

1 Particle-based phasor-FLIM-FRET resolves 2 protein-protein interactions inside single viral 3 particles 4

5 Quinten Coucke^{1,\$}, Nagma Parveen^{1,2,\$}, Guillermo Solís Fernández^{1,3}, Chen Qian⁴,
6 Johan Hofkens¹, Zeger Debys⁵, Jelle Hendrix^{1,6,*}

7 ¹ Molecular Imaging and Photonics Division, Department of Chemistry, KU Leuven,
8 Leuven, Belgium.

9 ² Department of Chemistry, Indian Institute of Technology Kanpur, India

10 ³ UFIEC, National Institute of Health Carlos III, Majadahonda, Madrid, Spain.

11 ⁴ Department of Chemistry, Center for Nano Science (CENS), Center for Integrated
12 Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), Ludwig
13 Maximilians-Universität München, Munich, Germany.

14 ⁵ Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical
15 and Pharmacological Sciences, KU Leuven, Leuven, Belgium.

16 ⁶ Dynamic Bioimaging Lab, Advanced Optical Microscopy Centre and Biomedical
17 Research Institute, Hasselt University, Hasselt, Belgium.

18 \$ Shared authorship

19 * Corresponding author

20

21 Send correspondence to:

22 Prof. Jelle Hendrix

23 Agoralaan C (BIOMED)

24 B-3590 Diepenbeek

25 +32 11 269213

26 jelle.hendrix@uhasselt.be

27

28

29 Keywords: FRET, Phasor, Phasor-FLIM, FLIM, particle-based, HIV-1

30 **Abstract**

31 Fluorescence lifetime imaging microscopy (FLIM) is a popular modality to create
32 additional contrast in fluorescence images. By carefully analyzing pixel-based
33 nanosecond lifetime patterns, FLIM allows studying complex molecular populations. At
34 the single molecule or single particle level, however, image series often suffer from low
35 signal intensities per pixel, rendering it difficult to quantitatively disentangle different
36 lifetime species, such as during FRET analysis in the presence of a significant donor-
37 only fraction. To address this problem, we combined particle localization with phasor-
38 based FLIM analysis. Using simulations, we first showed that an average of ~300
39 photons, spread over the different pixels encompassing single fluorescing particles and
40 without background, is enough to determine a correct phasor signature (standard
41 deviation <5% for a 4 ns lifetime). For immobilized single- or double-labeled dsDNA
42 molecules, we next validated that particle-based phasor-FLIM-FRET readily allows
43 estimating fluorescence lifetimes and FRET from single molecules. Thirdly, we applied
44 particle-based phasor-FLIM-FRET to investigate protein-protein interactions in sub
45 diffraction HIV-1 viral particles. To do this, we first quantitatively compared the
46 fluorescence brightness, lifetime and photostability of different popular fluorescent
47 protein-based FRET probes when genetically fused to the HIV-1 integrase enzyme (IN)
48 in viral particles, and conclude that eGFP, mTurquoise2 and mScarlet perform best.
49 Finally, for viral particles co-expressing FRET-donor/acceptor labeled IN, we
50 determined the absolute FRET efficiency of IN oligomers. Available in a convenient
51 open-source graphical user interface, we believe that particle-based phasor-FLIM-
52 FRET is a promising tool to provide detailed insights in samples suffering from low
53 overall signal intensities.

54 **Why it matters**

55 Phasor-FLIM is an extraordinarily popular tool for fluorescence lifetime imaging
56 analysis. However, it remains susceptible for low signal intensities, operational
57 challenges and therefore required informed users and a clear analysis understanding.
58 In this work we developed a convenient all-graphical workflow for quantitative phasor-
59 FLIM in heterogenous and low-signal samples and applied it to quantifying absolute
60 FRET efficiencies from protein-protein interactions inside single viral particles.
61 Moreover, containing a well-illustrated theoretical introduction to time-domain phasor-
62 FLIM, our paper helps novice users to correctly implement phasor-FLIM in standard
63 microscopy practice.

64

65 **Introduction**

66 Fluorescence lifetime imaging microscopy (FLIM) exploits the excited state
67 fluorescence lifetime of fluorophores to generate image contrast (1–3). For FLIM data
68 recorded using pulsed lasers and photon counting (i.e., time-domain FLIM), pixel-
69 based analysis is typically performed via (multi-component) fluorescence decay fitting
70 (4, 5) or more recently, the phasor approach to time-domain FLIM (from here on
71 referred to as phasor-FLIM) (6). Wide applications of phasor-FLIM, such as biosensors
72 based on FRET (7–10), the autofluorescence signature of a sample (11–16) or
73 investigating the nanoscale diversity of crystalline materials (17) have been extensively
74 described. Additionally, new techniques sprouted using phasor principles such as
75 spectral phasor focused on unmixing (18), phasor S-FLIM focused on species
76 photophysics (19), and several others (20–22).

77 The wide applicability of FLIM comes with some limitations, the most notable of which
78 is heterogeneity in FLIM data. Lifetime heterogeneity in FLIM data between individual
79 pixels, in general, is extracted and utilized by a per-pixel lifetime analysis.
80 Heterogeneity within one pixel, on the other hand, presents a complication for
81 quantitative FLIM regardless of whether decay-fitting or phasor-transformation based
82 analysis is used (23, 24). In these approaches, the unmixing of contributing species is
83 executed in different manners, each with benefits and drawbacks. While global lifetime
84 fitting can provide an analysis for the whole FLIM image, it requires critical user input
85 such as the number of exponentials and the fitting boundaries. The phasor approach
86 attempts the unmixing of contributing factors in a graphical way but equally requires
87 user input such as the instrumental referencing, the autofluorescence contribution and
88 the location of the pure species in the phasor plot (6, 15). Nonetheless, it is generally
89 accepted that the phasor approach allows for easy identification of data clusters and
90 species assignment combined with convenient data representation using the image-
91 phasor reciprocity (25). You can select pixels of the image and analyze this subset in
92 phasor, or inversely, select phasor points that will represent a subset of pixels.

93 Despite the relative ease of use, the application of phasor-FLIM has primarily focused
94 on bright dyes, abundant label-free autofluorescence (such as nicotinamide adenine
95 dinucleotide, NADH) or overexpressed fluorescent protein systems (8, 15, 26, 27).
96 Lower photon yields, sub-pixel species heterogeneity and other experimental
97 complications (e.g., fluorophore maturation, photobleaching) are common

98 experimental complications that render quantitative analysis challenging (28, 29).
99 Fluorescent protein-based biosensors, for example, generally offer high signal
100 intensities due to strong subcellular expression (30–34). However, FLIM-based Förster
101 resonance energy transfer (FRET) protein-protein interaction studies at physiological
102 cellular concentrations, are often carried out at much weaker overall fluorescence
103 signals. Methodologies that facilitate quantitative analysis under conditions of low
104 photon budget and/or signal/noise, such as, e.g., the recently developed particle-based
105 phasor-FLIM approach, are therefore highly desirable (35).

106 As a specific low-signal example, we focus here on fluorescent protein-based FLIM-
107 FRET of homo-interactions of human immunodeficiency virus 1(HIV-1) integrase (IN)
108 enzymes inside single viral particles. The sub-resolution HIV-1 particles can
109 incorporate a limited number of fluorescent proteins/fluorescently-labelled IN
110 molecules. As such, they present a challenge for quantitative FRET analysis because
111 of the overall low signal intensities. We previously employed acceptor photobleaching
112 intensity-based FRET studies on the HIV-1 and murine leukemia virus (MLV) IN
113 enzyme to show that the multimerization state of IN functionally changes during nuclear
114 entry or after drug treatment of infected cells (36–38). However, since the IN-labelled
115 donor (D) and acceptor (A) could oligomerize in different combinations in the FRET
116 system used, intensity-derived FRET values are significantly underestimated by the
117 presence of D-D homodimers, which in turn limited the overall FRET dynamic range.
118 Furthermore, the intensity-based FRET analyses used was completely blind to
119 possible sub-particle species heterogeneity.

120 In this paper we explored the grouping effect of pixels from a single particle. In
121 particular, we look at what advantages it presents in the analysis of dim photon limited
122 samples in which normal pixel-based phasor-FLIM analysis struggles. Additionally, we
123 present the phasor-FLIM analysis in conjunction with the phasor theory to clarify
124 phasor-FLIM for novice users. In doing so we present a fair evaluation of FRET data
125 on the oligomerization of HIV-1 integrase.

126

127 **Theory**

128 **Phasor approach to FLIM**

129 The phasor plot representation of FLIM data was originally developed for frequency-
130 domain FLIM analysis (6, 39–41). Frequency-domain FLIM utilizes a modulated
131 excitation source at an angular frequency ω . The frequency-dependent demodulation
132 M_ω and phase shift φ_ω are characteristics of the emitted fluorescence, and each
133 quantity can be related to the fluorescence lifetime:

$$\tau_M = \omega^{-1} \sqrt{M_\omega^{-1} \omega^{-2} - 1}, \text{ and} \quad \text{Eq. 1}$$

$$\tau_\varphi = \tan(\varphi_\omega) - \omega, \quad \text{Eq. 2}$$

134 where the phase (τ_φ) and modulation (τ_M) lifetimes are equal for high-signal and pure-
135 species data (see also Supplemental Figure S8). Next to this, every lifetime can also
136 be represented in a polar plot as a vector with length equal to the demodulation M_ω
137 and an angle with respect to the abscissa equal to φ_ω . This vector is called the phasor,
138 a portmanteau of phase vector. The point determined by the phasor is described using
139 the Cartesian coordinates g_ω and, s_ω which are the first cosine and sine Fourier
140 coefficients, respectively, of the time-dependent fluorescence signal $I(t)$
141 (Supplemental Figure S1A):

$$g_\omega = M_\omega \cos(\varphi_\omega) = \frac{\int_0^\infty I(t) \cos(\omega t) dt}{\int_0^\infty I(t) dt} \text{ and} \quad \text{Eq. 3}$$

$$s_\omega = M_\omega \sin(\varphi_\omega) = \frac{\int_0^\infty I(t) \sin(\omega t) dt}{\int_0^\infty I(t) dt}. \quad \text{Eq. 4}$$

142 A direct relation between φ_ω and M_ω is found when investigating a mono-exponential
143 decay, where Eqs. 1 and 2 result in the same lifetime and can be equaled:

$$M_\omega = (1 + \tan(\varphi_\omega)^2)^{-1/2}. \quad \text{Eq. 5}$$

144 M_ω and φ_ω can subsequently be written as:

$$M_\omega = \sqrt{g_\omega^2 + s_\omega^2} \text{ and} \quad \text{Eq. 6}$$

$$\varphi_\omega = \tan^{-1}(s_\omega / g_\omega), \quad \text{Eq. 7}$$

145 which allows rewriting Eq. 5 in the Cartesian coordinates of the polar plot:

$$s_\omega^2 + (g_\omega - \frac{1}{2})^2 = \frac{1}{4}. \quad \text{Eq. 8}$$

146 Eq. 8 describes the so-called universal semi-circle, on which all mono-exponential
147 signals will be spread out, with the phasors for shorter lifetimes lying close to the point

148 (1,0), and larger lifetimes closer to (0,0) at the origin point of the semicircle (see also
149 Supplemental Figure S9). Combining Eq. 8 with Eqs. 3 and 4 subsequently allows
150 calculating the g and s coordinates using the angular frequency and the
151 monoexponential lifetime.

