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35 Abstract

36 The proteome holds great potential as an intermediate layer between the genome and phenome. 

37 Previous protein quantitative trait locus studies have focused mainly on describing the effects 

38 of common genetic variations on the proteome. Here, we assessed the impact of the common 

39 and rare genetic variations as well as the copy number variants (CNVs) on 326 plasma proteins 

40 measured in up to 500 individuals. We identified 184 cis and 94 trans signals for 157 protein 

41 traits, which were further fine-mapped to credible sets for 101 cis and 87 trans signals for 151 

42 proteins. Rare genetic variation contributed to the levels of 7 proteins, with 5 cis and 14 trans 

43 associations. CNVs were associated with the levels of 11 proteins (7 cis and 5 trans), examples 

44 including a 3q12.1 deletion acting as a hub for multiple trans associations; and a CNV 

45 overlapping NAIP, a sensor component of the NAIP-NLRC4 inflammasome which is affecting 

46 pro-inflammatory cytokine interleukin 18 levels. In summary, this work presents a 

47 comprehensive resource of genetic variation affecting the plasma protein levels and provides 

48 the interpretation of identified effects.

49

50 Introduction

51 During the last decade, genome-wide association studies (GWASs) have successfully linked 

52 genetic variants to complex traits [1]. However, the mechanisms underlying many of these 

53 associations often remain unknown, as most of the associated genetic variants are located in 

54 non-coding regions of the genome, suggesting that they have regulatory effects on phenotypes 

55 [2]. To fill this knowledge gap, molecular traits are routinely used as intermediate phenotypes 

56 in association studies. The study of molecular phenotypes enables the assessment of the direct 

57 effects of genetic variants on, for example, the alteration of protein levels, and the potential 
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58 underlying molecular mechanisms and links to endpoint phenotypes.

59 Proteins are functional products of the genome that provide insight about the normal processes 

60 of organisms; in addition, alterations in their levels are indicators of changes in disease status 

61 [3]. Recent technological advancements, including the development of multiplex 

62 immunoassays and aptamer assays, have provided opportunities for the measurement of 

63 thousands of plasma- and serum-based protein levels [4–8].

64 The genetic backgrounds of protein levels are uncovered through the linking of these levels to 

65 genetic variability via protein quantitative trait locus (pQTL) analysis. Many recent pQTL 

66 studies have been large-scale [4–8], with the largest of them including 54,306 individuals from 

67 the UK Biobank [9]. Their primary focus has been the identification of common [minor allele 

68 frequency (MAF) > 0.01] variants affecting inter-individual protein variability, but Sun et al. 

69 [9] reported that approximately 5.6% (570/10,248) and 1.5% (155/10,248) of the variants with 

70 primary associations had MAFs < 0.01 and < 0.005, respectively. In addition, the focus has 

71 been shifting toward the identification of associations with rare (MAF < 0.01) variants, using 

72 gene-based methods [10–14]. For example, a recent landmark study conducted on the Icelandic 

73 population revealed 18,084 genetic associations with protein levels, 19% of which were with 

74 rare variants [8]. Investigation of the effects of other structural variants, such as copy number 

75 variants (CNVs), on protein levels has thus far been limited [15]. 

76 The combined examination of pQTL and GWAS results for disease phenotypes can lead to the 

77 validation and prioritisation of new and existing drug targets, and the identification of clinically 

78 relevant biomarkers. Ferkingstad et al. [8] found that 12% of 45,334 lead associations in the 

79 GWAS Catalog were with variants in high linkage disequilibrium (LD) with pQTLs. The 

80 application of Mendelian randomisation (MR) and colocalisation analysis to biomedical data 

81 for the identification of links between pQTLs and diseases enables the evaluation of the 
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82 causality between protein levels and disease risk and the identification of potential disease 

83 pathways, respectively. Zheng et al. [16] used MR and colocalisation analysis to examine 

84 associations of 1,002 plasma proteins with 153 diseases and 72 disease-related risk factors, and 

85 identified 413 protein–trait associations supported by MR, 130 (31.5%) of which were not 

86 supported by the colocalisation analysis. This example highlights the importance of 

87 intersecting the results from both analyses [17].

88 Here, we integrated dense whole-genome sequencing (WGS) data to study the genetic 

89 contributions of rare and common variants to 326 plasma protein levels in the Estonian Biobank 

90 cohort (Fig 1). We examined the effects of single nucleotide polymorphisms (SNPs) and 

91 common CNVs on the inter-individual protein variability, and identified several proteins that 

92 were affected by the latter. To assess the overlap of local (cis) and distal (trans) pQTL effects 

93 with gene expression levels, we conducted comprehensive colocalisation analyses with 

94 expression quantitative trait loci (eQTLs) and splicing QTLs using data from various tissues 

95 from the eQTL Catalogue [18].

96 Figure 1. Overview of the main analyses conducted in this study.

97 Material and methods

98 Study samples

99 The Estonian Biobank (EstBB) cohort consists of more than 200,000 Estonian volunteers aged 

100 ≥ 18 years, representing about 20% of the Estonian adult population, detailed information on 

101 the enrollment process and data collection is described in the Leitsalu et al. study [19]. 

102 Genotype data are available for all gene donors in this cohort. For a subcohort of 500 

103 individuals [52.8% females and 47.2% males, mean age 54 (standard deviation 14.0) years], 
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104 WGS, RNA sequencing and Olink proteomics data from the same timepoint are available. The 

105 WGS dataset was generated in 2015. Sample collection for RNA sequencing and Olink 

106 proteomics was conducted in years 2011-2012. RNA sequencing was performed in years 2015-

107 2016 and protein levels were measured in year 2017. The activities of the EstBB are regulated 

108 by the Human Genes Research Act, which was adopted in year 2000 specifically for the 

109 operations of the EstBB. All participants have signed a broad consent form to allow researchers 

110 to use their genomics and health data for studies upon approval by the Estonian Committee on 

111 Bioethics and Human Research. Individual level data analysis for this project was carried out 

112 under approval 1.1-12/624 from the Estonian Committee on Bioethics and Human Research 

113 (Estonian Ministry of Social Affairs) and data extraction no. K29 from the Estonian Biobank. 

114 The current study was conducted using pseudonymised data.

115 WGS data processing, variant calling and quality control

116 The 2,284 EstBB WGS samples were sequenced at the Genomics Platform of the Broad 

117 Institute (Cambridge, MA, USA). Sequenced data were jointly variant called and quality 

118 controlled as described by Mitt et al. [20]; and the final WGS sample set was derived from 

119 2,244 individuals. We excluded multiallelic sites and genetic variants, based on quality/depth 

120 < 2, Hardy–Weinberg equilibrium test failure (P > 1×10-9), and call rate < 90%. Data from 

121 individuals with available proteomics data (n = 500) were retained for further analyses.

122 CNV detection and quality control

123 The Genome STRiP pipeline (version 2.00.1611) [21] was applied to detect CNVs from aligned 

124 sequencing reads (in BAM format) for 2,284 samples as described by Lepamets et al. [22]. In 

125 brief, CNV sites were identified and genotyped in five batches. After the exclusion of samples 

126 with excessive numbers of calls, the batches were combined and duplicate calls were merged. 
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127 Low-quality calls and sites with call rates <90% were excluded. We restricted the final dataset 

128 to deletions longer than 1,000 bp and duplications longer than 2,000 bp. The final sample set 

129 contained 51,026 CNV sites from 2,230 individuals. Data from individuals with available 

130 proteomics data (n = 500) were retained for further analyses.

131 Measurement of plasma protein levels

132 Plasma concentrations in EDTA plasma samples from 500 Estonian Biobank donors were 

133 measured using four arrays with 92 protein targets each [ProSeek Cardiovascular Disease 

134 (CVD) II and III, Inflammation and Oncology II; Olink Biosciences, Uppsala, Sweden; S1 

135 Table]. The procedure is described in detail elsewhere [23], and a technical white paper with 

136 additional information is available at the manufacturer’s website (https://www.olink.com). The 

137 native Olink data consisted of qPCR cycle threshold values corrected for extension control, 

138 followed by inter-plate control and the application of a correction factor predetermined by a 

139 negative control signal. The measurements were given at a natural logarithmic scale as 

140 normalised protein expression levels, a relative quantification unit. As part of the quality 

141 control, we excluded individual samples that did not pass the Olink internal quality control 

142 system. Final sample sizes per array ranged from 488 to 497, and the samples were measured 

143 in six batches. For arrays in which <20% of samples had values below the limit of detection 

144 (LOD), protein level correction was performed by dividing the Olink-assigned LOD value by 

145 2, as done in the SCALLOP CVD-I project [6]. A total of 341 protein traits (326 unique 

146 proteins, as 14 proteins were measured by more than one array) passed quality control and were 

147 retained for further analyses (S1 Table).
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148 RNA sequencing data

149 RNA was extracted from samples in thawed Tempus tubes using TRIzol reagent (Invitrogen, 

150 Waltham, MA, USA) and further purified using an RNeasy Mini Kit (Qiagen, Hilden, 

151 Germany). Globin mRNA was depleted using GLOBINclear Kit (Invitrogen, Waltham, MA, 

152 USA). RNA quality was checked using electrophoresis (Agilent 2200 TapeStation; Agilent 

153 Technologies, Santa Clara, CA, USA). Sequencing libraries were prepared using 200 ng RNA 

154 according to the Illumina TruSeq stranded mRNA protocol. RNA sequencing was performed 

155 at the Estonian Genome Centre Core Facility using paired-end 50-bp sequencing technology 

156 (Illumina, San Diego, CA, USA), according to the manufacturer’s specifications.

157 Adapters and leading and trailing bases with a quality score were removed using Trimmomatic 

158 (version 0.36) [24]. Quality control was done with FastQC (version 0.11.2) [25]. Reads were 

159 mapped to human genome reference version GRCh37.p13 with STAR (version 2.4.2a) [26]. 

160 Reads that mapped to each genomic feature were counted with STAR using the same algorithm 

161 as default htseq-count. Raw RNA sequencing counts were normalised with the weighted 

162 trimmed mean of M-values [27] method from the edgeR R package (version 3.12.1) [28]. 

163 Detailed information regarding RNA sequencing data pre-processing is described in Lepik et 

164 al. [29]. The final gene expression measure was in logarithmed count per million. In total, 486 

165 RNA sequencing samples overlapped with available proteomics data and were used for eQTL 

166 mapping.

167 Genome-wide SNP pQTL discovery

168 Protein trait levels were rank-based inverse normal transformed. We regressed out the effects 

169 of age, sex, the season of sample collection, smoking status, blood sample processing time 

170 (days), plasma sample storage time (in days) and protein analysis batch using a custom R script. 
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171 The residuals were used in a single-variant pQTL analysis performed with the EMMAX linear 

172 mixed model [30] and the EPACTS software (version 3.3.0, q.emmax function; 

173 https://genome.sph.umich.edu/wiki/EPACTS). To account for population structure, a kinship 

174 matrix was generated in EPACTS using genetic variants with MAF > 0.01 and call rate > 95%. 

175 Depending on the panel, we tested between 8,856,032 and 8,891,303 autosomal genetic 

176 variants against 341 plasma protein traits.

177 We classified associated variants into two categories based on their positions in relation to the 

178 protein-coding genes. We defined cis-pQTLs as SNPs located within 1Mb upstream or 

179 downstream of the transcription start sites (TSSs) of the corresponding protein-coding genes, 

180 and trans-pQTLs as SNPs located >1 Mb upstream or downstream of the TSS or on a different 

181 chromosome. Heterodimers were classified based on the protein subunit gene closest to the 

182 associated variant. In the case of proteins that were present on multiple panels, weaker signals 

183 were omitted from the analyses.

