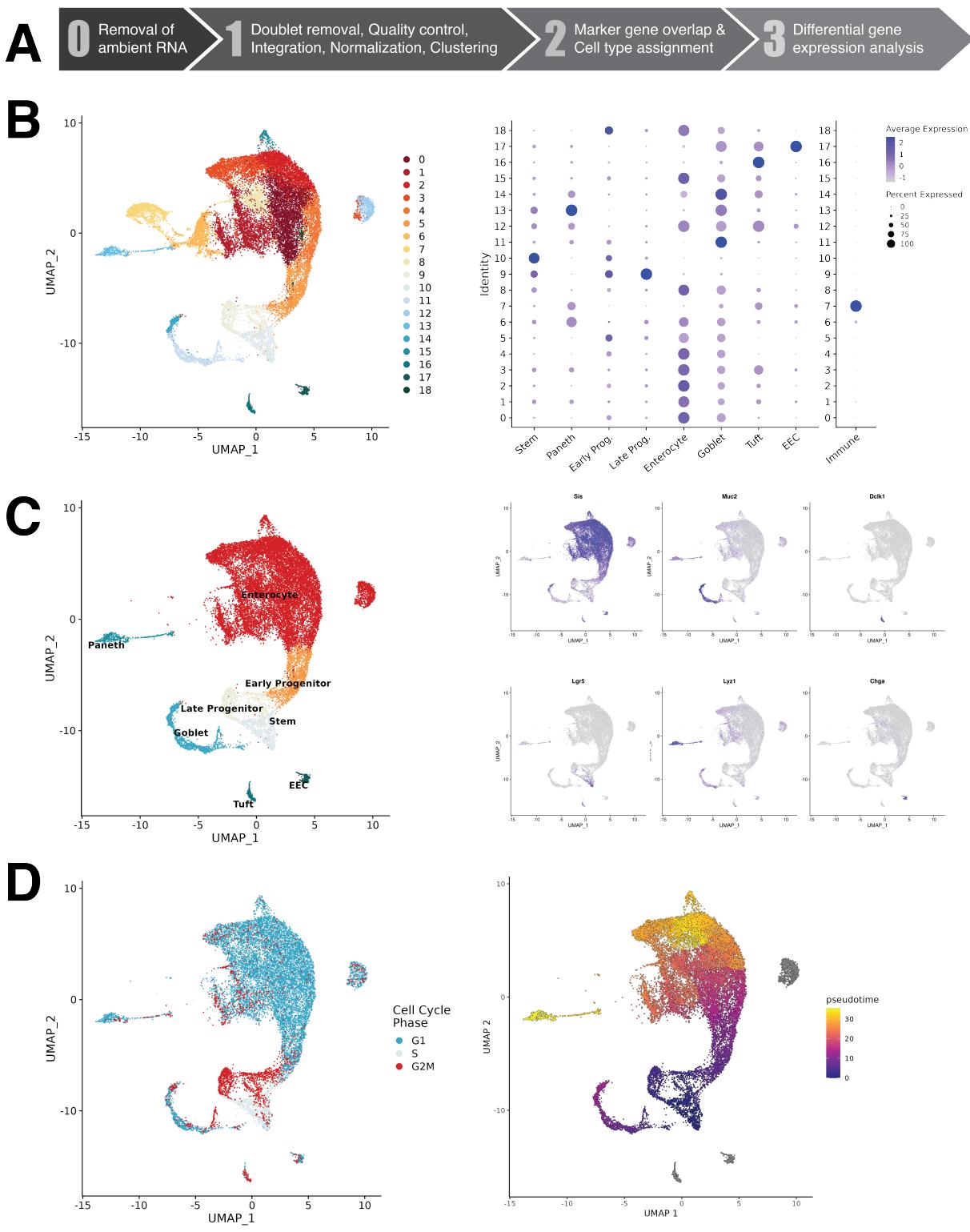
(D) Food intake. Animals recovered from surgery on a liquid diet and were returned to their original solid diet at three days post-surgery.