$$g_\omega = \frac{1}{1 + \omega^2 \tau^2} \quad \text{Eq. 9}$$

$$s_\omega = \frac{\omega \tau}{1 + \omega^2 \tau^2} \quad \text{Eq. 10}$$

152 All multi-exponentials, which are a sum of mono-exponentials, are linear vector
153 combinations of the constituent phasors, and thus will be found inside the described
154 semi-circle. For a combination of P species the resulting phasor coordinate is
155 calculated by the sum of fractional photon contributions (f_i) of every pure species
156 ($g_{\omega,i}, s_{\omega,i}$)(see Supplemental Figure S1A and S1E):

$$g_\omega = \sum_{i=1}^P (f_i g_{\omega,i}) \text{ and} \quad \text{Eq. 11}$$

$$s_\omega = \sum_{i=1}^P (f_i s_{\omega,i}). \quad \text{Eq. 12}$$

157 **Phasor FLIM using pulsed excitation**

158 When using pulsed excitation and time-correlated single photon counting (TCSPC)
159 detection, as in time-domain FLIM, ω is no longer the modulation frequency but is
160 rather determined by the TCSPC range (TR , in units of time), i.e., the total time period
161 during which detected photons are timed. In this case, the angular frequency ω_{TR} used
162 for phasor transformations is given by:

$$\omega_{TR} = 2\pi/TR. \quad \text{Eq. 13}$$

163 When calculating the phasor for a pixel, or by extension, an image, the idealized
164 scenario where mono-exponential components are directly positioned on the
165 semicircle does not hold true. Most importantly, the fluorescence decay and TCSPC
166 range do not start at the same point relative to the TR, and even for a pure species, its
167 mathematically mono-exponential decay will be convoluted with the instrument
168 response function (IRF) of the measuring device, both effects significantly throwing off
169 any phasor determination. Therefore, a reference measurement is necessary of a
170 stable, well characterized and mono-exponentially decaying dye. Alternatively, the
171 pure IRF signal can be used, representing a lifetime of 0. The reference's known
172 fluorescence lifetime τ_{ref} is first used to calculate (using Eqs. 6,7,9,10) the expected

173 demodulation M_{ref} and phase shift φ_{ref} values for the reference (see Supplemental
174 Figure S1B)

$$M_{ref} = (1 + (2\pi\tau_{ref}/TR)^2)^{-1/2} \text{ and} \quad \text{Eq. 14}$$

$$\varphi_{ref} = \tan^{-1}(2\pi\tau_{ref}/TR). \quad \text{Eq. 15}$$

175 These values are subsequently used to calculate the phasor values for the instrument:

$$g_{instr} = \sum_{n=1}^{N_{TR}} I_{ref}(n) M_{ref}^{-1} \cos(2\pi n/N_{TR} - \varphi_{ref}) \text{ and} \quad \text{Eq. 16}$$

$$s_{instr} = \sum_{n=1}^{N_{TR}} I_{ref}(n) M_{ref}^{-1} \sin(2\pi n/N_{TR} - \varphi_{ref}), \quad \text{Eq. 17}$$

176 where N_{TR} is the total number of time channels in the TCSPC range and $I_{ref}(n)$ the
177 normalized intensity of the reference in timebin n . These instrumental phasor
178 coordinates can subsequently be used to calculate the phase and demodulation of the
179 instrument, φ_{inst} and M_{inst} via Eqs. 6 and 7. This finally allows to display instrument-
180 dependent time-domain data in an instrument-independent polar plot:

$$g_{TR}(n) = M_{inst}^{-1} \cos(2\pi n/N_{TR} - \varphi_{inst}) \text{ and} \quad \text{Eq. 18}$$

$$s_{TR}(n) = M_{inst}^{-1} \sin(2\pi n/N_{TR} - \varphi_{inst}). \quad \text{Eq. 19}$$

181 Every photon is assigned such coordinates depending on its arrival time channel in the
182 TCSPC range, and depending on the subsequent analysis, photon phasors were either
183 averaged per pixel or per identified object. An overview figure of time-domain FLIM-
184 phasor illustrating pulse frequency impact and reference implementation is provided
185 as Supplemental Figures S1B-D and Supplemental figure S9.

186 **Resolving mixtures of pure species**

187 Pixels containing photons that originate from a single type of pure (mono-exponentially
188 decaying) fluorophore translate to phasor values that lie on the semicircle. Phasors
189 from pixels containing a mixture of two pure fluorescent species, with each having a
190 different fluorescence lifetime, on the other hand, are located on a straight line
191 connecting the two constituent pure phasors (Eqs. 11 and 12). The position of the
192 mixture's phasor is determined by both their fluorescence lifetime and relative intensity
193 (brightness) of each species, which is in turn defined by their relative concentration. It
194 is possible to disentangle both. In the case of a mixture of an unquenched and FRET-
195 quenched fluorophore, for example, the concentration fraction f_C of each species is
196 determined from the lifetimes and the intensity fraction f as follows:

$$f_{C,D} = \left(\frac{\tau_D}{\tau_{FRET}} \left(\frac{1}{f_D} - 1 \right) + 1 \right)^{-1} \text{ and } f_{C,FRET} = 1 - f_{C,D}, \quad \text{Eq. 20}$$

197 where τ_D and τ_{FRET} are the Donor-only and FRET-quenched lifetimes, resp., and f_D is
198 the intensity fraction of the D-only species. For the derivation of this formula, the reader
199 is referred to Supplemental Note SN1. Practically, the fraction line is manually drawn,
200 starting from the phasor value of the D-only species and through the center of mass of
201 the mixture's phasor value. This then renders the fractions and the lifetime of the FRET
202 species.

203 **Phasors in the presence of background signal**

204 Background signals (autofluorescence, detector dark counts, scatter, water Raman,
205 laser reflections...) will cause the phasor value of a pure species to be shifted from the
206 semicircle, preventing correct lifetimes to be estimated. By measuring the phasor
207 signature of the background (BG) in a reference experiment, however, it can be used
208 to draw a fraction line through the phasor of the unknown pure species, whose lifetime
209 can then be correctly read at the intersection of the fraction line and semicircle. For
210 FRET experiments, the BG fraction is estimated by the position of measured
211 donor-only sample.

212 **Quenching trajectory of pure FRET species**

213 In the case of a pure fluorophore that is quenched by FRET, its phasor describes a
214 trajectory starting from the D-only species (no FRET) along the semicircle to
215 approximate a 0-ns lifetime (100% FRET) as described by the resulting mono
216 exponential lifetimes on the semi-circle by the formula:

	$\tau_{DA} = (1 - E) * \tau_D$	Eq. 21
--	--------------------------------	--------

217

218 (Fig. S1F). In reality, however, background (BG) and a possible contribution from donor
219 molecules with no nearby acceptor (DO) will cause this trajectory to deviate from the
220 semicircle. For points resembling higher FRET states the fluorescence quantum yield
221 of the involved species decreases leading to increased fluorescence contribution of
222 DO and BG. Taking this into consideration, the quenching trajectory in a non-perfect
223 condition folds back onto itself and ends at the phasor determined by the remaining
224 DO and BG (Fig. S1G). The quenching trajectory connecting all possible FRET
225 efficiency E states, can therefore be determined by fraction lines between all

226 monoexponential points on the semicircle τ_D and the BG & D_{only} phasor. g and s
227 coordinates of the quenching line are given by:

$$g_{quenchline} = \frac{((1 - f_{BG} - f_{DO}) \cdot E) \cdot g_{quenched D} + (f_{BG} + f_{DO} \cdot g_{BG \& DO})}{((1 - f_{BG} - f_{DO}) \cdot E) + (f_{BG} + f_{DO})} \quad \text{Eq. 22}$$

$$s_{quenchline} = \frac{((1 - f_{BG} - f_{DO}) \cdot E) \cdot s_{quenched D} + (f_{BG} + f_{DO} \cdot s_{BG \& DO})}{((1 - f_{BG} - f_{DO}) \cdot E) + (f_{BG} + f_{DO})} \quad \text{Eq. 23}$$

228 in which $g_{quenched D}$ and $s_{quenched D}$, the coordinates of the pure quenched form on the
229 semicircle, can be found using Eqs 9 and 10 in which the lifetime of the quenched form
230 is τ_D only $(1 - E)$. From the formulation it is clear that with increasing FRET of the pure
231 quenched state the fractional contribution of the BG & DO phasor becomes larger.
232 Construction of the quenching line and its contributing factors are displayed in
233 supplemental Figure S1 F-I.

234 **Materials and Methods**

235 **Analysis software**

236 All analysis of imaging data (simulated or experimental .ptu files) was done in the open
237 source Pulsed Interleaved Excitation (PIE) Analysis with MATLAB (PAM) software, a
238 versatile software package offering a variety of analysis tools, including phasor
239 analysis of FLIM data (42). The software is available as a source code, requiring
240 MATLAB to run, or as compiled standalone software compatible with Windows or
241 MacOS at <http://www.cup.uni-muenchen.de/pc/lamb/software/pam.html> or hosted in
242 Git repositories under <http://www.gitlab.com/PAM-PIE/PAM> and
243 <http://www.gitlab.com/PAM-PIE/PAMcompiled>. Sample data is provided under
244 <http://www.gitlab.com/PAM-PIE/PAM-sampleddata>. A detailed manual is found under
245 <http://pam.readthedocs.io>. The workflow of the software as applied in this paper is
246 described in Supplemental Figure S2. Simulated photon data was generated by a
247 subsection of PAM. This module is illustrated in Supplemental Figure S3. Simulation
248 input parameters included: TCSPC range (50 ns), pixel intensity (defined by the
249 number of frames pixel dwell time and the particle brightness ϵ), fluorescence lifetime,
250 background intensity (0 kHz), diffusion coefficient D , number of species and their
251 concentration, simulation box size, pixel size (50 nm) and image size, and (Gaussian)
252 IRF width (250 ps). For the single-particle simulations, a single species of $D = 0 \mu\text{m}^2/\text{s}$
253 was used. For the concentration fraction line simulations, $D = 100 \mu\text{m}^2/\text{s}$ for both

254 species and the fluorescence lifetime and brightness of one species was four times
255 larger than that of the other species (resp. 4 ns and 1 ns), mimicking a species and its
256 75% quenched form. Particle detection was performed using the *Particle Detection*
257 functionality within PAM, which localizes particles in the fluorescence intensity images
258 using eccentricity (0.5), counts (>300), size in pixels (min:15, max 100) and a wavelet
259 depth of 3, using the simple wavelet method (35). Colocalization of dsDNA particles
260 was performed using the centroid positions of particles in the FRET donor and directly
261 excited FRET acceptor images as input via a nearest neighbor search with a maximum
262 distance tolerance of 5 pixels for successful colocalization. Statistical analysis was
263 performed using © 2022 GraphPad Software. For particle intensity tests and
264 comparison of photobleaching, a Shapiro-Wilk tests was first used to check normality
265 of data. When no normality was found, a non-parametric (one-way ANOVA, Kruskal-
266 Wallis) test was used to compare datasets of each IN-FP.

267 **Determination of a phasor cloud center position**

268 The shape of a given phasor ‘cloud’ at low signal intensities is determined by inherent
269 shot noise on the one hand, and the spectroscopic contribution of the different emissive
270 species, i.e., the (autofluorescence) background and the different lifetime species in
271 the observed spectral window. To determine the center position, we calculated a
272 ‘center of mass’, where the average phasor location of all pixels within the phasor cloud
273 is determined, with each pixel weighed for the photon content of that point.

274

275 **Background and donor only fraction determination.**

276 Background samples are measured specifically per experimental case and aim to
277 determine the contributing component of background, stray light, dark counts and
278 autofluorescence. The phasor analysis is performed identical to a normal sample
279 analysis to determine the resulting background phasor location. From all resulting
280 phasor positions the photon weighted average position is determined and used as
281 general background phasor. For DNA measurements the prepared non-labeled
282 surface functionalized with PEG is imaged. In case of virus measurements, the viral
283 particle itself is the main source of background and autofluorescence. Therefore, a
284 photobleached region is imaged where viral particles are present in the scanned frame.
285 The donor only contribution in a FRET experiment skew the phasor to the pure donor
286 phasor position. Most often this value is not determined.

