

1 **Graphical Abstract**

2

Genetically engineered endothelial niche induces mature cell populations
in human kidney organoids

3 Maggiore, 2023

4

5 **Title Page**

6 **Genetically engineering endothelial niche in human kidney organoids enables**
7 **multilineage maturation, vascularization and de novo cell types**

8

9 Joseph C. Maggiore¹, Ryan LeGraw^{2,3}, Aneta Przepiorski¹, Jeremy Velazquez^{2,3},
10 Christopher Chaney^{4,5}, Evan Streeter¹, Anne Silva-Barbosa⁶, Jonathan Franks⁷, Joshua
11 Hislop^{3,8}, Alex Hill^{2,3}, Haojia Wu⁹, Katherine Pfister⁶, Sara E. Howden¹⁰, Simon C.
12 Watkins⁷, Melissa Little^{10,11,12}, Benjamin D. Humphreys^{9,13}, Alan Watson⁷, Donna B.
13 Stolz⁷, Samira Kiani^{2,3,8,16}, Alan J. Davidson¹⁴, Thomas J. Carroll^{4,5}, Ondine Cleaver¹⁵,
14 Sunder Sims-Lucas⁶, Mo R. Ebrahimkhan^{2,3,8,16}, Neil A. Hukriede¹

15

16 *Correspondence should be addressed to N.A.H. (hukriede@pitt.edu) and M.R.E.*
17 *(mo.ebr@pitt.edu)*

18 *Address for correspondence: 3501 5th Ave; 5061 BST3, Pittsburgh, PA 15213*

19 *F: 412-383-2211; P: 412-648-9918*

20

21 **Running headline:** Engineered endothelia induce mature kidney organoids

22

23 1. Department of Developmental Biology, School of Medicine, University of Pittsburgh, Pittsburgh PA
24 15213, USA

25 2. Department of Pathology, Division of Experimental Pathology, School of Medicine, University of
26 Pittsburgh, Pittsburgh PA 15213, USA

27 3. Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA

28 4. Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine,
29 University of Texas Southwestern Medical Center, Dallas, TX 75390, USA

30 5. Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern
31 Medical Center, Dallas, TX 75390, USA

32 6. Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh PA, 15213

33 7. Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15213, USA

34 8. Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh,
35 Pittsburgh, PA 15261, USA

36
37 9. Division of Nephrology, Department of Medicine, School of Medicine, Washington University in St.
38 Louis, St. Louis, MO 63130
39 10. Murdoch Children's Research Institute, Melbourne, Victoria, Australia
40 11. Department of Anatomy and Neuroscience, The University of Melbourne, Melbourne, Victoria,
41 Australia
42 12. Department of Paediatrics, The University of Melbourne, Melbourne, Victoria, Australia
43 13. Department of Developmental Biology, School of Medicine, Washington University in St. Louis, St.
44 Louis, MO 63130
45 14. Department of Molecular Medicine and Pathology, University of Auckland, Auckland 1010, New
46 Zealand
47 15. Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390
48 16. McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
49

50 **Abstract**

51 Vascularization plays a critical role in organ maturation and cell type development. Drug
52 discovery, organ mimicry, and ultimately transplantation in a clinical setting thereby
53 hinges on achieving robust vascularization of *in vitro* engineered organs. Here, focusing
54 on human kidney organoids, we overcome this hurdle by combining an inducible *ETS*
55 *translocation variant 2 (ETV2)* human induced pluripotent stem cell (iPSC) line, which
56 directs endothelial fate, with a non-transgenic iPSC line in suspension organoid culture.
57 The resulting human kidney organoids show extensive vascularization by endothelial cells
58 with an identity most closely related to endogenous kidney endothelia. Vascularized
59 organoids also show increased maturation of nephron structures including more mature
60 podocytes with improved marker expression, foot process interdigitation, an associated
61 fenestrated endothelium, and the presence of renin⁺ cells. The creation of an engineered
62 vascular niche capable of improving kidney organoid maturation and cell type complexity
63 is a significant step forward in the path to clinical translation. Furthermore, this approach
64 is orthogonal to native tissue differentiation paths, hence readily adaptable to other
65 organoid systems and thus has the potential for a broad impact on basic and translational
66 organoid studies.

67

68 **Keywords (3-6)**

69 Genetic engineering, endothelial, podocytes, renin, organoids, scRNASeq

70 **Translational Statement**

71 Developing therapies for patients with kidney diseases relies on a morphologically and
72 physiologically representative *in vitro* model. Human kidney organoids are an attractive
73 model to recapitulate kidney physiology, however, they are limited by the absence of a
74 vascular network and mature cell populations. In this work, we have generated a
75 genetically inducible endothelial niche that, when combined with an established kidney
76 organoid protocol, induces the maturation of a robust endothelial cell network, induces a
77 more mature podocyte population, and induces the emergence a functional renin
78 population. This advance significantly increases the clinical relevance of human kidney
79 organoids for etiological studies of kidney disease and future regenerative medicine
80 strategies.

81

82 **Introduction**

83 Engineering clinically relevant microphysiological tissues *in vitro* hinges on the co-
84 development of a robust endothelial network. While endothelial cells play an important
85 role in forming the vessels that transport blood and nutrients, they also interact with
86 developing tissues and promote maturation¹⁻⁷. Furthermore, across most organ systems,
87 the vasculature plays a crucial role in disease processes. Therefore, *in vitro* organ models
88 that lack the endothelial niche are limited in their capacity to recapitulate native physiology
89 and model disease, and are also likely to be suboptimal in a transplant setting. Methods
90 for vascularizing *in vitro* organ systems have been developed with varying levels of
91 success, and have included bioprinting vasculature⁸, inducing vasculature using flow
92 systems⁹, and supplementing cell culture systems with proteins or transcription factors¹⁰.
93 Transgenic induction of an orthogonal hemato-endothelial population of cells¹¹⁻¹⁴ is a
94 particularly attractive approach given the hurdle it bypasses in developing a common
95 universal culture media to coax the generation of heterogenous cell types. Overcoming
96 this challenge, cells can be engineered with a transcriptionally guided endothelialization
97 module that differentiates orthogonally to the parenchymal tissue of interest.

98

99 Recapitulating kidney vasculature in *in vitro* systems proves no less challenging. Kidney
100 vasculature regulates blood pressure, controls filtration of serum ions and proteins, and
101 regulates many important endocrine pathways¹⁵ and thus is critically important to model
102 for studies of health and disease. Similarly, in disease settings, endothelial cells are
103 known to fibrose and contribute to a patient's disease burden in chronic kidney
104 disease^{16,17}. Current methods for vascularizing the *in vitro* human kidney¹⁸ have followed

105 methods similar to other organ systems including flow enhancement with chips¹⁹⁻²¹,
106 decellularizing/recellularizing ECM²², bioprinting²³, renal subcapsular transplantation^{24,25},
107 and VEGF supplementation²⁶. However, these methods still leave multiple unmet needs²⁷.
108 Notably, there is a critical requirement for a method of vascularization that can: (1) reliably
109 and simply generate a network that integrates with the kidney parenchyma, (2) allow for
110 orthogonal differentiation and co-development of other non-endothelial cell types, (3) be
111 broadly applied to multiple existing kidney tissue engineering protocols, (4) be highly
112 reproducible, thereby minimizing batch to batch variation, and (5) be applicable in settings
113 of high throughput kidney physiology and disease modelling.

114

115 For these reasons, we turned to *ETS translocation variant 2 (ETV2)*, previously shown to
116 play a central role in directing endothelial cell differentiation^{28,29}, to develop a genetically
117 inducible hiPSC line (iETV2-hiPSC). We subsequently incorporated these cells into a
118 previously established human kidney organoid bioreactor protocol^{30,31}, to reconstitute
119 natural endothelial niche in tandem with *in vitro* kidney organogenesis. The addition of
120 the endothelial niche improves the maturation of podocytes with signs of vascular
121 invasion and fenestration, induces the formation of a population of renin-positive cells,
122 and results in significant cell-cell interactions between endothelial and parenchymal cells.

123

124 **Results**

125 **ETV2 inducible hiPSCs generate endothelial cells following doxycycline exposure**

126 We developed a doxycycline inducible ETV2-EGFP hiPSC line (Supplementary Fig. 1)
127 that, when stimulated, generates a population of endothelial progenitor-like cells (Fig. 1a).
128 In monolayer iPSC culture, following 24-hour doxycycline exposure there was a marked
129 induction in immunofluorescence of ETV2-EGFP that persisted until day 2. Beginning at
130 day 3, with subsequent continued doxycycline exposure, there was an increase in
131 immunofluorescence intensity until day 6 of MCAM and PECAM1 expression (Fig. 1b-c,
132 Supplementary Fig. 2-3). ERG, a transcription factor critical to endothelial cell
133 differentiation and function³², was expressed on immunofluorescence at day 4
134 (Supplementary Fig. 4). Subsequently, MCAM and PECAM1 reach peak protein
135 expression levels by day 7, which was confirmed by per cell fluorescence intensity
136 quantification (Fig. 1b-c).

137

138 To determine the transcriptomic identify of the induced endothelial progenitor-like
139 population, scRNASeq was performed on iETV2-hiPSCs exposed to doxycycline for 4
140 days (Fig. 1d). 1,839 cells were used in downstream scRNASeq analysis and UMAP plots
141 were generated wherein three distinct cell clusters were identified (P1, P2, P3) (Fig. 1e).
142 As identified using Monocle3^{33,34}, a developmental trajectory was identified progressing
143 from P1 -> P2 -> P3 (Fig. 1f). These clusters tended to contain transcriptional profiles
144 similar to early, mid, and late endothelial progenitor populations (Fig. 1g). The early
145 endothelial-like progenitor population (P1) was characterized by high levels of *ETV2*,
146 *KLF4*, *GATA2*, and *RUNX1*; mid endothelial-like progenitor (P2) cells were characterized

147 by *ALCAM*, *TAL1*, *MCAM*; and late endothelial-like progenitor (P3) were characterized by
148 *PECAM1*, *FLT1*, and *CD34* (Fig. 1g, Supplementary Fig. 5).

149
150 To understand whether the induced iETV2-hiPSC endothelial cells differentiate into an
151 organ-specific or endothelial sublineage, the single cell transcriptomes of P1, P2 and P3
152 populations were compared with published human endothelial scRNAseq datasets from
153 Tabula Sapiens³⁵ using SingleCellNet³⁶. We first determined that the iETV2-hiPSC
154 endothelial cells did not specifically align or express markers of organ-specific endothelial
155 cell types (Supplementary Fig. S6-8). Furthermore, these cells do not express high levels
156 of *EFNB2* or *EPHB4*, which mark arteries and veins, respectively (Supplementary Fig. 9).
157 Interestingly, when the iETV2-hiPSCs were aligned against Tabula Sapiens endothelial
158 cells gene ontology classifiers, there was increased alignment with terms indicative of
159 endothelial cell vascular tree morphology (Supplementary Fig. S8). Taken together, this
160 data demonstrated that when cultured in monolayer, iETV2-hiPSCs generate a generic,
161 organ-agnostic population of endothelial-like progenitor cells.

162
163 **Kidney organoid vascularization method generates integrated endothelial network**
164 **with maintained presence of critical kidney cell types**

165 We modified an established kidney organoid protocol^{31,37,38} to include the integration of
166 iETV2-hiPSCs (Fig. 2a). Vascularized human kidney organoids were generated by
167 combining a wildtype hiPSC (MANZ2-2 or Triple) line with the iETV2-hiPSC transgenic
168 line. Both hiPSCs were scraped from monolayer culture, dissociated as clusters in
169 suspension, and when combined, self-aggregated into spheroids, forming embryoid

170 bodies by day 3. From culture day 5 to 18, the organoids were exposed to doxycycline,
171 thereby inducing the transgenic iETV2-hiPSC line to differentiate into endothelial cells.
172 The protocol was optimized for minimum effective doxycycline concentration, doxycycline
173 exposure window, doxycycline length and transgenic hiPSC to wildtype ratio to yield an
174 extensive vascular network without compromising kidney organoid parenchymal cell
175 types (Supplementary Fig. 10-11). Independent of changing the ratio of cell types, there
176 was a consistent number of EGFP+PECAM1+ cells that form, indicating a potential self-
177 regulation of endothelial cell number (Supplementary Fig. 12). We found that the ideal
178 protocol to yield vascularized kidney organoids was a combination of 1:5 ETV2-EGFP
179 hiPSCs : wildtype hiPSCs, induced with 0.5 μ g/mL doxycycline from day 5-18
180 (Supplementary Fig. 10-12).

181
182 By day 18, a significant endothelial network formed throughout the entire kidney organoid
183 as demonstrated by PECAM1 (Fig. 2b), endomucin and NRP1 immunofluorescence
184 (Supplementary Fig. 13) and by RT-qPCR (Supplementary Fig. 14). The overall increase
185 in endothelial network with this vascularization method was analyzed with Angiotool³⁹ on
186 immunofluorescent PECAM1 images showing ~2-fold increase in vessel area (p-value <
187 0.0001), ~2-fold increase in total vessel length (p-value < 0.0001), and ~3.60-fold
188 increase in the number of junctions (p-value < 0.0001) (Fig. 2c). Although the total number
189 of starting cells was the same between the MANZ2-2 control and vascularized organoids,
190 the diameter of vascularized organoids was found to be ~60% larger than the control
191 kidney organoid (p-value < 0.0001) (Fig. 2c). To determine the functionality and stability
192 of vessels generated within the organoids, we assessed if they could connect with an *in*

193 *vivo* blood supply and become patent. To achieve this, we inserted human kidney
194 organoids with or without iETV2-hiPSCs under the kidney capsule of nod-SCID gamma
195 (NSG) mice as previously described²⁴. These organoids were allowed to mature *in vivo*
196 for 28 days. Vessels in organoids that did not contain the iETV2-hiPSCs contained
197 vessels that were entirely derived from the mouse as previously shown²⁴. Conversely, the
198 iETV2-hiPSCs vascularized kidney organoids contained vessels that stained positive for
199 human GAPDH and connected with the rodent vessels at the periphery of the organoid
200 (Supplemental Fig. 15). Overall, this data demonstrated that the addition of iETV2-hiPSCs
201 generates a robust endothelial network within the kidney organoid that can be sustained
202 with *in vivo* connection with mouse vasculature.

203
204 Furthermore, with the vascularized kidney organoid protocol, there appeared to be
205 interactions between other key epithelial cell types and the endothelial cells. Large
206 nodules of cells were evident at the cortex of the vascularized kidney organoids, which
207 appeared to be largely composed of NPHS1+ cells, a podocyte slit diaphragm specific
208 marker⁴⁰, enveloped by endothelial cells (Fig. 2c). Additionally, proximal, and distal
209 tubules, imaged in cross-section, appear to be encased in endothelial cells, which was
210 not observed in the MANZ2-2 control kidney organoid (Fig. 2c). However, other than the
211 gross changes in organoid morphology, and distinct cell-cell interactions between
212 epithelial-endothelial cells, we did not notice differences in the cell type morphology of
213 epithelial cells, indicating preservation of critical cell type morphology (Fig. 2c).

214

215 To further understand the organoid cellular composition changes upon vascularization,
216 snRNAseq was carried out on day 18 MANZ2-2 control and vascularized kidney
217 organoids (Fig. 3a). On UMAP, cells from control and vascularized kidney organoid (Fig.
218 3b) clustered by distinct cell types – podocytes, proximal nephron, distal nephron,
219 endothelial cells, and interstitial cells (Fig. 3c), and express characteristic cell-type
220 specific markers (Fig. 3d). These cellular population annotations were confirmed using
221 DevKidCC⁴¹ (Supplementary Fig. 16). The endothelial population (966 cells) was
222 comprised almost entirely from endothelial cells of the vascularized kidney organoid (888
223 cells, 91.9%) and nearly all *EGFP* expression was localized to the endothelial population
224 (Fig. 3e). The total organoid endothelial cell percentage for the control kidney organoid
225 was 0.61% compared to 6.9% under vascularized conditions. Podocyte (POD) and
226 interstitial cluster 1 (INT-1) populations contained evenly distributed populations between
227 control and vascularized kidney organoid cells (54.4% and 45.6%, respectively) (Fig. 3d).
228 Tubular segments contained a slightly higher percentage of cells from the control kidney
229 organoid (62.3%). Interstitial Cluster 2 was comprised of cells in slightly greater
230 proportions from the vascularized kidney organoid (58.0%) (Fig. 3d). Tubular segments
231 subclustered into proximal and distal tubule did not show significant expression
232 differences between the control and vascularized conditions (Supplementary Fig. S17).
233 Based on the initial cell type clustering and immunofluorescence analysis, we determined
234 the vascularized kidney organoids contain a significant endothelial population while
235 preserving critical epithelial cell types. Next, we investigated the distinct cellular changes
236 due to the addition of the iETV2-hiPSCs that occurred in the podocyte population.