(E) Oral glucose tolerance testing. Mice were briefly fasted and tested four weeks after surgery. Data depict mean \pm SEM analyzed via one- or two-way ANOVA or mixed effects analysis followed by Tukey's post hoc testing. * $P < 0.05$, ** $P < 0.01$, *** $P < 0.001$, **** $P < 0.0001$.

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

Figure 2

Figure 2: Intestinal epithelial morphometry and cellular composition show minimal changes by diet and surgery


Measurements and representative histological images for

- (A) Crypt depth
- (B) Villus height
- (C) Crypt Alcian blue+ cell counts
- (D) Villus Alcian blue+ cell counts
- (E) Crypt Lyz1+ cell counts

Scale bar = 100μm (crypts), or 200 μm (villi). Data depict mean ± SEM, analyzed via one-way ANOVA followed by Tukey's post hoc testing.

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

Figure 3

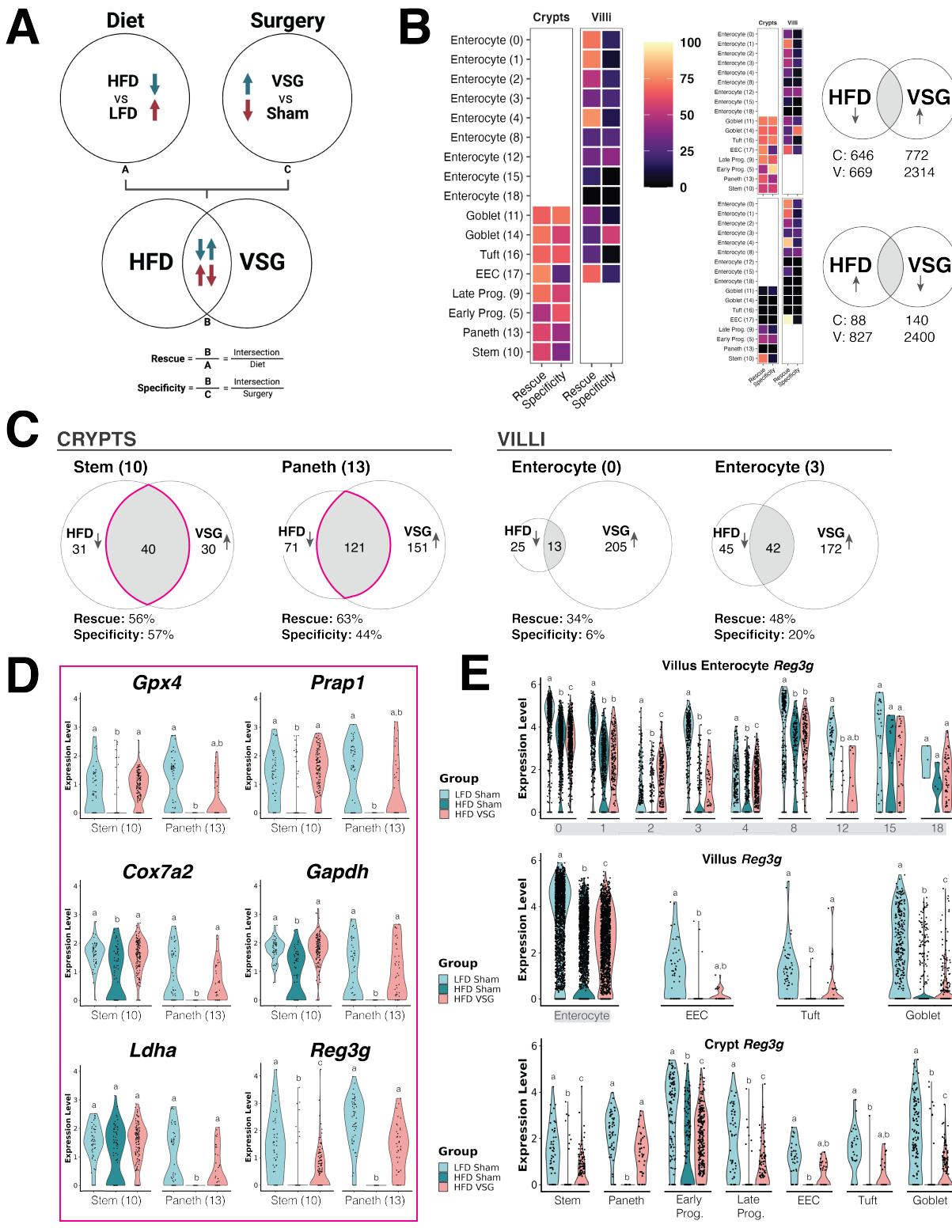

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution

Figure 3: Single-cell RNA-sequencing defines the intestinal epithelial molecular landscape following bariatric surgery

- (A) Schematic representation of the present single-cell RNA-seq bioinformatic workflow.
- (B) Uniform Manifold Approximation and Projection (UMAP) visualization of 24,511 cells across 19 distinct clusters (left), and dot plot overlap of known epithelial lineage markers with highly enriched genes from each cluster (right).
