

1 Integrated modeling of the Nexin-dynein 2 regulatory complex reveals its regulatory 3 mechanism

4

5 Avrin Ghanaeian¹, Sumita Majhi², Caitie L. McCaffrey³, Babak Nami⁴, Corbin S. Black¹ ^Ψ,
6 Shun Kai Yang¹, Thibault Legal¹, Ophelia Papoulas³, Martyna Janowska^{2,5}, Melissa Valente-
7 Paterno¹, Edward M. Marcotte³, Dorota Włoga², Khanh Huy Bui¹

8

9 ¹ Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences,
10 McGill University, Québec, Canada

11 ² Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of
12 Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland

13 ³ Department of Molecular Biosciences, Center for Systems and Synthetic Biology,
14 University of Texas, Austin, United States

15 ⁴ Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada

16 ⁵ current address: Laboratory of Immunology, Mossakowski Institute of Experimental and
17 Clinical Medicine, Polish Academy of Science, Pawinskiego 5, 02-106 Warsaw, Poland

18

19 * Corresponding authors: huy.bui@mcgill.ca and d.włoga@nencki.edu.pl

20

21

22

23 Total character counts (no space): 56,864

24

1 **Abstract**

2 Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key
3 roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-
4 dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and
5 regulates and coordinates the activity of outer doublet complexes. Despite its critical role in
6 cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly
7 understood. Here, utilizing cryo-electron microscopy in conjunction with biochemical cross-
8 linking and integrative modeling, we localized 12 DRC subunits in the N-DRC structure of
9 *Tetrahymena thermophila*. We also found that the CCDC96/113 complex is in close contact
10 with the N-DRC. In addition, we revealed that the N-DRC is associated with a network of
11 coiled-coil proteins that most likely mediates N-DRC regulatory activity.

12

13 (128 words)

14

15 **Keywords:** *nexin-dynein regulatory complex, cilia, axoneme, cryo-electron microscopy,*
16 *crosslinking mass spectrometry, integrated structural modeling, dynein*

1 **Introduction**

2 Cilia are microscopic hair-like protrusions that extend from the surface of eukaryotic cells
3 and are responsible for cell motility, sensory functions, and signaling. Ciliary motility has a
4 critical role in the clearance of foreign particles from the respiratory system, establishment of
5 the left-right asymmetry of the visceral body organs, development and maintenance of the
6 spinal cord, development and composition of the brain ventricular system, and fertilization in
7 the reproductive tract [1].

8 The motile cilium has a highly conserved core axial cytoskeleton called the axoneme. It is
9 composed of a bundle of nine doublet microtubules (DMTs) composed of A- and B-tubules
10 surrounded by two singlet microtubules known as the central pair (Fig. 1A). Each DMT is
11 composed of multiple repeating 96-nm units comprising basically identical sets of axonemal
12 complexes such as outer and inner dynein arms (ODAs and IDAs), radial spokes and a nexin-
13 dynein regulatory complex (N-DRC) [2-5] (Fig. 1B). Dynein arms are A-tubule-docked
14 molecular motors that generate a sliding force between DMTs [6-8]. ODAs generate high
15 ciliary beat frequency, while IDAs control the bending shape of the cilia [9, 10]. Each 96-nm
16 repeating unit contains four ODAs and seven IDAs, one two-headed IDA (dynein I1/f), and
17 six distinct single-headed IDAs (dyneins a-g) with different mechanical properties [3]. The
18 N-DRC bridges neighboring DMTs and restricts sliding motions between DMTs. As a result,
19 the N-DRC converts dynein-generated sliding motion into ciliary bending motion.

20 To generate the oscillating waveform movement of cilia, dynein activities switch back and
21 forth from one side to the other side of the axoneme [11]. Such dynein regulation is
22 accomplished through coordinated activities of mechano-regulatory complexes, including the
23 central pair, radial spokes, N-DRC, and CCDC96/113 complexes [12] (Fig. 1B). Regulatory
24 signals originating at the central pair are transmitted through the radial spokes and other
25 mechano-regulatory complexes on the DMT to the dynein arms. The detailed mechanisms of
26 signal transmission, however, remain unclear.

27 The N-DRC was first discovered in electron microscopy (EM) images of axonemal cross-
28 sections and described as a nexin link that connects two adjacent DMTs [13]. Later, genetic
29 studies revealed the presence of a “dynein regulatory complex” (DRC). Mutations in DRC
30 subunit genes in Chlamydomonas rescued paralysis caused by mutations in radial spokes and
31 central pair proteins [14-16]. Application of cryo-electron tomography (cryo-ET) finally

1 revealed that the DRC and the nexin link are the same structure and coined the term “N-
2 DRC” [17].

3 The N-DRC is a large 1.5-MDa, approximately 50-nm-long Y-shaped complex with two
4 main regions: the base plate and linker regions (Fig. 1C). The base plate attaches to the inner
5 junction of the DMT and four protofilaments of the A-tubule. The linker domain projects
6 away through the inter-DMT space and connects the A-tubule to the neighboring B-tubule
7 [17]. To date, biochemical and genetic studies have revealed that the N-DRC is composed of
8 11 subunits in *Chlamydomonas reinhardtii* and other species [18]. Cryo-ET experiments in
9 wild-type and N-DRC mutants of *C. reinhardtii* revealed that DRC1, DRC2, and DRC4 span
10 through the N-DRC from the base plate to the linker part, while DRC3, DRC5 to DRC11
11 were localized in the linker [17, 19-21]. A high-resolution cryo-electron microscopy (cryo-
12 EM) study of the DMT from *Chlamydomonas* revealed that DRC1, DRC2, and DRC4 form
13 the core structure of the base plate [22]. Mutations in DRC subunit genes of *C. reinhardtii*
14 caused the disassembly of the N-DRC, defects in ciliary movement and destabilized the
15 assembly of several closely associated structures, such as the IDAs [9, 23-25].

16 Despite extensive research on the N-DRC, the precise composition and structural model of
17 the components have yet to be determined. Consequently, our understanding of the intra- and
18 inter-interactions of the N-DRC and its function in dynein regulation and ciliary movement is
19 still fragmentary. Here, we used integrated modeling and cryo-EM to model the entire N-
20 DRC structure and some associated proteins from the ciliate *Tetrahymena thermophila*. Our
21 study revealed the presence of 12 N-DRC components and their detailed organization.
22 Moreover, our structural model also indicates that the N-DRC regulates ODAs and IDAs by
23 interacting with a network of coiled-coil proteins.

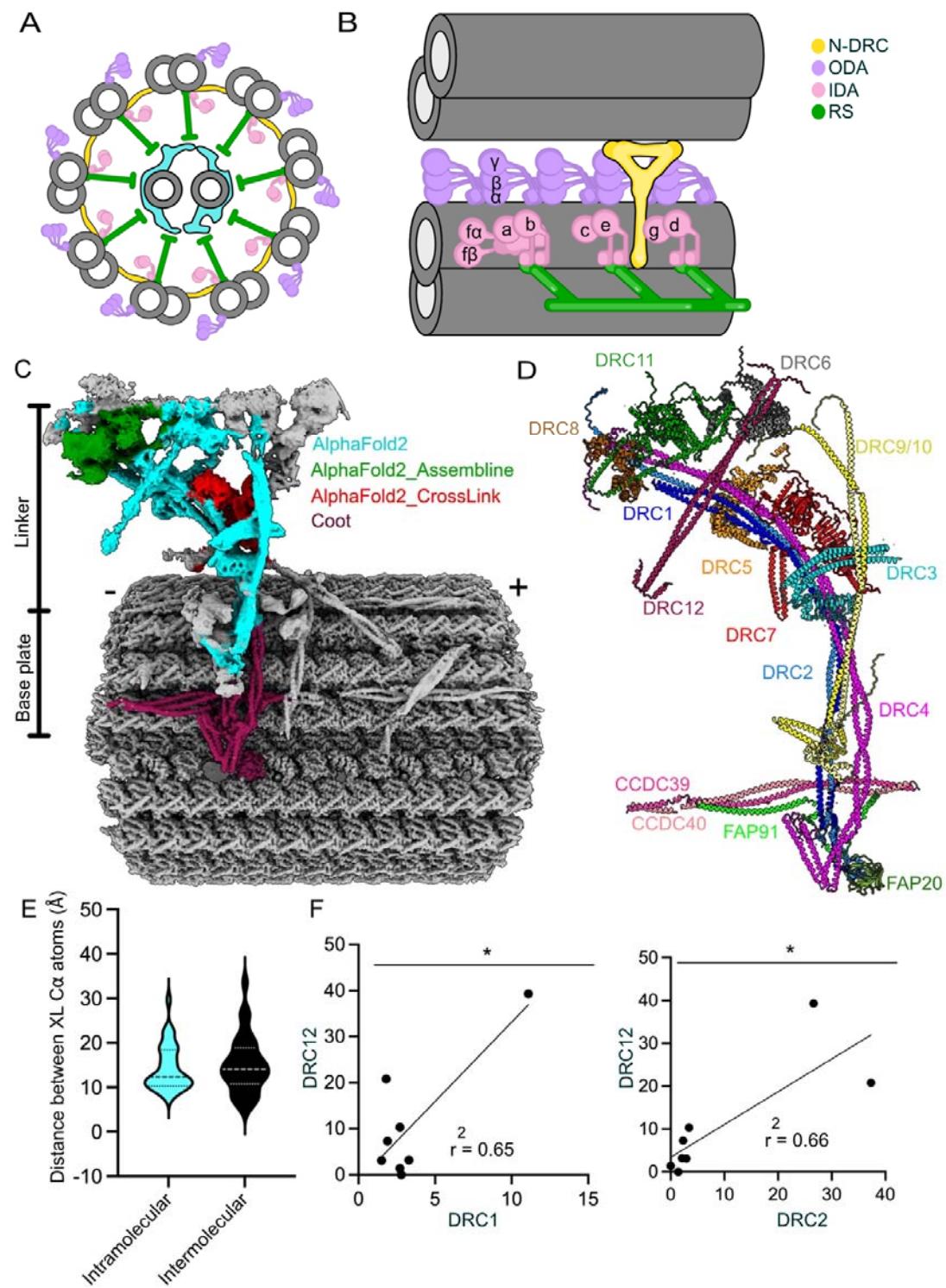
1 **Results**

2 **Integrated modeling reveals the molecular architecture of the N-DRC**

3 To obtain the N-DRC structure, we performed single-particle analysis of isolated DMT from
4 *T. thermophila* from several datasets (Table 1, Methods) [26, 27]. We obtained the 96-nm
5 repeat of the DMT at a global resolution of 3.6 Å (Fig. S1), containing the N-DRC base plate.
6 This allowed the detailed modeling of the N-DRC base plate, which consists of segments of
7 DRC1, DRC2, DRC4A, DRC4B, and associated proteins on the surface of the DMT,
8 CCDC39, CCDC40, and CFAP91 (Fig. S2A, Table. S1).

9 However, the N-DRC linker part was not well resolved due to its flexibility (Fig. S1).
10 Therefore, we developed an image processing strategy to obtain the linker structure at ~5-10
11 Å resolution involving extensive subtractions, three-dimensional classifications and focused
12 refinement (Fig. S1, Methods). This resolution is sufficient to fit the AlphaFold2 predicted
13 structures of N-DRC components unambiguously, especially the coiled-coil part of the
14 proteins (Fig. 1C, Fig. S2B-F, Table S1-2, see Methods). As a result, we can confidently fit
15 the remaining AlphaFold2 multimer model of DRC1/2, DRC4A/4B, DRC9/10 complexes,
16 DRC3 and DRC5 into the N-DRC linker part (Fig. S2C-E).

17 For the remaining region where we could not fit in the predicted structures uniquely, we
18 performed integrated modeling using the Assembleline program and spatial restraints derived
19 from cross-links identified by *in situ* cross-linking mass spectrometry of the *T. thermophila*
20 cilia [28]. We localized DRC11A and two copies of DRC8 to the proximal lobe of the linker
21 and DRC7 in the middle part of the linker (Fig. 1C, D). Integrated modeling yields two
22 possible positions for DRC6A (Fig. S3A). Overall, our integrated model of the N-DRC and
23 associated proteins explains ~85% of the analyzed density (Fig. 1D, S2B). However, we
24 could not localize proteins to the N-DRC distal lobe.