237

238 **Vascularized kidney organoid enables greater differentiation of podocyte**
239 **populations and improved glomerular vascular interaction**

240 Podocytes are a critical cell type in kidney physiology, acting as one of the early regulators
241 of blood filtration. They have a highly specialized morphology consisting of interdigitating
242 foot processes that encase endothelial cells with glomerular basement membrane (GBM)
243 in between⁴². Modelling of these foot processes with GBM is necessary to adequately
244 understand mechanisms of glomerular filtration or identify therapeutics for diseases such
245 as diabetic nephropathy, focal segmental glomerulosclerosis, and lupus nephritis^{43,44}. As
246 previously reported, podocyte-like cells are present in MANZ2-2 control organoids,
247 however, they generally have little to no endothelial cell integration, foot process
248 development, or glomerular basement membrane^{27,45} (Fig. 4a-c). Other studies have
249 examined podocyte-endothelial interaction and have found present but limited vascular
250 involvement⁴⁶. Podocytes in MANZ2-2 control kidney organoids exist as a defined cluster
251 of cells on the exterior surface of the kidney organoid as NPHS1+ by immunofluorescence,
252 with substantiative microvilli projections on scanning electron microscopy (Fig. 4a, c). The
253 podocytes contain numerous protrusions, possibly representing primitive foot processes,
254 which are disconnected from endothelia, and on transmission electron microscopy are
255 seen to extend out from the exterior surface randomly or contact similar protrusions from
256 other podocytes (Fig. 4c). By contrast, vascularized human kidney organoids contain an
257 extensive EGFP+ PECAM1+ endothelial cell network that both encapsulates and
258 invaginates into the podocyte cluster (Fig. 4b). Furthermore, on transmission electron
259 microscopy, we detect identifiable interactions of interdigitating foot processes. (Fig. 4c).
260 Our data demonstrates that the presence of iETV2-hiPSCs endothelial cells enables

261 direct cell-cell interactions with the podocytes, thereby enabling greater physiologically
262 relevant morphological features.

263

264 To better interrogate podocyte maturation, snRNAseq podocytes from control and
265 vascularized kidney organoids were further separated into two distinct clusters on UMAP
266 (Fig. 4d). Cluster 1 was largely comprised of podocytes from the vascularized kidney
267 organoid (74.1%), while Cluster 0 was largely comprised of podocytes from the control
268 kidney organoid (60.5%) (Fig. 4e). Prior studies have investigated the development of
269 podocytes through human fetal kidney transcriptomics and found two populations of
270 podocytes with distinct gene expression patterns – early podocytes (*OLFM3*, *GFRA3*,
271 *PAX8*, *LHX1*, *PCDH9*) and late podocytes (*CLIC5*, *PLCE1*, *PTPRO*, *NPHS1*, *NPHS2*)^{47,48}.
272 We find that podocytes in MANZ2-2 control, and vascularized kidney organoids contain
273 higher levels of late markers than early markers (Supplementary Fig 18a).

274

275 Interestingly, podocytes of the vascularized kidney organoid contain higher expression
276 levels for markers of slit diaphragm and basement membrane formation, such as *SLIT2*,
277 *SLIT3*, *NID2*, *COL4A1*, *COL4A2*, and *LAMB1* (Fig. 4f). Furthermore, a gene ontology
278 search was conducted for the top 100 differential expressed genes from the vascularized
279 podocyte predominant cluster, which resulted in marked increase in gene ontology
280 matches for basement membrane formation, glomerular development, endothelial
281 vascular differentiation and migration, and tight junction regulation (Fig. 4g,
282 Supplementary Fig. 19). Previous studies have described the maturation of podocyte
283 basement membrane composition by a transition of *COL4A1/2* to *COL4A3/4/5* and a

284 transition in laminins from LAMA1 to LAMC1 to LAMA5^{44,49}. We found that podocytes of
285 the vascularized kidney organoid contained higher proportions of mature basement
286 markers than the control podocytes, such as COL4A5, LAMC1 and LAMA5
287 (Supplementary Fig. 18b). Finally, using CellChat, it was determined that podocytes from
288 the vascularized predominant cluster had significantly higher VEGF signaling as
289 compared with the control podocytes (Supplementary Fig. 18c). Taken together, this data
290 demonstrates that the iETV2-hiPSCs endothelial niche within the vascularized kidney
291 organoid promotes the emergence of a more mature podocyte population. We next
292 investigated the effect of added iETV2-hiPSCs on the interstitium of the vascularized
293 kidney organoid.

294

295 **iETV2-hiPSCs niche in vascularized organoid enables generation of a renin**
296 **positive cellular population in interstitium**

297 The interstitial population of the kidney is a heterogenous population⁵⁰⁻⁵² that importantly
298 contributes to the development, maturation, and structural support of other kidney
299 parenchymal cell types⁵³⁻⁵⁵. To further investigate the interstitial cell populations identified
300 from the snRNAseq analysis, INT-1 cell population was re-clustered on UMAP (Fig. 5a).
301 INT-1 was found to contain 7 subclusters, comprised of vascular smooth muscle renin+
302 cells (VSM-REN), two fibroblast populations (FIB-1 & FIB-2), proliferating fibroblast cells
303 (PROL-FIB), mural cells (MUR), myofibroblasts (MYO), and proliferating myofibroblasts
304 (PROL-MYO) (Fig. 5b). Cell type specific markers aligned with previously published work
305 identifying interstitial heterogeneity^{56,57} (Fig. 5c, Supplementary Fig. 20-21).

306

307 Contained within the *in vivo* kidney's interstitial population is a group of cells known as
308 the juxtaglomerular apparatus, which contain renin positive cells that regulate blood
309 pressure through the renin-angiotensin system (RAS)⁵⁸. Renin cells, when diseased,
310 contribute to hypertension, chronic kidney disease, and diabetic nephropathy^{59,60}.
311 Therefore, a representative *in vitro* recapitulation of this cellular population is highly
312 needed and renin production remains an important physiological assay⁶¹. Wildtype
313 organoids have not been found to contain a resident renin expressing population. Only
314 when stimulated with forskolin do kidney organoids produce renin^{62,63}. We identified for
315 the first time, the emergence of renin cells in the vascularized kidney organoid without
316 using exogenous stimuli such as forskolin (Fig. 5d-e). REN+ cells were confirmed by
317 immunofluorescence in the vascularized kidney organoids (Fig. 5f-h). These REN+ cells
318 were localized to the podocyte clusters, whereby they do not co-label as PECAM1+ or
319 NPHS1+ indicating that they may be forming a portion of a rudimentary juxtaglomerular
320 apparatus^{64,65}. Furthermore, REN+ cells in the vascularized kidney organoid are EGFP-
321 (Supplementary Fig. 2) and REN+ cells do not exist in the MANZ2-2 control kidney
322 organoid. We therefore demonstrate that the existence of the iETV2-hiPSC endothelial
323 niche enables the formation of a population of renin cells without the usage of exogenous
324 stimulation.

325

326 Drugs such as forskolin, can be used as a functional assay to trigger the release of renin
327 in kidney organoid stromal cells^{62,63}. We demonstrated that our vascularized kidney
328 organoids at a basal level express a similar level of renin as the control MANZ2-2 kidney
329 organoids that are stimulated with 10 μ M forskolin. When the vascularized kidney

330 organoids are stimulated with 10 μ M forskolin, the organoids express 192.4-fold increase
331 in renin expression relative to MANZ2-2 control unstimulated kidney organoids and 9.8-
332 fold increase in renin expression relative to unstimulated vascularized kidney organoids
333 (Fig. 5i). Other studies have shown that forskolin also triggers tubular swelling in control
334 organoids through cAMP activation⁴⁰. We observed the cyst formation with forskolin
335 stimulation to be larger in the vascularized kidney organoid than the control kidney
336 organoid (Supplementary 27) indicating that the iETV2-hiPSCs endothelial niche may
337 enable greater electrophysiological ion transport than the control organoid⁶¹. This data
338 taken together, demonstrates for the first time that the iETV2-hiPSCs endothelial niche
339 induces, in the vascularized kidney organoid, a functional renin population without the
340 usage of exogenous stimulation. This serves as critical step forward in microphysiological
341 modelling of systems for blood pressure mechanistic understanding and drug discovery.
342 Finally, we aimed to investigate whether the iETV2-hiPSCs added to the kidney organoid
343 co-develop with the maturing epithelial cells of the vascularized kidney organoid.

344

345 **Co-developing iETV2-hiPSCs produce kidney specific endothelial network within**
346 **kidney organoids**

347 Previous studies across many organ systems have found that there is a significant
348 crosstalk between endothelial and epithelial cell types – positing that the crosstalk is
349 necessary to inform proper co-development and maturation between one another^{1,7,45,66}.
350 To understand whether iETV2-hiPSCs mature and adopt an organ-specific fate, we
351 reclustered the snRNAseq endothelial cell populations from control and vascularized
352 kidney organoid for further analysis (Fig. 6a). The endothelial population was comprised

353 of two subclusters, despite consistent canonical endothelial marker expression across all
354 cells (PECAM1+ CDH5+) (Fig. 6b-c). Cluster 1 was found to be largely comprised of less
355 mature endothelial cells indicated by expression of *ETV2* and *TAL1* while Cluster 2 was
356 comprised of more differentiated endothelial cells indicated by expression of *PECAM1*,
357 *EMCN*, *CLDN5*, and *TIE1* (Fig. 6d-f). The vascularized kidney organoid cells were then
358 compared to iETV2-hiPSC induced endothelial cells grown in monolayer cultures (Fig.
359 1e). This analysis revealed that Cluster 1 from the organoids (EC1) aligned closest with
360 the P2 cluster (53.0%), followed by the P3 cluster (39.2%), while Cluster 2 from the
361 organoids endothelia aligned closest with the P3 cluster (47.3%), followed by the P2
362 cluster (35.1%) (Supplementary Fig. 24). Despite progression in maturity, the organoid
363 endothelial cells do not show high levels of either *EFNB2* (artery) or *EPHB4* (vein)
364 expression (Supplementary Fig. 25). Based on these data, we conclude that the iETV2-
365 hiPSCs mature within the kidney organoid, progressing to a more differentiated
366 endothelial state, but may retain adaptability and plasticity given their limited progression
367 to either an artery or vein identity.

368
369 To determine if the observed increase in maturity is accompanied by kidney-specific
370 endothelial maturation, the endothelial cells of the kidney organoid were compared to
371 organ-specific endothelia of Tabula Sapiens using SingleCellNet. We found that the
372 iETV2-hiPSC population of the vascularized kidney organoid gained a kidney specific
373 endothelial profile when incorporated into the kidney organoid protocol in contrast to the
374 organ-non-specificity of the original iETV2-hiPSC monolayer. Cluster 1 and 2 endothelial
375 cells from the organoid align as 56.2% and 65.8% kidney specificity, respectively, and

376 13.7% and 9.6% lymph node specificity, respectively (Fig. 6g). This data demonstrates
377 that the *ETV2*-induced organoid endothelial cells adopt an organ-specific maturity in co-
378 development with the kidney organoid. We also found that the maturation of iETV2-
379 hiPSCs in vascularized kidney organoids also was accompanied by changes in
380 transcriptional markers of vascular morphology, as was shown in the iETV2-hiPSC
381 monolayer (Supplementary Fig. 26). We found both Clusters 1 and 2 of the organoid
382 endothelial population characterized nearly entirely as “endothelial cell of vascular tree”
383 (84.9% and 75.3%, respectively) (Supplementary Fig. 26), whereas the iETV2-hiPSC
384 monolayer populations of P1, P2, P3 only characterized as 31.0%, 61.7%, 84.1%,
385 respectively (Supplementary Fig. 6).

386
387 Furthermore, we found the endothelial cells to closely interact with the epithelial cells of
388 the kidney organoid (Fig. 2d, 3b). Moreso, on scanning electron microscopy, we identified
389 that the endothelial cells that encased the podocytes display a fenestrated cell membrane
390 (Fig. 6h). Additionally, endothelial cells of the vascularized kidney organoid contain high
391 expression of *PLVAP*, marker of fenestrated endothelial cells associated with bridging
392 diaphragms of fenestrae and caveolae⁶⁷ (Fig 6i). Fenestrations play a critical role in
393 glomerular filtration and thus, this represents a significant novel finding in the kidney
394 organoid⁶⁸. It has been shown that *ETV2* can play a role in functionally ‘resetting’
395 endothelial cells that adjusts and conforms to organoids in a tissue-specific manner¹³,
396 and thus, this data demonstrates that iETV2-hiPSCs undergo further maturation and
397 organ-specific differentiation within a kidney organoid niche. Taken together, our data
398 demonstrates that the iETV2-hiPSCs are receptive to the microenvironmental cues of

399 developing kidney organoids. As such, the resulting endothelial network yields a kidney-
400 specific endothelial vascular tree alongside more mature epithelial cells.

401

402 **Discussion**

403 Endothelial niches play a central role during organogenesis, controlling fate maturation,
404 patterning and morphogenetics events¹⁻⁶. However, iPSC-derived organoids grown *in*
405 *vitro* frequently lack a well-developed endothelial niche which, in addition to promoting
406 tissue maturation, is likely to be needed in future transplant settings where organ-specific
407 endothelial may be functionally important. The failure to identify a common culture media
408 that can support the development of both resident parenchymal epithelia and endothelial
409 populations has complicated this effort. Another approach has been the addition of
410 endothelial-promoting cytokines such as VEGF-A to the organoid differentiation medium,
411 but while this expands angioblast cell numbers, it fails to support the formation of an
412 integrated vascular network²⁰. Strategies outside of media supplementation include the
413 use of fluidic culture systems that promote vascular growth and survival¹⁹⁻²¹, and
414 transplantation into immunodeficient mice, where the host vessels invade the
415 xenograft^{24,25}. However, these are cumbersome, low throughput and technically
416 complicated to set-up for routine organoid experiments.

417

418 Our strategy took advantage of ETV2, a ‘pioneer’ transcription factor that instructs
419 endothelial fate^{13,14,69,70}, to genetically engineer in a doxycycline-inducible fashion, an
420 endothelial niche. We achieved this by mixing an optimal ratio of iETV2-hiPSC to non-
421 transgenic hiPSCs together, thus allowing endothelial cell numbers to be ‘tuned’ to a
422 physiologically relevant quantity, while not overwhelming the organoid with vasculature.
423 The resulting engineered niche is orthogonal to the organ-specific developmental

424 program, but operates in tandem, offering an innovative, ‘plug-and-play’ approach to
425 vascularize organoids.

426

427 In our study, we show for the first time, that endothelial cells generated from iETV2-
428 hiPSCs develop a fenestrated, endothelial network capable of morphologically integrating
429 with tubular cells, podocytes, and interstitial cells. This vascularization leads to a more
430 mature podocyte population with interdigitated foot processes, endothelial glomerular
431 invasion, and basement membrane maturation. The vascularized kidney organoids also
432 developed a novel, integrated, and responsive renin cell population in the interstitium.
433 Finally, we demonstrated that the development and maturation of these epithelial cells
434 also coincides with the formation of a kidney-specific endothelial population,
435 demonstrating the potential co-development and crosstalk occurring between the
436 epithelial, interstitial, and endothelial cells in generating a heterogenous mature organoid.