- (C) UMAP visualization of finalized dataset comprising 21,844 cells and their respective lineage classifications after exclusion of 2 immune cell clusters (left), and overlays of specific lineage marker gene expression (right).
- (D) Projections of cell cycle marker expression (left), and pseudotime trajectory predictions (right).

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

Figure 4

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

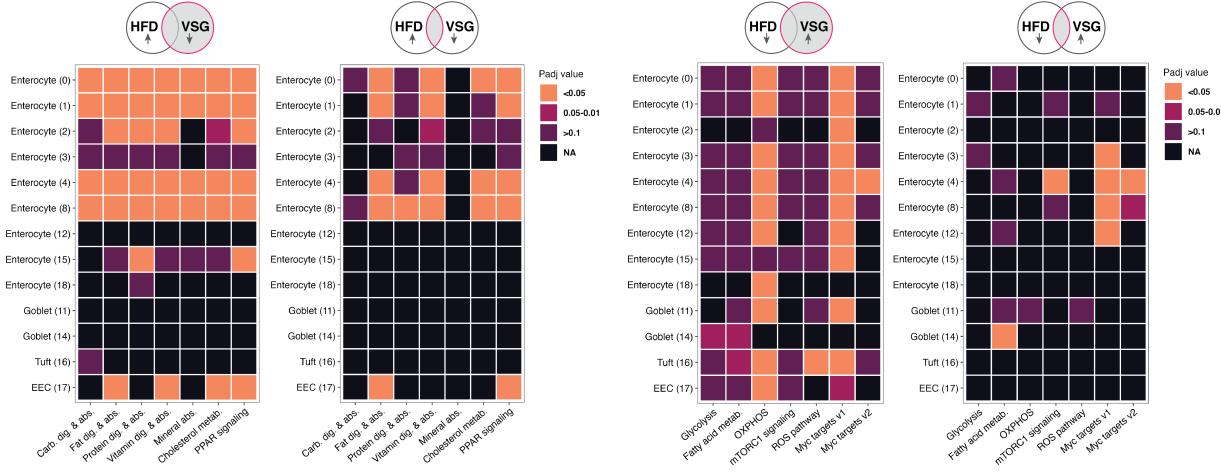
Figure 4: Differential expression analysis highlights genes perturbed by diet and rescued by surgery at the single-cell level

(A) Venn diagram comparison of differentially expressed genes (DEGs) between diet and surgery. Overlapping genes within the intersection are altered in opposite directions across conditions. Comparing the number of intersecting genes with the total number of DEGs within a given condition yields two fractions defined as "Rescue" and "Specificity."

(B) Heatmap of rescue and specificity across all cell clusters, with warmer colors highlighting greater proportions. Additional plots to the right illustrate contributions from different DEG directionalities as well as the overall number of DEGs summed across the crypt or villus compartments. Detailed rescue and specificity calculations for all clusters are included in Supplementary Figure 2.

(C) Venn diagrams of specific crypt- and villus-based clusters with DEGs downregulated by HFD and upregulated by VSG.