25 Next, we used the inter-molecular and intra-molecular and intra-molecular cross-links
26 between N-DRC components and associated proteins from *in situ* cross-linking mass
27 spectrometry to validate our model (Table S3, S4). Our model satisfies all the spatial
28 restraints from crosslinks found for N-DRC proteins (Fig. 1E, S2B, and Table S3 and S4).
29 Interestingly, we found a crosslink from a conserved protein, CCDC153 (UniProtID
30 Q22RH5), to DRC1 in the linker region (Table S3). The density of the unknown coiled coil

1 from the N-DRC linker region matches the AlphaFold2 predicted structure of the CCDC153
2 homodimer (Fig. 1C, D, and Fig. S4A). Accordingly, we propose that CCDC153 is an N-
3 DRC subunit that we named DRC12 (Fig. 1C, D, S4A). To verify DRC12 localization, we
4 performed BioID assays using DRC1-HA-BirA* and DRC2-HA-BirA* as baits. Most DRC
5 components were biotinylated in both experiments, including DRC12 (Table S5), validating
6 the proximity of DRC1 and DRC2 to DRC12. The high correlation of the normalized RNA
7 expression of CCDC153 from different human tissues with that of DRC1 (CCDC164) and
8 DRC2 (CCDC65) (Fig. 1F) and other N-DRC components (Fig. S4B) further supports the
9 assignment of CCDC153 as a DRC protein.

10 DRC4 forms a homodimer in *C. reinhardtii* [22]. *T. thermophila* contains two DRC4
11 paralogs, DRC4A and DRC4B. The identified inter-molecular crosslinks between DRC4A
12 and DRC4B but not intra-molecular crosslinks suggest that DRC4A and DRC4B
13 predominantly form a heterodimer (Tables S3 and S4). To further support that DRC4A and
14 DRC4B exist as heterodimers, we performed pull-down assays using anti-GFP beads and
15 DRC4A-GFP or DRC4B-GFP as bait. Both proteins efficiently pulled down the HA-tagged
16 DRC4 paralog, DRC4A-GFP pulled down DRC4B-HA and vice versa, DRC4B-GFP
17 interacted with DRC4A-HA, while homodimeric interactions between DRC4 paralogs were
18 poor or undetectable (Fig. S5A, B). Interestingly, the pulldown analysis indicated that DRC3-
19 HA also interacted with DRC4B but poorly with DRC4A-GFP. Further analysis of the
20 AlphaFold2 multimer prediction of DRC4A/4A, DRC4B/4B, and DRC4A/4B dimers shows
21 that only the DRC4A/4B heterodimer matches the DRC4 density in our map (Fig. S5C, D).
22 These results imply that in *T. thermophila*, the DRC4 dimer exists mainly as a DRC4A/4B
23 heterodimer (Fig. S5C-D) (see Methods).

24

25

1

2 **Figure 1. An overview of the structure of cilia and N-DRC.** (A) Cross-sectional view of a
3 cilium. (B) The 96-nm repeat of a DMT and its adjacent DMT is connected by the N-DRC
4 (yellow) in longitudinal (left) and cross-sectional (right) views. (C) The composite cryo-EM
5 map of N-DRC and DMT. The colors of different regions indicate the modeling methods.
6 Signs (+) and (-) indicate the distal and proximal ends of the DMT. (D) The pseudo atomic
7 model of the N-DRC. (E) Violin plots of the distance between inter-molecular and intra-
8 molecular C_α atoms of chemically cross-linked residues. The intramolecular and

1 intermolecular cross-links are shown in cyan and black, respectively. A maximum distance of
2 35 Å is expected for the DSSO crosslinks. (F) Correlation graphs of consensus normalized
3 RNA expression levels for two selected pairs of genes (DRC12/DRC1 and DRC12/DRC2).
4 The coefficient of the linear regression is indicated. *: $p < 0.05$.

5

6 **The N-DRC core scaffold consists of coiled-coil proteins**

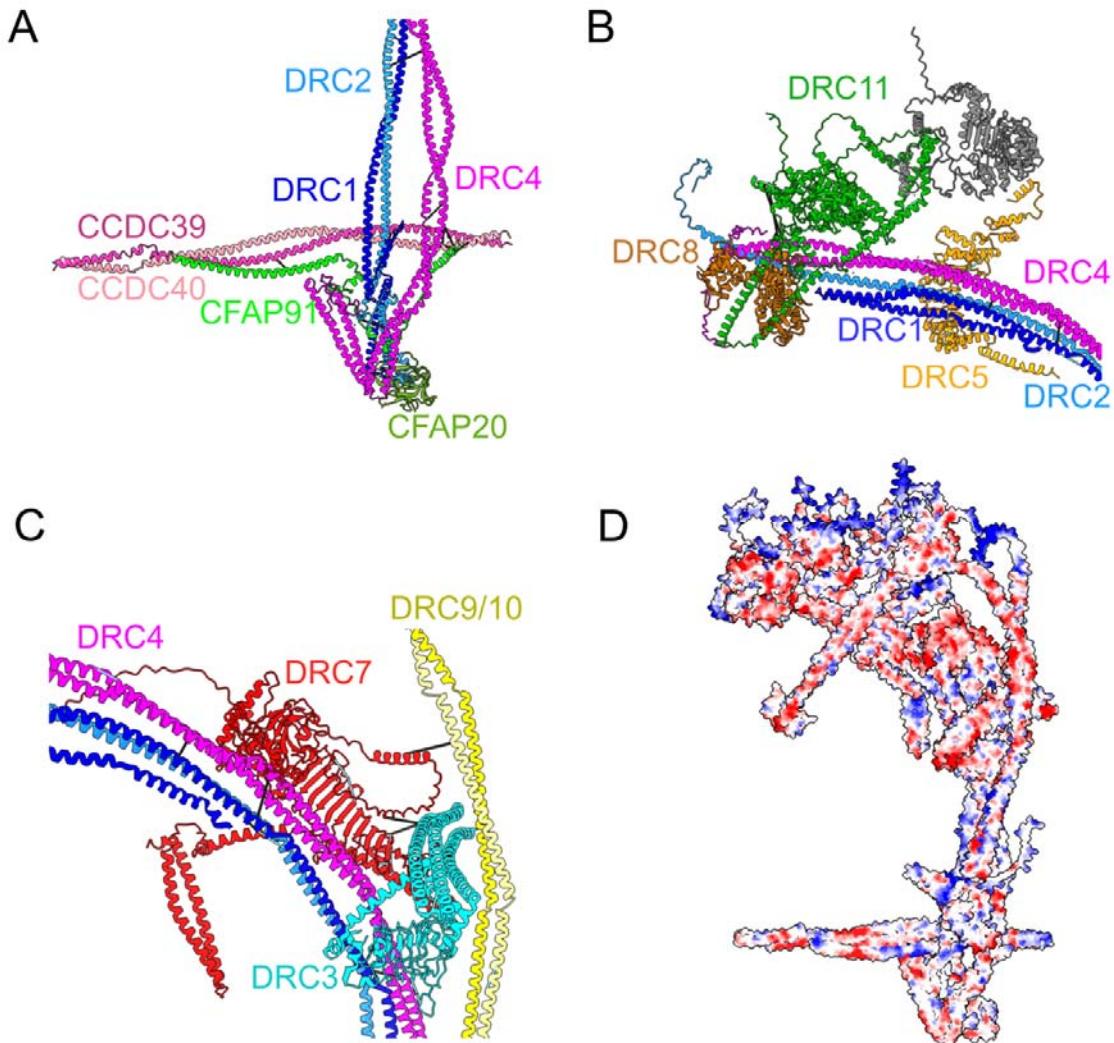
7 The backbone structure of the N-DRC consists of coiled-coil proteins (DRC1, DRC2,
8 DRC4A, DRC4B) that extend from the base plate to the linker part (Fig. 1D). These coiled-
9 coil proteins can give the N-DRC elasticity.

10 In *T. thermophila* cilia, the C-terminal fragments of the DRC1/2 and DRC4A/4B
11 heterodimers are located on the A-tubule and form the N-DRC base plate (Fig. 1D, S2A),
12 similar to *C. reinhardtii* [22]. At the base plate, the DRC1/2 and DRC4A/4B heterodimers
13 contact perpendicularly with the coiled-coil CCDC39/40, the so-called “molecular ruler” that
14 runs along the DMT in the wedge of protofilaments A2A3 and determines the 96-nm repeat
15 of the DMT. The C-terminal region of the DRC1/2 heterodimer also interacts with (i) the C-
16 terminal region of the DRC4A/B heterodimer, (ii) CFAP91, which runs almost parallel to the
17 CCDC39/40 coiled coil (Fig. 2A) and (iii) CFAP20, an inner junction protein [27, 29].
18 Previous studies showed that CFAP91 extends from the base of RS2 through the N-DRC base
19 plate to the radial spoke RS3, playing a significant role in stabilizing and localizing radial
20 spokes RS2 and RS3 on the DMT [22, 30]. N-DRC positioning on the DMT may depend on
21 interactions between the DRC1/2 coiled coil and the DRC4A/B coiled coil and the
22 CCDC39/40 coiled coil (Fig. 1C-D, 2A).

23 The N-DRC core scaffold is composed of DRC1, DRC2 and DRC4, which interact with
24 DRC3, DRC5, DRC8 and DRC11 in the linker part (Fig. 1D, 2B). Our model indicates that
25 the DRC1/2 coiled coil interacts with the DRC4A/B coiled coil not only in the base plate
26 region but also in the top part of the linker (Fig. 1D, 2B). This coiled-coil bundle constructs
27 the N-DRC core structure (Fig. 1D). This suggests that the DRC1/2 and DRC4A/B complex
28 is critical for the assembly of the N-DRC since they position the N-DRC base plate to the
29 DMT via interaction with CFAP20 in the inner junction and interact with all the proteins in
30 the N-DRC central and proximal lobes (Fig. 1D). This is consistent with the phenotypes of
31 the *C. reinhardtii* mutants of *DRC1* (*pf3*) and *DRC2* (*ida6*), and human mutations in the
32 *CCDC164* (*DRC1*) and *CCDC65* (*DRC2*) genes, which cause the complete loss of the N-
33 DRC [24, 25, 31]. As an N-DRC core scaffold component, the loss of the DRC4 protein in

1 the *pf2* mutant in *C. reinhardtii* causes the absence of all DRC subunits except the DRC1/2
2 complex [15, 18, 24].

3 DRC9/10 is another coiled-coil dimer that binds to the DRC1/2 coiled coil just above the
4 base plate and projects through the linker part distally to form the other arm of the Y-shape of
5 the N-DRC and interacts with DRC3 in the distal region (Fig. 1D, 2C).


6 Within the N-DRC linker region, the leucine-rich DRC5 subunit interacts extensively with
7 DRC1/2 and DRC4A/4B coiled coils (Fig. 2B). In the top part of the linker, the extended N-
8 terminus of DRC2 interacts with DRC8, while DRC1 folds back to the central part of the
9 linker and interacts with DRC5 (Fig. 2B, S2C). The DRC4A/B heterodimer plays an essential
10 role in the stability of the N-DRC by interacting with the leucine-rich domains of DRC3,
11 DRC5, and DRC7 in the central part of the linker and interacting with DRC11 in the linker
12 top part (Fig. 1D, 2B, C).