437

438 This study represents the first utilization of iETV2-hiPSCs line to vascularize human
439 kidney organoids. The protocol of iETV2-hiPSC:wildtype hiPSC was selected as to allow
440 for a significant number of endothelial cells to incorporate into the kidney organoid in a
441 physiologically relevant quantity, while not overwhelming the culture with endothelial cells.
442 It is possible that with greater tuning of the ratio of cells, the doxycycline concentration,
443 the doxycycline length of exposure and timing, different compositions of cell types within
444 the kidney organoid can be achieved. We observed by snRNAseq there was a slightly
445 diminished proportion of tubular cells in the vascularized kidney organoid, particularly
446 distal tubule cells. Despite this observation, we found in qPCR and snRNAseq elevated

447 expression levels of *GATA3*, a common distal tubule marker in kidney organoids. *GATA3*,
448 however, has been shown to play a role in mesangial and podocyte development⁷¹⁻⁷³.
449 This may indicate that despite a decrease in number of distal tubule cells, there is an
450 overall enhancement in the interstitial and podocyte populations. With greater tuning of
451 protocol parameters as has been demonstrated in other studies, it may be possible to
452 proximalize or distalize the vascularized organoids⁷⁴. Finally, we observed the INT-2
453 interstitial population predominantly originates from the vascularized kidney organoid.
454 Like other organoid studies these cells have been found to contain neural markers such
455 as *DCX*, *NEUROD4*, and *STMN2* and typically are written off as unassigned or
456 unidentifiable. Without better understanding of the heterogeneity observed in human
457 kidney interstitia, it is still unknown the exact function or reason for this observation.
458 Future characterization of this cell type with further immunostaining and functional studies
459 would greatly benefit the understanding of the interstitial component of the kidney
460 organoid.

461
462 Endothelial cells are also known to signal to surrounding tissues⁷⁵. In the case of the
463 developing glomerulus, disruption of the glomerular endothelium prevents podocyte
464 maturation with a reduction in foot process and slit diaphragms⁷⁶. In support of this, our
465 vascularized organoids display glomeruli-like structures, comprised of juxtaposed
466 podocytes and endothelial cells, with the podocytes forming foot processes and
467 interdigitations, all of which are rare or absent in control organoids. The podocytes in
468 vascularized organoids also express higher levels of mature podocyte markers^{47,48} such
469 as *PTPRO*, *NPHS2*, *COL1A2*, *COL4A5*, *LAMC1*, *LAMA5* and *CCN2*, compared to the

470 unvascularized controls. Similar to other reports⁴⁷, we found higher expression of some
471 early podocyte markers in our vascularized organoids, compared to the controls,
472 indicating that optimization of the culture conditions and/or state of endothelial maturation
473 is needed to further improve endothelial-podocyte crosstalk. These markers have even
474 persisted following long term transplantation⁴⁷. To further mature kidney organoid
475 podocytes, it may be necessary to direct the differentiation of ETV2-induced endothelial
476 cells into the distinct glomerular endothelial cell type. This could be achieved with the
477 introduction of fluid flow or alternatively, the identity of glomerular endothelial cells could
478 be genetically induced, similar to our iETV2 strategy, by the inclusion of the transcription
479 factors GATA5 and TBX3 that drive this fate⁷⁷.

480

481 In investigating the emergence of the renin+ cell population in the interstitial of the
482 vascularized kidney organoid, there are still significant questions that remain. The exact
483 composition of the juxtaglomerular apparatus and whether the renin cells interact with
484 other mesangial cells to juxtapose the podocytes and endothelial cells in the kidney
485 organoid to form such an apparatus is unknown. We observe that with forskolin
486 stimulation there is an elevated expression level of *REN*, however, in future studies we
487 aim to investigate whether renin is successfully secreted from these cells, and whether
488 these cells are functionally responsive to fluid pressure as occurs *in vivo*.

489

490 Work remains to fully understand the endothelial cells within the vascularized kidney
491 organoid. During development, each tissue develops a vascular network with different
492 types of vessels including arteries, veins and capillaries that are functionally specialized

493 to each particular organ⁶⁷. In our vascularized organoids we found little evidence that the
494 endothelial cells underwent arteriovenous differentiation. This is most likely because the
495 organoids were grown under static conditions, whereas *in vivo* the developing vasculature
496 is highly responsive to blood flow, which helps remodel the immature plexus and induce
497 different arteriovenous fates^{78,79}. The addition of flow or shear stress to our current
498 organoid protocol may be sufficient to achieve a more mature vascular network. Despite
499 this, the endothelial cells adopted a transcriptional signature that is most similar to that of
500 endogenous endothelia from the adult kidney. This suggests that the organoid
501 microenvironment such as epithelial and interstitial cells are providing differentiation
502 signals to the vascular plexus. As the nature of these signals has not been well
503 characterized, our vascularized organoids offer a new tool to investigate these processes.
504 This vasculogenic iPSC line can easily be adapted by existing fluidic protocols to enable
505 perfusion, which may further mature the endothelial network and surrounding
506 parenchymal cells^{19,20}.

507
508 Overall, the kidney organoids generated with the use of the inducible endothelial niche
509 contain a vascular network that morphologically integrates with podocytes, interstitial cells,
510 and renin cells in a way that will allow investigation of disease processes that are often
511 determined on a histological basis. Therefore, the work within this study moves the field
512 of kidney tissue engineering a significant step forward to more adequately model disease
513 of glomerular basement formation, disease of the juxtaglomerular apparatus, and with
514 additional engineering modules – modelling of physiological conditions such as blood
515 pressure or cyst formation. This inducible endothelial progenitor iPSC line was easily

516 integrated into an established kidney organoid protocol, and thus demonstrates the
517 potential for other organ systems and models to include an inducible vascular
518 niche^{3,6,13,14,80-82}. Our study lays groundwork for an easy to use and widely applicable
519 engineering method for manipulation and augmenting a tissue vascular niche during *in*
520 *vitro* human kidney organogenesis.

521

522 **Online Methods**

523 **Generating ETV2-Inducible hiPSCs.** rtTA expressing PGP1 hiPSCs previously
524 generated⁸³ were transfected, as we and other groups have done^{28,84,85}, using
525 Lipofectamine 3000 (Thermo Fisher Scientific, L3000001) with Super PiggyBac
526 Transposase (System Biosciences, PB210PA-1) and the PiggyBac transposon vector
527 with hETV2-2A-EGFP under control of the tetracycline responsive element promoter.
528 Transfected cells were selected by adding 0.5mg/mL puromycin to mTeSR1 maintenance
529 medium (STEMCELL Technologies, 85850). PGP1-ETV2 hiPSCs were karyotyped using
530 Thermo Fischer Scientific Karyostat+ Karyotyping service.

531

532 **Generating HNF4A-GATA3-MAFB Triple hiPSCs.**

533 HNF4A^{mCitrine}:MAFB^{mTagBFP2}:GATA3^{mCherry} (Triple) reporter iPSCs were generated by
534 incorporating the mCitrine gene at the start codon of the HNF4A locus in the previously
535 described dual reporter iPSC line, MAFB^{mTagBFP2}:GATA3^{mCherry}⁸⁶. In vitro transcribed
536 mRNA encoding the SpCas9-Gem variant⁸⁷, plasmid encoding a sgRNA targeting the 5'
537 end of the HNF4A locus and a gene targeting plasmid encoding a mCitrine-T2A gene
538 cassette flanked by 485 bp and 708 bp homology arms corresponding to sequences
539 directly upstream and downstream of the HNF4A locus respectively, were introduced into
540 iPSCs using the Neon Transfection System as previously described⁸⁶ (Supplementary
541 Table 4). To identify correctly targeted iPSCs, genomic DNA was isolated using the
542 DNeasy Blood & Tissue Kit (QIAGEN) and PCR analysis was performed using primers
543 that flank the 5' and 3' recombination junction. A clone containing homozygous insertion

544 of the mCitrine reporter, determined by PCR using primers that flank the intended target
545 site, was selected for further expansion and characterization.

546

547 **Cell Culture**

548 Kidney organoids were generated using the previously published MANZ2-2 hiPSC line⁸⁸
549 and the HNF4A-GATA3-MAFB (Triple) hiPSC line. These cells were combined with
550 PGP1-ETV2 hiPSCs to generate vascularized human kidney organoids. All hiPSCs were
551 cultured between 10 and 60 passages. MANZ2-2 and Triple hiPSCs were cultured in
552 mTeSR1 medium while PGP1-iETV2-hiPSCs were cultured in NutriStem XF/FF culture
553 medium (Reprocell, 010005). All hiPSCs were cultured in media supplemented with 1%
554 Penicillin-Streptomycin (Pen-Strep) (Gibco, 15140122) and 0.01% Plasmocin (InvivoGen,
555 ant-mpp-1). hiPSCs were passaged and cultured on tissue-culture plates coated with
556 Cultrex basement membrane extract (R&D Systems, 343401002). For passaging,
557 hiPSCs at 70-80% confluence were washed in DPBS without calcium or magnesium
558 (Gibco, 14190144), then incubated at 37°C in 2mL of gentle cell dissociation reagent
559 (GDR) (STEMCELL technologies, 100-0485). GDR was aspirated and cells were lifted
560 from tissue-culture plates using cell lifters (Fisher Scientific, 08-100-240). Cells were then
561 resuspended in media and diluted into new tissue culture plates at a ratio of 1:3-1:8. Cells
562 were then maintained in mTeSR1 or NutriStem with daily media changes. For induction
563 of endothelial cascade with PGP1-iETV2-hiPSCs, NutriStem was supplemented with
564 0.5µg/mL doxycycline (hyclate) (STEMCELL technologies, 72742) unless stated
565 otherwise in the Fig. s.

566

567 **Kidney Organoid Generation**

568 Kidney organoids were generated using a previously published protocol^{30,31}. In summary,
569 hiPSCs were washed twice in DPBS, then colonies were dissociated with GDR, and
570 resuspended in Stage I media which is comprised of TeSR-E5 media (STEMCELL
571 Technologies, 05916) supplemented with 0.1% (v/v) Insulin Transferrin Selenium
572 Ethanolamine (Gibco, 51500056), 1% (v/v) Pen-Strep, 0.25% (v/v) poly(vinyl alcohol)
573 (PVA) (Millipore Sigma, P8136), 0.01% (v/v) Plasmocin, 8 μ M CHIR99021 (STEMCELL
574 Technologies, 72054), 3.3 μ M Y27632 (STEMCELL Technologies, 72304), and 0.1mM
575 beta-mercaptoethanol (Fisher Scientific, 21-985-023). Cell colonies in suspension were
576 transferred into ultra-low attachment 6 well plates (Corning, CLS3471-24EA) and cultured
577 for 2 days on a gyrating rocking platform. On day 2, half of the media was aspirated and
578 replaced with the same TeSR-E5 media with supplements omitting beta-mercaptoethanol
579 and Y27632 and cultured for 24hrs to form embryoid bodies. On day 3, embryoid body
580 spheroids were filtered by size with a 200 μ m PluriStrainer (Fisher Scientific, NC1474108),
581 washed in low-glucose DMEM (Gibco, 11054001), and transferred to Stage II media
582 which is comprised of low-glucose DMEM supplemented with 10% (v/v) KnockOut™
583 Serum Replacement (KOSR) (Gibco, 10828028), 1% (v/v) Penn-Strep, 1% (v/v) non-
584 essential amino acids (NEAA) (Gibco, 11140050), 1% (v/v) HEPES (Gibco, 15630080),
585 1% (v/v) GlutaMAX™ (Gibco, 35050061), 0.01% (v/v) Plasmocin, and 0.25% (v/v) PVA.
586 Organoids were then continually grown on a gyrating rocker with media changes every
587 other day until day 18. To generate vascularized kidney organoids, the PGP1-ETV2
588 hiPSC line was combined with a control hiPSC line (MANZ2-2 or Triple) at a ratio of 1:5
589 on day 0 in Stage I media. The same protocol for organoid formation was carried out with

590 the addition of 0.5 μ g/mL of doxycycline to Stage II media from day 5-18, supplemented
591 each day, unless otherwise stated.

592

593 **Whole Mount Clearing and Immunofluorescence**

594 Organoids were fixed in 4% paraformaldehydes (PFA) (Fisher Scientific, AC416785000)
595 for 24hrs and rinsed in PBS three times. Organoids were then rendered optically clear
596 through an adapted version of the “Clear, Unobstructed Body Imaging Cocktails and
597 Computational-analysis” (CUBIC) clearing protocol⁸⁹⁻⁹¹. In summary, organoids were first
598 placed into 1:1 dH₂O:CUBIC R1, with three times replacement of liquid every 2 hours
599 followed by a 24hr incubation at room temperature. CUBIC R1 is comprised of 35% (wt/v)
600 dH₂O, 15% (wt/v)Triton X-100 (Sigma-Aldrich, T8787), 25% (wt/v)N,N,N',N'-Tetrakis(2-
601 Hydroxypropyl)ethylenediamine (quadrol) (Sigma-Aldrich, 122262) , and 25% (wt/v)urea
602 (Thermo Scientific, 29700). Organoids were then washed three times in IHC Buffer which
603 was comprised of 500mL PBS, 0.1% (v/v) Triton X-100, 0.5% (v/v) bovine serum albumin
604 (BSA) (Tocris Bioscience, 5217), and 0.01% (v/v) Sodium Azide (Sigma-Aldrich, 71289).
605 Organoids were then washed a final time and incubated over night at room temperature.
606 Next, organoids were incubated at room temperature for 48 hours in IHC Buffer
607 supplemented with primary antibody (Supplementary Table 1). Organoids were then
608 washed three times in IHC Buffer, and incubated at room temperature over night in IHC
609 Buffer supplemented with secondary antibody (Supplementary Table 2). Organoids were
610 then washed three times in PBS with a final PBS wash overnight. A 0.2% (wt/v) agarose
611 solution was then made by dissolving 0.4g of low-melting point agarose (Invitrogen,
612 16520100) in 10mL of dH₂O at 55°C. 10mL of CUBIC R2 which was comprised of 15%

613 (wt/v) dH₂O, 0.1% (v/v) Triton X-100 , 25% (wt/v) urea, and 50% (wt/v) sucrose (Fisher
614 Scientific, AA36508A1) was then slowly added. Organoids were then thoroughly removed
615 of PBS and resuspended in the 0.2% molten agarose-CUBIC R2 solution. The molten
616 solution with organoids suspended within, was then transferred to a 200 μ L Combitips®
617 tube (Eppendorf, 0030089774) with the tip removed. The molten gel-organoid-
618 suspension was transferred to 4°C for 15 minutes to allow for solidification. Using the
619 plunger of the Combitips®, the solid tube of agarose with organoids embedded within,
620 was then pushed out into a 24-well glass bottom plate (Fisher Scientific, NC0397150).
621 ~5 μ L of ultra-adhesive glue was then placed at both ends of the agarose tube to secure
622 the tube to the bottom of the well. The glue was allowed to dry for 5 minutes, and the well
623 was then filled with CUBIC R2. The liquid was replaced every hour, 3 times, and left to
624 incubate at room temperature overnight. Organoids were then imaged on a Nikon A1R
625 Spectral Confocal microscope. Three-dimensional renderings of the organoids were then
626 generated using Bitplane Imaris v10.0.0 (Oxford Instruments).

627

628 **Angiotool analysis of vascular networks**

629 Maximum intensity z-stack projections of the PECAM1 channel of hiPSC monolayer or
630 300 μ m depths of organoids were generated. The z-stack projections were converted to a
631 maximum intensity composite image in FIJI (ImageJ). Default settings were kept in
632 AngioTool³⁹, and a vessel diameter of 4, 7, 10, 14 μ m was used for analysis of all samples
633 as has been done in other published studies¹⁹. Quantification of vascular networks were
634 analyzed and graphed in GraphPad Prism. A non-parametric t-test (Mann-Whitney) was
635 employed to analyze statistical significance between control and vascularized conditions.