184 To retain independent signals, associated variants were clumped in PLINK (version 1.9) [31], 

185 using a 1 Mb window with the LD thresholds of R2 = 0.1 and P < 5 × 10-8. To flag potential 

186 ‘pseudo-pQTL’ signals caused by the epitope effect, i.e. altered assay binding affinity due to a 

187 change in protein structure instead of an actual change in protein expression level, we followed 

188 the strategy described by Folkersen et al, 2020 [6]. Briefly, we determined whether any lead 

189 cis variant was a protein-altering variant (PAV) or in high LD (R² ≥ 0.8) with one, by using 

190 2,230 WGS samples as the reference for the LD calculations (S2 Table). Missense, frameshift, 

191 splice donor region and stop gain variants were flagged as PAVs. Lead pQTL variants were 

192 queried for evidence of location in a regulatory region using RegulomeDB [32].
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193 Corresponding eQTL discovery

194 In order to overlap the genome-wide significant (P < 5 × 10-8) pQTLs with eQTLs, we used 

195 the RNA sequencing data from the overlapping samples of the same cohort [29]. We tested the 

196 eQTL effects on the genes encoding corresponding proteins by using a linear mixed model 

197 from EPACTS software (version 3.2.2) [30] with the same settings as for pQTL analysis. We 

198 included age, sex, body mass index, blood components (neutrophils, eosinophils, basophils, 

199 lymphocytes, monocytes, erythrocytes and thrombocytes) and RNA sequencing batch as 

200 covariates. To account for hidden batch effects on the gene expression, the first two principal 

201 components of the gene expression data were also included as covariates, as described in detail 

202 in Lepik et al. [29]. To correct for multiple testing, we adjusted P-values using false discovery 

203 rate (FDR) correction; eQTLs were considered as replicated at Benjamini-Hochberg FDR ≤ 

204 0.05 and with concordant allelic direction with the pQTLs.

205 Multiple testing correction for the pQTL analysis

206 From primary analyses, effects reaching per-protein genome-wide significance (P < 5 × 10-8) 

207 were interpreted. To also provide the more conservative results accounting for the number of 

208 tested proteins, we used a strategy described by Gao et al. and Kettunen et al. [33,34], which 

209 accommodates the correlation between protein levels. Four matrices corresponding to inverse 

210 normal transformed and covariate-adjusted protein levels from the Olink panels were merged. 

211 Only samples that passed quality control on every panel (n = 478) were included. The resulting 

212 matrix of standardised residuals was used in a principal components analysis implemented with 

213 the FactoMiner (version 1.41) [35] R package. As 181 principal components cumulatively 

214 explained >95% of the total variance in the proteomics data, the stricter significance threshold 

215 was set to 2.76 × 10-10 (5 × 10-8 / 181).
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216 Gene-based analysis of rare SNPs

217 Variants were annotated using the EPACTS ‘anno’ module (version 3.3.0; 

218 https://genome.sph.umich.edu/wiki/EPACTS) and GENCODE (version 14) [36] to ascertain 

219 their effects on protein sequences.  A gene-based group file was generated with the inclusion 

220 of all nonsynonymous (missense and nonsense) variants in assigned genes. Only genes with 

221 more than two nonsynonymous variants were retained. We performed the gene-based SKAT 

222 test using the EMMAX mmskat function with adjustment for small sample size in EPACTS, 

223 using all variants with 0.000001% < MAF < 1%. Covariates included in the rare variant pQTL 

224 analysis were the same as described in the Methods section for Genome-wide SNP pQTL 

225 discovery. The results were corrected for multiple testing based on Bonferroni-corrected 

226 threshold of P < 1.48 × 10-8 [0.05 / (18,717 genes × 181 protein traits)]. Associations between 

227 genes and levels of proteins encoded on the same gene were classified as cis, and all other 

228 associations were classified as trans. Using the GeneMANIA database [37,38], we investigated 

229 whether the associated genes also had gene–gene functional interactions with corresponding 

230 protein-coding genes. For overlapping the rare variant pQTL associations with eQTL data, we 

231 performed an eQTL mapping with EPACTS software (version 3.2.2) using the same gene-

232 based SKAT test as in rare variant pQTL mapping. Covariates included in the rare variant 

233 eQTL analysis were the same as described in the Methods section for Corresponding eQTL 

234 discovery. Similar to single variant eQTL analysis, to account for multiple testing, we adjusted 

235 P-values using false discovery rate (FDR) correction; rare variant eQTLs were considered as 

236 replicated at Benjamini-Hochberg FDR ≤ 0.05 and directionally concordant with the rare 

237 variant pQTLs.
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238 Fine-mapping analysis

239 We conducted a fine-mapping analysis to pinpoint causal variants for protein level–significant 

240 (P < 5 × 10-8) SNV-pQTL associations. We excluded the LTA and MICA-MICB proteins 

241 associated with variants in the major histocompatibility complex region on chromosome 6, due 

242 to the complexity of the associated HLA region. The fine-mapping procedure was based on the 

243 SuSiE ‘sum of single effects’ model [39,40] and was implemented using the susie_suff_stat 

244 function from susieR package (version 0.11.42). Fine-mapping pipeline was implemented in 

245 Nextflow [41] and some scripts were modified from the FINNGEN fine-mapping pipeline 

246 (https://github.com/FINNGEN/finemapping-pipeline). The SuSiE output contains single effect 

247 components, i.e., credible sets (CSs), with a >95% probability of including a variant with a 

248 non-zero causal effect. We used a default setting of 10 for the maximum number of causal 

249 variants regulating a protein, because Wang et al. has demonstrated it to be the optimal choice 

250 for the number of causal variants [39]. LDstore (version 2) [42] was used to generate an LD 

251 matrix for each locus.

252 Replication of pQTLs

253 All significant lead variants from the pQTL discovery analyses were queried for previously 

254 published associations with protein levels in the PhenoScanner database (version 2) [43,44] 

255 using the Python application (https://github.com/phenoscanner/phenoscannerpy, query date 4 

256 October 2021). This database contains results from large pQTL studies [4,45,46]. For variant 

257 matching between datasets, we created variant names that were concatenations of the 

258 corresponding chromosome, chromosome position (hg19), and alphabetically ordered alleles. 

259 To match UniProt IDs from the discovery analyses to PhenoScanner trait names, the IDs were 

260 converted to recommended HUGO Gene Nomenclature Committee gene names using the 

261 UniProt conversion tool (https://www.uniprot.org/uploadlists/, latest query date 11 October 
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262 2021). We performed additional replication analysis using Pietzner et al. dataset by querying 

263 their publicly available results with P < 0.05 [7]. The largest pQTL meta-analysis published to 

264 date (n = 30,931) [6] was conducted through the SCALLOP consortium and was not usable 

265 due to sample overlap with the current study. In order to ensure that each protein was 

266 represented by a single association, we restricted our comparisons to instances where either 

267 one subunit or the entire heterodimer complex was available. For instances where one protein 

268 was available multiple times, we conducted comparison with the association with the smallest 

269 P-value. To account for multiple testing, we adjusted P-values using false discovery rate (FDR) 

270 correction; pQTLs were considered as replicated at Benjamini-Hochberg FDR ≤ 0.05 and 

271 concordant allelic direction with the discovery pQTLs.

272 Identification of relevant disease traits and molecular QTLs

273 To identify complex traits and diseases associated with the top pQTLs, we conducted a 

274 phenome-wide association analysis (PheWAS) by querying the lead variants from primary 

275 pQTL mapping and their proxies against the PhenoScanner database (version 2) [43,44]. 

276 Duplicate associations happening due to data resource overlap were removed. We considered 

277 only PhenoScanner associations with P < 1 × 10-5. Specifically, we sought to identify pQTLs 

278 associated with disease traits, methylation quantitative trait loci (meQTLs), histone 

279 modifications and metabolite quantitative trait loci (mQTLs), as well as percent-spliced-in 

280 (PSI) associations. We also searched for significant protein genes on a druggable genome list 

281 [47] and the drugs that interact with them [48]. For a subset of pQTLs we selected for in-depth 

282 analyses by coloc and Mendelian randomisation, an additional PheWAS was conducted with 

283 the Medical Research Council (MRC) Integrative Epidemiology Unit (IEU) OpenGWAS 

284 database [49]. This was done to extract region-wide associations, irrespective of association P-

285 value.
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286 Colocalisation analysis  

287 The colocalisation analyses between pQTLs and eQTLs, as well as between pQTLs and 

288 complex traits were carried out using coloc (version 3.2.1) R package [50], which assumes that 

289 each locus has a single causal variant. Priors used for the colocalisation analysis were P₁ = 

290 10-4, P₂ = 10-4 and P₁₂ = 5×10-6, as suggested by Wallace et al. [51]. For each protein-level 

291 genome-wide–significant (P < 5 × 10-8) pQTL locus, we extracted regions in a 1-Mb radius of 

292 its lead variant to test for colocalisation. The results were considered significant when the 

293 posterior probability for colocalisation (PP4) exceeded 0.8.

294 In an pQTL–eQTL colocalisation analysis, we compared our significant pQTL loci to all eQTL 

295 Catalogue datasets [18], excluding those of Kasela et al. [52] and Lepik et al. [29] due to sample 

296 overlap, containing gene expression, exon expression, transcript usage and txrevise event usage 

297 data, and GTEx (version 8) [53] datasets containing gene expression data 

298 (https://www.ebi.ac.uk/eqtl/Methods/; S3 Table). We lifted the pQTL summary statistics over 

299 to an hg38 build to match with the eQTL Catalogue.

300 The region-wide associations for GWAS traits enrolled into the colocalisation analyses were  

301 extracted from the MRC IEU OpenGWAS database and were examined using the ieugwasr 

302 (version 0.1.5) R package (https://github.com/MRCIEU/ieugwasr; S4 Table). Since proteins 

303 were selected based on associated traits from the PheWAS, they were all associated with 

304 clinical traits (i.e. drugs, surgeries, diseases/conditions). In addition, all selected proteins except 

305 IL6R had primary pQTLs that did not include nonsynonymous variants, to minimise the 

306 possibility of association due to the epitope effect. IL6R was selected because it has been 

307 widely reported by previous pQTL studies as an example of the successful linking of molecular 

308 traits and diseases to discover drug targets [45,54]. The input data consisted of region-based 

309 summary statistics for six protein traits and 61 complex clinical traits.
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310 Two-sample MR

311 We conducted a two-sample MR analysis using protein levels with significant colocalisation 

312 (PP₄ ≥ 0.8) as exposures and complex traits as outcomes, using the TwoSampleMR (version 

313 0.5.6) R package [55,56]. Independent variants obtained previously by clumping served as 

314 instrumental variables. We conducted the analysis using an inverse variance weighted fixed-

315 effects method and a single instrument–based Wald ratio test. To correct for multiple testing, 

316 we adjusted P-values using false discovery rate (FDR) correction; results were considered 

317 significant at Benjamini-Hochberg FDR ≤ 0.05.

318 CNV pQTLs, eQTLs and colocalisation

319 To determine whether any of the examined proteins are genetically regulated by larger 

320 structural variants, we conducted a pQTL mapping using CNV data. Description of the used 

321 CNV data is in the Methods section for CNV detection and quality control. Associations 

322 between previously described standardised protein measure residuals and CNV sites were 

323 assessed by using the MatrixeQTL R package [57]. The post–quality control sample sizes for 

324 the Inflammation, Oncology II, CVD II and CVD III panels were 481, 480, 489 and 488 

325 unrelated (PI_HAT < 0.2) individuals, respectively. To discard rare CNV events, all CNV sites 

326 with in-sample frequencies of the most frequent copy number >0.95 were excluded. 

327 Additionally, unique non-overlapping CNVs were included. The final set used in the pQTL 

328 analyses comprised of 2,465 CNV sites [1,375 deletions (CN < 2), 482 duplications (CN > 2) 

329 and 608 combined deletions and duplications]. The genome-wide significance threshold was 

330 set to 1.12 × 10-7 (0.05 / 2,465 / 181).
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331 For each significantly associated CNV, all SNP markers within a 500-kbp proximity were 

332 tested for potential tagging effects. For this purpose, the SNP pQTL analysis using EPACTS 

333 was repeated for these regions with the CNVs included as covariates.

