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23 Abstract

24  Little is known about the co-evolutionary history of the human gut microbe and its
25 relevance to host physiology. Here, we constructed a gut prokaryotic genomic database
26  of wild primates (pSGBs) and compared it with the human gut prokaryotic database
27  (hSGBs) to define shared co-evolutionary clusters (SCEC-hSGBs) and co-evolutionary
28  traits of hSGBs. We analyzed the evolutionary trends of specific functions like
29  carbohydrate-active enzymes and antibiotic resistance in hSGBs and uncovered host-
30 jumping events and genome reduction tendencies in SCEC-hSGBs. Intriguingly, the
31  SCEC-hSGBs and the super enrichers of the traits (SUEN-hSGBs), which are
32  putatively partially derived from carnivores, showed opposite implications for host
33  health status. Specifically, SUEN-hSGBs are enriched in various diseases, showing a
34  negative correlation with gut biodiversity and disproportionate contributions to the
35  known health-negative marker taxa and metabolite. Our study provides insight into the
36  origin and adaptability of human gut microbes and references for developing probiotics
37  and microbiome-based host health prediction.
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45  Introduction

46  Profound and sophisticated metabolic and immune interactions between the gut
47  microbiota and host are primarily built through their co-evolutionary history.!*
48 According to Janzen's definition,? providing evidence for bidirectional co-evolution of
49  the host and microbiome is challenging.*® The term co-evolution in this context refers
50 solely to the evolutionary history of the gut microbiome within a host lineage,
51  regardless of horizontal transferring events. While various factors influence the
52  taxonomic and functional characteristics of the gut microbiome among
53  phylogenetically related hosts, host phylogeny often fairly mirrors the microbial
54  community structure in many cases.”® The commonness of this phenomenon, coined
55  phylosymbiosis, suggests that continuous co-evolution of gut microbial community
56 across host species may extensively exist.” However, other factors such as sharing
57 similar living environments and diets among closely related hosts may also drive
58  phylosymbiosis.*!°

59

60  Inaddition to the community-level co-evolution, a few studies focused on gut microbial

61 intra-lineage co-evolution among hosts,'!"!3

providing insights into long-term
62  interactions between symbionts and hosts. Tracing co-evolutionary lineages is crucial
63  to understand the mechanisms behind co-evolution and co-adaptation between hosts
64  and microbes, since this approach helps to limit interference from recently horizontally

65 transferred taxa with unknown origins. Although both intraspecific (i.e.,

66  microevolutionary scale) and interspecific (i.e., macroevolutionary scale) gut microbial
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67 lineages have been proposed among related mammals, those co-evolutionary clades
68  spanning hosts diversified millions of years ago are more likely intra-genus multi-
69  specific clusters.!""!? So far, a comprehensive list of long-term human gut microbial co-
70  evolutionary lineages transmitted from or among the primate ancestors is lacking. To
71 identify this list, we must compile a reference genome database of gut microbes from
72 wild non-human primates (WNHP), as captive primates exhibit significant disruption
73 in their gut microbiome compared to wild individuals.'*!*> Therefore, although a
74  genome database of gut microbes from various NHPs has been reported,'® an updated
75  genome database excluding captives is necessary.

76

77  Evolutionary traits represent ancestral inheritance accumulated over time during
78  continuous adaptation, providing survival benefits for offspring in similar
79  environments.'”!® However, such traits can also have adverse effects, such as human
80 mismatch diseases (e.g., diabetes, obesity, and cardiovascular disease) partially or
81  wholly caused by mismatches between long-term adaptation and recent rapid
82  environmental changes.!*° Currently, the co-evolutionary traits of the gut microbiome
83  of Homo sapiens and their implications with host health are poorly characterized. The
84  optimal reference for profiling such traits should be the gut microbiome of the closest
85 relatives, i.e., other Homo species, but lack of sufficiently analyzable fecal samples
86  from extinct Homo species prevents this possibility.>! Thus, a suboptimal option is to
87  profile the long-term co-evolutionary trait of the human gut microbiome by referring to

88  our primate cousins.
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89
90 We previously discovered a multi-species Prevotella copri-containing lineage co-
91  evolved with WNHPs and humans.!! Here, we aimed to further characterize long-term
92  co-evolutionary human gut microbial lineages and traits and investigated their
93  implications on host health. We built an updated genomic database of gut prokaryotic
94  species containing over 1,600 species from various species of WNHPs. By comparing
95  this with human gut microbial genomes,** we then defined the co-evolutionary species
96  and enriched traits in the human gut microbiome. Interestingly, we found that the co-
97  evolutionary lineages and super-enrichers of evolutionary traits were oppositely
98  correlated with human health status. Our results provided novel insights into how gut
99 microbiota adapts to continuously evolving human niches from an evolutionary

100  perspective. Additionally, we identified previously unidentified gut microbiome

101 biomarkers of health status.

