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ABSTRACT 

Summary 

Bacterial Healthcare Associated Infections (HAIs) are a major threat worldwide, which can 

be counteracted by establishing effective infection control measures, guided by constant 

surveillance and timely epidemiological investigations. Genomics is crucial in modern 

epidemiology but lacks standard methods and user-friendly software, accessible to users 

without a strong bioinformatics proficiency. To overcome these issues we developed P-DOR, 

a novel tool for rapid bacterial outbreak characterization. P-DOR accepts genome 

assemblies as input, it automatically selects a background of publicly available genomes 

using k-mer distances and adds it to the analysis dataset before inferring a SNP-based 

phylogeny. Epidemiological clusters are identified considering the phylogenetic tree topology 

and SNP distances. By analyzing the SNP-distance distribution, the user can gauge the 

correct threshold. Patient metadata can be inputted as well, to provide a spatio-temporal 

representation of the outbreak. The entire pipeline is fast and scalable and can be also run 

on low-end computers. 

 

Availability and implementation 

P-DOR is implemented in Python3 and R and can be installed using conda environments. It 

is available from GitHub https://github.com/SteMIDIfactory/P-DOR under the GPL-3.0 

license. 

 

INTRODUCTION 

Bacterial infections are a constant threat to public health worldwide. When dealing with 

Healthcare-Associated Infections (HAIs) and outbreaks, timely epidemiological investigation 

is pivotal to establish effective infection control measures (Jiang et al., 2015; Balloux et al., 

2018; Harris et al., 2013; Raven et al., 2017). Despite their wide use, conventional molecular 

typing techniques, such as Pulsed Field Gel Electrophoresis (PFGE) and Multi-Locus 

Sequence Typing (MLST), have a lower discriminatory capability in comparison to the 

modern Whole Genome Sequencing (WGS)-based typing, while maintaining similar costs 

and timescales. 

Over the past few years, WGS-based typing has been increasingly adopted, first for 

research purposes and then as a routinary screening tool for infectious disease 
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epidemiology in hospitals and public health settings. This approach leverages in silico 

techniques for isolates typing, antimicrobial profile determination, and outbreak 

reconstruction (Jiang et al., 2015; Balloux et al., 2018; Harris et al., 2013; Raven et al., 2017; 

Sherry et al., 2019; Onori et al., 2015; Ferrari et al., 2019). Several computational methods 

to analyze such datasets have been developed, which include database design (Lam et al., 

2021; Zhou et al., 2020), epidemiological models via Bayesian inference  (Campbell et al., 

2018; De Maio et al., 2016; Jombart et al., 2014), network analysis (Worby et al., 2017, 

2014) and phylogeny (Didelot et al., 2021).  

Relationships among strains are mainly inferred using Single-Nucleotide Polymorphisms 

(SNPs) or k-mers. When reconstructing outbreaks, strains isolated from different sources 

(e.g. patients, fomites) and having SNP-distances below specific thresholds can be 

considered part of the same transmission cluster. The network of these genetically 

correlated strains can be used to reconstruct the pathogen transmission route. Although 

threshold-based methods are largely applied in genomic epidemiology (Hatherell et al., 

2016; Octavia et al., 2015; Dallman et al., 2015; David et al., 2019), they lack 

standardization (Duval et al., 2023). Indeed, threshold values can vary across bacterial 

species/clones because of their different genomic architectures (e.g. mutation rate, 

recombination). Also the duration of the epidemic event analyzed can influence the genetic 

variability in the bacterial population: a SNP-distance threshold set to disentangle a short 

outbreak can be inappropriate for a long-term genomic surveillance study (Duval et al., 

2023). Furthermore, SNP distances can be affected (even by tenths or hundreds) by the 

SNP calling approach (e.g. mapping reads or aligning assembled contigs) and by the 

reference genome and software used. Finally, the sole use of genomic data without the 

inclusion of other information like clinical metadata (e.g. sample date/type, hospitalization 

ward) limits the comprehension of epidemic events (Stimson et al., 2019; De Maio et al., 

2016; Jombart et al., 2014; Didelot et al., 2021; Duval et al., 2023).  