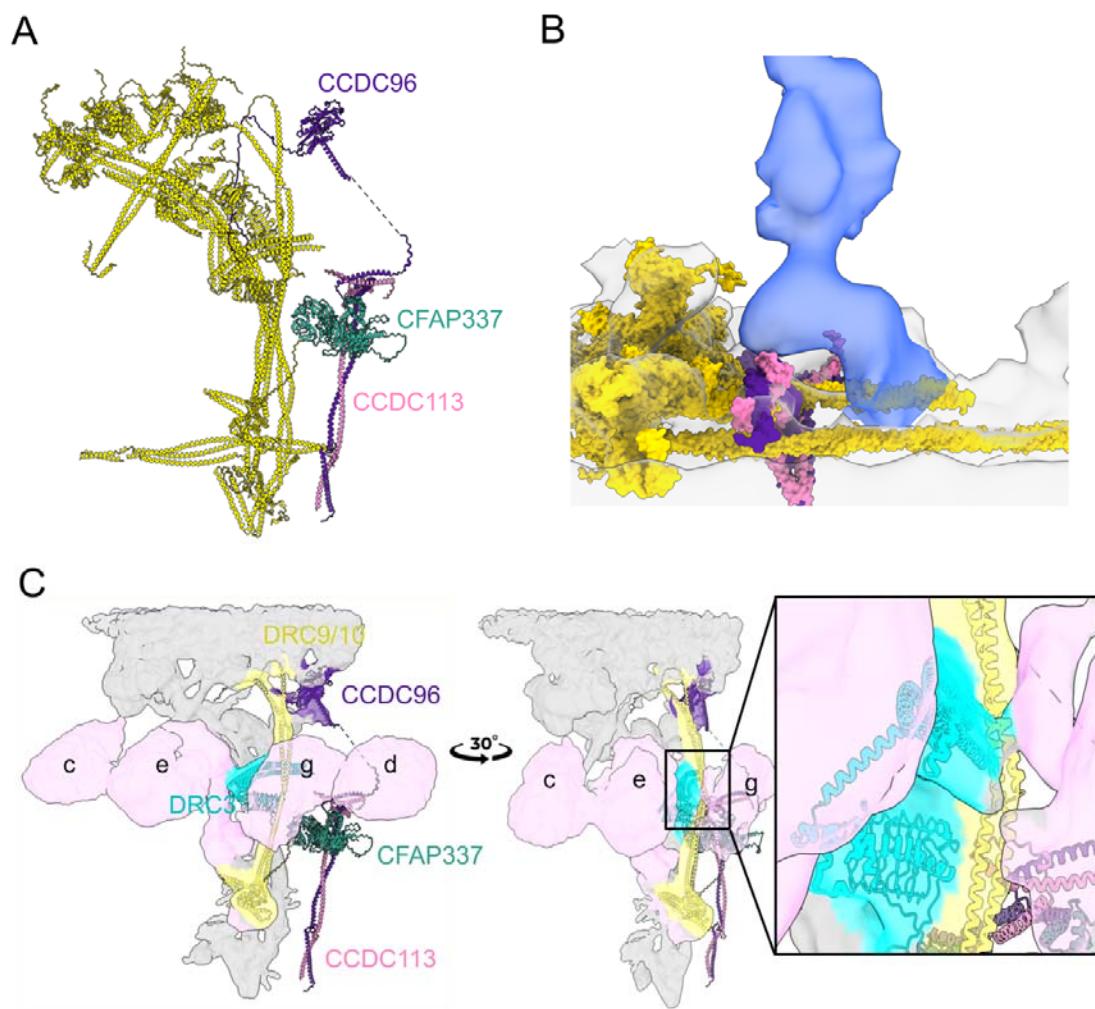
13 DRC7 is in the middle part of the linker, which connects the N-DRC proximal and distal
14 lobes. In the N-DRC distal lobe, DRC7 interacts with the DRC9/10 coiled coil and the α -
15 helix bundle domain of DRC3. In the proximal lobe, DRC7 interacts with DRC4A/4B coiled
16 coil (Fig. 1D, 2C). Therefore, DRC7 can be a signal transfer bridge between the distal and
17 proximal lobes. Although DRC7 connects the distal domain to the proximal lobes by linking
18 DRC4A/B to DRC10, loss of DRC7 in the *drc7* mutant does not have any effect on the
19 assembly of the distal subunits (DRC3, DRC9, and DRC10) [21], suggesting that DRC7
20 likely reinforces the distal lobe but is not essential for the assembly of the distal lobe.

21 From AlphaFold2 prediction and density fitting, our model predicted that two copies of EF-
22 hand DRC8 proteins bind tightly to the helical hairpin domain of the AAA+ DRC11 protein
23 (Fig. 2B), agreeing with the localization of DRC11 shown using *C. reinhardtii* [21] and
24 *Trypanosome* [32] mutant strains. Interestingly, superimposition of the subtomogram average
25 map of human DMT onto that of *T. thermophila* and AlphaFold2 Multimer modeling of the
26 N-DRC in humans revealed that only one copy of DRC8 is present in the human N-DRC
27 (Fig. S5E-F). DRC11 contains an AAA+ domain that potentially contributes to
28 conformational changes in the N-DRC [18]. In addition, DRC11 has a regulatory role since
29 the knockdown of DRC11 homolog (CMF22) in *trypanosomes* causes a motility defect [33].

30 The electrostatic surface charge of our N-DRC model indicates that the top of the linker part
31 contains positively charged flexible loops (Fig. 2D). This allows the binding of the N-DRC to

1 the negatively charged tubulin from the adjacent DMT [34]. This also serves as a validation
2 for our N-DRC model since we are not using surface charge information while building it.

3
4 **Figure 2. The interactions within the N-DRC.** (A) The interactions in the base plate region.
5 (B) DRC5 and DRC11/8 subcomplex interact with scaffold proteins (DRC1, DRC2, and
6 DRC4). DRC12 is eliminated from the figure for clarity. (C) The interactions between
7 proteins in the N-DRC distal lobe. DRC7 interacts with the DRC9/10 coiled coil and DRC3
8 in the linker distal part and with DRC4A/4B coiled coil in the proximal part. The cyan and
9 black bars represent intramolecular and intermolecular cross-links, respectively. (D) The
10 electrostatic surface charge of the N-DRC model. The loops at the top of the linker
11 (DRC11A, DRC6A, DRC2, and DRC9/10), which connect to the adjacent DMT, are
12 positively charged. The colors blue, red, and white indicate positive, negative and neutral
13 charges, respectively.
14


1 The CCDC96/113 complex interacts with the N-DRC

2 In our cryo-EM map, the CCDC96/113 heterodimer, the conserved mechano-complex distal
3 to the N-DRC [12], resolves well in the basal part, allowing *de novo* modeling of this region.
4 The C-terminal ends of CCDC96 and CCDC113 form a clear coiled-coil domain (Fig. S6A).
5 AlphaFold2 multimer prediction of CCDC96/113 is highly confident and accurately
6 represents the topology of the coiled coil in the cryo-EM map, allowing unambiguous
7 docking of the CCDC96/113 heterodimer in the region away from the DMT surface (Fig.
8 S6A). The coiled-coil domain of CCDC96/113 is located parallel to the N-DRC, but from
9 amino acid 458 onward, it forms a 90-degree turn toward the N-DRC distal part (Fig. 3A,
10 S6B). The N-terminus of CCDC96 in *T. thermophila* is not conserved and contains an extra
11 WD40 beta-propeller compared to humans and *C. reinhardtii* (Fig. S6C-D). Following the
12 90-degree turns of CCDC96, we predict that the non-conserved globular domain of CCDC96
13 extends to the N-DRC distal lobe by a flexible loop and localizes close to DRC10 (Fig. 3A).
14 To support our prediction, we performed cryo-ET and subtomogram averaging to obtain the
15 96-nm repeat of *T. thermophila* at 20 Å resolution and compared it to that of *T. thermophila*
16 CCDC96-deletion, *C. reinhardtii* (EMD-20338), and humans (EMD-5950). Apparently, the
17 distal lobe of *C. reinhardtii* and human N-DRC is significantly thinner than that of *T.*
18 *thermophila*, suggesting that the N-terminus of CCDC96 resides there (Fig. S5E and S6B). In
19 addition, the WD40 domain of the N-terminus of CCDC96 is missing in the cryo-ET map of
20 the *T. thermophila* CCDC96 deletion (Fig. S6B).

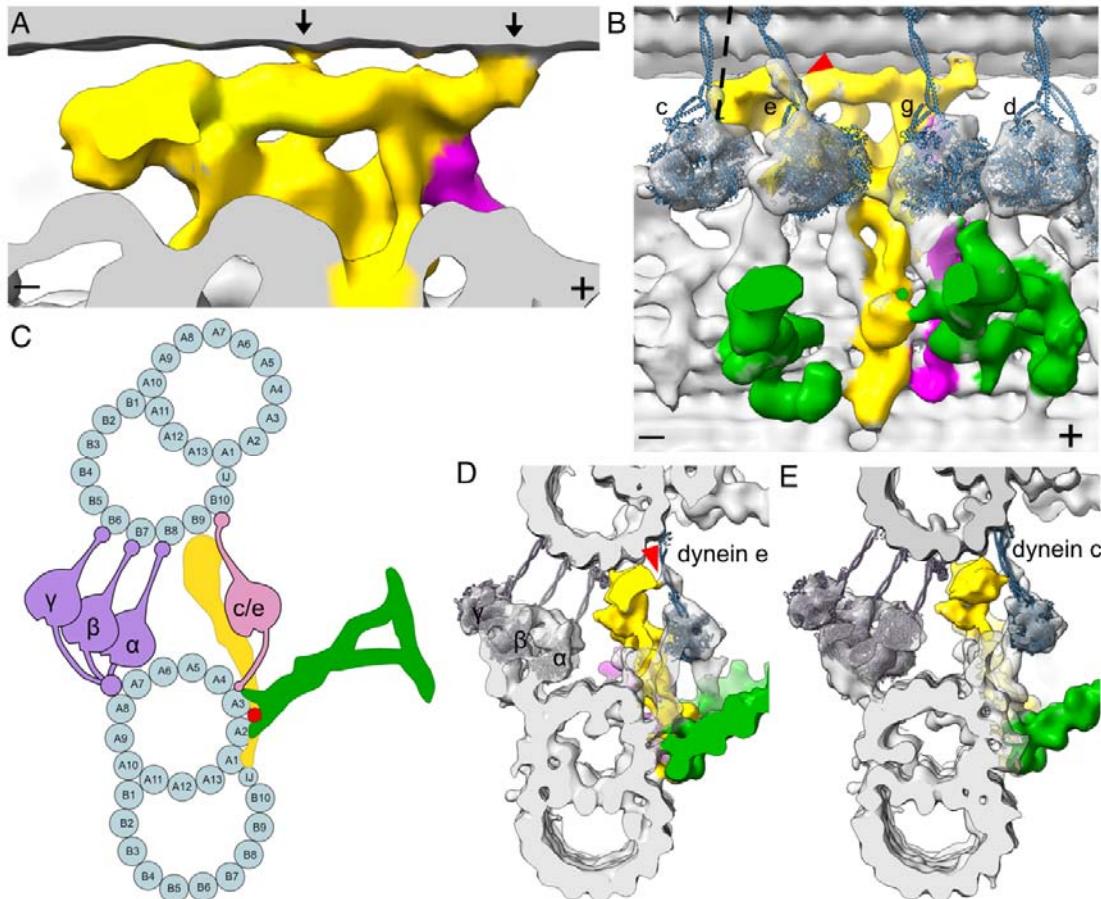
21 The apparent proximity suggests that CCDC96 has crosstalk with the N-DRC. The N-termini
22 of DRC9 and DRC3 interact with dynein e and g, respectively, suggesting that they are
23 regulatory hubs for such dynein (Fig. 3C). Our subtomogram average of the 96-nm repeat
24 indicates that the CCDC96/113 complex interacts with the base part of RS3 (Fig. 3B), as also
25 suggested by a previous study [12]. Therefore, the CCDC96/113 complex may function as a
26 signal transfer bridge for the N-DRC that runs from radial spoke RS3 to DRC10 and vice
27 versa. Regulatory signals can be sent to dynein e through the N-terminus of DRC9. In
28 addition, DRC10 may send signals to dynein g through DRC3. Therefore, the DRC9/10
29 coiled coil may be the most important regulatory hub in the N-DRC that regulates dyneins g
30 and e by receiving the signal from CCDC96/113 (Fig. 3B-C).

31 We also found a crosslink from CFAP337A (UniProtID I7MM07, paralog CFAP337B
32 UnitProtID I7MKT5) to the coiled-coil region of CCDC96. The AlphaFold2 predicted

1 models of CFAP337A and CFAP337B contain two WD40 beta propellers and a bundled
2 coiled-coil domain that fits unambiguously in a density close to the upper region of CCDC96
3 (Fig. S7A). Mass spectrometry analysis confirmed that both CFAP337A and CFAP337B are
4 lost in CCDC96 knockout cells [12], suggesting that CFAP337A/B interacts with CCDC96.
5 Our fitting of a predicted CFAP337 model, combined with cross-links and mass spectrometry
6 data of the CCDC96 deletion mutant, demonstrated with good confidence that CFAP337
7 interacts directly with CCDC96. Our subtomogram average showed that the WD40 domain
8 of CFAP337 mediates interaction with the stem of dynein d (Fig. S7B). CFAP337 may
9 therefore be an IDA regulatory hub or linkage.

10
11 **Figure 3. Structure of the CCDC96/113 complex.** (A) The C-terminus of the CCDC96/113 complex
12 coiled coil is located on the DMT, and the N-terminus is localized near the N-DRC linker
13 domain. (B) The C-terminus of the CCDC96/113 complex interacts with the base of RS3.
14 (The N-DRC and coiled-coil associated proteins except CCDC96/113 are represented in

1 yellow). (C) The interactions of DRC3, DRC9/10 with IDAs (pink), and CCDC96/113 are
2 demonstrated in the cryo-EM map and model.