636

637 **Immunofluorescence quantification.** Individual cells in immunofluorescence were
638 quantified for their per cell immunofluorescent intensity through an adapted protocol of
639 previously published work⁹². In summary, immunofluorescent images of organoids with
640 DAPI, EGFP, MCAM and PECAM1 were acquired and analyzed in FIJI. Background
641 fluorescence was adjusted in all channels and images by using Otsu Dark threshold with
642 minimum threshold set to 600 pixel intensity units. This nuclear region was then
643 subtracted from EGFP, MCAM and PECAM1 images to obtain nuclei-free fluorescent
644 images. The total pixel intensity of the non-nuclear regions was calculated for each
645 channel, then divided by the nuclei count to obtain a final value of average summed pixel
646 intensity per cell. Quantification of per cell immunofluorescent intensity was analyzed and
647 graphed in GraphPad Prism. A non-parametric ANOVA test with multiple comparisons
648 (Kruskal-Wallis) was employed to analyze statistical significance between protein
649 immunofluorescence at various timepoints.

650

651 **Electron Microscopy.** Organoids were harvested at day 18 for scanning and
652 transmission electron microscopy (SEM/TEM). Organoids were placed in 2.5%
653 glutaraldehyde fixative for 60 minutes for morphological preservation. For SEM,
654 organoids were washed in PBS, and submerged in 1% osmium tetroxide for 60 minutes.
655 The organoids were then dehydrated through a series of 30-100% ethanol washes, then
656 washed with hexamethyldisalazane (HDMS) and allowed to dry. Then, organoids were
657 placed onto aluminum stubs with conductive copper double sided adhesive tape, sputter
658 coated with gold/palladium and placed in a JSM-6335F field emission scanning electron

659 microscope at 3 kV (JEOL, Tokyo, Japan). For TEM, glutaraldehyde fixed organoids were
660 washed in PBS, and submerged in 1% osmium tetroxide and 1% potassium ferricyanide
661 for 60 minutes. The organoids were then dehydrated in a series of 30-100% ethanol
662 washes then embedded in Polybed 812 resin. Once the resin was cured at 37° overnight
663 then at 65° for 2 days. Sixty nm sections were sectioned using a diamond knife and
664 placed onto 200 mesh copper grids. Sections were imaged using a JEOL JEM 1400 Flash
665 transmission electron microscope (Peabody, MA) at 80 kV, and photographed with a
666 bottom-mount AMT 2k digital camera (Advanced Microscopy Techniques, Danvers, MA).

667

668 **RNA extraction and RT-qPCR.** RNA was extracted from monolayers of hiPSCs or whole
669 kidney organoids using TRI Reagent™ (Thermo Fisher Scientific, AM9738) at room
670 temperature for 30 minutes with intermittent agitation. Samples were then either stored
671 at -80°C for storage, or immediately processed using PureLink™ RNA Mini Kit (Invitrogen,
672 12183018A). RNA quality was analyzed using NanoDrop 1000 (Thermo Fisher Scientific)
673 for purity and concentration. RNA was stored at -80°C for long-term storage, or
674 immediately processed using qScript™ cDNA Supermix (Andwin Scientific, 101414106).
675 cDNA was stored at -80°C for long-term storage. RT-qPCR experiments were performed
676 in 96-well plates (Applied Biosystems, 4346906) using SYBR™ Green Master Mix
677 (Applied Biosystems, A25778) forward and reverse primers were generated by Integrated
678 DNA Technologies (IDT) (Supplementary Table 3). RT-qPCR was processed on
679 QuantStudio 12K Flex PCR System (Thermo Fisher Scientific). Ct values were processed
680 according to previously published protocols⁹³ and graphs were generated in Prism
681 (GraphPad, 9.1.0).

682

683 **Single-cell RNA sequencing of ETV2-hiPSC line.**

684 iETV2-hiPSCs were prepared as described by the 10x Genomics Single Cell 3' v2
685 Reagent Kit user guide. After 4 days of doxycycline exposure, a monolayer of cells were
686 incubated with trypsin for 10 minutes at 37°C, followed by gentle pipetting using a
687 serological pipette to dislodge and dissociate aggregates. Samples were washed in PBS
688 lacking calcium and magnesium ions (-/-) + 0.04% BSA twice and re-suspended at a final
689 concentration of 1000 cells/µL in PBS -/- + 0.04% BSA. Using Trypan Blue, a live cell
690 count was performed to identify dead cells. Following cell counting, the cells and 10x
691 Genomics reagents were loaded into the single cell cassette, with a target of 7500 cells
692 single cells for analysis, accounting for predicted cell loss and doublets as laid out in the
693 10X Genomics Chromium Single Cell 3' Reagent Kits User Guide (v3.1 Chemistry Dual
694 Index) with Feature Barcoding technology for Cell Multiplexing, User Guide, CG000388.
695 After generation of GEMs, the cDNA library was prepared by University of Pittsburgh
696 Single Cell Core staff following the appropriate steps determined by the 10x Genomics
697 user guide. Libraries were sent to UPMC Genome Center for sequencing on a NovaSeq
698 6000. The 10x Genomics CellRanger pipeline was used to align reads to the reference
699 genome (Hg38) appended with transgene sequences, to assign reads to individual cells,
700 and to estimate gene expression based on UMI counts⁹⁴. Utilizing the Seurat package⁹⁵,
701 cells were filtered out if they contained less than 200 unique molecular identifiers,
702 contained less than 200 genes, and had more than 5% counts from mitochondrial genes.
703 Counts were then log-normalized using Seurat normalization function. Mutual nearest
704 neighbors and clusters were then generated using Seurat. Downstream analysis and

705 graphs were then generated with Seurat “DimPlot”, “VInPlot”, “DotPlot” and “FeaturePlot”.
706 Differential gene expression between clusters was calculated using the ‘vst’ method in
707 Seurat. Gene ontology analysis was then performed using Enrichr^{96,97}, and Gene
708 Ontology (GO)^{98,99}. Single cell data for Tabula Sapiens endothelial cells³⁵ was acquired
709 from CZ CELLxGENE data portal. Endothelial cells from this dataset were parsed by
710 organ of origin and gene ontology term. This dataset was then used as a training set in
711 SingleCellNet³⁶ and aligned to the PGP1-iETV2-hiPSC scRNASeq dataset as a query.
712 Pseudotime trajectory analysis was performed using Monocle3¹⁰⁰ by setting Cluster 0 as
713 a starting point and utilizing ETV2 and EGFP as trajectory genes.

714

715 **Single-nuclear sequencing of kidney organoids.** Day 18 MANZ2-2 control and
716 vascularized kidney organoids were washed in DPBS once, then transferred into 37°C
717 0.25% trypsin-EDTA (Gibco, 15400054) and incubated with intermittent agitation for 10
718 minutes to obtain single cells. Cells were then centrifuged at 800rpm for 5 minutes and
719 resuspended in DPBS and filtered through a 40µm cell filter (pluriSelect, 43-50040-51).
720 10X Genomics CG000365 Demonstrated Protocol was then adapted to isolate nuclei. In
721 summary, cells were treated with chilled Multiome Lysis Buffer on ice for 5 minutes to
722 obtain nuclei. Nuclei were centrifuged at 500 rcf for 5 minutes, supernatant was removed
723 and resuspended in Wash Buffer. Nuclei were washed and centrifuged 3 additional times.
724 Finally, supernatant was removed, and nuclei were resuspended in Nuclei Buffer.
725 Composition of all buffers can be found in Supplementary Tables 5, 6 and 7.

726

727 Using Trypan Blue, a live cell count was performed to identify dead cells. Following
728 counting, cells and 10x Genomics reagents were loaded into the single cell cassette, with
729 a target of 1000 nuclei for analysis, accounting for predicted cell loss and doublets as laid
730 out in 10X Genomics Chromium Single Cell 3' Reagent Kits User Guide (v3.1 Chemistry
731 Dual Index), User Guide, CG000315. After generation of GEMs, the cDNA library was
732 prepared by University of Pittsburgh Single Cell Core staff following the appropriate steps
733 determined by the 10x Genomics user guide. Libraries were sent to UPMC Genome
734 Center for sequencing on a NovaSeq 6000. Raw reads were processed using Partek®
735 Flow® software, v10.0 and aligned to the GRCh38 human reference genome. The same
736 downstream computational analysis pipeline from the previous methods section on
737 scRNAseq was then carried out on this snRNAseq population with some additional
738 metrics. To account for batch variation in samples, the Harmony package was deployed
739 to synergize control and vascularized datasets¹⁰¹. Cellular identities were confirmed using
740 DevKidCC⁴¹. In addition to the Tabula Sapiens comparison using SingleCellNet, the
741 PGP1-ETV1 hiPSC scRNAseq dataset was also used as a training set with SingleCellNet
742 to query the endothelial cells of the control and vascularized kidney organoid.

743

744 **Renal Capsule Implantations.** Human kidney organoids were implanted under mice
745 renal capsule using a procedure adapted from previously published methods^{24,102}. Male
746 NSG mice (Jackson laboratories) at 8-10 weeks old were anesthetized with isoflurane.
747 The animals were immobilized in a dorsal lateral position, and under continuous
748 anesthesia influx, the fur was shaved, and the skin was cleansed and disinfected with
749 ethanol wipes and iodine. A skin incision was performed in the lower left flank followed

750 by a mucosa incision upon localization of the left kidney. After externalizing the kidney,
751 saline was used to keep it moist, and gentamicin was applied locally with a cotton swab
752 to prevent infection. An adapted 27G scalpel was aseptically cut at a 45 degrees angle.
753 The extremity closer to the needle was used to create a nip on the kidney capsule, forming
754 the letter L. The other portion was attached to a 1 mL syringe, which collected
755 vascularized organoids from a petri dish. The organoids were pushed to the other
756 extremity and injected underneath the kidney capsule. The area was then cauterized, the
757 kidney was delicately pushed back into the abdominal cavity, the mucosa aseptically
758 sutured and the skin stapled. The same procedure was performed on the lower right flank
759 of each animal, but non-vascularized organoids were injected instead. Animals were
760 returned to their cages after the procedure, water and food were provided *ad libitum*, and
761 euthanasia occurred 28 days post-implantation. Kidneys were collected for histological
762 analysis.

763

764 **Data Availability**

765 The data supporting the findings of this study are openly available in GEO under
766 accession number GSE232767.

767

768 **Disclosure Statement**

769 Nothing to Disclose

770

771

Supplementary Table 1: Primary immunostaining antibodies

Name	Host Animal	Vendor	Catalog Number	Dilution
MCAM	Rabbit	Abcam	ab75769	1:200
PECAM1	Mouse	Abcam	ab9498	1:200
HNF4A	Rabbit	Abcam	ab92378	1:200
CDH1	Rabbit	Abcam	ab40772	1:200
NPHS1	Guinea Pig	Progen	GP-N2	1:200
REN	Rabbit	Abcam	ab212197	1:200
NRP1	Goat	R&D Systems	AF566	1:200
MEIS1/2/3	Mouse	Fisher Sci.	50-199-2860	1:200
EMCN	Rat	Abcam	ab106100	1:200

772

773

774

Supplementary Table 2: Secondary immunostaining antibodies

Target Animal	Host Animal	Fluorophore	Vendor	Catalog Number	Dilution
Mouse	Donkey	AF647	Thermo Fisher	A-31571	1:250
Rabbit	Donkey	AF594	Thermo Fisher	R37119	1:250
Guinea Pig	Goat	DyLight 594	Thermo Scientific	SA510096	1:250
Goat	Rabbit	AF594	Abcam	ab150144	1:250
Rat	Goat	AF594	Invitrogen	A-11007	1:250
--	--	DAPI	Invitrogen	D1306	1:250

775

776

777

778

779
780

Supplementary Table 3: Primers for RT-qPCR

Gene	5' Primer	3' Primer
REN	ACCTTGGTCTCCGACAGA	CACCTCGTTCTTCAGGCTTT
ETV2	GAAGGAGCAAATTAGGCTTCT	GAGCTGTACCTTCAGCAT
PECAM1	AACAGTGGTACATGAAGAGCC	TGTAAAACAGCACGTCATCCTT
EGFP	GGACGACGGCAACTACAAGA	AAGTCGATGCCCTTCAGCTC
KDR	GGCCAATAATCAGAGTGGCA	CCAGTGTCAATTCCGATCACTTT
MCAM	AGCTCCCGTCTACAAAGC	CTACACAGGTAGCGACCTCC
PDGFRB	TGATGCCGAGGAACTATTCATCT	TTTCTTCTCGTGCAGTGTAC
WT1	GTGACTTCAAGGACTGTGAACG	CGGGAGAACCTTCGCTGACAA
LRP2	GTTCAGATGACCGGGATGAAA	TCACAGTCTGATCTGGTCACA
GATA3	GCCCCTCATTAAGCCCCAAG	TTGTGGTGGTCTGACAGTCG
SLC12A1	AGTGCCCAGTAATACCAATCGC	GCCTAAAGCTGATTCTGAGTCTT
NPHS1	CTGCCTGAAAACCTGACGGT	GACCTGGCACTCATACTCCG
HAVCR1	TGGCAGATTCTGTAGCTGGTT	AGAGAACATGAGCCTCTATTCCA
CASP3	AGAGGGGATCGTTGTAGAAGTC	ACAGTCCAGTTCTGTACCACG
EFNB2	TATGCAGAACTGCGATTCCAA	TGGGTATAGTACCAAGTCCTGTC
EPHB4	CGCACCTACGAAGTGTGA	GTCCGCATCGCTCTCATAGTA

781
782

783 Supplementary Table 4: List of Oligodendronucleotides for generation of Triple

Primer name	Sequence	Purpose
HNF4A_sgRNA1a	CACCGGCCATGTCCATGTCGACAA	Cloned into sgRNA plasmid, encodes CRISPR/Cas9 target - top
HNF4A_sgRNA1b	AAAC TTGTCGACATGGACATGGCC	Cloned into sgRNA plasmid, encodes CRISPR/Cas9 target - bottom
HNF4A_scF	GAAGTCAATGATTGGAAAG	5' recombination junction PCR analysis of correctly targeted clones
Citrine_scR	GTCGCCGTCCAGCTCGACCAAG	5' recombination junction PCR analysis of correctly targeted clones
Citrine_scF	GCATGGACGAGCTGTACAAG	3' recombination junction PCR analysis of correctly targeted clones
HNF4A_scR	CACCCATACAAACCTACATGG	3' recombination junction PCR analysis of correctly targeted clones

784
785

786

Supplementary Table 5: Multiome Lysis Buffer Composition

Reagent	Stock	Final	Amount
Tris-HCl (pH 7.4)	1M	10 mM	20 μ l
NaCl	5M	10 mM	4 μ l
MgCl ₂	1M	3 mM	6 μ l
Tween-20	10%	0.1%	20 μ l
Nonidet P40 Substitute	10%	0.1%	20 μ l
Digitonin	5%	0.01%	4 μ l
BSA	10%	1%	200 μ l
DTT	1000 mM	1 mM	2 μ l
RNase inhibitor 40 U/ μ l	40 U/ μ l	1 U/ μ l	50 μ l
Nuclease-free water	-	-	1.67 mL

787

788

Supplementary Table 6: Wash Buffer Composition

Reagent	Stock	Final	Amount
Tris-HCl (pH 7.4)	1 M	10 mM	40 μ l
NaCl	5 M	10 mM	8 μ l
MgCl ₂	1 M	3 mM	12 μ l
BSA	10%	1%	400 μ l
Tween-20	10%	1%	40 μ l
DTT	1000 mM	1 mM	4 μ l
RNase inhibitor	40 U/ μ l	1 U/ μ l	100 μ l
Nuclease-free Water	-	-	3.40 mL

789

790

791

Supplementary Table 7: Diluted Nuclei Buffer Composition

Reagent	Stock	Final	Amount
Nuclei Buffer (20X)	20X	1X	50 μ l
DTT	1000 mM	1 mM	1 μ l
RNase inhibitor	40 U/ μ l	1 U/ μ l	25 μ l
Nuclease-free Water	-	-	924 μ l