287

288 **DNA strand hybridization**

289 All DNA strands were purchased from IBA LifeSciences (Göttingen,
290 Germany). For the single-color dsDNA experiments the sense strand that was used is
291 5'-GGCTC GCCTG TGTXG TGTTG TATGA TGTAT TCGGC AGTGC GGG-Biotin in
292 which the X marks the 14th position that is labeled with ATTO 488 and biotin-labeled at
293 its 3'-end. A compatible unlabeled antisense strand was used (5'-CCCGC ACTGC
294 CGAAT ACATC ATACA ACACA ACACA GGCAGA GCC) for annealing into a single
295 labeled dsDNA. For our double labeled dsDNA, the antisense strand (5'-Biotin-TTTTT
296 AAGTT TGTGA TAGTT TGGAC TGGTT YGTGA AGAAA AZCGC CGAAA A, with Y
297 and Z an Alexa Fluor 488 and ATTO 647N label respectively) is used covalently labeled
298 with Alexa Fluor 488 on position 31 followed by an ATTO647N label 11 nucleotides
299 further. In addition, the antisense strands are labeled with biotin on the 5' end. The
300 complementary sense strand (5'-TTTTC GGCGA TTTTC TTCAC AAACC AGTCC
301 AAACT ATCAC AAACT TAAAAA A) is unlabeled. Sense and antisense DNA strands
302 were hybridized by centrifuging the lyophilized strands for 1 min at 1000 g. Next,
303 phosphate buffered saline (PBS, Merck, 806552, Sigma-Aldrich, Darmstadt, Germany)
304 was used to dilute to a final concentration of 100 µM. The solution was homogenized
305 by resuspension and vortexing. Afterwards, the top and bottom strand were annealed
306 using a PCR machine (Doppio, VWR®-thermocyclerseries, VWR, part of Avantor,
307 Radnor, US) increasing the temperature to 95 °C (3 min) and cooling down from 85 to
308 4 °C at a 1 min per degree to allow specific hybridization towards a final concentration
309 of 10µM. Finally, the PCR product was transferred to a -80°C Eppendorf (Catalog Nr.
310 0030125215, Eppendorf Belgium) and directly flash-frozen in liquid nitrogen.
311 Afterwards, the product was stored at -80°C. In order to remove the excess free dye
312 as revealed by fluorescence correlation spectroscopy, a PD-10 desalting column was
313 used.

314 **DNA experiments**

315 The glass surface immobilization protocol involved surface cleaning and surface
316 functionalization. Firstly, the chamber glass coverslips (#1.0 chambered coverglass,
317 Lab-Tek Cat. No. 155411) was cleaned by an incubation with 10 mM SDS for 1 hour
318 at room temperature. Next, the surface was washed several times with *Milli-Q* followed
319 by surface activation with UV-Ozone for 15 minutes. Functionalization was performed

320 by adding 10 µg/mL of the passivation agent (PLL-PEG, SuSoS, Dübendorf
321 Switzerland) together with PLL-biotin-PEG in a 1:1 ratio and left to incubate at room
322 temperature for 30 minutes. After this, the surface was rinsed three times with DNA
323 resuspension buffer (150 mM STE-buffer, BP2478-1, ThermoFisher scientific, Geel,
324 Belgium) without letting the surface dry out. This was applied after each incubation
325 step of the functionalization. Once the surface contained biotin, 10µg/mL Neutravidin
326 (ThermoFisher scientific) was added and incubated for 30 minutes followed by another
327 three wash steps with 150 mM STE-buffer. Finally, DNA was diluted to the picomolar
328 range using 150 mM STE-buffer and incubated for 30 minutes after which excess DNA
329 was washed away.

330 **Microscope**

331 The microscope presented in this work is a custom-built confocal microscope. Its
332 schematic is shown in Supplemental Figure S4. The base microscope is an Olympus
333 IX 70 modified with external pulsed excitation lasers, a scan unit and multichannel
334 single photon detection. Five laser lines are available of which 4 are diode pulsed
335 lasers (LDH series, PicoQuant GmbH, Berlin, Germany) and one supercontinuum laser
336 (Solea, PicoQuant GmbH, Berlin, Germany). Laser pulsing and synchronization was
337 set in the acquisitioning software SymphoTime 64 '1+2' (PicoQuant GmbH, Berlin,
338 Germany). A multichannel diode laser driver (PDL 828 Sepia2, Picoquant) controls the
339 laser frequency at 20 MHz to ensure full fluorescence decay when measuring donor
340 and acceptor fluorophores with pulsed interleaved excitation. (Dichroic) Mirrors guide
341 the laser lines into a polarization-maintaining single mode optical fiber (PMC-400Si-
342 2.6- NA012-3-APB-150-P, Schäfter+Kirchhoff GmbH, Hamburg, Germany) via a
343 lens-based coupler (60FC-4-RGBV11-47, SuK). Light is collimated again via a
344 lens-based collimator (60FC-L-4-RGBV11-47, SuK). Excitation light is directed at a
345 dichroic quadband mirror (zt405/488/561/640rpc or zt440/510/561/640rpc depending
346 on needed excitation line, AHF, Tübingen-Pfrondorf, Germany) held in place by a
347 kinematic fluorescence filter cube (DFM1/M, 30 mm cage compatible, Thorlabs,
348 Munich, Germany) for easy optics switching, and reflecting the excitation beam to the
349 scanhead (TILL Yanus IV digital scanner, FEI Munich, Gräfelfing, Germany) mounted
350 straight onto the backport of the IX70. Scan motion is controlled with in-house software
351 in C# Microsoft Visual Studio in combination with a National Instruments box (USB-
352 6361 Multifunction I/O Device, NI, Austin, USA) that steers the xy galvo axis via a TILL

353 photonics Scan Control Unit (SCU, FEI Munich, Gräfelfing, Germany). Pixel
354 dimensions, number and dwell time are controlled by this software. Upon transmission
355 of emission light through the quadband dichroic, the light is focused (150 mm AC254-
356 15-A-ML, Thorlabs) onto a 50- μ m pinhole (PS50S, Thorlabs), after being collimated
357 again by (50 mm AC254-050-A-ML, Thorlabs). Detection is arranged over 3 detection
358 channels, splitting the bundle with dichroic mirrors. For DNA experiments, both the
359 485-nm and 640-nm laser diodes (LDH-D-C-485 and LDH-D-C-640, Picoquant, Berlin,
360 Germany) were used in pulsed interleaved excitation mode using the
361 zt405/488/561/640rpc quadband. Emission light is split on a 560-nm-longpass
362 (H560LPXR, AHF). Reflected light is cleaned up by a 530/50m (HQ, AHF) and
363 recorded on an avalanche photo diode (APD, τ -SPAD, PicoQuant). Passing light is
364 cleaned up by a 705/100 (ET bandpass, AHF analysentechnik, Tübingen-Pfrondorf,
365 Germany). For mNeongreen, mClover3 and eGFP the 485-nm excitation source was
366 used (LDH-D-C-485, Picoquant, Berlin, Germany) and emission detected identically to
367 the ATTO 488 labeled DNA. mTFP1 and mTurquoise2 were excited using a 440-nm
368 diode (LDH-D-C-440, Picoquant, Berlin, Germany) in combination with the
369 zt440/510/561/640rpc quadband BS. Emission light was reflected on the 560 nm
370 longpass and detected by an APD (τ -SPAD, PicoQuant) after passing a cleanup filter
371 (480/40, Brightline HC, AHF analysentechnik, Tübingen-Pfrondorf, Germany). mVenus
372 was excited using a 510nm diode (LDH-D-C-510, Picoquant, Berlin, Germany) in
373 combination with the zt440/510/561/640rpc quadband BS. Emission light was
374 reflected on the 560-nm longpass and detected by an APD (τ -SPAD, PicoQuant) after
375 passing a cleanup filter (540/15, Brightline HC, AHF analysentechnik, Tübingen-
376 Pfrondorf, Germany). mCherry and mScarlet2 were excited using a 560-nm
377 supercontinuum laser (Solea, Picoquant, Berlin, Germany) in combination with the
378 zt440/510/561/640rpc quadband BS. Emission light was passed through the 560-nm
379 longpass and detected by an APD (τ -SPAD, PicoQuant) after passing a cleanup filter
380 (600/37, Brightline HC, AHF analysentechnik, Tübingen-Pfrondorf, Germany). For
381 FRET experiments with mTurquoise2-mVenus all mission light of donor and acceptor
382 is reflected on the 560-nm longpass and split on a 507-nm-longpass dichroic
383 (H507LPXR, AHF analysentechnik, Tübingen-Pfrondorf, Germany) after which a
384 480/40 and 540/15 cleanup filter is used for mTurquoise2 and mVenus respectively
385 before detection. In case of eGFP-mScarlet the eGFP emission is reflected on the

386 560-nm longpass is detected, after cleanup with a 530/50m filter. For mScarlet the
387 emission passes the 560-nm longpass and is cleaned up with a 600/37 filter.

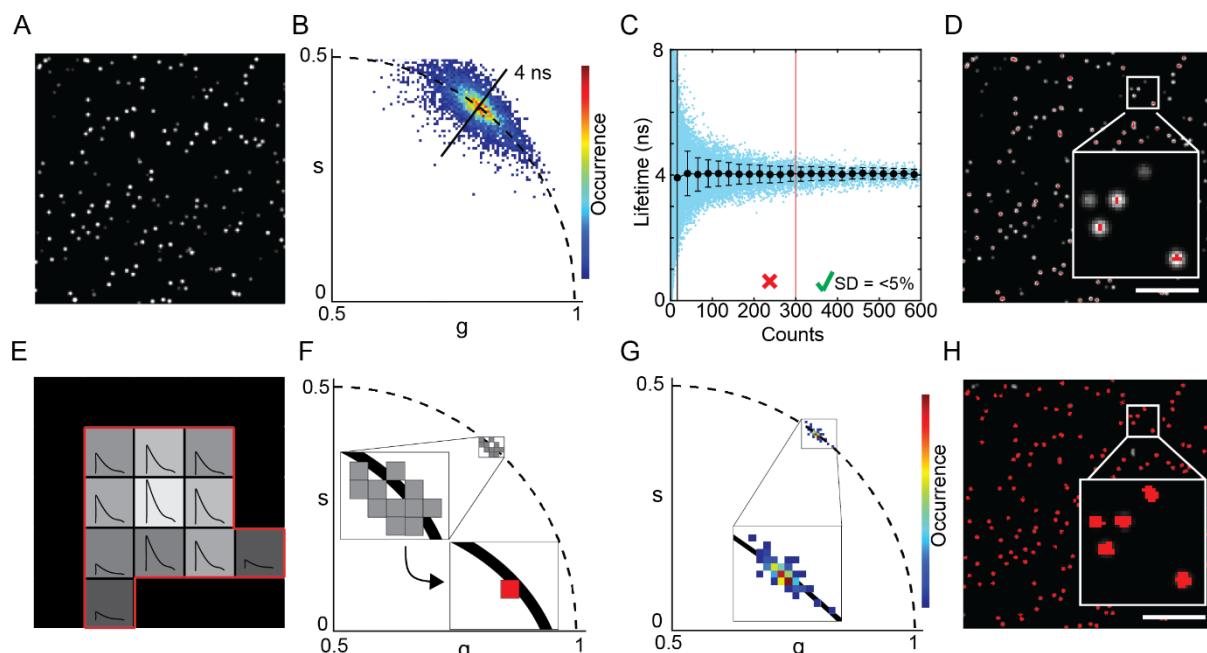
388 APD detectors were powered by a dedicated power supply (DSN-102, PicoQuant).
389 APD NIM signals are directed towards the HydraHarp 400 (Picoquant) to supply it with
390 photon timing information. For all data acquired on the microscope a 60x water
391 objective (Olympus UPlanSApo 60x/1.20 W OO/0.13-0.21/FN26.5) was used. The
392 microscope was positioned on a vibration free isolated optical table (S-2000 series
393 Stabilizer™, Newport Spectra-Physics BV, Utrecht, Netherlands).

394 Frequent system checks, setup alignment and quantifying confocal volume parameters
395 were performed with fluorescence correlation spectroscopy (FCS) using ATTO425-
396 COOH, ATTO488-COOH, Alexa Fluor 546 or ATTO655-COOH (ATTO-TEC GmbH,
397 Siegen, Germany) (Alexa Fluor™, ThermoFisher Scientific). Data was analyzed using
398 PAM-FCSfit (Supplemental Figure S5A). As references for phasor-FLIM, organic dyes
399 were measured using the same optical setup for the assigned detection channel.
400 Reference lifetimes were experimentally determined via PAM-Taufit (Supplemental
401 Figure S5B) where the decay was fit using a reconvolution fit for a mono-exponential
402 with loaded IRF. Dyes used were ATTO488-COOH, ATTO425-COOH, Alexa Fluor 546
403 and ATTO 647N-maleimide.

