

1

2

3

4 **Genetic determinants of plasma protein levels in the Estonian population**

5

6 Anette Kalnpenkis^{1,2,¶,*}, Maarja Jõeloo^{1,2,¶}, Kaido Lepik^{1,3,4,5}, Viktorija Kukuškina¹, Mart
7 Kals¹, Kaur Alasoo⁶, Estonian Biobank Research Team[^], Reedik Mägi¹, Tõnu Esko^{1,¶,*},
8 Urmo Võsa^{1,¶,*}

9

10

11

12 ¹ Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.

13

14 ² Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.

15

16 ³ Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.

17

18 ⁴ Swiss Institute of Bioinformatics, Lausanne, Switzerland.

19

20 ⁵ University Center for Primary Care and Public Health, Lausanne, Switzerland.

21

22 ⁶ Institute of Computer Science, University of Tartu, Tartu, Estonia.

23

24

25

26 [¶]These authors contributed equally to this work.

27

28 [¶]These authors also contributed equally to this work.

29

30 Corresponding authors*

31 Emails: anette.kalnpenkis@ut.ee, tonu.esko@ut.ee, urmo.vosa@ut.ee

32

33 [^] Membership of the Estonian Biobank Research Team is provided in the

34 Acknowledgements.

35 **Abstract**

36 The proteome holds great potential as an intermediate layer between the genome and phenotype.
37 Previous protein quantitative trait locus studies have focused mainly on describing the effects
38 of common genetic variations on the proteome. Here, we assessed the impact of the common
39 and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins
40 measured in up to 500 individuals. We identified 184 *cis* and 94 *trans* signals for 157 protein
41 traits, which were further fine-mapped to credible sets for 101 *cis* and 87 *trans* signals for 151
42 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 *cis* and 14 *trans*
43 associations. CNVs were associated with the levels of 11 proteins (7 *cis* and 5 *trans*), examples
44 including a 3q12.1 deletion acting as a hub for multiple *trans* associations; and a CNV
45 overlapping *NAIP*, a sensor component of the NAIP-NLRC4 inflammasome which is affecting
46 pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a
47 comprehensive resource of genetic variation affecting the plasma protein levels and provides
48 the interpretation of identified effects.

49

50 **Introduction**

51 During the last decade, genome-wide association studies (GWASs) have successfully linked
52 genetic variants to complex traits [1]. However, the mechanisms underlying many of these
53 associations often remain unknown, as most of the associated genetic variants are located in
54 non-coding regions of the genome, suggesting that they have regulatory effects on phenotypes
55 [2]. To fill this knowledge gap, molecular traits are routinely used as intermediate phenotypes
56 in association studies. The study of molecular phenotypes enables the assessment of the direct
57 effects of genetic variants on, for example, the alteration of protein levels, and the potential

58 underlying molecular mechanisms and links to endpoint phenotypes.

59 Proteins are functional products of the genome that provide insight about the normal processes
60 of organisms; in addition, alterations in their levels are indicators of changes in disease status
61 [3]. Recent technological advancements, including the development of multiplex
62 immunoassays and aptamer assays, have provided opportunities for the measurement of
63 thousands of plasma- and serum-based protein levels [4–8].

64 The genetic backgrounds of protein levels are uncovered through the linking of these levels to
65 genetic variability via protein quantitative trait locus (pQTL) analysis. Many recent pQTL
66 studies have been large-scale [4–8], with the largest of them including 54,306 individuals from
67 the UK Biobank [9]. Their primary focus has been the identification of common [minor allele
68 frequency (MAF) > 0.01] variants affecting inter-individual protein variability, but Sun et al.
69 [9] reported that approximately 5.6% (570/10,248) and 1.5% (155/10,248) of the variants with
70 primary associations had MAFs < 0.01 and < 0.005, respectively. In addition, the focus has
71 been shifting toward the identification of associations with rare (MAF < 0.01) variants, using
72 gene-based methods [10–14]. For example, a recent landmark study conducted on the Icelandic
73 population revealed 18,084 genetic associations with protein levels, 19% of which were with
74 rare variants [8]. Investigation of the effects of other structural variants, such as copy number
75 variants (CNVs), on protein levels has thus far been limited [15].

76 The combined examination of pQTL and GWAS results for disease phenotypes can lead to the
77 validation and prioritisation of new and existing drug targets, and the identification of clinically
78 relevant biomarkers. Ferkingstad et al. [8] found that 12% of 45,334 lead associations in the
79 GWAS Catalog were with variants in high linkage disequilibrium (LD) with pQTLs. The
80 application of Mendelian randomisation (MR) and colocalisation analysis to biomedical data
81 for the identification of links between pQTLs and diseases enables the evaluation of the

82 causality between protein levels and disease risk and the identification of potential disease
83 pathways, respectively. Zheng et al. [16] used MR and colocalisation analysis to examine
84 associations of 1,002 plasma proteins with 153 diseases and 72 disease-related risk factors, and
85 identified 413 protein–trait associations supported by MR, 130 (31.5%) of which were not
86 supported by the colocalisation analysis. This example highlights the importance of
87 intersecting the results from both analyses [17].

88 Here, we integrated dense whole-genome sequencing (WGS) data to study the genetic
89 contributions of rare and common variants to 326 plasma protein levels in the Estonian Biobank
90 cohort (Fig 1). We examined the effects of single nucleotide polymorphisms (SNPs) and
91 common CNVs on the inter-individual protein variability, and identified several proteins that
92 were affected by the latter. To assess the overlap of local (*cis*) and distal (*trans*) pQTL effects
93 with gene expression levels, we conducted comprehensive colocalisation analyses with
94 expression quantitative trait loci (eQTLs) and splicing QTLs using data from various tissues
95 from the eQTL Catalogue [18].

96 **Figure 1. Overview of the main analyses conducted in this study.**

97 **Material and methods**

98 **Study samples**

99 The Estonian Biobank (EstBB) cohort consists of more than 200,000 Estonian volunteers aged
100 ≥ 18 years, representing about 20% of the Estonian adult population, detailed information on
101 the enrollment process and data collection is described in the Leitsalu et al. study [19].
102 Genotype data are available for all gene donors in this cohort. For a subcohort of 500
103 individuals [52.8% females and 47.2% males, mean age 54 (standard deviation 14.0) years],

104 WGS, RNA sequencing and Olink proteomics data from the same timepoint are available. The
105 WGS dataset was generated in 2015. Sample collection for RNA sequencing and Olink
106 proteomics was conducted in years 2011-2012. RNA sequencing was performed in years 2015-
107 2016 and protein levels were measured in year 2017. The activities of the EstBB are regulated
108 by the Human Genes Research Act, which was adopted in year 2000 specifically for the
109 operations of the EstBB. All participants have signed a broad consent form to allow researchers
110 to use their genomics and health data for studies upon approval by the Estonian Committee on
111 Bioethics and Human Research. Individual level data analysis for this project was carried out
112 under approval 1.1-12/624 from the Estonian Committee on Bioethics and Human Research
113 (Estonian Ministry of Social Affairs) and data extraction no. K29 from the Estonian Biobank.
114 The current study was conducted using pseudonymised data.

115 **WGS data processing, variant calling and quality control**

116 The 2,284 EstBB WGS samples were sequenced at the Genomics Platform of the Broad
117 Institute (Cambridge, MA, USA). Sequenced data were jointly variant called and quality
118 controlled as described by Mitt et al. [20]; and the final WGS sample set was derived from
119 2,244 individuals. We excluded multiallelic sites and genetic variants, based on quality/depth
120 < 2 , Hardy-Weinberg equilibrium test failure ($P > 1 \times 10^{-9}$), and call rate $< 90\%$. Data from
121 individuals with available proteomics data ($n = 500$) were retained for further analyses.

122 **CNV detection and quality control**

123 The Genome STRiP pipeline (version 2.00.1611) [21] was applied to detect CNVs from aligned
124 sequencing reads (in BAM format) for 2,284 samples as described by Lepamets et al. [22]. In
125 brief, CNV sites were identified and genotyped in five batches. After the exclusion of samples
126 with excessive numbers of calls, the batches were combined and duplicate calls were merged.

127 Low-quality calls and sites with call rates <90% were excluded. We restricted the final dataset
128 to deletions longer than 1,000 bp and duplications longer than 2,000 bp. The final sample set
129 contained 51,026 CNV sites from 2,230 individuals. Data from individuals with available
130 proteomics data ($n = 500$) were retained for further analyses.

131 **Measurement of plasma protein levels**

132 Plasma concentrations in EDTA plasma samples from 500 Estonian Biobank donors were
133 measured using four arrays with 92 protein targets each [ProSeek Cardiovascular Disease
134 (CVD) II and III, Inflammation and Oncology II; Olink Biosciences, Uppsala, Sweden; S1
135 Table]. The procedure is described in detail elsewhere [23], and a technical white paper with
136 additional information is available at the manufacturer's website (<https://www.olink.com>). The
137 native Olink data consisted of qPCR cycle threshold values corrected for extension control,
138 followed by inter-plate control and the application of a correction factor predetermined by a
139 negative control signal. The measurements were given at a natural logarithmic scale as
140 normalised protein expression levels, a relative quantification unit. As part of the quality
141 control, we excluded individual samples that did not pass the Olink internal quality control
142 system. Final sample sizes per array ranged from 488 to 497, and the samples were measured
143 in six batches. For arrays in which <20% of samples had values below the limit of detection
144 (LOD), protein level correction was performed by dividing the Olink-assigned LOD value by
145 2, as done in the SCALLOP CVD-I project [6]. A total of 341 protein traits (326 unique
146 proteins, as 14 proteins were measured by more than one array) passed quality control and were
147 retained for further analyses (S1 Table).

148 **RNA sequencing data**

149 RNA was extracted from samples in thawed Tempus tubes using TRIzol reagent (Invitrogen,
150 Waltham, MA, USA) and further purified using an RNeasy Mini Kit (Qiagen, Hilden,
151 Germany). Globin mRNA was depleted using GLOBINclear Kit (Invitrogen, Waltham, MA,
152 USA). RNA quality was checked using electrophoresis (Agilent 2200 TapeStation; Agilent
153 Technologies, Santa Clara, CA, USA). Sequencing libraries were prepared using 200 ng RNA
154 according to the Illumina TruSeq stranded mRNA protocol. RNA sequencing was performed
155 at the Estonian Genome Centre Core Facility using paired-end 50-bp sequencing technology
156 (Illumina, San Diego, CA, USA), according to the manufacturer's specifications.

157 Adapters and leading and trailing bases with a quality score were removed using Trimmomatic
158 (version 0.36) [24]. Quality control was done with FastQC (version 0.11.2) [25]. Reads were
159 mapped to human genome reference version GRCh37.p13 with STAR (version 2.4.2a) [26].
160 Reads that mapped to each genomic feature were counted with STAR using the same algorithm
161 as default htseq-count. Raw RNA sequencing counts were normalised with the weighted
162 trimmed mean of M-values [27] method from the edgeR R package (version 3.12.1) [28].
163 Detailed information regarding RNA sequencing data pre-processing is described in Lepik et
164 al. [29]. The final gene expression measure was in logarithmed count per million. In total, 486
165 RNA sequencing samples overlapped with available proteomics data and were used for eQTL
166 mapping.

167 **Genome-wide SNP pQTL discovery**

168 Protein trait levels were rank-based inverse normal transformed. We regressed out the effects
169 of age, sex, the season of sample collection, smoking status, blood sample processing time
170 (days), plasma sample storage time (in days) and protein analysis batch using a custom R script.

171 The residuals were used in a single-variant pQTL analysis performed with the EMMAX linear
172 mixed model [30] and the EPACTS software (version 3.3.0, *q.emmax* function;
173 <https://genome.sph.umich.edu/wiki/EPACTS>). To account for population structure, a kinship
174 matrix was generated in EPACTS using genetic variants with MAF > 0.01 and call rate > 95%.
175 Depending on the panel, we tested between 8,856,032 and 8,891,303 autosomal genetic
176 variants against 341 plasma protein traits.

177 We classified associated variants into two categories based on their positions in relation to the
178 protein-coding genes. We defined *cis*-pQTLs as SNPs located within 1Mb upstream or
179 downstream of the transcription start sites (TSSs) of the corresponding protein-coding genes,
180 and *trans*-pQTLs as SNPs located >1 Mb upstream or downstream of the TSS or on a different
181 chromosome. Heterodimers were classified based on the protein subunit gene closest to the
182 associated variant. In the case of proteins that were present on multiple panels, weaker signals
183 were omitted from the analyses.

184 To retain independent signals, associated variants were clumped in PLINK (version 1.9) [31],
185 using a 1 Mb window with the LD thresholds of $R^2 = 0.1$ and $P < 5 \times 10^{-8}$. To flag potential
186 ‘pseudo-pQTL’ signals caused by the epitope effect, i.e. altered assay binding affinity due to a
187 change in protein structure instead of an actual change in protein expression level, we followed
188 the strategy described by Folkersen et al, 2020 [6]. Briefly, we determined whether any lead
189 *cis* variant was a protein-altering variant (PAV) or in high LD ($R^2 \geq 0.8$) with one, by using
190 2,230 WGS samples as the reference for the LD calculations (S2 Table). Missense, frameshift,
191 splice donor region and stop gain variants were flagged as PAVs. Lead pQTL variants were
192 queried for evidence of location in a regulatory region using RegulomeDB [32].

193 **Corresponding eQTL discovery**

194 In order to overlap the genome-wide significant ($P < 5 \times 10^{-8}$) pQTLs with eQTLs, we used
195 the RNA sequencing data from the overlapping samples of the same cohort [29]. We tested the
196 eQTL effects on the genes encoding corresponding proteins by using a linear mixed model
197 from EPACTS software (version 3.2.2) [30] with the same settings as for pQTL analysis. We
198 included age, sex, body mass index, blood components (neutrophils, eosinophils, basophils,
199 lymphocytes, monocytes, erythrocytes and thrombocytes) and RNA sequencing batch as
200 covariates. To account for hidden batch effects on the gene expression, the first two principal
201 components of the gene expression data were also included as covariates, as described in detail
202 in Lepik et al. [29]. To correct for multiple testing, we adjusted P-values using false discovery
203 rate (FDR) correction; eQTLs were considered as replicated at Benjamini-Hochberg FDR \leq
204 0.05 and with concordant allelic direction with the pQTLs.

205 **Multiple testing correction for the pQTL analysis**

206 From primary analyses, effects reaching per-protein genome-wide significance ($P < 5 \times 10^{-8}$)
207 were interpreted. To also provide the more conservative results accounting for the number of
208 tested proteins, we used a strategy described by Gao et al. and Kettunen et al. [33,34], which
209 accommodates the correlation between protein levels. Four matrices corresponding to inverse
210 normal transformed and covariate-adjusted protein levels from the Olink panels were merged.
211 Only samples that passed quality control on every panel ($n = 478$) were included. The resulting
212 matrix of standardised residuals was used in a principal components analysis implemented with
213 the FactoMiner (version 1.41) [35] R package. As 181 principal components cumulatively
214 explained $>95\%$ of the total variance in the proteomics data, the stricter significance threshold
215 was set to 2.76×10^{-10} ($5 \times 10^{-8} / 181$).

216 Gene-based analysis of rare SNPs

217 Variants were annotated using the EPACTS ‘anno’ module (version 3.3.0;
218 <https://genome.sph.umich.edu/wiki/EPACTS>) and GENCODE (version 14) [36] to ascertain
219 their effects on protein sequences. A gene-based group file was generated with the inclusion
220 of all nonsynonymous (missense and nonsense) variants in assigned genes. Only genes with
221 more than two nonsynonymous variants were retained. We performed the gene-based SKAT
222 test using the EMMAX *mmskat* function with adjustment for small sample size in EPACTS,
223 using all variants with $0.000001\% < \text{MAF} < 1\%$. Covariates included in the rare variant pQTL
224 analysis were the same as described in the Methods section for Genome-wide SNP pQTL
225 discovery. The results were corrected for multiple testing based on Bonferroni-corrected
226 threshold of $P < 1.48 \times 10^{-8}$ [$0.05 / (18,717 \text{ genes} \times 181 \text{ protein traits})$]. Associations between
227 genes and levels of proteins encoded on the same gene were classified as *cis*, and all other
228 associations were classified as *trans*. Using the GeneMANIA database [37,38], we investigated
229 whether the associated genes also had gene–gene functional interactions with corresponding
230 protein-coding genes. For overlapping the rare variant pQTL associations with eQTL data, we
231 performed an eQTL mapping with EPACTS software (version 3.2.2) using the same gene-
232 based SKAT test as in rare variant pQTL mapping. Covariates included in the rare variant
233 eQTL analysis were the same as described in the Methods section for Corresponding eQTL
234 discovery. Similar to single variant eQTL analysis, to account for multiple testing, we adjusted
235 P -values using false discovery rate (FDR) correction; rare variant eQTLs were considered as
236 replicated at Benjamini-Hochberg FDR ≤ 0.05 and directionally concordant with the rare
237 variant pQTLs.

238 **Fine-mapping analysis**

239 We conducted a fine-mapping analysis to pinpoint causal variants for protein level-significant
240 ($P < 5 \times 10^{-8}$) SNV-pQTL associations. We excluded the LTA and MICA-MICB proteins
241 associated with variants in the major histocompatibility complex region on chromosome 6, due
242 to the complexity of the associated *HLA* region. The fine-mapping procedure was based on the
243 SuSiE ‘sum of single effects’ model [39,40] and was implemented using the *susie_suff_stat*
244 function from *susieR* package (version 0.11.42). Fine-mapping pipeline was implemented in
245 Nextflow [41] and some scripts were modified from the FINNNGEN fine-mapping pipeline
246 (<https://github.com/FINNNGEN/finemapping-pipeline>). The SuSiE output contains single effect
247 components, i.e., credible sets (CSs), with a >95% probability of including a variant with a
248 non-zero causal effect. We used a default setting of 10 for the maximum number of causal
249 variants regulating a protein, because Wang et al. has demonstrated it to be the optimal choice
250 for the number of causal variants [39]. LDstore (version 2) [42] was used to generate an LD
251 matrix for each locus.

252 **Replication of pQTLs**

253 All significant lead variants from the pQTL discovery analyses were queried for previously
254 published associations with protein levels in the PhenoScanner database (version 2) [43,44]
255 using the Python application (<https://github.com/phenoscanner/phenoscannerpy>, query date 4
256 October 2021). This database contains results from large pQTL studies [4,45,46]. For variant
257 matching between datasets, we created variant names that were concatenations of the
258 corresponding chromosome, chromosome position (hg19), and alphabetically ordered alleles.
259 To match UniProt IDs from the discovery analyses to PhenoScanner trait names, the IDs were
260 converted to recommended HUGO Gene Nomenclature Committee gene names using the
261 UniProt conversion tool (<https://www.uniprot.org/uploadlists/>, latest query date 11 October

262 2021). We performed additional replication analysis using Pietzner et al. dataset by querying
263 their publicly available results with $P < 0.05$ [7]. The largest pQTL meta-analysis published to
264 date ($n = 30,931$) [6] was conducted through the SCALLOP consortium and was not usable
265 due to sample overlap with the current study. In order to ensure that each protein was
266 represented by a single association, we restricted our comparisons to instances where either
267 one subunit or the entire heterodimer complex was available. For instances where one protein
268 was available multiple times, we conducted comparison with the association with the smallest
269 P -value. To account for multiple testing, we adjusted P -values using false discovery rate (FDR)
270 correction; pQTLs were considered as replicated at Benjamini-Hochberg FDR ≤ 0.05 and
271 concordant allelic direction with the discovery pQTLs.