102

103 Results

104  An updated gut prokaryotic genome database from WNHPs containing 1,654

105  species-level genome bins (SGBs)

106  We collected 346 fecal metagenomes from 25 primate species, including 15 Macaca

107  thibetana data contributed by this study, for recovering metagenome-assembled

108  genomes (MAGs) (Figure 1A and Table S1). Therein, 284 metagenomes were derived

109  from WNHPs,'7>?? while the remaining 62 metagenomes were obtained from captive

110 M. mulatta (n = 6), M. leonina (n = 4), M. thibetana (n = 3), Pan troglodytes (n = 18),
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111 Gorilla gorilla (n = 22), Lemur catta (n = 5), and Papio anubis (n = 4).2>2830

112

113 Intotal, we retrieved 4,942 bacterial and archaeal MAGs (>50% completeness and <5%
114  contamination) representing 2,036 SGBs (clustered by average nucleotide identity
115  (ANI) >95%, see Table S2 for the information of each MAG and SGB) from the
116  metagenomes. These MAGs represent 54.6% (median value) of the corresponding
117  metagenomes, indicating high coverage of the SGBs in the gut microbiome of primates.
118  Nearly half of the SGBs (41.6%) were high-quality genomes with completeness >90%
119  and contamination <5% (Fig S1A). Strikingly, 78% of the SGBs lacked conspecifics in
120  the GTDB-r95 database (Figure 1B),*! suggesting that a substantial number of these
121 SGBs may uniquely distribute in the gut of primates. Even compared to the gut
122  microbial genomic database of NHPs constructed by Manara et al. (2019)
123 (NHP2019),'¢ over half of the SGBs (n = 1,163) were exclusively detected in our
124  database (Figure 1B).

125  To evaluate the impact of anthropogenic disturbance on the captive individuals, we
126 sorted the 2,036 SGBs into three catalogs based on their source: wild individuals,
127  captive individuals, and shared by both (Figure 1C). The shared SGBs appeared in a
128  low percentage (n = 47). The ANI values were determined between the SGBs in each
129  catalog and the human gut SGB collection (hereafter, h\SGBs, n = 3,779).2* As expected,
130  captive primates harbored a much higher ratio of hSGBs-conspecific SGBs than the
131 wild ones (220 in 436 vs. 74 in 1,553, P = 6.07e—124, Chi-Square test). Similar

132 proportions were detected for the NHP2019 (Figure 1C). A plausible inference is that
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133 these hSGBs-conspecific SGBs inhabiting in captive primates were horizontally
134  transferred from humans or related environments under captivity. Therefore, to
135  eliminate the effects of captivity, all SGBs solely contributed by captive individuals
136 were excluded. Finally, after combining the remaining 1,576 SGBs and the non-
137  redundant fraction from wild individuals of NHP2019, the final database contained
138 1,654 SGBs (1,635 Bacteria and 19 Archaea) from 23 WNHP species (hereafter,
139  pSGBs).

140

141 The pSGBs are affiliated with 19 phyla and 1,436 of them can be classified into 372
142 genera according to the GTDB taxonomic system (Figure 1D and Table S3). Here we
143 congregated three phyla (Firmicutes, Firmicutes A, and Firmicutes _C) into Firmicutes.
144  The top five phyla, namely, Firmicutes, Bacteroidota, Actinobacteriota, Proteobacteria,
145  and Spirochaetota, constitute 91.8% of the total (Figure 1D). Only 2.7% (n = 45) SGBs
146 harbored MAGs from multiple WNHP species, with a maximum of four shared hosts.
147  However, it does not imply that the pSGBs from different primate hosts were remotely
148  related. Among the 222 non-singleton genera (containing two or more pSGBs), 184 had
149  SGBs found in multiple host species, and 37 of them can be detected in >5 host species
150  (Figure 1E). Prevotella, with 149 pSGBs, has the broadest host range (contributed by
151 20 WNHP species). Furthermore, hSGBs were detected in 234 pSGB-containing genera,
152  encompassing 1,128 pSGBs and 1,988 hSGBs (Table S4). The high proportion of
153  congeneric hSGBs and pSGBs suggested the prevalence of long-term co-evolutionary

154  history between a large number of microbial lineages and primate hosts.
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155

156  Distributive feature of carbohydrate-active enzymes (CAZys) and antibiotic
157  resistance genes (ARGs) in hSGBs and pSGBs

158  We investigated the distribution of two types of functional genes, CAZys (including
159  only glycoside hydrolase (GH) and polysaccharide lyase (PL)) and ARGs, between
160 pSGBs and hSGBs, as selective pressures on these genes likely differ substantially
161  between WNHPs and modern humans. Overall, the number of CAZy families and genes
162  in pSGBs and hSGBs generally decreased from lemurs and monkeys to apes, then to
163  humans (Figure 2A, B). The average number of CAZy genes is 28.5 in hSGBs and 38.0
164  in pSGBs. The dietary type also impacts the number of CAZy families (Fig S2A).
165  Further analysis showed numerous GH families enriched in pSGBs and relatively few
166  in hSGBs (Figure 2C and Table S5). Among the top enriched GH families in pSGBs,
167  many are related to the degradation of cellulose (GH5 2 and GH5 4), xylan (GH43 18),
168  and arabinose-related glycoside (GH43 18 and GHS53), consistent with the higher
169  intake of these plant glycans in wild primate versus human diets. In contrast, enzymes
170  targeting glucose-related and galactose-related glycans (GH1, GH4, GH32, and GH112)
171 were enriched in hSGBs (Figure 2B and Fig S2B).

