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Abstract

The proteome holds great potential as an intermediate layer between the genome and phenome.
Previous protein quantitative trait locus studies have focused mainly on describing the effects
of common genetic variations on the proteome. Here, we assessed the impact of the common
and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins
measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein
traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151
proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans
associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples
including a 3ql2.1 deletion acting as a hub for multiple #rans associations; and a CNV
overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting
pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a
comprehensive resource of genetic variation affecting the plasma protein levels and provides

the interpretation of identified effects.

Introduction

During the last decade, genome-wide association studies (GWASs) have successfully linked
genetic variants to complex traits [1]. However, the mechanisms underlying many of these
associations often remain unknown, as most of the associated genetic variants are located in
non-coding regions of the genome, suggesting that they have regulatory effects on phenotypes
[2]. To fill this knowledge gap, molecular traits are routinely used as intermediate phenotypes
in association studies. The study of molecular phenotypes enables the assessment of the direct

effects of genetic variants on, for example, the alteration of protein levels, and the potential
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underlying molecular mechanisms and links to endpoint phenotypes.

Proteins are functional products of the genome that provide insight about the normal processes
of organisms; in addition, alterations in their levels are indicators of changes in disease status
[3]. Recent technological advancements, including the development of multiplex
immunoassays and aptamer assays, have provided opportunities for the measurement of

thousands of plasma- and serum-based protein levels [4—8].

The genetic backgrounds of protein levels are uncovered through the linking of these levels to
genetic variability via protein quantitative trait locus (pQTL) analysis. Many recent pQTL
studies have been large-scale [4-8], with the largest of them including 54,306 individuals from
the UK Biobank [9]. Their primary focus has been the identification of common [minor allele
frequency (MAF) > 0.01] variants affecting inter-individual protein variability, but Sun et al.
[9] reported that approximately 5.6% (570/10,248) and 1.5% (155/10,248) of the variants with
primary associations had MAFs < 0.01 and < 0.005, respectively. In addition, the focus has
been shifting toward the identification of associations with rare (MAF < 0.01) variants, using
gene-based methods [10—14]. For example, a recent landmark study conducted on the Icelandic
population revealed 18,084 genetic associations with protein levels, 19% of which were with
rare variants [8]. Investigation of the effects of other structural variants, such as copy number

variants (CNVs), on protein levels has thus far been limited [15].

The combined examination of pQTL and GWAS results for disease phenotypes can lead to the
validation and prioritisation of new and existing drug targets, and the identification of clinically
relevant biomarkers. Ferkingstad et al. [8] found that 12% of 45,334 lead associations in the
GWAS Catalog were with variants in high linkage disequilibrium (LD) with pQTLs. The
application of Mendelian randomisation (MR) and colocalisation analysis to biomedical data

for the identification of links between pQTLs and diseases enables the evaluation of the
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82  causality between protein levels and disease risk and the identification of potential disease
83  pathways, respectively. Zheng et al. [16] used MR and colocalisation analysis to examine
84  associations of 1,002 plasma proteins with 153 diseases and 72 disease-related risk factors, and
85 identified 413 protein—trait associations supported by MR, 130 (31.5%) of which were not
86  supported by the colocalisation analysis. This example highlights the importance of

87  intersecting the results from both analyses [17].

88 Here, we integrated dense whole-genome sequencing (WGS) data to study the genetic
89  contributions of rare and common variants to 326 plasma protein levels in the Estonian Biobank
90  cohort (Fig 1). We examined the effects of single nucleotide polymorphisms (SNPs) and
91 common CNVs on the inter-individual protein variability, and identified several proteins that
92  were affected by the latter. To assess the overlap of local (cis) and distal (trans) pQTL effects
93  with gene expression levels, we conducted comprehensive colocalisation analyses with
94  expression quantitative trait loci (eQTLs) and splicing QTLs using data from various tissues

95  from the eQTL Catalogue [18].

96  Figure 1. Overview of the main analyses conducted in this study.

o7  Material and methods

98  Study samples

99  The Estonian Biobank (EstBB) cohort consists of more than 200,000 Estonian volunteers aged
100 > 18 years, representing about 20% of the Estonian adult population, detailed information on
101  the enrollment process and data collection is described in the Leitsalu et al. study [19].
102  Genotype data are available for all gene donors in this cohort. For a subcohort of 500

103  individuals [52.8% females and 47.2% males, mean age 54 (standard deviation 14.0) years],
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104  WGS, RNA sequencing and Olink proteomics data from the same timepoint are available. The
105 WGS dataset was generated in 2015. Sample collection for RNA sequencing and Olink
106  proteomics was conducted in years 2011-2012. RNA sequencing was performed in years 2015-
107 2016 and protein levels were measured in year 2017. The activities of the EstBB are regulated
108 by the Human Genes Research Act, which was adopted in year 2000 specifically for the
109  operations of the EstBB. All participants have signed a broad consent form to allow researchers
110  to use their genomics and health data for studies upon approval by the Estonian Committee on
111 Bioethics and Human Research. Individual level data analysis for this project was carried out
112 under approval 1.1-12/624 from the Estonian Committee on Bioethics and Human Research
113  (Estonian Ministry of Social Affairs) and data extraction no. K29 from the Estonian Biobank.

114 The current study was conducted using pseudonymised data.

115 WGS data processing, variant calling and quality control

116  The 2,284 EstBB WGS samples were sequenced at the Genomics Platform of the Broad
117  Institute (Cambridge, MA, USA). Sequenced data were jointly variant called and quality
118  controlled as described by Mitt et al. [20]; and the final WGS sample set was derived from
119 2,244 individuals. We excluded multiallelic sites and genetic variants, based on quality/depth
120 < 2, Hardy—Weinberg equilibrium test failure (P > 1x10), and call rate < 90%. Data from

121 individuals with available proteomics data (n = 500) were retained for further analyses.

122 CNYV detection and quality control

123  The Genome STRiP pipeline (version 2.00.1611) [21] was applied to detect CNVs from aligned
124 sequencing reads (in BAM format) for 2,284 samples as described by Lepamets et al. [22]. In
125  brief, CNV sites were identified and genotyped in five batches. After the exclusion of samples

126  with excessive numbers of calls, the batches were combined and duplicate calls were merged.
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127  Low-quality calls and sites with call rates <90% were excluded. We restricted the final dataset
128  to deletions longer than 1,000 bp and duplications longer than 2,000 bp. The final sample set
129  contained 51,026 CNV sites from 2,230 individuals. Data from individuals with available

130  proteomics data (n = 500) were retained for further analyses.

131 Measurement of plasma protein levels

132  Plasma concentrations in EDTA plasma samples from 500 Estonian Biobank donors were
133  measured using four arrays with 92 protein targets each [ProSeek Cardiovascular Disease
134  (CVD) II and III, Inflammation and Oncology II; Olink Biosciences, Uppsala, Sweden; S1
135  Table]. The procedure is described in detail elsewhere [23], and a technical white paper with
136  additional information is available at the manufacturer’s website (https://www.olink.com). The
137  native Olink data consisted of qPCR cycle threshold values corrected for extension control,
138  followed by inter-plate control and the application of a correction factor predetermined by a
139  negative control signal. The measurements were given at a natural logarithmic scale as
140 normalised protein expression levels, a relative quantification unit. As part of the quality
141 control, we excluded individual samples that did not pass the Olink internal quality control
142  system. Final sample sizes per array ranged from 488 to 497, and the samples were measured
143  in six batches. For arrays in which <20% of samples had values below the limit of detection
144  (LOD), protein level correction was performed by dividing the Olink-assigned LOD value by
145 2, as done in the SCALLOP CVD-I project [6]. A total of 341 protein traits (326 unique
146  proteins, as 14 proteins were measured by more than one array) passed quality control and were

147  retained for further analyses (S1 Table).
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148 RNA sequencing data

149  RNA was extracted from samples in thawed Tempus tubes using TRIzol reagent (Invitrogen,
150  Waltham, MA, USA) and further purified using an RNeasy Mini Kit (Qiagen, Hilden,
151  Germany). Globin mRNA was depleted using GLOBINclear Kit (Invitrogen, Waltham, MA,
152  USA). RNA quality was checked using electrophoresis (Agilent 2200 TapeStation; Agilent
153  Technologies, Santa Clara, CA, USA). Sequencing libraries were prepared using 200 ng RNA
154  according to the Illumina TruSeq stranded mRNA protocol. RNA sequencing was performed
155  at the Estonian Genome Centre Core Facility using paired-end 50-bp sequencing technology

156  (Illumina, San Diego, CA, USA), according to the manufacturer’s specifications.

157  Adapters and leading and trailing bases with a quality score were removed using Trimmomatic
158  (version 0.36) [24]. Quality control was done with FastQC (version 0.11.2) [25]. Reads were
159  mapped to human genome reference version GRCh37.p13 with STAR (version 2.4.2a) [26].
160  Reads that mapped to each genomic feature were counted with STAR using the same algorithm
161  as default htseq-count. Raw RNA sequencing counts were normalised with the weighted
162  trimmed mean of M-values [27] method from the edgeR R package (version 3.12.1) [28].
163  Detailed information regarding RNA sequencing data pre-processing is described in Lepik et
164  al. [29]. The final gene expression measure was in logarithmed count per million. In total, 486
165  RNA sequencing samples overlapped with available proteomics data and were used for eQTL

166  mapping.

167  Genome-wide SNP pQTL discovery

168  Protein trait levels were rank-based inverse normal transformed. We regressed out the effects
169  of age, sex, the season of sample collection, smoking status, blood sample processing time

170  (days), plasma sample storage time (in days) and protein analysis batch using a custom R script.
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171 The residuals were used in a single-variant pQTL analysis performed with the EMMAX linear
172 mixed model [30] and the EPACTS software (version 3.3.0, g.emmax function;
173 https://genome.sph.umich.edu/wiki/EPACTS). To account for population structure, a kinship
174  matrix was generated in EPACTS using genetic variants with MAF > (.01 and call rate > 95%.
175  Depending on the panel, we tested between 8,856,032 and 8,891,303 autosomal genetic

176  variants against 341 plasma protein traits.

177  We classified associated variants into two categories based on their positions in relation to the
178  protein-coding genes. We defined cis-pQTLs as SNPs located within 1Mb upstream or
179  downstream of the transcription start sites (TSSs) of the corresponding protein-coding genes,
180  and trans-pQTLs as SNPs located >1 Mb upstream or downstream of the TSS or on a different
181  chromosome. Heterodimers were classified based on the protein subunit gene closest to the
182  associated variant. In the case of proteins that were present on multiple panels, weaker signals

183  were omitted from the analyses.

184  To retain independent signals, associated variants were clumped in PLINK (version 1.9) [31],
185  using a 1 Mb window with the LD thresholds of R?= 0.1 and P < 5 x 10-3. To flag potential
186  ‘pseudo-pQTL’ signals caused by the epitope effect, i.e. altered assay binding affinity due to a
187  change in protein structure instead of an actual change in protein expression level, we followed
188  the strategy described by Folkersen et al, 2020 [6]. Briefly, we determined whether any lead
189  cis variant was a protein-altering variant (PAV) or in high LD (R? > 0.8) with one, by using
190 2,230 WGS samples as the reference for the LD calculations (S2 Table). Missense, frameshift,
191  splice donor region and stop gain variants were flagged as PAVs. Lead pQTL variants were

192  queried for evidence of location in a regulatory region using RegulomeDB [32].
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193  Corresponding eQTL discovery

194  In order to overlap the genome-wide significant (P < 5 x 10®) pQTLs with eQTLs, we used
195  the RNA sequencing data from the overlapping samples of the same cohort [29]. We tested the
196  eQTL effects on the genes encoding corresponding proteins by using a linear mixed model
197  from EPACTS software (version 3.2.2) [30] with the same settings as for pQTL analysis. We
198 included age, sex, body mass index, blood components (neutrophils, eosinophils, basophils,
199  lymphocytes, monocytes, erythrocytes and thrombocytes) and RNA sequencing batch as
200  covariates. To account for hidden batch effects on the gene expression, the first two principal
201  components of the gene expression data were also included as covariates, as described in detail
202  in Lepik et al. [29]. To correct for multiple testing, we adjusted P-values using false discovery
203 rate (FDR) correction; eQTLs were considered as replicated at Benjamini-Hochberg FDR <

204  0.05 and with concordant allelic direction with the pQTLs.