272 **Identification of relevant disease traits and molecular QTLs**

273 To identify complex traits and diseases associated with the top pQTLs, we conducted a
274 phenome-wide association analysis (PheWAS) by querying the lead variants from primary
275 pQTL mapping and their proxies against the PhenoScanner database (version 2) [43,44].
276 Duplicate associations happening due to data resource overlap were removed. We considered
277 only PhenoScanner associations with $P < 1 \times 10^{-5}$. Specifically, we sought to identify pQTLs
278 associated with disease traits, methylation quantitative trait loci (meQTLs), histone
279 modifications and metabolite quantitative trait loci (mQTLs), as well as percent-spliced-in
280 (PSI) associations. We also searched for significant protein genes on a druggable genome list
281 [47] and the drugs that interact with them [48]. For a subset of pQTLs we selected for in-depth
282 analyses by coloc and Mendelian randomisation, an additional PheWAS was conducted with
283 the Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) OpenGWAS
284 database [49]. This was done to extract region-wide associations, irrespective of association P -
285 value.

286 Colocalisation analysis

287 The colocalisation analyses between pQTLs and eQTLs, as well as between pQTLs and
288 complex traits were carried out using coloc (version 3.2.1) R package [50], which assumes that
289 each locus has a single causal variant. Priors used for the colocalisation analysis were $P_1 =$
290 10^{-4} , $P_2 = 10^{-4}$ and $P_{12} = 5 \times 10^{-6}$, as suggested by Wallace et al. [51]. For each protein-level
291 genome-wide-significant ($P < 5 \times 10^{-8}$) pQTL locus, we extracted regions in a 1-Mb radius of
292 its lead variant to test for colocalisation. The results were considered significant when the
293 posterior probability for colocalisation (PP4) exceeded 0.8.

294 In an pQTL–eQTL colocalisation analysis, we compared our significant pQTL loci to all eQTL
295 Catalogue datasets [18], excluding those of Kasela et al. [52] and Lepik et al. [29] due to sample
296 overlap, containing gene expression, exon expression, transcript usage and txrevise event usage
297 data, and GTEx (version 8) [53] datasets containing gene expression data
298 (<https://www.ebi.ac.uk/eqtl/Methods/>; S3 Table). We lifted the pQTL summary statistics over
299 to an hg38 build to match with the eQTL Catalogue.

300 The region-wide associations for GWAS traits enrolled into the colocalisation analyses were
301 extracted from the MRC IEU OpenGWAS database and were examined using the ieugwasr
302 (version 0.1.5) R package (<https://github.com/MRCIEU/ieugwasr>; S4 Table). Since proteins
303 were selected based on associated traits from the PheWAS, they were all associated with
304 clinical traits (i.e. drugs, surgeries, diseases/conditions). In addition, all selected proteins except
305 IL6R had primary pQTLs that did not include nonsynonymous variants, to minimise the
306 possibility of association due to the epitope effect. IL6R was selected because it has been
307 widely reported by previous pQTL studies as an example of the successful linking of molecular
308 traits and diseases to discover drug targets [45,54]. The input data consisted of region-based
309 summary statistics for six protein traits and 61 complex clinical traits.

310 **Two-sample MR**

311 We conducted a two-sample MR analysis using protein levels with significant colocalisation
312 ($PP_4 \geq 0.8$) as exposures and complex traits as outcomes, using the TwoSampleMR (version
313 0.5.6) R package [55,56]. Independent variants obtained previously by clumping served as
314 instrumental variables. We conducted the analysis using an inverse variance weighted fixed-
315 effects method and a single instrument-based Wald ratio test. To correct for multiple testing,
316 we adjusted P -values using false discovery rate (FDR) correction; results were considered
317 significant at Benjamini-Hochberg FDR ≤ 0.05 .

318 **CNV pQTLs, eQTLs and colocalisation**

319 To determine whether any of the examined proteins are genetically regulated by larger
320 structural variants, we conducted a pQTL mapping using CNV data. Description of the used
321 CNV data is in the Methods section for CNV detection and quality control. Associations
322 between previously described standardised protein measure residuals and CNV sites were
323 assessed by using the MatrixeQTL R package [57]. The post-quality control sample sizes for
324 the Inflammation, Oncology II, CVD II and CVD III panels were 481, 480, 489 and 488
325 unrelated (PI_HAT < 0.2) individuals, respectively. To discard rare CNV events, all CNV sites
326 with in-sample frequencies of the most frequent copy number > 0.95 were excluded.
327 Additionally, unique non-overlapping CNVs were included. The final set used in the pQTL
328 analyses comprised of 2,465 CNV sites [1,375 deletions ($CN < 2$), 482 duplications ($CN > 2$)
329 and 608 combined deletions and duplications]. The genome-wide significance threshold was
330 set to 1.12×10^{-7} ($0.05 / 2,465 / 181$).

331 For each significantly associated CNV, all SNP markers within a 500-kbp proximity were
332 tested for potential tagging effects. For this purpose, the SNP pQTL analysis using EPACTS
333 was repeated for these regions with the CNVs included as covariates.

334 The same CNVs were tested against the expression levels of 12,619 genes [29], and the CNV
335 pQTL results were then cross-referenced with eQTLs identified from the same set of
336 individuals. The eQTL results were corrected for multiple testing and a Bonferroni-corrected
337 threshold of $P < 1.61 \times 10^{-9}$ [0.05 / (2,465 CNVs \times 12,619 genes)] was applied. Overlapping
338 eQTL–pQTL pairings were tested in an MR framework using the summary statistics–based
339 ratio estimate (Wald test) [58], and Spearman’s rank correlation coefficient was calculated for
340 gene expression vs protein expression in the same individuals. We hypothesised that CNVs in
341 gene regions would be considerably more likely than other causal variants to modulate the
342 expression of those genes; thus, non-zero ratio estimates were taken to indicate shared causal
343 CNVs of gene expression and protein traits.

344 **PheWAS of CNV pQTLs**

345 CNV pQTLs from primary mapping that reached genome-wide significance ($P < 1.12 \times 10^{-7}$)
346 or the suggestive significance threshold ($P < 2 \times 10^{-5}$) were included in a PheWAS, resulting
347 in the inclusion of 38 CNV regions. All data included in the PheWAS were obtained using the
348 *lm* function with custom R scripts from 2,115 unrelated Estonian Genome Centre samples for
349 which WGS data were available, and were corrected for age, sex and six genotype principal
350 components (PCs; calculated from common SNPs). The 744 phenotypes examined were
351 anthropometric traits (height, weight, body mass index, hip circumference, waist
352 circumference, waist–hip circumferences ratio), cell counts from RNA-sequencing data (white
353 blood cells, red blood cells, platelets, neutrophils, monocytes, lymphocytes, eosinophils,
354 basophils), nuclear magnetic resonance spectroscopy–detected metabolites ($n = 225$) and

355 International Classification of Diseases, 10th revision (ICD-10) diagnoses with at least 20
356 carriers in the sample ($n = 505$). Self-reported diagnoses not reported elsewhere were set to not
357 available. Sex-specific diagnoses (ICD-10 codes F52, N4* and N5* for men, D25, D26, D27,
358 E28, N7*, N8*, N9*, O* and Z3* for women) were analysed using only samples of the relevant
359 sex as controls. The PheWAS significance threshold was set to $P < 0.05 / 420$, as 420 PCs
360 calculated on all included phenotypes explained 95% of the variability.

361 **Identification of CNV-tagging SNPs for pQTLs**

362 To aid the interpretation of the CNV-pQTL results, we examined additional pQTLs not
363 detected in this study due to the small sample size or the lack of protein measurements, by
364 using a CNV-tagging proxy SNP approach. To detect additional CNV–protein associations, we
365 extracted all SNPs with MAFs > 0.01 from each common (major allele frequency < 0.95) CNV
366 and its 500-kb flanking region, as identified in 2,230 Estonian WGS samples. We calculated
367 Pearson correlation coefficients between the CNVs and SNPs using custom R scripts. SNPs
368 with $R^2 > 0.8$ were defined as CNV-tagging proxy SNPs. The proxy SNPs were then compared
369 with a published set of SNP pQTLs in two larger sets of unique proteins [4,9] to determine the
370 degree of overlap. We used data on 1,021 independent autosomal lead pQTL variants for 1,478
371 proteins from the large-scale pQTL study conducted by Sun et al. [4]; 824 (80.7%) of these
372 variants were present in the EstBB WGS dataset. We extended the analysis to include data from
373 the largest pQTL study to date, conducted with 35,571 samples and resulting in the detection
374 of 10,248 independent autosomal pQTLs for 1,463 proteins [9]. The two studies encompassed
375 2,438 unique proteins, enabling broader investigation. The resulting loci were reported as
376 potential cases in which the underlying CNVs might be the causal variants. Figure depicting
377 tagged-CNV pQTLs was done by using the RIdogram v02.2.2 R package [59].

378

379 Results

380 Discovery of pQTLs

381 We identified 278 (184 *cis* and 94 *trans*) pQTLs for 157 (48.2%) of the 326 proteins examined,
382 using a protein-level genome-wide significance threshold of $P < 5 \times 10^{-8}$ (S2 Table). When
383 using a strict multiple testing correction threshold of $P < 2.76 \times 10^{-10}$, 151 pQTLs (131 *cis* and
384 20 *trans*) for 99 proteins remained significant (S2 Table). All interpretative analyses were
385 conducted using protein-level genome-wide-significant results.

386 To provide a comparison with previous research, we compared our results with previously
387 published data. From the Pietzner et al. study [7], 147 pQTLs (52.88%) were nominally
388 significant ($P < 0.05$) and accessible for comparisons. After correcting for multiple testing, 147
389 pQTLs remained significant (Benjamini-Hochberg FDR < 0.05) and 91.84% (135/147) of
390 pQTLs were directionally concordant with the current study (S2 Table). 66.19% (184/278) of
391 pQTLs were tested in the Sun et al. study [4]. Of them, 55.98% (103/184) were significant
392 (Benjamini-Hochberg FDR < 0.05) and 89.32% (92/103) were directionally concordant (S2
393 Table). 7.55% (21/278) pQTLs were also tested in the Suhre et al. study [46] and 57.14%
394 (12/21) were significant (Benjamini-Hochberg FDR < 0.05), and all the significant pQTLs were
395 directionally concordant with the current study (S2 Table). 12.23% (34/278) pQTLs were
396 tested in the Folkersen et al. study [45] and 85.29% (29/34) of the pQTLs were significant
397 (Benjamini-Hochberg FDR < 0.05) and all the significant pQTLs were also directionally
398 concordant with the current study (S2 Table). Concordance with previous studies demonstrates
399 the robustness of our results.

400 Fourteen (4.3%) of the proteins were measured in multiple arrays. Associations for the CXCL1,
401 CCL3 and VEGFA proteins were validated by multiple independent arrays, in which the same

402 genetic regions reached genome-wide significance and showed concordant effect directions.
403 The total numbers of associated proteins were similar for all panels and ranged from 38 to 43
404 (S2 Table). The detected associations included 278 independent pQTL variants [184 (66.2%)
405 *cis* and 94 (33.8%) *trans*], 9.35% of which were indels. Of the 157 associated proteins, 61
406 (38.9%) had more than one independent pQTL. Twenty-one proteins had both *cis* and *trans*
407 associations. A MICA-MICB heterodimer coded from the chromosome 6 *HLA* region had the
408 largest number of independent associations ($n = 12$; Fig. 2A). In concordance with previous
409 studies [4,9,60], there was an inverse relationship between the effect size and MAF (Fig. 2B),
410 and the associations were the strongest for significant *cis*-pQTL variants located nearest to the
411 TSSs of the relevant protein genes (Fig. 2C). The largest proportion of these *cis*-pQTLs [$n =$
412 73 (39.7%)] was located in intronic regions (Fig. 2D). Of the 184 *cis* associations detected for
413 104 proteins, 31 (16.85%) were with protein-altering primary lead *cis*-pQTL variants and an
414 additional 5 were with *cis*-pQTL variants in high LD with PAVs. These 36 (12.5%) pQTLs
415 were designated as potential pseudo-pQTLs because currently it is difficult to exclude the
416 possibility of technical signal happening due to the difference in antibody binding affinity.

417 **Figure 2. A. Numbers of genome-wide significant associations of variants with protein**
418 **traits. B. Absolute beta values according to minor allele frequencies (MAFs). C.**
419 **Significance of primary pQTL mapping *cis* associations according to distances from**
420 **transcription start sites (TSSs). D. Functional annotation classes for the top *cis* variants**
421 **from pQTL mapping, expressed as fractions.**

422 The strongest *cis* association was between the missense variant rs2228145 (p.Asp358Ala) and
423 the IL6RA level (MAF = 0.35, $P = 1.04 \times 10^{-106}$). Additional strong *cis* associations included
424 the rs1569960 and the SIRPA level (MAF = 0.34, $P = 2.67 \times 10^{-106}$) association, with four
425 independent signals in the SIRPA *cis* region; and a frameshift-causing insertion rs139130389
426 and the FOLR3 level (MAF = 0.12, $P = 3.91 \times 10^{-91}$) association, with three independent signals
427 in the FOLR3 *cis* region.

428 The most significant *trans* association was that of the *PLAUR* missense variant rs4760, located
429 on chromosome 19, affecting the level of TNFRSF10C (8p21.3; MAF = 0.18, $P = 4.60 \times 10^{-56}$). Strong *trans* associations were between the rs8176671 and the CDH5 level (16q21; MAF
430 = 0.19, $P = 8.83 \times 10^{-40}$) as well as between the deletion rs8176643 and the SELE level (1q24.2;
431 MAF = 0.18, $P = 7.98 \times 10^{-36}$); both of these variants are intronic variants for the 9q34.2 locus
432 of the *ABO* gene. This locus was a *trans*-signal hotspot, with intronic variants additionally
433 associated with the ICAM2, galectin-4 (LGALS4), PODXL and LIFR protein levels.
434 Additional *ABO* variant rs12216891 was associated with the CTRC level (MAF = 0.19, $P =$
435 8.39×10^{-30}).

437 Two of the proteins examined (MICA/B and IL27) are heterodimers, made up of multiple
438 subunits that are translated from two different genes at distinct loci. For IL27, we identified
439 one independent *trans* signal for an intronic variant for CCDC94 (rs56075200; MAF = 0.32, P
440 = 8.62×10^{-35}). For MICA/B, we identified ten independent signals in the *cis* region of one
441 subunit on chromosome 6 (the strongest signal was for an intronic variant of MICA:
442 rs3132467; MAF = 0.30, $P = 3.04 \times 10^{-68}$) and two *trans* associations.

443 To determine if there were any corresponding eQTLs for pQTLs, we conducted an eQTL
444 analysis, using the whole blood gene expression data from the same individuals and the same
445 time point. Gene expression data was available for 109 proteins with 201 pQTLs, including
446 two heterodimers with two subunits encoding the protein. In total, we detected 62 significant
447 (Benjamini-Hochberg FDR < 0.05) eQTLs (59 *cis*, 3 *trans*) (S5 Table). 77% (48/62) of them
448 were directionally concordant with corresponding pQTLs.

449 We found that 95% CSs for 151 proteins were linked to 131 independent genomic loci (S6
450 Table). LDLR, TNFRSF11B, TNFRSF6B, WISP1, CXCL1 and PLAUR proteins showed
451 significant pQTL effects but yielded no CS. Signals for CCL3, CXCL1 and VEGFA from

452 multiple assays were also validated by fine mapping to the same genetic regions. The 95% CSs
453 contained an average of 15.7 variants (*cis* sets, 15.76; *trans* sets, 15.6). Fifty-five (36.4%)
454 proteins had single-variant CSs. Of the 31 proteins with single-variant CSs in *cis* regions, 13
455 were fine-mapped to lead PAVs from primary pQTL mapping. Thirty-three (32.7%) out of 101
456 *cis* regions were fine-mapped to more than one signal (mean, 1.4 signals/region), with the
457 CCL24 *cis* region having the largest number of independent CSs ($n = 5$). In contrast, all
458 associated regions for pQTL *trans* signals were fine-mapped to a single CS.

459 Since a large proportion (217/278) of primary pQTLs were located in intergenic and intronic
460 regions, we queried RegulomeDB [32] to establish the variants' potential regulatory function.
461 We obtained regulatory information for 260 of 278 pQTLs corresponding to 251 unique lead
462 variants. Eleven variants (all *cis*) were previously established eQTLs and had evidence for
463 transcription factor binding– and/or DNase peak–related functions. Seventeen lead variants (12
464 *cis* and 5 *trans*) had chromatin immunoprecipitation sequencing– and DNase-based evidence
465 for regulatory functions, but were not eQTLs (S7 Table).

466 pQTL–eQTL colocalisation

467 The pQTL–eQTL colocalisation analysis was performed with 198 pQTL loci (corresponding
468 to 157 unique proteins), 18 eQTL Catalogue datasets and GTEx tissue eQTL data. We
469 identified 14,064 cases of pQTL–eQTL colocalisation (PP4>0.8), involving 105 proteins
470 [7,936 (56.4%) *cis*- and 6,128 (43.6%) *trans*-pQTLs; Tables 1, S8]. Colocalisations classified
471 as *cis* consisted of 2,021 (25.5%) cases in which colocalising eQTLs and pQTLs affected the
472 same gene product and 5,915 (74.5%) cases in which the colocalising loci affected different
473 gene products in the *cis* regions. *Cis* and *trans* pairs were specific to 73 and 26 proteins,
474 respectively, and 6 proteins (IL1R2, TEK, MIA, FCRLB, PDCD1LG2 and MICA-MICB) had
475 colocalisations for both *cis* and *trans* associations. The largest number of colocalisations was

476 found for pQTLs of the MICA-MICB heterodimer ($n = 6,583$), followed by OSCAR ($n =$
477 1,207) and ACP5 ($n = 1,105$) pQTLs.

478 **Table 1. Overview of significant colocalisation events for eQTLs from eQTL Catalogue**
479 **datasets and pQTLs.** The numbers of colocalisation with genes encoding corresponding
480 proteins are shown in parentheses.

Dataset	<i>Cis</i> -pQTL colocalising with eQTL (eQTL-pQTL same gene)	<i>Trans</i> -pQTL colocalising with eQTL
Gene expression (RNAseq)	710 (393)	398
Gene expression (microarray)	79 (51)	25
Exon expression	3,899 (777)	2,750
Txrevise	2,533 (547)	2,338
Transcript usage	715 (253)	617
Total	7,936 (2,021)	6,128

481
482 Since the protein measurements originated from blood, the most widely studied tissue, the
483 largest fraction of pQTLs colocalised with blood eQTLs. However, while using the GTEx
484 dataset, we also found 739 cases of pQTL–eQTL colocalisation in multiple tissues (Fig. 3, S8
485 Table). For 55 proteins with *cis*-pQTLs, 503 (68.1%) colocalising eQTLs were identified; for
486 22 proteins with *trans*-pQTLs, 236 (31.9%) colocalising eQTLs were identified. *Cis*-pQTLs

487 colocalising with eQTLs were detected in 49 tissues, and *trans*-pQTLs colocalising with
488 eQTLs were identified in 46 tissues (not in Epstein-Barr virus–transformed lymphocytes or
489 uterine or vaginal tissue).