172

173 For ARGs, the top enriched classes in hSGBs encode resistance to beta-lactam,
174  tetracycline, bacitracin, aminoglycoside, and glycopeptide (ranked by enriching fold of
175  prevalence, Figure 2D and Table S6). Conversely, highly prevalent ARG classes such

176  as macrolide-lincosamide-streptogramin (MLS) and antimicrobial peptides were
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177  detected in pSGBs at a similar or even higher rate. These results support the directional
178  selection of the human gut resistome over less than 100 years of clinical antibiotic use.
179

180  Defining shared co-evolutionary SGB clusters

181  To identify all detectable co-evolutionary SGB clusters, we calculate the ANI values
182  between congeneric pSGBs and hSGBs, as it is a comprehensive measurement of the
183  evolutionary distance between intra-genus genomic pairs.>> We hypothesize an
184  operational ANI threshold, under which the generated SGB clusters can optimally
185  represent the diversified offspring in primate hosts from each ancestral bacterial species
186  (i.e., the balance between conservative and radical), even though we cannot confidently
187  determine the speciation time for the ancestor bacteria (i.e., within the primate host or
188  not). By stepwise increasing the ANI threshold, the split ratio of SGB clusters was
189  evaluated for determining the operational threshold (see Methods and a diagram in
190  Figure 3A). We observed the first significant increase in the split ratio for non-singleton
191  SGB clusters when increasing the ANI threshold from 77 to 78% (FDR-corrected P =
192  1.3e—7, Fisher’s exact test, Figure 3B). Over three-quarters (285 in 360) of non-
193 singleton ANI-77% clusters split from ANI-78% to ANI-83% (see Fig S3A, notice that
194  ANI-83% is a widely recognized lower limit of ANI for closely related prokaryotes),*
195  indicating that most ANI-77% clusters comprised remotely related species. Moreover,
196  the corresponding host divergent time for the split-out SGBs also showed a decreasing
197  trend since ANI-77%, especially when excluding hSGBs (Fig S3B). These results

198  corroborate ANI-77% as the optimal operational threshold for defining the co-
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199  evolutionary SGB clusters.

200

201 Under the threshold, we defined 779 co-evolved non-singleton SGB clusters in total
202  (Table S7), of which only 262 contained both hSGB and pSGB (shared co-evolutionary
203  clusters, SCECs). As shown in Figure 3C, Prevotella has the most SCECs (n = 14),
204  echoing its high species-level diversity in both pSGBs and hSGBs (Figure 1E). Among
205  these SCECs, the Prevotella 13 SCEC associates with the largest number of WNHP
206  hosts, showing highly overlapped pattern with the P. copri-containing lineage we
207  proposed earlier.!! For the 12 SCECs detected in > 6 host species (i.e., > 5 WNHP
208  species and human), we observed overall negative correlations between the ANI value
209 and host divergent time (Figure 3D). Intriguingly, the negative correlations
210  strengthened when excluding hSGBs. Taken together with Fig S3B, this observation
211 suggests that some hSGBs may remotely transfer from other primates, initiating
212 independent evolution in human ancestors within their long-term co-evolutionary
213 history. We also find that old world monkeys have an even higher proportion of SCEC-
214  pSGBs than apes, while both are much higher than lemurs and new world monkeys
215  (Figure 3E). A similar pattern was also observed for their ANI to the closest SCEC-
216 hSGBs (Figure 3E). These results indicate that the remote horizontal transfer events
217  substantially impacted the distribution of SCEC-hSGBs in the gut of modern humans.
218

219  Defining SCECs favors profiling the evolutionary trajectory of hSGBs relative to their

220  pSGB counterparts. We compared genome size for each intra-SCEC pair of hSGBs and

10
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221 pSGBs, finding apparent genome reduction in hSGBs (mean 5.8% for genomes >95%
222  completeness, Figure 3F). The reduction appears attributable to both gene loss and
223  changes in gene length but not encoding density (Figure 3F and Fig S3C). Meanwhile,
224  SCEC-hSGBs have smaller genomes than other hSGBs (P < 0.001, two-sided Student’s
225  t-test, Fig S3D). In terms of functions, such genome reduction can be partially explained
226 by the loss of CAZy genes (Figure 2B). Additionally, the top shrinking gene categories
227  (annotated by Clusters Orthologous Genes, COGs) are those related to cell motility and
228  energy production & conversion (Fig S3E).

229

230  Wealso investigated the distribution of SCEC-hSGBs in two human populations (China
231  and Europe) using the IGC database.** We found SCEC-hSGBs comparably distributed
232 in healthy populations from China and Europe (Figure 3G). Interestingly, we observed
233  adecrease of SCEC-hSGBs in disease individuals for both China (type-2 diabetes, T2D)
234  and Europe (inflammatory bowel disease, IBD, P <0.001, two-sided Mann-Whitney U
235  test, Figure 3G), preliminarily suggesting SCEC-hSGBs may positively implicate with
236  host health.