205 Multiple testing correction for the pQTL analysis

206  From primary analyses, effects reaching per-protein genome-wide significance (P < 5 x 10-%)
207  were interpreted. To also provide the more conservative results accounting for the number of
208 tested proteins, we used a strategy described by Gao et al. and Kettunen et al. [33,34], which
209 accommodates the correlation between protein levels. Four matrices corresponding to inverse
210 normal transformed and covariate-adjusted protein levels from the Olink panels were merged.
211 Only samples that passed quality control on every panel (n = 478) were included. The resulting
212  matrix of standardised residuals was used in a principal components analysis implemented with
213  the FactoMiner (version 1.41) [35] R package. As 181 principal components cumulatively
214  explained >95% of the total variance in the proteomics data, the stricter significance threshold

215  was set t0 2.76 x 10-19 (5 x 108/ 181).
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216  Gene-based analysis of rare SNPs

217  Variants were annotated using the EPACTS ‘anno’ module (version 3.3.0;
218  https://genome.sph.umich.edu/wiki/EPACTS) and GENCODE (version 14) [36] to ascertain
219  their effects on protein sequences. A gene-based group file was generated with the inclusion
220  of all nonsynonymous (missense and nonsense) variants in assigned genes. Only genes with
221  more than two nonsynonymous variants were retained. We performed the gene-based SKAT
222 test using the EMMAX mmskat function with adjustment for small sample size in EPACTS,
223  using all variants with 0.000001% < MAF < 1%. Covariates included in the rare variant pQTL
224  analysis were the same as described in the Methods section for Genome-wide SNP pQTL
225  discovery. The results were corrected for multiple testing based on Bonferroni-corrected
226  threshold of P < 1.48 x 108 [0.05 / (18,717 genes x 181 protein traits)]. Associations between
227  genes and levels of proteins encoded on the same gene were classified as cis, and all other
228  associations were classified as trans. Using the GeneMANIA database [37,38], we investigated
229  whether the associated genes also had gene—gene functional interactions with corresponding
230  protein-coding genes. For overlapping the rare variant pQTL associations with eQTL data, we
231  performed an eQTL mapping with EPACTS software (version 3.2.2) using the same gene-
232  based SKAT test as in rare variant pQTL mapping. Covariates included in the rare variant
233  eQTL analysis were the same as described in the Methods section for Corresponding eQTL
234  discovery. Similar to single variant eQTL analysis, to account for multiple testing, we adjusted
235  P-values using false discovery rate (FDR) correction; rare variant eQTLs were considered as
236  replicated at Benjamini-Hochberg FDR < 0.05 and directionally concordant with the rare

237  variant pQTLs.

10
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238 Fine-mapping analysis

239  We conducted a fine-mapping analysis to pinpoint causal variants for protein level-significant
240 (P <5 x 10®%) SNV-pQTL associations. We excluded the LTA and MICA-MICB proteins
241  associated with variants in the major histocompatibility complex region on chromosome 6, due
242 to the complexity of the associated HLA region. The fine-mapping procedure was based on the
243  SuSiE ‘sum of single effects’ model [39,40] and was implemented using the susie_suff stat
244  function from susieR package (version 0.11.42). Fine-mapping pipeline was implemented in
245  Nextflow [41] and some scripts were modified from the FINNGEN fine-mapping pipeline

246  (https://github.com/FINNGEN/finemapping-pipeline). The SuSiE output contains single effect

247  components, i.e., credible sets (CSs), with a >95% probability of including a variant with a
248  non-zero causal effect. We used a default setting of 10 for the maximum number of causal
249  variants regulating a protein, because Wang et al. has demonstrated it to be the optimal choice
250  for the number of causal variants [39]. LDstore (version 2) [42] was used to generate an LD

251 matrix for each locus.

252 Replication of pQTLs

253  All significant lead variants from the pQTL discovery analyses were queried for previously
254  published associations with protein levels in the PhenoScanner database (version 2) [43,44]

255  using the Python application (https://github.com/phenoscanner/phenoscannerpy, query date 4

256  October 2021). This database contains results from large pQTL studies [4,45,46]. For variant
257  matching between datasets, we created variant names that were concatenations of the
258  corresponding chromosome, chromosome position (hgl19), and alphabetically ordered alleles.
259  To match UniProt IDs from the discovery analyses to PhenoScanner trait names, the IDs were
260 converted to recommended HUGO Gene Nomenclature Committee gene names using the

261  UniProt conversion tool (https://www.uniprot.org/uploadlists/, latest query date 11 October

11
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262  2021). We performed additional replication analysis using Pietzner et al. dataset by querying
263  their publicly available results with P < 0.05 [7]. The largest pQTL meta-analysis published to
264  date (n = 30,931) [6] was conducted through the SCALLOP consortium and was not usable
265 due to sample overlap with the current study. In order to ensure that each protein was
266 represented by a single association, we restricted our comparisons to instances where either
267  one subunit or the entire heterodimer complex was available. For instances where one protein
268  was available multiple times, we conducted comparison with the association with the smallest
269  P-value. To account for multiple testing, we adjusted P-values using false discovery rate (FDR)
270  correction; pQTLs were considered as replicated at Benjamini-Hochberg FDR < 0.05 and

271  concordant allelic direction with the discovery pQTLs.

272 Identification of relevant disease traits and molecular QTLs

273  To identify complex traits and diseases associated with the top pQTLs, we conducted a
274  phenome-wide association analysis (PheWAS) by querying the lead variants from primary
275 pQTL mapping and their proxies against the PhenoScanner database (version 2) [43,44].
276  Duplicate associations happening due to data resource overlap were removed. We considered
277  only PhenoScanner associations with P < 1 x 10-. Specifically, we sought to identify pQTLs
278  associated with disease traits, methylation quantitative trait loci (meQTLs), histone
279  modifications and metabolite quantitative trait loci (mQTLs), as well as percent-spliced-in
280  (PSI) associations. We also searched for significant protein genes on a druggable genome list
281  [47] and the drugs that interact with them [48]. For a subset of pQTLs we selected for in-depth
282  analyses by coloc and Mendelian randomisation, an additional PheWAS was conducted with
283 the Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) OpenGWAS
284  database [49]. This was done to extract region-wide associations, irrespective of association P-

285  value.

12
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286 Colocalisation analysis

287  The colocalisation analyses between pQTLs and eQTLs, as well as between pQTLs and
288  complex traits were carried out using coloc (version 3.2.1) R package [50], which assumes that
289  each locus has a single causal variant. Priors used for the colocalisation analysis were P; =
290 104 P,=10*and P;, = 5x10°, as suggested by Wallace et al. [51]. For each protein-level
291  genome-wide-significant (P <5 x 10-%) pQTL locus, we extracted regions in a 1-Mb radius of
292  its lead variant to test for colocalisation. The results were considered significant when the

293  posterior probability for colocalisation (PP4) exceeded 0.8.

294  InanpQTL—eQTL colocalisation analysis, we compared our significant pQTL loci to all eQTL
295  Catalogue datasets [ 18], excluding those of Kasela et al. [52] and Lepik et al. [29] due to sample
296  overlap, containing gene expression, exon expression, transcript usage and txrevise event usage
297 data, and GTEx (version 8) [53] datasets containing gene expression data

298  (https://www.ebi.ac.uk/eqtl/Methods/; S3 Table). We lifted the pQTL summary statistics over

299  to an hg38 build to match with the eQTL Catalogue.

300 The region-wide associations for GWAS traits enrolled into the colocalisation analyses were
301  extracted from the MRC IEU OpenGWAS database and were examined using the ieugwasr

302 (version 0.1.5) R package (https://github.com/MRCIEU/ieugwasr; S4 Table). Since proteins

303  were selected based on associated traits from the PheWAS, they were all associated with
304 clinical traits (i.e. drugs, surgeries, diseases/conditions). In addition, all selected proteins except
305 IL6R had primary pQTLs that did not include nonsynonymous variants, to minimise the
306  possibility of association due to the epitope effect. IL6R was selected because it has been
307  widely reported by previous pQTL studies as an example of the successful linking of molecular
308 traits and diseases to discover drug targets [45,54]. The input data consisted of region-based

309 summary statistics for six protein traits and 61 complex clinical traits.
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310 Two-sample MR

311 We conducted a two-sample MR analysis using protein levels with significant colocalisation
312 (PP, > 0.8) as exposures and complex traits as outcomes, using the TwoSampleMR (version
313  0.5.6) R package [55,56]. Independent variants obtained previously by clumping served as
314  instrumental variables. We conducted the analysis using an inverse variance weighted fixed-
315  effects method and a single instrument-based Wald ratio test. To correct for multiple testing,
316  we adjusted P-values using false discovery rate (FDR) correction; results were considered

317  significant at Benjamini-Hochberg FDR < 0.05.

318  CNV pQTLs, eQTLs and colocalisation

319 To determine whether any of the examined proteins are genetically regulated by larger
320  structural variants, we conducted a pQTL mapping using CNV data. Description of the used
321  CNV data is in the Methods section for CNV detection and quality control. Associations
322  between previously described standardised protein measure residuals and CNV sites were
323  assessed by using the MatrixeQTL R package [57]. The post—quality control sample sizes for
324  the Inflammation, Oncology II, CVD II and CVD III panels were 481, 480, 489 and 488
325  unrelated (PI HAT < 0.2) individuals, respectively. To discard rare CNV events, all CNV sites
326  with in-sample frequencies of the most frequent copy number >0.95 were excluded.
327  Additionally, unique non-overlapping CNVs were included. The final set used in the pQTL
328  analyses comprised of 2,465 CNV sites [1,375 deletions (CN < 2), 482 duplications (CN > 2)
329 and 608 combined deletions and duplications]. The genome-wide significance threshold was

330 setto 1.12 x 107 (0.05 /2,465 / 181).
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331 For each significantly associated CNV, all SNP markers within a 500-kbp proximity were
332  tested for potential tagging effects. For this purpose, the SNP pQTL analysis using EPACTS

333  was repeated for these regions with the CN'Vs included as covariates.

334  The same CNVs were tested against the expression levels of 12,619 genes [29], and the CNV
335 pQTL results were then cross-referenced with eQTLs identified from the same set of
336  individuals. The eQTL results were corrected for multiple testing and a Bonferroni-corrected
337  threshold of P < 1.61 x 10 [0.05/ (2,465 CNVs x 12,619 genes)] was applied. Overlapping
338 eQTL—pQTL pairings were tested in an MR framework using the summary statistics—based
339 ratio estimate (Wald test) [58], and Spearman’s rank correlation coefficient was calculated for
340  gene expression vs protein expression in the same individuals. We hypothesised that CNVs in
341  gene regions would be considerably more likely than other causal variants to modulate the
342  expression of those genes; thus, non-zero ratio estimates were taken to indicate shared causal

343  CNVs of gene expression and protein traits.

344 PheWAS of CNV pQTLs

345 CNV pQTLs from primary mapping that reached genome-wide significance (P < 1.12 x 107)
346  or the suggestive significance threshold (P < 2 x 10~°) were included in a PheWAS, resulting
347  in the inclusion of 38 CNV regions. All data included in the PheWAS were obtained using the
348  [m function with custom R scripts from 2,115 unrelated Estonian Genome Centre samples for
349  which WGS data were available, and were corrected for age, sex and six genotype principal
350 components (PCs; calculated from common SNPs). The 744 phenotypes examined were
351  anthropometric traits (height, weight, body mass index, hip circumference, waist
352  circumference, waist—hip circumferences ratio), cell counts from RNA-sequencing data (white
353 blood cells, red blood cells, platelets, neutrophils, monocytes, lymphocytes, eosinophils,

354  basophils), nuclear magnetic resonance spectroscopy—detected metabolites (n = 225) and
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355  International Classification of Diseases, 10th revision (ICD-10) diagnoses with at least 20
356  carriers in the sample (7 = 505). Self-reported diagnoses not reported elsewhere were set to not
357 available. Sex-specific diagnoses (ICD-10 codes F52, N4* and N5* for men, D25, D26, D27,
358  E28,N7* N&* N9* O* and Z3* for women) were analysed using only samples of the relevant
359  sex as controls. The PheWAS significance threshold was set to P < 0.05 / 420, as 420 PCs

360 calculated on all included phenotypes explained 95% of the variability.