490 **Figure 3. Overview of 10 *cis*-pQTL (A) and *trans*-pQTL (B) proteins with the most**

491 colocalising eQTLs from the GTEx database (version 8; GTEx Consortium, 2020).

492 Colours indicate eQTL tissues of origin. Brain tissues are pooled; a complete list is provided

493 in S8 Table.

494 **PheWAS on metabolite and epigenetic QTLs**

495 Queries for the 268 lead pQTL variants led to the identification of 17 variants (from 6 *cis* and
496 13 *trans* associations for 18 proteins) associated with 160 metabolite traits (S9 Table). The
497 majority [$n = 158$ (52.3%)] of the mQTLs discovered were for the *APOE* missense variant
498 rs7412, which had a *trans* association with the level of LDLR. Four metabolic traits
499 [apolipoprotein B, the concentration of very small very-low-density lipoprotein (VLDL)
500 particles, and phospholipids and total lipids in very small VLDL] had seven associations each.

501 From the epigenetic QTL datasets, we identified 6,236 meQTLs, 267 histone modification
502 QTLs and 129 exon-inclusion PSI associations for 193 primary pQTLs (from 142 *cis* and 60
503 *trans* associations for 130 proteins; S10 Table). Most ($n = 256$) meQTLs were associated with
504 the ADAM8 *cis*-pQTL rs2995310. The variant with the most ($n = 10$) histone modifications
505 was rs10415777, a *cis*-pQTL for OSCAR. Methylation data originates from five tissues: cord
506 blood, monocytes, neutrophils, T cells and whole blood; due to tissue availability, 78.7%
507 (4,906/6,236) of the identified meQTLs were from whole blood studies.

508 Common SNP pQTLs and complex traits

509 PheWAS

510 The queries for the 268 unique lead variants and high-LD proxies led to the identification of
511 135 (50.4%) variants with 5,046 significant associations for 432 complex traits (S11 Table).
512 Of these associations, 1583 (31.4%) were with various blood cell traits from the study
513 conducted by Astle et al. [61]. As expected, given the targeted nature of our protein panels,
514 coronary artery disease (CAD) and rheumatoid arthritis were most often linked to pQTLs with
515 118 and 99 associations, respectively. For example, 5 of 145 significant independent signals
516 for CAD from mixed-ancestry samples [62] and 2 of 7 significant loci for rheumatoid arthritis
517 from the study conducted by Stahl et al. [63] were pQTLs in our dataset. In terms of the most
518 associations per pQTL lead variant, *ABO* intronic variant rs507666 had the most associations
519 per lead pQTL variant [$n = 332, 85$ (25.6%) with blood cell traits]. No associated traits were
520 found for 62 proteins.

521 For 61 proteins (64 lead pQTL variants, 36 *cis*- and 28 *trans*-pQTLs), significant associations
522 were detected in both the eQTL colocalisation analysis and PheWAS. We restricted this set to
523 27 proteins (28 variants) which were not coded from the *HLA* region but showed associations
524 with diagnosis, treatment, or other phenotypes linked directly to health status (excluding
525 haematological and biochemical measurements). Six of these proteins (CD6, PRSS27,
526 CEACAM5, CD40, TNFRSF6B and IL1RL1) had significant colocalisations with eQTLs from
527 brain tissue, but no evidence of shared conditions with direct effects on the brain tissue in the
528 PheWAS.

529 For example, based on pQTL-eQTL colocalisation analysis, IL6R pQTL signal was also an
530 eQTL of the *IL6R* gene in macrophages, monocytes, T cells, whole blood and pancreatic islets.

531 A previous study has shown a link between IL6R and CAD [64]. We also identified
532 associations between IL6R pQTLs and CAD, rheumatoid arthritis and 7 other disease traits
533 (S11 Table), thereby supporting the findings of the study [63]. As another example, *IL1RL1*
534 pQTLs colocalised with *IL1RL1*, *IL18R1* and *IL18RAP* eQTLs detected in multiple cell types
535 with direct effects on the immune system (e.g. T-cells; S8 Table); these variants were
536 associated with asthma and allergic reactions in the PheWAS.

537 Eleven out of 27 proteins had *trans*-associations. *Trans*-pQTLs for the CTRC and TEK proteins
538 were in the *ABO* locus and colocalised with *ABO* eQTLs; in the PheWAS, they were linked to
539 multiple self-reported diagnoses (e.g. 'blood clot in the leg') from the UK Biobank sample, and
540 to haematological traits.

541 Most [$n = 140/157$ (89.2%)] of the proteins with significant pQTLs belonged to the druggable
542 genome category. These proteins were associated with 1,365 drug–gene interactions.

543 Colocalisation analysis

544 Based on the pQTL associations with genetic regions, PheWAS and eQTL colocalisation
545 results, we chose five *cis*-pQTL effects (affecting FGF5, IL1RL2, TNFRSF6B, IL2RA, and
546 IL6R) that were associated with clinical traits and had significant pQTL–eQTL colocalisations.
547 Furthermore, SULT1A1 was chosen due to additional CNV–pQTL associations in its region
548 which enabled to analyse colocalisation with respective complex traits. All selected proteins
549 except IL6R had synonymous lead pQTL variants. Therefore, the input data for colocalisation
550 analyses comprised of region-based summary statistics for 6 protein traits and 61 clinical
551 complex traits (83 pQTL–complex trait pairs).

552 We identified 46 significant colocalisation events (S12 Table). FGF5 had 25 colocalisations
553 with cardiovascular phenotypes and medications, such as CAD and perindopril use. IL6R had

554 a total of 11 significant colocalisations, which included colocalisations with CAD as well as
555 immunological conditions such as asthma. TNFRSF6B and SULT1A1 colocalised with
556 inflammatory bowel disease, and TNFRSF6B also separately colocalised with its two main
557 forms: Crohn's disease and ulcerative colitis. IL2RA colocalised with tonsillectomy +/-
558 adenoid operation. The PheWAS revealed associations of IL1RL2 with immune diseases which
559 were not supported by the colocalisation results.

560 **MR findings**

561 We conducted MR analyses using 46 significant (FDR-corrected) pQTL-complex trait pairs
562 from the colocalisation analysis (Fig. 4, S13 Table). We found a causal relationship between
563 the elevated level of soluble IL6R and a lower risk of cardiovascular disease ($P = 2.35 \times 10^{-24}$,
564 Benjamini-Hochberg FDR = 1.08×10^{-22}). Higher IL6R levels were also associated with an
565 increased risk of inflammatory conditions such as asthma and eczema ($P = 2.04 \times 10^{-4}$,
566 Benjamini-Hochberg FDR = 2.60×10^{-4} ; $P = 1.24 \times 10^{-5}$, Benjamini-Hochberg FDR = $1.96 \times$
567 10^{-5} , respectively). The TNFRSF6B level was causally linked to a reduced risk of inflammatory
568 bowel disease and its subtypes (inflammatory bowel disease (A294), $P = 4.00 \times 10^{-20}$,
569 Benjamini-Hochberg FDR = 9.19×10^{-19} ; Crohn's disease (A12), $P = 1.18 \times 10^{-16}$, Benjamini-
570 Hochberg FDR = 1.82×10^{-15} ; ulcerative colitis (A970), $P = 2.14 \times 10^{-8}$, Benjamini-Hochberg
571 FDR = 7.56×10^{-8}). Elevated levels of FGF5 were associated with a significantly increased
572 risk of coronary disease ($P = 8.94 \times 10^{-6}$ and Benjamini-Hochberg FDR = 1.47×10^{-5}).

573 **Figure 4. Forest plots of Mendelian randomisation results for proteins with positive (A)**
574 **and negative (B) effects on complex traits.** Protein (exposure) names are indicated on top of
575 the section, complex traits (outcomes) are on the left side. Multiple instances of traits with the
576 same name for one protein, indicating MR signal replication across multiple studies of the same
577 trait, have been marked 'A' and 'B'. Error bars denote standard errors and all presented results

578 are significant at a Benjamini-Hochberg FDR < 0.05. Details of causal associations are
579 provided in S13 Table. ¹“Medication for cholesterol, blood pressure, diabetes, or take
580 exogenous hormones: None of the above” (MRC IEU UK Biobank); ²“Blood clot, DVT,
581 bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: None of the
582 above” (MRC IEU UK Biobank).

583 **Rare variant pQTLs**

584 The gene-based association analysis revealed 19 significant associations [5 (26.3%) *cis* and 14
585 (73.7%) *trans*] emanating from 19 genes containing rare nonsynonymous SNPs and affecting
586 the levels of 7 proteins (S14 Table). The majority of identified rare variant effects (13, 68.4%)
587 were with the level of GDF-15. The most significant rare variant association was a *trans* signal
588 between *JAKMIP1* on chromosome 4 and the level of GDF-15 ($P = 5.41 \times 10^{-12}$). We also
589 assessed if rare nonsynonymous SNPs affect the expression of same genes encoding the
590 corresponding pQTL proteins, however we did not detect any nominally significant
591 (Benjamini-Hochberg FDR < 0.05) associations (S14 Table).

592 We next conducted GeneMANIA network analysis [37, 38] to identify functional connections
593 between genes harbouring rare SNPs and proteins affected by *trans* associations. First, we
594 studied the potential connection between rare variant genes associated with the GDF-15 level.
595 Ten of the identified genes harbouring rare SNPs (*CKAP5*, *GDF15*, *JAKMIP1*, *KRT19*,
596 *STAT5B*, *SLC35E1*, *RNF112*, *TUBGCP4*, *ZNF766* and *PPAPDC1B*), including gene encoding
597 identified pQTL protein, formed shared network with GDF-15, based on co-expression
598 (57.85%), pathway (19.97%), physical (18.45%) and genetic (3.73%) interactions, according
599 to GeneMANIA. However, no functional connection to GDF-15 was found for *LY6G6E*,
600 *RPL7L1* and *EFR3B*. *Trans* associations between rare variants and *SELPLG* and *MUC-16*
601 levels were supported by the GeneMANIA-based identification of two shared networks:

602 between *TMEM119* and SELPLG, as well as *GAL3ST2* and MUC-16, respectively. Those
603 connections were based mainly on physical interactions (77.64%) and co-expression (8.01%).

604 Four proteins (CTSZ, GDF-15, PON3 and SELPLG), had significant associations from both,
605 common variant and rare variant pQTL analyses. For CTSZ and GDF-15, the genetic regions
606 detected from the rare variant analysis were not the same as identified by SNP pQTL analysis.
607 However, PON3 had direct *cis* associations emanating from 7q21.3 locus in both
608 analyses: nonsynonymous variants of *PON3* in the rare variant pQTL analysis and rs10953142
609 in the common variant pQTL analysis. Similarly, SELPLG had *cis* associations emanating from
610 12q24.11 locus: nonsynonymous variants of the *TMEM119* for rare variant analysis and an
611 intergenic rs11114010 for common variant analysis.

612 **CNV pQTLs**

613 We detected 12 significant (Bonferroni-corrected *P*-value threshold 1.12×10^{-7}) pQTL
614 associations between CNVs and plasma protein levels (7 *cis* and 5 *trans*, 11 proteins; S15
615 Table), with two *cis* associations detected for the MICA-MICB heterodimer. The CNV eQTL
616 analysis in the overlapping set of samples identified 673 significant (Bonferroni-corrected *P*-
617 value threshold 1.61×10^{-9}) CNV eQTLs for 244 unique genes (S16 Table). 16.67% (2/12) of
618 significant CNV pQTLs had significant CNV eQTL associations with a corresponding gene.

619 For example, the deletion in the 3q12.1 intergenic region (chromosome 3: 98,410,653-
620 98,414,807 bp; frequency = 0.651) acted as a hub, having multiple *trans* associations with
621 protein levels: ICAM2 ($P = 1.31 \times 10^{-29}$), FLT4 ($P = 2.34 \times 10^{-24}$), PDCD1LG2 ($P = 2.88 \times$
622 10^{-15}) and IL1R1 ($P = 8.19 \times 10^{-8}$). Three of these associations (with ICAM2, FLT4 and
623 PDCD1LG2) were also detected by the SNP pQTL analysis but did not remain significant after
624 conditioning of the model on the CNVs, suggesting that CNV may underlie the observed

625 associations. However, eQTL analysis indicated that none of the genes encoding those proteins
626 is regulated by this locus, and a follow-up GeneMANIA network analysis [37,38] revealed a
627 shared network based on physical interactions (77.64%), co-expression (8.01%), predicted
628 functional relationship between genes (5.37%), co-localisation (3.63%), genetic interactions
629 (2.87%), pathway (1.88%) and shared protein domains (0.60%).

630 Another *trans* association example was between a 5q13.2 CNV (chromosome 5: 70,305,253–
631 70,312,310 bp; deletion frequency = 0.074, duplication frequency = 0.195) overlapping the
632 *NAIP* gene but affecting IL-18 level ($P = 7.9 \times 10^{-10}$). This locus was also an eQTL for *NAIP*
633 ($P = 6.4 \times 10^{-48}$), but not for IL18 expression ($P > 0.001$). We also detected moderate
634 correlation between IL-18 protein expression and *NAIP* gene expression (Spearman's $R =$
635 0.17); Spearman correlation coefficient between IL-18 protein and gene expressions was 0.05.
636 MR analysis using *NAIP* gene expression as exposure and IL-18 level as an outcome confirmed
637 the causal effect of the CNV on the IL-18 protein level (Wald test; $Z = 6.26$, $P = 3.8 \times 10^{-10}$).
638 This association was not observed in the SNP-based analyses, highlighting the case where the
639 pQTL signal would not be detected.

640 From *cis* effects, we detected an association between CNV in the 16p11.2 region (deletion
641 frequency = 0.022, duplication frequency = 0.382; partially overlapping SULT1A1; pQTL, P
642 = 3.46×10^{-21} ; eQTL, $P = 4.74 \times 10^{-119}$) and SULT1A1 protein and gene expression. Similarly,
643 we determined that a 19q13.42 deletion (frequency = 0.291) overlapping the *VSTM1* gene was
644 an eQTL and a pQTL for nearby gene *OSCAR* ($P = 1.77 \times 10^{-14}$ and $P = 5.64 \times 10^{-9}$,
645 respectively). However, the CNV was also associated with the expression of *VSTM1* itself (P
646 = 1.81×10^{-39}) and both gene–protein expression pairs showed moderate correlation (*OSCAR*–
647 *OSCAR*, Spearman's $R = 0.32$; *VSTM1*–*OSCAR*, Spearman's $R = 0.34$). The effect of the CNV
648 through gene expression is supported by the MR analysis, when using a CNV as an instrument,
649 *OSCAR* expression as an exposure and *OSCAR* level as an outcome ($Z = 5.94$; $P = 2.81 \times 10^{-$

650 ⁹⁾ and secondly, VSTM1 as an exposure and OSCAR level as an outcome ($Z = 5.92$; $P = 3.27$
651 $\times 10^{-9}$). Those results suggest that CNV works through gene expression, although it remains
652 unclear whether the effect on the OSCAR level is through *OSCAR* or *VSTM1* gene expression.

653 Additionally, we identified an association between the SIRPA level and a high-frequency
654 (frequency = 0.955) 20p13 deletion overlapping *SIRPB1*, a paralog of *SIRPA* ($P = 1.4 \times 10^{-11}$;
655 Fig. 5A and 5B). eQTL analysis indicated that the deletion was also associated with *SIRPB1*,
656 but not *SIRPA*, expression ($P = 3.5 \times 10^{-87}$). The correlation between SIRPA protein and gene
657 expression was weaker than that between SIRPA protein and *SIRPB1* expression (Spearman's
658 $R = 0.075$ and 0.202, respectively). Colocalisation was confirmed by the Wald test ($Z = 6.92$,
659 $P = 4.5 \times 10^{-12}$; Fig. 5C). In SNP pQTL fine mapping, we detected two independent CSs,
660 overlapping *SIRPB1* [variant with the largest posterior inclusion probability (PIP) = 0.295] and
661 at *SIRPA* (variant with the largest PIP = 0.242; Fig. 5A). When conditioned on the deletion, the
662 significance of pQTLs from only the *SIRPB1* CNV region was reduced dramatically (chr 20
663 position 1546911 variant pQTL mapping, $P_{\text{primary}} = 3.75 \times 10^{-11}$, $P_{\text{conditional}} = 0.41$, regional
664 pQTL mapping with EMMAX linear mixed-model [30] and the occurrence of the CNV and
665 the number of its copies used as an additional covariate). This example highlights that the
666 second signal from the primary pQTL analysis *SIRPA* locus was due to CNV-tagging variants
667 rather than an independent signal.

668 **Figure 5. A. Regional plot combining SNP- and CNV-based results for the SIRPA level**
669 **with additional single-variant fine-mapping information.** The blue rectangle indicates the
670 genetic location of the CNV. The horizontal dashed line indicates the genome-wide
671 significance threshold of $P = 5 \times 10^{-8}$. Genetic variants identified by fine mapping as belonging
672 to 95% credible sets are coloured red. The number of variants and the variant with the highest
673 PIP in the credible set are indicated in grey boxes. **B. Box plot of SIRPA levels based on the**
674 **CNV number of copies and frequencies.** Error bars indicate 95% confidence intervals; the
675 bottoms and tops of the boxes are the 25th and 75th percentiles, respectively; the lines inside
676 the boxes indicate medians. Outliers are depicted as circles. **C. Overview of SIRPA level**

677 **analyses.** *P*-values are from the CNV-based pQTL analysis for SIRPA and eQTL analyses for
678 *SIRPB1* and *SIRPA*.

679 Associations for nine proteins significant in both, CNV and pQTL mapping, were emanating
680 from the same loci in both analyses. For example, ICAM2 and FLT4 had *trans* associations
681 with rs12493830 on chromosome 3 and a CNV (chromosome 3: 98,410,653–98,414,807 bp)
682 in the same intergenic region, separated by 3859 bp.

683 **PheWAS for CNV pQTLs**

684 Significant PheWAS associations were detected for three CNVs. For the MICA-MICB dimer
685 pQTL, associations were detected between CNV on chromosome 6 (31,292,078–31,293,977
686 bp; deletion frequency = 0.876) and medium HDL triglycerides ($P = 8.82 \times 10^{-5}$), and between
687 a CNV on chromosome 6 (31,337,848–31,341,642 bp; deletion frequency = 0.074) and lower-
688 limb oedema (ICD-10 code R60; $P = 9.06 \times 10^{-5}$). Additionally, we detected nominally
689 significant associations for a CNV on chromosome 19 (41,381,588–41,387,347 bp, deletion
690 frequency = 0.054 and duplication frequency = 0.022) with the pQTL of the MIA protein level
691 ($P = 2.38 \times 10^{-6}$) and migraine (ICD-10 code G43; $P = 3.14 \times 10^{-5}$).