334 The same CNVs were tested against the expression levels of 12,619 genes [29], and the CNV 

335 pQTL results were then cross-referenced with eQTLs identified from the same set of 

336 individuals. The eQTL results were corrected for multiple testing and a Bonferroni-corrected 

337 threshold of P < 1.61 × 10-9 [0.05 / (2,465 CNVs × 12,619 genes)] was applied. Overlapping 

338 eQTL–pQTL pairings were tested in an MR framework using the summary statistics–based 

339 ratio estimate (Wald test) [58], and Spearman’s rank correlation coefficient was calculated for 

340 gene expression vs protein expression in the same individuals. We hypothesised that CNVs in 

341 gene regions would be considerably more likely than other causal variants to modulate the 

342 expression of those genes; thus, non-zero ratio estimates were taken to indicate shared causal 

343 CNVs of gene expression and protein traits.

344 PheWAS of CNV pQTLs

345 CNV pQTLs from primary mapping that reached genome-wide significance (P < 1.12 × 10-7) 

346 or the suggestive significance threshold (P < 2 × 10-5) were included in a PheWAS, resulting 

347 in the inclusion of 38 CNV regions. All data included in the PheWAS were obtained using the 

348 lm function with custom R scripts from 2,115 unrelated Estonian Genome Centre samples for 

349 which WGS data were available, and were corrected for age, sex and six genotype principal 

350 components (PCs; calculated from common SNPs). The 744 phenotypes examined were 

351 anthropometric traits (height, weight, body mass index, hip circumference, waist 

352 circumference, waist–hip circumferences ratio), cell counts from RNA-sequencing data (white 

353 blood cells, red blood cells, platelets, neutrophils, monocytes, lymphocytes, eosinophils, 

354 basophils), nuclear magnetic resonance spectroscopy–detected metabolites (n = 225) and 
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355 International Classification of Diseases, 10th revision (ICD-10) diagnoses with at least 20 

356 carriers in the sample (n = 505). Self-reported diagnoses not reported elsewhere were set to not 

357 available. Sex-specific diagnoses (ICD-10 codes F52, N4* and N5* for men, D25, D26, D27, 

358 E28, N7*, N8*, N9*, O* and Z3* for women) were analysed using only samples of the relevant 

359 sex as controls. The PheWAS significance threshold was set to P < 0.05 / 420, as 420 PCs 

360 calculated on all included phenotypes explained 95% of the variability.

361 Identification of CNV-tagging SNPs for pQTLs

362 To aid the interpretation of the CNV-pQTL results, we examined additional pQTLs not 

363 detected in this study due to the small sample size or the lack of protein measurements, by 

364 using a CNV-tagging proxy SNP approach. To detect additional CNV–protein associations, we 

365 extracted all SNPs with MAFs > 0.01 from each common (major allele frequency < 0.95) CNV 

366 and its 500-kb flanking region, as identified in 2,230 Estonian WGS samples. We calculated 

367 Pearson correlation coefficients between the CNVs and SNPs using custom R scripts. SNPs 

368 with R2 > 0.8 were defined as CNV-tagging proxy SNPs. The proxy SNPs were then compared 

369 with a published set of SNP pQTLs in two larger sets of unique proteins [4,9] to determine the 

370 degree of overlap. We used data on 1,021 independent autosomal lead pQTL variants for 1,478 

371 proteins from the large-scale pQTL study conducted by Sun et al. [4]; 824 (80.7%) of these 

372 variants were present in the EstBB WGS dataset. We extended the analysis to include data from 

373 the largest pQTL study to date, conducted with 35,571 samples and resulting in the detection 

374 of 10,248 independent autosomal pQTLs for 1,463 proteins [9]. The two studies encompassed 

375 2,438 unique proteins, enabling broader investigation. The resulting loci were reported as 

376 potential cases in which the underlying CNVs might be the causal variants. Figure depicting 

377 tagged-CNV pQTLs was done by using the RIdeogram v02.2.2 R package [59].

378
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379 Results

380 Discovery of pQTLs

381 We identified 278 (184 cis and 94 trans) pQTLs for 157 (48.2%) of the 326 proteins examined, 

382 using a protein-level genome-wide significance threshold of P < 5 × 10-8 (S2 Table). When 

383 using a strict multiple testing correction threshold of P < 2.76 × 10-10, 151 pQTLs (131 cis and 

384 20 trans) for 99 proteins remained significant (S2 Table). All interpretative analyses were 

385 conducted using protein-level genome-wide-significant results.

386 To provide a comparison with previous research, we compared our results with previously 

387 published data. From the Pietzner et al. study [7], 147 pQTLs (52.88%) were nominally 

388 significant (P < 0.05) and accessible for comparisons. After correcting for multiple testing, 147 

389 pQTLs remained significant (Benjamini-Hochberg FDR < 0.05) and 91.84% (135/147) of 

390 pQTLs were directionally concordant with the current study (S2 Table). 66.19% (184/278) of 

391 pQTLs were tested in the Sun et al. study [4]. Of them, 55.98% (103/184) were significant 

392 (Benjamini-Hochberg FDR < 0.05) and 89.32% (92/103) were directionally concordant (S2 

393 Table). 7.55% (21/278) pQTLs were also tested in the Suhre et al. study [46] and 57.14% 

394 (12/21) were significant (Benjamini-Hochberg FDR < 0.05), and all the significant pQTLs were 

395 directionally concordant with the current study (S2 Table). 12.23% (34/278) pQTLs were 

396 tested in the Folkersen et al. study [45] and 85.29% (29/34) of the pQTLs were significant 

397 (Benjamini-Hochberg FDR < 0.05) and all the significant pQTLs were also directionally 

398 concordant with the current study (S2 Table). Concordance with previous studies demonstrates 

399 the robustness of our results.

400 Fourteen (4.3%) of the proteins were measured in multiple arrays. Associations for the CXCL1, 

401 CCL3 and VEGFA proteins were validated by multiple independent arrays, in which the same 
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402 genetic regions reached genome-wide significance and showed concordant effect directions. 

403 The total numbers of associated proteins were similar for all panels and ranged from 38 to 43 

404 (S2 Table). The detected associations included 278 independent pQTL variants [184 (66.2%) 

405 cis and 94 (33.8%) trans], 9.35% of which were indels. Of the 157 associated proteins, 61 

406 (38.9%) had more than one independent pQTL. Twenty-one proteins had both cis and trans 

407 associations. A MICA-MICB heterodimer coded from the chromosome 6 HLA region had the 

408 largest number of independent associations (n = 12; Fig. 2A). In concordance with previous 

409 studies [4,9,60], there was an inverse relationship between the effect size and MAF (Fig. 2B), 

410 and the associations were the strongest for significant cis-pQTL variants located nearest to the 

411 TSSs of the relevant protein genes (Fig. 2C). The largest proportion of these cis-pQTLs [n = 

412 73 (39.7%)] was located in intronic regions (Fig. 2D). Of the 184 cis associations detected for 

413 104 proteins, 31 (16.85%) were with protein-altering primary lead cis-pQTL variants and an 

414 additional 5 were with cis-pQTL variants in high LD with PAVs. These 36 (12.5%) pQTLs 

415 were designated as potential pseudo-pQTLs because currently it is difficult to exclude the 

416 possibility of technical signal happening due to the difference in antibody binding affinity.

417 Figure 2. A. Numbers of genome-wide significant associations of variants with protein 

418 traits. B. Absolute beta values according to minor allele frequencies (MAFs). C. 

419 Significance of primary pQTL mapping cis associations according to distances from 

420 transcription start sites (TSSs). D. Functional annotation classes for the top cis variants 

421 from pQTL mapping, expressed as fractions.

422 The strongest cis association was between the missense variant rs2228145 (p.Asp358Ala) and 

423 the IL6RA level (MAF = 0.35, P = 1.04 × 10-106). Additional strong cis associations included 

424 the rs1569960 and the SIRPA level (MAF = 0.34, P = 2.67 × 10-106) association, with four 

425 independent signals in the SIRPA cis region; and a frameshift-causing insertion rs139130389 

426 and the FOLR3 level (MAF = 0.12, P = 3.91 × 10-91) association, with three independent signals 

427 in the FOLR3 cis region.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2023. ; https://doi.org/10.1101/2023.05.30.542983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542983
http://creativecommons.org/licenses/by/4.0/


19

428 The most significant trans association was that of the PLAUR missense variant rs4760, located 

429 on chromosome 19, affecting the level of TNFRSF10C (8p21.3; MAF = 0.18, P = 4.60 × 10-

430 56). Strong trans associations were between the rs8176671 and the CDH5 level (16q21; MAF 

431 = 0.19, P = 8.83 × 10-40) as well as between the deletion rs8176643 and the SELE level (1q24.2; 

432 MAF = 0.18, P = 7.98 × 10-36); both of these variants are intronic variants for the 9q34.2 locus 

433 of the ABO gene. This locus was a trans-signal hotspot, with intronic variants additionally 

434 associated with the ICAM2, galectin-4 (LGALS4), PODXL and LIFR protein levels. 

435 Additional ABO variant rs12216891 was associated with the CTRC level (MAF = 0.19, P = 

436 8.39×10-30).

437 Two of the proteins examined (MICA/B and IL27) are heterodimers, made up of multiple 

438 subunits that are translated from two different genes at distinct loci. For IL27, we identified 

439 one independent trans signal for an intronic variant for CCDC94 (rs56075200; MAF = 0.32, P 

440 = 8.62 × 10-35). For MICA/B, we identified ten independent signals in the cis region of one 

441 subunit on chromosome 6 (the strongest signal was for an intronic variant of MICA:  

442 rs3132467; MAF = 0.30, P = 3.04 × 10-68) and two trans associations.

443 To determine if there were any corresponding eQTLs for pQTLs, we conducted an eQTL 

444 analysis, using the whole blood gene expression data from the same individuals and the same 

445 time point. Gene expression data was available for 109 proteins with 201 pQTLs, including 

446 two heterodimers with two subunits encoding the protein. In total, we detected 62 significant 

447 (Benjamini-Hochberg FDR < 0.05) eQTLs (59 cis, 3 trans) (S5 Table). 77% (48/62) of them 

448 were directionally concordant with corresponding pQTLs.

449 We found that 95% CSs for 151 proteins were linked to 131 independent genomic loci (S6 

450 Table). LDLR, TNFRSF11B, TNFRSF6B, WISP1, CXCL1 and PLAU proteins showed 

451 significant pQTL effects but yielded no CS. Signals for CCL3, CXCL1 and VEGFA from 
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452 multiple assays were also validated by fine mapping to the same genetic regions. The 95% CSs 

453 contained an average of 15.7 variants (cis sets, 15.76; trans sets, 15.6). Fifty-five (36.4%) 

454 proteins had single-variant CSs. Of the 31 proteins with single-variant CSs in cis regions, 13 

455 were fine-mapped to lead PAVs from primary pQTL mapping. Thirty-three (32.7%) out of 101 

456 cis regions were fine-mapped to more than one signal (mean, 1.4 signals/region), with the 

457 CCL24 cis region having the largest number of independent CSs (n = 5). In contrast, all 

458 associated regions for pQTL trans signals were fine-mapped to a single CS.

459 Since a large proportion (217/278) of primary pQTLs were located in intergenic and intronic 

460 regions, we queried RegulomeDB [32] to establish the variants’ potential regulatory function. 

461 We obtained regulatory information for 260 of 278 pQTLs corresponding to 251 unique lead 

462 variants. Eleven variants (all cis) were previously established eQTLs and had evidence for 

463 transcription factor binding– and/or DNase peak–related functions. Seventeen lead variants (12 

464 cis and 5 trans) had chromatin immunoprecipitation sequencing– and DNase-based evidence 

465 for regulatory functions, but were not eQTLs (S7 Table).

466 pQTL–eQTL colocalisation

467 The pQTL–eQTL colocalisation analysis was performed with 198 pQTL loci (corresponding 

468 to 157 unique proteins), 18 eQTL Catalogue datasets and GTEx tissue eQTL data. We 

469 identified 14,064 cases of pQTL–eQTL colocalisation (PP4>0.8), involving 105 proteins 

470 [7,936 (56.4%) cis- and 6,128 (43.6%) trans-pQTLs; Tables 1, S8]. Colocalisations classified 

471 as cis consisted of 2,021 (25.5%) cases in which colocalising eQTLs and pQTLs affected the 

472 same gene product and 5,915 (74.5%) cases in which the colocalising loci affected different 

473 gene products in the cis regions. Cis and trans pairs were specific to 73 and 26 proteins, 

474 respectively, and 6 proteins (IL1R2, TEK, MIA, FCRLB, PDCD1LG2 and MICA-MICB) had 

475 colocalisations for both cis and trans associations. The largest number of colocalisations was 
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476 found for pQTLs of the MICA-MICB heterodimer (n = 6,583), followed by OSCAR (n = 

477 1,207) and ACP5 (n = 1,105) pQTLs.