361 Identification of CNV-tagging SNPs for pQTLs

362 To aid the interpretation of the CNV-pQTL results, we examined additional pQTLs not
363  detected in this study due to the small sample size or the lack of protein measurements, by
364  using a CNV-tagging proxy SNP approach. To detect additional CNV—protein associations, we
365  extracted all SNPs with MAFs > 0.01 from each common (major allele frequency < 0.95) CNV
366  and its 500-kb flanking region, as identified in 2,230 Estonian WGS samples. We calculated
367  Pearson correlation coefficients between the CNVs and SNPs using custom R scripts. SNPs
368  with R?> 0.8 were defined as CNV-tagging proxy SNPs. The proxy SNPs were then compared
369  with a published set of SNP pQTLs in two larger sets of unique proteins [4,9] to determine the
370  degree of overlap. We used data on 1,021 independent autosomal lead pQTL variants for 1,478
371  proteins from the large-scale pQTL study conducted by Sun et al. [4]; 824 (80.7%) of these
372  variants were present in the EstBB WGS dataset. We extended the analysis to include data from
373  the largest pQTL study to date, conducted with 35,571 samples and resulting in the detection
374  of 10,248 independent autosomal pQTLs for 1,463 proteins [9]. The two studies encompassed
375 2,438 unique proteins, enabling broader investigation. The resulting loci were reported as
376  potential cases in which the underlying CNVs might be the causal variants. Figure depicting

377  tagged-CNV pQTLs was done by using the RIdeogram v02.2.2 R package [59].

378
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379  Results

380 Discovery of pQTLs

381  Weidentified 278 (184 cis and 94 trans) pQTLs for 157 (48.2%) of the 326 proteins examined,
382 using a protein-level genome-wide significance threshold of P < 5 x 10® (S2 Table). When
383  using a strict multiple testing correction threshold of P <2.76 x 10-1°, 151 pQTLs (131 cis and
384 20 trans) for 99 proteins remained significant (S2 Table). All interpretative analyses were

385  conducted using protein-level genome-wide-significant results.

386 To provide a comparison with previous research, we compared our results with previously
387 published data. From the Pietzner et al. study [7], 147 pQTLs (52.88%) were nominally
388  significant (P <0.05) and accessible for comparisons. After correcting for multiple testing, 147
389 pQTLs remained significant (Benjamini-Hochberg FDR < 0.05) and 91.84% (135/147) of
390 pQTLs were directionally concordant with the current study (S2 Table). 66.19% (184/278) of
391  pQTLs were tested in the Sun et al. study [4]. Of them, 55.98% (103/184) were significant
392  (Benjamini-Hochberg FDR < 0.05) and 89.32% (92/103) were directionally concordant (S2
393  Table). 7.55% (21/278) pQTLs were also tested in the Suhre et al. study [46] and 57.14%
394  (12/21) were significant (Benjamini-Hochberg FDR < 0.05), and all the significant pQTLs were
395  directionally concordant with the current study (S2 Table). 12.23% (34/278) pQTLs were
396 tested in the Folkersen et al. study [45] and 85.29% (29/34) of the pQTLs were significant
397  (Benjamini-Hochberg FDR < 0.05) and all the significant pQTLs were also directionally
398  concordant with the current study (S2 Table). Concordance with previous studies demonstrates

399 the robustness of our results.

400  Fourteen (4.3%) of the proteins were measured in multiple arrays. Associations for the CXCL1,

401  CCL3 and VEGFA proteins were validated by multiple independent arrays, in which the same
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402  genetic regions reached genome-wide significance and showed concordant effect directions.
403  The total numbers of associated proteins were similar for all panels and ranged from 38 to 43
404  (S2 Table). The detected associations included 278 independent pQTL variants [184 (66.2%)
405  cis and 94 (33.8%) trans], 9.35% of which were indels. Of the 157 associated proteins, 61
406  (38.9%) had more than one independent pQTL. Twenty-one proteins had both cis and trans
407  associations. A MICA-MICB heterodimer coded from the chromosome 6 HLA region had the
408 largest number of independent associations (n = 12; Fig. 2A). In concordance with previous
409 studies [4,9,60], there was an inverse relationship between the effect size and MAF (Fig. 2B),
410 and the associations were the strongest for significant cis-pQTL variants located nearest to the
411  TSSs of the relevant protein genes (Fig. 2C). The largest proportion of these cis-pQTLs [n =
412 73 (39.7%)] was located in intronic regions (Fig. 2D). Of the 184 cis associations detected for
413 104 proteins, 31 (16.85%) were with protein-altering primary lead cis-pQTL variants and an
414  additional 5 were with cis-pQTL variants in high LD with PAVs. These 36 (12.5%) pQTLs
415  were designated as potential pseudo-pQTLs because currently it is difficult to exclude the

416  possibility of technical signal happening due to the difference in antibody binding affinity.

417  Figure 2. A. Numbers of genome-wide significant associations of variants with protein
418  traits. B. Absolute beta values according to minor allele frequencies (MAFs). C.
419  Significance of primary pQTL mapping cis associations according to distances from
420 transcription start sites (TSSs). D. Functional annotation classes for the top cis variants

421  from pQTL mapping, expressed as fractions.

422  The strongest cis association was between the missense variant rs2228145 (p.Asp358Ala) and
423  the IL6RA level (MAF = 0.35, P =1.04 x 10-19), Additional strong cis associations included
424  the rs1569960 and the SIRPA level (MAF = 0.34, P = 2.67 x 10-'%) association, with four
425  independent signals in the SIRPA cis region; and a frameshift-causing insertion rs139130389
426  and the FOLR3 level (MAF =0.12, P=3.91 x 10-°!) association, with three independent signals

427  in the FOLR3 cis region.
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428  The most significant trans association was that of the PLAUR missense variant rs4760, located
429  on chromosome 19, affecting the level of TNFRSF10C (8p21.3; MAF = 0.18, P =4.60 x 10-
430 9. Strong trans associations were between the rs8176671 and the CDHS5 level (16¢q21; MAF
431  =0.19, P=8.83 x 10-%0) as well as between the deletion rs8176643 and the SELE level (1q24.2;
432 MAF =0.18, P =7.98 x 10-3%); both of these variants are intronic variants for the 9q34.2 locus
433  of the ABO gene. This locus was a trans-signal hotspot, with intronic variants additionally
434  associated with the ICAM2, galectin-4 (LGALS4), PODXL and LIFR protein levels.
435  Additional ABO variant rs12216891 was associated with the CTRC level (MAF = 0.19, P =

436 8.39x1079).

437  Two of the proteins examined (MICA/B and IL.27) are heterodimers, made up of multiple
438  subunits that are translated from two different genes at distinct loci. For IL27, we identified
439  one independent trans signal for an intronic variant for CCDC94 (rs56075200; MAF = 0.32, P
440 = 8.62 x 10%°). For MICA/B, we identified ten independent signals in the cis region of one
441  subunit on chromosome 6 (the strongest signal was for an intronic variant of MICA:

442  1s3132467; MAF = 0.30, P = 3.04 x 10-%®) and two trans associations.

443  To determine if there were any corresponding eQTLs for pQTLs, we conducted an eQTL
444  analysis, using the whole blood gene expression data from the same individuals and the same
445  time point. Gene expression data was available for 109 proteins with 201 pQTLs, including
446  two heterodimers with two subunits encoding the protein. In total, we detected 62 significant
447  (Benjamini-Hochberg FDR < 0.05) eQTLs (59 cis, 3 trans) (S5 Table). 77% (48/62) of them

448  were directionally concordant with corresponding pQTLs.

449  We found that 95% CSs for 151 proteins were linked to 131 independent genomic loci (S6
450 Table). LDLR, TNFRSF11B, TNFRSF6B, WISP1, CXCL1 and PLAU proteins showed

451  significant pQTL effects but yielded no CS. Signals for CCL3, CXCL1 and VEGFA from
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452  multiple assays were also validated by fine mapping to the same genetic regions. The 95% CSs
453  contained an average of 15.7 variants (cis sets, 15.76; trans sets, 15.6). Fifty-five (36.4%)
454  proteins had single-variant CSs. Of the 31 proteins with single-variant CSs in cis regions, 13
455  were fine-mapped to lead PAVs from primary pQTL mapping. Thirty-three (32.7%) out of 101
456  cis regions were fine-mapped to more than one signal (mean, 1.4 signals/region), with the
457  CCL24 cis region having the largest number of independent CSs (n = 5). In contrast, all

458  associated regions for pQTL trans signals were fine-mapped to a single CS.

459  Since a large proportion (217/278) of primary pQTLs were located in intergenic and intronic
460 regions, we queried RegulomeDB [32] to establish the variants’ potential regulatory function.
461  We obtained regulatory information for 260 of 278 pQTLs corresponding to 251 unique lead
462  variants. Eleven variants (all cis) were previously established eQTLs and had evidence for
463  transcription factor binding— and/or DNase peak-related functions. Seventeen lead variants (12
464  cis and 5 trans) had chromatin immunoprecipitation sequencing— and DNase-based evidence

465  for regulatory functions, but were not eQTLs (S7 Table).

466 pQTL—-eQTL colocalisation

467  The pQTL—eQTL colocalisation analysis was performed with 198 pQTL loci (corresponding
468 to 157 unique proteins), 18 eQTL Catalogue datasets and GTEx tissue eQTL data. We
469  identified 14,064 cases of pQTL—eQTL colocalisation (PP4>0.8), involving 105 proteins
470  [7,936 (56.4%) cis- and 6,128 (43.6%) trans-pQTLs; Tables 1, S8]. Colocalisations classified
471  as cis consisted of 2,021 (25.5%) cases in which colocalising eQTLs and pQTLs affected the
472  same gene product and 5,915 (74.5%) cases in which the colocalising loci affected different
473  gene products in the cis regions. Cis and trans pairs were specific to 73 and 26 proteins,
474  respectively, and 6 proteins (IL1R2, TEK, MIA, FCRLB, PDCD1LG2 and MICA-MICB) had

475  colocalisations for both cis and trans associations. The largest number of colocalisations was
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found for pQTLs of the MICA-MICB heterodimer (n = 6,583), followed by OSCAR (n =

1,207) and ACP5 (n=1,105) pQTLs.
Table 1. Overview of significant colocalisation events for eQTLs from eQTL Catalogue
datasets and pQTLs. The numbers of colocalisation with genes encoding corresponding
proteins are shown in parentheses.
Dataset Cis-pQTL colocalising with Trans-pQTL colocalising
eQTL (eQTL-pQTL same with eQTL
gene)
Gene expression (RNAseq) 710 398
(393)
Gene expression (microarray) 79 25
(51)
Exon expression 3,899 2,750
(777)
Txrevise 2,533 2,338
(547)
Transcript usage 715 617
(253)
Total 7,936 6,128
(2,021)

Since the protein measurements originated from blood, the most widely studied tissue, the
largest fraction of pQTLs colocalised with blood eQTLs. However, while using the GTEx
dataset, we also found 739 cases of pQTL—eQTL colocalisation in multiple tissues (Fig. 3, S8
Table). For 55 proteins with cis-pQTLs, 503 (68.1%) colocalising eQTLs were identified; for

22 proteins with trans-pQTLs, 236 (31.9%) colocalising eQTLs were identified. Cis-pQTLs
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487  colocalising with eQTLs were detected in 49 tissues, and trans-pQTLs colocalising with
488 eQTLs were identified in 46 tissues (not in Epstein-Barr virus—transformed lymphocytes or

489  uterine or vaginal tissue).