692 **CNV-tagging SNPs**

693 To further interpret the of CNV-pQTL results, we examined additional pQTLs for proteins that
694 were not measured in our study. For that, we leveraged LD between the EstBB CNVs and
695 previously reported pQTL SNPs and prioritised CNVs which could underlie the previously
696 reported pQTL associations (R^2 between SNP and CNV >0.8). We identified eight CNVs with
697 possible effects on protein levels (Table 2) from the Sun et al. 2018 study [4]. Only one of those
698 associations [proxy SNP rs10935473 with the CNV on chromosome 3 (98,410,653–

699 98,414,807; deletion frequency = 0.651)] affecting FLT4/VEGF-sR3 levels, was identified in
700 our study because the other proteins were not measured in our cohort.

701 **Table 2. Overview of SNPs tagging CNVs for proteins reported by Sun et al. (2018).** CNV
702 frequencies are derived from the EstBB data.

chr	Position	marker	CNV	CNV Frequency	R ²	Type	gene	protein
1	55097068	rs11206397	1:55,092,289- 55,095,991	deletion 0.538	0.90	<i>cis</i>	<i>FAM151A</i>	F151A
1	159004851	rs72709516	1:159,016,577- 159,019,397	duplication 0.001, deletion 0.122	0.97	<i>cis</i>	<i>IFI16</i>	IP16
1	196821380	rs115094736	1:196,728,841- 196,730,702	deletion 0.265	0.97	<i>trans</i>	<i>CANX</i>	Calnexin
1	196825287	rs7519758	1:196,728,841- 196,730,702	deletion 0.265	0.96	<i>trans</i>	<i>LRRC19</i>	LRC19
3	98416900	rs10935473	3:98,410,653- 98,414,807	deletion 0.651	1.00	<i>trans</i>	<i>FLT4</i>	VEGF sR3
6	32587859	rs9271421	6:32,461,274- 32,468,482	deletion 0.973	0.86	<i>trans</i>	<i>H6PD</i>	G6PE
8	57876576	rs112433249	8:57,918,258-	deletion 0.031	0.90	<i>cis</i>	<i>IMPAD1</i>	IMPA3

			57,925,230					
16	89781756	rs34714188	16:89,896,104- 89,898,445	duplication 0.001, deletion 0.108	0.91	<i>trans</i>	<i>PMEL</i>	GP100

703

704 We also detected 76 tagging SNP–CNV pairs for 33 unique CNVs and 72 proteins (S17 Table)
705 from a more recent Sun et al. 2022 study [9]. Twenty-nine (40.3%) of the proteins were also
706 measured in the EstBB cohort, of which six proteins had significant CNV pQTLs ($P < 1.12 \times$
707 10^{-7}). However, CNV-based pQTLs of the MICA-MICB heterodimer and SIRPA were not
708 associated with the same CNVs in the EstBB cohort as tagged by SNPs in Sun et al.’s [9] study.
709 Twenty-five (32.9%) of the tagging SNP–CNV pairs were associated with a deletion in the
710 3q12.1 intergenic region (chromosome 3: 98,410,653–98,414,807 bp, frequency = 0.651; the
711 closest gene is *ST3GAL6*), a *trans* association hub (Fig. 6), and the same deletion was
712 associated with four proteins (ICAM2, FLT4, PDCD1LG2 and IL1R1) in the EstBB dataset.

713 **Figure 6. Overview of SNP-tagged CNV and protein *cis* and *trans* associations.** Each line
714 depicts the CNV which is in LD ($R^2 > 0.8$) with pQTL SNP previously reported by Sun et al.
715 (2018) or Sun et al. (2022) study. Each dot indicates corresponding pQTL protein and colour
716 depicts the type of association.

717 None of the pQTLs tagging the CNV has known associations with complex traits which are
718 not cell type or metabolite related, according to the GWAS Catalog. In addition, 19.7% (15/76)
719 of the CNVs paired with tagging SNP were located in the *HLA* region on chromosome 6. The
720 proteins TACSTD2, CLEC5A, IL15 and SIGLEC9 were affected by multiple *trans*-pQTL
721 SNPs tagging CNVs. Whereas we detected a CNV associated with the SIRPB1 level on
722 chromosome 20 (1,556,917–1,561,028 bp, deletion frequency = 0.336) and a deletion in the

723 same locus overlapping *SIRPB1* and affecting the SIRPA level and (more strongly) *SIRPB1*
724 gene expression, based on Sun et al. tagging-CNV analysis, the SIRPB1 protein level was
725 associated with a different CNV than was its gene expression.

726 Discussion

727 The SNV-pQTL analyses conducted in this study revealed 278 genetic variants (184 *cis* and 94
728 *trans*, including indels), that were associated with the levels of 157 unique proteins. Consistent
729 with previous findings [4,6,8], the largest proportion of *cis*-pQTLs was located in intronic and
730 intergenic regions. The analysis of individual-level WGS data together with in-sample LD
731 information, enabled us to pinpoint the likely causal variants with a good resolution through
732 statistical fine mapping. This mapping led to the identification of at least one 95% CS for each
733 of 98 (53%) *cis* and 87 (47%) *trans* signals. For 16 *cis* and 28 *trans* associations, we identified
734 95% CSs consisting of the single most likely causal variants, which are good candidates for
735 further functional studies. Notably, the prioritised variants for nine (56%) of the single-variant
736 CSs for *cis*-pQTLs had protein-altering effects. This observation outlines that it is important to
737 consider technical epitope effects in the *cis*-pQTL analyses [65]. However, the identification
738 of PAVs demonstrates that fine mapping is also helpful for prioritising biologically causal
739 variants, because PAVs are likely to have a direct, albeit technical, effect on protein levels.
740 Only a limited number of pQTL studies have conducted fine mapping [9,66] as one of the post-
741 GWAS analyses. We and Zhang et al. [66] detected CSs for 58 (59.2%) protein *cis* regions
742 using data from cohorts of European ancestry, and Sun et al. [9] fine mapped CSs in 127
743 (67.6%) genetic regions for 117 proteins, matching our findings. The 95% CSs contained an
744 average of 15.7 variants in our study and 22.7 variants (9.6 *cis* and 29.4 *trans*) in that of Sun et
745 al. [9]. Our CSs for *cis* associations contained an average of 15.76 variants, whereas Zhang et

746 al. used imputed genotyping data and reported an average of 21.29 variants [66]. Generally
747 smaller credible sets might outline the added value of WGS data on fine mapping performance.

748 To support our findings with orthogonal data, we used the most comprehensive publicly
749 available eQTL resource, the eQTL Catalogue [18], to conduct eQTL–pQTL colocalisation
750 analyses. Detected colocalisations were 56.4% for *cis*- and 43.6% for *trans*-pQTLs. Of the *cis*
751 associations, 25.5% (2,021/7,936) colocalised with the eQTLs for the corresponding protein-
752 encoding gene from the full eQTL Catalogue, while for the GTEx dataset alone it was 54.3%
753 (273/503). Given the use of eQTL data from different tissues, this analysis reflects how pQTLs
754 may originate through active secretion or/and passive leakage, as 42.68% of all significant
755 SNV-pQTL proteins identified are actively secreted into the blood at least in one isoform (S18
756 Table) [67], meaning that more than half of these proteins do not originate from the blood.
757 Similar to our findings, Pietzner et al. [7] recently detected a significant colocalisation of 50.1%
758 of the *cis*-pQTLs with corresponding gene eQTLs using GTEx.

759 We sought to systematically identify links between proteins and phenotypes by conducting a
760 PheWAS followed by a colocalisation analysis, in order to find signals likely driven by the
761 same causal variant. We then applied MR to significant colocalisation events to assess
762 causality, a strategy recommended by Zuber et al. [17]. As they have highlighted, a positive
763 colocalisation finding typically implies a non-zero MR estimate, the reverse is not generally
764 true [17]. For example, FGF5 plays essential roles in the regulation of cell proliferation,
765 including in cardiac myocytes, and cell differentiation [68]; it has also been associated with
766 cardiac angiogenesis [69]. The *FGF5* locus has been linked to cardiovascular conditions in
767 previous GWASs [62,70]. We detected a *cis* signal for the FGF5 level and associated variants
768 in the region, which overlapped with previous GWAS findings for cardiovascular diseases and
769 medications used to treat them. Our colocalisation and MR results suggest that the FGF5 level
770 shares common causal SNPs with various heart-related conditions and treatments, prioritising

771 it as an interesting target for future follow-up studies. However, the translation of PheWAS
772 results to a molecular level is complicated by the nature of associated disease phenotype.
773 Plasma proteins are potentially more relevant for circulatory diseases where the blood is in
774 contact with the affected tissue, such as in the FGF5 example, rather than for conditions with
775 a limited number of affected tissues.

776 The availability of the high-quality WGS data also gave us a unique opportunity to investigate
777 the effect of CNVs on protein expression. To the best of our knowledge, one study has
778 previously studied CNVs in this context, focusing only on deletions [15]. We conducted the
779 first comprehensive CNV-based pQTL mapping and identified 12 associations (7 *cis* and 5
780 *trans*) between plasma proteins and CNVs, including those with a *trans*-association hub CNV
781 in the 3q12.1 region. We further interpreted the CNV-pQTLs using a CNV-tagging SNP
782 approach with external data on a broader range of proteins. This strategy yielded additional
783 CNV-based pQTLs for 79 proteins and determined that the 3q12.1-region hub CNV was
784 associated with 25 proteins. Signals from the SNV and CNV analyses overlapped for nine
785 proteins, which constitute interesting loci where QTL associations were likely driven by CNVs,
786 rather than SNVs. This emphasises the value of the CNV data, especially if the purpose is to
787 prioritise causal genetic variation underlying the pQTL signal. None of the associations
788 reported by Png et al. [15] were replicated in this study, possibly because there was only a
789 partial overlap between the assayed protein sets, differences between cohorts (European
790 ancestry vs a Greek population isolate with population-specific CNVs) [71], and differences in
791 the approach used for CNV detection.

792 As an example, we outline IL-18, a pro-inflammatory cytokine that plays important roles in
793 natural killer cell activation and the T-helper 1 response [72]. We found that a CNV on
794 chromosome 5 overlapping with *NAIP* has *trans* effects on the *IL18* protein level and a *cis*
795 effect on the *NAIP* gene expression level, but there is no significant effect on the *IL18* gene

796 expression. The *NAIP* eQTL signal was stronger than the IL18 pQTL signal, suggesting that
797 the CNV affects the protein level through gene expression. As the NAIP level was not measured
798 in our cohort, it remains unclear whether the main effect of the CNV is on NAIP. To our
799 knowledge, there are no previous studies analysing the effect of genetic variants on NAIP level.
800 NAIP is an anti-apoptotic protein and sensor component of the NLRC4 inflammasome that
801 protects against bacterial pathogens, and NAIP-NLRC4 inflammasome activation has been
802 reported to lead to elevated IL-18 expression in enterocytes and monocyte-derived
803 macrophages [73]. This example highlights the importance of including structural variants in
804 addition to SNVs in studies of the genetic basis of molecular traits, as also exemplified by the
805 CNV-tagging SNP approach.

806 We identified 19 significant rare variant effects on the levels of seven proteins that would not
807 have been detected by the SNV pQTL analysis alone. Gene-based pQTL analyses of rare
808 variants constitute an emerging approach [10–13], and no golden standard for their
809 performance has been established, making the replication of findings difficult. Previous studies
810 indicate that few proteins are driven by rare variants [11–13]. Kierczak et al. [13] detected *cis*-
811 region rare variant associations for four proteins (CTSZ, CYR61, GDF-15 and PON3) and
812 *trans* associations of rare *GAL3ST2* variants affecting the MUC16 level, the effect also detected
813 in our study; they used a maximum MAF threshold 0.0239, whereas we used a standard
814 conservative threshold of 0.01. The significant rare variant associations detected in our study
815 were not reported in the largest gene-based rare variant pQTL study conducted to date which
816 included three isolated European cohorts with a total sample size of $n=4,422$ [12]. As an
817 example, we found a rare-variant effect on GDF-15, which regulates food intake, energy
818 expenditure and body weight in response to metabolic and toxin-induced stress [74–76]. The
819 most significant association with the GDF-15 level was a *trans* association with rare variants
820 in *JAKMIP1*, associated with type 2 diabetes and medications used to treat it [77–79].

821 Additionally, GDF-15 has been reported to be involved in inflammation, metabolism and
822 cancer [80], and recent findings support its role as a biomarker of metabolic stress [81].
823 Whereas we detected rare variant *trans* associations emanating from GDF-15 for nine proteins,
824 only SNP-based *cis* associations with GDF-15 itself have been identified in previous pQTL
825 studies [9,81]. This demonstrates that gene-based rare variant pQTLs complement single
826 variant analyses and help to unravel novel biologically interpretable associations.

827 Our study has several limitations. First, the sample size was small relative to those of recent
828 pQTL studies, which made the detection of *trans* effects with greater multiple-testing burden
829 and weak effects of common and rare variants more difficult. Rare genetic variants tend to have
830 greater population specificity [82], making replication of findings from rare variant analyses
831 more difficult. Same applies to common CNVs we reported in our pQTL analyses; structural
832 variants are currently understudied in terms of pQTL detection, limiting replicability. Second,
833 most pQTL studies have been conducted using serum or plasma measurements from blood
834 samples [4,6,8,39] and only a limited number of studies has involved the examination of liver
835 and brain tissue-specific pQTLs [83,84]. Therefore, it is often challenging to understand
836 whether observed pQTL effects manifest in the blood cells or reflect the regulation happening
837 in some distal tissue. Finally, although we showed that CNVs affect plasma protein levels, to
838 our knowledge no large-scale CNV-based association database is currently available to overlap
839 the identified CNV-pQTL associations with CNV-phenotype associations. However, CNV-
840 tagging SNPs could be used as a proxy method to assess the effect of CNVs on complex traits.

841 In conclusion, we have generated a comprehensive pQTL resource and interpreted it by using
842 eQTL, as well as publicly available GWAS data. We have demonstrated the importance of
843 including structural variants in addition to SNVs, to fully characterise the genetic background
844 of plasma proteins and their links to health-related phenotypes.

845 Acknowledgements

846 The authors would like to thank Hanna Maria Kariis for helpful comments on the manuscript.
847 Members of the Estonian Biobank Research Team include Andres Metspalu, Lili Milani, Tõnu
848 Esko, Reedik Mägi, Mari Nelis and Georgi Hudjašov. Data analyses with Estonian datasets
849 were carried out in part in the High-Performance Computing Center of University of Tartu.

850 References

- 851 1. MacArthur J, Bowler E, Cerezo M, Gil L, Hall P, Hastings E, et al. The new NHGRI-
852 EBI Catalog of published genome-wide association studies (GWAS Catalog). *Nucleic
853 Acids Res.* 2017 04;45(D1):D896–901.
- 854 2. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E, Wang H, et al. Systematic
855 Localization of Common Disease-Associated Variation in Regulatory DNA. *Science.* 2012 Sep 7;337(6099):1190–5.
- 856 3. Geyer PE, Holdt LM, Teupser D, Mann M. Revisiting biomarker discovery by plasma
857 proteomics. *Mol Syst Biol [Internet].* 2017 Sep 26 [cited 2020 Dec 3];13(9). Available
858 from: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615924/>
- 859 4. Sun BB, Maranville JC, Peters JE, Stacey D, Staley JR, Blackshaw J, et al. Genomic
860 atlas of the human plasma proteome. *Nature.* 2018 Jun;558(7708):73–9.
- 861 5. Emilsson V, Ilkov M, Lamb JR, Finkel N, Gudmundsson EF, Pitts R, et al. Co-
862 regulatory networks of human serum proteins link genetics to disease. *Science.* 2018
863 Aug 24;361(6404):769–73.
- 864 6. Folkersen L, Gustafsson S, Wang Q, Hansen DH, Hedman ÅK, Schork A, et al. Genomic
865 and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals.
866 *Nat Metab.* 2020 Oct;2(10):1135–48.
- 867 7. Pietzner M, Wheeler E, Carrasco-Zanini J, Cortes A, Koprulu M, Wörheide MA, et al.
868 Mapping the proteo-genomic convergence of human diseases. *Science.* 2021 Nov
869 12;374(6569):eabj1541.
- 870 8. Ferkingstad E, Sulem P, Atlason BA, Sveinbjörnsson G, Magnusson MI, Styrnisdóttir
871 EL, et al. Large-scale integration of the plasma proteome with genetics and disease. *Nat
872 Genet.* 2021 Dec 2;1–10.
- 873 9. Sun BB, Chiou J, Traylor M, Benner C, Hsu YH, Richardson TG, et al. Genetic
874 regulation of the human plasma proteome in 54,306 UK Biobank participants [Internet].
875 bioRxiv; 2022 [cited 2022 Jun 20]. p. 2022.06.17.496443. Available from:
876 <https://www.biorxiv.org/content/10.1101/2022.06.17.496443v1>
- 877 10. Solomon T, Lapek JD, Jensen SB, Greenwald WW, Hindberg K, Matsui H, et al.
878 Identification of Common and Rare Genetic Variation Associated With Plasma Protein
879 Levels Using Whole-Exome Sequencing and Mass Spectrometry. *Circ Genomic Precis
880 Med.* 2018;11(12):e002170.
- 881 11. Gilly A, Park YC, Png G, Barysenka A, Fischer I, Bjørnland T, et al. Whole-genome
882 sequencing analysis of the cardiometabolic proteome. *Nat Commun.* 2020 Dec
883 10;11(1):6336.
- 884 12. Gilly A, Klaric L, Park YC, Png G, Barysenka A, Marsh JA, et al. Gene-based whole
885 genome sequencing meta-analysis of 250 circulating proteins in three isolated European

887 populations. *Mol Metab*. 2022 Apr 30;101509.

888 13. Kierczak M, Rafati N, Höglund J, Gourlé H, Lo Faro V, Schmitz D, et al. Contribution
889 of rare whole-genome sequencing variants to plasma protein levels and the missing
890 heritability. *Nat Commun*. 2022 May 9;13(1):2532.

891 14. Dhindsa RS, Burren OS, Sun BB, Prins BP, Matelska D, Wheeler E, et al. Influences
892 of rare protein-coding genetic variants on the human plasma proteome in 50,829 UK
893 Biobank participants [Internet]. *bioRxiv*; 2022 [cited 2022 Oct 13]. p. 2022.10.09.511476.
894 Available from: <https://www.biorxiv.org/content/10.1101/2022.10.09.511476v1>

895 15. Png G, Suveges D, Park YC, Walter K, Kundu K, Ntalla I, et al. Population-wide copy
896 number variation calling using variant call format files from 6,898 individuals. *Genet
897 Epidemiol*. 2020;44(1):79–89.