3 **The N-DRC regulates dynein activity through direct IDA interactions and**
4 **a network of coiled-coil proteins that span the 96-nm repeat**

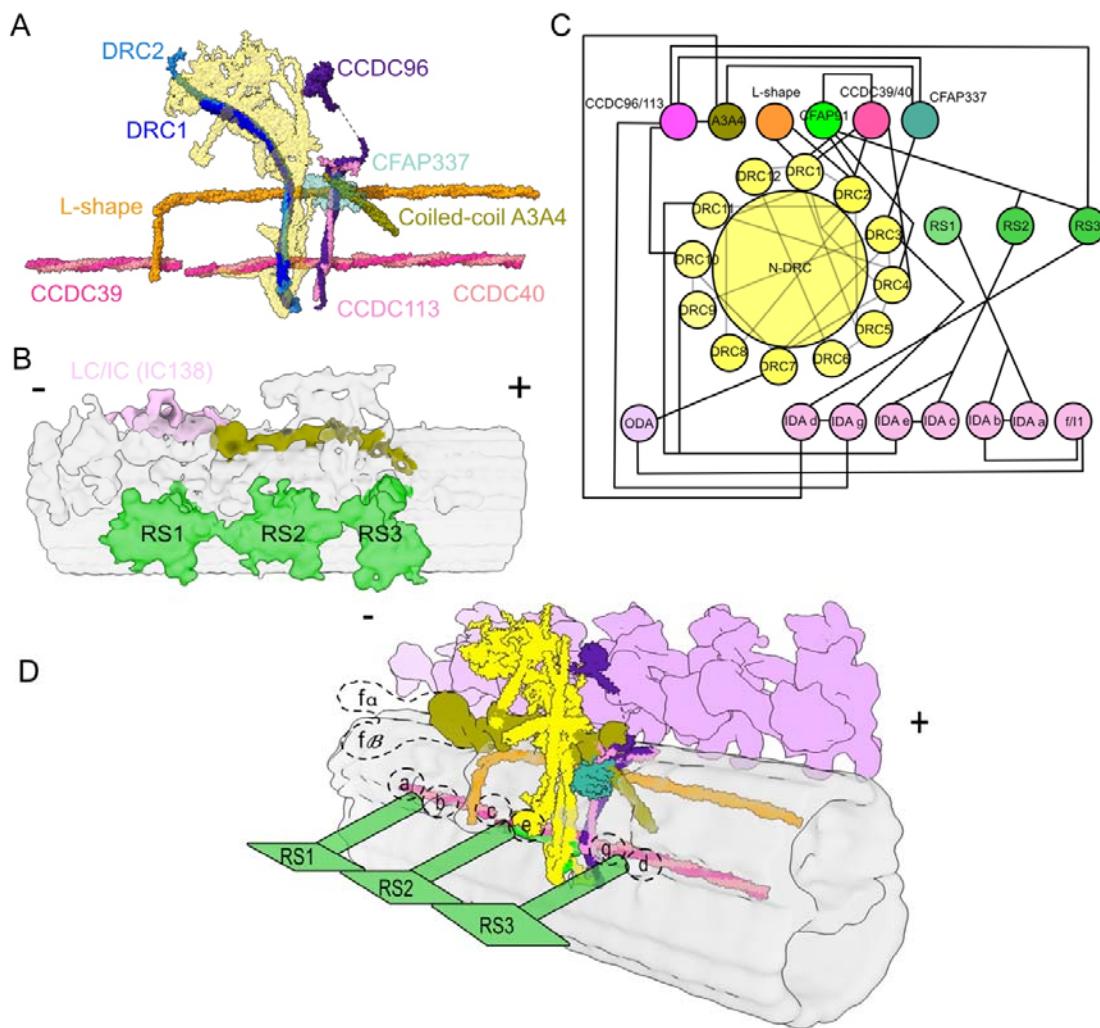
5 The next step is to determine how the N-DRC regulates dynein activity and ciliary bending.
6 To address this, we analyzed the single-particle and subtomogram averaged maps looking for
7 any potential linkage from the N-DRC to the adjacent DMT and other axonemal complexes.

8 There are two observable connections from the N-DRC to the adjacent DMT, a clear
9 connection from the distal lobe to protofilament B9 and a thin density from the middle of the
10 linker part to protofilament B8 (Fig. 4A, black arrows). The rest of the N-DRC linker part
11 does not show clear connections with the adjacent DMT and maintains a gap of ~25 Å to
12 protofilament B9. It is possible that the disordered regions of DRC2, DRC8, DRC9, DRC10,
13 DRC11 and DRC12 can still contact the highly negative and flexible tails of tubulins from
14 protofilament B10 of the neighboring DMT (Fig. 2D).

15 We fitted atomic models of dyneins to the ODA and IDA densities (Fig. 4B, Fig. S7C,
16 Methods). The stalks of ODA α , β , and γ dyneins contact protofilaments B5, B6 and B7,
17 respectively, as reported previously [35] (Fig. 4C). Regarding IDA, the stalks of single-
18 headed dyneins a, b, c, d, e, and g all bind to protofilament B10, while the stalks of double-
19 headed inner arm dyneins $f\alpha$ and $f\beta$ bind to protofilament B9 (Fig. S7D, E). Interestingly, the
20 stalk of dynein e appears to be in contact with the N-DRC proximal lobe corresponding to
21 DRC8 and DRC11 (Fig. 4D). While the N-DRC and the stalk of dynein c do not seem to be
22 in contact in the subtomogram average representing the postpower stroke state of dynein, the
23 stalk of dynein c in the prepower stroke will move distally [36] (Fig. 4B and E) and therefore
24 could be in contact with the N-DRC bulky proximal lobe. In addition to physical contact from
25 DRC3 to dyneins e and g described in the previous section, we showed that the activity of the
26 stalks of dyneins c and e can be regulated by the N-DRC linker region, particularly the
27 DRC8/11 complex, through mechanical contact. Dynein c is a strong dynein and is
28 particularly needed for cell movement at high viscosity [37] The swimming speed of the *C.*
29 *reinhardtii* dynein c mutant (*ida9*) is only marginally reduced compared to wild-type cells in
30 normal medium but greatly reduced in viscous media [37]. Similarly, the *C. reinhardtii*
31 DRC11 mutant (*drc11*) swims only slightly slower than wild-type cells in normal medium

1 [21]. Therefore, it might be possible that missing DRC11 affects dynein c regulation and has
2 the same effect as missing dynein c.

4 **Figure 4. Interactions between the N-DRC and neighboring MTD.** (A) Contacts of the N-
5 DRC with the adjacent DMT in the distal lobe and middle part are indicated by black arrows.
6 Signs (+) and (-) indicate the distal and proximal ends of the DMT. Colors: N-DRC: yellow;
7 Radial spoke: green; CCDC96/113: dark purple. (B) Fitting of dynein heavy chain models
8 into the IDA densities showing that the dynein e stalk interacts directly with the N-DRC
9 proximal lobe (red arrowhead), while the dynein c stalk in the prepower stroke conformation
10 (dotted line) might interact with the N-DRC proximal lobe. (C) A cross-sectional model of
11 how dyneins and the N-DRC contact the neighboring DMT. (D) Cross-sectional view of the
12 interaction between dynein e and the N-DRC. The same connection in (C) is indicated by the
13 red arrowhead. (E) Cross-sectional view of the potential interaction between dynein c and the
14 N-DRC.


15 Next, we looked for complexes in the same DMT that were in contact with the N-DRC. We
16 identified a coiled-coil density located on the A3 and A4 protofilaments, which we named the
17 A3A4 coiled coil (Fig. 5A). This density extends through the CCDC96/113 complex and
18 interacts directly with the WD40 domain of CFAP337. In *C. reinhardtii*, knockout of

1 CFAP57 leads to loss of CFAP337 [38], suggesting that CFAP57 is a strong candidate for the
2 A3A4 coiled coil. There are four CFAP57 paralogs in *T. thermophila*, with CFAP57A and
3 CFAP57C (UniProtID Q234G8 and W7WWA2) as the most abundant paralogs (Table. S2).
4 The AlphaFold2 multimer predictions of CFAP57A and CFAP57C match well with the
5 density in our map (Fig. S7F). CFAP57A was highly biotinylated in cells expressing
6 CCDC96-HA-BirA* or CCDC113-HA-BirA* fusion proteins [12]. This further reinforces the
7 likelihood that the A3A4 coiled coil is CFAP57. CFAP57 spans almost 96 nm along the
8 DMT [38] with the N-terminal region connecting to the I1 intermediate chain/light chain
9 domain and the C-terminus positioned proximal to the radial spoke RS1 in the next 96-nm
10 repeat (Fig. 5B-D). Our subtomogram average and single-particle maps suggest that the C-
11 terminal region of CFAP57 also interacts with RS3 (Fig. S7G) and that the CFAP57A/C
12 dimer extends past CFAP337 through the N-DRC and toward the I1 intermediate chain/light
13 chain complex. Our structural data demonstrated that the A3A4 coiled coil (CFAP57-
14 heterodimer) mediates interaction with the base of dyneins g and d (Fig. S7H). In CFAP57-
15 KO cells, dyneins g and d are decreased compared with those in WT cells [38, 39]. Therefore,
16 CFAP57 can be an adaptor protein for the assembly of dynein g and d. Moreover, this protein
17 can be a critical regulatory hub for dynein d and g since this coiled coil interacts directly with
18 CCDC96/113, CFAP337, and the N-DRC.

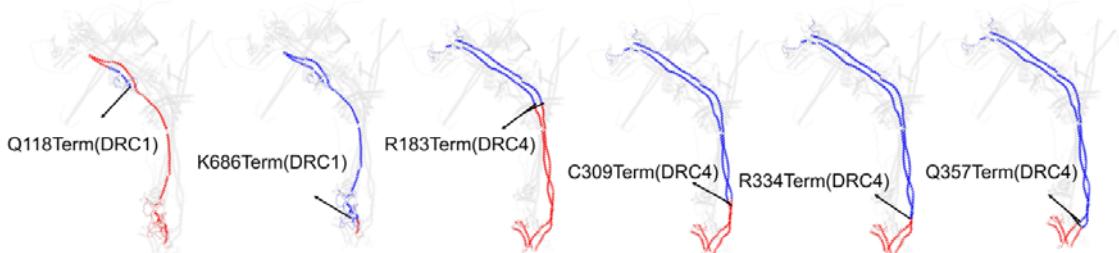
19 Our cryo-EM map also reveals the conservation of the L-shaped density discovered first in *C.*
20 *reinhardtii* DMT [22]. The L-shaped coiled coil is located between RS1 and RS2 on
21 protofilament A1 and extends to the junction of protofilaments A4 and A5. The L-shaped
22 coiled coil interacts with CCDC39/40, DRC1/2, CCDC96/113 complexes, and CFAP337
23 (Fig. 5A, C, D). Overall, the N-DRC interacts with a network of coiled-coil proteins that can
24 play a crucial role in the regulation of multiple dyneins.

25 Our subtomogram average does not show a linker density between the N-DRC and the ODA
26 (Fig. S7B), as shown in *C. reinhardtii* [21]. In contrast to *T. thermophila*, DRC7 in *C.*
27 *reinhardtii* has extra LRR and Kelch domains at its N-terminus. Therefore, the observed
28 linker density can be the LRR and Kelch domains of CrDRC7. However, the flexible loop of
29 TtDRC7 (N-terminal) might still interact with the IC/LC tower of ODA for N-DRC-ODA
30 regulation.

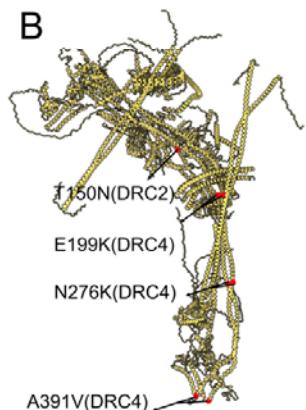
31

1
2 **Figure 5. The coiled-coil network associated with the N-DRC.** (A) N-DRC in complex
3 with the coiled-coiled protein network. (B) The 96-nm repeat subtomogram averaged map of
4 the DMT. (IDAs and ODAs are hidden for better visualization). The potential location of
5 CFAP57. (C) Diagram of the N-DRC interactions with the coiled-coil network and IDAs and
6 ODAs. The red line represents the N-DRC components. (D) Schematic view of the 96-nm
7 repeating unit. The dashed shapes indicate the location of IDAs along the 96-nm repeat. Signs
8 (+) and (-) indicate the distal and proximal ends of the DMT.