792

793

794

795

796

797

798

799 **Acknowledgements**

800 N.A.H. discloses support for the research of this work from the National Institute of
801 Diabetes and Digestive and Kidney Diseases UC2 DK126122 and P30 DK079307, and
802 by support from the Vascular Medicine Institute, the Hemophilia Center of Western
803 Pennsylvania, and the Institute for Transfusion Medicine. M.R.E. discloses support for
804 publication of this work by NIH center grant P30 DK120531 from the National Institute of
805 Diabetes and Digestive and Kidney Diseases (to Pittsburgh Liver Research Center-
806 PLRC); NIH grants R01 EB028532 from the National Institute of Biomedical Imaging and
807 Bioengineering, R01 HL141805 from the National Heart Lung and Blood Institute and
808 NSF grant (award number 2134999) (to M.R.E.). S.K discloses support for publication of
809 this work by NIH center grant P30 DK120531 from the National Institute of Diabetes and
810 Digestive and Kidney Diseases (to Pittsburgh Liver Research Center-PLRC); NIH grants
811 R01 EB028532 and R01EB024562 from the National Institute of Biomedical Imaging and
812 Bioengineering. J.C.M. discloses support for the research of this work, in part, from the
813 University of Pittsburgh CATER training grant T32EB001026. A.W. discloses support for
814 the imaging and instrumentation from 1S10OD019973-01. We acknowledge and thank
815 Tracy Tabib, Heidi Monroe, and the team at the Single Cell Genomics Core of the
816 University of Pittsburgh for performing scRNASeq and snRNASeq. A.P. would like to
817 acknowledge and thank the Ben J. Lipps Research Fellowship Program for their support.
818 C.C. and T.C. would like to acknowledge and thank the NIH (R01DK127634, RC2
819 DK125960) and CPRIT (RP220201) for supporting the research in this work.
820

821 **Figure Legends**

822 **Fig. 1: Genetically engineered iETV2-hiPSCs undergo synthetic endothelial**
823 **differentiation. (a)** Schematic of iETV2-hiPSC genetic circuit. **(b)** iETV2-hiPSCs
824 differentiated with doxycycline induction and immunofluorescence from day 0 to 9; scale
825 bar = 200 μ m. **(c)** Per cell immunofluorescent intensity of GFP, MCAM and PECAM1. N =
826 3 biological replicates; p-value **** : < 0.0001, *** : < 0.001, ** : < 0.01, * : < 0.05. **(d)**
827 scRNAseq was carried out on iETV2-hiPSCs exposed to doxycycline for 4 days. **(e)**
828 UMAP generated three distinct cellular populations. **(f)** Pseudotime trajectory analysis
829 with Monocle3 demonstrated developmental lineage from P1 -> P2 -> P3. **(g)**
830 Differentially expressed genes for P1, P2, P3.

831

832 **Fig. 2: Vascularization of human kidney organoid. (a)** Method for vascularizing human
833 kidney organoids by combining iETV2-hiPSCs with wildtype iPSCs. **(b)**
834 Immunofluorescence of endothelial cell network between MANZ2-2 control and
835 vascularized kidney organoids from 3 independent biological replicates, showing
836 representative images. **(c)** Angiotools quantification and diameter measurement between
837 control and vascularized kidney organoids; organoids originate from 3 biological
838 replicates. p-value **** : < 0.0001. **(d)** Representative immunofluorescence images of
839 endothelial interaction with podocytes, proximal tubule, distal tubule, and stroma between
840 control and vascularized kidney organoid. Organoid images scale bar = 200 μ m, inset
841 scale bar = 50 μ m.

842

843

844 **Fig. 3: snRNAseq of control and vascularized human kidney organoids. (a)** MANZ2-
845 2 control and vascularized human kidney organoids were analyzed via snRNAseq. **(b)**
846 Cells aggregated and well overlapped with Harmony, and did not segregate by batch. **(c)**
847 Cells clustered by cell type as podocyte (POD), endothelial (ENDO), tubular (TUB), and
848 interstitial (INT-1/2). **(d)** Differentially expressed genes per cluster were identified. Cellular
849 populations were quantified to analyze composition by control or vascularization origin
850 and graphed as pie chart per cell type (red = vascularized, blue = control). **(e)** EGFP
851 expression was localized to endothelial population.

852

853 **Fig. 4: Increased maturation of podocytes with vascularization. (a)** Podocytes exist
854 in clusters in kidney organoids on the exterior surface; they become highly vascularized
855 with the vascularization protocol and lack vascular integration with the control kidney
856 organoid. **(b)** Vascularized MANZ2-2 kidney organoids contain GFP+ endothelial cells
857 encasing the podocyte clusters from the external surface, and invaginating networks
858 through the middle of the cluster. **(c)** SEM and TEM of control and vascularized kidney
859 organoid. pod: podocyte; ec: endothelial cell; fp: foot process; fen: fenestration; gbm:
860 glomerular basement membrane; int-fp: interdigitating foot processes. **(d)** UMAP of
861 podocytes from both control and vascularized kidney organoid **(e)** Podocytes distinctly
862 cluster into two populations largely predominated by control or vascularized podocytes.
863 **(f)** Podocyte specific markers are present in both clusters, however slit diaphragm and
864 basement membrane markers are upregulated in Cluster 0, predominated by
865 vascularized podocytes. **(g)** Gene set enrichment analysis identifies upregulated

866 pathways of basement membrane, glomerular development and endothelial vasculature
867 differentiation and migration in the vascularized predominating podocyte cluster.

868

869 **Fig. 5: Vascularization of kidney organoid enables emergence of a renin cell**
870 **population. (a)** UMAP of interstitial cells from MANZ2-2 control and vascularized kidney
871 organoid. **(b)** Interstitial cells cluster into 8 distinct populations. MUS: muscle; MUR: mural;
872 INT-X: interstitial population-X; REN: renin cell; ABB-POD-FIB/ABB: aberrant podocyte-
873 fibroblast population. **(c)** Violin plots of key genes per cluster. **(d)** REN specifically
874 localized to a population of cells that **(e)** largely originates from the vascularized kidney
875 organoid. **(f)** Control kidney organoid contains no REN+ cells on immunofluorescence
876 while vascularized kidney organoid contains many spread across podocyte (NPHS1+)
877 clusters; scale bar = 200 μ m. **(g)** Vascularized kidney organoid podocyte clusters contain
878 REN+ cells within the cluster, **(h)** juxtaposing but not colabelling with NPHS1+ podocytes
879 or GFP+PECAM1+ endothelial cells; scale bar = 50 μ m. **(i)** 10uM forskolin (FSK) – a pro
880 renin stimulatory drug – on organoids enables 200-fold increase in renin expression in
881 the vascularized kidney organoid.

882

883 **Fig. 6: iETV2-hiPSCs undergo maturation and organ specification. (a)** Endothelial
884 population reclustered on UMAP. **(b)** Endothelial cells are PECAM1+ CDH5+. **(c)**
885 Endothelial population cluster into two distinct populations consisting of **(d)** EC1
886 predominated by EGFP and **(e)** EC2 predominated by greater endothelial maturation
887 markers EMCN and CD34. **(f)** Differentially expressed genes between EC1 and EC2. **(g)**
888 SingleCellNet classification of EC1 and EC2 using Tabula Sapiens organ specific

889 endothelial dataset demonstrates kidney specification of endothelial cells. **(h)**

890 Vascularized human kidney organoids contain podocyte clusters encased by fenestrated

891 endothelia. **(i)** iETV2-hiPSC derived endothelia express fenestration marker *PLVAP*.

892

893

894 **Supplementary Fig. 1: Normal karyotype for engineered doxycycline inducible iPSC**
895 **line. (a)** Whole genome view displaying all somatic and sex chromosomes in one frame.
896 A value of 2 represents a normal copy number state. A value of 3 represents
897 chromosomal gain. A value of 1 represents a chromosomal loss. The pink, green, and
898 yellow colors indicate the raw signal for each individual chromosome probe, while the
899 blue represents the normalized probe signal which is used to identify copy number and
900 aberrations, if any.

901

902 **Supplementary Fig. 2: Doxycycline response of hiETV2-iPSC endothelial**
903 **differentiation.** Representative qPCR results of ETV2 iPSC induced cell line after 4 days
904 of exposure, ETV2 and PECAM1. Error bars represent standard deviation of two technical
905 replicates.

906

907 **Supplementary Fig. 3: Graphical schematic of per cell fluorescence intensity**
908 **quantification using ImageJ FIJI.**

909

910 **Supplementary Fig. 4: Immunofluorescence of iETV2-hiPSCs.** Representative
911 imaging of DAPI, GFP, ERG, PECAM1, iETV2-hiPSCs post-exposure to four days of
912 doxycycline.

913

914 **Supplementary Fig. 5. scRNAseq featureplots of iETV2-hiPSCs.** Featureplots of
915 differentially expressed genes for P1, P2, P3 clusters.

916

917 **Supplementary Fig. 6: SingleCellNet Characterization of iETV2-hiPSC scRNASeq.**

918 **(a)** iETV2-hiPSC classification using Tabula Sapiens organ-specific endothelial classifiers.

919 **(b)** iETV2-hiPSC classification using Tabula Sapiens endothelial gene ontology

920 classifiers.

921

922 **Supplementary Fig. 7: SingleCellNet using Endothelial Tabula Sapiens by organ**

923 **system. (a)** Receiver operating characteristic (ROC) analysis demonstrating

924 classification power of Tabula Sapiens Endothelial Dataset by organ system. **(b)**

925 Classification of cell types by cell type classifier. **(c)** Heatmap classification of cell types

926 with cell type classifier. **(d)** Top gene pairs determined by SingleCellNet for Tabula

927 Sapiens endothelial organ specific dataset.

928

929 **Supplementary Fig. 8: SingleCellNet using Endothelial Tabula Sapiens Gene**

930 **Ontology Terms. (a)** ROC analysis demonstrating classification power of Tabula

931 Sapiens Endothelial Dataset classifiers with gene ontology terms. **(b)** Heatmap

932 classification of classifiers. **(c)** iETV2-hiPSC scRNASeq data queried in SingleCellNet to

933 Tabula Sapiens Endothelial gene ontology classifiers. **(d)** Top gene pairs determined by

934 SingleCellNet for Tabula Sapiens Endothelial gene ontology classifiers.

935

936 **Supplementary Fig. 9: Arterial and Venous markers of differentiated ETV2 iPSCs.**

937 **(a)** EFNB2, EPHB4 and combined expression based on UMAP. **(b)** EFNB2 expression

938 plotted against EPHB4 expression ($r = 0.07$).

939

940 **Supplementary Fig. 10: Optimization of doxycycline for vascularization protocol.**

941 **(a)** Altering doxycycline window starting point; representative qPCR results. **(b)** Altering
942 doxycycline window length; representative qPCR results. **(c)** Altering doxycycline
943 concentration; representative qPCR results. qPCR error bars represent standard
944 deviation of two technical replicates.

945

946 **Supplementary Fig. 11: Optimization of iETV2-hiPSCs to wildtype iPSC ratio for**
947 **vascularization protocol.** **(a)** Representative immunofluorescence images varying
948 ratios of cellular composition. Scale bar = 200 μ m. **(b)** Representative qPCR. qPCR error
949 bars represent standard deviation of two technical replicates.

950

951 **Supplementary Fig. 12: GFP / PECAM1 colabelling in kidney organoids with iETV2-**
952 **iPSCs added.** **(a)** Representative quantification of GFP+ and PECAM1+ cells in kidney
953 organoids. Scale bar = 200 μ m. **(b)** Representative images quantified for GFP+/PECAM1+
954 colabelling.

955

956 **Supplementary Fig. 13: Control and vascularized kidney organoid**
957 **immunofluorescent images for endothelia and interstitia.** **(a)** Representative images
958 of control and vascularized kidney organoids for PECAM1, endomucin, **(b)** NRP1; scale
959 bar = 200 μ m. **(c)** Intersitial immunofluorescence with MEIS1/2/3.

960

961 **Supplementary Fig. 14: Triple hiPSC control and vascularized kidney organoids.** **(a)**
962 Representative RT-qPCR of Triple hiPSC control and vascularized kidney organoids;

963 error bars represent standard deviation of two technical replicates. **(b)** Representative
964 immunofluorescent images of Triple control and vascularized kidney organoid with ETV2-
965 GFP labelled endothelial cells and MAFB-BFP labelled podocytes.

966

967 **Supplementary Fig. 15: Control and vascularized kidney organoids implanted**
968 **under renal capsule of NSG mice. (A)** Control human kidney organoids implanted under
969 renal capsule with **(A'-A'')** representative insets. **(B)** Vascularized human kidney
970 organoids implanted under renal capsule with **(B'-B'')** representative insets.

971

972 **Supplementary Fig. 16: DevKidCC classification of snRNAseq control and**
973 **vascularized kidney organoid. (a)** LineagelD Classification of snRNAseq organoid data.
974 **(b)** DevKidCC classification of snRNAseq organoid data. **(c)** DevKidCC nephron
975 classification scoring. **(d)** DevKidCC interstitia classification scoring. **(e)** DevKidCC
976 LineagelD scoring for control and vascularized kidney organoid by composition
977 percentage. Labels: endothelial (ENDO), nephron progenitor cells (NPC), ureteric
978 epithelia (UrEp), early nephron (EN), cortical stroma (CS), medullary stroma (MS),
979 mesangial cells (MesS), ureteric outer stalk (UOS), ureteric inner stalk (UIS), early distal
980 tubule (EDT), distal tubule (DT), Loop of Henle (LOH), early proximal tubule (EPT),
981 parietal epithelial cell (PEC), early podocyte (EPod), podocyte (Pod).

982

983

984 **Supplemental Fig. 17: snRNAseq of control and vascularized tubular cells. (a)**
985 UMAP of tubule cells from both control and vascularized kidney organoids. **(b)** DevKidCC

986 Classification of tubular UMAP by proximal and distal tubule scoring. **(c)** UMAP colored
987 by proximal and distal tubule according to DevKidCC. **(d)** UMAP of tubular cells classified
988 by proximal and distal tubule subcomponents based on **(e)** top differentially expressed
989 genes. **(f)** Proximal and distal tubule segments by canonical gene markers. **(g)** Definitive
990 proximal tubule plotted on distinct UMAP with overlapping clusters and indistinct
991 differentially expressed genes between control and vascularized kidney organoid. **(h)**
992 Definitive distal tubule plotted on distinct UMAP with overlapping clusters and indistinct
993 differentially expressed genes between control and vascularized kidney organoid. PPT:
994 Proliferating Proximal Tubule; EPT: Early Proximal Tubule; PT: Proximal Tubule; DT:
995 Distal Tubule; EDT: Early Distal Tubule.

996

997 **Supplementary Fig. 18: snRNAseq analysis of podocyte maturation.** VEGF
998 signaling from podocytes. **(a)** Canonical genes of early and late podocyte maturation. **(b)**
999 Canonical markers of glomerular basement membrane composition change during
1000 maturation. **(c)** CellChat quantification of VEGF signaling in control and vascularized
1001 kidney organoid snRNAseq conditions. **(d)** FeaturePlots of signals part of VEGF pathway
1002 in podocyte snRNAseq clusters.

1003

1004 **Supplementary Fig. 19: Podocytes from vascularized kidney organoid predominant**
1005 **cluster gene set enrichment analysis.**

1006

1007 **Supplementary Fig. 20: Canonical genes of interstitial cell populations from**
1008 **interstitial control and vascularized kidney organoid snRNAseq.**

1009

1010 **Supplementary Fig. 21: Differential gene expression in clusters of interstitial cells**

1011 **on snRNAseq.** For condition: red = vascularized, blue = control.

1012

1013 **Supplementary Fig. 22: *REN* and *EGFP* expression in control and vascularized**

1014 **snRNAseq interstitia.**

1015

1016 **Supplementary Fig. 23: Light microscope images of forskolin stimulated control**

1017 **and vascularized kidney organoids.** White arrows indicate cyst formation in the

1018 vascularized kidney organoid with forskolin exposure. Scale bar = 100 μ m.