(D) Violin plots of stem and Paneth cell gene expression across experimental groups. These represent a subset of DEGs rescued in the stem or Paneth clusters (or both), as indicated by the outlined intersections from (C). The full list of DEGs can be found in Supplementary Figure 3C.


(E) Violin plots of *Reg3g* expression across experimental groups in all cell clusters of the crypts and villi.

(D) & (E) Different letters indicate a statistically significant difference ($P < 0.05$ & $P_{adj} < 0.20$) by MAST.

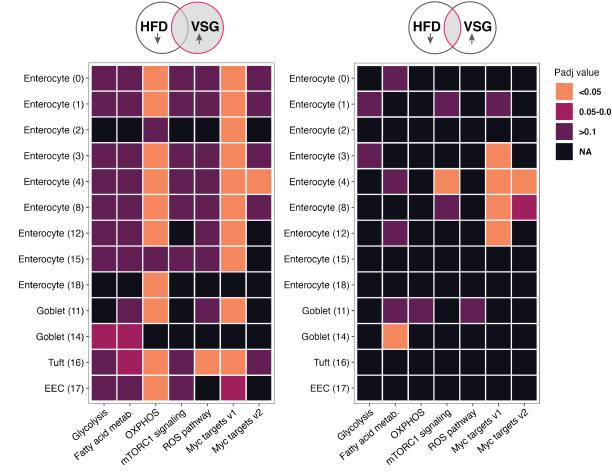
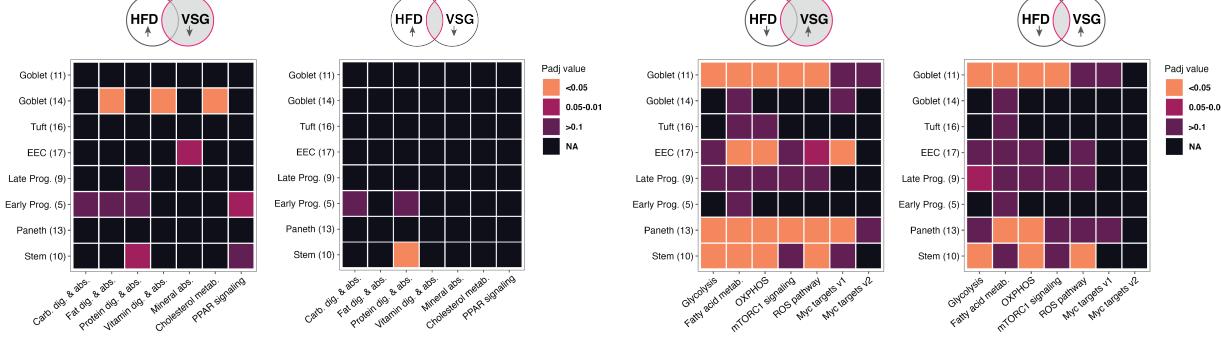
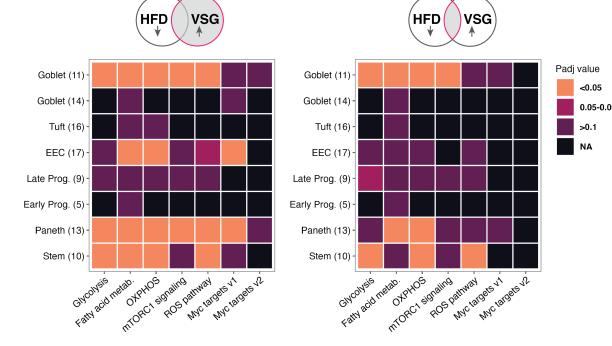
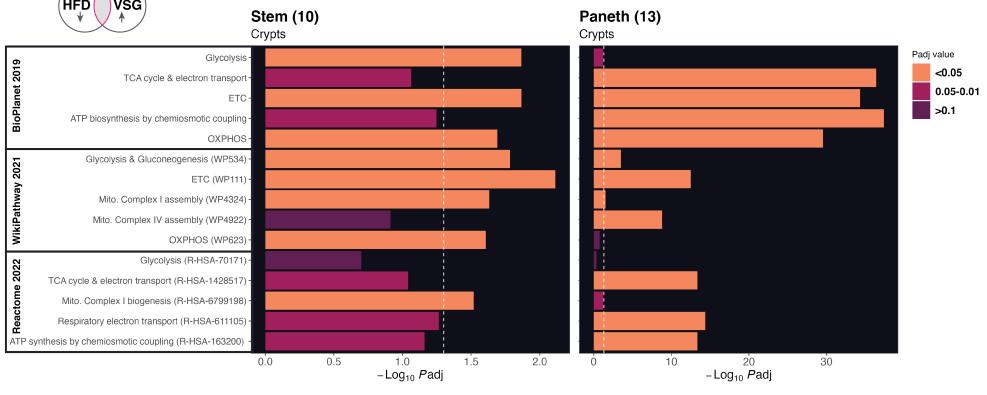