478 Table 1. Overview of significant colocalisation events for eQTLs from eQTL Catalogue 

479 datasets and pQTLs. The numbers of colocalisation with genes encoding corresponding 

480 proteins are shown in parentheses.

Dataset Cis-pQTL colocalising with 
eQTL (eQTL-pQTL same 

gene)

Trans-pQTL colocalising 
with eQTL

Gene expression (RNAseq) 710

(393)

398

Gene expression (microarray) 79

(51)

25

Exon expression 3,899

(777)

2,750

Txrevise 2,533

(547)

2,338

Transcript usage 715

(253)

617

Total 7,936

(2,021)

6,128

481

482 Since the protein measurements originated from blood, the most widely studied tissue, the 

483 largest fraction of pQTLs colocalised with blood eQTLs. However, while using the GTEx 

484 dataset, we also found 739 cases of pQTL–eQTL colocalisation in multiple tissues (Fig. 3, S8 

485 Table). For 55 proteins with cis-pQTLs, 503 (68.1%) colocalising eQTLs were identified; for 

486 22 proteins with trans-pQTLs, 236 (31.9%) colocalising eQTLs were identified. Cis-pQTLs 
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487 colocalising with eQTLs were detected in 49 tissues, and trans-pQTLs colocalising with 

488 eQTLs were identified in 46 tissues (not in Epstein-Barr virus–transformed lymphocytes or 

489 uterine or vaginal tissue).

490 Figure 3. Overview of 10 cis-pQTL (A) and trans-pQTL (B) proteins with the most 

491 colocalising eQTLs from the GTEx database (version 8; GTEx Consortium, 2020). 

492 Colours indicate eQTL tissues of origin. Brain tissues are pooled; a complete list is provided 

493 in S8 Table.

494 PheWAS on metabolite and epigenetic QTLs

495 Queries for the 268 lead pQTL variants led to the identification of 17 variants (from 6 cis and 

496 13 trans associations for 18 proteins) associated with 160 metabolite traits (S9 Table). The 

497 majority [n = 158 (52.3%)] of the mQTLs discovered were for the APOE missense variant 

498 rs7412, which had a trans association with the level of LDLR. Four metabolic traits 

499 [apolipoprotein B, the concentration of very small very-low-density lipoprotein (VLDL) 

500 particles, and phospholipids and total lipids in very small VLDL] had seven associations each.

501 From the epigenetic QTL datasets, we identified 6,236 meQTLs, 267 histone modification 

502 QTLs and 129 exon-inclusion PSI associations for 193 primary pQTLs (from 142 cis and 60 

503 trans associations for 130 proteins; S10 Table). Most (n = 256) meQTLs were associated with 

504 the ADAM8 cis-pQTL rs2995310. The variant with the most (n = 10) histone modifications 

505 was rs10415777, a cis-pQTL for OSCAR. Methylation data originates from five tissues: cord 

506 blood, monocytes, neutrophils, T cells and whole blood; due to tissue availability, 78.7% 

507 (4,906/6,236) of the identified meQTLs were from whole blood studies.
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508 Common SNP pQTLs and complex traits

509 PheWAS

510 The queries for the 268 unique lead variants and high-LD proxies led to the identification of 

511 135 (50.4%) variants with 5,046 significant associations for 432 complex traits (S11 Table). 

512 Of these associations, 1583 (31.4%) were with various blood cell traits from the study 

513 conducted by Astle et al. [61]. As expected, given the targeted nature of our protein panels, 

514 coronary artery disease (CAD) and rheumatoid arthritis were most often linked to pQTLs with 

515 118 and 99 associations, respectively. For example, 5 of 145 significant independent signals 

516 for CAD from mixed-ancestry samples [62] and 2 of 7 significant loci for rheumatoid arthritis 

517 from the study conducted by Stahl et al. [63] were pQTLs in our dataset. In terms of the most 

518 associations per pQTL lead variant, ABO intronic variant rs507666 had the most associations 

519 per lead pQTL variant [n = 332, 85 (25.6%) with blood cell traits]. No associated traits were 

520 found for 62 proteins.

521 For 61 proteins (64 lead pQTL variants, 36 cis- and 28 trans-pQTLs), significant associations 

522 were detected in both the eQTL colocalisation analysis and PheWAS. We restricted this set to 

523 27 proteins (28 variants) which were not coded from the HLA region but showed associations 

524 with diagnosis, treatment, or other phenotypes linked directly to health status (excluding 

525 haematological and biochemical measurements). Six of these proteins (CD6, PRSS27, 

526 CEACAM5, CD40, TNFRSF6B and IL1RL1) had significant colocalisations with eQTLs from 

527 brain tissue, but no evidence of shared conditions with direct effects on the brain tissue in the 

528 PheWAS.

529 For example, based on pQTL-eQTL colocalisation analysis, IL6R pQTL signal was also an 

530 eQTL of the IL6R gene in macrophages, monocytes, T cells, whole blood and pancreatic islets. 
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531 A previous study has shown a link between IL6R and CAD [64]. We also identified 

532 associations between IL6R pQTLs and CAD, rheumatoid arthritis and 7 other disease traits 

533 (S11 Table), thereby supporting the findings of the study [63]. As another example, IL1RL1 

534 pQTLs colocalised with IL1RL1, IL18R1 and IL18RAP eQTLs detected in multiple cell types 

535 with direct effects on the immune system (e.g. T-cells; S8 Table); these variants were 

536 associated with asthma and allergic reactions in the PheWAS.

537 Eleven out of 27 proteins had trans-associations. Trans-pQTLs for the CTRC and TEK proteins 

538 were in the ABO locus and colocalised with ABO eQTLs; in the PheWAS, they were linked to 

539 multiple self-reported diagnoses (e.g. ‘blood clot in the leg') from the UK Biobank sample, and 

540 to haematological traits.

541 Most [n = 140/157 (89.2%)] of the proteins with significant pQTLs belonged to the druggable 

542 genome category. These proteins were associated with 1,365 drug–gene interactions.

543 Colocalisation analysis

544 Based on the pQTL associations with genetic regions, PheWAS and eQTL colocalisation 

545 results, we chose five cis-pQTL effects (affecting FGF5, IL1RL2, TNFRSF6B, IL2RA, and 

546 IL6R) that were associated with clinical traits and had significant pQTL-eQTL colocalisations. 

547 Furthermore, SULT1A1 was chosen due to additional CNV–pQTL associations in its region 

548 which enabled to analyse colocalisation with respective complex traits. All selected proteins 

549 except IL6R had synonymous lead pQTL variants. Therefore, the input data for colocalisation 

550 analyses comprised of region-based summary statistics for 6 protein traits and 61 clinical 

551 complex traits (83 pQTL–complex trait pairs).

552 We identified 46 significant colocalisation events (S12 Table). FGF5 had 25 colocalisations 

553 with cardiovascular phenotypes and medications, such as CAD and perindopril use. IL6R had 
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554 a total of 11 significant colocalisations, which included colocalisations with CAD as well as 

555 immunological conditions such as asthma. TNFRSF6B and SULT1A1 colocalised with 

556 inflammatory bowel disease, and TNFRSF6B also separately colocalised with its two main 

557 forms: Crohn’s disease and ulcerative colitis. IL2RA colocalised with tonsillectomy +/- 

558 adenoid operation. The PheWAS revealed associations of IL1RL2 with immune diseases which 

559 were not supported by the colocalisation results.

560 MR findings

561 We conducted MR analyses using 46 significant (FDR-corrected) pQTL–complex trait pairs 

562 from the colocalisation analysis (Fig. 4, S13 Table). We found a causal relationship between 

563 the elevated level of soluble IL6R and a lower risk of cardiovascular disease (P = 2.35 × 10-24, 

564 Benjamini-Hochberg FDR = 1.08 × 10-22). Higher IL6R levels were also associated with an 

565 increased risk of inflammatory conditions such as asthma and eczema (P = 2.04 × 10-4, 

566 Benjamini-Hochberg FDR = 2.60 × 10-4; P = 1.24 × 10-5, Benjamini-Hochberg FDR = 1.96 × 

567 10-5, respectively). The TNFRSF6B level was causally linked to a reduced risk of inflammatory 

568 bowel disease and its subtypes (inflammatory bowel disease (A294), P = 4.00 × 10-20, 

569 Benjamini-Hochberg FDR = 9.19 × 10-19; Crohn’s disease (A12), P = 1.18 × 10-16, Benjamini-

570 Hochberg FDR = 1.82 × 10-15; ulcerative colitis (A970), P = 2.14 × 10-8, Benjamini-Hochberg 

571 FDR = 7.56 × 10-8). Elevated levels of FGF5 were associated with a significantly increased 

572 risk of coronary disease (P = 8.94 × 10-6 and Benjamini-Hochberg FDR = 1.47 × 10-5).

573 Figure 4. Forest plots of Mendelian randomisation results for proteins with positive (A) 

574 and negative (B) effects on complex traits. Protein (exposure) names are indicated on top of 

575 the section, complex traits (outcomes) are on the left side. Multiple instances of traits with the 

576 same name for one protein, indicating MR signal replication across multiple studies of the same 

577 trait, have been marked ‘A’ and ‘B’. Error bars denote standard errors and all presented results 
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578 are significant at a Benjamini-Hochberg FDR < 0.05. Details of causal associations are 

579 provided in S13 Table. 1“Medication for cholesterol, blood pressure, diabetes, or take 

580 exogenous hormones: None of the above” (MRC IEU UK Biobank); 2“Blood clot, DVT, 

581 bronchitis, emphysema, asthma, rhinitis, eczema, allergy diagnosed by doctor: None of the 

582 above” (MRC IEU UK Biobank).

583 Rare variant pQTLs

584 The gene-based association analysis revealed 19 significant associations [5 (26.3%) cis and 14 

585 (73.7%) trans] emanating from 19 genes containing rare nonsynonymous SNPs and affecting 

586 the levels of 7 proteins (S14 Table). The majority of identified rare variant effects (13, 68.4%) 

587 were with the level of GDF-15. The most significant rare variant association was a trans signal 

588 between JAKMIP1 on chromosome 4 and the level of GDF-15 (P = 5.41 × 10-12). We also 

589 assessed if rare nonsynonymous SNPs affect the expression of same genes encoding the 

590 corresponding pQTL proteins, however we did not detect any nominally significant 

591 (Benjamini-Hochberg FDR < 0.05) associations (S14 Table).

592 We next conducted GeneMANIA network analysis [37, 38] to identify functional connections 

593 between genes harbouring rare SNPs and proteins affected by trans associations. First, we 

594 studied the potential connection between rare variant genes associated with the GDF-15 level. 

595 Ten of the identified genes harbouring rare SNPs (CKAP5, GDF15, JAKMIP1, KRT19, 

596 STAT5B, SLC35E1, RNF112, TUBGCP4, ZNF766 and PPAPDC1B), including gene encoding 

597 identified pQTL protein, formed shared network with GDF-15, based on co-expression 

598 (57.85%), pathway (19.97%), physical (18.45%) and genetic (3.73%) interactions, according 

599 to GeneMANIA. However, no functional connection to GDF-15 was found for LY6G6E, 

600 RPL7L1 and EFR3B. Trans associations between rare variants and SELPLG and MUC-16 

601 levels were supported by the GeneMANIA-based identification of two shared networks: 
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602 between TMEM119 and SELPLG, as well as GAL3ST2 and MUC-16, respectively. Those 

603 connections were based mainly on physical interactions (77.64%) and co-expression (8.01%).

604 Four proteins (CTSZ, GDF-15, PON3 and SELPLG), had significant associations from both, 

605 common variant and rare variant pQTL analyses. For CTSZ and GDF-15, the genetic regions 

606 detected from the rare variant analysis were not the same as identified by SNP pQTL analysis. 

607 However, PON3 had direct cis associations emanating from from 7q21.3 locus in both 

608 analyses: nonsynonymous variants of PON3 in the rare variant pQTL analysis and rs10953142 

609 in the common variant pQTL analysis. Similarly, SELPLG had cis associations emanating from 

610 12q24.11 locus: nonsynonymous variants of the TMEM119 for rare variant analysis and an 

611 intergenic rs11114010 for common variant analysis.