1019

1020 **Supplementary Fig. 24: SingleCellNet training with iETV2-hiPSC scRNAseq dataset.**

1021 **(a)** ROC analysis of clusters 0 (P1), 1 (P2), 2 (P3). **(b)** Heatmap and **(c)** classification

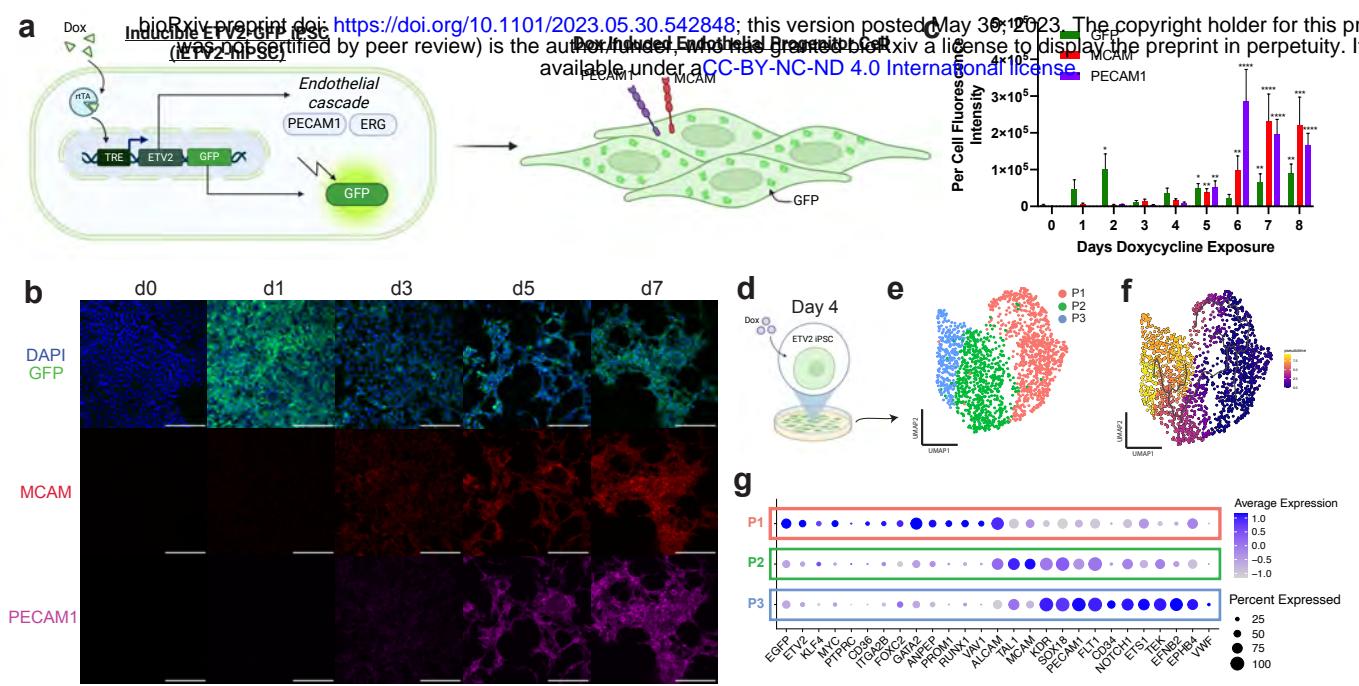
1022 plots of classifiers. **(d)** Top gene pairs determined by SingleCellNet for classification. **(e)**

1023 Endothelial cells of kidney organoids snRNAseq queried to iETV2-hiPSC endothelial like

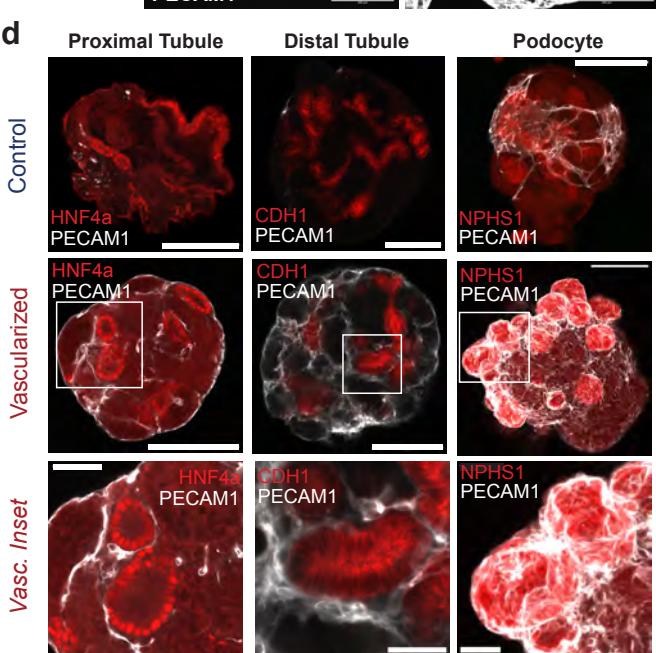
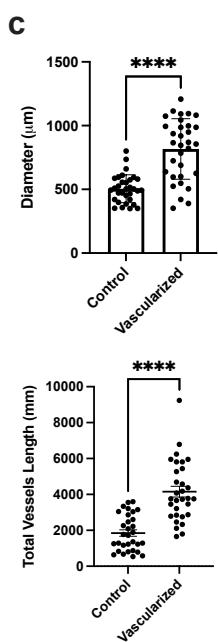
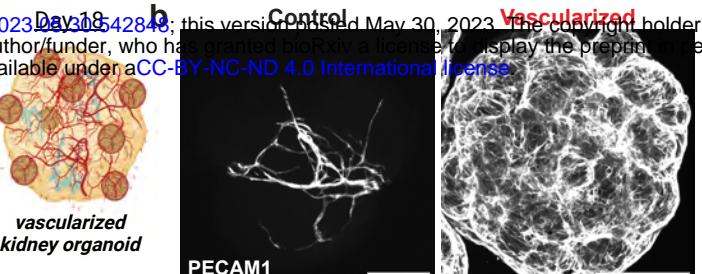
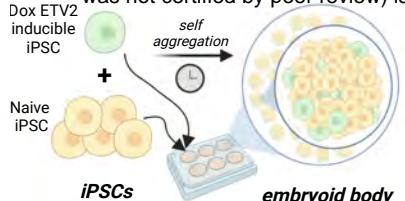
1024 cells using SingleCellNet.

1025

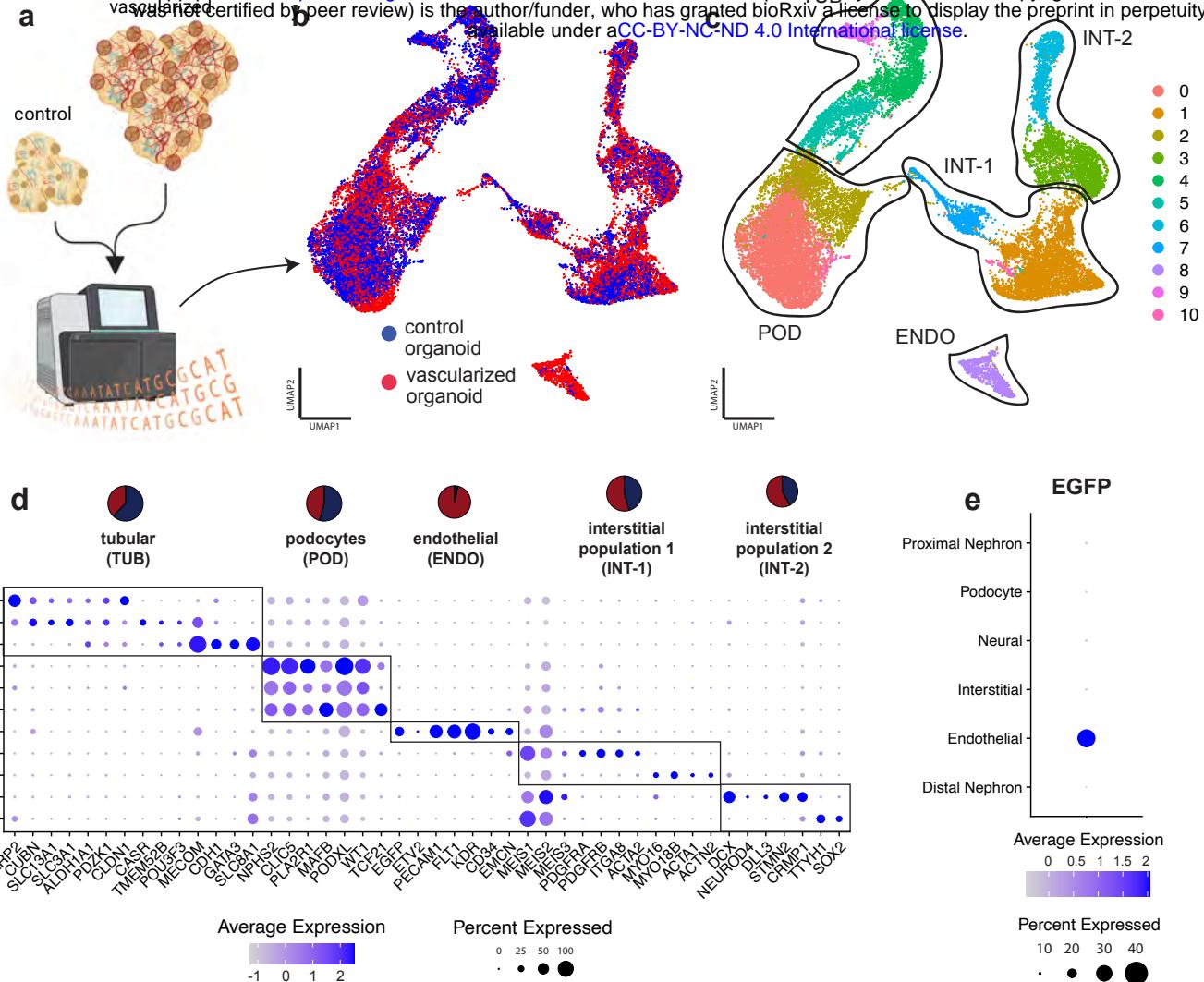
1026 **Supplementary Fig. 25: Ephrin localization in endothelial population of snRNAseq**

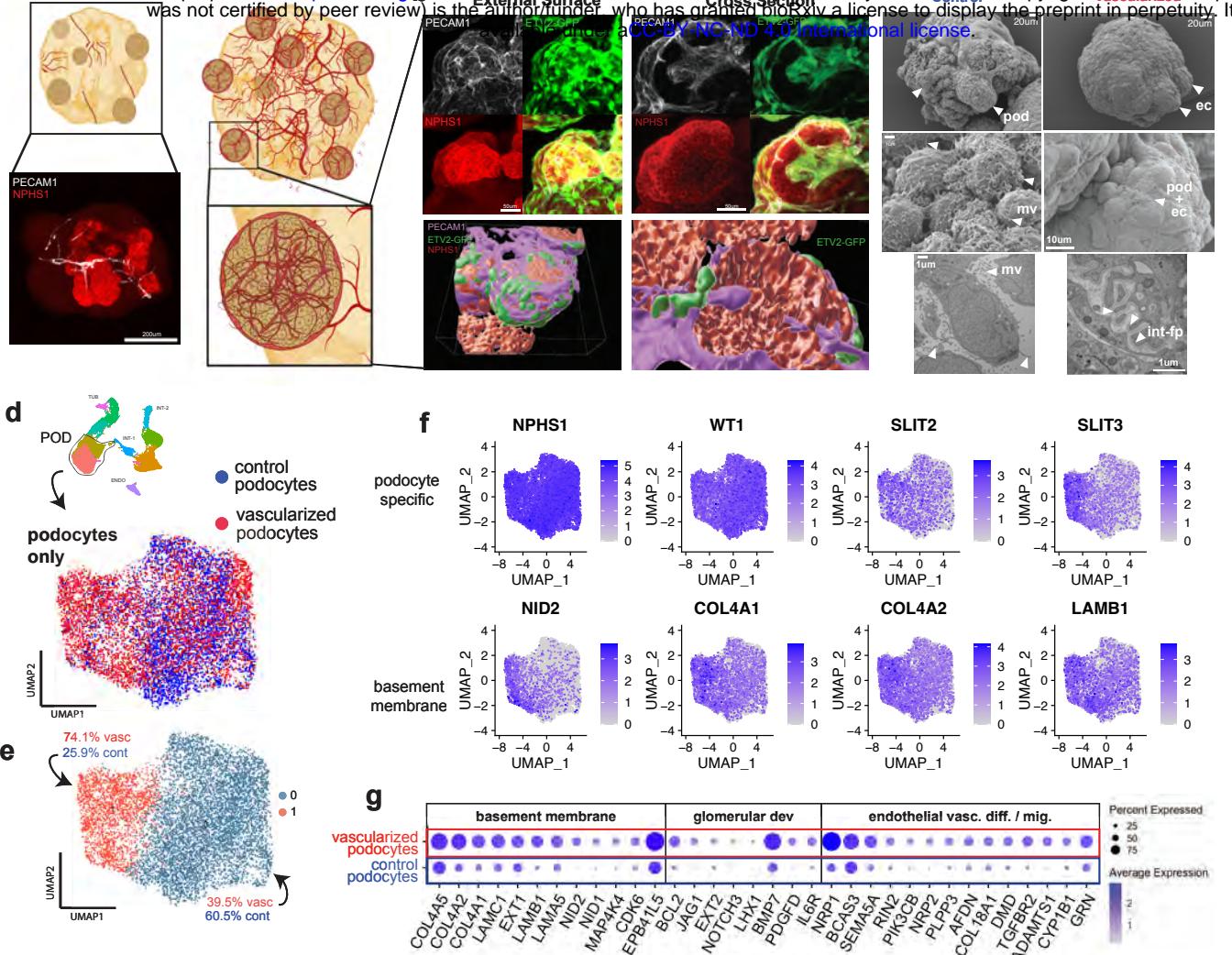

1027 **control and vascularized kidney organoid cells.** **(a)** FeaturePlots of EFNB2, EPHB4

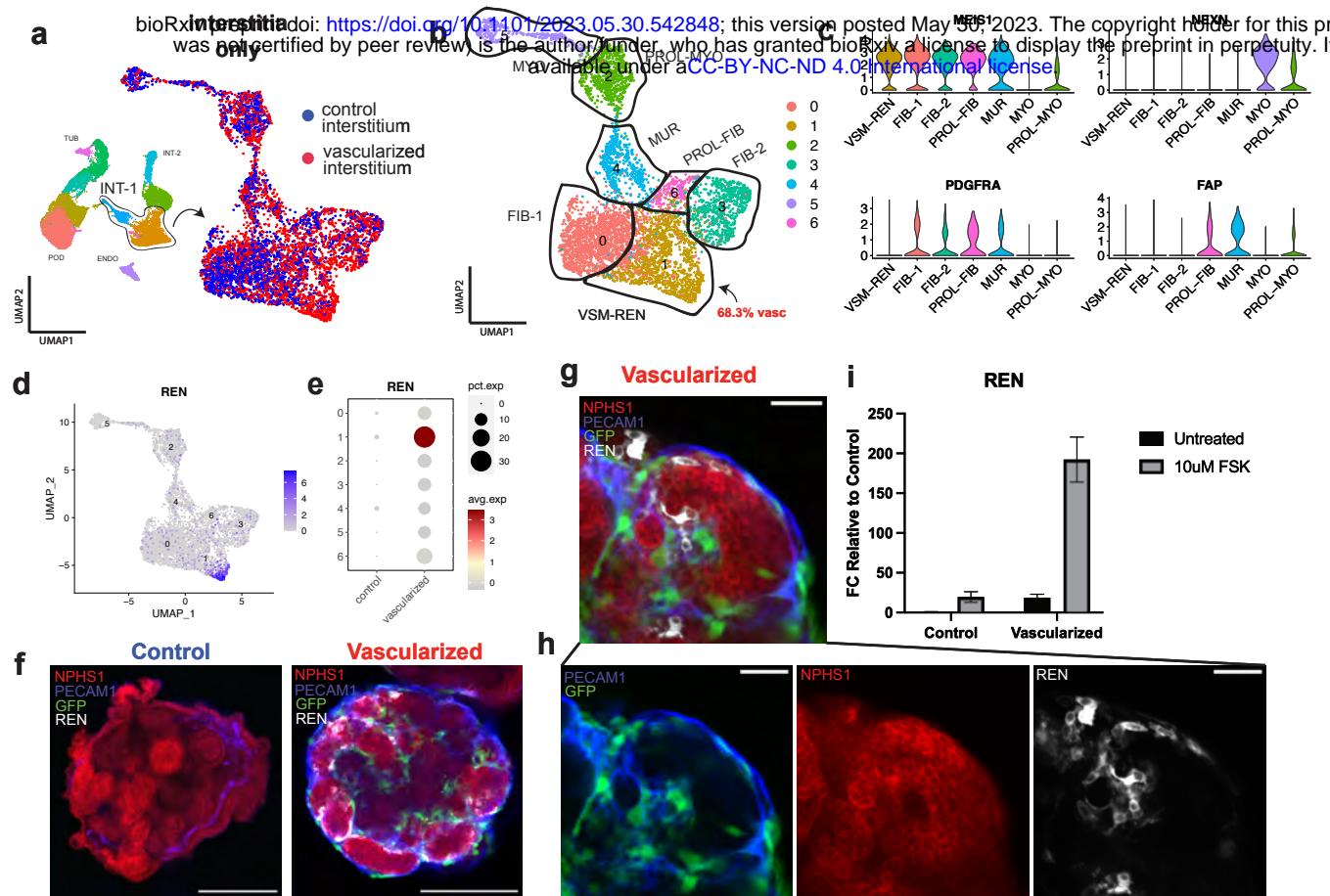
1028 and colocalization. **(b)** ENB2 vs EPHB4 plot of control and vascularized kidney organoid





1029 endothelial cells ($r = 0.04$).