237

238  Profiling co-evolutionary traits of hSGBs

239  Given our interest in gained or strengthened functions of hSGB, we focused on the
240  hSGB-enriched co-evolutionary traits (annotated by COG). We identified 839
241  candidate COGs based on prevalence and abundance by comparing all hSGBs and

242  pSGBs. Among them, as recaptured in metagenomic data, 695 are defined as the co-

11
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243  evolutionary traits of hSGBs compared with pSGBs (Figure 4A and Table S8, see
244 Method and Figure S4A-C). Further examination revealed that only a small fraction
245 (135, 19.4%) of these trait COGs are also enriched in SCEC-hSGBs compared with
246  their SCEC-pSGB counterparts. Nevertheless, the remaining 560 COGs exhibit a strong
247  positive correlation with the 135 COGs among all hSGBs, and SCEC-hSGBs typically
248  had low numbers of total trait COGs (Figure 4A), possibly determined by their small
249  genome size.

250

251  We detected universal enrichment of trait COGs across all taxonomic ranks from
252  phylum to genus (Figure 4B), ruling out the possibility that the signal arose from a few
253  large taxa. For the top 20 trait COGs (requiring >20% frequency across all hSGBs,
254  ranked by enriching fold of prevalence), we observed no opposing enrichment trends
255  between different phyla (Figure 4C), supporting that the enrichment resulted from the
256  general selection of host gastrointestinal environment rather than niche differentiation
257  among taxa. Half of the top 20 COGs fall into two functional categories, oxidative stress
258  (n=15) and transporters (n = 5).

259

260  Because these traits were determined through genomic and metagenomic comparisons,
261  we aimed to investigate whether they represent long-term hSGB evolutionary traits or
262  merely reflect very recent niche adaptation in modern humans (i.e., the rapid change of
263  modern lifestyle). In light of the human “Out of Africa” history, a transitional status in

264  Africans would support these enrichments as more likely long-term evolutionary traits.

12
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265  We thus quantified the relative abundance of the 695 COGs in fecal metagenomes of
266 WNHPs (n = 284), non-Africans (n = 666), and Africans (n = 356, Table S9).!3-22:23:35
267  * The 356 African metagenomes include samples from the Hadza hunter-gatherers of
268  Tanzania (n = 67), who have a remote genetic background to other humans, other rural
269  Tanzanians (n = 50), and samples from five other countries (n = 239). As shown in
270  Figure 4D, relative abundance and principal coordinate analysis (PCoA) support the
271  transitional status of Africans. Relative abundance of the COGs followed a pattern of
272  non-African human > Hadza = other Tanzanian > WNHP. A similar pattern was
273  observed for other African populations (Fig S4D). These findings suggest that these
274  COGs are more likely co-evolutionary traits due to their successive enriching history
275  in humans.

276

277  Given similar COG abundance in Hadza and other rural Tanzanians with distinct
278 lifestyles (hunter-gathering vs. rural), we posited that diet may exert limited effects on
279  the distribution of the trait COGs in the human gut microbiome. Consistent with this
280  hypothesis, we detected no difference in gut metagenomes between vegetarians and
281  omnivores (Figure 4E), nor among two short-term diet-intervention cohorts (Fig
282  S4E&F). Moreover, we also compared the captive primates to wild ones (the same
283  species of Pan troglodytes and Gorilla gorilla) and found that they have
284  indistinguishable PCoA patterns, with captives even exhibiting a marginally lower
285  abundance of trait COGs than wild counterparts (Figure 4F). However, comparisons of

286  the wild mammalian herbivores, omnivores, and carnivores support the diet-dependent

13
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287  distribution of these COGs in the gut microbiome (Figure 4G). In particular,
288  carnivorous mammals enriched the trait COGs compared with herbivores and
289  omnivores. Moreover, we detected an increasing abundance of these traits in diseased
290  EU and CN individuals (Figure 4H), preliminarily indicating that the trait COGs may
291  negatively correlate with human health, which requires further investigation.

292

293  Enrichment of co-evolutionary traits in gut microbiome is linked with several
294  diseases

295  We collected 13 datasets examining associations of the gut microbiome with available
296  metagenome and eight diseases (ACVD, atherosclerotic cardiovascular disease, 1 case;
297  NAFLD, nonalcoholic fatty liver disease, 1 case; HTN, hypertension, 1 case; LC, liver
298  cirrhosis, 1 case; CD, Crohn’s disease, 3 cases; OB, obesity, 1 case; RA, rheumatoid
299 arthritis, 1 case; T2D, type 2 diabetes, 2 cases; UC, ulcerative colitis, 2 cases, see Table
300  S10 for detailed information).**->° We selected datasets based on the following criteria:
301 1) the diseases are strongly related to metabolism or autoimmunity; 2) studies
302  concluding gut microbiome-disease associations; and 3) sound control cohort (in terms
303  of geography, age, efc.). Given that 135 of the 695 trait COGs are also enriched in
304 SCEC-hSGBs, which have been implicated in promoting healthy status (Figure 3G),
305 we compared the relative abundance of total and the remaining 560 COGs between the
306 disease and control group for each dataset. Among the 13 datasets, we detected
307  significant differences in four datasets of three diseases (1 ACVD case; 1 NAFLD case;