612 CNV pQTLs

613 We detected 12 significant (Bonferroni-corrected P-value threshold 1.12 × 10-7) pQTL 

614 associations between CNVs and plasma protein levels (7 cis and 5 trans, 11 proteins; S15 

615 Table), with two cis associations detected for the MICA-MICB heterodimer. The CNV eQTL 

616 analysis in the overlapping set of samples identified 673 significant (Bonferroni-corrected P-

617 value threshold 1.61 × 10-9) CNV eQTLs for 244 unique genes (S16 Table). 16.67% (2/12) of 

618 significant CNV pQTLs had significant CNV eQTL associations with a corresponding gene.

619 For example, the deletion in the 3q12.1 intergenic region (chromosome 3: 98,410,653-

620 98,414,807 bp; frequency = 0.651) acted as a hub, having multiple trans associations with 

621 protein levels: ICAM2 (P = 1.31 × 10-29), FLT4 (P = 2.34 × 10-24), PDCD1LG2 (P = 2.88 × 

622 10-15) and IL1R1 (P = 8.19 × 10-8).  Three of these associations (with ICAM2, FLT4 and 

623 PDCD1LG2) were also detected by the SNP pQTL analysis but did not remain significant after 

624 conditioning of the model on the CNVs, suggesting that CNV may underlie the observed 
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625 associations. However, eQTL analysis indicated that none of the genes encoding those proteins 

626 is regulated by this locus, and a follow-up GeneMANIA network analysis [37,38] revealed a 

627 shared network based on physical interactions (77.64%), co-expression (8.01%), predicted 

628 functional relationship between genes (5.37%), co-localisation (3.63%), genetic interactions 

629 (2.87%), pathway (1.88%) and shared protein domains (0.60%).

630 Another trans association example was between a 5q13.2 CNV (chromosome 5: 70,305,253–

631 70,312,310 bp; deletion frequency = 0.074, duplication frequency = 0.195) overlapping the 

632 NAIP gene but affecting IL-18 level (P = 7.9 × 10-10). This locus was also an eQTL for NAIP 

633 (P = 6.4 × 10-48), but not for IL18 expression (P > 0.001). We also detected moderate 

634 correlation between IL-18 protein expression and NAIP gene expression (Spearman’s R = 

635 0.17); Spearman correlation coefficient between IL-18 protein and gene expressions was 0.05. 

636 MR analysis using NAIP gene expression as exposure and IL-18 level as an outcome confirmed 

637 the causal effect of the CNV on the IL-18 protein level (Wald test; Z = 6.26, P = 3.8 × 10-10). 

638 This association was not observed in the SNP-based analyses, highlighting the case where the 

639 pQTL signal would not be detected.

640 From cis effects, we detected an association between CNV in the 16p11.2 region (deletion 

641 frequency = 0.022, duplication frequency = 0.382; partially overlapping SULT1A1; pQTL, P 

642 = 3.46 × 10-21; eQTL, P = 4.74 × 10-119) and SULT1A1 protein and gene expression. Similarly, 

643 we determined that a 19q13.42 deletion (frequency = 0.291) overlapping the VSTM1 gene was 

644 an eQTL and a pQTL for nearby gene OSCAR (P = 1.77 × 10-14 and P = 5.64 × 10-9, 

645 respectively). However, the CNV was also associated with the expression of VSTM1 itself (P 

646 = 1.81 × 10⁻39) and both gene–protein expression pairs showed moderate correlation (OSCAR–

647 OSCAR, Spearman’s R = 0.32; VSTM1–OSCAR, Spearman’s R = 0.34). The effect of the CNV 

648 through gene expression is supported by the MR analysis, when using a CNV as an instrument, 

649 OSCAR expression as an exposure and OSCAR level as an outcome (Z = 5.94; P = 2.81 × 10-
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650 9) and secondly, VSTM1 as an exposure and OSCAR level as an outcome (Z = 5.92; P = 3.27 

651 × 10-9). Those results suggest that CNV works through gene expression, although it remains 

652 unclear whether the effect on the OSCAR level is through OSCAR or VSTM1 gene expression.

653 Additionally, we identified an association between the SIRPA level and a high-frequency 

654 (frequency = 0.955) 20p13 deletion overlapping SIRPB1, a paralog of SIRPA (P = 1.4 × 10-11; 

655 Fig. 5A and 5B). eQTL analysis indicated that the deletion was also associated with SIRPB1, 

656 but not SIRPA, expression (P = 3.5 × 10-87). The correlation between SIRPA protein and gene 

657 expression was weaker than that between SIRPA protein and SIRPB1 expression (Spearman’s 

658 R = 0.075 and 0.202, respectively). Colocalisation was confirmed by the Wald test (Z = 6.92, 

659 P = 4.5 × 10-12; Fig. 5C). In SNP pQTL fine mapping, we detected two independent CSs, 

660 overlapping SIRPB1 [variant with the largest posterior inclusion probability (PIP) = 0.295] and 

661 at SIRPA (variant with the largest PIP = 0.242; Fig. 5A). When conditioned on the deletion, the 

662 significance of pQTLs from only the SIRPB1 CNV region was reduced dramatically (chr 20 

663 position 1546911 variant pQTL mapping, Pprimary= 3.75 × 10-11, Pconditional = 0.41, regional 

664 pQTL mapping with EMMAX linear mixed-model [30] and the occurrence of the CNV and 

665 the number of its copies used as an additional covariate). This example highlights that the 

666 second signal from the primary pQTL analysis SIRPA locus was due to CNV-tagging variants 

667 rather than an independent signal.

668 Figure 5. A. Regional plot combining SNP- and CNV-based results for the SIRPA level 

669 with additional single-variant fine-mapping information. The blue rectangle indicates the 

670 genetic location of the CNV. The horizontal dashed line indicates the genome-wide 

671 significance threshold of P = 5 × 10-8. Genetic variants identified by fine mapping as belonging 

672 to 95% credible sets are coloured red. The number of variants and the variant with the highest 

673 PIP in the credible set are indicated in grey boxes. B. Box plot of SIRPA levels based on the 

674 CNV number of copies and frequencies. Error bars indicate 95% confidence intervals; the 

675 bottoms and tops of the boxes are the 25th and 75th percentiles, respectively; the lines inside 

676 the boxes indicate medians. Outliers are depicted as circles. C. Overview of SIRPA level 
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677 analyses. P-values are from the CNV-based pQTL analysis for SIRPA and eQTL analyses for 

678 SIRPB1 and SIRPA.

679 Associations for nine proteins significant in both, CNV and pQTL mapping, were emanating 

680 from the same loci in both analyses. For example, ICAM2 and FLT4 had trans associations 

681 with rs12493830 on chromosome 3 and a CNV (chromosome 3: 98,410,653–98,414,807 bp) 

682 in the same intergenic region, separated by 3859 bp.

683 PheWAS for CNV pQTLs

684 Significant PheWAS associations were detected for three CNVs. For the MICA-MICB dimer 

685 pQTL, associations were detected between CNV on chromosome 6 (31,292,078–31,293,977 

686 bp; deletion frequency = 0.876) and medium HDL triglycerides (P = 8.82 × 10-5), and between 

687 a CNV on chromosome 6 (31,337,848–31,341,642 bp; deletion frequency = 0.074) and lower-

688 limb oedema (ICD-10 code R60; P = 9.06 × 10-5). Additionally, we detected nominally 

689 significant associations for a CNV on chromosome 19 (41,381,588–41,387,347 bp, deletion 

690 frequency = 0.054 and duplication frequency = 0.022) with the pQTL of the MIA protein level 

691 (P = 2.38 × 10-6) and migraine (ICD-10 code G43; P = 3.14 × 10-5).

692 CNV-tagging SNPs

693 To further interpret the of CNV-pQTL results, we examined additional pQTLs for proteins that 

694 were not measured in our study. For that, we leveraged LD between the EstBB CNVs and 

695 previously reported pQTL SNPs and prioritised CNVs which could underlie the previously 

696 reported pQTL associations (R2 between SNP and CNV >0.8). We identified eight CNVs with 

697 possible effects on protein levels (Table 2) from the Sun et al. 2018 study [4]. Only one of those 

698 associations [proxy SNP rs10935473 with the CNV on chromosome 3 (98,410,653–
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699 98,414,807; deletion frequency = 0.651)] affecting FLT4/VEGF-sR3 levels, was identified in 

700 our study because the other proteins were not measured in our cohort.

701 Table 2. Overview of SNPs tagging CNVs for proteins reported by Sun et al. (2018). CNV 

702 frequencies are derived from the EstBB data.

chr Position marker CNV CNV

Frequency

R2 Type gene protein

1 55097068 rs11206397 1:55,092,289-

55,095,991

deletion 0.538 0.90 cis FAM151A F151A

1 159004851 rs72709516 1:159,016,577-

159,019,397

duplication 
0.001, 

deletion 0.122

0.97 cis IFI16 IP16

1 196821380 rs115094736 1:196,728,841-

196,730,702

deletion 0.265 0.97 trans CANX Calnexin

1 196825287 rs7519758 1:196,728,841-

196,730,702

deletion 0.265 0.96 trans LRRC19 LRC19

3 98416900 rs10935473 3:98,410,653-

98,414,807
deletion 0.651

1.00 trans FLT4 VEGF 
sR3

6 32587859 rs9271421 6:32,461,274-

32,468,482

deletion 0.973 0.86 trans H6PD G6PE

8 57876576 rs112433249 8:57,918,258- deletion 0.031 0.90 cis IMPAD1 IMPA3
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57,925,230

16 89781756 rs34714188 16:89,896,104-

89,898,445

duplication 
0.001,

deletion 0.108

0.91 trans PMEL GP100

703

704 We also detected 76 tagging SNP–CNV pairs for 33 unique CNVs and 72 proteins (S17 Table) 

705 from a more recent Sun et al. 2022 study [9]. Twenty-nine (40.3%) of the proteins were also 

706 measured in the EstBB cohort, of which six proteins had significant CNV pQTLs (P < 1.12 × 

707 10-7). However, CNV-based pQTLs of the MICA-MICB heterodimer and SIRPA were not 

708 associated with the same CNVs in the EstBB cohort as tagged by SNPs in Sun et al.’s [9] study. 

709 Twenty-five (32.9%) of the tagging SNP–CNV pairs were associated with a deletion in the 

710 3q12.1 intergenic region (chromosome 3: 98,410,653–98,414,807 bp, frequency = 0.651; the 

711 closest gene is ST3GAL6), a trans association hub (Fig. 6), and the same deletion was 

712 associated with four proteins (ICAM2, FLT4, PDCD1LG2 and IL1R1) in the EstBB dataset.

713 Figure 6. Overview of SNP-tagged CNV and protein cis and trans associations. Each line 

714 depicts the CNV which is in LD (R2>0.8) with pQTL SNP previously reported by Sun et al. 

715 (2018) or Sun et al. (2022) study. Each dot indicates corresponding pQTL protein and colour 

716 depicts the type of association.

717 None of the pQTLs tagging the CNV has known associations with complex traits which are 

718 not cell type or metabolite related, according to the GWAS Catalog. In addition, 19.7% (15/76) 

719 of the CNVs paired with tagging SNP were located in the HLA region on chromosome 6. The 

720 proteins TACSTD2, CLEC5A, IL15 and SIGLEC9 were affected by multiple trans-pQTL 

721 SNPs tagging CNVs. Whereas we detected a CNV associated with the SIRPB1 level on 

722 chromosome 20 (1,556,917–1,561,028 bp, deletion frequency = 0.336) and a deletion in the 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 2, 2023. ; https://doi.org/10.1101/2023.05.30.542983doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542983
http://creativecommons.org/licenses/by/4.0/


33

723 same locus overlapping SIRPB1 and affecting the SIRPA level and (more strongly) SIRPB1 

724 gene expression, based on Sun et al. tagging-CNV analysis, the SIRPB1 protein level was 

725 associated with a different CNV than was its gene expression.