404 **Fluorescent HIV-1 particles**

405 HIV-1-derived viral particles (Vesicular stomatitis virus glycoprotein (VSV-G)-
406 pseudotyped) with fluorescent protein labeled integrase were synthesized using
407 Vpr-mediated trans-incorporation (43, 44). HEK293T cells (6.5×10^6) were seeded in
408 10 cm petri dishes with DMEM supplemented at 2% FBS and 50 µg/mL gentamicin
409 (Invitrogen). For transfection medium was replaced with Opti-MEM® (Life
410 Technologies, ThermoFisher Scientific) supplemented with gentamicin (Invitrogen).
411 Cells were transfected with branched polyethylenimine (bPEI, 10 µM stock solution,
412 Merck, Sigma-Aldrich, Darmstadt, Germany) when 90% confluency was reached. A
413 three-plasmid system, consisting of 5 µg pVSV-G, 15 µg pNL4-3. Luc.R-E- and Vpr-
414 IN-FP-encoding plasmid (5 µg for single FP viruses, twice 2.5 µg for viruses containing
415 two fluorescent proteins) was used in transfection. pVpr-IN-FP constructs with mTFP1,
416 mTurquoise2, mNeongreen, mClover3, mScarlet, mRuby3, eGFP and mCherry were
417 used. pVpr-IN-FP constructs for mTFP1 and mVenus are made according to
418 Borrenberghs et al. (44). Other pVpr-IN-FP constructs were made by cloning the

419 original pVpr-IN-eGFP plasmid introducing restriction sites via primers (43).
420 Transfection lasted for 6 hours at 37°C and was terminated by replacing the medium
421 with fresh 37°C Opti-MEM® (Life Technologies, ThermoFisher Scientific)
422 supplemented with 50 µg/mL Gentamycin (Invitrogen). Virus supernatant was
423 collected 48 h after initiating transfection, filtered through a 0.45-µm filter (Minisart®
424 Syringe Filter, Sartorius, Göttingen, Germany), and concentrated by several washing
425 steps in FBS-free Opti-MEM® and virus particles were concentrated by
426 ultracentrifugation on a 60% (w/V) iodixanol cushion at 21°C (131,500 x g, 90 min,
427 SW28 rotor, Beckman Coulter, Ireland) to a final volume of 1 mL. Iodixanol was
428 removed by ultrafiltration (Vivaspin, MWCO 50K, Merck, Overijse, Belgium). All
429 generated viral particles were kept up to 2 months at -80°C, without thaw-freeze
430 cycles.


431 **Viral particle plating and glass coating**

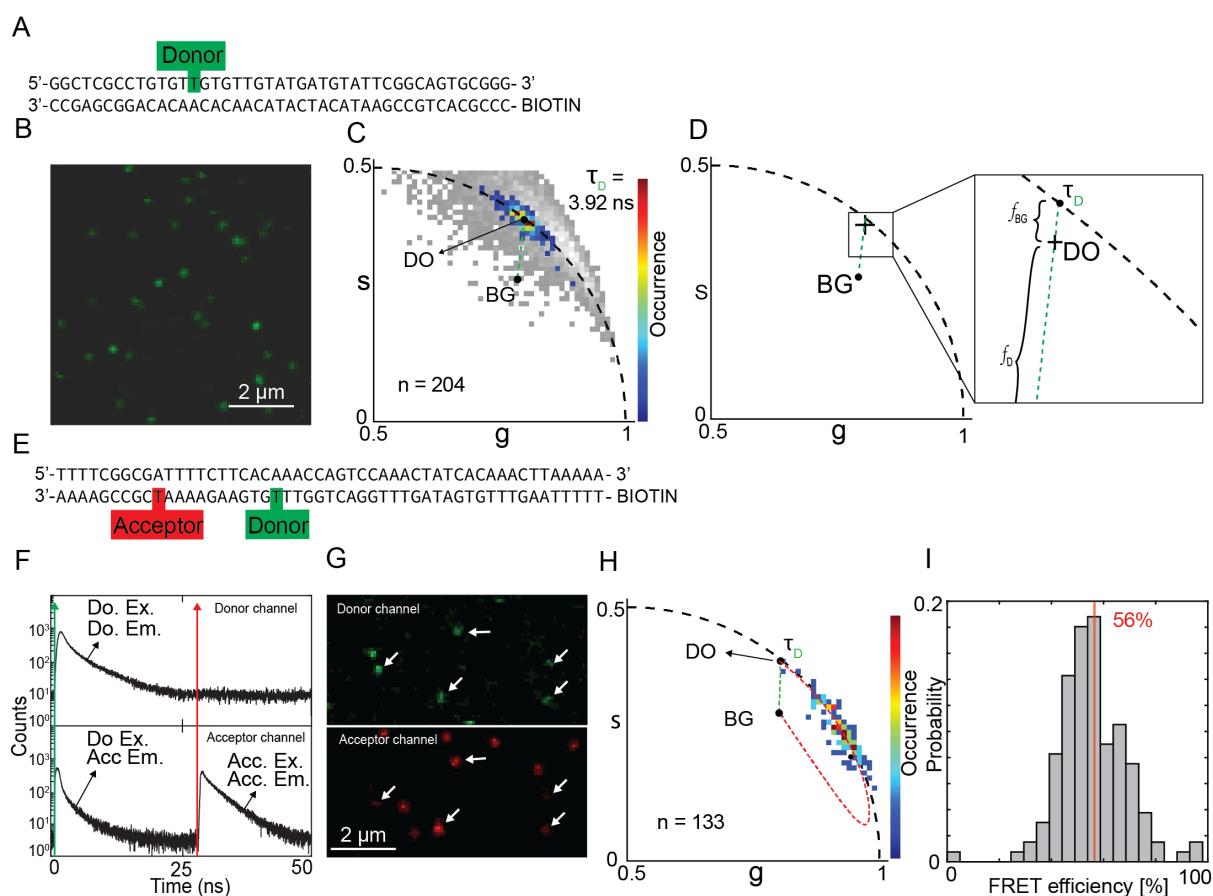
432 For imaging purposes, concentrated virus particles were freshly thawed and diluted in
433 phosphate-buffered saline (PBS, Merck, 806552, Sigma-Aldrich, Darmstadt,
434 Germany) based on the p24 antigen concentration in the supernatant, as determined
435 by the p24-specific enzyme-linked immunosorbent assay (ELISA). Then, 200 µL of the
436 virus dilution containing 1µg-3µg p24 antigen was transferred to a poly-D-lysine coated
437 glass coverslip (#1 chambered coverglass, Nunc™ Lab-Tek™, Cat. No. 155411,
438 Thermo Scientific) and incubated at 37 °C for 3-5 hours. The fixed virus particles were
439 gently washed twice with PBS, after which 200 µL PBS was added to each well and
440 the wells were sealed with parafilm to avoid evaporation. Poly-D-lysine coating was
441 done by incubating the wells for 20 minutes at 37°C in a 0.4 mg/ml solution (4X) of
442 poly-D-lysine (Merck, P7280-5MG, Sigma-Aldrich, Darmstadt, Germany), made from
443 a 1 mg/ml stock, and followed by washing three times with PBS. Finally, all PBS was
444 removed, and coverslips were air dried in a sterile flow for 30 min.

445 **Results**

446 **Pixel binning improves phasor-FLIM of dim particles**

447 As quality of phasor-FLIM depends on photon content in the fluorescence decay, we
448 first quantified the effect of pixel binning on phasor-FLIM data. Specifically, we
449 examined the effect of grouping pixels from the same sub-resolution object on the
450 accuracy of the estimated lifetimes. Practically, we simulated confocal FLIM data of
451 non-diffusing fluorophores exhibiting a 4-ns fluorescence lifetime. Because of their
452 random axial location in the simulation box, the resulting image displayed particles with
453 varying intensity in the image plane (Fig. 1 A).

454


455 **Figure 1 Pixel binning for particle phasor-FLIM:** (A) Intensity image of simulated sub-
456 resolution single particles with variety of intensities but a constant lifetime of 4 ns. (B) Phasor
457 analysis of the simulated photon data results in a widespread on the phasor plot where every
458 pixel (threshold for pixels with more than 5 counts) is assigned one phasor. (C) In blue:
459 scatterplot of the pixel counts against the phase lifetime determined from the phasor plot. In
460 black: standard deviation and mean lifetime per bin. Bins are defined as 25 counts wide, mean
461 and standard deviation are plotted in the center coordinate of each bin. (D) Intensity image
462 color coded in red if the pixel counts >300, inset is a 5x5 μm box. (E) Schematic of a single
463 particle consisting of pixel from the same sub-resolution origin and showing identical decay
464 lifetime composition but different amplitudes. (F) Pixel binning improves the particle phasor.
465 (G) Simulated data from (A-D) analyzed in phasor with particle-based pixel binning shows a
466 compact phasor distribution. (H) Particles color coded if the particle counts are >300 counts.
467 All scalebars are 5 μm .

468 Due to the overall low intensity per pixel, the resulting phasor plot exhibited a relatively
469 large data spread (Fig. 1 *B*). When plotting the phasor determined lifetime (average of
470 phase and modulation lifetime, Eq. 1-2) for every pixel, we observed an increase in
471 lifetime precision for increased photon counts of the pixel (Fig. 1 *C*). We determined
472 that a count of 300 photons was ideally needed to obtain lifetime values within a 5%
473 deviation range of the true value. This value can therefore be considered a lower limit,
474 acknowledging that a higher photon count is advised for more complex phasor
475 component deconvolutions. Using this 300-photon count threshold, we false-color-
476 coded the intensity image for the pixels that meeting this set threshold and observed
477 that relatively few pixels from the imaged particles were, in fact, colored (Fig. 1 *D*). Of
478 note, multiple pixels share the signal originating from a sub-resolution emitter with
479 varying amplitudes but identical lifetime signature. Grouping of pixels originating from
480 the same particle therefore should enhance the phasor coordinate calculation (Fig. 1
481 *E-F*). When we applied this pixel binning strategy to the simulated data, we noticed a
482 greatly reduced spread and a highly concentrated particle datapoint population in the
483 phasor plot, now clearly centered on the 4 ns semicircle location. (Fig. 1 *G*).
484 Subsequent color-coding of the simulated image for the particles that are detected with
485 a sum of ≥ 300 photons showed that almost all particles were included into the analysis
486 (Fig. 1 *H*). In summary, grouped single-particle phasor analysis helps accurately
487 determine phasors for dim emitters, such as sub-resolution particles. Additionally, 300
488 photons per pixel binned particle is a recommended minimum total pixel count target
489 for reliable phasor lifetime determination.

490 **Particle-based Phasor-FLIM resolves individual DNA molecule lifetimes**

491 Next, we investigated whether particle-based phasor-FLIM could successfully allow
492 determining the fluorescence lifetime of single molecules. Therefore, we imaged a
493 model system containing PEG-Biotin immobilized DNA molecules labeled either with
494 only a FRET donor (Fig. 2 *A-D*) or with both a FRET donor and acceptor spaced at a
495 distance of 11 nucleotides as reported before (45, 46) (Fig. 2 *E-I*). All particles were
496 identified, and particle phasor positions were analyzed in the phasor plot for the
497 average lifetime. A donor only lifetime (τ_D) of 3.92 ns was found with a background
498 (BG) contribution of 1.2% resulting in the measured phasor position (DO).
499 Autofluorescence of the particles itself, here called BG, dragged an otherwise perfect
500 monoexponential measurement inward of the semi-circle due to the multiexponential

501 behavior of the autofluorescence. The BG position was determined (see Materials and
502 Methods) and was used to Measure the pure lifetime of the donor on the semi-circle
503 using fractionality (Fig. 2 C-D). With this no-FRET control measured we continued with
504 a double labeled (donor-acceptor) dsDNA system, in which donor and acceptor labels
505 are separated by 11 nucleotides (Fig. 2 E). These double labeled single-molecules
506 were imaged using pulsed interleaved excitation (PIE), whereby the donor laser was
507 pulsed at the beginning and our acceptor in the middle of our detection window in
508 between pulses. This way quasi synchronous measurements of both channels were
509 acquired without having the drawback of donor emission contaminating the acceptor
510 channel. Colocalization was confirmed in a subset of single molecules using both donor
511 and acceptor channel photon intensity information. Using a 5-pixel tolerance to identify
512 double labeled particles 133 single molecule dsDNA particles were found (Fig. 2 F).
513 From the colocalized particles, the donor signal upon donor excitation was used to
514 calculate all phasor positions per particle using particle pixel binning. From the average
515 position of the single (donor) labeled single dsDNA molecules (DO) and the previously
516 measured BG coordinates (Fig. 2 B), a FRET trajectory was formed describing all
517 possible FRET states ranging from 0% (phasor position equals the DO position) to
518 100% (phasor position equals the only remaining signal of BG; all donor signal is
519 quenched) (Fig. 2 G). Finally, the FRET histogram resulting from projection of phasor
520 positions onto the FRET trajectory showed an average value of 56% (Fig. 2 H, I and
521 Fig. S1 G). Taking into account a Förster radius of 50.3 Å for Alexa 488 and ATTO
522 647N, the estimated donor-acceptor distance from our FRET measurement was
523 determined to be 39 Å.