898 16. Zheng J, Haberland V, Baird D, Walker V, Haycock PC, Hurle MR, et al. Phenome-
899 wide Mendelian randomization mapping the influence of the plasma proteome on
900 complex diseases. *Nat Genet* [Internet]. 2020 Sep 7 [cited 2020 Sep 8]; Available from:
901 <http://www.nature.com/articles/s41588-020-0682-6>

902 17. Zuber V, Grinberg NF, Gill D, Manipur I, Slob EAW, Patel A, et al. Combining
903 evidence from Mendelian randomization and colocalization: Review and comparison
904 of approaches. *Am J Hum Genet* [Internet]. 2022 Apr 21 [cited 2022 May 2];0(0).
905 Available from: [https://www.cell.com/ajhg/abstract/S0002-9297\(22\)00149-5](https://www.cell.com/ajhg/abstract/S0002-9297(22)00149-5)

906 18. Kerimov N, Hayhurst JD, Peikova K, Manning JR, Walter P, Kolberg L, et al. A
907 compendium of uniformly processed human gene expression and splicing quantitative
908 trait loci. *Nat Genet*. 2021 Sep 6;1–10.

909 19. Leitsalu L, Haller T, Esko T, Tammesoo ML, Alavere H, Snieder H, et al. Cohort
910 Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu. *Int J
911 Epidemiol*. 2015 Aug;44(4):1137–47.

912 20. Mitt M, Kals M, Pärn K, Gabriel SB, Lander ES, Palotie A, et al. Improved imputation
913 accuracy of rare and low-frequency variants using population-specific high-coverage
914 WGS-based imputation reference panel. *Eur J Hum Genet EJHG*. 2017;25(7):869–76.

915 21. Handsaker RE, Van Doren V, Berman JR, Genovese G, Kashin S, Boettger LM, et al.
916 Large multiallelic copy number variations in humans. *Nat Genet*. 2015 Mar;47(3):296–
917 303.

918 22. Lepamets M, Auwerx C, Nõukas M, Claringbould A, Porcu E, Kals M, et al. Omics-
919 informed CNV calls reduce false positive rate and improve power for CNV-trait
920 associations [Internet]. *bioRxiv*; 2022 [cited 2022 Jun 9]. p. 2022.02.07.479374.
921 Available from: <https://www.biorxiv.org/content/10.1101/2022.02.07.479374v1>

922 23. Assarsson E, Lundberg M, Holmquist G, Björkesten J, Thorsen SB, Ekman D, et al.
923 Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and
924 Excellent Scalability. *PLOS ONE*. 2014 Apr 22;9(4):e95192.

925 24. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina
926 sequence data. *Bioinforma Oxf Engl*. 2014 Aug 1;30(15):2114–20.

927 25. Andrews S. FastQC: A quality control tool for high throughput sequence data 2010.
928 Available from: [Internet]. [cited 2023 Mar 7]. Available from:
929 <https://www.bioinformatics.babraham.ac.uk/projects/fastqc/>

930 26. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast
931 universal RNA-seq aligner. *Bioinforma Oxf Engl*. 2013 Jan 1;29(1):15–21.

932 27. Robinson MD, Oshlack A. A scaling normalization method for differential expression
933 analysis of RNA-seq data. *Genome Biol*. 2010;11(3):R25.

934 28. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for
935 differential expression analysis of digital gene expression data. *Bioinforma Oxf Engl*.
936

937 2010 Jan 1;26(1):139–40.

938 29. Lepik K, Annilo T, Kukuškina V, Consortium eQTLGen, Kisand K, Kutalik Z, et al.

939 C-reactive protein upregulates the whole blood expression of CD59 - an integrative

940 analysis. *PLoS Comput Biol.* 2017 Sep 18;13(9):e1005766.

941 30. Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, et al. Variance

942 component model to account for sample structure in genome-wide association studies.

943 *Nat Genet.* 2010 Apr;42(4):348–54.

944 31. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ. Second-generation

945 PLINK: rising to the challenge of larger and richer datasets. *GigaScience.* 2015;4:7.

946 32. Boyle AP, Hong EL, Hariharan M, Cheng Y, Schaub MA, Kasowski M, et al.

947 Annotation of functional variation in personal genomes using RegulomeDB. *Genome*

948 *Res.* 2012 Sep 1;22(9):1790–7.

949 33. Gao X, Starmer J, Martin ER. A multiple testing correction method for genetic

950 association studies using correlated single nucleotide polymorphisms. *Genet*

951 *Epidemiol.* 2008;32(4):361–9.

952 34. Kettunen J, Demirkan A, Würtz P, Draisma HHM, Haller T, Rawal R, et al. Genome-

953 wide study for circulating metabolites identifies 62 loci and reveals novel systemic

954 effects of LPA. *Nat Commun.* 2016 Mar 23;7(1):11122.

955 35. Lê S, Josse J, Husson F. FactoMineR: An R Package for Multivariate Analysis. *J Stat*

956 *Softw.* 2008 Mar 18;25(1):1–18.

957 36. Harrow J, Frankish A, Gonzalez JM, Tapanari E, Diekhans M, Kokocinski F, et al.

958 GENCODE: The reference human genome annotation for The ENCODE Project.

959 *Genome Res.* 2012 Sep 1;22(9):1760–74.

960 37. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD, et al. GeneMANIA

961 update 2018. *Nucleic Acids Res.* 2018 02;46(W1):W60–4.

962 38. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, et al. The

963 GeneMANIA prediction server: biological network integration for gene prioritization

964 and predicting gene function. *Nucleic Acids Res.* 2010 Jul;38(Web Server

965 issue):W214–220.

966 39. Wang G, Sarkar A, Carbonetto P, Stephens M. A simple new approach to variable

967 selection in regression, with application to genetic fine mapping. *J R Stat Soc Ser B*

968 *Stat Methodol.* 2020;82(5):1273–300.

969 40. Zou Y, Carbonetto P, Wang G, Stephens M. Fine-mapping from summary data with the

970 “Sum of Single Effects” model. *PLOS Genet.* 2022 juuli;18(7):e1010299.

971 41. Di Tommaso P, Chatzou M, Floden EW, Barja PP, Palumbo E, Notre Dame C. Nextflow

972 enables reproducible computational workflows. *Nat Biotechnol.* 2017 Apr;35(4):316–

973 9.

974 42. Benner C, Havulinna AS, Järvelin MR, Salomaa V, Ripatti S, Pirinen M. Prospects of

975 Fine-Mapping Trait-Associated Genomic Regions by Using Summary Statistics from

976 Genome-wide Association Studies. *Am J Hum Genet.* 2017 Oct 5;101(4):539–51.

977 43. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, et al.

978 PhenoScanner V2: an expanded tool for searching human genotype-phenotype

979 associations. *Bioinforma Oxf Engl.* 2019 01;35(22):4851–3.

980 44. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, et al. PhenoScanner:

981 a database of human genotype-phenotype associations. *Bioinforma Oxf Engl.* 2016

982 15;32(20):3207–9.

983 45. Folkersen L, Fauman E, Sabater-Lleal M, Strawbridge RJ, Fränberg M, Sennblad B, et

984 al. Mapping of 79 loci for 83 plasma protein biomarkers in cardiovascular disease.

985 *PLoS Genet.* 2017 Apr;13(4):e1006706.

986 46. Suhre K, Arnold M, Bhagwat AM, Cotton RJ, Engelke R, Raffler J, et al. Connecting

987 genetic risk to disease end points through the human blood plasma proteome. *Nat*
988 *Commun.* 2017 Feb 27;8(1):14357.

989 47. Finan Chris, Gaulton Anna, Kruger Felix A., Lumbers R. Thomas, Shah Tina, Engmann
990 Jorgen, et al. The druggable genome and support for target identification and validation
991 in drug development. *Sci Transl Med.* 2017 Mar 29;9(383):eaag1166.

992 48. Freshour SL, Kiwala S, Cotto KC, Coffman AC, McMichael JF, Song JJ, et al.
993 Integration of the Drug–Gene Interaction Database (DGIdb 4.0) with open crowdsource
994 efforts. *Nucleic Acids Res.* 2021 Jan 8;49(D1):D1144–51.

995 49. Elsworth B, Lyon M, Alexander T, Liu Y, Matthews P, Hallett J, et al. The MRC IEU
996 OpenGWAS data infrastructure [Internet]. 2020 Aug [cited 2022 Jan 21] p.
997 2020.08.10.244293. Available from:
998 <https://www.biorxiv.org/content/10.1101/2020.08.10.244293v1>

999 50. Giambartolomei C, Vukcevic D, Schadt EE, Franke L, Hingorani AD, Wallace C, et al.
1000 Bayesian Test for Colocalisation between Pairs of Genetic Association Studies Using
1001 Summary Statistics. *PLOS Genet.* 2014 May 15;10(5):e1004383.

1002 51. Wallace C. Eliciting priors and relaxing the single causal variant assumption in
1003 colocalisation analyses. *PLOS Genet.* 2020 Apr 20;16(4):e1008720.

1004 52. Kasela S, Kisand K, Tserel L, Kaleviste E, Remm A, Fischer K, et al. Pathogenic
1005 implications for autoimmune mechanisms derived by comparative eQTL analysis of
1006 CD4+ versus CD8+ T cells. *PLoS Genet.* 2017 Mar;13(3):e1006643.

1007 53. GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across
1008 human tissues. *Science.* 2020 Sep 11;369(6509):1318–30.

1009 54. Bretherick AD, Canela-Xandri O, Joshi PK, Clark DW, Rawlik K, Boutin TS, et al.
1010 Linking protein to phenotype with Mendelian Randomization detects 38 proteins with
1011 causal roles in human diseases and traits. *PLOS Genet.* 2020 Jun 7;16(7):e1008785.

1012 55. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-Base
1013 platform supports systematic causal inference across the human genome. Loos R,
1014 editor. *eLife.* 2018 mai;7:e34408.

1015 56. Hemani G, Tilling K, Smith GD. Orienting the causal relationship between imprecisely
1016 measured traits using GWAS summary data. *PLOS Genet.* 2017 Nov
1017 17;13(11):e1007081.

1018 57. Shabalin AA. Matrix eQTL: ultra fast eQTL analysis via large matrix operations.
1019 *Bioinformatics.* 2012 May 15;28(10):1353–8.

1020 58. Zhu Z, Zhang F, Hu H, Bakshi A, Robinson MR, Powell JE, et al. Integration of
1021 summary data from GWAS and eQTL studies predicts complex trait gene targets. *Nat*
1022 *Genet.* 2016 May 1;48(5):481–7.

1023 59. Hao Z, Lv D, Ge Y, Shi J, Weijers D, Yu G, et al. RIdogram: drawing SVG graphics
1024 to visualize and map genome-wide data on the idiograms. *PeerJ Comput Sci.* 2020 Jan
1025 20;6:e251.

1026 60. Macdonald-Dunlop E, Klarić L, Folkersen L, Timmers PRHJ, Gustafsson S, Zhao JH,
1027 et al. Mapping genetic determinants of 184 circulating proteins in 26,494 individuals to
1028 connect proteins and diseases. *medRxiv.* 2021 Jan 1;2021.08.03.21261494.

1029 61. Astle WJ, Elding H, Jiang T, Allen D, Ruklisa D, Mann AL, et al. The Allelic
1030 Landscape of Human Blood Cell Trait Variation and Links to Common Complex
1031 Disease. *Cell.* 2016 Nov;167(5):1415–1429.e19.

1032 62. van der Harst P, Verweij N. Identification of 64 Novel Genetic Loci Provides an
1033 Expanded View on the Genetic Architecture of Coronary Artery Disease. *Circ Res.*
1034 2018 Feb 2;122(3):433–43.

1035 63. Stahl EA, Raychaudhuri S, Remmers EF, Xie G, Eyre S, Thomson BP, et al. Genome-
1036 wide association study meta-analysis identifies seven new rheumatoid arthritis risk loci.

1037 64. Nat Genet. 2010 Jun;42(6):508–14.

1038 64. Interleukin-6 Receptor Mendelian Randomisation Analysis (IL6R MR) Consortium, Swerdlow DI, Holmes MV, Kuchenbaecker KB, Engmann JEL, Shah T, et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: a mendelian randomisation analysis. Lancet Lond Engl. 2012 Mar 31;379(9822):1214–24.

1042 65. Suhre K, McCarthy MI, Schwenk JM. Genetics meets proteomics: perspectives for large population-based studies. Nat Rev Genet [Internet]. 2020 Aug 28 [cited 2020 Sep 1]; Available from: <http://www.nature.com/articles/s41576-020-0268-2>

1045 66. Zhang J, Dutta D, Kötting A, Tin A, Schlosser P, Grams ME, et al. Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nat Genet. 2022 May 2;1–10.

1048 67. Uhlen M, Karlsson MJ, Hober A, Svensson AS, Scheffel J, Kotol D, et al. The human secretome. Sci Signal [Internet]. 2019 Nov 26 [cited 2020 Mar 2];12(609). Available from: <https://stke.sciencemag.org/content/12/609/eaaz0274>

1051 68. Ornitz DM, Xu J, Colvin JS, McEwen DG, MacArthur CA, Coulier F, et al. Receptor specificity of the fibroblast growth factor family. J Biol Chem. 1996 Jun 21;271(25):15292–7.

1054 69. Vatner SF. FGF Induces Hypertrophy and Angiogenesis in Hibernating Myocardium. Circ Res. 2005 Apr 15;96(7):705–7.

1056 70. Nikpay M, Goel A, Won HH, Hall LM, Willenborg C, Kanoni S, et al. A comprehensive 1,000 Genomes-based genome-wide association meta-analysis of coronary artery disease. Nat Genet. 2015 Oct;47(10):1121–30.

1059 71. Panoutsopoulou K, Hatzikotoulas K, Xifara DK, Colonna V, Farmaki AE, Ritchie GRS, et al. Genetic characterization of Greek population isolates reveals strong genetic drift at missense and trait-associated variants. Nat Commun. 2014 Nov 6;5(1):5345.

1062 72. Tominaga K, Yoshimoto T, Torigoe K, Kurimoto M, Matsui K, Hada T, et al. IL-12 synergizes with IL-18 or IL-1beta for IFN-gamma production from human T cells. Int Immunol. 2000 Feb 1;12(2):151–60.

1065 73. Kay C, Wang R, Kirkby M, Man SM. Molecular mechanisms activating the NAIP-NLRC4 inflammasome: Implications in infectious disease, autoinflammation, and cancer. Immunol Rev. 2020;297(1):67–82.

1068 74. Emmerson PJ, Wang F, Du Y, Liu Q, Pickard RT, Gonciarz MD, et al. The metabolic effects of GDF15 are mediated by the orphan receptor GFRAL. Nat Med. 2017 Oct;23(10):1215–9.

1071 75. Hsu JY, Crawley S, Chen M, Ayupova DA, Lindhout DA, Higbee J, et al. Non-homeostatic body weight regulation through a brainstem-restricted receptor for GDF15. Nature. 2017 Oct;550(7675):255–9.

1074 76. Yang L, Chang CC, Sun Z, Madsen D, Zhu H, Padkjær SB, et al. GFRAL is the receptor for GDF15 and is required for the anti-obesity effects of the ligand. Nat Med. 2017 Oct;23(10):1158–66.

1077 77. Mahajan A, Wessel J, Willems SM, Zhao W, Robertson NR, Chu AY, et al. Refining the accuracy of validated target identification through coding variant fine-mapping in type 2 diabetes. Nat Genet. 2018 Apr;50(4):559–71.

1080 78. Wu Y, Byrne EM, Zheng Z, Kemper KE, Yengo L, Mallett AJ, et al. Genome-wide association study of medication-use and associated disease in the UK Biobank. Nat Commun. 2019 Apr;10(1):1891.

1083 79. Vujkovic M, Keaton JM, Lynch JA, Miller DR, Zhou J, Tcheandjieu C, et al. Discovery of 318 new risk loci for type 2 diabetes and related vascular outcomes among 1.4 million participants in a multi-ancestry meta-analysis. Nat Genet. 2020 Jul;52(7):680–91.

1087 80. Breit SN, Johnen H, Cook AD, Tsai VWW, Mohammad MG, Kuffner T, et al. The
1088 TGF- β superfamily cytokine, MIC-1/GDF15: a pleiotrophic cytokine with roles in
1089 inflammation, cancer and metabolism. *Growth Factors Chur Switz.* 2011
1090 Oct;29(5):187–95.

1091 81. Lemmelä S, Wigmore EM, Benner C, Havulinna AS, Ong RM, Kempf T, et al.
1092 Integrated analyses of growth differentiation factor-15 concentration and
1093 cardiometabolic diseases in humans. Janus ED, Barton M, Janus ED, editors. *eLife.*
1094 2022 Aug 2;11:e76272.

1095 82. Momozawa Y, Mizukami K. Unique roles of rare variants in the genetics of complex
1096 diseases in humans. *J Hum Genet.* 2021 Jan;66(1):11–23.

1097 83. He B, Shi J, Wang X, Jiang H, Zhu HJ. Genome-wide pQTL analysis of protein
1098 expression regulatory networks in the human liver. *BMC Biol.* 2020 Aug 10;18(1):97.

1099 84. Robins C, Liu Y, Fan W, Duong DM, Meigs J, Harerimana NV, et al. Genetic control
1100 of the human brain proteome. *Am J Hum Genet.* 2021 Mar 4;108(3):400–10.

1101 Supporting information

1102 **S1 Table. Full list of the Olink proteins in the study.** Columns are ‘OLINK’: the protein
1103 name based on Olink internal naming scheme; ‘PANEL’: Olink panel for the protein;
1104 ‘UNIPROT_Olink’: UniProtID of the protein; ‘HGNC’: HUGO gene naming consortium
1105 symbol for the protein; ‘LOD_QC’: limit of detection (LOD) quality control assessment. LOD
1106 was used as a quality control step, each protein with samples >20% LOD was flagged as fail;
1107 ‘Alternative_UNIPROT’: alternative UniProtID of the protein if available.