308 CD, 2 of 3 cases: CD_2 and CD_3), all showing a higher relative abundance of trait

14
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309 COGs in disease versus control groups (P < 0.05, two-sided Student’s #-test, Figure 5A,
310  see Fig S5A for the other eight datasets). NAFLD only showed an enrichment of 560
311  COGs, while the others enriched both groups. Figure 5B showed that the COG patterns
312  of disease and control groups diverged in three of the four datasets (in PCoA,
313  permutational multivariate analysis of variance (PERMANOVA), P < 0.05). The
314  permutation test excluded that the enrichment of these trait COGs is dependent on
315 overall microbiome divergence between control and disease groups in ACVD, CD 2,
316 and CD 3 (Figure 5C). Furthermore, drug intake may not significantly impact the
317  distribution of the trait COGs (Fig S5B).

318

319 In addition, our analysis revealed that the trait COGs, regardless of the 695-, 560-, or
320  135-COGs, had a strong predictive power for host disease in all four datasets, with area
321  under curve (AUC) values ranging from 0.76 to 0.96 (Figure 5D). The 135 COGs
322  exhibited slightly lower AUC values than the other two, possibly due to its limited COG
323  number or their enrichment in SCEC-hSGBs. The top 50 trait COGs with the highest
324  importance during the random forest prediction based on 695 COGs showed no
325  significant overlap among datasets (all P >0.05, permutations = 100,000) (Figure 5E).
326  Only 27 traits were shared by more than one dataset, and even for the two CD datasets,
327  the shared top trait COGs were merely 5. These results suggest that the trait COGs are
328  dataset-specific. However, we did observe a higher proportion of transporter COGs
329  distributed in the top trait COGs compared to the others (Figure SF).

330
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331  Defining super enrichers of the co-evolutionary traits and tracking their potential
332 source

333  The above results suggest that the enrichment of co-evolutionary traits in the gut
334  microbiome is likely linked to several human diseases. We then identified trait COG-
335 enriching hSGBs and investigated their implications for host health. Based on the
336  matrix of the trait COGs, we detected 202 super enricher hSGBs (designated as SUEN-
337  hSGBs) with 2-fold enrichment of the trait COGs (1,203 on average in SUEN vs. 627
338 in all hSGBs) and three other groups designated as Group A (average encoding COGs:
339  379), B (average encoding COGs: 601), and C (average encoding COGs: 902) (Figure
340 6A). Most SUEN-hSGBs are affiliated with Firmicutes, Proteobacteria, and
341  Actinobacteria, but not Bacteroidetes, and exhibit relatively large genome sizes (Figure
342  6A and Table S11). Remarkably, SUEN-hSGBs are significantly underrepresented
343 among SCEC-hSGBs compared to all hSGBs (16 in 202 vs. 1,342 in 3,779, P =
344  1.17e—20, Fisher’s exact test). In terms of the distribution of the trait COGs, SUEN-
345  hSGBs are not only the generalists with higher coverage (71.2% + 8.7% vs. 52.9% +
346 12.9%) but also the functional enhancers with a higher copy number for detected COGs
347  (2.41+0.48 vs. 1.57 £0.24). Among the transporter-related COGs, SUEN-hSGBs were
348  significantly overrepresented compared to Group A and B (Fig S6A). Interestingly,
349  SUEN-hSGBs negatively correlated with Group A and B, which have a low number of
350 trait COGs in their genomes, but slightly positively correlated with Group C containing
351  moderate-enricher (Figure 6B). These results support that the trait COGs are

352  responsible for the niche differentiation of various gut microbial taxa.

16


https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.30.542569; this version posted June 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

353

354  Given the low proportion of the SUEN-hSGBs affiliated with SCECs, we are interested
355 in their source. We hypothesize that SUEN-hSGBs partially transferred from other
356 mammals, as an enrichment of the trait COGs in carnivorous mammals was observed
357  (Figure 4G). To test this, we profiled the distribution of SUEN-hSGBs-related taxa in
358 the gut metagenomes of WNHPs, wild herbivorous, omnivorous, and carnivorous
359 mammals using a taxonomic marker gene (ribosomal protein L1, COGO0081) (see
360  Methods). The SUEN-hSGB-related taxa (= 90% or 95% amino acid identity for
361 metagenomic reads) were much more abundant in carnivores than in WNHPs,
362  herbivores and omnivores (All P<0.01, two-sided Student’s ¢-test, Figure 6C). Thus,
363  we propose that carnivorous mammals were potential sources of some SUEN-hSGBs,
364  although the detailed history of transfer and diversification remains unclear.

365

366 SUEN-and SECE-hSGBs have opposite implications for gut microbiome dysbiosis
367 and human health

368  We then investigated the potential implications of the SUEN-hSGBs and SCEC-hSGBs,
369  which have shown a decreasing trend in diseased individuals (Figure 3G), for host
370  health. Firstly, we determined their relative abundances in the 13 datasets. As shown in
371  Figure 6D, SUEN-hSGBs and SCEC-hSGBs were significantly enriched in diseased
372  and healthy individuals, respectively, although their relative abundances varied greatly
373  among datasets.