524

525 **Figure 2 - Determination of FRET labeled dsDNA FRET efficiency:** (A) dsDNA strand with
 526 a single donor label on the sense strand. (B) microscopy image using 485 nm excitation
 527 revealing single particles. (C) Pixel-binned particle phasor analysis on the donor-labeled
 528 dsDNA reveals its photon weighted center of mass (*DO*) revealing the donor lifetime of 3.92 ns
 529 (τ_D) upon extension of the *BG* – *DO* fraction line to reveal its pure contributing species. Pixel
 530 based phasor with a 10 photon/pixel threshold shown in gray. (D) Illustration of the contributing
 531 species to the phasor (*DO*) location (*BG* and τ_D) of the donor only labeled dsDNA. (E) dsDNA
 532 with on the antisense strand both donor and acceptor present and a biotin tag on the 5' end
 533 used for immobilization on the glass. (F) Pulsed Interleaved Excitation (PIE) measurement of
 534 FRET labeled dsDNA used for colocalization. (G) Intensity image of double labeled dsDNA
 535 showing a single region of interest for both donor and acceptor channel as determined by
 536 colocalization of both donor and acceptor channels for donor and acceptor excitation
 537 respectively. White arrows indicate colocalized particles. (H) Phasor plot of imaged FRET
 538 labeled dsDNA strands showing the autofluorescence phasor (*BG*), the donor only phasor *DO*,
 539 The quenching trajectory (red dashes) connecting the *BG* phasor with the *DO* phasor (see Eq.
 540 22 & 23). The fraction line between *BG* en *DO* (green dashes). (I) FRET efficiency histogram
 541 derived from the FRET trajectory. Vertical red line is the average value.

542 **Performance comparison of single FP labeled integrase**

543 With our positive FRET control in place, we connect to the open research field of HIV-
544 1 integrase multimerization, previously conducted in our lab. Earlier, the FRET readout
545 of recombinant HIV-1 particles containing fluorescently labelled IN (mTFP1-mVenus
546 FRET pair) was investigated with intensity based acceptor photobleaching methods
547 throughout the replication cycle (36–38). To extend this study using out phasor-FLIM
548 particle approach we explored what integrase (IN) labels behave optimally for further
549 application in such FRET measurements involving donor and acceptor labeled IN
550 monomers.

551 Since an HIV-1 particle is a highly condensed environment and environment properties
552 affect the fluorescence lifetime and photon output, we first needed to determine the
553 optimal FRET pair in the HIV-1 particle context (47). This was achieved by measuring
554 HIV-1 particles with a single type of labeled IN for several donor or acceptor labels.
555 Firstly, we analyze the HIV-1 particles for their photon count and saw that especially
556 particles containing IN-mTurquoise2 yield more 300+ photon particles as the frequency
557 distribution peaks less in the low photon range (<100 counts), while mNeongreen does
558 not contain many high photon count particles as the frequency distribution peaks at
559 30-40 photons (Fig. 3 A). For acceptor candidates the photon distributions are highly
560 similar while IN-mCherry containing particles do provide the most high-photon shifted
561 frequency histogram peak (Fig. 3 E).

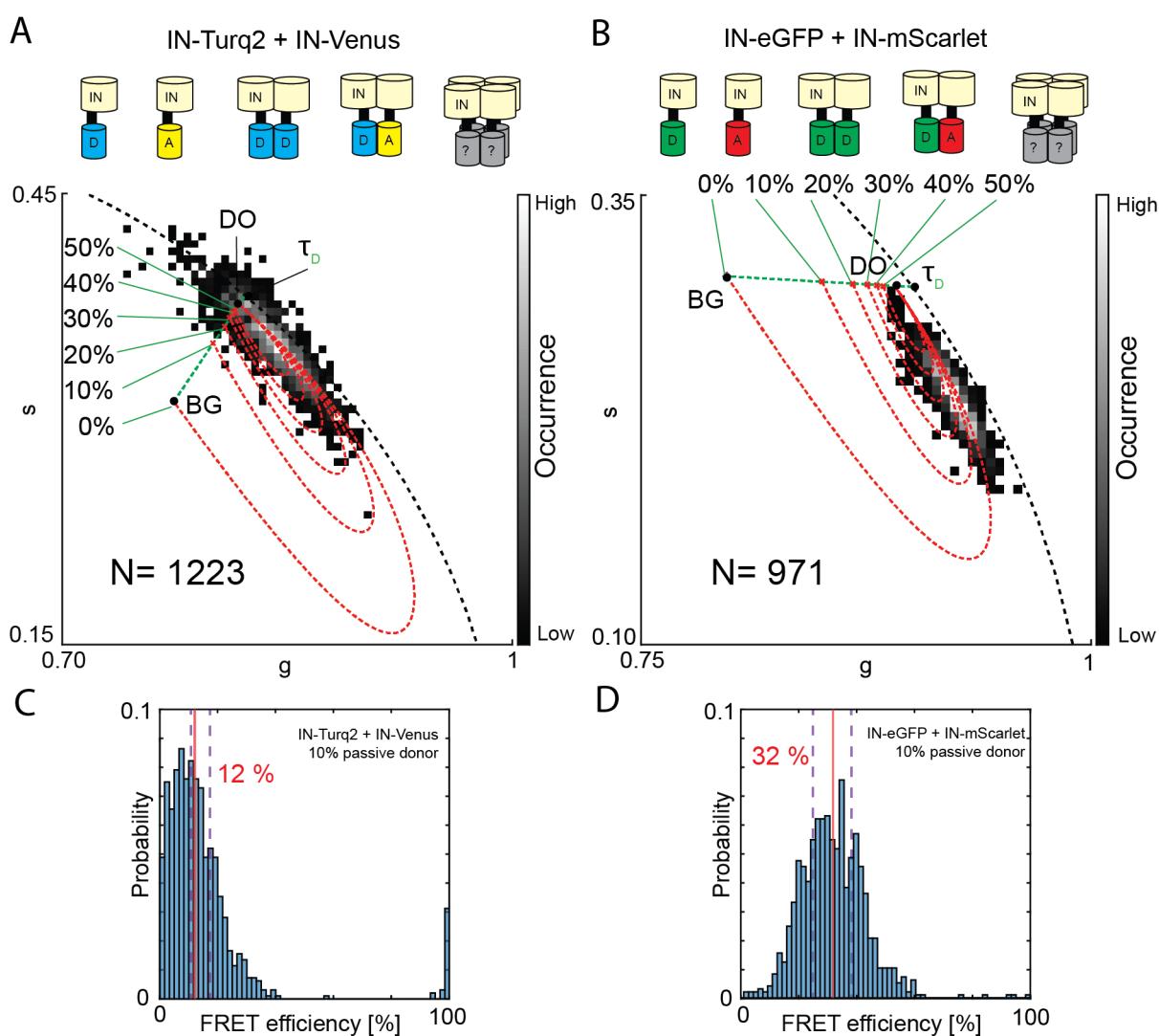
562

563 **Figure 3: Lifetime, photon count and photobleaching study of single-FP HIV-IN labeled**
564 **virions on glass.** (A,E) Counts distribution of donor (A) and acceptor (E) labeled HIV-IN-FP
565 virions. (B,F) Photon weighted centroid position of the phasor clouds of all respective donor
566 and acceptor HIV-IN-FP virions. (C,G) Mono-exponential phase lifetime distribution of the
567 donor and acceptor HIV-IN-FP virions using a particle threshold of 10 counts to evaluate
568 broadness of lifetime distribution. (D,H) Geometric mean photon counts normalized for
569 excitation efficiency and the associated mean photobleaching rate of all donor and acceptor
570 HIV-IN-FP particles. All geometric mean photon counts are significantly different from each
571 other ($p<0.05$), significance levels for photobleaching rates are determined by a one-way
572 ANOVA non-paired non-parametric Kruskal-Wallis test with multiple comparison (* = $p<0.05$,
573 **** = $p<0.001$).

574

575 Following, we verified that all IN-FP candidates, especially the donors, exhibit a mono
576 exponential lifetime, which would enable us to use semi-circle derived lifetime values
577 (phase or modulation lifetime would work) for evaluation. The plotted centroid positions
578 of all measured particles in the phasor plot indicate that there is indeed a dominant
579 mono exponential behavior (Fig. 3 B,F). Plotting all semi-circle derived phase lifetimes
580 and their respective lifetime spread in a lifetime histogram shows their peak values and
581 variability. Histogram means for each fluorophore were: eGFP 2.66 ± 0.31 ns
582 ($n = 2675$), mTFP1 2.62 ± 0.41 ns ($n = 1769$), mNeongreen 2.90 ± 0.60 ns ($n = 1972$),
583 mClover3 3.01 ± 0.39 ns ($n = 2219$), mTurquoise2 3.68 ± 0.45 ns ($n = 2375$), mCherry
584 2.10 ± 0.22 ns ($n = 2164$), mScarlet 3.34 ± 0.4 ns ($n = 2309$) and mVenus 2.71 ± 0.39 ns
585 ($n = 2125$). With a variability of more than 0.5 ns, IN-mNeongreen particles are most
586 unfavorable (Fig. 3 C,G). Measured photobleaching rates of the fluorescent proteins
587 indicated a high rate for mTFP1 (0.0280 ± 0.0075 , $n = 29$) while other donor candidates
588 have a more favorable photobleaching rate: eGFP (0.0097 ± 0.0072 , $n = 143$),
589 mTurquoise2 (0.0078 ± 0.0044 , $n = 265$), mClover3 (0.0127 ± 0.0073 , $n = 638$),
590 mNeongreen (0.0126 ± 0.0090 , $n = 112$) (Fig. 3 D). When comparing the geometric
591 mean photon counts all particles were significantly different from each other ($p<0.001$)
592 and again eGFP (144.7, $n = 2675$) and mTurquoise2 (148.1, $n = 2375$) were best
593 performing while mNeongreen (56.5, $n = 1972$), mClover3 (111.5, $n = 2219$) and
594 mTFP1 (94.2, $n = 1769$) were significantly lower (all $p<0.001$) (Fig. 3 D). Regarding the
595 measured acceptor photobleaching rates, mCherry (0.0202 ± 0.0072 , $n = 15$) and
596 mVenus (0.0251 ± 0.0089 , $n = 17$) exhibited a significantly larger photobleaching rate
597 compared to mScarlet (0.0072 ± 0.0104 , $n = 14$) ($p<0.05$ and $p<0.001$ respectively)

598 (Fig. 3 *H*). Mean photon counts were again all significantly different ($p < 0.001$) and
599 mCherry (118.7, $n = 2164$) and mScarlet (110.5, $n = 2309$) outperformed mVenus
600 (90.1, $n = 2125$) (Fig. 3 *H*). Additionally, we point to the slight multiexponential
601 character of these single labeled viral particles given their position inside the phasor
602 semicircle due to autofluorescence contributions. Based on these results, we selected
603 eGFP and mTurquoise2 as they appear to be favorable donor candidates that can be
604 paired with acceptors from our assay that also score significantly. Due to its favorable
605 photostability, mScarlet was shown to be most promising acceptor compared to
606 mCherry and mVenus. In summary, we have identified suitable FRET donors and
607 acceptors attached to integrase in the HIV-1 viral particles. The mTurquoise2-mVenus
608 and eGFP-mScarlet pairs were selected for further single-particle FRET experiments.


609

610 **Graphical phasor analysis reveals integrase multimers in HIV-1 viral particles**

611 IN is known to adopt different oligomeric states depending on the step in the replication
612 cycle. Methods to quantify this oligomeric state of IN at the level of single viral particles
613 and viral complexes are highly desired by virologists and measuring FRET with
614 acceptor photobleaching intensity-based FRET has been conducted before. There, the
615 dynamic range of these intensity-based FRET quantifications was unavoidably lowered
616 by the presence of (variable amounts of) FRET donor-only labeled complexes. Using
617 phasor-FLIM in the present work, we sought to further disentangle the actual FRET
618 species from any non-FRET species and background.