1108 **S2 Table. List of pQTLs (linkage disequilibrium clumped).** List of lead variants for each
1109 protein following linkage disequilibrium (LD) clumping, together with replication information.
1110 Variants within a 1 Mb window of the lead pQTL with the LD thresholds of $R^2 = 0.1$ and $P <$
1111 5×10^{-8} were clumped together. Whole-genome sequenced genotypes of the pQTL cohort were
1112 used as LD reference. Columns are ‘gene’: HUGO gene naming consortium symbol for the
1113 protein; ‘Uniprot’: UniProtID of the protein; ‘panel’: Olink panel for the protein; ‘chr_pos’:
1114 genomic coordinates for the pQTL variant (hg19); ‘locus’: pQTL association locus; ‘variant’:
1115 variant name in the format of genomic coordinates (hg19) and alphabetically ordered alleles;
1116 ‘rsid’: rsID (if missing, then genomic coordinates in hg19); ‘A1’: the reference allele in the
1117 Estonian Biobank; ‘A2’: the effect allele in the Estonian Biobank; ‘MAF’: minor allele
1118 frequency; ‘p-value’: pQTL association *p*-value; ‘beta’: the pQTL effect size; ‘SE’: the
1119 standard error of the pQTL effect size; ‘type’: pQTL association signal type, associations
1120 within 1Mb upstream or downstream of the transcription start site (TSS) of the corresponding
1121 protein-coding genes are *cis* and further away *trans*; ‘distance’: the distance from the TSS for
1122 *cis* associations in bp; ‘effect’: the functional annotation of a pQTL; ‘LD $R^2 > 0.8$ PAV variant’:
1123 protein-altering variants in linkage disequilibrium ($R^2 > 0.8$) with detected pQTL. For
1124 replication studies prefix in column names indicates the name of the study, referring to Pietzner
1125 et al. [7], Sun et al. [4], Suhre et al. [39] and Folkersen et al. [38]. Columns are
1126 ‘Pietzner_replication’: the pQTL replication in the TRUE (replicating) and FALSE (not
1127 replicating) manner; ‘Pietzner_EA’: the effect allele of pQTL in the Pietzner et al.;
1128 ‘Pietzner_OA’: the other allele in the Pietzner et al.; ‘Pietzner_effect’: the effect size of pQTL

1129 in the Pietzner et al.; ‘Pietzner_se’: the standard error of effect size in the Pietzner et al.;
1130 ‘Pietzner_pval’: the *p*-value of pQTL association in the Pietzner et al.; ‘Pietzner_qval_FDR’: the Benjamini-Hochberg FDR-corrected *q*-value of the Pietzner et al. pQTL analysis;
1131 ‘Pietzner_n’: the sample size in the Pietzner et al. for the variant; ‘Sun_replication’: the pQTL replication in the TRUE (replicating) and FALSE (not replicating) manner; ‘Sun_EA’: the effect allele of pQTL in the Sun et al; ‘Sun_effect’: the effect size of pQTL in the Sun et al.; ‘Sun_se’: the standard error of effect size in the Sun et al.; ‘Sun_pval’: the *p*-value of pQTL association in the Sun et al.; ‘Sun_qval_FDR’: the Benjamini-Hochberg FDR-corrected *q*-value of the Sun et al. pQTL analysis; ‘Sun_n’: the sample size in the Sun et al. for the variant;
1132 ‘Suhre_replication’: the pQTL replication in the TRUE (replicating) and FALSE (not replicating) manner; ‘Suhre_EA’: the effect allele of pQTL in the Suhre et al.; ‘Suhre_effect’: the effect size of pQTL in the Suhre et al.; ‘Suhre_se’: the standard error of effect size in the Suhre et al.; ‘Suhre_pval’: the *p*-value of pQTL association in the Suhre et al.; ‘Suhre_qval_FDR’: the Benjamini-Hochberg FDR-corrected *q*-value of the Suhre et al. pQTL analysis; ‘Suhre_n’: the sample size in the Suhre et al. for the variant; ‘Folkersen_replication’: the pQTL replication in the TRUE (replicating) and FALSE (not replicating) manner; ‘Folkersen_EA’: the effect allele of pQTL in the Folkersen et al.; ‘Folkersen_effect’: the effect size of pQTL in the Folkersen et al.; ‘Folkersen_se’: the standard error of effect size in the Folkersen et al.; ‘Folkersen_pval’: the *p*-value of pQTL association in the Folkersen et al.; ‘Folkersen_qval_FDR’: the Benjamini-Hochberg FDR-corrected *q*-value of the Folkersen et al. pQTL analysis; ‘Folkersen_n’: the sample size in the Folkersen et al. for the variant. In case of Pietzner et al., alleles for indels are referred as ‘D’ for deletion and ‘I’ for insertion.

1151 **S3 Table. List of the eQTL Catalogue resources.** Columns are ‘Study’: the consortium or
1152 the publication for the dataset; ‘Publication’: the citation of dataset publication; ‘Funding’: the
1153 funding for generating the dataset.

1154 **S4 Table. List of studied complex traits extracted from the Medical Research Council
1155 (MRC) Integrative Epidemiology Unit (IEU) OpenGWAS database.** Columns are ‘ID’: internal naming identification for a complex trait GWAS in the MRC IEU OpenGWAS
1156 database; ‘Trait’: the full name of the complex trait; ‘n_cases/n_controls’: number of
1157 cases/number of controls for the study; ‘Publication/Author’: the consortium or the publication
1158 that generated complex trait GWAS results; ‘Funding/Acknowledgements’: funding and
1159 acknowledgements marked by the consortium or by the publication.

1161 **S5 Table. List of the corresponding eQTLs.** Columns are ‘variant’: rsID (if missing, then
1162 genomic coordinates in hg19); ‘protein’: HUGO gene naming consortium symbol for the
1163 protein; ‘Uniprot’: UniProtID of the protein; ‘panel’: Olink panel for the protein; ‘pQTL_pval’: pQTL association *p*-value; ‘pQTL_beta’: pQTL effect size; ‘pQTL_se’: the standard error of
1164 the pQTL effect size; ‘type’: pQTL association signal type, associations within 1Mb upstream
1165 or downstream of the transcription start site (TSS) of the corresponding protein-coding genes
1166 are *cis* and further away *trans*; ‘gene’: HUGO gene naming consortium symbol for the protein
1167 for tested gene; Ensembl’: Ensembl (GRCh37) gene ID for tested gene; ‘eQTL_pval’: eQTL
1168 association *p*-value; ‘eQTL_beta’: eQTL effect size; ‘eQTL_se’: the standard error of the
1169 eQTL effect size; ‘eQTL_qFDR’: the Benjamini-Hochberg FDR-corrected *q*-value of the

1171 eQTL analysis.

1172 **S6 Table. (A) Results of the fine-mapping analysis and (B) an overview of variants within**
1173 **each credible set having the highest posterior inclusion probability (PIP).** (A) Columns are

1174 ‘trait’: HUGO gene naming consortium symbol for the protein; ‘panel’: Olink panel for the

1175 protein; ‘region’: genetic coordinates for the fine-mapping region (GRCh37); ‘locus’: locus

1176 and loci in the fine-mapping analysis (GRCh37); ‘credible set’: the number of identified

1177 credible sets; ‘size’: the number of genetic variants belonging to the specific credible set;

1178 ‘type’: the pQTL association signal type in the primary pQTL analysis (S2 Table). (B) Columns

1179 are ‘trait’: HUGO gene naming consortium symbol for the protein; ‘chromosome’: the

1180 chromosome of the fine-mapped variant (GRCh37), ‘credible set’: the number of the identified

1181 credible set; ‘Fine-mapped variant (GRCh37)’: variant in the format chromosome: region and

1182 alleles ordered alphabetically (GRCh37); ‘PIP’: the posterior inclusion probability of the

1183 variant; ‘association p-value’: the p-value of the variant in the pQTL analysis; ‘LD (r^2) with

1184 sentinel SNP’: the linkage disequilibrium of the fine-mapped variant with the primary pQTL

1185 identified in the pQTL analysis; ‘Distance (kb) with sentinel SNP (GRCh37)’: genetic distance

1186 in kb between fine-mapped variant and pQTL identified in the region in the primary analysis.

1187 **S7 Table. Regulatory information for the pQTLs extracted from the RegulomeDB.**

1188 RegulomeDB classifies SNPs into classes based on the combinatorial presence/absence status

1189 of functional categories, including transcription factors binding sites, DNAase hypersensitivity

1190 regions, and promoter regions. Columns are ‘chrom’: the chromosome of the pQTL variant

1191 (hg19); ‘start’: start coordinates of the queried variant (hg19); ‘end’: end coordinates of the

1192 queried variant (hg19); ‘rsids’: rsID for the queried variant; ‘probability’: probability score

1193 ranging from 0 to 1, with 1 being the most likely regulatory variant; ‘ranking’: ranking based

1194 on RegulomeDB internal scoring scheme that takes into account supporting data. Categories

1195 included in the table are ‘1d’: eQTL + TF binding + any motif + DNase peak; ‘1f’: ‘eQTL +

1196 TF binding / DNase peak’; ‘2a’: TF binding + matched TF motif + matched DNase Footprint

1197 + DNase peak; ‘2b’: TF binding + any motif + DNase Footprint + DNase peak; ‘2c’: TF binding

1198 + matched TF motif + DNase peak; ‘3a’: TF binding + any motif + DNase peak; ‘4’: TF binding

1199 + DNase peak; ‘5’: TF binding or DNase peak; ‘6’: Motif hit; ‘7’: Other.

1200 **S8 Table. List of colocalising pQTL–eQTL events.** Columns are ‘pQTL_lead_SNP_HG19’: genomic

1201 coordinates for the primary pQTL (hg19); ‘pQTL_lead_SNP_HG38’: genomic

1202 coordinates for the primary pQTL (hg38); ‘pQTL_Uniprot’: UniProtID for the protein;

1203 ‘pQTL_Gene_Eensembl’: Ensembl gene ID; ‘pQTL_Gene_Name’: HUGO gene naming

1204 consortium symbol for the protein; ‘pQTL_Gene_Loc_HG38’: pQTL gene genomic

1205 coordinates (hg38); ‘pQTL_Cis_Trans’: the association type for the pQTL in the primary

1206 analysis, either local *cis* or distal *trans*; ‘eQTL_Gene_Eensembl’: Ensembl gene ID for the

1207 tested eQTL gene; ‘eQTL_Gene_Name’: HUGO gene naming consortium symbol for the

1208 eQTL gene; ‘eQTL_Gene_Loc_HG38’: eQTL gene genomic coordinates (hg38);

1209 ‘eQTL_Trait’: ID of the molecular trait used for QTL mapping, depending on the quantification

1210 method used, this can be either a gene id, exon id, transcript id or a txrevise promoter, splicing

1211 or 3’end event id; ‘eQTL_Dataset’: eQTL dataset name and tested and tissue or cell type and

1212 trait quantification; ‘Study’: the study or the consortium of the eQTL data; ‘eQTL_Data_Type’:

1213 quantification type in the eQTL Catalogue as either gene expression, exon expression,
1214 transcript usage or txrevise event usage; ‘Tissue_Cells’: tissue or cell type for the eQTL;
1215 ‘nsnps’: the number of SNPs included in the genetic region of the colocalisation analysis;
1216 ‘PP.H0.abf’: posterior probability of no association with either trait; ‘PP.H1.abf’: posterior
1217 probability of association with pQTL but not eQTL; ‘PP.H2.abf’: posterior probability of
1218 association with eQTL but not pQTL; ‘PP.H3.abf’: posterior probability of association with
1219 both traits but at separate causal variants; ‘PP.H4.abf’: posterior probability of association with
1220 both traits at a shared causal variant.

1221 **S9 Table. List of pQTLs from the metabolites PheWAS.** Columns are ‘snp’: the queried
1222 SNP rsID; ‘rsid’: the queried SNP rsID; ‘hg19_coordinates’: genomic coordinates for the
1223 queried SNP (hg19); ‘hg38_coordinates’: genomic coordinates for the queried SNP (hg38);
1224 ‘a1’: the effect allele for the queried SNP; ‘a2’: the non-effect allele for the queried SNP; ‘trait’:
1225 the metabolite phenotype; ‘efo’: corresponding EFO ontology term for the metabolite
1226 phenotype; ‘study’: the name of the consortium or lead author of the study; ‘pmid’: the PubMed
1227 ID; ‘ancestry’: the ancestry of the study; ‘year’: the year the study was published; ‘beta’: the
1228 association between the trait and the SNP expressed per additional copy of the effect allele
1229 (odds ratios are given on the log-scale); ‘se’: the standard error of beta; ‘p’: the *p*-value;
1230 ‘direction’: the direction of association with respect to the effect allele; ‘n’: the number of
1231 individuals; ‘n_studies’: the number of studies; ‘unit’: the unit of analysis (IVNT stands for
1232 inverse normally rank transformed phenotype); ‘dataset’: the dataset ID as the first author or
1233 the consortium.

1234 **S10 Table. List of pQTLs from the epigenetics PheWAS.** Columns are ‘snp’: the queried
1235 SNP rsID; ‘rsid’: the queried SNP rsID; ‘hg19_coordinates’: genomic coordinates for the
1236 queried SNP (hg19); ‘hg38_coordinates’: genomic coordinates for the queried SNP (hg38);
1237 ‘a1’: the effect allele for the queried SNP; ‘a2’: the non-effect allele for the queried SNP; ‘trait’:
1238 the epigenetics phenotype; ‘efo’: corresponding EFO ontology term for the epigenetics
1239 phenotype; ‘study’: the name of the consortium or lead author of the study; ‘pmid’: the PubMed
1240 ID; ‘ancestry’: the ancestry of the study; ‘year’: the year the study was published; ‘tissue’: the
1241 tissue in which the gene expression was measured; ‘marker’: the epigenetic marker measured;
1242 ‘location’ the location of epigenetic marker (hg19); ‘beta’: the association between the trait and
1243 the SNP expressed per additional copy of the effect allele (odds ratios are given on the log-
1244 scale); ‘se’: the standard error of beta; ‘p’: the *p*-value; ‘direction’: the direction of association
1245 with respect to the effect allele; ‘n’: the number of individuals; ‘n_studies’: the number of
1246 studies; ‘unit’: the unit of analysis (IVNT stands for inverse normally rank transformed
1247 phenotype); ‘dataset’: the dataset ID as the first author or the consortium.

1248 **S11 Table. List of pQTLs from the PheWAS.** Columns are ‘snp’: the queried SNP rsID;
1249 ‘rsid’: the queried SNP rsID; ‘ref_hg19_coordinates’: the queried SNP genomic coordinates
1250 (hg19); ‘ref_hg38_coordinates’: the queried SNP genomic coordinates (hg38); ‘ref_a1’: the
1251 effect allele for the queried SNP; ‘ref_a2’: the non-effect allele for the queried SNP; ‘rsid’: the
1252 rsID for the proxy SNP; ‘hg19_coordinates’: genomic coordinates for the proxy SNP (hg19);
1253 ‘hg38_coordinates’: genomic coordinates for the proxy SNP (hg38); ‘rsid’: the rsID for the
1254 proxy SNP; ‘ref_a1’: the effect allele for the proxy SNP; ‘ref_a2’: the non-effect allele for the

1255 proxy SNP; ‘proxy’: an indicator variable which equals 0 if the proxy SNP is the input SNP
1256 and 1 otherwise; ‘r2’: the r^2 between the input SNP and the proxy SNP based on the phased
1257 haplotypes from 1000 Genomes ; ‘dprime’: the D’ between the input SNP and the proxy SNP
1258 based on the phased haplotypes from 1000 Genomes; ‘trait’: the phenotype; ‘efo’:
1259 corresponding EFO ontology term for the phenotype; ‘study’: the name of the consortium or
1260 lead author of the study; ‘pmid’: the PubMed ID; ‘ancestry’: the ancestry of the study; ‘year’:
1261 the year the study was published; ‘beta’: the association between the trait and the SNP
1262 expressed per additional copy of the effect allele (odds ratios are given on the log-scale); ‘se’:
1263 the standard error of beta; ‘p’: the p -value; ‘direction’: the direction of association with respect
1264 to the effect allele; ‘n’: the number of individuals; ‘n_cases’: the number of cases; ‘n_controls’:
1265 the number of controls; ‘n_studies’: the number of studies; ‘unit’: the unit of analysis (IVNT
1266 stands for inverse normally rank transformed phenotype); ‘dataset’: the dataset ID as the first
1267 author or the consortium.

1268 **S12 Table. Results from the pQTL–complex trait colocalisation analysis.** Columns are
1269 ‘Protein’: HUGO gene naming consortium symbol for the protein, ‘ID’: internal identification
1270 for complex trait used in the MRC CEU OpenGWAS database; ‘Study’: the name of the
1271 consortium/biobank or the first author of the study; ‘Trait’: the full naming of the complex trait
1272 in the MRC CEU OpenGWAS database; ‘nsnps’: the number of SNPs included in the genetic
1273 region of the colocalisation analysis; ‘PP.H0.abf’: posterior probability of no association with
1274 either trait (if $PP_0 > 0.8$); ‘PP.H1.abf’: posterior probability of association with pQTL but not
1275 complex trait (if $PP_1 > 0.8$); ‘PP.H2.abf’: posterior probability of association with complex trait
1276 but not pQTL ($PP_2 > 0.8$); ‘PP.H3.abf’: posterior probability of association with both traits but
1277 at separate causal variants (if $PP_3 > 0.8$); ‘PP.H4.abf’: posterior probability of association with
1278 both traits at a shared causal variant (if $PP_4 > 0.8$).

1279 **S13 Table. Results from the pQTL–complex trait Mendelian randomisation analysis.**
1280 Columns are ‘Protein’: HUGO gene naming consortium symbol for the protein used as
1281 exposure; ‘Trait’: the complex trait used as an outcome; ‘Full trait name’: the full naming of
1282 the complex trait in the MRC CEU OpenGWAS database; ‘ID’: internal identification for
1283 complex trait used in the MRC CEU OpenGWAS database; ‘Study’: the name of the
1284 consortium/biobank or the first author of the study; ‘Test’: the method used to conduct
1285 Mendelian randomisation (MR), for single variant based exposure traits Wald test and for
1286 multiple variants based exposure traits inverse variance weighted (IVW) regression; ‘nSNP’:
1287 the number of genetic variants used as instrumental variables (IV) in exposure traits for the MR
1288 analysis; ‘b’: the causal effect estimate of the protein (exposure) on the complex trait
1289 (outcome); ‘se’: the standard error of the causal effect estimate; ‘pval’: the p -value of the MR
1290 analysis; ‘qFDR’: the Benjamini-Hochberg FDR-corrected q -value of the MR analysis.