490 Figure 3. Overview of 10 cis-pQTL (A) and trans-pQTL (B) proteins with the most
491  colocalising eQTLs from the GTEx database (version 8; GTEx Consortium, 2020).

492  Colours indicate eQTL tissues of origin. Brain tissues are pooled; a complete list is provided

493 in S& Table.

494 PheWAS on metabolite and epigenetic QTLs

495  Queries for the 268 lead pQTL variants led to the identification of 17 variants (from 6 cis and
496 13 trans associations for 18 proteins) associated with 160 metabolite traits (S9 Table). The
497  majority [n = 158 (52.3%)] of the mQTLs discovered were for the APOE missense variant
498 rs7412, which had a trans association with the level of LDLR. Four metabolic traits
499  [apolipoprotein B, the concentration of very small very-low-density lipoprotein (VLDL)

500 particles, and phospholipids and total lipids in very small VLDL] had seven associations each.

501  From the epigenetic QTL datasets, we identified 6,236 meQTLs, 267 histone modification
502  QTLs and 129 exon-inclusion PSI associations for 193 primary pQTLs (from 142 cis and 60
503  trans associations for 130 proteins; S10 Table). Most (n = 256) meQTLs were associated with
504  the ADAMS cis-pQTL rs2995310. The variant with the most (z = 10) histone modifications
505 was 1s10415777, a cis-pQTL for OSCAR. Methylation data originates from five tissues: cord
506  blood, monocytes, neutrophils, T cells and whole blood; due to tissue availability, 78.7%

507  (4,906/6,236) of the identified meQTLs were from whole blood studies.
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508 Common SNP pQTLs and complex traits

509 PheWAS

510  The queries for the 268 unique lead variants and high-LD proxies led to the identification of
511 135 (50.4%) variants with 5,046 significant associations for 432 complex traits (S11 Table).
512  Of these associations, 1583 (31.4%) were with various blood cell traits from the study
513  conducted by Astle et al. [61]. As expected, given the targeted nature of our protein panels,
514  coronary artery disease (CAD) and rheumatoid arthritis were most often linked to pQTLs with
515 118 and 99 associations, respectively. For example, 5 of 145 significant independent signals
516  for CAD from mixed-ancestry samples [62] and 2 of 7 significant loci for rheumatoid arthritis
517  from the study conducted by Stahl et al. [63] were pQTLs in our dataset. In terms of the most
518  associations per pQTL lead variant, ABO intronic variant rs507666 had the most associations
519  per lead pQTL variant [rn = 332, 85 (25.6%) with blood cell traits]. No associated traits were

520  found for 62 proteins.

521  For 61 proteins (64 lead pQTL variants, 36 cis- and 28 trans-pQTLs), significant associations
522  were detected in both the eQTL colocalisation analysis and PheWAS. We restricted this set to
523 27 proteins (28 variants) which were not coded from the HLA region but showed associations
524  with diagnosis, treatment, or other phenotypes linked directly to health status (excluding
525  haematological and biochemical measurements). Six of these proteins (CD6, PRSS27,
526 CEACAMS, CD40, TNFRSF6B and IL1RL1) had significant colocalisations with eQTLs from
527  brain tissue, but no evidence of shared conditions with direct effects on the brain tissue in the

528 PheWAS.

529  For example, based on pQTL-eQTL colocalisation analysis, IL6R pQTL signal was also an

530 eQTL of the /L6R gene in macrophages, monocytes, T cells, whole blood and pancreatic islets.
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531 A previous study has shown a link between IL6R and CAD [64]. We also identified
532  associations between IL6R pQTLs and CAD, rheumatoid arthritis and 7 other disease traits
533  (S11 Table), thereby supporting the findings of the study [63]. As another example, /L/RLI
534  pQTLs colocalised with ILIRLI, ILISRI and ILI8RAP ¢QTLs detected in multiple cell types
535  with direct effects on the immune system (e.g. T-cells; S8 Table); these variants were

536  associated with asthma and allergic reactions in the PheWAS.

537  Eleven out of 27 proteins had trans-associations. Trans-pQTLs for the CTRC and TEK proteins
538  were in the ABO locus and colocalised with ABO eQTLs; in the PheWAS, they were linked to
539  multiple self-reported diagnoses (e.g. ‘blood clot in the leg") from the UK Biobank sample, and

540 to haematological traits.

541  Most [n = 140/157 (89.2%)] of the proteins with significant pQTLs belonged to the druggable

542  genome category. These proteins were associated with 1,365 drug—gene interactions.

543  Colocalisation analysis

544  Based on the pQTL associations with genetic regions, PheWAS and eQTL colocalisation
545  results, we chose five cis-pQTL effects (affecting FGF5, IL1IRL2, TNFRSF6B, IL2RA, and
546  IL6R) that were associated with clinical traits and had significant pQTL-eQTL colocalisations.
547  Furthermore, SULT1A1 was chosen due to additional CNV—pQTL associations in its region
548  which enabled to analyse colocalisation with respective complex traits. All selected proteins
549  except IL6R had synonymous lead pQTL variants. Therefore, the input data for colocalisation
550 analyses comprised of region-based summary statistics for 6 protein traits and 61 clinical

551  complex traits (83 pQTL—complex trait pairs).

552  We identified 46 significant colocalisation events (S12 Table). FGF5 had 25 colocalisations

553  with cardiovascular phenotypes and medications, such as CAD and perindopril use. IL6R had
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554  a total of 11 significant colocalisations, which included colocalisations with CAD as well as
555  immunological conditions such as asthma. TNFRSF6B and SULTI1A1 colocalised with
556  inflammatory bowel disease, and TNFRSF6B also separately colocalised with its two main
557  forms: Crohn’s disease and ulcerative colitis. IL2RA colocalised with tonsillectomy +/-
558 adenoid operation. The Phe WAS revealed associations of IL1RL2 with immune diseases which

559  were not supported by the colocalisation results.

560 MR findings

561  We conducted MR analyses using 46 significant (FDR-corrected) pQTL—complex trait pairs
562  from the colocalisation analysis (Fig. 4, S13 Table). We found a causal relationship between
563 the elevated level of soluble IL6R and a lower risk of cardiovascular disease (P = 2.35 x 1024,
564  Benjamini-Hochberg FDR = 1.08 x 10-2?). Higher IL6R levels were also associated with an
565 increased risk of inflammatory conditions such as asthma and eczema (P = 2.04 x 10,
566  Benjamini-Hochberg FDR = 2.60 x 10-#; P = 1.24 x 10-, Benjamini-Hochberg FDR = 1.96 x
567 107, respectively). The TNFRSF6B level was causally linked to a reduced risk of inflammatory
568 bowel disecase and its subtypes (inflammatory bowel disease (A294), P = 4.00 x 1020,
569  Benjamini-Hochberg FDR =9.19 x 10-1%; Crohn’s disease (A12), P =1.18 x 10-'°, Benjamini-
570  Hochberg FDR = 1.82 x 10-15; ulcerative colitis (A970), P =2.14 x 108, Benjamini-Hochberg
571  FDR = 7.56 x 10®). Elevated levels of FGF5 were associated with a significantly increased

572  risk of coronary disease (P = 8.94 x 10 and Benjamini-Hochberg FDR = 1.47 x 107).

573  Figure 4. Forest plots of Mendelian randomisation results for proteins with positive (A)
574  and negative (B) effects on complex traits. Protein (exposure) names are indicated on top of
575  the section, complex traits (outcomes) are on the left side. Multiple instances of traits with the
576  same name for one protein, indicating MR signal replication across multiple studies of the same

577  trait, have been marked ‘A’ and ‘B’. Error bars denote standard errors and all presented results
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578 are significant at a Benjamini-Hochberg FDR < 0.05. Details of causal associations are
579 provided in S13 Table. “Medication for cholesterol, blood pressure, diabetes, or take
580  exogenous hormones: None of the above” (MRC IEU UK Biobank); >Blood clot, DVT,
581  bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: None of the

582  above” (MRC IEU UK Biobank).

583 Rare variant pQTLs

584  The gene-based association analysis revealed 19 significant associations [5 (26.3%) cis and 14
585  (73.7%) trans] emanating from 19 genes containing rare nonsynonymous SNPs and affecting
586  the levels of 7 proteins (S14 Table). The majority of identified rare variant effects (13, 68.4%)
587  were with the level of GDF-15. The most significant rare variant association was a trans signal
588  between JAKMIPI on chromosome 4 and the level of GDF-15 (P = 5.41 x 10-'?). We also
589  assessed if rare nonsynonymous SNPs affect the expression of same genes encoding the
590 corresponding pQTL proteins, however we did not detect any nominally significant

591  (Benjamini-Hochberg FDR < 0.05) associations (S14 Table).

592  We next conducted GeneMANIA network analysis [37, 38] to identify functional connections
593  between genes harbouring rare SNPs and proteins affected by trans associations. First, we
594  studied the potential connection between rare variant genes associated with the GDF-15 level.
595 Ten of the identified genes harbouring rare SNPs (CKAPS5, GDF15, JAKMIPI, KRTI9,
596  STAT5B, SLC35EIl, RNF112, TUBGCP4,ZNF766 and PPAPDCIB), including gene encoding
597  identified pQTL protein, formed shared network with GDF-15, based on co-expression
598  (57.85%), pathway (19.97%), physical (18.45%) and genetic (3.73%) interactions, according
599 to GeneMANIA. However, no functional connection to GDF-15 was found for LY6G6E,
600 RPL7LI and EFR3B. Trans associations between rare variants and SELPLG and MUC-16

601 levels were supported by the GeneMANIA-based identification of two shared networks:
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602  between TMEM119 and SELPLG, as well as GAL3ST2 and MUC-16, respectively. Those

603  connections were based mainly on physical interactions (77.64%) and co-expression (8.01%).

604  Four proteins (CTSZ, GDF-15, PON3 and SELPLG), had significant associations from both,
605 common variant and rare variant pQTL analyses. For CTSZ and GDF-15, the genetic regions
606  detected from the rare variant analysis were not the same as identified by SNP pQTL analysis.
607 However, PON3 had direct cis associations emanating from from 7q21.3 locus in both
608 analyses: nonsynonymous variants of PON3 in the rare variant pQTL analysis and rs10953142
609  inthe common variant pQTL analysis. Similarly, SELPLG had cis associations emanating from
610  12g24.11 locus: nonsynonymous variants of the TMEM]119 for rare variant analysis and an

611  intergenic rs11114010 for common variant analysis.

612 CNV pQTLs

613  We detected 12 significant (Bonferroni-corrected P-value threshold 1.12 x 107) pQTL
614  associations between CNVs and plasma protein levels (7 cis and 5 trans, 11 proteins; S15
615  Table), with two cis associations detected for the MICA-MICB heterodimer. The CNV eQTL
616  analysis in the overlapping set of samples identified 673 significant (Bonferroni-corrected P-
617  value threshold 1.61 x 10%) CNV eQTLs for 244 unique genes (S16 Table). 16.67% (2/12) of

618  significant CNV pQTLs had significant CNV eQTL associations with a corresponding gene.