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

Figure 5


A Nutrient Digestion & Absorption Pathways – VILLI

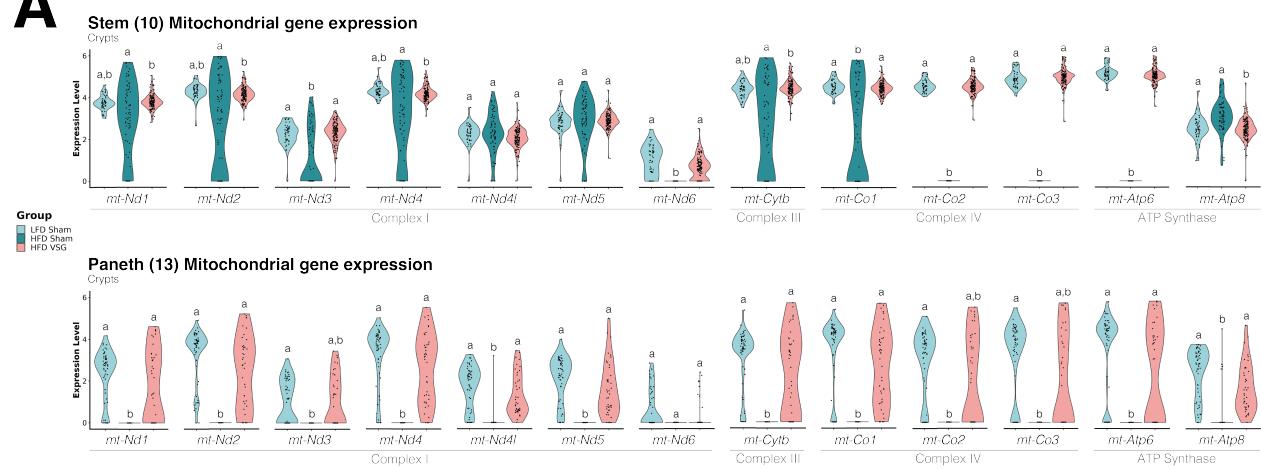

C Metabolic Pathways – VILLI


B Nutrient Digestion & Absorption Pathways – CRYPTS

D Metabolic Pathways – CRYPTS

E

Working title: Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution


Figure 5: Nutrient absorption and metabolic function emerge as top pathway hits enriched among genes rescued by surgery

Heatmaps of pathway enrichment analysis results. Within each panel, the left plot shows results from genes differentially expressed by VSG, and the right plot shows the same analysis using genes rescued from HFD perturbation. Significant enrichment is marked by warmer colors among pathways relevant for nutrient digestion and absorption across (A) villus and (B) crypt clusters as well as metabolic pathways in (C) villus and (D) crypt clusters. (E) Bar plots of additional enrichment analysis results focused on metabolic pathways in the stem and Paneth clusters. P_{adj} values are reported within the figure.