1291 **S14 Table. List of significant ($P < 1.48 \times 10^{-8}$) associations from the rare variant gene-
1292 based pQTL analysis.** Columns are ‘Uniprot’: UniProtID of the protein; ‘Protein’: HUGO
1293 gene naming consortium symbol for the protein; ‘chr’: the chromosome of the associated gene
1294 (GRCh37), ‘beg’: the start coordinates of the gene (GRCh37); ‘end’: the end coordinates of the
1295 gene (GRCh37); ‘marker_id’: the genetic location of the associated gene, including
1296 chromosome, start and end coordinates, and HGNC gene symbol for it (GRCh37); ‘NS’: the

1297 number of phenotyped samples with non-missing genotypes; ‘FRAC_WITH_RARE’: the
1298 fraction of individuals carrying rare variants below the maximum of minor allele frequency
1299 threshold (MAF < 0.01); ‘NUM_ALL_VARS’: the number of all variants defining the group,
1300 meaning all genetic variants located within the tested gene; ‘NUM_PASS_VARS’: the number
1301 of variants passing the minimum of MAF (0.0000001), the minimum of minor allele count (1),
1302 the maximum of MAF (0.01) and minimum of call rate (0.5) thresholds;
1303 ‘NUM_SING_VARS’: the number of singletons among variants in ‘NUM_PASS_VARS’;
1304 ‘PVALUE’: the *p*-value of the burden test; ‘QSTAT’: the *Q* statistic of the burden test; ‘TYPE’:
1305 the association type, *cis* is if the association is with the protein-encoding gene itself and
1306 otherwise *trans*; ‘eQTL_NS’: the number of phenotyped samples with non-missing genotypes
1307 for gene expression; ‘eQTL_FRAC_WITH_RARE’: the fraction of individuals carrying rare
1308 variants below the maximum of minor allele frequency threshold (MAF < 0.01) for gene
1309 expression; ‘eQTL_NUM_ALL_VARS’: the number of all variants defining the group, all
1310 genetic variants located within the tested gene for gene expression; ‘eQTL_NUM_PASS_VARS’: the
1311 number of variants passing the minimum of MAF (0.0000001), the minimum of minor allele count (1), the maximum of MAF (0.01) and
1312 minimum of call rate (0.5) thresholds for gene expression; ‘eQTL_NUM_SING_VARS’: the
1313 number of singletons among variants in ‘eQTL_NUM_PASS_VARS’ for gene expression;
1314 ‘eQTL_PVALUE’: the *p*-value of the burden test for gene expression; ‘eQTL_QSTAT’: the *Q*
1315 statistic of the burden test for gene expression; ‘eQTL_QVALUE_FDR’: the Benjamini-
1316 Hochberg FDR-corrected *q*-value of the eQTL analysis.
1317

1318 **S15 Table. (A) List of significant CNV-pQTLs and (B) CNV pQTL-eQTL Spearman**
1319 **correlations and MR results.** (A) Columns are ‘CNV’: the genetic location of the CNV in the
1320 format chromosome:start-end (GRCh37); ‘Chr’: the chromosome CNV is located on
1321 (GRCh37); ‘Start’: the start coordinates of the CNV (GRCh37); ‘End’: the end coordinates of
1322 the CNV (GRCh37); ‘Uniprot’: UniProtID of the protein; ‘Array’: Olink panel for the protein;
1323 ‘Gene’: HUGO gene naming consortium symbol for the protein; ‘Type’: the pQTL association
1324 type, if the CNV association is in the proximity of the protein-encoding gene, the association
1325 is *cis* and otherwise *trans*; ‘P-value (pQTL)’: the CNV pQTL association *p*-value; ‘P-value
1326 (eQTL same gene)’: the *p*-value from the CNV eQTL analysis for the pQTL gene (for
1327 heterodimer the specific subunit is in the brackets); ‘P-value (eQTL other gene)’: the *p*-value
1328 from the CNV eQTL analysis for not pQTL gene and in the brackets in the associated gene;
1329 ‘CNV overlap with a gene’: CNV overlap with a gene and gene symbol is in the brackets, for
1330 heterodimer, overlap with subunit is marked; ‘Number of copies’: the possible number of
1331 alleles detected for the CNV in the Estonian population; ‘Allele frequency’: the frequency of
1332 the CNV based on the number of copies corresponding in the column ‘Number of copies’. (B)
1333 Columns are ‘CNV’: the genetic location of the CNV in the format chromosome:start-end
1334 (GRCh37); ‘gene (RNAseq)’: HUGO gene naming consortium symbol for the gene; ‘protein
1335 (Olink)’: HUGO gene naming consortium symbol for the protein; ‘R (Spearman)’: Spearman’s
1336 rank correlation coefficient for gene expression versus protein expression; ‘Z (MR)’: Z score
1337 as causal effect estimate from the CNV eQTL and CNV pQTL MR analysis; ‘P (MR)’: *p*-value
1338 from the CNV eQTL and CNV pQTL MR analysis. *Reference for these values is a whole-
1339 genome sequenced cohort of 2,273 individuals in the Estonian Biobank.

1340 **S16 Table. List of significant CNV-eQTLs.** Columns are ‘CNV’: genetic coordinates of the
1341 tested CNV in the format of chromosome:start-end (GRCh37); ‘gene’: HUGO gene naming
1342 consortium symbol for the trait; ‘ensembl’: Ensembl transcript ID for the tested trait; ‘beta’:
1343 estimate of the effect size; ‘t-stat’: t-statistic of the association; ‘p-value’: *p*-value of the
1344 association; ‘FDR’: Benjamini-Hochberg procedure corrected association *q*-value.

1345 **S17 Table. List of pQTLs identified in the SNP-tagged CNV analysis.** Single variant pQTL
1346 results originate from the Sun et al. 2022 study [9]. Columns are ‘chr’: the chromosome (hg19);
1347 ‘position’: the position of the SNP (hg19); ‘rsID’: the rsID of the pQTL SNP; ‘A1’: the
1348 reference allele; ‘A2’: the tested allele; ‘target’: HUGO gene naming consortium symbol for
1349 the protein; ‘cis_trans’: the association type in the original Sun et al. [9] pQTL mapping (either
1350 *cis* or *trans*); ‘A2_freq_discovery’: the frequency of the tested SNP in the Sun et al. [9]
1351 discovery cohort; ‘A2_freq_replication’: the frequency of the tested SNP in the Sun et al. [9]
1352 replication cohort; ‘A2_freq_Est’: the frequency of the tested SNP in the Estonian Biobank;
1353 ‘maxR2’: the R^2 of the linkage disequilibrium between Sun et al. [9] pQTL SNP and the
1354 Estonian Biobank CNV; ‘maxR2_CNV’: the CNV tagged by SNPs coordinates (hg19);
1355 ‘frequency (deletion/duplication)’: the frequency of the CNV in the Estonian Biobank;
1356 ‘maxR2_CNV_Impact’: the classification of the most likely impact of the SNP tagging the
1357 CNV; ‘maxR2_CNV_Consequence’: the most likely consequence of the SNP tagging the
1358 CNV.

1359 **S18 Table. List of secretion locations for the proteins with significant results from the**
1360 **pQTL analysis.** Columns are ‘Protein’: the HGNC gene symbol for the protein; ‘location’: the
1361 location of proteins; ‘CNV’: CNV pQTL association detection; ‘rare’: rare variant gene-based
1362 pQTL association detection.

Estonian Biobank dataset

>480 samples

8M SNPs

2,465 CNVs

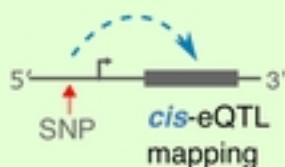
18,717 genes

5' 3'

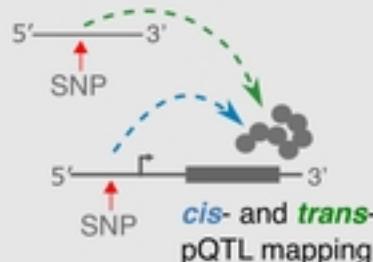
326 proteins

eQTL Catalogue

- 19 eQTL datasets, including GTEx v8
- gene/exon expression, transcript usage, txrevise event usage

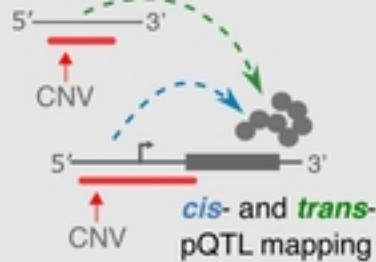


SNP pQTL analysis



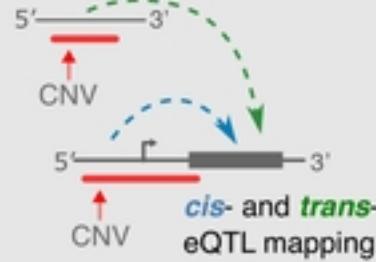
278 SNP pQTLs
($P < 5 \times 10^{-8}$)
for 157 unique proteins

CNV pQTL analysis



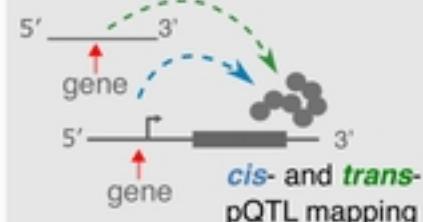
12 CNV pQTLs
($P < 1.12 \times 10^{-7}$)
for 11 unique proteins

CNV eQTL analysis



673 CNV eQTLs
($P < 1.61 \times 10^{-9}$)
for 244 unique genes

Rare variant pQTL analysis



19 gene-based pQTLs
($P < 1.48 \times 10^{-8}$)
for 7 proteins

COLOC v3: pQTL–eQTL colocalisation

- 14,064 colocalisations with $PP.H4 > 0.8$
- 109 out of 198 tested pQTLs colocalised with an eQTL

PheWAS using PhenoScanner

- 5,046 ($P < 1 \times 10^{-5}$) associations, corresponding to 432 traits

Colocalisation and Mendelian randomisation (MR)

- for selected 6 proteins and 61 complex traits
- 46 colocalisations with $PP.H4 > 0.8$ for 5 proteins
- supported by MR ($P_{FDR} < 0.05$)

Wald method: CNV pQTL–eQTL colocalisation

- investigated pQTL–eQTL colocalisation for the subset of three pQTL–eQTL pairs (adjusted $P < 0.05$)

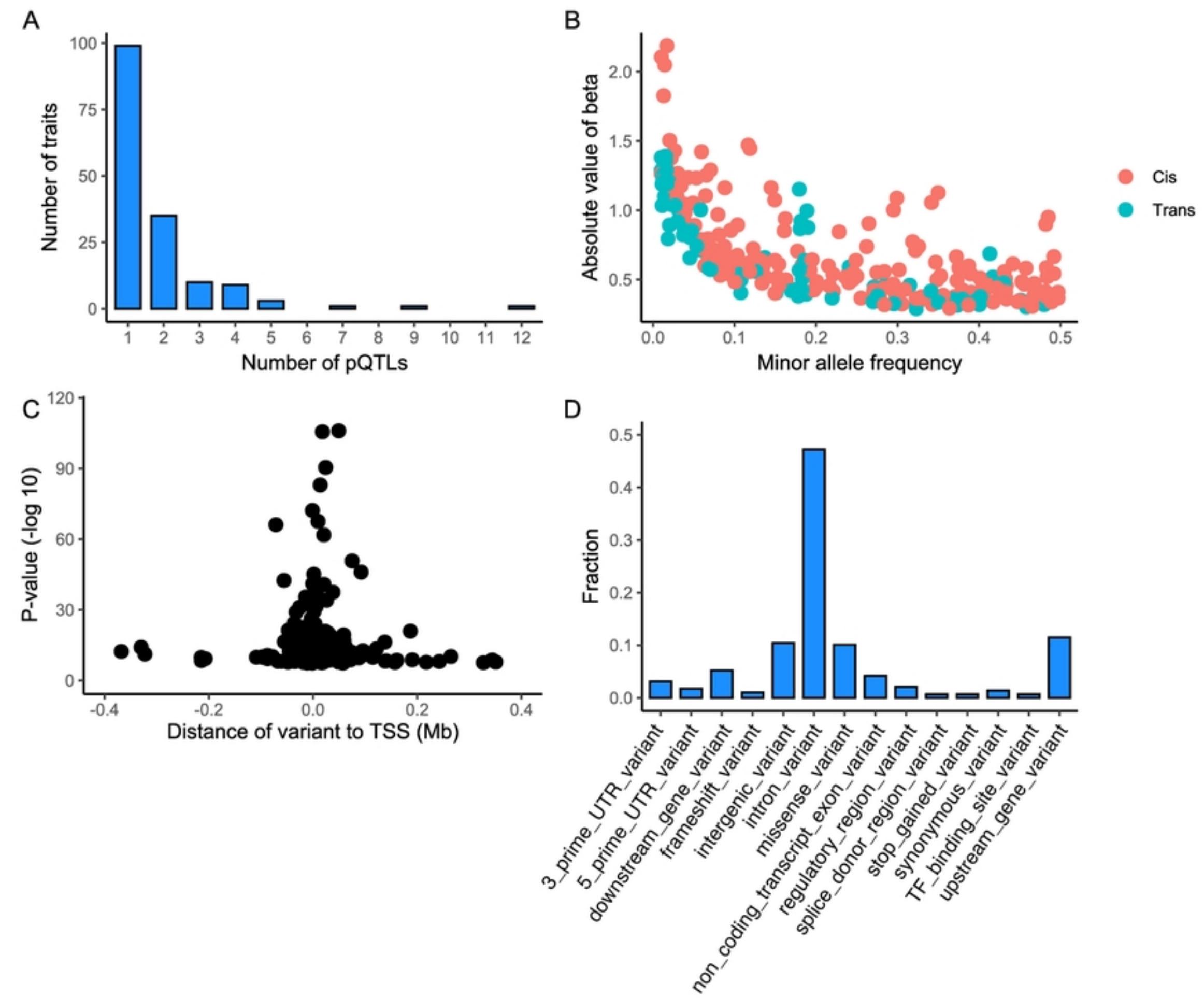
Novel 3q12.1 CNV hub for *trans* associations

- associated with ICAM2, FLT4, PDCD1LG2 and IL1R1 in the Estonian Biobank

CNV-tagging SNPs approach

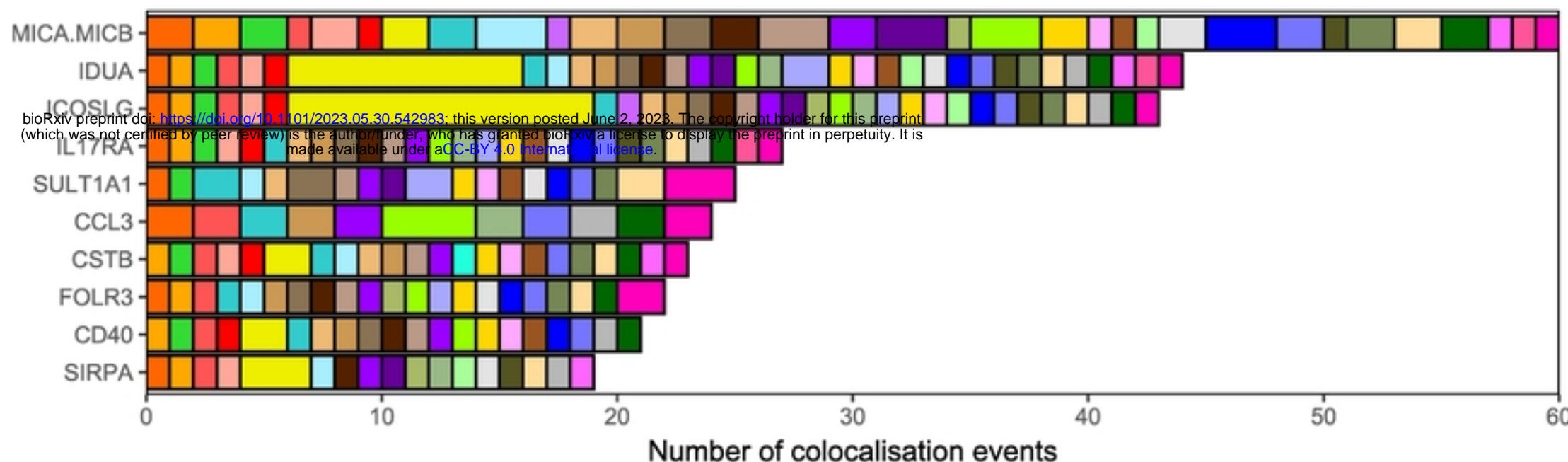
- potential associations with 72 proteins in the UK Biobank

Literature-based interpretation

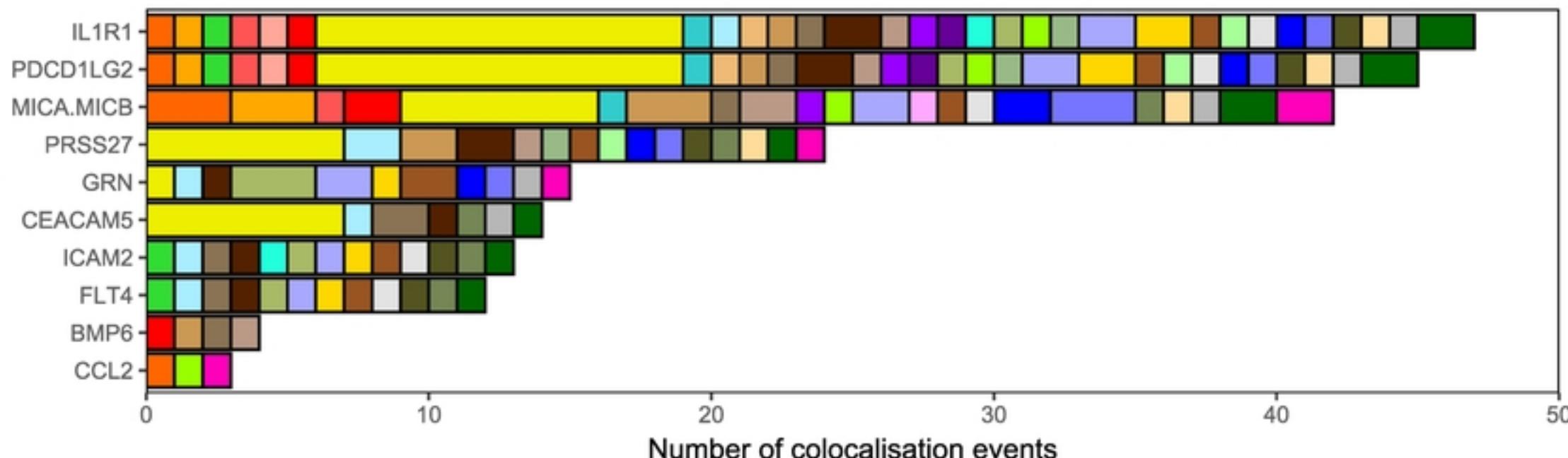
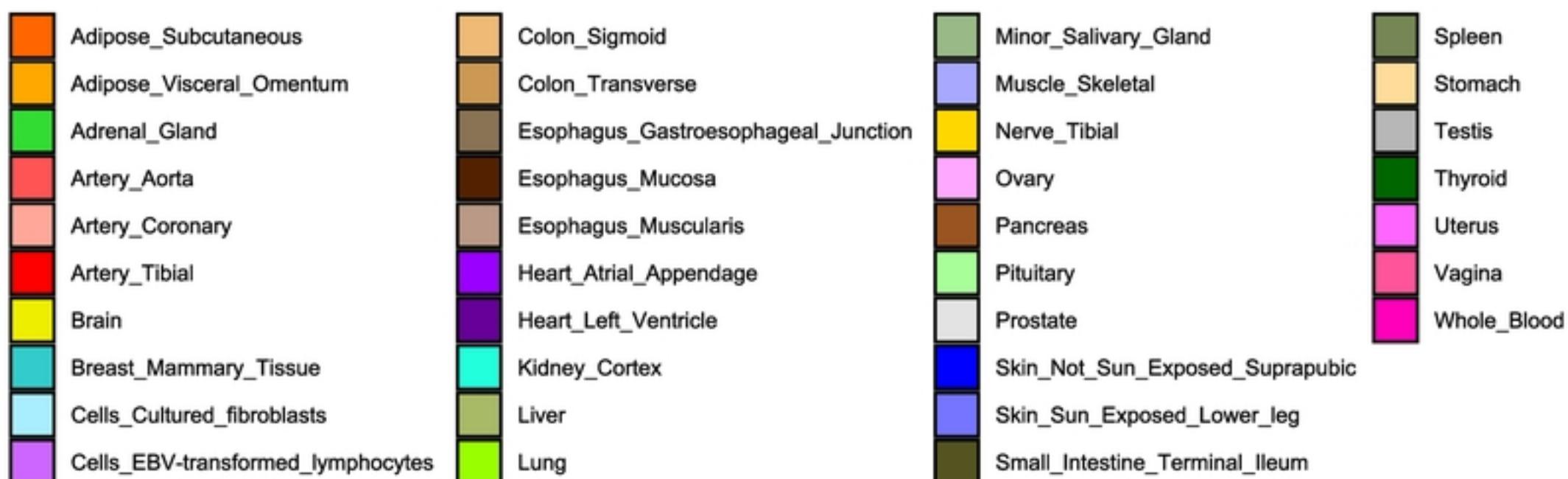