619  For example, the deletion in the 3ql2.1 intergenic region (chromosome 3: 98,410,653-
620 98,414,807 bp; frequency = 0.651) acted as a hub, having multiple trans associations with
621  protein levels: ICAM2 (P = 1.31 x 10%), FLT4 (P = 2.34 x 10>%), PDCDILG2 (P = 2.88 x
622 10%) and ILIR1 (P = 8.19 x 10®). Three of these associations (with ICAM2, FLT4 and
623 PDCDILG2) were also detected by the SNP pQTL analysis but did not remain significant after

624  conditioning of the model on the CNVs, suggesting that CNV may underlie the observed
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625  associations. However, eQTL analysis indicated that none of the genes encoding those proteins
626  is regulated by this locus, and a follow-up GeneMANIA network analysis [37,38] revealed a
627  shared network based on physical interactions (77.64%), co-expression (8.01%), predicted
628  functional relationship between genes (5.37%), co-localisation (3.63%), genetic interactions

629  (2.87%), pathway (1.88%) and shared protein domains (0.60%).

630  Another trans association example was between a 5q13.2 CNV (chromosome 5: 70,305,253—
631 70,312,310 bp; deletion frequency = 0.074, duplication frequency = 0.195) overlapping the
632  NAIP gene but affecting IL-18 level (P = 7.9 x 10-19). This locus was also an eQTL for NAIP
633 (P = 6.4 x 10*), but not for IL18 expression (P > 0.001). We also detected moderate
634  correlation between IL-18 protein expression and NAIP gene expression (Spearman’s R =
635  0.17); Spearman correlation coefficient between IL-18 protein and gene expressions was 0.05.
636 MR analysis using NAIP gene expression as exposure and IL-18 level as an outcome confirmed
637  the causal effect of the CNV on the IL-18 protein level (Wald test; Z = 6.26, P = 3.8 x 10°10),
638  This association was not observed in the SNP-based analyses, highlighting the case where the

639  pQTL signal would not be detected.

640 From cis effects, we detected an association between CNV in the 16p11.2 region (deletion
641  frequency = 0.022, duplication frequency = 0.382; partially overlapping SULT1A1; pQTL, P
642 =3.46 x 102!;eQTL, P=4.74 x 10-'1%) and SULT1A1 protein and gene expression. Similarly,
643  we determined that a 19q13.42 deletion (frequency = 0.291) overlapping the VSTM1 gene was
644 an eQTL and a pQTL for nearby gene OSCAR (P = 1.77 x 10'* and P = 5.64 x 107,
645  respectively). However, the CNV was also associated with the expression of VSTM1 itself (P
646 = 1.81 x 107%?) and both gene—protein expression pairs showed moderate correlation (OSCAR—
647  OSCAR, Spearman’s R =0.32; VSTMI-OSCAR, Spearman’s R = 0.34). The effect of the CNV
648  through gene expression is supported by the MR analysis, when using a CNV as an instrument,

649  OSCAR expression as an exposure and OSCAR level as an outcome (Z =5.94; P =2.81 x 10
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650 ) and secondly, VSTMI as an exposure and OSCAR level as an outcome (Z=5.92; P =3.27
651  x 107). Those results suggest that CNV works through gene expression, although it remains

652  unclear whether the effect on the OSCAR level is through OSCAR or VSTM1 gene expression.

653  Additionally, we identified an association between the SIRPA level and a high-frequency
654  (frequency = 0.955) 20p13 deletion overlapping SIRPB1, a paralog of SIRPA (P = 1.4 x 101,
655 Fig. 5A and 5B). eQTL analysis indicated that the deletion was also associated with SIRPBI,
656  but not SIRPA, expression (P = 3.5 x 10-%7). The correlation between SIRPA protein and gene
657  expression was weaker than that between SIRPA protein and SIRPB1 expression (Spearman’s
658 R =0.075 and 0.202, respectively). Colocalisation was confirmed by the Wald test (Z = 6.92,
659 P =4.5 x 10'%; Fig. 5C). In SNP pQTL fine mapping, we detected two independent CSs,
660  overlapping SIRPBI [variant with the largest posterior inclusion probability (PIP) = 0.295] and
661  at SIRPA (variant with the largest PIP = 0.242; Fig. 5A). When conditioned on the deletion, the
662  significance of pQTLs from only the SIRPBI CNV region was reduced dramatically (chr 20
663  position 1546911 variant pQTL mapping, Pprimary= 3.75 X 1071, Peonditionas = 0.41, regional
664 pQTL mapping with EMMAX linear mixed-model [30] and the occurrence of the CNV and
665 the number of its copies used as an additional covariate). This example highlights that the
666  second signal from the primary pQTL analysis SIRPA locus was due to CNV-tagging variants

667  rather than an independent signal.

668  Figure 5. A. Regional plot combining SNP- and CNV-based results for the SIRPA level
669  with additional single-variant fine-mapping information. The blue rectangle indicates the
670 genetic location of the CNV. The horizontal dashed line indicates the genome-wide
671  significance threshold of P =5 x 108, Genetic variants identified by fine mapping as belonging
672  to 95% credible sets are coloured red. The number of variants and the variant with the highest
673  PIP in the credible set are indicated in grey boxes. B. Box plot of SIRPA levels based on the
674  CNV number of copies and frequencies. Error bars indicate 95% confidence intervals; the
675  bottoms and tops of the boxes are the 25th and 75th percentiles, respectively; the lines inside

676  the boxes indicate medians. Outliers are depicted as circles. C. Overview of SIRPA level
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677  analyses. P-values are from the CNV-based pQTL analysis for SIRPA and eQTL analyses for
678  SIRPBI and SIRPA.

679  Associations for nine proteins significant in both, CNV and pQTL mapping, were emanating
680 from the same loci in both analyses. For example, ICAM2 and FLT4 had trans associations
681  with rs12493830 on chromosome 3 and a CNV (chromosome 3: 98,410,653-98,414,807 bp)

682  in the same intergenic region, separated by 3859 bp.

683 PheWAS for CNV pQTLs

684  Significant PheWAS associations were detected for three CNVs. For the MICA-MICB dimer
685 pQTL, associations were detected between CNV on chromosome 6 (31,292,078-31,293,977
686  bp; deletion frequency = 0.876) and medium HDL triglycerides (P = 8.82 x 10-), and between
687 a CNV on chromosome 6 (31,337,848-31,341,642 bp; deletion frequency = 0.074) and lower-
688 limb oedema (ICD-10 code R60; P = 9.06 x 107°). Additionally, we detected nominally
689  significant associations for a CNV on chromosome 19 (41,381,588—41,387,347 bp, deletion
690 frequency = 0.054 and duplication frequency = 0.022) with the pQTL of the MIA protein level

691 (P =2.38 x 10°%) and migraine (ICD-10 code G43; P =3.14 x 107).

692 CNYV-tagging SNPs

693  To further interpret the of CNV-pQTL results, we examined additional pQTLs for proteins that
694  were not measured in our study. For that, we leveraged LD between the EstBB CNVs and
695  previously reported pQTL SNPs and prioritised CNVs which could underlie the previously
696 reported pQTL associations (R’ between SNP and CNV >0.8). We identified eight CNVs with
697  possible effects on protein levels (Table 2) from the Sun et al. 2018 study [4]. Only one of those

698  associations [proxy SNP rs10935473 with the CNV on chromosome 3 (98,410,653—
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98,414,807; deletion frequency = 0.651)] affecting FLT4/VEGF-sR3 levels, was identified in

our study because the other proteins were not measured in our cohort.

Table 2. Overview of SNPs tagging CNVs for proteins reported by Sun et al. (2018). CNV

frequencies are derived from the EstBB data.

chr Position marker CNV CNV R? Type gene protein
Frequency
1 55097068 rs11206397 1:55,092,289- | deletion 0.538 0.90 cis FAMI1514 | F151A
55,095,991
1 159004851 | rs72709516 | 1:159,016,577- duplication 0.97 cis IF116 IP16
0.001,
159,019,397
deletion 0.122
1 196821380 | rs115094736 | 1:196,728,841- | deletion 0.265 0.97 trans CANX | Calnexin
196,730,702
1 196825287 rs7519758 1:196,728,841- | deletion 0.265 0.96 trans LRRCI9 | LRCI9
196,730,702
3 98416900 rs10935473 | 3:98,410,653- 1.00 trans FLT4 VEGF
deletion 0.651 sR3
98,414,807
6 32587859 1s9271421 6:32,461,274- | deletion 0.973 0.86 trans H6PD G6PE
32,468,482
8 57876576 | rs112433249 | 8:57,918,258- | deletion 0.031 0.90 cis IMPADI | IMPA3
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57,925,230
16 89781756 rs34714188 | 16:89,896,104- duplication 0.91 trans PMEL GP100
0.001,
89,898,445
deletion 0.108

703

704  We also detected 76 tagging SNP—CNYV pairs for 33 unique CNVs and 72 proteins (S17 Table)
705  from a more recent Sun et al. 2022 study [9]. Twenty-nine (40.3%) of the proteins were also
706  measured in the EstBB cohort, of which six proteins had significant CNV pQTLs (P < 1.12 x
707  107). However, CNV-based pQTLs of the MICA-MICB heterodimer and SIRPA were not
708  associated with the same CNVs in the EstBB cohort as tagged by SNPs in Sun et al.’s [9] study.
709  Twenty-five (32.9%) of the tagging SNP-CNV pairs were associated with a deletion in the
710  3ql2.1 intergenic region (chromosome 3: 98,410,653-98,414,807 bp, frequency = 0.651; the
711 closest gene is ST3GAL6), a trans association hub (Fig. 6), and the same deletion was

712 associated with four proteins (ICAM2, FLT4, PDCD1LG2 and IL1R1) in the EstBB dataset.

713  Figure 6. Overview of SNP-tagged CNV and protein cis and trans associations. Each line
714 depicts the CNV which is in LD (R*>0.8) with pQTL SNP previously reported by Sun et al.
715 (2018) or Sun et al. (2022) study. Each dot indicates corresponding pQTL protein and colour
716  depicts the type of association.

717  None of the pQTLs tagging the CNV has known associations with complex traits which are
718  not cell type or metabolite related, according to the GWAS Catalog. In addition, 19.7% (15/76)
719  of the CNVs paired with tagging SNP were located in the HLA region on chromosome 6. The
720  proteins TACSTD2, CLECS5A, IL15 and SIGLECY9 were affected by multiple frans-pQTL
721 SNPs tagging CNVs. Whereas we detected a CNV associated with the SIRPB1 level on

722  chromosome 20 (1,556,917-1,561,028 bp, deletion frequency = 0.336) and a deletion in the
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723  same locus overlapping SIRPBI and affecting the SIRPA level and (more strongly) SIRPB1
724  gene expression, based on Sun et al. tagging-CNV analysis, the SIRPB1 protein level was

725  associated with a different CNV than was its gene expression.