619 Now, we employ the particle-based phasor-FLIM methodology on the FRET
620 measurements for our previously selected fluorescent FRET pairs. These pairs each
621 cover other sections of the spectrum, exhibit a different Förster distance (58.3 Å for
622 mTurquoise2-mVenus and 56.7 Å for eGFP-mScarlet from calculations assuming κ^2 to
623 be 2/3 and refractive index n of 1.33 with the donor quantum yields being 0.93 and
624 0.60 respectively) and encompass a FRET donor with substantially different lifetimes.
625 Ultimately, regardless of the fluorescent labels on IN, we wanted to qualitatively
626 evaluate the FRET state of IN complexes in the assembled virus particles to gain
627 further insight into IN multimerization. Assuming a system where only monomeric IN
628 and dimeric IN is present, in any combination possible (A, D, D:D, D:A, A:D, A:A), in a
629 matured HIV-1 particle, there will be a passive donor intensity fraction between 50 %
630 (all IN complexes are dimers, the donor-only signal intensity fraction constitutes 50%

631 of the total donor signal intensity) and 100 % (all IN complexes are monomers, no
632 FRET occurs). It is only when higher order multimers such as tetramers are formed,
633 leading to a range of different combination between D and A (e.g., DDDA, DDAD,
634 DADD, ADDD, ADAD, DADA), that the fraction of passive donors in IN complexes is
635 further lowered, simultaneously increasing the overall FRET signal of a single HIV-1
636 particle. Since at the particle level both FRET and the passive donor fraction are
637 unknown, no direct FRET readout can be provided. However, matching the particle
638 phasor data with the possible FRET trajectories constructed by a range of passive
639 donor contributions, should still give insights into the multimer composition. Practically,
640 as shown in Fig. 4 *A* and *B*, we recorded FLIM data of FRET donor/acceptor double
641 labeled immobilized viral particles at photon counts compatible with single-particle
642 phasor-FLIM and performed particle detection on the resulting FRET donor images.
643 FRET trajectories are constructed using a background reference (see Materials and
644 Methods) and the HIV-1 particle measurements with only the donor label (HIV-1
645 containing only IN-mTurquoise2 or IN-eGFP, see Fig. S10). Again, the signal intensity
646 contribution of BG in the measured donor signal draws the phasor position away from
647 the semi-circle and serves as starting position for the FRET quenching line (as is
648 previously illustrated in Fig. 2 *D*). For particles with IN-mTurquoise2 and IN-mVenus
649 BG had a 7.5% contribution and for IN-eGFP/IN-mScarlet particles 10.5%, as
650 determined graphically from the phasor plot. For these particles we next determined
651 the donor signal phasor position per particle which are pooled into the 2D phasor
652 histogram. The resulting FRET histograms derived from the 0%, 10% and 20% passive
653 donor contribution FRET trajectories point towards a 12 and 32% FRET efficiency as
654 average FRET value for the middle case with 10% passive donors (Fig. 4 *C, D*). Pixel
655 based phasors of the same images is generated illustrating the difficulty of a graphical
656 analysis method utilizing low photon count pixels (Fig. S11).

658 Figure 4: FRET trajectory analysis of HIV-1 particles containing donor labeled IN and acceptor
659 labeled IN using particle-based pixel binning. (A) Phasor analysis of viral HIV-1 particles
660 containing both donor and acceptor labeled IN (IN-Turquoise2+IN-mVenus) forming an
661 unknown mix of multimers including monomers and dimers and potentially higher order
662 multimers. The donor only phasor (DO) ($g: 0.82, s: 0.37$) and background phasor (BG) ($g: 0.78,$
663 $s: 0.31$) determine the starting point and end of the FRET trajectory. Variations of the donor
664 only signal contribution in the analyzed particles result in a variety of FRET trajectories and
665 FRET trajectory end points (red dotted line). (B) Phasor analysis of viral HIV-1 particles
666 containing both donor and acceptor labeled IN (IN-eGFP+IN-mScarlet) forming an unknown
667 mix of multimers including monomers and dimers and potentially higher order multimers. The
668 donor only phasor (DO) ($g: 0.90, s: 0.29$) and background phasor (BG) ($g: 0.79, s: 0.31$)
669 determine the starting point and end of the FRET trajectory. Variations of the donor only signal
670 contribution in the analyzed particles result in a variety of FRET trajectories and FRET
671 trajectory end points (red dotted line). In both (A) and (B) the pure mono-exponential lifetime
672 of the donor (τ_D) and BG determine by intensity fraction the position of DO on their connecting
673 fraction line (green dotted line). (C) and (D) are FRET histograms extracted from the 0 %,10

674 % and 20 % passive donor contribution FRET trajectories of which the 0% and 20% histogram
675 averages are indicated by purple dashed lines and the 10% passive donors histogram (shown)
676 average are depicted as a vertical red line with its value.

677

678

679 **Discussion**

680 In this paper, we demonstrate the usage of time domain phasor FLIM in combination
681 with grouped pixel analysis for sub-resolution single particles. We applied this method
682 on FRET labelled DNAs and on viral HIV-1 particles that contain single (donor) or
683 double (donor and acceptor) labelled IN, which show energy transfer upon
684 multimerization as demonstrated before using intensity based approaches (38, 44).
685 First, we showed the importance of grouping pixels to obtain a higher quality phasor
686 determination, optimizing the analysis to utilize all available photons of a particle. In a
687 perfect setting (no background or shot noise) our simulations showed that 300 photons
688 is the lower limit for a phasor determination within a 5% error range of the true lifetime
689 of a single component. Therefore, when measuring with considerable background or
690 working with complex multi-component samples, it is advised to aim for a higher photon
691 count per object. The required photon budget is the weak point of every FLIM-FRET
692 analysis compared with intensity based FRET approaches but is continuously
693 improved with newer FLIM methodologies allowing more and more photons per pulse
694 and a consequently faster imaging or more efficient detection (48). At the same time,
695 using FLIM with PIE allows the robust combination of intensity based and FLIM quasi-
696 simultaneously as is the case with smFRET burst measurements using multiparameter
697 fluorescence detection with PIE (46, 49). Additionally PIE allows for multiplexing of
698 (FRET) probes and provides flexibility in experimental design, such as three or even
699 four color immobilized FRET (50) or using dark acceptor probes (51).

700 Currently, single object FLIM analysis is used by Qian et al. (35) for viral particle FLIM
701 analysis and now further explored here with complex FRET behavior. We envision that
702 this technique could be seen further applied in small organelles, protein complexes,
703 immobilized single molecules or any system that provides homogeneous signal or
704 signals that originate from a sub-resolution entity (and are therefore measured as
705 average, potentially spread over multi pixels). Using object pixel binning allows for
706 more precise analysis as one can oversample the image and later bin the pixels of
707 desired structures. Up until now, images for single particle/molecule analysis are
708 relatively under-sampled to obtain higher photon counts per pixel, voiding the image
709 resolution.

710 As a remark, we measured our FLIM data using a 20MHz pulse rate to combine both
711 acceptor and donor pulsing in the 50ns pulse window. When PIE is not required the

712 used pulsing frequency can be changed to optimize usage of the phasor space for
713 graphical purposes. A formula was provided by Clegg et al in 2005 for frequency
714 domain phasor analysis (39):

$$\omega_{optimal} = \frac{1+\sqrt{3}}{2\tau^2} = f_{optimal} 2\pi . \quad \text{Eq. 24}$$

715 However, for time domain phasor applications the main improvement on the resolution
716 of calculated s and g values will arise from a lowered TCSPC bin size.

717 Furthermore, the pixel-grouped FLIM approach was tested on labeled DNA structures,
718 with two spaced fluorescent dyes set 11 nucleotides apart, to evaluate the detection
719 and quantification of FRET by using the graphical phasor approach to FLIM. The
720 obtained value of 39 Å is in close agreement with the literature, which described a
721 value of 40 Å, determined by FRET restraint positioning and screening (FPS)
722 simulations (46). Since a broad cross-lab study on dye-labeled DNAs pointed out their
723 robustness, we deem our measurements as a validation of the analysis performance
724 (45). We confirmed that the object binning strategy together with the phasor plot
725 analysis allowed for determination of single molecule FRET via their lifetime
726 signatures. This DNA sample provided a double labeled single molecule structure
727 exhibiting a FRET signal from a known donor-acceptor stoichiometry, not complicating
728 the measurement with a donor only fraction.

729 Following, we analyzed the performance of several fluorescent proteins, as it is difficult
730 to predict the effect of IN coupling and the dense viral particle environment on the
731 fluorescence brightness, lifetime and even maturation.

732

FP	Literature lifetime	Measured lifetime	Measured photobleaching rate	Maturation (min)	Literature brightness	Measured geomean photon count	References
EGFP	2.6	2.61 ± 0.31	0.0097 ± 0.0073	25	33.54	144.7	(52)(53)
mClover3	3.2	3.01 ± 0.39	0.0127 ± 0.0073	43.5	85.02	111.5	(53)(54)
mNeongreen	3.1	2.90 ± 0.60	0.0126 ± 0.0090	10	92.8	56.5	(54)
mTurquoise2	4.0	3.68 ± 0.45	0.0078 ± 0.0044	33.5	27.9	148.1	(55)
mTFP1	3.2	2.62 ± 0.41	0.0280 ± 0.0075	76.5,	54.4	94.2	(56)
Cherry	1.49*	2.10 ± 0.22	0.0202 ± 0.0072	15	20 of 15.6	118.7	(57)(58)
Scarlet	3.86	3.34 ± 0.41	0.0072 ± 0.0104	174	71	110.5	(54)(59)
Venus	3.1	2.71 ± 0.39	0.0251 ± 0.0089	17.6	66.56	90.1	(60)

733 *Averaged 2 component lifetime

734 Table 1: Overview of measured single label IN in HIV-1 viral particles.

735 The donor fluorescent lifetimes were comparable to the known mono-exponential
736 lifetimes found in literature for these FPs except mTFP1 which was 0.6 ns lower
737 compared to the literature value of 3.2 ns (Table 1). The mCherry lifetime was also
738 found to be inconsistent with literature, which could not be explained by the shifted
739 ratios of the two exponential factors normally involved in a mCherry decay. Wu et al.
740 described a two component lifetime for mCherry of 0.9 ns and 1.9 ns which are both
741 lower than the measured 2.1 ns (61). mVenus and mScarlet on the other hand both
742 measured 0.4 ns and 0.5 ns, which was above the normal literature values. In general,
743 longer lifetimes are preferred for FRET because of higher dynamic range given a
744 limited time resolution on the hardware side (53)(it is easier to measure a 2 ns
745 difference compared to a 0.5 ns difference to determine a 50% FRET efficiency in a
746 donor with a respective lifetime of 4 and 1 ns).

747 Further, we expected a photostability double as good for mNeongreen compared to
748 mClover3 (62). However, we recorded a similar photostability, which could be hinting
749 to a photophysical problem for mClover3 or a gained benefit for mNeongreen in the
750 HIV-1 particle environment. Looking at the particle photon counts, mClover3 and
751 mNeongreen both underperformed while having the highest literature described
752 brightness, further strengthening our belief that the emission of mClover3 is hampered
753 in the viral particles. mTurquoise2 and mCherry performed well considering a generally
754 low brightness. These constatations lead us to believe that fluorescent behaviors of
755 IN-labeled proteins in HIV-1 are difficult to predict. We note that for some FPs of similar
756 spectra identical filters were used and that the slightly different treatment of the filter of
757 the emission spectrum could have introduced a small bias into our data.

758 Both viral particles types used in our final FRET experiment with HIV-1 particles, the
759 resulting phasor cloud was found to be predominantly shifted towards a FRET value
760 which is higher than any scenario in that matches 50% of the signal consisting of
761 passive (non-FRET) donors, as would be the case with monomer-containing particles.
762 Even for particles yielding a combination of monomers or dimers, the FRET readout
763 cannot be explained as it would still be close to 50% passive donor signal. Therefore,
764 in samples with equal numbers of IN-donor and IN-acceptor molecules this can only
765 be explained by the presence of higher order multimers which reduce overall pure
766 donor species since more are involved in FRET active oligomer.