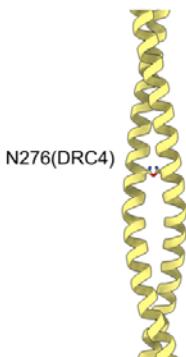
1 **Mapping of pathogenic N-DRC human mutations allows the understanding**
2 **of N-DRC assembly**

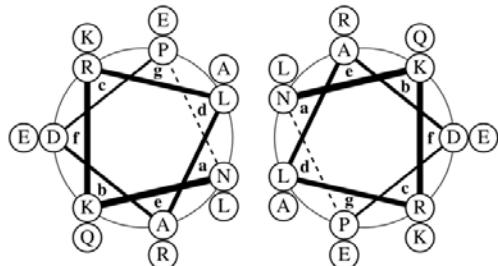

3 In humans, mutations in N-DRC components such as scaffold proteins (DRC1, DRC2, and
4 DRC4) disrupt cilia motility and lead to primary ciliary dyskinesia [40, 41]. To investigate
5 the molecular basis of N-DRC-related ciliopathies, we mapped genetic mutations that cause
6 ciliopathies on the human N-DRC model constructed based on our *T. thermophila* N-DRC
7 model. DRC1 is an essential scaffold protein that binds to most DRC components. A
8 Q118Term (DRC1) truncation mutation leads to a loss of the linker and base plate domain of
9 DRC1, thereby destabilizing the entire N-DRC structure. The K686Term (DRC1) premature
10 stop codon mutation truncates the binding region of DRC1 to CFAP20, which destabilizes the
11 N-DRC base plate and causes severe defects in N-DRC assembly in primary ciliary
12 dyskinesia patients (Fig. 6A). This suggests that linking DRC1 to CFAP20 is critical for
13 maintaining the N-DRC structure on DMT.

14 Immunofluorescence analyses of respiratory cells from primary ciliary dyskinesia-affected
15 individuals with truncation mutations in the DRC4 subunit (C309Term, R334Term,
16 Q357Term) also revealed an N-DRC defect [42]. The premature stop codon mutations
17 produce DRC4 variants lacking fragments at the N-DRC base plate, which in turn disrupts
18 the interaction of DRC4 with ruler proteins (CCDC39/40), CFAP91, and tubulins, ultimately
19 leading to a destabilization of the binding of the N-DRC to the DMT (Fig. 6A). The
20 R183Term mutation in the DRC4 subunit also eliminates part of DRC4, which binds to
21 DRC3 (Fig. 6A). As expected, this mutation led to delocalization of DRC3 subunits in the N-
22 DRC [43].


23 It has been reported that missense mutations (N276K, A391V) in DRC4 cause
24 disorganization of DMT and change the swimming velocity of cilia. Our model suggests that
25 these mutations can lead to disorganization or disassembly of the DRC4 coiled-coil structure
26 (Fig. 6B). A canonical coiled coil is composed of heptad repeats, labeled *abcdefg*, where
27 hydrophobic amino acids at positions *a* and *d* are conserved [44]. Asparagine is among the
28 most abundant polar inclusions at positions *a* or *d*, providing conformational dynamics at the
29 coiled-coil interface [45]. Our structural data suggest that N276 is located at position *a* in the
30 coiled-coil heptad (Fig. 6C-D). Therefore, mutation of N276 to a positively charged lysine
31 can disrupt or deform the DRC4 coiled-coil structure.

1 In summary, scaffold proteins (DRC1, DRC2, DRC4) play a vital role in assembling the N-
2 DRC since any defect in these subunits can cause severe ciliopathies. These proteins
3 construct the N-DRC core structure and interact with most of the proteins in the base plate
4 and linker regions. Due to the pivotal role of scaffold proteins in N-DRC assembly, any
5 defect in these proteins can cause loss of the N-DRC structure and disrupt the contact of the
6 N-DRC with the neighboring DMT. The contact of the N-DRC by electrostatic interactions
7 with the neighboring DMT is essential for ciliary bending [34]. Previous studies in *C.*
8 *reinhardtii* mutants of *DRC7* and *DRC11* show that the partially disrupted N-DRC still
9 maintains contact with the neighboring DMT [21, 34]. Accordingly, if there are some
10 contacts with the neighboring DMT, the bending motion will be affected but not completely
11 disturbed. As a result, pathogenic N-DRC mutations are primarily found in scaffold proteins.


A


B

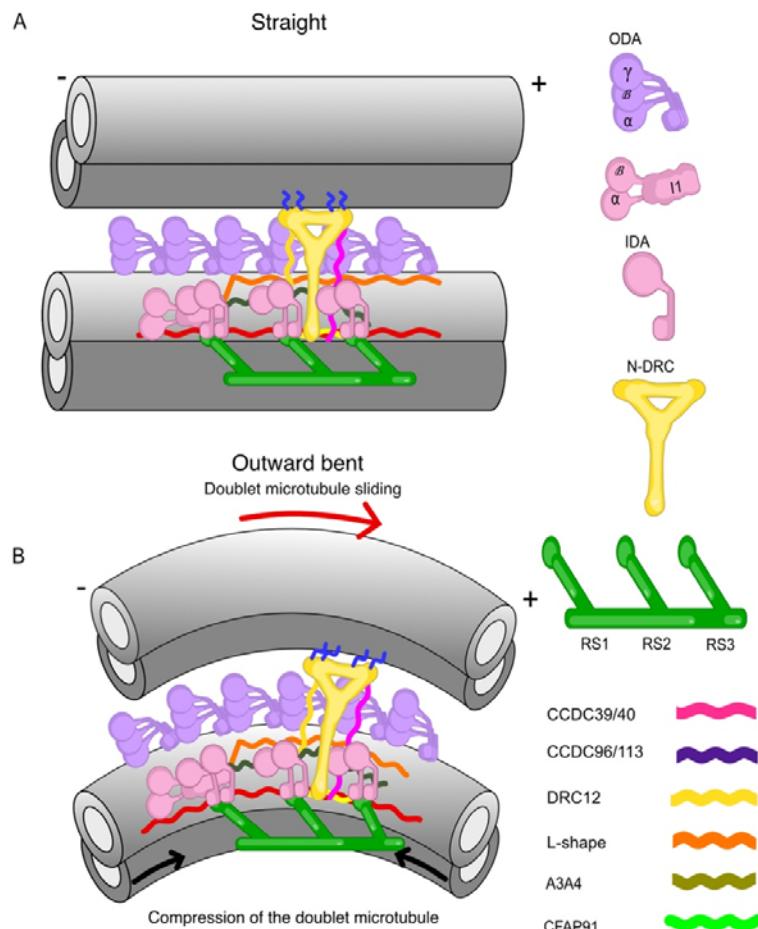
C

D

12

13 **Figure 6. Genetic mapping of missense and truncated ciliopathies causing mutation in**
14 **the human N-DRC model.** (A) The pathogenic truncation mutations are shown on the
15 human N-DRC model. The gray transparent proteins represent non-mutated proteins. The red
16 color shows the truncated region, and the blue color depicts the remaining part of the protein.
17 (B) Red circles indicate missense mutations in DRC4 and DRC2. Blue circles on DRC4
18 indicate benign missense mutations. (C) Interaction of side chain of asparagine residues in
19 DRC4 coil coiled (D) Helical wheels of residue 276-289 segment of DRC4 coiled coil
20 (sequence: NKRLADPLQKAREE).

1 Discussion


2 In this study, we revealed the molecular architecture of the N-DRC of *T. thermophila* by an
3 integrative modeling approach. Importantly, our data identified an additional N-DRC
4 component, DRC12. We localized CFAP337 and CFAP5 and demonstrated their interactions
5 with the CCDC93/113 complex. The main scaffold of the N-DRC comprises coiled-coiled
6 proteins, including DRC1/2 and DRC4A/4B complexes, which start from the base plate and
7 span through the proximal lobe of the linker. These components play a pivotal role in
8 stabilizing the N-DRC and contribute to mechano-regulatory signal transmission. The role of
9 DRC1, DRC2 and DRC4 proteins as the core structural components of the N-DRC agrees
10 with earlier analyses of the N-DRC in *C. reinhardtii* (N-C-term tagging SNAP, BCCP) [38]
11 and biochemical studies [18].

12 In contrast to the radial spokes and ODA, which are preassembled in the cytoplasm and
13 transported into the cilium [46-48], a recent study revealed that the N-DRC is likely
14 assembled step-by-step in the cilia since DRC2 and DRC4 are transported and assembled
15 independently in the cilia [49]. In accordance with our model and mass spectrometry analysis
16 of different knockout DRC mutants [18, 24], scaffold proteins should assemble onto the
17 DMT first before the other N-DRC subunits dock onto the core scaffold proteins. Loss of
18 DRC3 in the *drc3* mutant strain led to the loss of part of the distal domain (based on our
19 study, the distal domain that was lost in the *drc3* mutant represents DRC9/10 complex) [50].
20 We propose that DRC3 binds to DRC4 first, leading to the assembly of DRC9/10
21 heterodimers. As a result, DRC4 plays a crucial role in assembling the N-DRC distal domain.

22 Our model revealed that the N-DRC is connected to an extensive network of coiled-coil
23 proteins on the DMT that span the 96-nm repeating unit. An essential aspect of coiled-coil
24 protein function is mechanical stability against deformation forces [51]. Coiled-coil proteins
25 can transmit mechanical loads such as the tails of myosin and kinesin motors or keratin
26 bundles [51]. We hypothesized that the N-DRC conformation change during ciliary bending
27 can be transmitted to the coiled-coil network by pulling force. To bend the axoneme, dyneins
28 on one side should be inactive, while dyneins on the other side must be active [11]. During
29 ciliary beating, this process should switch back and forth quickly, resulting in the high
30 oscillating frequency of the cilium. When the cilium is in a straight conformation, the N-DRC
31 is in its relaxed state (Fig. 7A). In this conformation, the N-DRC exerts no regulation on

1 dynein arm activity on either side of the cilium. In the outward-facing curve of the cilium, the
2 dyneins are in active states, leading to DMT sliding and N-DRC stretching due to the larger
3 distance between neighboring DMTs (Fig. 7B). N-DRC stretching can pull on the highly
4 elastic coiled-coil protein network. This can mechanically extend the length of coiled-coil
5 proteins. As a result, the dynein arms can be regulated by the pulling of the coiled-coil
6 proteins and switch to an inactive state. In active cilia, the N-DRC linker region is not well
7 observed by cryo-ET, probably due to its flexibility [36]. As such, the extent of the
8 deformation of the N-DRC linker region is still unclear and needs to be answered in the
9 future.

10 To summarize, our study sheds light on the molecular mechanism of dynein arm regulation
11 through the N-DRC and other mechano-regulatory complexes. Our results allow us to better
12 understand the molecular etiology of ciliopathies and the mechanism of ciliary dysfunction.

13
14 **Figure 7. A model for the conformational change of the N-DRC and the coiled-coil**
15 **network during ciliary bending.** (A) Two neighboring DMTs are in their straight
16 conformations. (B) The N-DRC pulls due to DMT sliding and the coiled coils on the surface

1 of the DMT due to bending, which can lead to dynein activation/inactivation. Signs (+) and (-)
2) indicate the distal and proximal ends of the DMT.

1 **Methods**

2 *T. thermophila* growth, cilium isolation by dibucaine treatment, cryo-EM sample preparation,
3 and cryo-EM data acquisition were performed similarly to our previous work [26, 27].

4 ***T. thermophila* culture**

5 All *T. thermophila* strains in this study were grown in 1 L of SPP media in a shaker incubator
6 at 30°C and 120 rpm until the cell density reached an OD of approximately 0.7 at 700 nm
7 (Black, Dai et al. 2021).

8 **Cilia isolation**

9 The *T. thermophila* culture was harvested by centrifugation at 700 × g for 10 min at room
10 temperature. The cell pellet was resuspended in fresh SPP at room temperature to a total
11 volume of 24 ml. One milliliter of SPP containing 25 mg of dibucaine was added to the cell
12 solution for one minute for deciliation. Immediately, 75 ml of ice-cold SPP was added to the
13 cell suspension. The solution was centrifuged at 2000 × g for 10 min at 4°C. The supernatant
14 containing the cilia was then centrifuged at 17000 × g for 40 minutes at 4°C. The cilia-
15 containing pellets were washed with ice-cold cilia wash buffer (50 mM HEPES at pH 7.4, 3
16 mM MgSO₄, 0.1 mM EGTA, 1 mM DTT, 250 mM sucrose) and resuspended in 250 µl cilia
17 wash buffer.

18 **Purification of DMTs**

19 NP40 was added to a final concentration of 1.5% and incubated on ice for 45 minutes. After
20 centrifugation for 10 minutes at 7800 g and 4°C, the intact axoneme with the membrane in
21 the pellet was resuspended in cilia final buffer (50 mM HEPES at pH 7.4, 3 mM MgSO₄, 0.1
22 mM EGTA, 1 mM DTT, 0.5% trehalose). To induce sliding disintegration for intact DMT
23 purification, ADP was added to a final concentration of 0.3 mM and incubated at room
24 temperature for 10 minutes. Then, ATP was added to a final concentration of 1 mM and
25 incubated at room temperature for another 10 minutes to maximize sliding disintegration.