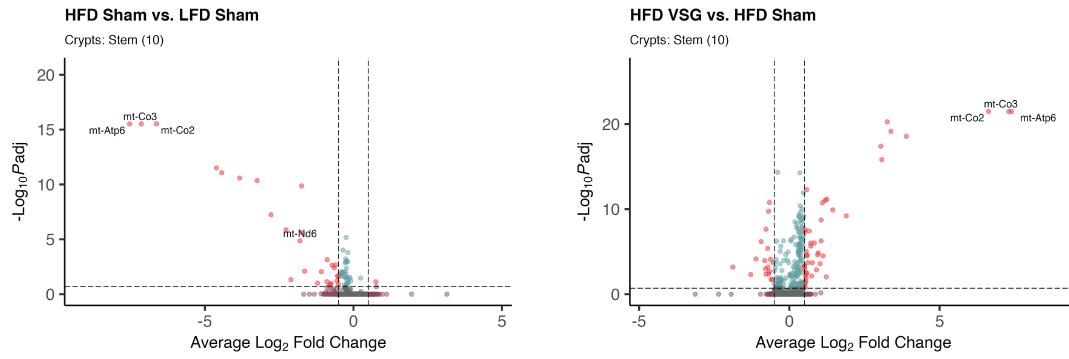
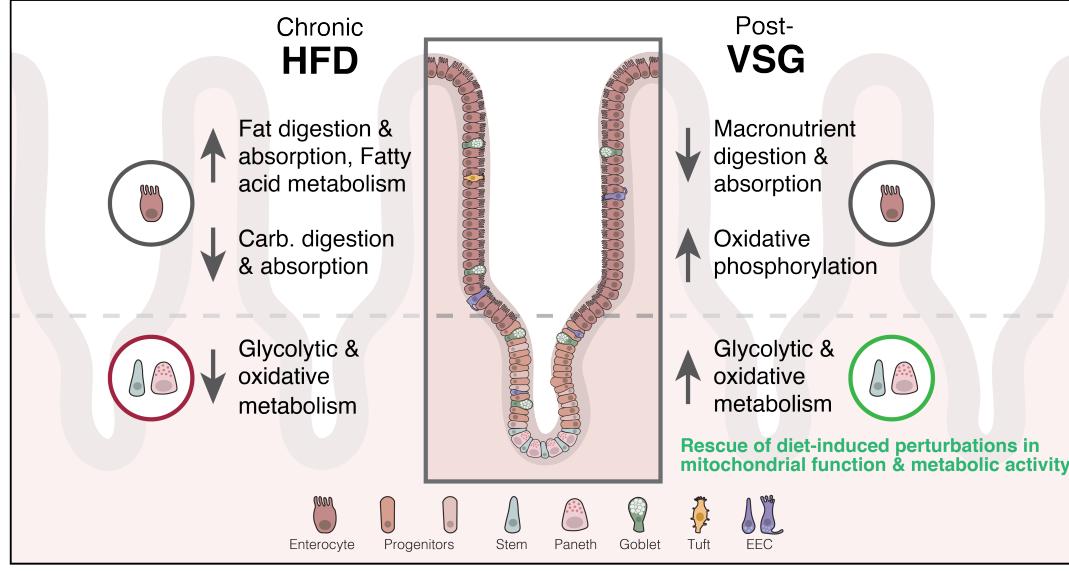

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

Figure 6


A

B

C

Working title: **Intestinal epithelial adaptations to vertical sleeve gastrectomy defined at single-cell resolution**

Figure 6: Vertical sleeve gastrectomy ameliorates changes in crypt-based mitochondrial gene expression driven by chronic high-fat diet

(A) Violin plots of stem and Paneth cell mitochondrial gene expression across experimental groups. Different letters indicate a statistically significant difference ($P < 0.05$ & $P_{adj} < 0.20$) by MAST.

(B) Volcano plots of significantly altered stem cell genes across dietary (left) and surgical (right) conditions, filtered by \log_2 fold change ± 0.5 (vertical hashed lines) and $P_{adj} < 0.2$ (horizontal hashed line). Notably, mitochondrially-encoded genes appear among the most differentially expressed even while accounting for the proportion of genes mapping to the mitochondrial genome as a covariate.

(C) Proposed working model as to how chronic consumption of an obesogenic diet and treatment by VSG initiate gut adaptations through cell-type specific changes within the small intestinal epithelium.