767 While this is an honest and qualitative estimate, intensity-based FRET measurements
768 would present the crude average of the active (FRET) and passive (no FRET) donors
769 present in each viral particle. However, using the graphical analysis of the phasor plot
770 remains challenging for a variety of reasons. Firstly, there remains a large error on the
771 precise fraction of passive donors present in the particles, together with between-
772 particle variation of that number. Additionally, every multimer formed in the imaged
773 particles has its own FRET efficiency since it consists of a variable content of unlabeled
774 and labeled (donor or acceptor) resulting in an extra variability in FRET readouts.
775 Lastly, the composition of unlabeled, donor labeled and acceptor labeled cannot be
776 verified, adding to difficulty of data interpretation. Overall, we can assume that
777 measuring close to or more than 1000 particles provides a strong averaged readout
778 with valuable information on the FRET state and therefore insight in the multimeric
779 state of HIV-IN in assembled virus particles. One possible avenue of further
780 investigation is redesigning particles with variable D-A ratios, variable total amounts of
781 labels per particle, or non-FP labeling strategies altogether. Additionally, because the
782 number of fluorescent proteins per particle is limited, the photon output is low and
783 contributions of background and shot noise are considerable. We clearly show that
784 taking the fraction of passive donors into account is essential. This factor is often
785 overlooked because estimating the donor only fraction is difficult. Using the phasor
786 analysis, we acknowledged the presence of passive donors in our viral particles, which
787 will in any case, lower the apparent FRET signal measured. Given a more precise
788 technique to determine the number of passive donors, researchers would be able to
789 pinpoint which FRET trajectory is suitable and derive more absolute FRET efficiency
790 values. At the same time, determining the number of passive donors present in a
791 mixture of FRET displaying IN multimers remains a variable that can change particle
792 to particle and can therefore not be fully generalized.

793 Although we cannot pinpoint the exact oligomerization state of every IN complex per
794 particle, we can give a founded ensemble evaluation of the in vitro oligomeric state and
795 expect to improve further when photon yield of such experiments becomes more
796 efficient, increasing our phasor data quality. By trying to deconvolute the passive donor
797 contribution we increase our analysis sensitivity to FRET changes, since the significant
798 contribution can overshadow it otherwise.

799 Finally, while phasor-FLIM is said to be fit free, quenching trajectories and fraction lines
800 are equally fitted onto the plot. Quantitative analysis in phasor plots equally fits
801 graphical elements onto the data forcing the analyst to assume a data model. However,
802 this does not eliminate the reciprocity of pixel-phasor and high level of data
803 transparency that phasor exhibits to its users. We point to the requirements of correct
804 phasor analysis which are not always equally straight forward to implement. Looking
805 at the pixel-based phasor cloud, establishing the graphical phasor analysis where we
806 can evaluate the position of single particle mixtures is impossible given enlarged data
807 spreading due to low photons per pixel. Also, when one would look at the 2D histogram
808 intensities for a given pixel-based phasor, graphical analysis is biased for the larger
809 amount of low intensity pixels, which would require a photon weighted approach,
810 diminishing the potential for an easy-to-implement graphical analysis.

811 Having established a very probable FRET value for the measured dual color HIV-1
812 particles, we presented a methodology for future use in following the FRET value of
813 particles in several steps of the viral replication cycle, or it could prove profitable in
814 other particle-based FRET research.

815

816 **Supporting material description**

817 One supplemental note and eleven supplemental figures are available.

818

819 Supplemental note 1 describes the theory of concentration fractions in the phasor plot.

820 Figure S1 gives a broad overview of the phasor theory for time domain FLIM.

821 Figure S2 illustrates the workflow in PAM software for data analysis and particle-based phasor as used.

823 Figure S3 Schematic of the used custom-built time-resolved confocal

824 Figure S4 Illustration of the photon simulation UI used in PAM

825 Figure S5 Illustration of FCS and TauFit on organic dyes for microscope calibrations and phasor reference.

827 Figure S6 IN-eGFP particle time-trace fitted for photobleaching rate

828 Figure S7 Simulation experiment illustrating concentration fractions in phasor

829 Figure S8 Spatial color-coded illustration of phase and modulation within the semi-circle

831 Figure S9. Impact of IRF on phasor location without referencing

832 Figure S10 Donor only phasor-plots for single labeled HIV-1 integrase with mTurquoise2 and eGFP

834 Figure S11 Pixel based phasor analysis of FRET HIV-1 particles

835

836 **Acknowledgments**

837 Jens de Wachter is thanked for assistance with the DNA experiments. Dr. Waldemar
838 Schrimpf is thanked for implementing phasor analysis in PAM and evaluating the
839 manuscript. Namjoo Vanderveken is acknowledged for assistance in producing the
840 viral particle preparations. Rik Nuysts, Carine Jacker and Débora Linares are gratefully
841 acknowledged for assistance in the lab and essential logistics. Dr. Kris Janssen is
842 thanked for writing the software for galvanometric mirror scanning. Irena Zurnic
843 Bönisch is acknowledged for critically reading the manuscript.

844 **Author contributions**

845 GSF, JH and QC designed, built and aligned the microscope. QC and JH performed
846 simulations. NP imaged the DNA. IZ produced the viral particles. NP and QC imaged
847 viral particles. QC, CQ and JH adapted the PAM software for the specific analyses. NP
848 performed preliminary analyses. QC, NP and JH performed all analyses. QC and JH
849 wrote the manuscript. All authors reviewed and edited the manuscript.

850 **Declaration of interests**

851 The authors declare no competing interests.

852

853

854

855 **References**

- 856 1. Heaster, T.M., J.T. Sharick, A.A. Gillette, M.C. Skala, R. Datta, T.M. Heaster,
857 J.T. Sharick, A.A. Gillette, and M.C. Skala. 2020. Fluorescence lifetime imaging
858 microscopy: fundamentals and advances in instrumentation , analysis , and
859 applications. 25.
- 860 2. Chen, Y.C., B.Q. Spring, and R.M. Clegg. 2012. Fluorescence lifetime imaging
861 comes of age how to do it and how to interpret it. *Methods Mol. Biol.* 875:1–22.
- 862 3. Berezin, M.M.Y., and S. Achilefu. 2010. Fluorescence Lifetime Measurements
863 and Biological Imaging. *Chem. Rev.* 110:2641–2684.
- 864 4. Verveer, P.J., A. Squire, and P.I.H. Bastiaens. 2000. Global analysis of
865 fluorescence lifetime imaging microscopy data. *Biophys. J.* 78:2127–2137.
- 866 5. Verveer, P.J., and P.I.H. Bastiaens. 2003. Evaluation of global analysis
867 algorithms for single frequency fluorescence lifetime imaging microscopy data.
868 *J. Microsc.* 209:1–7.
- 869 6. Digman, M.A., V.R. Caiolfa, M. Zamai, and E. Gratton. 2008. The phasor
870 approach to fluorescence lifetime imaging analysis. *Biophys. J.* 94:L14–L16.
- 871 7. Hinde, E., M.A. Digman, C. Welch, K.M. Hahn, and E. Gratton. 2012. Biosensor
872 Förster resonance energy transfer detection by the phasor approach to
873 fluorescence lifetime imaging microscopy. *Microsc. Res. Tech.* 75:271–281.
- 874 8. Lou, J., A. Solano, Z. Liang, and E. Hinde. 2021. Phasor Histone FLIM-FRET
875 Microscopy Maps Nuclear-Wide Nanoscale Chromatin Architecture With
876 Respect to Genetically Induced DNA Double-Strand Breaks. *Front. Genet.* 12:1–
877 9.
- 878 9. Celli, A., S. Sanchez, M. Behne, T. Hazlett, E. Gratton, and T. Mauro. 2010. The
879 epidermal Ca²⁺ gradient: Measurement using the phasor representation of
880 fluorescent lifetime imaging. *Biophys. J.* 98:911–921.
- 881 10. Levitt, J.A., S.P. Poland, N. Krstajic, K. Pfisterer, A. Erdogan, P.R. Barber, M.
882 Parsons, R.K. Henderson, and S.M. Ameer-Beg. 2020. Quantitative real-time
883 imaging of intracellular FRET biosensor dynamics using rapid multi-beam
884 confocal FLIM. *Sci. Rep.* 10:1–9.

885 11. Liu, Z., D. Pouli, C.A. Alonzo, A. Varone, S. Karaliota, K.P. Quinn, K. Mönger,
886 K.P. Karalis, and I. Georgakoudi. 2018. Mapping metabolic changes by
887 noninvasive, multiparametric, high-resolution imaging using endogenous
888 contrast. *Sci. Adv.* 4.

889 12. Davis, R.T., K. Blake, D. Ma, M.B.I. Gabra, G.A. Hernandez, A.T. Phung, Y.
890 Yang, D. Maurer, A.E.Y.T. Lefebvre, H. Alshetaiwi, Z. Xiao, J. Liu, J.W. Locasale,
891 M.A. Digman, E. Mjolsness, M. Kong, Z. Werb, and D.A. Lawson. 2020.
892 Transcriptional diversity and bioenergetic shift in human breast cancer
893 metastasis revealed by single-cell RNA sequencing. *Nat. Cell Biol.* 22:310–320.

894 13. Datta, R., A. Alfonso-García, R. Cinco, and E. Gratton. 2015. Fluorescence
895 lifetime imaging of endogenous biomarker of oxidative stress. *Sci. Rep.* 5:1–10.

896 14. Stringari, C., H. Wang, M. Geyfman, V. Crosignani, V. Kumar, J.S. Takahashi,
897 B. Andersen, and E. Gratton. 2015. In Vivo Single-Cell Detection of Metabolic
898 Oscillations in Stem Cells. *Cell Rep.* 10:1–7.

899 15. Wright, B.K., L.M. Andrews, M.R. Jones, C. Stringari, M.A. Digman, and E.
900 Gratton. 2012. Phasor-flim analysis of NADH distribution and localization in the
901 nucleus of live progenitor myoblast cells. *Microsc. Res. Tech.* 75:1717–1722.

902 16. Stringari, C., R.A. Edwards, K.T. Pate, M.L. Waterman, P.J. Donovan, and E.
903 Gratton. 2012. Metabolic trajectory of cellular differentiation in small intestine by
904 Phasor Fluorescence Lifetime Microscopy of NADH. *Sci. Rep.* 2.

905 17. Schrimpf, W., J. Jiang, Z. Ji, P. Hirschle, D.C. Lamb, O.M. Yaghi, and S. Wuttke.
906 2018. Chemical diversity in a metal-organic framework revealed by fluorescence
907 lifetime imaging. *Nat. Commun.* 9.

908 18. Fereidouni, F., A.N. Bader, and H.C. Gerritsen. 2012. Spectral phasor analysis
909 allows rapid and reliable unmixing of fluorescence microscopy spectral images.
910 *Opt. Express.* 20:12729.

911 19. Scipioni, L., A. Rossetta, G. Tedeschi, and E. Gratton. 2021. Phasor S-FLIM: a
912 new paradigm for fast and robust spectral fluorescence lifetime imaging. *Nat.*
913 *Methods.* 18:542–550.

914 20. Ranjit, S., L. Lanzano, and E. Gratton. 2014. Mapping diffusion in a living cell via

915 the phasor approach. *Biophys. J.* 107:2775–2785.

916 21. Scipioni, L., E. Gratton, A. Diaspro, and L. Lanzanò. 2016. Phasor Analysis of
917 Local ICS Detects Heterogeneity in Size and Number of Intracellular Vesicles.
918 *Biophys. J.* 111:619–629.

919 22. Chiu, C.L., and E. Gratton. 2013. Axial super resolution topography of focal
920 adhesion by confocal microscopy. *Microsc. Res. Tech.* 76:1070–1078.

921 23. Verveer, P.J., A. Squire, and P.I.H. Bastiaens. 2000. Global Analysis of
922 Fluorescence Lifetime Imaging Microscopy Data. 78:2127–2137.

923 24. Pelet, S., M.J.R. Previte, L.H. Laiho, and P.T.C. So. 2004. A Fast Global Fitting
924 Algorithm for Fluorescence Lifetime Imaging Microscopy Based on Image
925 Segmentation. *Biophys. J.* 87:2807–2817.

926 25. Rahim, M.K., J. Zhao, H. V. Patel, H.A. Lagouros, R. Kota, I. Fernandez, E.
927 Gratton, and J.B. Haun. 2022. Phasor Analysis of Fluorescence Lifetime Enables
928 Quantitative Multiplexed Molecular Imaging of Three Probes. *Anal. Chem.*
929 94:14185–14194.