Most of the software available for WGS-based epidemiological investigation is not user-

friendly (De Maio et al., 2016; Zhou et al., 2020; Didelot et al., 2021; Campbell et al., 2018), 

not free (e.g. SeqSphere+ Ridom GmbH software), and/or does not encompass all the 

analyses required for a comprehensive study (De Maio et al., 2016; Zhou et al., 2020; 

Didelot et al., 2021). Most of the methods require the user to have a computational 

background, as they are composed of multiple command-line tasks that must be serially 

performed in succession, and often require format changes. This prevents most clinicians 

from performing genomic investigations in first person and limits their understanding of the 

results. Consequently, it also hampers them from making epidemiological conclusions in 

light of both clinical information and of their past experience on the field, which in turn would 
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enable them to provide valuable feedback to developers. On the other hand, online tools are 

available, which are accessible to a wider usership, but lack the tunability that is required for 

most epidemiological investigations (e.g. (Trifinopoulos et al., 2016)) and are restricted to 

single tasks (e.g. phylogeny). 

To answer the need for a comprehensive, tunable, and user-friendly tool, we developed P-

DOR, a bioinformatic pipeline for rapid WGS-based bacterial outbreak detection and 

characterization. P-DOR integrates genomics and clinical metadata and uses a curated 

global genomic database to contextualize the strains of interest within the appropriate 

evolutionary frame. P-DOR is available at https://github.com/SteMIDIfactory/P-DOR. 

 

P-DOR WORKFLOW 

The inputs for the core P-DOR analysis are: i) a folder containing the query genome 

assemblies; ii) a reference genome for SNP extraction; iii) a sketch database file generated 

by Mash (Ondov et al., 2016); iv) a table containing the patient metadata (i.e. hospitalization 

ward, date of admission and discharge). This last input is not mandatory, but when provided, 

it will be integrated in the analysis to add further clues on the epidemic event.  The query 

genomes of the study must be in FASTA format, and can be complete or draft assemblies.  

Sketch files contain the genomic information of the strains from a Source Dataset (SD) 

chosen by the user. A sketch file is a vastly reduced representation of the genomes, which is 

produced via the MinHash algorithm to allow fast distance estimation using low memory and 

storage requirements. Regularly updated sketches for each of the ESKAPE members 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 

baumannii, Pseudomonas aeruginosa and Enterobacter spp.) are available in the P-DOR 

repository. Personalized SD sketches can alternatively be built by the user using the 

“makepdordb.py” script. This script can automatically download the high-quality genomes of 

a species from the BV-BRC collection (Davis et al., 2020) or build a custom SD sketch 

starting from any set of genomes. The sketch files are used to compute the k-mer distances 

between each query genome and the SD genomes. Then, for each query genome the n 

most similar SD genomes are selected and joined in a Background Dataset (BD). Lastly, the 

query genomes are joined with the BD to obtain the Analysis Dataset (AD). Optionally, the 

entire AD can be scanned for the presence of antimicrobial resistance and virulence genes 

using AMRFinderPlus (Feldgarden et al., 2021). 
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After that, each genome of the resulting AD is aligned to the reference genome using 

Nucmer, the  alignment obtained is polished using Delta-Filter and SNPs are called using 

show-snps, all the commands being part of the Mummer4 package (Marçais et al., 2018). 

Lastly, the SNPs of all AD genomes are combined into a coreSNPs alignment using a 

Python script (Ferrari et al., 2019). Then, the coreSNPs alignment is used to infer a 

Maximum Likelihood (ML) phylogeny via the IQ-TREE (Nguyen et al., 2015) software, which 

includes a prior step for the selection of the substitution model.  

To infer relationships among the strains, epidemiological clusters are inferred on the basis of 

coreSNPs distances using a threshold value. The user can manually set the SNP threshold 

parameter according to previous studies in the literature, or by visualizing the SNP pairwise 

distances distribution plot provided among the outputs of P-DOR. The user should analyze 

the results, possibly tweak the threshold parameter and run P-DOR again.  