1030


1031 **Supplementary Fig. 26: Morphological classification of endothelial cells in MANZ2-**
1032 **2 control and vascularized kidney organoid using SingleCellNet and Tabula**
1033 **Sapiens endothelial cell gene ontology classifier.**
1034


Fig. 1: Genetically engineered iETV2-hiPSCs undergo synthetic endothelial differentiation.


Fig. 2: Vascularization of human kidney organoid.

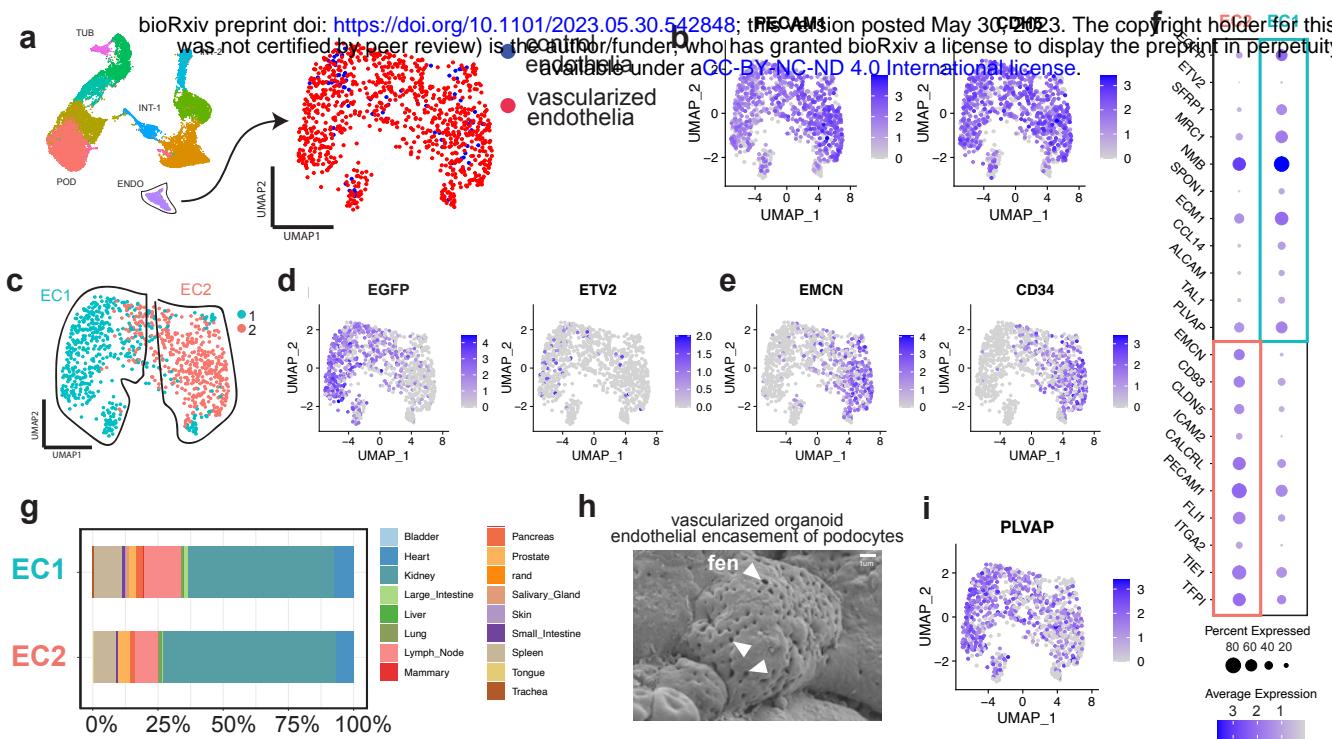

Fig. 3: snRNAseq of control and vascularized human kidney organoids.

Fig. 4: Increased maturation of podocytes with vascularization.

Fig. 5: Vascularization of kidney organoid enables emergence of a renin cell population.

Fig. 6: iETV2-hiPSCs undergo maturation and organ specification.

1035 **References**

1036 1 Ramasamy, S. K., Kusumbe, A. P. & Adams, R. H. Regulation of tissue
1037 morphogenesis by endothelial cell-derived signals. *Trends Cell Biol* **25**, 148-157,
1038 doi:10.1016/j.tcb.2014.11.007 (2015).

1039 2 Lei, Z. *et al.* The Role and Mechanism of the Vascular Endothelial Niche in
1040 Diseases: A Review. *Front Physiol* **13**, 863265, doi:10.3389/fphys.2022.863265
1041 (2022).

1042 3 Butler, J. M., Kobayashi, H. & Rafii, S. Instructive role of the vascular niche in
1043 promoting tumour growth and tissue repair by angiocrine factors. *Nat Rev Cancer*
1044 **10**, 138-146, doi:10.1038/nrc2791 (2010).

1045 4 Rafii, S., Butler, J. M. & Ding, B. S. Angiocrine functions of organ-specific
1046 endothelial cells. *Nature* **529**, 316-325, doi:10.1038/nature17040 (2016).

1047 5 Crivellato, E., Nico, B. & Ribatti, D. Contribution of endothelial cells to
1048 organogenesis: a modern reappraisal of an old Aristotelian concept. *J Anat* **211**,
1049 415-427, doi:10.1111/j.1469-7580.2007.00790.x (2007).

1050 6 Ribatti, D., Tamma, R. & Annese, T. The role of vascular niche and endothelial
1051 cells in organogenesis and regeneration. *Exp Cell Res* **398**, 112398,
1052 doi:10.1016/j.yexcr.2020.112398 (2021).

1053 7 Azizoglu, D. B. & Cleaver, O. Blood vessel crosstalk during organogenesis-focus
1054 on pancreas and endothelial cells. *Wiley Interdiscip Rev Dev Biol* **5**, 598-617,
1055 doi:10.1002/wdev.240 (2016).

1056 8 Kolesky, D. B., Homan, K. A., Skylar-Scott, M. A. & Lewis, J. A. Three-dimensional
1057 bioprinting of thick vascularized tissues. *Proc Natl Acad Sci U S A* **113**, 3179-3184,
1058 doi:10.1073/pnas.1521342113 (2016).

1059 9 Zohar, B., Blinder, Y., Mooney, D. J. & Levenberg, S. Flow-Induced Vascular
1060 Network Formation and Maturation in Three-Dimensional Engineered Tissue. *ACS
1061 Biomater Sci Eng* **4**, 1265-1271, doi:10.1021/acsbiomaterials.7b00025 (2018).

1062 10 Holloway, E. M. *et al.* Differentiation of Human Intestinal Organoids with
1063 Endogenous Vascular Endothelial Cells. *Dev Cell* **54**, 516-528 e517,
1064 doi:10.1016/j.devcel.2020.07.023 (2020).

1065 11 Lange, L. *et al.* Inducible Forward Programming of Human Pluripotent Stem Cells
1066 to Hemato-endothelial Progenitor Cells with Hematopoietic Progenitor Potential.
1067 *Stem Cell Reports* **14**, 122-137, doi:10.1016/j.stemcr.2019.11.005 (2020).

1068 12 Zhang, H., Yamaguchi, T. & Kawabata, K. The maturation of iPS cell-derived brain
1069 microvascular endothelial cells by inducible-SOX18 expression. *Fluids Barriers
1070 CNS* **20**, 10, doi:10.1186/s12987-023-00408-5 (2023).

1071 13 Palikuqi, B. *et al.* Adaptable haemodynamic endothelial cells for organogenesis
1072 and tumorigenesis. *Nature* **585**, 426-432, doi:10.1038/s41586-020-2712-z (2020).

1073 14 Skylar-Scott, M. A. *et al.* Orthogonally induced differentiation of stem cells for the
1074 programmatic patterning of vascularized organoids and bioprinted tissues. *Nat
1075 Biomed Eng* **6**, 449-462, doi:10.1038/s41551-022-00856-8 (2022).

1076 15 Jourde-Chiche, N. *et al.* Endothelium structure and function in kidney health and
1077 disease. *Nat Rev Nephrol* **15**, 87-108, doi:10.1038/s41581-018-0098-z (2019).

1078 16 He, J., Xu, Y., Koya, D. & Kanasaki, K. Role of the endothelial-to-mesenchymal
1079 transition in renal fibrosis of chronic kidney disease. *Clin Exp Nephrol* **17**, 488-497,
1080 doi:10.1007/s10157-013-0781-0 (2013).

1081 17 Miao, C. *et al.* Pro- and anti-fibrotic effects of vascular endothelial growth factor in
1082 chronic kidney diseases. *Ren Fail* **44**, 881-892,
1083 doi:10.1080/0886022X.2022.2079528 (2022).

1084 18 Lebedenko, C. G. & Banerjee, I. A. Enhancing Kidney Vasculature in Tissue
1085 Engineering-Current Trends and Approaches: A Review. *Biomimetics (Basel)* **6**,
1086 doi:10.3390/biomimetics6020040 (2021).

1087 19 Homan, K. A. *et al.* Flow-enhanced vascularization and maturation of kidney
1088 organoids in vitro. *Nat Methods* **16**, 255-262, doi:10.1038/s41592-019-0325-y
1089 (2019).

1090 20 Lee, H. N. *et al.* Effect of biochemical and biomechanical factors on vascularization
1091 of kidney organoid-on-a-chip. *Nano Converg* **8**, 35, doi:10.1186/s40580-021-
1092 00285-4 (2021).

1093 21 Bas-Cristobal Menendez, A. *et al.* Creating a kidney organoid-vasculature
1094 interaction model using a novel organ-on-chip system. *Sci Rep* **12**, 20699,
1095 doi:10.1038/s41598-022-24945-5 (2022).

1096 22 Kim, J. W. *et al.* Kidney Decellularized Extracellular Matrix Enhanced the
1097 Vascularization and Maturation of Human Kidney Organoids. *Adv Sci (Weinh)* **9**,
1098 e2103526, doi:10.1002/advs.202103526 (2022).

1099 23 Kolesky, D. B. *et al.* 3D bioprinting of vascularized, heterogeneous cell-laden
1100 tissue constructs. *Adv Mater* **26**, 3124-3130, doi:10.1002/adma.201305506 (2014).

1101 24 van den Berg, C. W. *et al.* Renal Subcapsular Transplantation of PSC-Derived
1102 Kidney Organoids Induces Neo-vasculogenesis and Significant Glomerular and
1103 Tubular Maturation In Vivo. *Stem Cell Reports* **10**, 751-765,
1104 doi:10.1016/j.stemcr.2018.01.041 (2018).

1105 25 Koning, M. *et al.* Vasculogenesis in kidney organoids upon transplantation. *NPJ
1106 Regen Med* **7**, 40, doi:10.1038/s41536-022-00237-4 (2022).

1107 26 Czerniecki, S. M. *et al.* High-Throughput Screening Enhances Kidney Organoid
1108 Differentiation from Human Pluripotent Stem Cells and Enables Automated
1109 Multidimensional Phenotyping. *Cell Stem Cell* **22**, 929-940 e924,
1110 doi:10.1016/j.stem.2018.04.022 (2018).

1111 27 Ryan, A. R. *et al.* Vascular deficiencies in renal organoids and ex vivo kidney
1112 organogenesis. *Dev Biol* **477**, 98-116, doi:10.1016/j.ydbio.2021.04.009 (2021).

1113 28 Zhang, H., Yamaguchi, T., Kokubu, Y. & Kawabata, K. Transient ETV2 Expression
1114 Promotes the Generation of Mature Endothelial Cells from Human Pluripotent
1115 Stem Cells. *Biol Pharm Bull* **45**, 483-490, doi:10.1248/bpb.b21-00929 (2022).

1116 29 Morita, R. *et al.* ETS transcription factor ETV2 directly converts human fibroblasts
1117 into functional endothelial cells. *Proc Natl Acad Sci U S A* **112**, 160-165,
1118 doi:10.1073/pnas.1413234112 (2015).

1119 30 Przepiorski, A. *et al.* A Simplified Method for Generating Kidney Organoids from
1120 Human Pluripotent Stem Cells. *J Vis Exp*, doi:10.3791/62452 (2021).

1121 31 Przepiorski, A. *et al.* A Simple Bioreactor-Based Method to Generate Kidney
1122 Organoids from Pluripotent Stem Cells. *Stem Cell Reports* **11**, 470-484,
1123 doi:10.1016/j.stemcr.2018.06.018 (2018).

1124 32 Nikolova-Krstevski, V. *et al.* ERG is required for the differentiation of embryonic
1125 stem cells along the endothelial lineage. *BMC Dev Biol* **9**, 72, doi:10.1186/1471-
1126 213X-9-72 (2009).

1127 33 Trapnell, C. *et al.* The dynamics and regulators of cell fate decisions are revealed
1128 by pseudotemporal ordering of single cells. *Nat Biotechnol* **32**, 381-386,
1129 doi:10.1038/nbt.2859 (2014).

1130 34 Qiu, X. *et al.* Reversed graph embedding resolves complex single-cell trajectories.
1131 *Nat Methods* **14**, 979-982, doi:10.1038/nmeth.4402 (2017).

1132 35 Tabula Sapiens, C. *et al.* The Tabula Sapiens: A multiple-organ, single-cell
1133 transcriptomic atlas of humans. *Science* **376**, eabl4896,
1134 doi:10.1126/science.abl4896 (2022).

1135 36 Tan, Y. & Cahan, P. SingleCellNet: A Computational Tool to Classify Single Cell
1136 RNA-Seq Data Across Platforms and Across Species. *Cell Syst* **9**, 207-213 e202,
1137 doi:10.1016/j.cels.2019.06.004 (2019).

1138 37 Sander, V. *et al.* Protocol for Large-Scale Production of Kidney Organoids from
1139 Human Pluripotent Stem Cells. *STAR Protoc* **1**, 100150,
1140 doi:10.1016/j.xpro.2020.100150 (2020).

1141 38 Przepiorski, A. *et al.* Modeling oxidative injury response in human kidney organoids.
1142 *Stem Cell Res Ther* **13**, 76, doi:10.1186/s13287-022-02752-z (2022).