930 26. Albertazzi, L., D. Arosio, L. Marchetti, F. Ricci, and F. Beltram. 2009. Quantitative
931 FRET analysis with the E0GFP-mCherry fluorescent protein pair. *Photochem.
932 Photobiol.* 85:287–297.

933 27. De Los Santos, C., C.W. Chang, M.A. Mycek, and R.A. Cardullo. 2015. FRAP,
934 FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular
935 scale using fluorescence microscopy. *Mol. Reprod. Dev.* 82:587–604.

936 28. Maus, M., M. Cotlet, J. Hofkens, T. Gensch, F.C. De Schryver, J. Schaffer, and
937 C.A.M. Seidel. 2001. An experimental comparison of the maximum likelihood
938 estimation and nonlinear least-squares fluorescence lifetime analysis of single
939 molecules. *Anal. Chem.* 73:2078–2086.

940 29. Cotlet, M., S. Masuo, G. Luo, J. Hofkens, M. Van Der Auweraer, J. Verhoeven,
941 K. Müllen, S.X. Xiaoliang, and F. De Schryver. 2004. Probing conformational
942 dynamics in single donor-acceptor synthetic molecules by means of
943 photoinduced reversible electron transfer. *Proc. Natl. Acad. Sci. U. S. A.*
944 101:14343–14348.

945 30. Kuimova, M.K., S.W. Botchway, A.W. Parker, M. Balaz, H.A. Collins, H.L.
946 Anderson, K. Suhling, and P.R. Ogilby. 2009. Imaging intracellular viscosity of a
947 single cell during photoinduced cell death. *Nat. Chem.* 1:69–73.

948 31. Okabe, K., N. Inada, C. Gota, Y. Harada, T. Funatsu, and S. Uchiyama. 2012.
949 Intracellular temperature mapping with a fluorescent polymeric thermometer and
950 fluorescence lifetime imaging microscopy. *Nat. Commun.*

951 32. Agronskaia, A. V, L. Tertoolen, and H.C. Gerritsen. 2004. Fast fluorescence
952 lifetime imaging of calcium in living cells. .

953 33. Goryashchenko, A.S., A.A. Pakhomov, A. V. Ryabova, I.D. Romanishkin, E.G.
954 Maksimov, A.N. Orsa, O. V. Serova, A.A. Mozhaev, M.A. Maksimova, V.I.
955 Martynov, A.G. Petrenko, and I.E. Deyev. 2021. FLIM-Based Intracellular and
956 Extracellular pH Measurements Using Genetically Encoded pH Sensor.
957 *Biosensors.* 11.

958 34. Lin, H.J., P. Herman, and J.R. Lakowicz. 2003. Fluorescence Lifetime-Resolved
959 pH Imaging of Living Cells. *Cytometry. A.* 52:77.

960 35. Qian, C., A. Flemming, B. Müller, and D.C. Lamb. 2022. Dynamics of HIV-1 Gag
961 Processing as Revealed by Fluorescence Lifetime Imaging Microscopy and
962 Single Virus Tracking. *Viruses.* 14.

963 36. Desimmie, B.A., R. Schrijvers, J. Demeulemeester, D. Borrenberghs, C.
964 Weydert, W. Thys, S. Vets, B. Van Remoortel, J. Hofkens, J. De Rijck, J.
965 Hendrix, N. Bannert, R. Gijsbers, F. Christ, and Z. Debyser. 2013. LEDGINs
966 inhibit late stage HIV-1 replication by modulating integrase multimerization in the
967 virions. *Retrovirology.* 10:1–16.

968 37. Borrenberghs, D., W. Thys, S. Rocha, J. Demeulemeester, C. Weydert, P.
969 Dedecker, J. Hofkens, Z. Debyser, and J. Hendrix. 2014. HIV Virions as
970 Nanoscopic Test Tubes for Probing Oligomerization of the Integrase Enzyme. .

971 38. Borrenberghs, D., L. Dirix, F. De Wit, S. Rocha, J. Blokken, S. De Houwer, R.
972 Gijsbers, F. Christ, J. Hofkens, J. Hendrix, and Z. Debyser. 2016. Dynamic
973 Oligomerization of Integrase Orchestrates HIV Nuclear Entry. *Sci. Rep.* 6:1–14.

974 39. Redford, G.I., and R.M. Clegg. 2005. Polar plot representation for frequency-

975 domain analysis of fluorescence lifetimes. *J. Fluoresc.* 15:805–815.

976 40. Lakowicz, J.R., H. Szmacinski, K. Nowaczyk, K.W. Berndt, and M. Johnson.
977 1992. Fluorescence lifetime imaging. *Anal. Biochem.* 202:316–330.

978 41. Gadella, T.W.J., T.M. Jovin, and R.M. Clegg. 1993. Fluorescence lifetime
979 imaging microscopy (FLIM): Spatial resolution of microstructures on the
980 nanosecond time scale. *Biophys. Chem.* 48:221–239.

981 42. Schrimpf, W., A. Barth, J. Hendrix, and D.C. Lamb. 2018. PAM: A Framework
982 for Integrated Analysis of Imaging, Single-Molecule, and Ensemble
983 Fluorescence Data. *Biophys. J.* 114:1518–1528.

984 43. Albanese, A., D. Arosio, M. Terreni, and A. Cereseto. 2008. HIV-1 Pre-
985 Integration Complexes Selectively Target Decondensed Chromatin in the
986 Nuclear Periphery. *PLoS One.* 3:2413.

987 44. Borrenberghs, D., W. Thys, S. Rocha, J. Demeulemeester, C. Weydert, P.
988 Dedecker, J. Hofkens, Z. Debyser, and J. Hendrix. 2014. HIV virions as
989 nanoscopic test tubes for probing oligomerization of the integrase enzyme. *ACS
990 Nano.* 8:3531–3545.

991 45. Hellenkamp, B., S. Schmid, O. Doroshenko, O. Opanasyuk, R. Kühnemuth, S.
992 Rezaei Adariani, B. Ambrose, M. Aznauryan, A. Barth, V. Birkedal, M.E. Bowen,
993 H. Chen, T. Cordes, T. Eilert, C. Fijen, C. Gebhardt, M. Götz, G. Gouridis, E.
994 Gratton, T. Ha, P. Hao, C.A. Hanke, A. Hartmann, J. Hendrix, L.L. Hildebrandt,
995 V. Hirschfeld, J. Hohlbein, B. Hua, C.G. Hübner, E. Kallis, A.N. Kapanidis, J.Y.
996 Kim, G. Krainer, D.C. Lamb, N.K. Lee, E.A. Lemke, B. Levesque, M. Levitus, J.J.
997 McCann, N. Naredi-Rainer, D. Nettels, T. Ngo, R. Qiu, N.C. Robb, C. Röcker, H.
998 Sanabria, M. Schlierf, T. Schröder, B. Schuler, H. Seidel, L. Streit, J. Thurn, P.
999 Tinnefeld, S. Tyagi, N. Vandenberk, A.M. Vera, K.R. Weninger, B. Wünsch, I.S.
1000 Yanez-Orozco, J. Michaelis, C.A.M. Seidel, T.D. Craggs, and T. Hugel. 2018.
1001 Precision and accuracy of single-molecule FRET measurements—a multi-
1002 laboratory benchmark study. *Nat. Methods.* 15:669–676.

1003 46. Vandenberk, N., A. Barth, D. Borrenberghs, J. Hofkens, and J. Hendrix. 2018.
1004 Evaluation of Blue and Far-Red Dye Pairs in Single-Molecule Förster Resonance
1005 Energy Transfer Experiments. *J. Phys. Chem. B.* 122:4249–4266.

1006 47. Toseland, C.P. 2013. Fluorescent labeling and modification of proteins. *J. Chem.*
1007 *Biol.* 6:85–95.

1008 48. Alvarez, L.A.J., B. Widzgowski¹, G. Ossato, B. Van Den Broek, K. Jalink, L.
1009 Kuschel, M.J. Roberti, and F. Hecht. 2019. SP8 FALCON: a novel concept in
1010 fluorescence lifetime imaging enabling video-rate confocal FLIM. *Nat. Methods.*
1011 20:2–4.

1012 49. Hendrix, J., and D.C. Lamb. 2013. Pulsed interleaved excitation: Principles and
1013 applications. 1st ed. Elsevier Inc.

1014 50. Ratzke, C., B. Hellenkamp, and T. Hugel. 2014. Four-colour FRET reveals
1015 directionality in the Hsp90 multicomponent machinery. *Nat. Commun.* 2014 51.
1016 5:1–9.

1017 51. Laskaratou, D., G.S. Fernández, Q. Coucke, E. Fron, S. Rocha, J. Hofkens, J.
1018 Hendrix, and H. Mizuno. 2021. Quantification of FRET-induced angular
1019 displacement by monitoring sensitized acceptor anisotropy using a dim
1020 fluorescent donor. *Nat. Commun.* 12:1–12.

1021 52. Cormack, B.P., R.H. Valdivia, and S. Falkow. 1996. FACS-optimized mutants of
1022 the green fluorescent protein (GFP). *Gene.* 173:33–38.

1023 53. Martin, K.J., E.J. McGhee, J.P. Schwarz, M. Drysdale, S.M. Brachmann, V.
1024 Stucke, O.J. Sansom, and K.I. Anderson. 2018. Accepting from the best donor;
1025 analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic
1026 FLIM-based FRET experiments. *PLoS One.* 13:1–25.

1027 54. McCulloch, T.W., D.M. MacLean, and P.J. Kammermeier. 2020. Comparing the
1028 performance of mScarlet-I, mRuby3, and mCherry as FRET acceptors for
1029 mNeonGreen. *PLoS One.* 15:1–22.

1030 55. Goedhart, J., D. Von Stetten, M. Noirclerc-Savoye, M. Lelimousin, L. Joosen,
1031 M.A. Hink, L. Van Weeren, T.W.J. Gadella, and A. Royant. 2012. Structure-
1032 guided evolution of cyan fluorescent proteins towards a quantum yield of 93%.
1033 *Nat. Commun.* 3.

1034 56. Guerra, P., L.A. Vuillemenot, B. Rae, V. Ladyhina, and A. Milias-Argeitis. 2022.
1035 Systematic in Vivo Characterization of Fluorescent Protein Maturation in

1036 1037 57. Budding Yeast. *ACS Synth. Biol.* 11:1129–1141.

1038 1039 1040 57. Mukherjee, S., P. Manna, S.T. Hung, F. Vietmeyer, P. Friis, A.E. Palmer, and R. Jimenez. 2022. Directed Evolution of a Bright Variant of mCherry: Suppression of Nonradiative Decay by Fluorescence Lifetime Selections. *J. Phys. Chem. B.* 126:4659–4668.

1041 1042 1043 1044 58. Shaner, N.C., R.E. Campbell, P.A. Steinbach, B.N.G. Giepmans, A.E. Palmer, and R.Y. Tsien. 2004. Improved monomeric red, orange and yellow fluorescent proteins derived from *Discosoma* sp. red fluorescent protein. *Nat. Biotechnol.* 22:1567–1572.

1045 1046 1047 1048 59. Bindels, D.S., L. Haarbosch, L. Van Weeren, M. Postma, K.E. Wiese, M. Mastop, S. Aumonier, G. Gotthard, A. Royant, M.A. Hink, and T.W.J. Gadella. 2016. MScarlet: A bright monomeric red fluorescent protein for cellular imaging. *Nat. Methods.* 14:53–56.

1049 1050 1051 60. Kremers, G.J., J. Goedhart, E.B. Van Munster, and T.W.J. Gadella. 2006. Cyan and yellow super fluorescent proteins with improved brightness, protein folding, and FRET förster radius. *Biochemistry.* 45:6570–6580.

1052 1053 61. Wu, B., Y. Chen, and J.D. Müller. 2009. Fluorescence fluctuation spectroscopy of mCherry in living cells. *Biophys. J.* 96:2391–2404.

1054 1055 1056 1057 62. Shaner, N.C., G.G. Lambert, A. Chammas, Y. Ni, P.J. Cranfill, M.A. Baird, B.R. Sell, J.R. Allen, R.N. Day, M. Israelsson, M.W. Davidson, and J. Wang. 2013. A bright monomeric green fluorescent protein derived from *Branchiostoma lanceolatum*. *Nat. Methods.* 10:407–409.

1058