726  Discussion

727  The SNV-pQTL analyses conducted in this study revealed 278 genetic variants (184 cis and 94
728  trans, including indels), that were associated with the levels of 157 unique proteins. Consistent
729  with previous findings [4,6,8], the largest proportion of cis-pQTLs was located in intronic and
730 intergenic regions. The analysis of individual-level WGS data together with in-sample LD
731 information, enabled us to pinpoint the likely causal variants with a good resolution through
732  statistical fine mapping. This mapping led to the identification of at least one 95% CS for each
733  0f 98 (53%) cis and 87 (47%) trans signals. For 16 cis and 28 trans associations, we identified
734 95% CSs consisting of the single most likely causal variants, which are good candidates for
735  further functional studies. Notably, the prioritised variants for nine (56%) of the single-variant
736  CSs for cis-pQTLs had protein-altering effects. This observation outlines that it is important to
737  consider technical epitope effects in the cis-pQTL analyses [65]. However, the identification
738  of PAVs demonstrates that fine mapping is also helpful for prioritising biologically causal
739  variants, because PAVs are likely to have a direct, albeit technical, effect on protein levels.
740  Only a limited number of pQTL studies have conducted fine mapping [9,66] as one of the post-
741 GWAS analyses. We and Zhang et al. [66] detected CSs for 58 (59.2%) protein cis regions
742  using data from cohorts of European ancestry, and Sun et al. [9] fine mapped CSs in 127
743  (67.6%) genetic regions for 117 proteins, matching our findings. The 95% CSs contained an
744  average of 15.7 variants in our study and 22.7 variants (9.6 cis and 29.4 trans) in that of Sun et

745  al. [9]. Our CSs for cis associations contained an average of 15.76 variants, whereas Zhang et
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746  al. used imputed genotyping data and reported an average of 21.29 variants [66]. Generally

747  smaller credible sets might outline the added value of WGS data on fine mapping performance.

748  To support our findings with orthogonal data, we used the most comprehensive publicly
749  available eQTL resource, the eQTL Catalogue [18], to conduct eQTL—pQTL colocalisation
750  analyses. Detected colocalisations were 56.4% for cis- and 43.6% for trans-pQTLs. Of the cis
751  associations, 25.5% (2,021/7,936) colocalised with the eQTLs for the corresponding protein-
752  encoding gene from the full eQTL Catalogue, while for the GTEx dataset alone it was 54.3%
753  (273/503). Given the use of eQTL data from different tissues, this analysis reflects how pQTLs
754  may originate through active secretion or/and passive leakage, as 42.68% of all significant
755  SNV-pQTL proteins identified are actively secreted into the blood at least in one isoform (S18
756  Table) [67], meaning that more than half of these proteins do not originate from the blood.
757  Similar to our findings, Pietzner et al. [ 7] recently detected a significant colocalisation of 50.1%

758  of the cis-pQTLs with corresponding gene eQTLs using GTEx.

759  We sought to systematically identify links between proteins and phenotypes by conducting a
760 PheWAS followed by a colocalisation analysis, in order to find signals likely driven by the
761  same causal variant. We then applied MR to significant colocalisation events to assess
762  causality, a strategy recommended by Zuber et al. [17]. As they have highlighted, a positive
763  colocalisation finding typically implies a non-zero MR estimate, the reverse is not generally
764  true [17]. For example, FGF5 plays essential roles in the regulation of cell proliferation,
765  including in cardiac myocytes, and cell differentiation [68]; it has also been associated with
766  cardiac angiogenesis [69]. The FGF5 locus has been linked to cardiovascular conditions in
767  previous GWASs [62,70]. We detected a cis signal for the FGFS5 level and associated variants
768  in the region, which overlapped with previous GWAS findings for cardiovascular diseases and
769  medications used to treat them. Our colocalisation and MR results suggest that the FGF5 level

770  shares common causal SNPs with various heart-related conditions and treatments, prioritising
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771 it as an interesting target for future follow-up studies. However, the translation of Phe WAS
772  results to a molecular level is complicated by the nature of associated disease phenotype.
773  Plasma proteins are potentially more relevant for circulatory diseases where the blood is in
774  contact with the affected tissue, such as in the FGF5 example, rather than for conditions with

775  alimited number of affected tissues.

776  The availability of the high-quality WGS data also gave us a unique opportunity to investigate
777  the effect of CNVs on protein expression. To the best of our knowledge, one study has
778  previously studied CNVs in this context, focusing only on deletions [15]. We conducted the
779  first comprehensive CNV-based pQTL mapping and identified 12 associations (7 cis and 5
780  trans) between plasma proteins and CNVs, including those with a trans-association hub CNV
781 in the 3ql2.1 region. We further interpreted the CNV-pQTLs using a CNV-tagging SNP
782  approach with external data on a broader range of proteins. This strategy yielded additional
783  CNV-based pQTLs for 79 proteins and determined that the 3ql12.1-region hub CNV was
784  associated with 25 proteins. Signals from the SNV and CNV analyses overlapped for nine
785  proteins, which constitute interesting loci where QTL associations were likely driven by CNVs,
786  rather than SNVs. This emphasises the value of the CNV data, especially if the purpose is to
787  prioritise causal genetic variation underlying the pQTL signal. None of the associations
788  reported by Png et al. [15] were replicated in this study, possibly because there was only a
789  partial overlap between the assayed protein sets, differences between cohorts (European
790 ancestry vs a Greek population isolate with population-specific CNVs) [71], and differences in

791 the approach used for CNV detection.

792  As an example, we outline IL-18, a pro-inflammatory cytokine that plays important roles in
793  natural killer cell activation and the T-helper 1 response [72]. We found that a CNV on
794  chromosome 5 overlapping with NAIP has trans effects on the IL18 protein level and a cis

795  effect on the NAIP gene expression level, but there is no significant effect on the /L/8 gene
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796  expression. The NAIP eQTL signal was stronger than the IL18 pQTL signal, suggesting that
797  the CNV affects the protein level through gene expression. As the NAIP level was not measured
798 in our cohort, it remains unclear whether the main effect of the CNV is on NAIP. To our
799  knowledge, there are no previous studies analysing the effect of genetic variants on NAIP level.
800 NAIP is an anti-apoptotic protein and sensor component of the NLRC4 inflammasome that
801  protects against bacterial pathogens, and NAIP-NLRC4 inflammasome activation has been
802 reported to lead to elevated IL-18 expression in enterocytes and monocyte-derived
803  macrophages [73]. This example highlights the importance of including structural variants in
804  addition to SNVs in studies of the genetic basis of molecular traits, as also exemplified by the

805 CNV-tagging SNP approach.

806  We identified 19 significant rare variant effects on the levels of seven proteins that would not
807  have been detected by the SNV pQTL analysis alone. Gene-based pQTL analyses of rare
808  variants constitute an emerging approach [10-13], and no golden standard for their
809  performance has been established, making the replication of findings difficult. Previous studies
810 indicate that few proteins are driven by rare variants [11-13]. Kierczak et al. [13] detected cis-
811  region rare variant associations for four proteins (CTSZ, CYR61, GDF-15 and PON3) and
812  trans associations of rare GAL3ST2 variants affecting the MUC16 level, the effect also detected
813  in our study; they used a maximum MAF threshold 0.0239, whereas we used a standard
814  conservative threshold of 0.01. The significant rare variant associations detected in our study
815  were not reported in the largest gene-based rare variant pQTL study conducted to date which
816 included three isolated European cohorts with a total sample size of n=4,422 [12]. As an
817  example, we found a rare-variant effect on GDF-15, which regulates food intake, energy
818  expenditure and body weight in response to metabolic and toxin-induced stress [74—76]. The
819  most significant association with the GDF-15 level was a frans association with rare variants

820 in JAKMIPI, associated with type 2 diabetes and medications used to treat it [77-79].
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821  Additionally, GDF-15 has been reported to be involved in inflammation, metabolism and
822  cancer [80], and recent findings support its role as a biomarker of metabolic stress [81].
823  Whereas we detected rare variant trans associations emanating from GDF-15 for nine proteins,
824  only SNP-based cis associations with GDF-15 itself have been identified in previous pQTL
825  studies [9,81]. This demonstrates that gene-based rare variant pQTLs complement single

826  variant analyses and help to unravel novel biologically interpretable associations.

827  Our study has several limitations. First, the sample size was small relative to those of recent
828  pQTL studies, which made the detection of trans effects with greater multiple-testing burden
829  and weak effects of common and rare variants more difficult. Rare genetic variants tend to have
830  greater population specificity [82], making replication of findings from rare variant analyses
831  more difficult. Same applies to common CNVs we reported in our pQTL analyses; structural
832  variants are currently understudied in terms of pQTL detection, limiting replicability. Second,
833 most pQTL studies have been conducted using serum or plasma measurements from blood
834  samples [4,6,8,39] and only a limited number of studies has involved the examination of liver
835 and brain tissue—specific pQTLs [83,84]. Therefore, it is often challenging to understand
836  whether observed pQTL effects manifest in the blood cells or reflect the regulation happening
837  in some distal tissue. Finally, although we showed that CNVs affect plasma protein levels, to
838  our knowledge no large-scale CN'V-based association database is currently available to overlap
839  the identified CNV-pQTL associations with CNV-phenotype associations. However, CNV-

840 tagging SNPs could be used as a proxy method to assess the effect of CNVs on complex traits.

841  In conclusion, we have generated a comprehensive pQTL resource and interpreted it by using
842  eQTL, as well as publicly available GWAS data. We have demonstrated the importance of
843  including structural variants in addition to SNVs, to fully characterise the genetic background

844  of plasma proteins and their links to health-related phenotypes.
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1101 Supporting information

1102  S1 Table. Full list of the Olink proteins in the study. Columns are ‘OLINK’: the protein
1103 name based on Olink internal naming scheme; ‘PANEL’: Olink panel for the protein;
1104  ‘UNIPROT Olink’: UniProtID of the protein; ‘HGNC’: HUGO gene naming consortium
1105  symbol for the protein; ‘LOD_QC’: limit of detection (LOD) quality control assessment. LOD
1106  was used as a quality control step, each protein with samples >20% LOD was flagged as fail;
1107  ‘Alternative UNIPROT’: alternative UniProtID of the protein if available.