726 Discussion

727 The SNV-pQTL analyses conducted in this study revealed 278 genetic variants (184 cis and 94 

728 trans, including indels), that were associated with the levels of 157 unique proteins. Consistent 

729 with previous findings [4,6,8], the largest proportion of cis-pQTLs was located in intronic and 

730 intergenic regions. The analysis of individual-level WGS data together with in-sample LD 

731 information, enabled us to pinpoint the likely causal variants with a good resolution through 

732 statistical fine mapping. This mapping led to the identification of at least one 95% CS for each 

733 of 98 (53%) cis and 87 (47%) trans signals. For 16 cis and 28 trans associations, we identified 

734 95% CSs consisting of the single most likely causal variants, which are good candidates for 

735 further functional studies. Notably, the prioritised variants for nine (56%) of the single-variant 

736 CSs for cis-pQTLs had protein-altering effects. This observation outlines that it is important to 

737 consider technical epitope effects in the cis-pQTL analyses [65]. However, the identification 

738 of PAVs demonstrates that fine mapping is also helpful for prioritising biologically causal 

739 variants, because PAVs are likely to have a direct, albeit technical, effect on protein levels. 

740 Only a limited number of pQTL studies have conducted fine mapping [9,66] as one of the post-

741 GWAS analyses. We and Zhang et al. [66] detected CSs for 58 (59.2%) protein cis regions 

742 using data from cohorts of European ancestry, and Sun et al. [9] fine mapped CSs in 127 

743 (67.6%) genetic regions for 117 proteins, matching our findings. The 95% CSs contained an 

744 average of 15.7 variants in our study and 22.7 variants (9.6 cis and 29.4 trans) in that of Sun et 

745 al. [9]. Our CSs for cis associations contained an average of 15.76 variants, whereas Zhang et 
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746 al. used imputed genotyping data and reported an average of 21.29 variants [66]. Generally 

747 smaller credible sets might outline the added value of WGS data on fine mapping performance.

748 To support our findings with orthogonal data, we used the most comprehensive publicly 

749 available eQTL resource, the eQTL Catalogue [18], to conduct eQTL–pQTL colocalisation 

750 analyses. Detected colocalisations were 56.4% for cis- and 43.6% for trans-pQTLs. Of the cis 

751 associations, 25.5% (2,021/7,936) colocalised with the eQTLs for the corresponding protein-

752 encoding gene from the full eQTL Catalogue, while for the GTEx dataset alone it was 54.3% 

753 (273/503). Given the use of eQTL data from different tissues, this analysis reflects how pQTLs 

754 may originate through active secretion or/and passive leakage, as 42.68% of all significant 

755 SNV-pQTL proteins identified are actively secreted into the blood at least in one isoform (S18 

756 Table) [67], meaning that more than half of these proteins do not originate from the blood. 

757 Similar to our findings, Pietzner et al. [7] recently detected a significant colocalisation of 50.1% 

758 of the cis-pQTLs with corresponding gene eQTLs using GTEx.

759 We sought to systematically identify links between proteins and phenotypes by conducting a 

760 PheWAS followed by a colocalisation analysis, in order to find signals likely driven by the 

761 same causal variant. We then applied MR to significant colocalisation events to assess 

762 causality, a strategy recommended by Zuber et al. [17]. As they have highlighted, a positive 

763 colocalisation finding typically implies a non-zero MR estimate, the reverse is not generally 

764 true [17]. For example, FGF5 plays essential roles in the regulation of cell proliferation, 

765 including in cardiac myocytes, and cell differentiation [68]; it has also been associated with 

766 cardiac angiogenesis [69]. The FGF5 locus has been linked to cardiovascular conditions in 

767 previous GWASs [62,70]. We detected a cis signal for the FGF5 level and associated variants 

768 in the region, which overlapped with previous GWAS findings for cardiovascular diseases and 

769 medications used to treat them. Our colocalisation and MR results suggest that the FGF5 level 

770 shares common causal SNPs with various heart-related conditions and treatments, prioritising 
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771 it as an interesting target for future follow-up studies. However, the translation of PheWAS 

772 results to a molecular level is complicated by the nature of associated disease phenotype. 

773 Plasma proteins are potentially more relevant for circulatory diseases where the blood is in 

774 contact with the affected tissue, such as in the FGF5 example, rather than for conditions with 

775 a limited number of affected tissues.

776 The availability of the high-quality WGS data also gave us a unique opportunity to investigate 

777 the effect of CNVs on protein expression. To the best of our knowledge, one study has 

778 previously studied CNVs in this context, focusing only on deletions [15]. We conducted the 

779 first comprehensive CNV-based pQTL mapping and identified 12 associations (7 cis and 5 

780 trans) between plasma proteins and CNVs, including those with a trans-association hub CNV 

781 in the 3q12.1 region. We further interpreted the CNV-pQTLs using a CNV-tagging SNP 

782 approach with external data on a broader range of proteins. This strategy yielded additional 

783 CNV-based pQTLs for 79 proteins and determined that the 3q12.1-region hub CNV was 

784 associated with 25 proteins. Signals from the SNV and CNV analyses overlapped for nine 

785 proteins, which constitute interesting loci where QTL associations were likely driven by CNVs, 

786 rather than SNVs.  This emphasises the value of the CNV data, especially if the purpose is to 

787 prioritise causal genetic variation underlying the pQTL signal. None of the associations 

788 reported by Png et al. [15] were replicated in this study, possibly because there was only a 

789 partial overlap between the assayed protein sets, differences between cohorts (European 

790 ancestry vs a Greek population isolate with population-specific CNVs) [71], and differences in 

791 the approach used for CNV detection.

792 As an example, we outline IL-18, a pro-inflammatory cytokine that plays important roles in 

793 natural killer cell activation and the T-helper 1 response [72]. We found that a CNV on 

794 chromosome 5 overlapping with NAIP has trans effects on the IL18 protein level and a cis 

795 effect on the NAIP gene expression level, but there is no significant effect on the IL18 gene 
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796 expression. The NAIP eQTL signal was stronger than the IL18 pQTL signal, suggesting that 

797 the CNV affects the protein level through gene expression. As the NAIP level was not measured 

798 in our cohort, it remains unclear whether the main effect of the CNV is on NAIP. To our 

799 knowledge, there are no previous studies analysing the effect of genetic variants on NAIP level. 

800 NAIP is an anti-apoptotic protein and sensor component of the NLRC4 inflammasome that 

801 protects against bacterial pathogens, and NAIP-NLRC4 inflammasome activation has been 

802 reported to lead to elevated IL-18 expression in enterocytes and monocyte-derived 

803 macrophages [73]. This example highlights the importance of including structural variants in 

804 addition to SNVs in studies of the genetic basis of molecular traits, as also exemplified by the 

805 CNV-tagging SNP approach.

806 We identified 19 significant rare variant effects on the levels of seven proteins that would not 

807 have been detected by the SNV pQTL analysis alone. Gene-based pQTL analyses of rare 

808 variants constitute an emerging approach [10–13], and no golden standard for their 

809 performance has been established, making the replication of findings difficult. Previous studies 

810 indicate that few proteins are driven by rare variants [11–13]. Kierczak et al. [13] detected cis-

811 region rare variant associations for four proteins (CTSZ, CYR61, GDF-15 and PON3) and 

812 trans associations of rare GAL3ST2 variants affecting the MUC16 level, the effect also detected 

813 in our study; they used a maximum MAF threshold 0.0239, whereas we used a standard 

814 conservative threshold of 0.01. The significant rare variant associations detected in our study 

815 were not reported in the largest gene-based rare variant pQTL study conducted to date which 

816 included three isolated European cohorts with a total sample size of n=4,422 [12]. As an 

817 example, we found a rare-variant effect on GDF-15, which regulates food intake, energy 

818 expenditure and body weight in response to metabolic and toxin-induced stress [74–76]. The 

819 most significant association with the GDF-15 level was a trans association with rare variants 

820 in JAKMIP1, associated with type 2 diabetes and medications used to treat it [77–79]. 
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821 Additionally, GDF-15 has been reported to be involved in inflammation, metabolism and 

822 cancer [80], and recent findings support its role as a biomarker of metabolic stress [81]. 

823 Whereas we detected rare variant trans associations emanating from GDF-15 for nine proteins, 

824 only SNP-based cis associations with GDF-15 itself have been identified in previous pQTL 

825 studies [9,81]. This demonstrates that gene-based rare variant pQTLs complement single 

826 variant analyses and help to unravel novel biologically interpretable associations.

827 Our study has several limitations. First, the sample size was small relative to those of recent 

828 pQTL studies, which made the detection of trans effects with greater multiple-testing burden 

829 and weak effects of common and rare variants more difficult. Rare genetic variants tend to have 

830 greater population specificity [82], making replication of findings from rare variant analyses 

831 more difficult. Same applies to common CNVs we reported in our pQTL analyses; structural 

832 variants are currently understudied in terms of pQTL detection, limiting replicability. Second, 

833 most pQTL studies have been conducted using serum or plasma measurements from blood 

834 samples [4,6,8,39] and only a limited number of studies has involved the examination of liver 

835 and brain tissue–specific pQTLs [83,84]. Therefore, it is often challenging to understand 

836 whether observed pQTL effects manifest in the blood cells or reflect the regulation happening 

837 in some distal tissue. Finally, although we showed that CNVs affect plasma protein levels, to 

838 our knowledge no large-scale CNV-based association database is currently available to overlap 

839 the identified CNV-pQTL associations with CNV-phenotype associations. However, CNV-

840 tagging SNPs could be used as a proxy method to assess the effect of CNVs on complex traits.

841 In conclusion, we have generated a comprehensive pQTL resource and interpreted it by using 

842 eQTL, as well as publicly available GWAS data. We have demonstrated the importance of 

843 including structural variants in addition to SNVs, to fully characterise the genetic background 

844 of plasma proteins and their links to health-related phenotypes.  
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1101 Supporting information

1102 S1 Table. Full list of the Olink proteins in the study. Columns are ‘OLINK’: the protein 
1103 name based on Olink internal naming scheme; ‘PANEL’: Olink panel for the protein; 
1104 ‘UNIPROT_Olink’: UniProtID of the protein; ‘HGNC’: HUGO gene naming consortium 
1105 symbol for the protein; ‘LOD_QC’: limit of detection (LOD) quality control assessment. LOD 
1106 was used as a quality control step, each protein with samples >20% LOD was flagged as fail; 
1107 ‘Alternative_UNIPROT’: alternative UniProtID of the protein if available.