374
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375  Secondly, we determined whether there was a correlation between these taxa and the
376  alpha diversity of the gut microbiome, which is a common indicator of dysbiosis.>!-*>
377  As shown in Figure 6E, the Shannon index for most 13 datasets positively correlated
378  with SCEC-hSGBs (10 of 13, P < 0.05) but negatively with SUEN-hSGBs (8 of 13, P
379  <0.05). Even those non-significant correlations were consistent in their direction with
380  only one exception (SUEN in CD 2, Spearman’s p = 0.26). The Shannon indexes were
381  calculated by removing either SCEC-hSGBs or SUEN-hSGBs. Alternative statistics
382 including these taxa yielded similar results (Fig S6B). The above results indicated that
383 the abundance of SCEC-hSGBs and SUEN-hSGBs oppositely correlate with the
384  diversity of the gut microbiome.

385

386  Thirdly, since two previous studies have provided the list of hSGBs positively or
387  negatively related to general human health based on large cohorts, we then investigated
388  how the SCEC-hSGBs and SUEN-hSGBs are involved in these marker taxa (36 for
389  health-positive and 39 for health-negative, see Table S12 for the taxonomic
390  information).’*** The results showed that SCEC-hSGBs were more biased towards
391  health-positive hSGBs (P < 0.001, Fisher’s exact test, Figure 6F), whereas SUEN-
392  hSGBs showed the opposite pattern (Figure 6G). Moreover, we found that other hSGBs
393 positively correlating with the total SUEN-hSGBs in the metagenomes were also
394  significantly related to health-negative hSGBs (8 and 1 for health-negative and health-
395 positive hSGBs, respectively), while negatively correlating hSGBs were only health-
396  positive (n = 9). In addition, the sum of the trait COGs was significantly higher in
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397  health-negative hSGBs than in health-positive ones (Figure 6H).

398

399  Lastly, given the strong correlation or even causation between gut microbial metabolites
400  trimethylamine (TMA) and trimethylamine-N-oxide (TMAQ) and several diseases
401  such as ACVD, NAFLD, and IBD,**>>% we analyzed CutC (the choline-TMA-lyase)
402  in hSGBs, since it is the primary enzyme responsible for generating TMA.>7 Consistent
403  with the previous report,’® we found that the prevalence of CutC-encoding hSGBs is
404  rare (68 in 3,779, Figure 61&J), with even lower pSGB prevalence (Figure 6J). We
405  confirmed almost no intraspecific variation in encoding CutC (Fig S6C). In the
406  phylogenetic tree of CutC from hSGBs, the proteobacterial CutC, which form a unique
407  clade and all belong to Enterobacteriaceae, were exclusively found in SUEN-hSGBs
408  (Figure 61). Notably, the relative abundance of CutC-encoding Enterobacteriaceae in
409  fecal metagenome is associated with urinary TMAO level,” suggesting the related taxa
410  are responsible for TMA production. Moreover, the frequency of encoding CutC is
411  approximately 10-fold higher in SUEN-hSGBs than in the other hSGBs, whereas no
412  significant difference was observed for the SCEC-hSGBs with the background (Figure
413 6l).

414

415  Together, these results indicated SCEC-hSGBs and SUEN-hSGBs had opposite
416  implications on host health.

417

418  Discussion
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419  In this study, we established a genomic database of gut microbial species from WNHPs
420  to define co-evolutionary species and traits of hSGBs. It is important to note that the
421  pSGBs database is obviously unsaturated because there are over 500 extant primate
422 species,® which may have intraspecific divergence in their gut microbiome.®! Therefore,
423  amore comprehensive collection of samples from primates will improve the reliability
424 of'the list of co-evolving species and evolutionary traits. However, the rarefaction curve
425  shows that increasing SCEC-hSGBs are approaching saturation (Fig S1B), indicating
426  the current pSGB database fairly represents co-evolutionary lineages.

427

428  Few pSGBs are shared across wild primates and human, suggesting geographical
429  isolation dominates wild primate gut microbiome histories, at least for a short term.
430  This confirms the irreplaceability of wild animal gut microbiome studies'* and
431  potentially supports allopatric speciation as a major driving force of gut microbe-host
432 co-speciation.* However, many hSGBs show host-jumping events, which may occur in
433  the long-run evolutionary history. The Homo lineage has increased carnivory over 2
434  million years relative to other primates,®® which may increase the chance of transferring
435  gut microbes from the primate preys, leading to the initiation of co-evolution with the
436 new host.