1108  S2 Table. List of pQTLs (linkage disequilibrium clumped). List of lead variants for each
1109  protein following linkage disequilibrium (LD) clumping, together with replication information.
1110  Variants within a 1 Mb window of the lead pQTL with the LD thresholds of R?= 0.1 and P <
1111 5 x 10" were clumped together. Whole-genome sequenced genotypes of the pQTL cohort were
1112  used as LD reference. Columns are ‘gene’: HUGO gene naming consortium symbol for the
1113  protein; ‘Uniprot’: UniProtID of the protein; ‘panel’: Olink panel for the protein; ‘chr pos’:
1114  genomic coordinates for the pQTL variant (hgl19); ‘locus’: pQTL association locus; ‘variant’:
1115  variant name in the format of genomic coordinates (hg19) and alphabetically ordered alleles;
1116  ‘rsid’: rsID (if missing, then genomic coordinates in hgl9); ‘A1’: the reference allele in the
1117  Estonian Biobank; ‘A2’: the effect allele in the Estonian Biobank; ‘MAF’: minor allele
1118  frequency; ‘p-value’: pQTL association p-value; ‘beta’: the pQTL effect size; ‘SE’: the
1119  standard error of the pQTL effect size; ‘type’: pQTL association signal type, associations
1120  within 1Mb upstream or downstream of the transcription start site (TSS) of the corresponding
1121  protein-coding genes are cis and further away trans; ‘distance’: the distance from the TSS for
1122  cis associations in bp; ‘effect’: the functional annotation of a pQTL; ‘LD R?>0.8 PAV variant’:
1123  protein-altering variants in linkage disequilibrium (R?>0.8) with detected pQTL. For
1124  replication studies prefix in column names indicates the name of the study, referring to Pietzner
1125 et al. [7], Sun et al. [4], Suhre et al. [39] and Folkersen et al. [38]. Columns are
1126  ‘Pietzner replication’: the pQTL replication in the TRUE (replicating) and FALSE (not
1127  replicating) manner; ‘Pietzner EA’: the effect allele of pQTL in the Pietzner et al.;
1128  ‘Pietzner OA’: the other allele in the Pietzner et al.; ‘Pietzner effect’: the effect size of pQTL
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1129  in the Pietzner et al.; ‘Pietzner se’: the standard error of effect size in the Pietzner et al;
1130  ‘Pietzner pval’: the p-value of pQTL association in the Pietzner et al.; ‘Pietzner _qval FDR’:
1131  the Benjamini-Hochberg FDR-corrected g-value of the Pietzner et al. pQTL analysis;
1132  ‘Pietzner n’: the sample size in the Pietzner et al. for the variant; ‘Sun_replication’: the pQTL
1133  replication in the TRUE (replicating) and FALSE (not replicating) manner; ‘Sun EA’: the
1134  effect allele of pQTL in the Sun et al; ‘Sun_effect’: the effect size of pQTL in the Sun et al.;
1135  ‘Sun_se’: the standard error of effect size in the Sun et al.; ‘Sun_pval’: the p-value of pQTL
1136  association in the Sun et al.; ‘Sun_gval FDR’: the Benjamini-Hochberg FDR-corrected g-
1137  value of the Sun et al. pQTL analysis; ‘Sun_n’: the sample size in the Sun et al. for the variant;
1138  ‘Suhre replication’: the pQTL replication in the TRUE (replicating) and FALSE (not
1139  replicating) manner; ‘Suhre EA’: the effect allele of pQTL in the Suhre et al.; ‘Suhre effect’:
1140  the effect size of pQTL in the Suhre et al.; ‘Suhre se’: the standard error of effect size in the
1141  Suhre et al.; ‘Suhre pval’: the p-value of pQTL association in the Suhre et al.;
1142  ‘Suhre qval FDR’: the Benjamini-Hochberg FDR-corrected g-value of the Suhre et al. pQTL
1143  analysis; ‘Suhre n’: the sample size in the Suhre et al. for the variant; ‘Folkersen_replication’:
1144  the pQTL replication in the TRUE (replicating) and FALSE (not replicating) manner;
1145  ‘Folkersen EA’: the effect allele of pQTL in the Folkersen et al.; ‘Folkersen_effect’: the effect
1146  size of pQTL in the Folkersen et al.; ‘Folkersen se’: the standard error of effect size in the
1147  Folkersen et al.; ‘Folkersen pval’: the p-value of pQTL association in the Folkersen et al.;
1148  ‘Folkersen qval FDR’: the Benjamini-Hochberg FDR-corrected g-value of the Folkersen et
1149  al. pQTL analysis; ‘Folkersen n’: the sample size in the Folkersen et al. for the variant. In case
1150  of Pietzner et al., alleles for indels are referred as ‘D’ for deletion and ‘I’ for insertion.

1151  S3 Table. List of the eQTL Catalogue resources. Columns are ‘Study’: the consortium or
1152  the publication for the dataset; ‘Publication’: the citation of dataset publication; ‘Funding’: the
1153  funding for generating the dataset.

1154  S4 Table. List of studied complex traits extracted from the Medical Research Council
1155 (MRC) Integrative Epidemiology Unit (IEU) OpenGWAS database. Columns are ‘ID’:
1156  internal naming identification for a complex trait GWAS in the MRC IEU OpenGWAS
1157  database; ‘Trait’: the full name of the complex trait; ‘n_cases/n_controls’: number of
1158  cases/number of controls for the study; ‘Publication/Author’: the consortium or the publication
1159  that generated complex trait GWAS results; ‘Funding/Acknowledgements’: funding and
1160  acknowledgements marked by the consortium or by the publication.

1161 S5 Table. List of the corresponding eQTLs. Columns are ‘variant’: rsID (if missing, then
1162  genomic coordinates in hgl9); ‘protein’: HUGO gene naming consortium symbol for the
1163  protein; ‘Uniprot’: UniProtID of the protein; ‘panel’: Olink panel for the protein; ‘pQTL pval’:
1164  pQTL association p-value; ‘pQTL beta’: pQTL effect size; ‘pQTL _se’: the standard error of
1165  the pQTL effect size; ‘type’: pQTL association signal type, associations within 1Mb upstream
1166  or downstream of the transcription start site (TSS) of the corresponding protein-coding genes
1167  are cis and further away trans; ‘gene’: HUGO gene naming consortium symbol for the protein
1168  for tested gene; Ensembl’: Ensembl (GRCh37) gene ID for tested gene; ‘eQTL pval’: eQTL
1169  association p-value; ‘eQTL beta’: eQTL effect size; ‘eQTL _se’: the standard error of the
1170  eQTL effect size; ‘eQTL qFDR’: the Benjamini-Hochberg FDR-corrected g-value of the
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1171  eQTL analysis.

1172  S6 Table. (A) Results of the fine-mapping analysis and (B) an overview of variants within
1173  each credible set having the highest posterior inclusion probability (PIP). (A) Columns are
1174 ‘trait’: HUGO gene naming consortium symbol for the protein; ‘panel’: Olink panel for the
1175  protein; ‘region’: genetic coordinates for the fine-mapping region (GRCh37); ‘locus’: locus
1176  and loci in the fine-mapping analysis (GRCh37); ‘credible set’: the number of identified
1177  credible sets; ‘size’: the number of genetic variants belonging to the specific credible set;
1178  ‘type’: the pQTL association signal type in the primary pQTL analysis (S2 Table). (B) Columns
1179  are ‘trait’: HUGO gene naming consortium symbol for the protein; ‘chromosome’: the
1180  chromosome of the fine-mapped variant (GRCh37), ‘credible set’: the number of the identified
1181  credible set; ‘Fine-mapped variant (GRCh37)’: variant in the format chromosome: region and
1182  alleles ordered alphabetically (GRCh37); ‘PIP’: the posterior inclusion probability of the
1183  variant; ‘association p-value’: the p-value of the variant in the pQTL analysis; ‘LD (r?) with
1184  sentinel SNP’: the linkage disequilibrium of the fine-mapped variant with the primary pQTL
1185  identified in the pQTL analysis; ‘Distance (kb) with sentinel SNP (GRCh37)’: genetic distance
1186  in kb between fine-mapped variant and pQTL identified in the region in the primary analysis.

1187  S7 Table. Regulatory information for the pQTLs extracted from the RegulomeDB.
1188  RegulomeBD classifies SNPs into classes based on the combinatorial presence/absence status
1189  of functional categories, including transcription factors binding sites, DNAase hypersensitivity
1190  regions, and promoter regions. Columns are ‘chrom’: the chromosome of the pQTL variant
1191  (hgl9); ‘start’: start coordinates of the queried variant (hgl9); ‘end’: end coordinates of the
1192  queried variant (hgl9): ‘rsids’: rsID for the queried variant; ‘probability’: probability score
1193  ranging from O to 1, with 1 being the most likely regulatory variant; ‘ranking’: ranking based
1194  on RegulomeDB internal scoring scheme that takes into account supporting data. Categories
1195  included in the table are ‘1d’: eQTL + TF binding + any motif + DNase peak; ‘1f’: ‘eQTL +
1196  TF binding / DNase peak’; ‘2a’: TF binding + matched TF motif + matched DNase Footprint
1197  + DNase peak; ‘2b’: TF binding + any motif + DNase Footprint + DNase peak; ‘2¢’: TF binding
1198  +matched TF motif + DNase peak; ‘3a’: TF binding + any motif + DNase peak; ‘4’: TF binding
1199  + DNase peak; 5’: TF binding or DNase peak; ‘6’: Motif hit; ‘7’: Other.

1200 S8 Table. List of colocalising pQTL—eQTL events. Columns are ‘pQTL lead SNP HG19’:
1201 genomic coordinates for the primary pQTL (hgl9); ‘pQTL lead SNP HG38’: genomic
1202  coordinates for the primary pQTL (hg38); ‘pQTL Uniprot’: UniProtID for the protein;
1203  ‘pQTL_Gene Ensembl’: Ensembl gene ID; ‘pQTL Gene Name’: HUGO gene naming
1204  consortium symbol for the protein; ‘pQTL Gene Loc HG38: pQTL gene genomic
1205  coordinates (hg38); ‘pQTL Cis Trans’: the association type for the pQTL in the primary
1206  analysis, either local cis or distal trans; ‘eQTL _Gene Ensembl’: Ensembl gene ID for the
1207  tested eQTL gene; ‘eQTL _Gene Name’: HUGO gene naming consortium symbol for the
1208 eQTL gene; ‘eQTL Gene Loc HG38’: eQTL gene genomic coordinates (hg38);
1209  ‘eQTL _Trait’: ID of the molecular trait used for QTL mapping, depending on the quantification
1210  method used, this can be either a gene id, exon id, transcript id or a txrevise promoter, splicing
1211 or 3'end event id; ‘eQTL Dataset’: eQTL dataset name and tested and tissue or cell type and
1212  trait quantification; ‘Study’: the study or the consortium of the eQTL data; ‘eQTL Data Type’:
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1213  quantification type in the eQTL Catalogue as either gene expression, exon expression,
1214  transcript usage or txrevise event usage; ‘Tissue Cells’: tissue or cell type for the eQTL;
1215  ‘nsnps’: the number of SNPs included in the genetic region of the colocalisation analysis;
1216  ‘PP.HO.abf’: posterior probability of no association with either trait; ‘PP.H1.abf’: posterior
1217  probability of association with pQTL but not eQTL; ‘PP.H2.abf’: posterior probability of
1218  association with eQTL but not pQTL; ‘PP.H3.abf’: posterior probability of association with
1219  both traits but at separate causal variants; ‘PP.H4.abf’: posterior probability of association with
1220  both traits at a shared causal variant.

1221 S9 Table. List of pQTLs from the metabolites PheWAS. Columns are ‘snp’: the queried
1222  SNP r1sID; ‘rsid’: the queried SNP rsID; ‘hgl9 coordinates’: genomic coordinates for the
1223  queried SNP (hgl9); ‘hg38 coordinates’: genomic coordinates for the queried SNP (hg38);
1224  ‘al’: the effect allele for the queried SNP; ‘a2’: the non-effect allele for the queried SNP; ‘trait’:
1225 the metabolite phenotype; ° corresponding EFO ontology term for the metabolite
1226  phenotype; ‘study’: the name of the consortium or lead author of the study; ‘pmid’: the PubMed
1227  ID; ‘ancestry’: the ancestry of the study; ‘year’: the year the study was published; ‘beta’: the
1228  association between the trait and the SNP expressed per additional copy of the effect allele
1229  (odds ratios are given on the log-scale); ‘se’: the standard error of beta; ‘p’: the p-value;
1230  ‘direction’: the direction of association with respect to the effect allele; ‘n’: the number of
1231  individuals; ‘n_studies’: the number of studies; ‘unit’: the unit of analysis (IVNT stands for
1232  inverse normally rank transformed phenotype); ‘dataset’: the dataset ID as the first author or
1233  the consortium.

b

efo’:

1234  S10 Table. List of pQTLs from the epigenetics PheWAS. Columns are ‘snp’: the queried
1235  SNP r1sID; ‘rsid’: the queried SNP rsID; ‘hgl9 coordinates’: genomic coordinates for the
1236  queried SNP (hgl9); ‘hg38 coordinates’: genomic coordinates for the queried SNP (hg38);
1237  ‘al’: the effect allele for the queried SNP; ‘a2’: the non-effect allele for the queried SNP; “trait’:
1238  the epigenetics phenotype; ‘efo’: corresponding EFO ontology term for the epigenetics
1239  phenotype; ‘study’: the name of the consortium or lead author of the study; ‘pmid’: the PubMed
1240 ID; ‘ancestry’: the ancestry of the study; ‘year’: the year the study was published; ‘tissue’: the
1241  tissue in which the gene expression was measured; ‘marker’: the epigenetic marker measured;
1242  ‘location’ the location of epigenetic marker (hgl9); ‘beta’: the association between the trait and
1243  the SNP expressed per additional copy of the effect allele (odds ratios are given on the log-
1244  scale); ‘se’: the standard error of beta; ‘p’: the p-value; ‘direction’: the direction of association
1245  with respect to the effect allele; ‘n’: the number of individuals; ‘n_studies’: the number of
1246  studies; ‘unit’: the unit of analysis (IVNT stands for inverse normally rank transformed
1247  phenotype); ‘dataset’: the dataset ID as the first author or the consortium.