26 **Cryo-EM sample preparation**

1 Chloroform was applied overnight to C-Flat Holey thick carbon grids for cleaning (Electron
2 Microscopy Services #CFT312-100). For single-particle analysis, chloroform-treated and
3 negatively glow-discharged (10 mA, 15 s) grids were placed inside the Vitrobot Mk IV
4 (Thermo Fisher) chamber, and 4 μ L of the DMT sample at 2.2 mg/mL was applied to the grid.
5 The sample was incubated on the grid at 23°C for 15 seconds with 100% humidity, blotted
6 with force 3 for 5 seconds, and then plunged frozen in liquid ethane.

7 **Cryo-EM data acquisition**

8 Beam-shift single-particle cryo-EM data were collected by SerialEM [52] on a Titan Krios
9 300 keV FEG electron microscope (Thermo Fisher) equipped with a K3 Summit direct
10 electron detector (Gatan, Inc.) and the BioQuantum energy filter (Gatan, Inc.) (Table 1). The
11 beam shift pattern used to collect movies is four movies per hole and four holes per
12 movement. The final pixel size is 1.370 $\text{\AA}/\text{pixel}$. A total dose of 45 or 70 electrons per \AA^2 was
13 radiated to each movie with over 40 frames. The defocus range was between -1.0 and -3.0 μm
14 at an interval of 0.25 μm .

15 **Cryo-EM image processing of the 96-nm repeat unit of the DMT**

16 The movies were motion-corrected and dose-weighted using MosionCor2 [53] in Relion
17 3.1.2 [54], and the contrast transfer function parameters were determined using GCTF [55].
18 The filaments were picked semi-automatically. Due to the importance of the top views of
19 filaments, these views were picked manually using e2helixboxer [56]. The side views of the
20 DMT were picked automatically using topaz [57] in Cryosparc 3.1 [58]. Four times binned
21 particles of 128×128 pixels were extracted in Relion 3.1.2. The pre-alignment of 8-nm
22 repeat particles was performed using the Iterative Helical Real Space Reconstruction script
23 [59] using the SPIDER package [60]. In the next step, the particles were transferred to
24 Frealign and refined [61].

25 After converting the alignment parameters to Relion 3.1.2 with an unbinned box size of 512
26 512 pixels, iterative per-particle-defocus refinement and Bayesian polishing of 8-nm repeat
27 particles were performed. The signal of the tubulin lattice was subtracted to highlight the
28 signal of MIPs for classification of 16-nm and 48-nm repeats. To obtain a 16-nm repeating
29 unit, 3D classification was performed with two classes. The 16-nm repeat particles were
30 subjected to 3D classification with three classes to obtain the 48-nm repeat. Refinement of

1 the non-subtracted particles was performed to obtain a 48-nm structure. To obtain the 96-nm
2 repeat of the DMT, K40R, MEC17, SB255, and CU428 data were merged since the N-DRC
3 structure in the mutants is not different. Then, 3D classification with two classes with a mask
4 focusing on the outside of the DMT was performed on the 48-nm repeat structure. The
5 refinement of the 96-nm class containing N-DRC resulted in a global resolution of 3.6 to 4.0
6 Å.

7 To improve the local resolution of the base plate part, we performed local refinement using a
8 mask that covered the base plate region and approximately two protofilaments attached to the
9 base plate. Then, the map was enhanced by DeepEmhancer [62].

10 **Cryo-EM data processing of the N-DRC**

11 A processing pipeline is shown in Figure S1. The N-DRC base plate was improved using
12 focus refinement with one mask that included the base-plate part and CCDC96/113 complex
13 on the DMT in Relion 3.1.2. To obtain the linker part, the particles of the 96-nm repeat were
14 transferred to Cryosparc 3.1 to perform tubulin lattice signal subtraction, IDA subtraction,
15 and centering of the N-DRC structure in the box using the volume alignment tool in
16 Cryosparc 3.1. The star files were converted using the UCSF pyem package
17 (<https://github.com/asarnow/pyem>) [63] to Relion 3.1.2. After consensus refinement of the
18 entire N-DRC, the refined structure was subjected to 3D classification without alignment
19 with five classes and a T value of 50. The best class with the highest number of particles and
20 resolution was selected for further 3D refinement. Then, the N-DRC base plate was
21 subtracted, and the box size was reduced to 150 pixels. The resulting particles were locally
22 refined with three different masks covering different regions of the linker part. The final
23 maps at 5.7 Å resolution were B-factor sharpened and enhanced by DeepEmhancer [62]. All
24 maps and models were visualized using ChimeraX [64].

25 **Cryo-ET and subtomogram averaging**

26 The data for cryo-electron tomography and the 96-nm repeat map (EMD-29667) of the wild-
27 type cilium come from a previous study [27]. To improve the resolution of the N-DRC, local
28 refinement was performed using a mask that covers the N-DRC structure, resulting in a 21 Å
29 resolved map.

1 **Identification of N-DRC proteins in *T. thermophila***

2 To identify the DRC subunits of *T. thermophila*, the *C. reinhardtii* DRC subunits (obtained
3 from previous studies and the UniProt and Phytozome databases [25, 65]) were blasted
4 against the local database of the *T. thermophila* axoneme proteome, which was built using
5 proteins identified in mass spectrometry data from the *T. thermophila* axoneme [27, 66, 67].
6 Additionally, the exponentially modified protein abundance index (emPAI) was considered
7 another important factor in identifying DRC components (Table S2). DRC4, DRC6 and
8 DRC11 all have two paralogs, A and B. In the case of DRC6 and DRC11, in which one
9 paralog is significantly more abundant, we used the more abundant paralogs DRC6A and
10 DRC11A for modeling (Table S1-2).

11 The intra-molecular and inter-molecular cross-links from the N-DRC components came from
12 *in situ* cross-linking data of *T. thermophila* cilia [28] (Table S3 and S4).

13 **AlphaFold2 Structure Prediction**

14 Using the AlphaFold2 Google Colab notebook [68, 69], we predicted all N-DRC components
15 individually. To localize proteins and model heterodimer and homodimer proteins, we
16 utilized AlphaFold2 Multimer [70] implemented in the Cosmic 2 computer cluster [71] and
17 Google Colab notebook [72]. All models were predicted using the full sequence. The model
18 was truncated and refined to fit into the cryo-EM map.

19 **Localization and modeling of N-DRC proteins**

20 For base plate modeling, we used two different methods, including multiple sequence
21 alignment and AlphaFold2 prediction. For the N-DRC base plate, multiple sequence
22 alignment of DRC1, DRC2, CFAP91, and CFAP20 was performed against *C. reinhardtii*
23 homologs. In the next step, the PDB structure of *C. reinhardtii* (PDB 7JU4) was modified into
24 the sequence of *T. thermophila*. For DRC4A/4B, and CCDC96/113, we used AlphaFold2
25 prediction. The models were then fitted into the map using the UCSF ChimeraX function
26 fitmap [64]. Next, the models were modeled using Coot [68] and real space refined in Phenix
27 [69].

28 To localize DRC3, DRC9, DRC10, and DRC7, we performed AlphaFold2 Multimer protein
29 complex prediction, which confirmed that DRC9 and DRC10 tightly bind together and form a

1 heterodimer that interacts with DRC3 (Fig. S2F). The structure of DRC3 was resolved as a
2 bundle of coiled-coil proteins connected to a bundle of beta sheets with a loop in the middle
3 of the linker domain. This allowed us to fit the high-confidence AlphaFold2 structure into the
4 density (Fig. S2C). The DRC5 density was resolved as a leucine-rich density that interacts
5 with the linker domain of DRC1/2, consistent with a previous study [21]. The high-
6 confidence AlphaFold2 multimer model of DRC1 and DRC5 confirms the interaction
7 between these proteins (Fig. S2C, F). In our cryo-EM map, the resolved density of the
8 DRC9/10 coiled coil has a distinct N-terminal fold, consistent with the molecular model
9 predicted by the AlphaFold2 multimer. Therefore, we were able to fit the N-terminal regions
10 and coiled-coil regions of the DRC9/10 coiled coil entirely within our map (Fig. S2E). The
11 sufficient resolution of the linker domain also allowed us to fit the AlphaFold2 multimer
12 model of DRC1/2 and DRC4A/4B complexes into our map.

13 For the identification and localization of other proteins, only proteins with at least two kinds
14 of localization evidence are discussed in the work. The evidence includes cross-links to well-
15 localized proteins, biotinylated in BioID of known proteins, highly confident AlphaFold2
16 multimer prediction with known proteins, presence in a pull-down assay with known bait
17 proteins, missing in knockout mutants of known proteins and good fitting in low-resolution
18 maps.

19 The cross-linking data indicated that DRC7 is cross-linked with DRC10 and DRC3. Hence,
20 to localize DRC7, we performed AlphaFold2 multimer prediction of DRC7, DRC10, and
21 DRC3 (Fig. S2F). In addition, the linker part of DRC1/2 was also localized using AlphaFold2
22 Multimer (Fig. S2A).

23 To determine the location of DRC8 and DRC11 on the N-DRC structure, we utilized
24 Assembline as an integrative modeling software, AlphaFold2 Multimer, Hdock protein
25 docking server, and Crosslink MS/MS data. A high-confidence AlphaFold2 Multimer
26 prediction and the high score of the Hdock docking server and Assembline [73-77] enabled
27 us to fit the DRC8/11 complex in the N-DRC proximal lobe (Fig. S2F). Using the UCSF
28 ChimeraX function fitmap and Assembline Global optimization function, two copies of
29 DRC8 and one copy of DRC11 localized in our map as a subcomplex. The fit libraries were
30 created with 100000 searches in the cryo-EM map using the fitmap tool of the UCSF
31 Chimera [78] with the requirement of at least 60% of the input structure being covered by the
32 EM map envelope defined at a low-density threshold. This resulted in 500-2800 alternative
33 fitting in the cryo-EM map. Then, the resulting fit libraries of the DRC8 and DRC11

1 structures were used as input for the simultaneous fitting of DRC8 and DRC11 using the
2 cryo-EM map. The fitting was performed using simulated annealing Monte Carlo
3 optimization that generates alternative configurations of the fits precalculated as above.

4 DRC4 in *T. thermophila* has two paralogs compared with *C. reinhardtii*. Our cryo-EM map
5 shows two coiled-coil densities for the DRC4 paralogs, in which one coil has a longer loop
6 DRC4A (Q23YW7) with a particular fold and the other coil has a shorter loop DRC4B
7 (I7LT80) (Fig. S5C). To identify how these two paralogs interact with each other and to
8 distinguish which density on our map belongs to these proteins, we performed AlphaFold2
9 multimer prediction. Interestingly, AlphaFold2 Multimer predicted the dimer with high
10 accuracy, allowing us to localize the proteins (Fig. S5C).

11 **Visualization of axonemal dyneins and DMT interaction**

12 To visualize the dynein and axonemal dynein interaction, the isolated *T. thermophila* outer
13 dynein arm model (PDB 7k58) was fitted into the 96-nm repeat subtomogram average
14 (EMD-29667). For IDA, the head and stalk domains of *T. thermophila* dynein heavy chain
15 DYH10 (UniProtID I7LTP7) were modeled using the Phyre2 server [79]. This model was
16 then used to fit into all eight different inner arm dynein positions (a, b, c, d, e, g, f α and f β).
17 The fitting is based on the head and orientation of the density of the stalks in the
18 subtomogram average.

19 **Genome modifications**

20 To engineer *Tetrahymena* cells expressing C-terminally -3HA or -HA-BirA*-tagged DRC
21 fusion proteins under the control of the respective native promoter, the FAP44 open reading
22 frame and 3'UTR fragments were removed from FAP44-3HA and FAP44-HA-BirA*
23 plasmids [80] using MluI and BamHI or PstI and XhoI sites, respectively, and replaced by
24 approximately 1 kb fragments of the C-terminal part of the open reading frame without a stop
25 codon and 3'UTR amplified using wild-type genomic DNA as a template and Phusion Hot
26 Start II high-fidelity DNA polymerase (Thermo Fisher Scientific Baltics, Lithuania) and
27 primers listed in Table S5.