1108 S2 Table. List of pQTLs (linkage disequilibrium clumped). List of lead variants for each 
1109 protein following linkage disequilibrium (LD) clumping, together with replication information. 
1110 Variants within a 1 Mb window of the lead pQTL with the LD thresholds of R2 = 0.1 and P < 
1111 5 × 10-8 were clumped together. Whole-genome sequenced genotypes of the pQTL cohort were 
1112 used as LD reference. Columns are ‘gene’: HUGO gene naming consortium symbol for the 
1113 protein; ‘Uniprot’: UniProtID of the protein; ‘panel’: Olink panel for the protein; ‘chr_pos’: 
1114 genomic coordinates for the pQTL variant (hg19); ‘locus’: pQTL association locus; ‘variant’: 
1115 variant name in the format of genomic coordinates (hg19) and alphabetically ordered alleles; 
1116 ‘rsid’: rsID (if missing, then genomic coordinates in hg19); ‘A1’: the reference allele in the 
1117 Estonian Biobank; ‘A2’: the effect allele in the Estonian Biobank; ‘MAF’: minor allele 
1118 frequency; ‘p-value’: pQTL association p-value; ‘beta’: the pQTL effect size; ‘SE’: the 
1119 standard error of the pQTL effect size; ‘type’: pQTL association signal type, associations 
1120 within 1Mb upstream or downstream of the transcription start site (TSS) of the corresponding 
1121 protein-coding genes are cis and further away trans; ‘distance’: the distance from the TSS for 
1122 cis associations in bp; ‘effect’: the functional annotation of a pQTL; ‘LD R2>0.8 PAV variant’: 
1123 protein-altering variants in linkage disequilibrium (R2>0.8) with detected pQTL. For 
1124 replication studies prefix in column names indicates the name of the study, referring to Pietzner 
1125 et al. [7], Sun et al. [4], Suhre et al. [39] and Folkersen et al. [38]. Columns are 
1126 ‘Pietzner_replication’: the pQTL replication in the TRUE (replicating) and FALSE (not 
1127 replicating) manner; ‘Pietzner_EA’: the effect allele of pQTL in the Pietzner et al.; 
1128 ‘Pietzner_OA’: the other allele in the Pietzner et al.; ‘Pietzner_effect’: the effect size of pQTL 
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1129 in the Pietzner et al.; ‘Pietzner_se’: the standard error of effect size in the Pietzner et al.; 
1130 ‘Pietzner_pval’: the p-value of pQTL association in the Pietzner et al.; ‘Pietzner_qval_FDR’: 
1131 the Benjamini-Hochberg FDR-corrected q-value of the Pietzner et al. pQTL analysis; 
1132 ‘Pietzner_n’: the sample size in the Pietzner et al. for the variant; ‘Sun_replication’: the pQTL 
1133 replication in the TRUE (replicating) and FALSE (not replicating) manner; ‘Sun_EA’: the 
1134 effect allele of pQTL in the Sun et al; ‘Sun_effect’: the effect size of pQTL in the Sun et al.; 
1135 ‘Sun_se’: the standard error of effect size in the Sun et al.; ‘Sun_pval’: the p-value of pQTL 
1136 association in the Sun et al.; ‘Sun_qval_FDR’: the Benjamini-Hochberg FDR-corrected q-
1137 value of the Sun et al. pQTL analysis; ‘Sun_n’: the sample size in the Sun et al. for the variant; 
1138 ‘Suhre_replication’: the pQTL replication in the TRUE (replicating) and FALSE (not 
1139 replicating) manner; ‘Suhre_EA’: the effect allele of pQTL in the Suhre et al.; ‘Suhre_effect’: 
1140 the effect size of pQTL in the Suhre et al.; ‘Suhre_se’: the standard error of effect size in the 
1141 Suhre et al.; ‘Suhre_pval’: the p-value of pQTL association in the Suhre et al.; 
1142 ‘Suhre_qval_FDR’: the Benjamini-Hochberg FDR-corrected q-value of the Suhre et al. pQTL 
1143 analysis; ‘Suhre_n’: the sample size in the Suhre et al. for the variant; ‘Folkersen_replication’: 
1144 the pQTL replication in the TRUE (replicating) and FALSE (not replicating) manner; 
1145 ‘Folkersen_EA’: the effect allele of pQTL in the Folkersen et al.; ‘Folkersen_effect’: the effect 
1146 size of pQTL in the Folkersen et al.; ‘Folkersen_se’: the standard error of effect size in the 
1147 Folkersen et al.; ‘Folkersen_pval’: the p-value of pQTL association in the Folkersen et al.; 
1148 ‘Folkersen_qval_FDR’: the Benjamini-Hochberg FDR-corrected q-value of the Folkersen et 
1149 al. pQTL analysis; ‘Folkersen_n’: the sample size in the Folkersen et al. for the variant. In case 
1150 of Pietzner et al., alleles for indels are referred as ‘D’ for deletion and ‘I’ for insertion.

1151 S3 Table. List of the eQTL Catalogue resources. Columns are ‘Study’: the consortium or 
1152 the publication for the dataset; ‘Publication’: the citation of dataset publication; ‘Funding’: the 
1153 funding for generating the dataset.

1154 S4 Table. List of studied complex traits extracted from the Medical Research Council 
1155 (MRC) Integrative Epidemiology Unit (IEU) OpenGWAS database. Columns are ‘ID’: 
1156 internal naming identification for a complex trait GWAS in the MRC IEU OpenGWAS 
1157 database; ‘Trait’: the full name of the complex trait; ‘n_cases/n_controls’: number of 
1158 cases/number of controls for the study; ‘Publication/Author’: the consortium or the publication 
1159 that generated complex trait GWAS results; ‘Funding/Acknowledgements’: funding and 
1160 acknowledgements marked by the consortium or by the publication.

1161 S5 Table. List of the corresponding eQTLs. Columns are ‘variant’: rsID (if missing, then 
1162 genomic coordinates in hg19); ‘protein’: HUGO gene naming consortium symbol for the 
1163 protein; ‘Uniprot’: UniProtID of the protein; ‘panel’: Olink panel for the protein; ‘pQTL_pval’: 
1164 pQTL association p-value; ‘pQTL_beta’: pQTL effect size; ‘pQTL_se’: the standard error of 
1165 the pQTL effect size; ‘type’: pQTL association signal type, associations within 1Mb upstream 
1166 or downstream of the transcription start site (TSS) of the corresponding protein-coding genes 
1167 are cis and further away trans; ‘gene’: HUGO gene naming consortium symbol for the protein 
1168 for tested gene; Ensembl’: Ensembl (GRCh37) gene ID for tested gene; ‘eQTL_pval’: eQTL 
1169 association p-value; ‘eQTL_beta’: eQTL effect size; ‘eQTL_se’: the standard error of the 
1170 eQTL effect size; ‘eQTL_qFDR’: the Benjamini-Hochberg FDR-corrected q-value of the 
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1171 eQTL analysis.

1172 S6 Table. (A) Results of the fine-mapping analysis and (B) an overview of variants within 
1173 each credible set having the highest posterior inclusion probability (PIP). (A) Columns are 
1174 ‘trait’: HUGO gene naming consortium symbol for the protein; ‘panel’: Olink panel for the 
1175 protein; ‘region’: genetic coordinates for the fine-mapping region (GRCh37); ‘locus’: locus 
1176 and loci in the fine-mapping analysis (GRCh37); ‘credible set’: the number of identified 
1177 credible sets; ‘size’: the number of genetic variants belonging to the specific credible set; 
1178 ‘type’: the pQTL association signal type in the primary pQTL analysis (S2 Table). (B) Columns 
1179 are ‘trait’: HUGO gene naming consortium symbol for the protein; ‘chromosome’: the 
1180 chromosome of the fine-mapped variant (GRCh37), ‘credible set’: the number of the identified 
1181 credible set; ‘Fine-mapped variant (GRCh37)’: variant in the format chromosome: region and 
1182 alleles ordered alphabetically (GRCh37); ‘PIP’: the posterior inclusion probability of the 
1183 variant; ‘association p-value’: the p-value of the variant in the pQTL analysis; ‘LD (r²) with 
1184 sentinel SNP’: the linkage disequilibrium of the fine-mapped variant with the primary pQTL 
1185 identified in the pQTL analysis; ‘Distance (kb) with sentinel SNP (GRCh37)’: genetic distance 
1186 in kb between fine-mapped variant and pQTL identified in the region in the primary analysis.

1187 S7 Table. Regulatory information for the pQTLs extracted from the RegulomeDB. 
1188 RegulomeBD classifies SNPs into classes based on the combinatorial presence/absence status 
1189 of functional categories, including transcription factors binding sites, DNAase hypersensitivity 
1190 regions, and promoter regions. Columns are ‘chrom’: the chromosome of the pQTL variant 
1191 (hg19); ‘start’: start coordinates of the queried variant (hg19); ‘end’: end coordinates of the 
1192 queried variant (hg19): ‘rsids’: rsID for the queried variant; ‘probability’: probability score 
1193 ranging from 0 to 1, with 1 being the most likely regulatory variant; ‘ranking’: ranking based 
1194 on RegulomeDB internal scoring scheme that takes into account supporting data. Categories 
1195 included in the table are ‘1d’: eQTL + TF binding + any motif + DNase peak; ‘1f’: ‘eQTL + 
1196 TF binding / DNase peak’; ‘2a’: TF binding + matched TF motif + matched DNase Footprint 
1197 + DNase peak; ‘2b’: TF binding + any motif + DNase Footprint + DNase peak; ‘2c’: TF binding 
1198 + matched TF motif + DNase peak; ‘3a’: TF binding + any motif + DNase peak; ‘4’: TF binding 
1199 + DNase peak; ‘5’: TF binding or DNase peak; ‘6’: Motif hit; ‘7’: Other.

1200 S8 Table. List of colocalising pQTL–eQTL events. Columns are ‘pQTL_lead_SNP_HG19’: 
1201 genomic coordinates for the primary pQTL (hg19); ‘pQTL_lead_SNP_HG38’: genomic 
1202 coordinates for the primary pQTL (hg38); ‘pQTL_Uniprot’: UniProtID for the protein; 
1203 ‘pQTL_Gene_Ensembl’: Ensembl gene ID; ‘pQTL_Gene_Name’: HUGO gene naming 
1204 consortium symbol for the protein; ‘pQTL_Gene_Loc_HG38’: pQTL gene genomic 
1205 coordinates (hg38); ‘pQTL_Cis_Trans’: the association type for the pQTL in the primary 
1206 analysis, either local cis or distal trans; ‘eQTL_Gene_Ensembl’: Ensembl gene ID for the 
1207 tested eQTL gene; ‘eQTL_Gene_Name’: HUGO gene naming consortium symbol for the 
1208 eQTL gene; ‘eQTL_Gene_Loc_HG38’: eQTL gene genomic coordinates (hg38); 
1209 ‘eQTL_Trait’: ID of the molecular trait used for QTL mapping, depending on the quantification 
1210 method used, this can be either a gene id, exon id, transcript id or a txrevise promoter, splicing 
1211 or 3'end event id; ‘eQTL_Dataset’: eQTL dataset name and tested and tissue or cell type and 
1212 trait quantification; ‘Study’: the study or the consortium of the eQTL data; ‘eQTL_Data_Type’: 
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1213 quantification type in the eQTL Catalogue as either gene expression, exon expression, 
1214 transcript usage or txrevise event usage; ‘Tissue_Cells’: tissue or cell type for the eQTL; 
1215 ‘nsnps’: the number of SNPs included in the genetic region of the colocalisation analysis; 
1216 ‘PP.H0.abf’: posterior probability of no association with either trait; ‘PP.H1.abf’: posterior 
1217 probability of association with pQTL but not eQTL; ‘PP.H2.abf’: posterior probability of 
1218 association with eQTL but not pQTL; ‘PP.H3.abf’: posterior probability of association with 
1219 both traits but at separate causal variants; ‘PP.H4.abf’: posterior probability of association with 
1220 both traits at a shared causal variant.

1221 S9 Table. List of pQTLs from the metabolites PheWAS.  Columns are ‘snp’: the queried 
1222 SNP rsID; ‘rsid’: the queried SNP rsID; ‘hg19_coordinates’: genomic coordinates for the 
1223 queried SNP (hg19); ‘hg38_coordinates’: genomic coordinates for the queried SNP (hg38); 
1224 ‘a1’: the effect allele for the queried SNP; ‘a2’: the non-effect allele for the queried SNP; ‘trait’: 
1225 the metabolite phenotype; ‘efo’: corresponding EFO ontology term for the metabolite 
1226 phenotype; ‘study’: the name of the consortium or lead author of the study; ‘pmid’: the PubMed 
1227 ID; ‘ancestry’: the ancestry of the study; ‘year’: the year the study was published; ‘beta’: the 
1228 association between the trait and the SNP expressed per additional copy of the effect allele 
1229 (odds ratios are given on the log-scale); ‘se’: the standard error of beta; ‘p’: the p-value; 
1230 ‘direction’: the direction of association with respect to the effect allele; ‘n’: the number of 
1231 individuals; ‘n_studies’: the number of studies; ‘unit’: the unit of analysis (IVNT stands for 
1232 inverse normally rank transformed phenotype); ‘dataset’: the dataset ID as the first author or 
1233 the consortium.

1234 S10 Table. List of pQTLs from the epigenetics PheWAS. Columns are ‘snp’: the queried 
1235 SNP rsID; ‘rsid’: the queried SNP rsID; ‘hg19_coordinates’: genomic coordinates for the 
1236 queried SNP (hg19); ‘hg38_coordinates’: genomic coordinates for the queried SNP (hg38); 
1237 ‘a1’: the effect allele for the queried SNP; ‘a2’: the non-effect allele for the queried SNP; ‘trait’: 
1238 the epigenetics phenotype; ‘efo’: corresponding EFO ontology term for the epigenetics 
1239 phenotype; ‘study’: the name of the consortium or lead author of the study; ‘pmid’: the PubMed 
1240 ID; ‘ancestry’: the ancestry of the study; ‘year’: the year the study was published; ‘tissue’: the 
1241 tissue in which the gene expression was measured; ‘marker’: the epigenetic marker measured; 
1242 ‘location’ the location of epigenetic marker (hg19); ‘beta’: the association between the trait and 
1243 the SNP expressed per additional copy of the effect allele (odds ratios are given on the log-
1244 scale); ‘se’: the standard error of beta; ‘p’: the p-value; ‘direction’: the direction of association 
1245 with respect to the effect allele; ‘n’: the number of individuals; ‘n_studies’: the number of 
1246 studies; ‘unit’: the unit of analysis (IVNT stands for inverse normally rank transformed 
1247 phenotype); ‘dataset’: the dataset ID as the first author or the consortium.