1248  S11 Table. List of pQTLs from the PheWAS. Columns are ‘snp’: the queried SNP rsID;
1249  ‘rsid’: the queried SNP rsID; ‘ref hgl9 coordinates’: the queried SNP genomic coordinates
1250  (hgl9); ‘ref hg38 coordinates’: the queried SNP genomic coordinates (hg38); ‘ref al’: the
1251  effect allele for the queried SNP; ‘ref a2’: the non-effect allele for the queried SNP; ‘rsid’: the
1252  rsID for the proxy SNP; ‘hgl9 coordinates’: genomic coordinates for the proxy SNP (hgl9);
1253  ‘hg38 coordinates’; genomic coordinates for the proxy SNP (hg38); ‘rsid’: the rsID for the
1254  proxy SNP; ‘ref al’: the effect allele for the proxy SNP; ‘ref a2’: the non-effect allele for the
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1255  proxy SNP; ‘proxy’: an indicator variable which equals 0 if the proxy SNP is the input SNP
1256  and 1 otherwise; ‘r2’: the 72 between the input SNP and the proxy SNP based on the phased
1257  haplotypes from 1000 Genomes ; ‘dprime’: the D’ between the input SNP and the proxy SNP
1258 Dbased on the phased haplotypes from 1000 Genomes; ‘trait’: the phenotype; ‘efo’:
1259  corresponding EFO ontology term for the phenotype; ‘study’: the name of the consortium or
1260 lead author of the study; ‘pmid’: the PubMed ID; ‘ancestry’: the ancestry of the study; ‘year’:
1261  the year the study was published; ‘beta’: the association between the trait and the SNP
1262  expressed per additional copy of the effect allele (odds ratios are given on the log-scale); ‘se’:
1263  the standard error of beta; ‘p’: the p-value; ‘direction’: the direction of association with respect
1264  to the effect allele; ‘n’: the number of individuals; ‘n_cases’: the number of cases; ‘n_controls’:
1265  the number of controls; ‘n_studies’: the number of studies; ‘unit’: the unit of analysis (IVNT
1266  stands for inverse normally rank transformed phenotype); ‘dataset’: the dataset ID as the first
1267  author or the consortium.

1268  S12 Table. Results from the pQTL—complex trait colocalisation analysis. Columns are
1269  ‘Protein’: HUGO gene naming consortium symbol for the protein, ‘ID’: internal identification
1270  for complex trait used in the MRC CEU OpenGWAS database; ‘Study’: the name of the
1271  consortium/biobank or the first author of the study; ‘Trait’: the full naming of the complex trait
1272  in the MRC CEU OpenGWAS database; ‘nsnps’: the number of SNPs included in the genetic
1273  region of the colocalisation analysis; ‘PP.H0.abf’: posterior probability of no association with
1274  either trait (if PPy > 0.8); ‘PP.H1.abf’: posterior probability of association with pQTL but not
1275  complex trait (if PP, > 0.8); ‘PP.H2.abf’: posterior probability of association with complex trait
1276  but not pQTL (PP, > 0.8); ‘PP.H3.abf’: posterior probability of association with both traits but
1277  at separate causal variants (if PP; > 0.8); ‘PP.H4.abf’: posterior probability of association with
1278  both traits at a shared causal variant (if PP4 > 0.8).

1279  S13 Table. Results from the pQTL—complex trait Mendelian randomisation analysis.
1280 Columns are ‘Protein’: HUGO gene naming consortium symbol for the protein used as
1281  exposure; ‘Trait’: the complex trait used as an outcome; ‘Full trait name’: the full naming of
1282  the complex trait in the MRC CEU OpenGWAS database; ‘ID’: internal identification for
1283  complex trait used in the MRC CEU OpenGWAS database; ‘Study’: the name of the
1284  consortium/biobank or the first author of the study; ‘Test’: the method used to conduct
1285  Mendelian randomisation (MR), for single variant based exposure traits Wald test and for
1286  multiple variants based exposure traits inverse variance weighted (IVW) regression; ‘nSNP’:
1287  the number of genetic variants used as instrumental variables (IV) in exposure traits for the MR
1288 analysis; ‘b’: the causal effect estimate of the protein (exposure) on the complex trait
1289  (outcome); ‘se’: the standard error of the causal effect estimate; ‘pval’: the p-value of the MR
1290 analysis; ‘qFDR’: the Benjamini-Hochberg FDR-corrected g-value of the MR analysis.

1291  S14 Table. List of significant (P < 1.48 x 108) associations from the rare variant gene-
1292  based pQTL analysis. Columns are ‘Uniprot’: UniProtID of the protein; ‘Protein’: HUGO
1293  gene naming consortium symbol for the protein; ‘chr’: the chromosome of the associated gene
1294  (GRCh37), ‘beg’: the start coordinates of the gene (GRCh37); ‘end’: the end coordinates of the
1295 gene (GRCh37); ‘marker id’: the genetic location of the associated gene, including
1296  chromosome, start and end coordinates, and HGNC gene symbol for it (GRCh37); ‘NS’: the
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1297  number of phenotyped samples with non-missing genotypes; ‘FRAC WITH RARE’: the
1298  fraction of individuals carrying rare variants below the maximum of minor allele frequency
1299  threshold (MAF < 0.01); ‘NUM_ALL VARS’: the number of all variants defining the group,
1300 meaning all genetic variants located within the tested gene; ‘NUM_PASS VARS’: the number
1301  of variants passing the minimum of MAF (0.0000001), the minimum of minor allele count (1),
1302 the maximum of MAF (0.01) and minimum of call rate (0.5) thresholds;
1303 ‘NUM SING_VARS’: the number of singletons among variants in ‘NUM_PASS VARS’;
1304 ‘PVALUE’: the p-value of the burden test; ‘QSTAT’: the Q statistic of the burden test; ‘“TYPE’:
1305 the association type, cis is if the association is with the protein-encoding gene itself and
1306  otherwise trans; ‘eQTL_NS’: the number of phenotyped samples with non-missing genotypes
1307  for gene expression; ‘eQTL FRAC WITH RARE’: the fraction of individuals carrying rare
1308  variants below the maximum of minor allele frequency threshold (MAF < 0.01) for gene
1309  expression; ‘eQTL NUM ALL VARS’: the number of all variants defining the group, all
1310  genetic  variants located within the tested gene for gene expression;
1311 ‘eQTL _NUM PASS VARS’: the number of variants passing the minimum of MAF
1312 (0.0000001), the minimum of minor allele count (1), the maximum of MAF (0.01) and
1313  minimum of call rate (0.5) thresholds for gene expression; ‘eQTL NUM SING VARS’: the
1314  number of singletons among variants in ‘€QTL _NUM PASS VARS’ for gene expression;
1315  ‘eQTL_PVALUE’: the p-value of the burden test for gene expression; ‘eQTL _QSTAT’: the O
1316  statistic of the burden test for gene expression; ‘eQTL QVALUE FDR’: the Benjamini-
1317  Hochberg FDR-corrected g-value of the eQTL analysis.

1318  S15 Table. (A) List of significant CNV-pQTLs and (B) CNV pQTL-eQTL Spearman
1319  correlations and MR results. (A) Columns are ‘CNV’: the genetic location of the CNV in the
1320 format chromosome:start-end (GRCh37); ‘Chr’: the chromosome CNV is located on
1321 (GRCh37); “Start’: the start coordinates of the CNV (GRCh37); ‘End’: the end coordinates of
1322  the CNV (GRCh37); “Uniprot’: UniProtID of the protein; ‘Array’: Olink panel for the protein;
1323  ‘Gene’: HUGO gene naming consortium symbol for the protein; ‘Type’: the pQTL association
1324  type, if the CNV association is in the proximity of the protein-encoding gene, the association
1325  is cis and otherwise trans; ‘P-value (pQTL)’: the CNV pQTL association p-value; ‘P-value
1326  (eQTL same gene)’: the p-value from the CNV eQTL analysis for the pQTL gene (for
1327  heterodimer the specific subunit is in the brackets); ‘P-value (eQTL other gene)’: the p-value
1328  from the CNV eQTL analysis for not pQTL gene and in the brackets in the associated gene;
1329  ‘CNV overlap with a gene’: CNV overlap with a gene and gene symbol is in the brackets, for
1330  heterodimer, overlap with subunit is marked; ‘Number of copies’: the possible number of
1331  alleles detected for the CNV in the Estonian population; ‘Allele frequency’: the frequency of
1332  the CNV based on the number of copies corresponding in the column ‘Number of copies’. (B)
1333  Columns are ‘CNV’: the genetic location of the CNV in the format chromosome:start-end
1334  (GRCh37); ‘gene (RNAseq)’: HUGO gene naming consortium symbol for the gene; ‘protein
1335  (Olink)’: HUGO gene naming consortium symbol for the protein; ‘R (Spearman)’: Spearman’s
1336  rank correlation coefficient for gene expression versus protein expression; ‘Z (MR)’: Z score
1337  as causal effect estimate from the CNV eQTL and CNV pQTL MR analysis; ‘P (MR)’: p-value
1338  from the CNV eQTL and CNV pQTL MR analysis. *Reference for these values is a whole-
1339  genome sequenced cohort of 2,273 individuals in the Estonian Biobank.
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1340  S16 Table. List of significant CNV-eQTLs. Columns are ‘CNV’: genetic coordinates of the
1341 tested CNV in the format of chromosome:start-end (GRCh37); ‘gene’: HUGO gene naming
1342  consortium symbol for the trait; ‘ensembl’: Ensembl transcript ID for the tested trait; ‘beta’:
1343  estimate of the effect size; ‘t-stat’: t-statistic of the association; ‘p-value’: p-value of the
1344  association; ‘FDR’: Benjamini-Hochberg procedure corrected association g-value.

1345  S17 Table. List of pQTLs identified in the SNP-tagged CNV analysis. Single variant pQTL
1346  results originate from the Sun et al. 2022 study [9]. Columns are ‘chr’: the chromosome (hg19);
1347  ‘position’: the position of the SNP (hgl9); ‘rsID’: the rsID of the pQTL SNP; ‘Al’: the
1348 reference allele; ‘A2’: the tested allele; ‘target’: HUGO gene naming consortium symbol for
1349  the protein; ‘cis_trans’: the association type in the original Sun et al. [9] pQTL mapping (either
1350 cis or trans); ‘A2 freq discovery’: the frequency of the tested SNP in the Sun et al. [9]
1351  discovery cohort; ‘A2 freq replication’: the frequency of the tested SNP in the Sun et al. [9]
1352  replication cohort; ‘A2 freq Est’: the frequency of the tested SNP in the Estonian Biobank;
1353  ‘maxR2’: the R? of the linkage disequilibrium between Sun et al. [9] pQTL SNP and the
1354  Estonian Biobank CNV; ‘maxR2 CNV’: the CNV tagged by SNPs coordinates (hgl9);
1355  ‘frequency (deletion/duplication)’: the frequency of the CNV in the Estonian Biobank;
1356 ‘maxR2 CNV_Impact’: the classification of the most likely impact of the SNP tagging the
1357 CNV; ‘maxR2_CNV_Consequence’: the most likely consequence of the SNP tagging the
1358 CNV.

1359  S18 Table. List of secretion locations for the proteins with significant results from the
1360 pQTL analysis. Columns are ‘Protein’: the HGNC gene symbol for the protein; ‘location’: the
1361  location of proteins; ‘CNV’: CNV pQTL association detection; ‘rare’: rare variant gene-based
1362 pQTL association detection.
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