28 To engineer *Tetrahymena* cells overexpressing C-terminally GFP- or HA-tagged proteins
29 under the control of a cadmium-inducible MTT1 promoter, the entire open reading frame
30 without the stop codon was amplified with the addition of the MluI and BamHI restriction

1 sites at the 5' and 3' ends, respectively, using Phusion Hot Start II high-fidelity DNA
2 polymerase (Thermo Fisher Scientific Baltics, Lithuania) and the primers listed in Table S5.
3 The PCR fragments were cloned using MluI and BamHI restriction enzymes into modified
4 versions of the MTT1-GFP or MTT1-HA plasmids [81], enabling the integration of the
5 transgene into the *BTU1* locus and selection of transformed *Tetrahymena* cells based on
6 paromomycin resistance (neo2 cassette) [82]. *Tetrahymena* cells were transformed, and
7 transgenes were assorted as described in detail [12, 30].

8 **BioID assay**

9 For the BioID assay, cells were grown to a density of 2×10^5 cells/ml, starved for 14-18
10 hours in 10 mM Tris-HCl buffer, pH 7.5, and incubated in the same buffer supplied with 50
11 μ M biotin for 4 h at 30°C. Next, the cells were spun down and deciliated, and the collected
12 cilia were resuspended in 0.5 ml of axoneme stabilization buffer (20 mM potassium acetate, 5
13 mM MgSO₄, 20 mM HEPES, pH 7.5, 0.5 mM EDTA with protease inhibitors (Complete
14 Ultra EDTA-free; Roche, Indianapolis, IN)). After incubation of cilia for 5 min on ice in the
15 same buffer supplied with 0.2% NP-40, the axonemes were pelleted by centrifugation at
16 21,100 \times g for 10 min at 4°C and lysed for 1 hour (0.4% SDS, 50 mM Tris-HCl, pH 7.4, 500
17 mM NaCl, 1 mM DTT with protease inhibitors) at RT. After centrifugation (8000 \times g at
18 4°C), the supernatant was collected and diluted with three volumes of 50 mM Tris-HCl
19 buffer, pH 7.4. Collected proteins were incubated overnight with 100 μ l of streptavidin-
20 coupled Dynabeads (Dynabeads M-280 Streptavidin, Thermo Fisher Scientific, Waltham,
21 MA, USA) at 4°C. After washing with buffer containing 15 mM Tris-HCl, pH 7.4, 150 mM
22 NaCl, 0.1% SDS, and 0.3 mM DTT at 4°C, the biotinylated, resin-bound proteins were
23 analyzed by mass spectrometry (Laboratory of Mass Spectrometry, Institute of Biochemistry
24 and Biophysics, PAS, Warsaw, Poland) and by Western blotting using Pierce High
25 Sensitivity-streptavidin-HRP (Thermo Scientific, Rockford, IL) diluted 1:40,000 in 3%
26 BSA/TBST.

27 **Pull-down analyses**

28 For the pull-down assay, cells carrying a transgene enabling overexpression of *Tetrahymena*
29 proteins were grown overnight to the mid-log phase in SPP medium and diluted to a density
30 of $2-2.5 \times 10^5$ cells/ml, and overexpression was induced by the addition of cadmium chloride
31 to a final concentration of 2.5 μ g/mL. After 2-3 h, cells were collected, washed in 10 mM

1 Tris-HCl buffer, pH 7.5, and solubilized in two-fold concentrated modified RIPA buffer (50
2 mM Tris-HCl, pH 7.5, 300 mM NaCl, 2% NP-40, 2% sodium deoxycholate, 10% glycerol
3 with protease inhibitors).

4 After spinning down at 100,000 \times g for 30 min at 4°C, the supernatant obtained from cells
5 expressing GFP-tagged proteins was diluted 1:4 with dilution buffer (25 mM Tris-HCl, pH
6 7.5, 150 mM NaCl, 5% glycerol with protease inhibitors), and approximately 250 μ g of
7 protein was incubated with anti-GFP-conjugated magnetic agarose beads (ChromoTek GFP-
8 Trap[®] Magnetic Agarose) for 1-1.5 hours. Next, beads were washed (5 \times 5 min) with Wash
9 buffer (25 mM Tris-HCl, pH 7.5, 150 mM NaCl, 0.2% NP-40.5% glycerol with protease
10 inhibitors) and incubated with approximately 250 μ g of supernatant containing HA-tagged
11 proteins prepared as described above for GFP fusion proteins. After 1-1.5 hours of incubation
12 at room temperature, followed by washing with wash buffer, the bead-bound proteins were
13 analyzed by Western blotting using anti-GFP (1:60,000, Abcam) and anti-HA antibodies
14 (1:2000).

15

1 **Acknowledgments**

2 We thank Drs. Kelly Sears, Mike Strauss, Kaustuv Basu (Facility for Electron Microscopy
3 Research at McGill University) for helping with data collection, Dr. Jan Kosinski for helping
4 to set up Assembleline and Drs. Maureen Wirschell and Muneyoshi Ichikawa for critically
5 reading the manuscript. KHB is supported by grants from the Canadian Institutes of Health
6 Research (PJT-156354) and Natural Sciences and Engineering Research Council of Canada
7 (RGPIN-2022-04774). EMM acknowledges support from the Welch Foundation (F1515) and
8 U.S. National Institutes of Health (R01 HD085901). DW is supported by a grant from the
9 National Science Centre, Poland (OPUS21 2021/41/B/NZ3/03612).

10 **Author contributions**

11 Conceptualization: KHB, DW. Methodology: AG, SM, CLM, BN, CSB, SKY, TL, OP, MJ,
12 MVP. Formal analysis: AG, SM, CLM. Investigation: AG, SM, CLM, BN, CSB, SKY, TL,
13 OP, MJ, MVP, EMM. Resources: DW, KHB, EMM. Writing–original draft: KHB, DW, AG.
14 Writing–review & editing: KHB, DW, AG, EMM.

15 **Competing interests**

16 The authors declare no conflicts of interest.

17 **Data availability**

18 The data generated in this study are available in the following databases:
19 PDB-XXXX (*Tetrahymena* DRC model)
20
21 EMD-XXXXXX (combined 96-nm *Tetrahymena* doublet)
22 EMD-XXXXXX (combined N-DRC base plate part *Tetrahymena*)
23 EMD-XXXXXX (combined N-DRC linker part *Tetrahymena*)
24 EMD-XXXXXX (focused refinement of the DRC from the *Tetrahymena* WT subtomos)
25

1 References

- 2 1. Reiter, J.F. and M.R. Leroux, *Genes and molecular pathways underpinning*
3 *ciliopathies*. *Nat Rev Mol Cell Biol*, 2017. **18**(9): p. 533-547.
- 4 2. Nicastro, D., et al., *The molecular architecture of axonemes revealed by cryoelectron*
5 *tomography*. *Science*, 2006. **313**(5789): p. 944-8.
- 6 3. Bui, K.H., et al., *Molecular architecture of inner dynein arms in situ in*
7 *Chlamydomonas reinhardtii flagella*. *J Cell Biol*, 2008. **183**(5): p. 923-32.
- 8 4. Bui, K.H., et al., *Asymmetry of inner dynein arms and inter-doublet links in*
9 *Chlamydomonas flagella*. *J Cell Biol*, 2009. **186**(3): p. 437-46.
- 10 5. Bui, K.H., et al., *Polarity and asymmetry in the arrangement of dynein and related*
11 *structures in the Chlamydomonas axoneme*. *J Cell Biol* 2012. **198**(5): p. 913-925.
- 12 6. Summers, K.E. and I.R. Gibbons, *Adenosine Triphosphate-Induced Sliding of Tubules*
13 *in Trypsin-Treated Flagella of Sea-Urchin Sperm*. *P Natl Acad Sci USA*, 1971.
14 **68**(12): p. 3092-&.
- 15 7. Warner, F.D., *Ciliary Inter-Microtubule Bridges*. *J Cell Sci*, 1976. **20**(1): p. 101-114.
- 16 8. Satir, P. and S.T. Christensen, *Structure and function of mammalian cilia*. *Histochem*
17 *Cell Biol*, 2008. **129**(6): p. 687-693.
- 18 9. Brokaw, C.J. and R. Kamiya, *Bending patterns of Chlamydomonas flagella: IV.*
19 *Mutants with defects in inner and outer dynein arms indicate differences in dynein*
20 *arm function*. *Cell Motil Cytoskeleton*, 1987. **8**(1): p. 68-75.
- 21 10. Kamiya, R., *Mutations at 12 Independent Loci Result in Absence of Outer Dynein*
22 *Arms in Chlamydomonas-Reinhardtii*. *J Struct Biol* 1988. **107**(6): p. 2253-2258.
- 23 11. Lin, J.F. and D. Nicastro, *Asymmetric distribution and spatial switching of dynein*
24 *activity generates ciliary motility*. *Science*, 2018. **360**(6387).
- 25 12. Bazan, R., et al., *Ccdc113/Ccdc96 complex, a novel regulator of ciliary beating that*
26 *connects radial spoke 3 to dynein g and the nexin link*. *PLoS Genet*, 2021. **17**(3): p.
27 e1009388.
- 28 13. Gibbons, I.R., *Studies on the Protein Components of Cilia from Tetrahymena*
29 *Pyriformis*. *Proc Natl Acad Sci U S A*, 1963. **50**(5): p. 1002-10.
- 30 14. Brokaw, C.J., D.J. Luck, and B. Huang, *Analysis of the movement of Chlamydomonas*
31 *flagella: "the function of the radial-spoke system is revealed by comparison of wild-*
32 *type and mutant flagella*. *J Cell Biol*, 1982. **92**(3): p. 722-32.
- 33 15. Huang, B., Z. Ramanis, and D.J. Luck, *Suppressor mutations in Chlamydomonas*
34 *reveal a regulatory mechanism for Flagellar function*. *Cell*, 1982. **28**(1): p. 115-24.
- 35 16. Piperno, G., K. Mead, and W. Shestak, *The inner dynein arms I2 interact with a*
36 *"dynein regulatory complex" in Chlamydomonas flagella*. *J Cell Biol*, 1992. **118**(6): p.
37 1455-63.
- 38 17. Heuser, T., et al., *The dynein regulatory complex is the nexin link and a major*
39 *regulatory node in cilia and flagella*. *J Cell Biol*, 2009. **187**(6): p. 921-933.
- 40 18. Bower, R., et al., *The N-DRC forms a conserved biochemical complex that maintains*
41 *outer doublet alignment and limits microtubule sliding in motile axonemes*. *Mol Biol*
42 *Cell*, 2013. **24**(8): p. 1134-52.
- 43 19. Oda, T., H. Yanagisawa, and M. Kikkawa, *Detailed structural and biochemical*
44 *characterization of the nexin-dynein regulatory complex*. *Mol Biol Cell*, 2015. **26**(2):
45 p. 294-304.
- 46 20. Song, K., et al., *In situ localization of N and C termini of subunits of the flagellar*
47 *nexin-dynein regulatory complex (N-DRC) using SNAP tag and cryo-electron*
48 *tomography*. *J Biol Chem*, 2015. **290**(9): p. 5341-53.

1 21. Gui, L., et al., *Scaffold subunits support associated subunit assembly in the*
2 *Chlamydomonas ciliary nexin-dynein regulatory complex*. Proc Natl Acad Sci U S A,
3 2019. **116**(46): p. 23152-23162.

4 22. Gui, M., et al., *Structures of radial spokes and associated complexes important for*
5 *ciliary motility*. Nat Struct Mol Biol, 2021. **28**(1): p. 29-37.

6 23. Rupp, G. and M.E. Porter, *A subunit of the dynein regulatory complex in*
7 *Chlamydomonas is a homologue of a growth arrest-specific gene product*. J Cell Biol
8 2003. **162**(1): p. 47-57.

9 24. Wirschell, M., et al., *The nexin-dynein regulatory complex subunit DRC1 is essential*
10 *for motile cilia function in algae and humans*. Nat Genet, 2013. **45**(3): p. 262-268.

11 25. Bower, R., et al., *DRC2/CCDC65 is a central hub for assembly of the nexin-dynein*
12 *regulatory complex and other regulators of ciliary and flagellar motility*. Mol Biol
13 Cell, 2018. **29**(2): p. 137-153.

14 26. Kubo, S., et al., *Remodeling and activation mechanisms of outer arm dyneins*
15 *revealed by cryo-EM*. Embo Reports, 2021. **22**(9).

16 27. Kubo, S., et al., *Native doublet microtubules from Tetrahymena thermophila reveal*
17 *the importance of outer junction proteins*. Nat Commun, 2023. **14**(1): p. 2168.

18 28. McCafferty, C.L., et al., *Integrative modeling reveals the molecular architecture of*
19 *the intraflagellar transport A (IFT-A) complex*. Elife, 2022. **11**.

20 29. Khalifa, A.A.Z., et al., *The inner junction complex of the cilia is an interaction hub*
21 *that involves tubulin post-translational modifications*. Elife, 2020. **9**.