1248 S11 Table. List of pQTLs from the PheWAS. Columns are ‘snp’: the queried SNP rsID; 
1249 ‘rsid’: the queried SNP rsID; ‘ref_hg19_coordinates’: the queried SNP genomic coordinates 
1250 (hg19); ‘ref_hg38_coordinates’: the queried SNP genomic coordinates (hg38); ‘ref_a1’: the 
1251 effect allele for the queried SNP; ‘ref_a2’: the non-effect allele for the queried SNP; ‘rsid’: the 
1252 rsID for the proxy SNP; ‘hg19_coordinates’: genomic coordinates for the proxy SNP (hg19); 
1253 ‘hg38_coordinates’; genomic coordinates for the proxy SNP (hg38); ‘rsid’: the rsID for the 
1254 proxy SNP; ‘ref_a1’: the effect allele for the proxy SNP; ‘ref_a2’: the non-effect allele for the 
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1255 proxy SNP; ‘proxy’: an indicator variable which equals 0 if the proxy SNP is the input SNP 
1256 and 1 otherwise; ‘r2’: the r2 between the input SNP and the proxy SNP based on the phased 
1257 haplotypes from 1000 Genomes ; ‘dprime’: the D’ between the input SNP and the proxy SNP 
1258 based on the phased haplotypes from 1000 Genomes; ‘trait’: the phenotype; ‘efo’: 
1259 corresponding EFO ontology term for the phenotype; ‘study’: the name of the consortium or 
1260 lead author of the study; ‘pmid’: the PubMed ID; ‘ancestry’: the ancestry of the study; ‘year’: 
1261 the year the study was published; ‘beta’: the association between the trait and the SNP 
1262 expressed per additional copy of the effect allele (odds ratios are given on the log-scale); ‘se’: 
1263 the standard error of beta; ‘p’: the p-value; ‘direction’: the direction of association with respect 
1264 to the effect allele; ‘n’: the number of individuals; ‘n_cases’: the number of cases; ‘n_controls’: 
1265 the number of controls; ‘n_studies’: the number of studies; ‘unit’: the unit of analysis (IVNT 
1266 stands for inverse normally rank transformed phenotype); ‘dataset’: the dataset ID as the first 
1267 author or the consortium.

1268 S12 Table. Results from the pQTL–complex trait colocalisation analysis. Columns are 
1269 ‘Protein’: HUGO gene naming consortium symbol for the protein, ‘ID’: internal identification 
1270 for complex trait used in the MRC CEU OpenGWAS database; ‘Study’: the name of the 
1271 consortium/biobank or the first author of the study; ‘Trait’: the full naming of the complex trait 
1272 in the MRC CEU OpenGWAS database; ‘nsnps’: the number of SNPs included in the genetic 
1273 region of the colocalisation analysis; ‘PP.H0.abf’: posterior probability of no association with 
1274 either trait (if PP0 > 0.8); ‘PP.H1.abf’: posterior probability of association with pQTL but not 
1275 complex trait (if PP1 > 0.8); ‘PP.H2.abf’: posterior probability of association with complex trait 
1276 but not pQTL (PP2 > 0.8); ‘PP.H3.abf’: posterior probability of association with both traits but 
1277 at separate causal variants (if PP3 > 0.8); ‘PP.H4.abf’: posterior probability of association with 
1278 both traits at a shared causal variant (if PP4 > 0.8).

1279 S13 Table. Results from the pQTL–complex trait Mendelian randomisation analysis. 
1280 Columns are ‘Protein’: HUGO gene naming consortium symbol for the protein used as 
1281 exposure; ‘Trait’: the complex trait used as an outcome; ‘Full trait name’: the full naming of 
1282 the complex trait in the MRC CEU OpenGWAS database; ‘ID’: internal identification for 
1283 complex trait used in the MRC CEU OpenGWAS database; ‘Study’: the name of the 
1284 consortium/biobank or the first author of the study; ‘Test’: the method used to conduct 
1285 Mendelian randomisation (MR), for single variant based exposure traits Wald test and for 
1286 multiple variants based exposure traits inverse variance weighted (IVW) regression; ‘nSNP’: 
1287 the number of genetic variants used as instrumental variables (IV) in exposure traits for the MR 
1288 analysis; ‘b’: the causal effect estimate of the protein (exposure) on the complex trait 
1289 (outcome); ‘se’: the standard error of the causal effect estimate; ‘pval’: the p-value of the MR 
1290 analysis; ‘qFDR’: the Benjamini-Hochberg FDR-corrected q-value of the MR analysis.

1291 S14 Table. List of significant (P < 1.48 × 10-8) associations from the rare variant gene-
1292 based pQTL analysis. Columns are ‘Uniprot’: UniProtID of the protein; ‘Protein’: HUGO 
1293 gene naming consortium symbol for the protein; ‘chr’: the chromosome of the associated gene 
1294 (GRCh37), ‘beg’: the start coordinates of the gene (GRCh37); ‘end’: the end coordinates of the 
1295 gene (GRCh37); ‘marker_id’: the genetic location of the associated gene, including 
1296 chromosome, start and end coordinates, and HGNC gene symbol for it (GRCh37); ‘NS’: the 
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1297 number of phenotyped samples with non-missing genotypes; ‘FRAC_WITH_RARE’: the 
1298 fraction of individuals carrying rare variants below the maximum of minor allele frequency 
1299 threshold (MAF < 0.01); ‘NUM_ALL_VARS’: the number of all variants defining the group, 
1300 meaning all genetic variants located within the tested gene; ‘NUM_PASS_VARS’: the number 
1301 of variants passing the minimum of MAF (0.0000001), the minimum of minor allele count (1), 
1302 the maximum of MAF (0.01) and minimum of call rate (0.5) thresholds; 
1303 ‘NUM_SING_VARS’: the number of singletons among variants in ‘NUM_PASS_VARS’; 
1304 ‘PVALUE’: the p-value of the burden test; ‘QSTAT’: the Q statistic of the burden test; ‘TYPE’: 
1305 the association type, cis is if the association is with the protein-encoding gene itself and 
1306 otherwise trans; ‘eQTL_NS’: the number of phenotyped samples with non-missing genotypes 
1307 for gene expression; ‘eQTL_FRAC_WITH_RARE’: the fraction of individuals carrying rare 
1308 variants below the maximum of minor allele frequency threshold (MAF < 0.01) for gene 
1309 expression; ‘eQTL_NUM_ALL_VARS’: the number of all variants defining the group, all 
1310 genetic variants located within the tested gene for gene expression; 
1311 ‘eQTL_NUM_PASS_VARS’: the number of variants passing the minimum of MAF 
1312 (0.0000001), the minimum of minor allele count (1), the maximum of MAF (0.01) and 
1313 minimum of call rate (0.5) thresholds for gene expression; ‘eQTL_NUM_SING_VARS’: the 
1314 number of singletons among variants in ‘eQTL_NUM_PASS_VARS’ for gene expression; 
1315 ‘eQTL_PVALUE’: the p-value of the burden test for gene expression; ‘eQTL_QSTAT’: the Q 
1316 statistic of the burden test for gene expression; ‘eQTL_QVALUE_FDR’: the Benjamini-
1317 Hochberg FDR-corrected q-value of the eQTL analysis.

1318 S15 Table. (A) List of significant CNV-pQTLs and (B) CNV pQTL-eQTL Spearman 
1319 correlations and MR results. (A) Columns are ‘CNV’: the genetic location of the CNV in the 
1320 format chromosome:start-end (GRCh37); ‘Chr’: the chromosome CNV is located on 
1321 (GRCh37); ‘Start’: the start coordinates of the CNV (GRCh37); ‘End’: the end coordinates of 
1322 the CNV (GRCh37); ‘Uniprot’: UniProtID of the protein; ‘Array’: Olink panel for the protein; 
1323 ‘Gene’: HUGO gene naming consortium symbol for the protein; ‘Type’: the pQTL association 
1324 type, if the CNV association is in the proximity of the protein-encoding gene, the association 
1325 is cis and otherwise trans; ‘P-value (pQTL)’: the CNV pQTL association p-value; ‘P-value 
1326 (eQTL same gene)’: the p-value from the CNV eQTL analysis for the pQTL gene (for 
1327 heterodimer the specific subunit is in the brackets); ‘P-value (eQTL other gene)’: the p-value 
1328 from the CNV eQTL analysis for not pQTL gene and in the brackets in the associated gene; 
1329 ‘CNV overlap with a gene’: CNV overlap with a gene and gene symbol is in the brackets, for 
1330 heterodimer, overlap with subunit is marked; ‘Number of copies’: the possible number of 
1331 alleles detected for the CNV in the Estonian population; ‘Allele frequency’: the frequency of 
1332 the CNV based on the number of copies corresponding in the column ‘Number of copies’. (B) 
1333 Columns are ‘CNV’: the genetic location of the CNV in the format chromosome:start-end 
1334 (GRCh37); ‘gene (RNAseq)’: HUGO gene naming consortium symbol for the gene; ‘protein 
1335 (Olink)’: HUGO gene naming consortium symbol for the protein; ‘R (Spearman)’: Spearman’s 
1336 rank correlation coefficient for gene expression versus protein expression; ‘Z (MR)’: Z score 
1337 as causal effect estimate from the CNV eQTL and CNV pQTL MR analysis; ‘P (MR)’: p-value 
1338 from the CNV eQTL and CNV pQTL MR analysis. *Reference for these values is a whole-
1339 genome sequenced cohort of 2,273 individuals in the Estonian Biobank.
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1340 S16 Table. List of significant CNV-eQTLs. Columns are ‘CNV’: genetic coordinates of the 
1341 tested CNV in the format of chromosome:start-end (GRCh37); ‘gene’: HUGO gene naming 
1342 consortium symbol for the trait; ‘ensembl’: Ensembl transcript ID for the tested trait; ‘beta’: 
1343 estimate of the effect size; ‘t-stat’: t-statistic of the association; ‘p-value’: p-value of the 
1344 association; ‘FDR’: Benjamini-Hochberg procedure corrected association q-value.

1345 S17 Table. List of pQTLs identified in the SNP-tagged CNV analysis. Single variant pQTL 
1346 results originate from the Sun et al. 2022 study [9]. Columns are ‘chr’: the chromosome (hg19); 
1347 ‘position’: the position of the SNP (hg19); ‘rsID’: the rsID of the pQTL SNP; ‘A1’: the 
1348 reference allele; ‘A2’: the tested allele; ‘target’: HUGO gene naming consortium symbol for 
1349 the protein; ‘cis_trans’: the association type in the original Sun et al. [9] pQTL mapping (either 
1350 cis or trans); ‘A2_freq_discovery’: the frequency of the tested SNP in the Sun et al. [9] 
1351 discovery cohort; ‘A2_freq_replication’: the frequency of the tested SNP in the Sun et al. [9] 
1352 replication cohort; ‘A2_freq_Est’: the frequency of the tested SNP in the Estonian Biobank; 
1353 ‘maxR2’: the R2 of the linkage disequilibrium between Sun et al. [9] pQTL SNP and the 
1354 Estonian Biobank CNV; ‘maxR2_CNV’: the CNV tagged by SNPs coordinates (hg19); 
1355 ‘frequency (deletion/duplication)’: the frequency of the CNV in the Estonian Biobank; 
1356 ‘maxR2_CNV_Impact’: the classification of the most likely impact of the SNP tagging the 
1357 CNV; ‘maxR2_CNV_Consequence’: the most likely consequence of the SNP tagging the 
1358 CNV.

1359 S18 Table. List of secretion locations for the proteins with significant results from the 
1360 pQTL analysis. Columns are ‘Protein’: the HGNC gene symbol for the protein; ‘location’: the 
1361 location of proteins; ‘CNV’:  CNV pQTL association detection; ‘rare’: rare variant gene-based 
1362 pQTL association detection.
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