437

438  The evolutionary trend for hSGBs can be observed at different timescales. For a very
439  short period, such as within a host lifespan or even a few years, evidence has shown

440  detectable mutation and gene gain/loss events that suggest adaptations.®*%* As the
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441  timescale increases slightly, strong selective functional potentials can introduce
442  apparent adaptive changes in the genome.'? For example, our results show an increased
443  prevalence of ARGs in hSGBs following <100 years of the corresponding antibiotic
444  usage. Other studies have demonstrated that population-level dietary significantly
445  impacts the intraspecific CAZy profiles of hSGBs.% On the long-term co-evolutionary
446  scale across host species, our study observed an evolutionary trend of genomic
447  reduction for SCEC-hSGBs. Extreme genome reduction is well-known in symbiotic
448  bacteria compared with their free-living relatives.®®%” However, the genomic reduction
449  in SCEC-hSGBs, although to a lesser extent, was based on a comparison with
450  corresponding SCEC-pSGBs, which are also symbionts. This can be an adaptive
451  outcome of the putative higher stability of the human gut nutritional condition
452  compared to that of wild primates. Supporting this, lost genes were biased towards cell
453  motility and energy production functions. Decreasing chemistry complexity of food,
454  reflected in the simplified GH families in hSGBs, as well as the putatively increased
455  host digestive capability (much lower stomach pH in human than primates),®® may also
456  drive the reduction.

457

458  Although the enriching traits of hSGBs compared to pSGB were functionally diverse,
459  a hallmark of hSGBs is those adaptive to oxidative stress, suggesting higher intestinal
460  oxidative toxicity in humans than in wild primates. Lifestyle factors like high-fat diets
461  and sleep deprivation increase gut ROS.%*7° While human diets contain more fat than

1

462  wild primates,”! comparisons of vegetarian and omnivorous humans and results of
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463  short-term high-fat diet studies do not support diet-induced enrichment of trait COGs.
464  In contrast, we found the traits enriched in carnivorous vs. omnivorous or herbivorous
465  mammals. One possible explanation for this contradiction is that only long-term dietary
466  changes or extreme short-term changes, and permanent dietary shifts that induced
467  irreversible host physiological alterations are responsible for the enrichment of trait
468  COGs. As it has been known that the trophic level can extensively link with adaptive
469  changes in host physiological and metabolic features.®®’?

470

471  The co-evolutionary lineages in hSGBs positively correlated with host health,
472  consistent with the hypothesis that long-term co-evolution tends to select mutualisms
473  instead of antagonisms.” This is also consistent with the proposal that the loss of
474  specific bacterial species from our ancestral microbiome could result in an increased
475  risk of chronic diseases.’* A previous study based on the rRNA genes showed that
476  human gut bacterial genera containing more co-speciating taxa across mammals were
477  negatively correlated with IBD,’ suggesting links between the long-term co-evolving
478  bacteria and host immunity. Our results showed that the SCEC-hSGBs strongly
479  positively correlated with the alpha diversity of the gut microbiome, indicating an
480  association with eubiosis, though the causality is unclear.

481

482  In contrast, the enrichment of the co-evolutionary traits in the gut microbiome is

483  associated with certain human diseases. The super enrichers of these traits positively

484  correlated with host unhealth and dysbiosis. Moreover, besides correlation,
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485  disproportionate TMA producers associated with SUEN-hSGBs have the potential to
486  cause specific diseases as the metabolites have a significant impact on human health.”
487  Notably, the SUEN-hSGBs contain a biasedly lower proportion of SCEC ones,
488  indicating most of them are outsiders that transferred into the human gut more recently.
489  Our preliminary analysis suggested carnivorous mammals as a potential source of some
490  SUEN-hSGBs, though transfer histories remain unprofiled. The much higher CutC
491  frequency in SUEN-hSGBs further supports the hypothesis, as choline, the substrate of
492  Cuts, is more abundant in animal tissues than in plants. More importantly, the
493  disproportional and key TMA producers affiliated with SUEN-hSGBs suggest their
494  potential role as causative agents for certain diseases, considering the direct impact of
495  the metabolites on human health.”>7

496

497  We posit that the prevalence of these super enrichers can be at least partially explained
498 by niche selection. It is supported by the fact that their co-occurring taxa are more likely
499 traits enrichers and negatively correlated taxa encoding fewer trait COGs, strongly
500 suggesting the trait COGs play certain roles in their niche adaptation. Within the traits,
501  COGs of transporters are highly represented in SUEN-hSGBs. It has been reported that
502  encoding redundant transporters can increase the fitness of gut bacteria.”” According to
503  our results, the enrichment of transporters also seemed related to several diseases
504 according to the random forest predictive results. Moreover, a previous study has
505  proposed generalists with larger genomes have advantages in unstable environments.”®

506  The SUEN-hSGBs with larger genome sizes may convey heightened competitive
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507 ability against other taxa, including SCEC-hSGBs, in both pre-disease and disease
508  conditions. The loss of SCEC-hSGBs and over-enrichment of the traits in the gut
509  microbiome reflect (or are selected by) the host gastrointestinal status that deviates from
510 evolutionary and ecological normality.

511

512  In conclusion, our study characterized long-term co-evolutionary lineages and traits of
513  human gut microbe compared to an updated gut microbial genome database of WNHP
514  and revealed their opposing correlations with the host's health status. The SUEN- and
515  SCEC-hSGBs may serve as new biomarkers, beyond those obtained from cohort studies,
516  for predicting and diagnosing host health or disease. Defining the SCEC-hSGBs may
517  provide valuable guidance for developing probiotics and other potential gut microbial
518  resources, as they are theoretically safer and better adapted to the host.