Figure

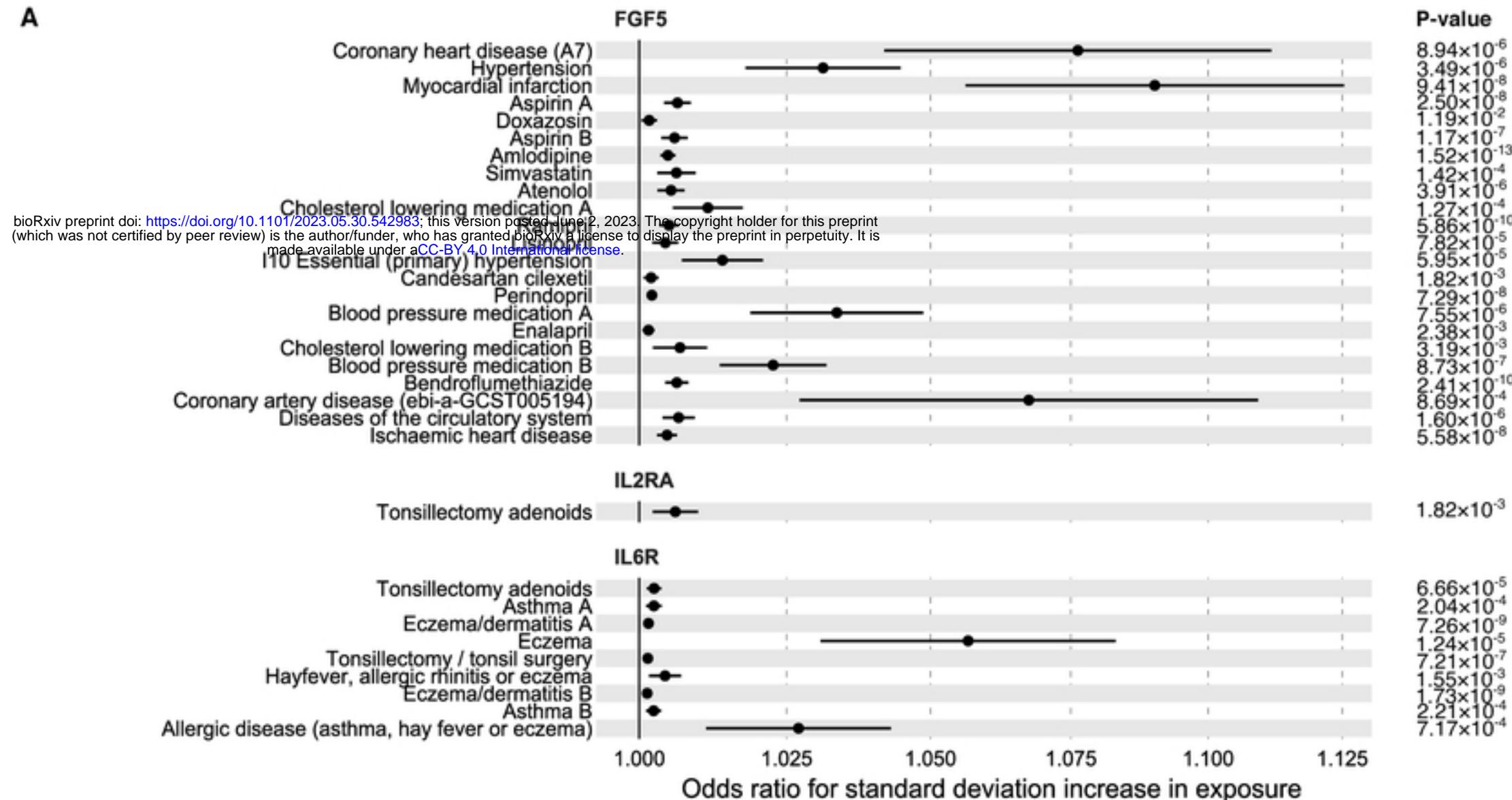
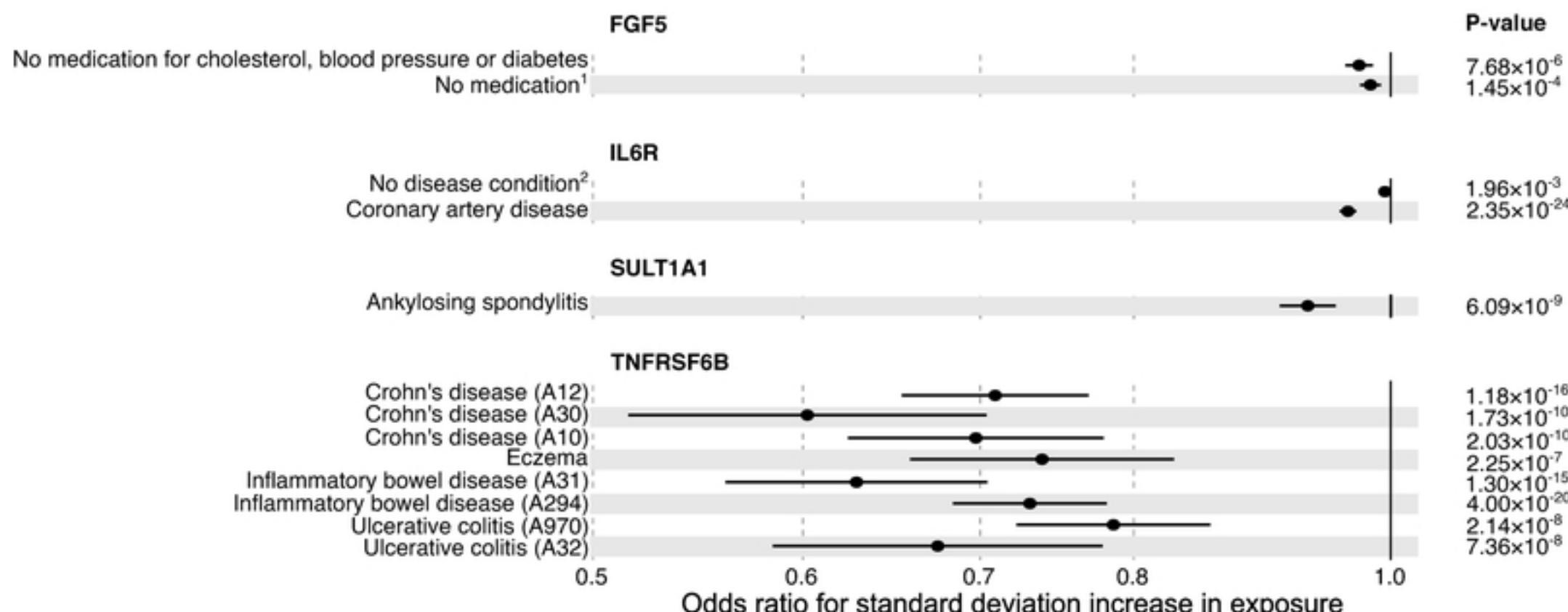
A



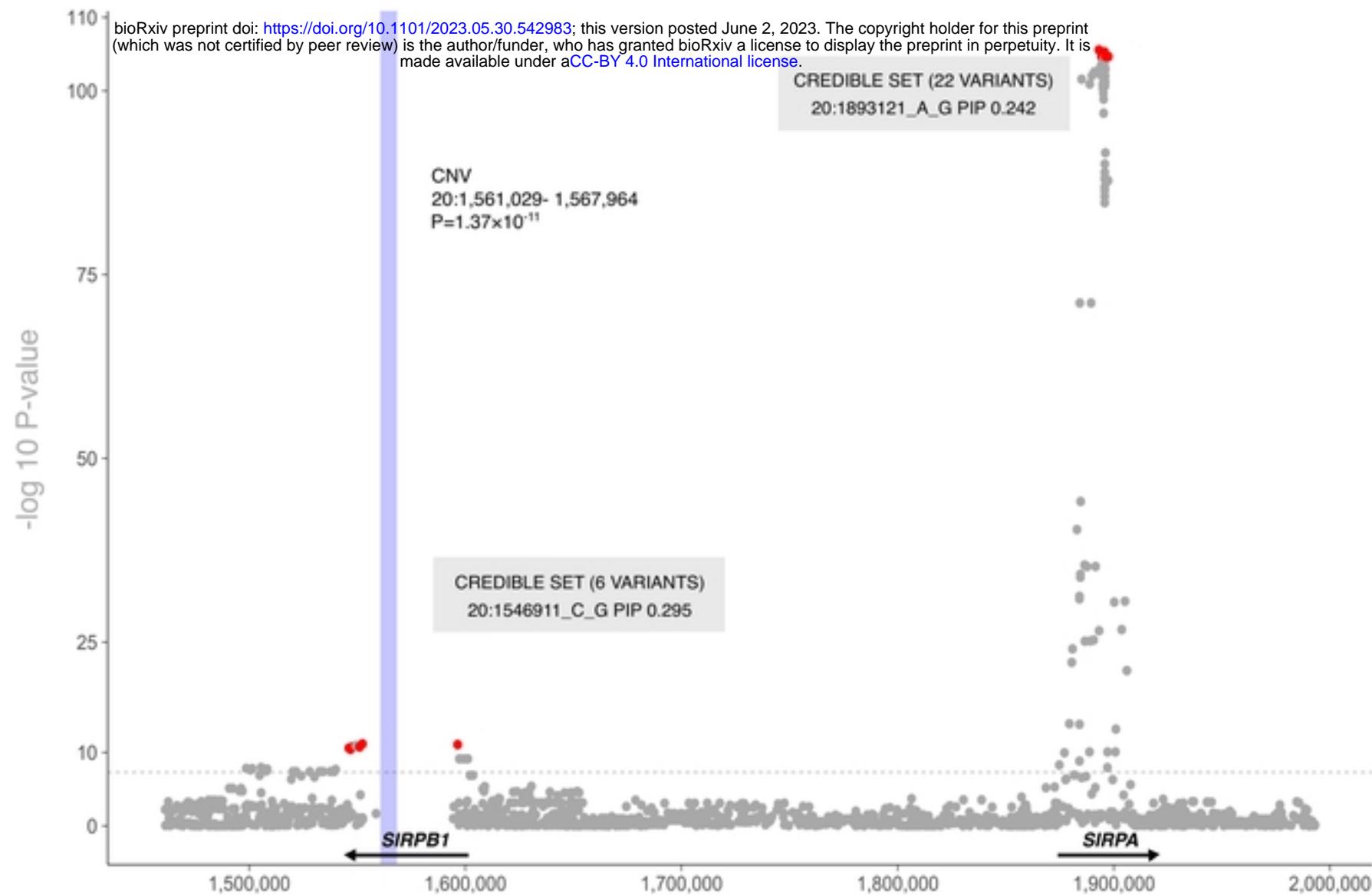
B



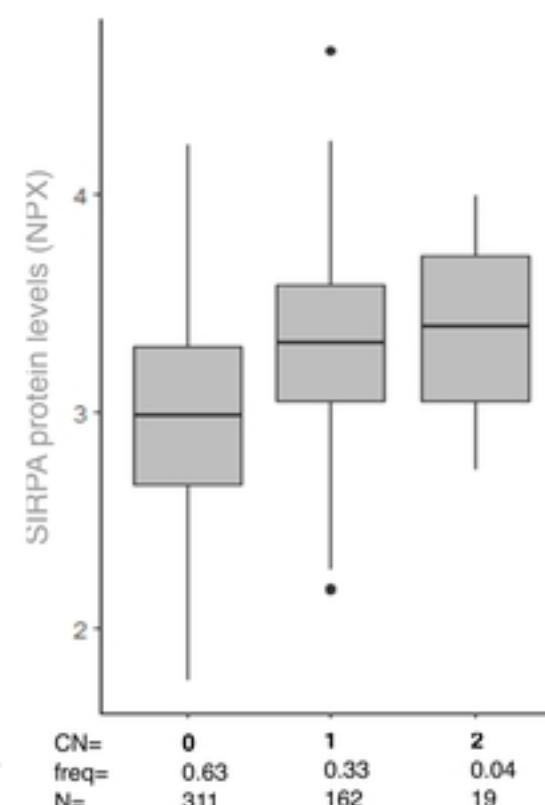
Figure

A**B****Figure**

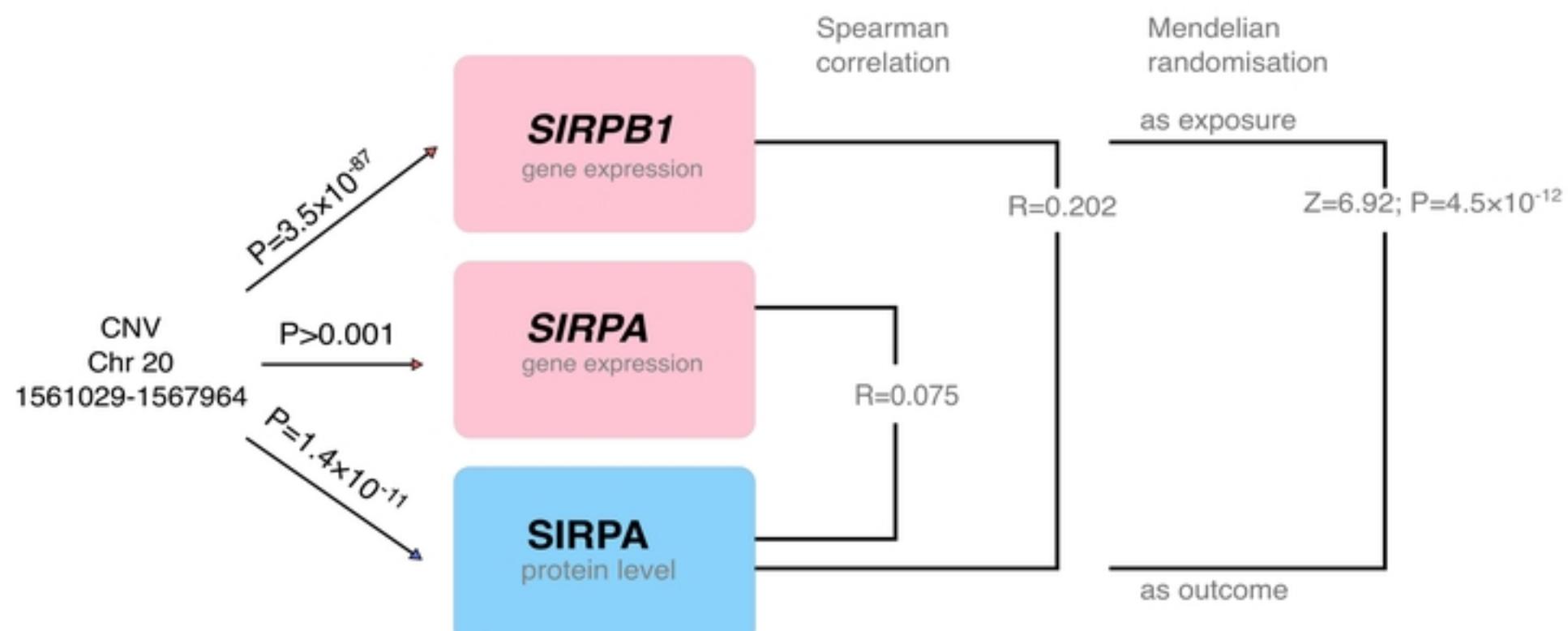
A



B

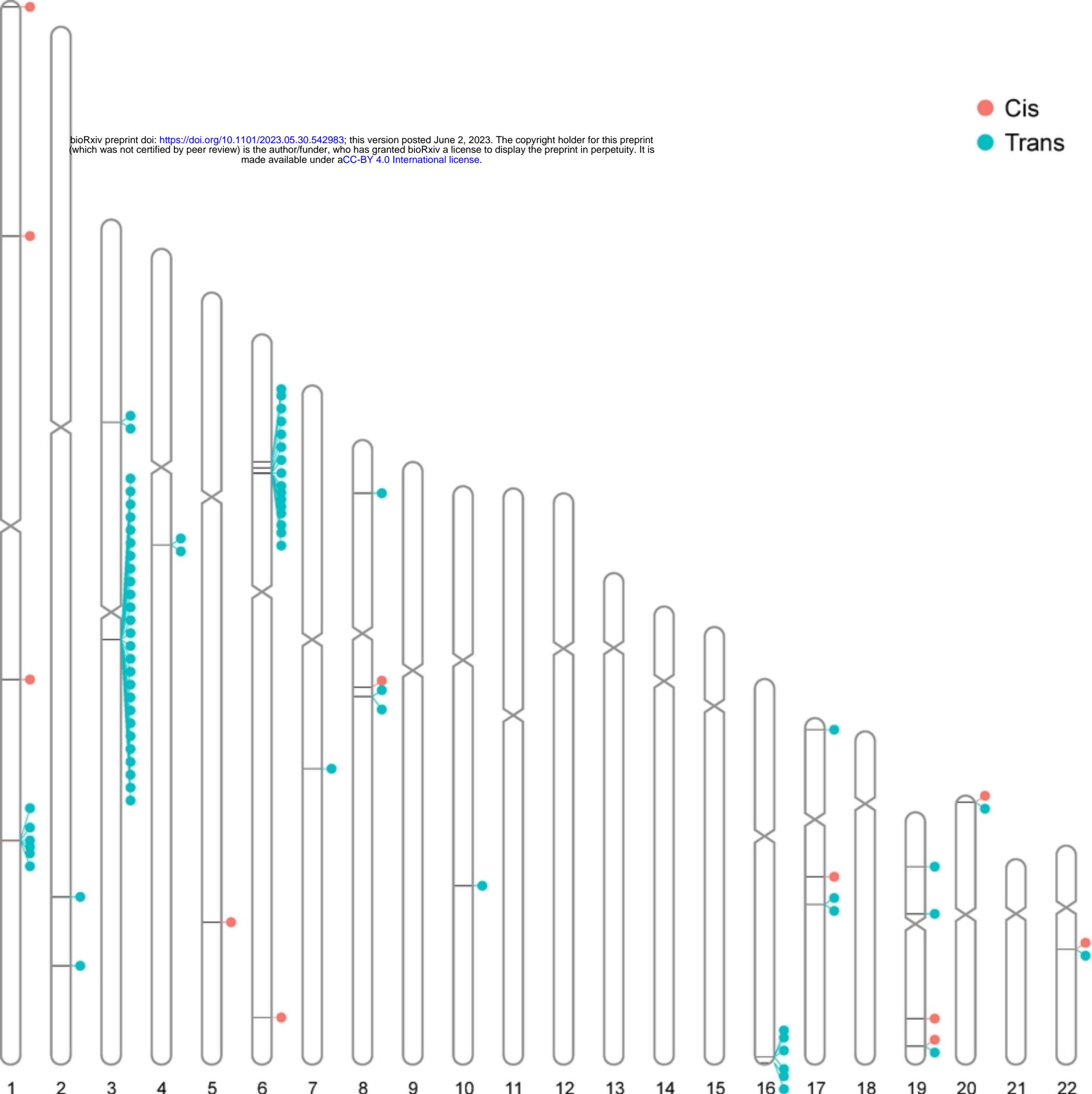


C



Figure

● Cis
● Trans



Figure