 

OUTPUTS 

The main outputs of P-DOR are: i) a SNP-based phylogenetic tree; ii) a heatmap reporting 

the phylogenetic tree and presence/absence of resistance and virulence factors; iii) a 

heatmap showing the coreSNP distance matrix; iv) the histogram of the distribution of the 

SNP distances; v) a graph visualization of the epidemiological clusters, in which each pair of 

strains (nodes) is connected if the coreSNP distance between them is below the threshold. 

The epidemiological clusters are also highlighted on the phylogenetic tree. In addition, if 

patients metadata are provided, P-DOR creates a spatio-temporal representation of the 

outbreak and outputs a patients timeline plot where strains are placed based on the date of 

isolation and are connected on the basis of epidemic clusters. 

 

PERFORMANCE TEST 

To test P-DOR, we simulated the genomic sequences of 11 Klebsiella pneumoniae isolates, 

involved in a complex epidemic event, with two distinct bacterial strains (both belonging to 

Sequence Type 258) circulating in a hospital in the same period. In detail, we obtained six 

simulated sequences starting from genome NJST258_1 and 5 sequences from genome 

NJST258_2 using the software simuG (Yue and Liti, 2019). The genomes were simulated in 

a hierarchical way: i.e. each generated genome differs one to five SNPs from the parent. 

The simulated dataset was used as query to P-DOR. The SD was obtained from BV-BRC on 

16 April 2023 using the script makepdordb.py. The Background Dataset (BD) was built 
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selecting the 20 closest SD genomes for each query genome, as described above. After 

analyzing the distribution of SNP distances, the threshold was set at 21 SNPs (Figure 1A). 

Finally, the complete genome of strain HS11286 (NZ_CP029384.2) was used as a reference 

for SNP calling. The phylogeny obtained correctly determined the presence of two 

outbreaking strains (Figure 1B). P-DOR divided the simulated genomes into two 

monophyletic clusters labeled C1 (green) and C4 (orange). Both clusters also include a 

background genome (BV-BRC codes 1420013.3 and 1420012.3), which correspond to 

isolates NJST258_2 and NJST258_1 i.e. the genomes used as starting points for the 

generation of the simulated sequences. These results demonstrate the capability of the P-

DOR pipeline to select a background apt for epidemiological investigations and to identify 

outbreak clusters. They also show that P-DOR can identify the putative source of each 

epidemic cluster, when it is available in the SD. Figure S1 shows the SNP distances among 

all genomes in analysis and further confirms the results observed in the phylogeny (Figure 

1B). Furthermore, the timeline (Figure 1C) can be used to hypothesize the chain of 

transmission based on the dates of isolation and the epidemiologic classification of the 

isolates. 

The analysis was performed on a total of 50 genomes using a maximum of 313 Mb of RAM. 

The entire process required one hour and 37 minutes, using four threads at 2.3 Ghz, 29 

minutes when using 20 threads; these numbers drop respectively to 2.9 and 2.1 minutes 

when excluding the time-consuming AMRFinderPlus step (default setting). These results 

show that P-DOR is a fast tool, which can be used in clinical contexts even when high 

informatic skills or resources are not available. Future efforts will be focused on developing a 

web-based interface, to further improve the ease of use and removing the need for 

computational resources. 

 

FIGURE LEGENDS 

Figure 1. The P-DOR outputs of the test analysis. A) Phylogenetic tree of the Analysis 

Dataset (AD). The first column shows epidemiological clusters of strains with SNP distances 

below the threshold set by the user. In addition, a heatmap representing the detection of 

resistance (blue) and virulence (orange) determinants is shown next to the tree for a better 

representation of the epidemic event. B) Distribution of SNP distances calculated between 

all permutations of genome pairs in the AD. C) Timeline of the patients movements during 

the hospitalization. Points indicate outbreak genomes and are shaped according to the 
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isolation source of the corresponding strain. Samples are linked if their genetic distance in 

terms of SNPs is below the threshold. 

Figure S1. Heatmap representing the pairwise SNPs distance between all pairs of genomes 

in the test analysis. 
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