22 30. Bicka, M., et al., *Cfap91-Dependent Stability of the RS2 and RS3 Base Proteins and*
23 *Adjacent Inner Dynein Arms in Tetrahymena Cilia*. Cells, 2022. **11**(24).

24 31. Iossifov, I., et al., *The contribution of de novo coding mutations to autism spectrum*
25 *disorder*. Nature, 2014. **515**(7526): p. 216-221.

26 32. Imhof, S., et al., *Cryo electron tomography with volta phase plate reveals novel*
27 *structural foundations of the 96-nm axonemal repeat in the pathogen Trypanosoma*
28 *brucei*. Elife, 2019. **8**.

29 33. Nguyen, H.T., et al., *CMF22 is a broadly conserved axonemal protein and is required*
30 *for propulsive motility in Trypanosoma brucei*. Eukaryot Cell, 2013. **12**(9): p. 1202-
31 13.

32 34. Kubo, T. and T. Oda, *Electrostatic interaction between polyglutamylated tubulin and*
33 *the nexin-dynein regulatory complex regulates flagellar motility*. Mol Biol Cell, 2017.
34 **28**(17): p. 2260-2266.

35 35. Rao, Q., et al., *Structures of outer-arm dynein array on microtubule doublet reveal a*
36 *motor coordination mechanism*. Nat Struct Mol Biol, 2021. **28**(10): p. 799-810.

37 36. Lin, J., et al., *Structural mechanism of the dynein power stroke*. Nat Cell Biol, 2014.
38 **16**(5): p. 479-85.

39 37. Yagi, T., et al., *An axonemal dynein particularly important for flagellar movement at*
40 *high viscosity. Implications from a new Chlamydomonas mutant deficient in the*
41 *dynein heavy chain gene DHC9*. J Biol Chem, 2005. **280**(50): p. 41412-20.

42 38. Lin, J., et al., *FAP57/WDR65 targets assembly of a subset of inner arm dyneins and*
43 *connects to regulatory hubs in cilia*. Mol Biol Cell, 2019. **30**(21): p. 2659-2680.

44 39. Bustamante-Marin, X.M., et al., *Mutation of CFAP57, a protein required for the*
45 *asymmetric targeting of a subset of inner dynein arms in Chlamydomonas, causes*
46 *primary ciliary dyskinesia*. PLoS Genet, 2020. **16**(8): p. e1008691.

47 40. Pereira, R., et al., *Mutation analysis in patients with total sperm immotility*. J Assist
48 Reprod Gen, 2015. **32**(6): p. 893-902.

49 41. Butterfield, R., *Primary Ciliary Dyskinesia*. Pediatr Rev, 2017. **38**(3): p. 145-146.

1 42. Olbrich, H., et al., *Loss-of-Function GAS8 Mutations Cause Primary Ciliary*
2 *Dyskinesia and Disrupt the Nexin-Dynein Regulatory Complex*. *Am J Hum Genet*,
3 2015. **97**(4): p. 546-54.

4 43. Jeanson, L., et al., *Mutations in GAS8, a Gene Encoding a Nexin-Dynein Regulatory*
5 *Complex Subunit, Cause Primary Ciliary Dyskinesia with Axonemal Disorganization*.
6 *Hum Mutat*, 2016. **37**(8): p. 776-785.

7 44. Truebestein, L. and T.A. Leonard, *Coiled-coils: The long and short of it*. *Bioessays*,
8 2016. **38**(9): p. 903-16.

9 45. Thomas, F., et al., *Conformational Dynamics of Asparagine at Coiled-Coil Interfaces*.
10 *Biochemistry*, 2017. **56**(50): p. 6544-6554.

11 46. Lee, C., et al., *Functional partitioning of a liquid-like organelle during assembly of*
12 *axonemal dyneins*. *Elife*, 2020. **9**.

13 47. Mali, G.R., et al., *Shulin packages axonemal outer dynein arms for ciliary targeting*.
14 *Science*, 2021. **371**(6532): p. 910-+.

15 48. Lechtreck, K.F., et al., *Chlamydomonas ARMC2/PF27 is an obligate cargo adapter*
16 *for intraflagellar transport of radial spokes*. *Elife*, 2022. **11**.

17 49. Saravanan, S., et al., *In vivo imaging reveals independent intraflagellar transport of*
18 *the nexin-dynein regulatory complex subunits DRC2 and DRC4*. *Mol Biol Cell*, 2023.
19 **34**(2): p. 15-15.

20 50. Awata, J., et al., *DRC3 connects the N-DRC to dynein g to regulate flagellar*
21 *waveform*. *Mol Biol Cell*, 2015. **26**(15): p. 2788-800.

22 51. Kreuzer, S.M. and R. Elber, *Coiled-Coil Response to Mechanical Force: Global*
23 *Stability and Local Cracking*. *Biophys J*, 2013. **105**(4): p. 951-961.

24 52. Mastronarde, D.N., *Automated electron microscope tomography using robust*
25 *prediction of specimen movements*. *J Struct Biol* 2005. **152**(1): p. 36-51.

26 53. Zheng, S.Q., et al., *MotionCor2: anisotropic correction of beam-induced motion for*
27 *improved cryo-electron microscopy*. *Nat Methods*, 2017. **14**(4): p. 331-332.

28 54. Zivanov, J., et al., *New tools for automated high-resolution cryo-EM structure*
29 *determination in RELION-3*. *Elife*, 2018. **7**.

30 55. Zhang, K., *Gctf: Real-time CTF determination and correction*. *J Struct Biol* 2016.
31 **193**(1): p. 1-12.

32 56. Tang, G., et al., *EMAN2: An extensible image processing suite for electron*
33 *microscopy*. *J Struct Biol* 2007. **157**(1): p. 38-46.

34 57. Bepler, T., et al., *Positive-unlabeled convolutional neural networks for particle*
35 *picking in cryo-electron micrographs*. *Nat Methods*, 2019. **16**(11): p. 1153-1160.

36 58. Punjani, A., et al., *cryoSPARC: algorithms for rapid unsupervised cryo-EM structure*
37 *determination*. *Nat Methods*, 2017. **14**(3): p. 290-296.

38 59. Egelman, E.H., *The iterative helical real space reconstruction method: surmounting*
39 *the problems posed by real polymers*. *J Struct Biol*, 2007. **157**(1): p. 83-94.

40 60. Frank, J., et al., *SPIDER and WEB: Processing and visualization of images in 3D*
41 *electron microscopy and related fields*. *J Struct Biol* 1996. **116**(1): p. 190-199.

42 61. Grigorieff, N., *FREALIGN: high-resolution refinement of single particle structures*. *J*
43 *Struct Biol*, 2007. **157**(1): p. 117-25.

44 62. Sanchez-Garcia, R., et al., *DeepEMhancer: a deep learning solution for cryo-EM*
45 *volume post-processing*. *Commun Biol*, 2021. **4**(1): p. 874.

46 63. Asarnow, D., Palovcak, E., Cheng, Y, *asarnow/pyem: UCSF pyem v0.5*. 2019.

47 64. Pettersen, E.F., et al., *UCSF ChimeraX: Structure visualization for researchers,*
48 *educators, and developers*. *Protein Sci*, 2021. **30**(1): p. 70-82.

1 65. Morohoshi, A., et al., *Nexin-Dynein regulatory complex component DRC7 but not*
2 *FBXL13 is required for sperm flagellum formation and male fertility in mice*. PLoS
3 Genet, 2020. **16**(1): p. e1008585.

4 66. Ichikawa, M., et al., *Tubulin lattice in cilia is in a stressed form regulated by*
5 *microtubule inner proteins*. Proc Natl Acad Sci U S A, 2019. **116**(40): p. 19930-
6 19938.

7 67. Dai, D., et al., *Identification and mapping of central pair proteins by proteomic*
8 *analysis*. Biophys Physicobiol, 2020. **17**: p. 71-85.

9 68. Emsley, P., et al., *Features and development of Coot*. Acta Crystallogr D Biol
10 Crystallogr, 2010. **66**(Pt 4): p. 486-501.

11 69. Afonine, P.V., et al., *Real-space refinement in PHENIX for cryo-EM and*
12 *crystallography*. Acta Crystallogr D Struct Biol, 2018. **74**(Pt 6): p. 531-544.

13 70. Evans, R., et al., 2022.

14 71. Cianfrocco, M.A., et al., *Cosmic2*, in *Proceedings of the Practice and Experience in*
15 *Advanced Research Computing 2017 on Sustainability, Success and Impact*. 2017. p.
16 1-5.

17 72. Mirdita, M., et al., *ColabFold: making protein folding accessible to all*. Nat Methods,
18 2022. **19**(6): p. 679-682.

19 73. Rantos, V., K. Karius, and J. Kosinski, *Integrative structural modeling of*
20 *macromolecular complexes using Assembleline*. Nat Protoc, 2022. **17**(1): p. 152-176.

21 74. Russel, D., et al., *Putting the pieces together: integrative modeling platform software*
22 *for structure determination of macromolecular assemblies*. PLoS Biol, 2012. **10**(1): p.
23 e1001244.

24 75. Saltzberg, D., et al., *Modeling Biological Complexes Using Integrative Modeling*
25 *Platform*. Methods Mol Biol, 2019. **2022**: p. 353-377.

26 76. Kosinski, J., et al., *Xlink Analyzer: software for analysis and visualization of cross-*
27 *linking data in the context of three-dimensional structures*. J Struct Biol, 2015.
28 **189**(3): p. 177-83.

29 77. Viswanath, S., et al., *Assessing Exhaustiveness of Stochastic Sampling for Integrative*
30 *Modeling of Macromolecular Structures*. Biophys J, 2017. **113**(11): p. 2344-2353.

31 78. Pettersen, E.F., et al., *UCSF Chimera-a visualization system for exploratory research*
32 *and analysis*. J Comput Chem, 2004. **25**(13): p. 1605-12.

33 79. Kelley, L.A., et al., *The Phyre2 web portal for protein modeling, prediction and*
34 *analysis*. Nat Protoc, 2015. **10**(6): p. 845-58.

35 80. Urbanska, P., et al., *Ciliary proteins Fap43 and Fap44 interact with each other and*
36 *are essential for proper cilia and flagella beating*. Cell Mol Life Sci, 2018. **75**(24): p.
37 4479-4493.

38 81. Joachimiak, E., et al., *Composition and function of the C1b/C1f region in the ciliary*
39 *central apparatus*. Sci Rep, 2021. **11**(1): p. 11760.

40 82. Gaertig, J., et al., *High frequency vector-mediated transformation and gene*
41 *replacement in Tetrahymena*. Nucleic Acids Res, 1994. **22**(24): p. 5391-8.

42

43

1 **Table 1:** Cryo-EM data collection and refinement parameters for all datasets used in this
2 study.

Method	Single Particle Analysis				Subtomogram Averaging
Dataset	<i>WT</i>	<i>SB255</i>	<i>MEC17</i>	<i>K40R</i>	<i>WT</i>
Microscope	Titan Krios	Titan Krios	Titan Krios	Titan Krios	Titan Krios
Electron Detector	Gatan K3	Gatan K3	Gatan K3	Gatan K3	Gatan K3
Zero-loss filter (eV)	30	30	30	30	20
Magnification	64,000	64,000	64,000	64,000	42,000
Voltage (keV)	300	300	300	300	300
Exposure (e/A²)	45	45	45	45 & 73	160
Defocus (μm)	1.0-3.0	1.0-3.0	1.0-3.0	1.0-3.0	2.5-3.5
Pixel size (Å)	1.37	1.37	1.37	1.37	2.12
Tilt range (increment)	-	-	-	-	-60° - 60° (3°)
Tilt scheme	-	-	-	-	dose symmetric
Movies acquired	18,384	25190	6545	25610	-
Particle number	148365	133201	39473	182355	-
Tilt series acquired	-	-	-	-	58
Subtomo averaged	-	-	-	-	2608
Symmetry imposed	C1	C1	C1	C1	C1
Map resolution (Å)	3.70				19

3

1 **Table 2:** Refinement statistics of the base plate and linker models.

	Base plate	Linker
Model-to-Map fit, CCmask	0.43	0.59
All-atom clashscore	17.70	78.51
Ramachandran plot		
Outliers [%]	0.11	0.04
Allowed [%]	3.45	5.72
Favored [%]	96.44	94.25
Rotamer outliers [%]	1.00	0.00
Cbeta deviations [%]	0.06	0.04
Cis-proline [%]	0.00	2.0
Cis-general [%]	0.1	0.1
Twisted proline [%]	3.7	1.3
Twisted general [%]	0.1	0.5

2