1143 39 Zudaire, E., Gambardella, L., Kurcz, C. & Vermeren, S. A computational tool for
1144 quantitative analysis of vascular networks. *PLoS One* **6**, e27385,
1145 doi:10.1371/journal.pone.0027385 (2011).

1146 40 Putaala, H., Soininen, R., Kilpelainen, P., Wartiovaara, J. & Tryggvason, K. The
1147 murine nephrin gene is specifically expressed in kidney, brain and pancreas:
1148 inactivation of the gene leads to massive proteinuria and neonatal death. *Hum Mol
1149 Genet* **10**, 1-8, doi:10.1093/hmg/10.1.1 (2001).

1150 41 Wilson, S. B. *et al.* DevKidCC allows for robust classification and direct
1151 comparisons of kidney organoid datasets. *Genome Med* **14**, 19,
1152 doi:10.1186/s13073-022-01023-z (2022).

1153 42 Suh, J. H. & Miner, J. H. The glomerular basement membrane as a barrier to
1154 albumin. *Nat Rev Nephrol* **9**, 470-477, doi:10.1038/nrneph.2013.109 (2013).

1155 43 Wiggins, R. C. The spectrum of podocytopathies: a unifying view of glomerular
1156 diseases. *Kidney Int* **71**, 1205-1214, doi:10.1038/sj.ki.5002222 (2007).

1157 44 Hale, L. J. *et al.* 3D organoid-derived human glomeruli for personalised podocyte
1158 disease modelling and drug screening. *Nat Commun* **9**, 5167, doi:10.1038/s41467-
1159 018-07594-z (2018).

1160 45 Daniel, E. & Cleaver, O. Vascularizing organogenesis: Lessons from
1161 developmental biology and implications for regenerative medicine. *Curr Top Dev
1162 Biol* **132**, 177-220, doi:10.1016/bs.ctdb.2018.12.012 (2019).

1163 46 Takasato, M. *et al.* Kidney organoids from human iPS cells contain multiple
1164 lineages and model human nephrogenesis. *Nature* **526**, 564-568,
1165 doi:10.1038/nature15695 (2015).

1166 47 Tran, T. *et al.* In Vivo Developmental Trajectories of Human Podocyte Inform In
1167 Vitro Differentiation of Pluripotent Stem Cell-Derived Podocytes. *Dev Cell* **50**, 102-
1168 116 e106, doi:10.1016/j.devcel.2019.06.001 (2019).

1169 48 Hochane, M. *et al.* Single-cell transcriptomics reveals gene expression dynamics
1170 of human fetal kidney development. *PLoS Biol* **17**, e3000152,
1171 doi:10.1371/journal.pbio.3000152 (2019).

1172 49 Abrahamson, D. R. Role of the podocyte (and glomerular endothelium) in building
1173 the GBM. *Semin Nephrol* **32**, 342-349, doi:10.1016/j.semephrol.2012.06.005
1174 (2012).

1175 50 Nishinakamura, R. Human kidney organoids: progress and remaining challenges.
1176 *Nat Rev Nephrol* **15**, 613-624, doi:10.1038/s41581-019-0176-x (2019).

1177 51 Lindstrom, N. O. *et al.* Conserved and Divergent Features of Mesenchymal
1178 Progenitor Cell Types within the Cortical Nephrogenic Niche of the Human and
1179 Mouse Kidney. *J Am Soc Nephrol* **29**, 806-824, doi:10.1681/ASN.2017080890
1180 (2018).

1181 52 Combes, A. N. *et al.* Single cell analysis of the developing mouse kidney provides
1182 deeper insight into marker gene expression and ligand-receptor crosstalk.
1183 *Development* **146**, doi:10.1242/dev.178673 (2019).

1184 53 Mao, Y., Francis-West, P. & Irvine, K. D. Fat4/Dchs1 signaling between stromal
1185 and cap mesenchyme cells influences nephrogenesis and ureteric bud branching.
1186 *Development* **142**, 2574-2585, doi:10.1242/dev.122630 (2015).

1187 54 Bagherie-Lachidan, M. *et al.* Stromal Fat4 acts non-autonomously with Dchs1/2 to
1188 restrict the nephron progenitor pool. *Development* **142**, 2564-2573,
1189 doi:10.1242/dev.122648 (2015).

1190 55 Das, A. *et al.* Stromal-epithelial crosstalk regulates kidney progenitor cell
1191 differentiation. *Nat Cell Biol* **15**, 1035-1044, doi:10.1038/ncb2828 (2013).

1192 56 England, A. R. *et al.* Identification and characterization of cellular heterogeneity
1193 within the developing renal interstitium. *Development* **147**,
1194 doi:10.1242/dev.190108 (2020).

1195 57 Kirita, Y., Wu, H., Uchimura, K., Wilson, P. C. & Humphreys, B. D. Cell profiling of
1196 mouse acute kidney injury reveals conserved cellular responses to injury. *Proc
1197 Natl Acad Sci U S A* **117**, 15874-15883, doi:10.1073/pnas.2005477117 (2020).

1198 58 Castrop, H. *et al.* Physiology of kidney renin. *Physiol Rev* **90**, 607-673,
1199 doi:10.1152/physrev.00011.2009 (2010).

1200 59 Guessoum, O., de Goes Martini, A., Sequeira-Lopez, M. L. S. & Gomez, R. A.
1201 Deciphering the Identity of Renin Cells in Health and Disease. *Trends Mol Med* **27**,
1202 280-292, doi:10.1016/j.molmed.2020.10.003 (2021).

1203 60 Sequeira-Lopez, M. L. S. & Gomez, R. A. Renin Cells, the Kidney, and
1204 Hypertension. *Circ Res* **128**, 887-907, doi:10.1161/CIRCRESAHA.121.318064
1205 (2021).

1206 61 Freedman, B. S. Physiology assays in human kidney organoids. *Am J Physiol
1207 Renal Physiol* **322**, F625-F638, doi:10.1152/ajprenal.00400.2021 (2022).

1208 62 Shankar, A. S. *et al.* Human kidney organoids produce functional renin. *Kidney
1209 international* **99**, 134-147, doi:10.1016/j.kint.2020.08.008 (2021).

1210 63 Trush, O. & Takasato, M. Kidney organoid research: current status and
1211 applications. *Curr Opin Genet Dev* **75**, 101944, doi:10.1016/j.gde.2022.101944
1212 (2022).

1213 64 Martini, A. G. & Danser, A. H. J. Juxtaglomerular Cell Phenotypic Plasticity. *High*
1214 *Blood Press Cardiovasc Prev* **24**, 231-242, doi:10.1007/s40292-017-0212-5
1215 (2017).

1216 65 Gomez, R. A. Fate of Renin Cells During Development and Disease. *Hypertension*
1217 **69**, 387-395, doi:10.1161/HYPERTENSIONAHA.116.08316 (2017).

1218 66 Del Moral, P. M. *et al.* VEGF-A signaling through Flk-1 is a critical facilitator of early
1219 embryonic lung epithelial to endothelial crosstalk and branching morphogenesis.
1220 *Dev Biol* **290**, 177-188, doi:10.1016/j.ydbio.2005.11.022 (2006).

1221 67 Dumas, S. J. *et al.* Phenotypic diversity and metabolic specialization of renal
1222 endothelial cells. *Nat Rev Nephrol* **17**, 441-464, doi:10.1038/s41581-021-00411-9
1223 (2021).

1224 68 Satchell, S. C. & Braet, F. Glomerular endothelial cell fenestrations: an integral
1225 component of the glomerular filtration barrier. *Am J Physiol Renal Physiol* **296**,
1226 F947-956, doi:10.1152/ajprenal.90601.2008 (2009).

1227 69 Ginsberg, M. *et al.* Efficient direct reprogramming of mature amniotic cells into
1228 endothelial cells by ETS factors and TGFbeta suppression. *Cell* **151**, 559-575,
1229 doi:10.1016/j.cell.2012.09.032 (2012).

1230 70 Gomez-Salinero, J. M., Itkin, T. & Rafii, S. Developmental angiocrine diversification
1231 of endothelial cells for organotypic regeneration. *Dev Cell* **56**, 3042-3051,
1232 doi:10.1016/j.devcel.2021.10.020 (2021).

1233 71 Grigorieva, I. V. *et al.* A Novel Role for GATA3 in Mesangial Cells in Glomerular
1234 Development and Injury. *J Am Soc Nephrol* **30**, 1641-1658,
1235 doi:10.1681/ASN.2018111143 (2019).

1236 72 Moriguchi, T. *et al.* Gata3 Hypomorphic Mutant Mice Rescued with a Yeast
1237 Artificial Chromosome Transgene Suffer a Glomerular Mesangial Cell Defect. *Mol*
1238 *Cell Biol* **36**, 2272-2281, doi:10.1128/MCB.00173-16 (2016).

1239 73 Marciano, D. K. Mesangial Cells: The Tuft Guys of Glomerular Development. *J Am*
1240 *Soc Nephrol* **30**, 1551-1553, doi:10.1681/ASN.2019070724 (2019).

1241 74 Phipson, B. *et al.* Evaluation of variability in human kidney organoids. *Nat Methods*
1242 **16**, 79-87, doi:10.1038/s41592-018-0253-2 (2019).

1243 75 Dimke, H. *et al.* Tubulovascular cross-talk by vascular endothelial growth factor a
1244 maintains peritubular microvasculature in kidney. *J Am Soc Nephrol* **26**, 1027-1038,
1245 doi:10.1681/ASN.2014010060 (2015).

1246 76 Jansen, J. *et al.* Human pluripotent stem cell-derived kidney organoids for
1247 personalized congenital and idiopathic nephrotic syndrome modeling.
1248 *Development* **149**, doi:10.1242/dev.200198 (2022).

1249 77 Barry, D. M. *et al.* Molecular determinants of nephron vascular specialization in the
1250 kidney. *Nat Commun* **10**, 5705, doi:10.1038/s41467-019-12872-5 (2019).

1251 78 le Noble, F. *et al.* Flow regulates arterial-venous differentiation in the chick embryo
1252 yolk sac. *Development* **131**, 361-375, doi:10.1242/dev.00929 (2004).

1253 79 Wang, H. *et al.* Shear stress induces endothelial differentiation from a murine
1254 embryonic mesenchymal progenitor cell line. *Arterioscler Thromb Vasc Biol* **25**,
1255 1817-1823, doi:10.1161/01.ATV.0000175840.90510.a8 (2005).

1256 80 Vargas-Valderrama, A., Messina, A., Mitjavila-Garcia, M. T. & Guenou, H. The
1257 endothelium, a key actor in organ development and hPSC-derived organoid
1258 vascularization. *J Biomed Sci* **27**, 67, doi:10.1186/s12929-020-00661-y (2020).

1259 81 Gori, J. L. *et al.* Vascular niche promotes hematopoietic multipotent progenitor
1260 formation from pluripotent stem cells. *J Clin Invest* **125**, 1243-1254,
1261 doi:10.1172/JCI79328 (2015).

1262 82 Cakir, B. *et al.* Engineering of human brain organoids with a functional vascular-
1263 like system. *Nat Methods* **16**, 1169-1175, doi:10.1038/s41592-019-0586-5 (2019).

1264 83 Guye, P. *et al.* Genetically engineering self-organization of human pluripotent stem
1265 cells into a liver bud-like tissue using Gata6. *Nat Commun* **7**, 10243,
1266 doi:10.1038/ncomms10243 (2016).

1267 84 Zhou, M., Ni, J., Huang, P. & Liu, X. Generation of a doxycycline-inducible ETV2
1268 expression cell line using PiggyBac transposase system. *Stem Cell Res* **66**,
1269 102985, doi:10.1016/j.scr.2022.102985 (2023).

1270 85 Velazquez, J. J. *et al.* Gene Regulatory Network Analysis and Engineering Directs
1271 Development and Vascularization of Multilineage Human Liver Organoids. *Cell*
1272 *Syst* **12**, 41-55 e11, doi:10.1016/j.cels.2020.11.002 (2021).

1273 86 Vanslambrouck, J. M. *et al.* A Toolbox to Characterize Human Induced Pluripotent
1274 Stem Cell-Derived Kidney Cell Types and Organoids. *J Am Soc Nephrol* **30**, 1811-
1275 1823, doi:10.1681/ASN.2019030303 (2019).

1276 87 Howden, S. E. *et al.* A Cas9 Variant for Efficient Generation of Indel-Free Knockin
1277 or Gene-Corrected Human Pluripotent Stem Cells. *Stem Cell Reports* **7**, 508-517,
1278 doi:10.1016/j.stemcr.2016.07.001 (2016).

1279 88 Oh, J. K. *et al.* Derivation of induced pluripotent stem cell lines from New Zealand
1280 donors. *Journal of the Royal Society of New Zealand* **52**, 54-67,
1281 doi:10.1080/03036758.2020.1830808 (2020).

1282 89 Susaki, E. A. *et al.* Advanced CUBIC protocols for whole-brain and whole-body
1283 clearing and imaging. *Nat Protoc* **10**, 1709-1727, doi:10.1038/nprot.2015.085
1284 (2015).

1285 90 Matsumoto, K. *et al.* Advanced CUBIC tissue clearing for whole-organ cell profiling.
1286 *Nat Protoc* **14**, 3506-3537, doi:10.1038/s41596-019-0240-9 (2019).

1287 91 Muntifering, M. *et al.* Clearing for Deep Tissue Imaging. *Curr Protoc Cytom* **86**,
1288 e38, doi:10.1002/cpcy.38 (2018).

1289 92 Shihan, M. H., Novo, S. G., Le Marchand, S. J., Wang, Y. & Duncan, M. K. A simple
1290 method for quantitating confocal fluorescent images. *Biochem Biophys Rep* **25**,
1291 100916, doi:10.1016/j.bbrep.2021.100916 (2021).

1292 93 Rieu, I. & Powers, S. J. Real-time quantitative RT-PCR: design, calculations, and
1293 statistics. *Plant Cell* **21**, 1031-1033, doi:10.1105/tpc.109.066001 (2009).

1294 94 Zheng, G. X. *et al.* Massively parallel digital transcriptional profiling of single cells.
1295 *Nat Commun* **8**, 14049, doi:10.1038/ncomms14049 (2017).

1296 95 Hao, Y. *et al.* Integrated analysis of multimodal single-cell data. *Cell* **184**, 3573-
1297 3587 e3529, doi:10.1016/j.cell.2021.04.048 (2021).

1298 96 Xie, Z. *et al.* Gene Set Knowledge Discovery with Enrichr. *Curr Protoc* **1**, e90,
1299 doi:10.1002/cpz1.90 (2021).

1300 97 Kuleshov, M. V. *et al.* Enrichr: a comprehensive gene set enrichment analysis web
1301 server 2016 update. *Nucleic Acids Res* **44**, W90-97, doi:10.1093/nar/gkw377
1302 (2016).

1303 98 Ashburner, M. *et al.* Gene ontology: tool for the unification of biology. The Gene
1304 Ontology Consortium. *Nat Genet* **25**, 25-29, doi:10.1038/75556 (2000).

1305 99 Gene Ontology, C. The Gene Ontology resource: enriching a GOld mine. *Nucleic
1306 Acids Res* **49**, D325-D334, doi:10.1093/nar/gkaa1113 (2021).
1307 100 Cao, J. *et al.* The single-cell transcriptional landscape of mammalian
1308 organogenesis. *Nature* **566**, 496-502, doi:10.1038/s41586-019-0969-x (2019).
1309 101 Korsunsky, I. *et al.* Fast, sensitive and accurate integration of single-cell data with
1310 Harmony. *Nat Methods* **16**, 1289-1296, doi:10.1038/s41592-019-0619-0 (2019).
1311 102 Wang, J. *et al.* Renal Subcapsular Transplantation of 2'-Deoxyguanosine-Treated
1312 Murine Embryonic Thymus in Nude Mice. *J Vis Exp*, doi:10.3791/59657 (2019).
1313

1314