519
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Legends of Figures

Figure 1 The updated genomic database of gut microbes from WNHPs.

A) Phylogenetic tree of 25 NHPs based on the evolutionary timescale. Hosts from the
wild and captived sources are labeled by * and #, respectively.

B) Venn diagram of shared SGBs (ANI>95%) between the NHP database of this study,
the NHP database from NHP2019, and GTDB r95.

C) Shared SGBs between hSGBs and our NHP database or NHP2019 (ANI >95%)).
D) Phylogenetic tree of pSGBs based on concatenated 120 universal single-copy genes.
Only 1,536 bacterial SGBs with gaps in <60% of alignment columns are shown.

E) Pie chat indicates the host number of non-singleton genera (>2 SGBs) of pSGBs,
and the bar plot depicts the genome number of pSGBs and hSGBs in genera with >5

WNHP hosts.

Figure 2 CAZy and ARGs profile of pSGB

A, B) Number of CAZy families or genes of SGBs from different primate host
phylogenetic groups. Two-tailed Mann-Whitney U-test.

C) Volcano plot of enriched CAZymes in pSGBs (blue) or hSGBs (red). Only
CAZymes with >10% prevalence in either database were shown, and only the top five
enriched CAZys of each database were labeled. The dashed line indicates Pagj = 0.05.
Fisher’s exact test.

D) Most prevalent ARG classes in pSGBs and hSGBs. Only ARG classes with a

prevalence >5% in either database were shown. Fisher’s exact test.
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573 *, Padj < 0.05; *%*, Pagj < 0.01; ***, Pag; <0.001; n.s., not significant.

574

575  Figure 3 Defining and characterizing SCECs

576  A) Schematic of the definition of split clusters using stepwise increasing ANI values.
577  B) Determining the operational threshold of defining SCEC by stepwise increasing ANI
578  values. ANI=77% was selected as the threshold to define the co-evolutionary SGB
579  clusters. Fisher’s exact test.

580 ) Pie chat shows the proportion of SCECs in non-singleton clusters under ANI=77%.
581  The bar plot depicts the number of SCECs in the genera. Only genera with SCECs >3
582  are shown.

583 D) Correlation between the ANI value of SGBs within the SCEC with the divergence
584  time of their hosts (left panel). Only SCECs with > 6 host species were shown (point,
585  right panel).

586  E) The proportion (left panel, Fisher’s exact test) of SCEC-pSGB and their closest ANI
587  to hSGB in the four primate phylogenetic groups (right panel, two-sided Mann-Whitney
588  U-test).

589  F) Comparison of genome size and the number of encoding ORFs between pSGB and
500 hSGB within SCEC under different completeness thresholds. Paired two-sided
591  Student’s #-test.

592  G) The proportion of SCEC-hSGBs in CN and EU populations based on the ICG
593  database. Two-sided Student’s #-test.

594
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595  Figure 4 Defining the co-evolutionary traits of hSGBs and constraints affecting
596 their distribution

597  A) Overview of defining the co-evolutionary traits of hSGBs (top panel). The medium
598  panel depicted the distribution of 695 COGs in SCEC-hSGBs. The bottom panel
599  showed the correlation between 560 COGs and 135 COGs in hSGBs.

600  B) Comparison of 695 co-evolutionary traits between pSGB and hSGB. Genomes with
601  completeness >90% were considered, and the difference of 695 co-evolutionary traits
602  between pSGB and hSGB is calculated based on the average value of the total copy
603 number within the genome. The number of taxa pairs at each rank is shown in
604  parentheses.

605  C) Distribution and functional profile of the top 20 significantly enriched COGs in
606  hSGB (Fisher’s extract test with FDR corrected P<0.05). The dropline showed the fold
607  change of the prevalence of COGs in hSGB compared pSGBs at the phylum level. Only
608  COGs with a prevalence >5% in either database were displayed. The heatmap showed
609  the prevalence of these COGs in hSGB at the phylum level. The dashed line represents
610  the prevalence of COG is equal in both databases.

611  D-G) Boxplot (top panel) indicated the abundance differences of the 695 COGs across
612  metagenomic groups, and Euclidean distance PCoA based on the relative abundance of
613 695 COGs (bottom panel) shows its distribution pattern. Ellipses cover 90% of the
614  metagenome for each group. Two-sided Student’s #-test with FDR correction.

615  H) The abundance differences of the 695 COGs in CN and EU populations based on

616  the ICG database. Two-sided Student’s #-test.
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617 ¥, Pagj < 0.05; **, Pagj < 0.01; ***, P,qj <0.001; n.s., not significant.

618

619  Figure S The correlation between 695 evolutionary traits and disease

620  A) The abundance differences of 695 COGs and 560 COGs in the case and control
621  groups. Only four datasets, consisting of three different diseases (ACVD, 1 dataset;
622  NAFLD, I dataset; CD, 2 datasets) that exhibited significant enrichment for these traits
623  in the case group, are presented. Two-sided Student’s #-test with FDR correction. Pagj <
624  0.05; **, Pagj < 0.01; ***, Paq; <0.001; n.s., not significant.

625 B) Fold change in case and control groups based on the total abundance of 695 COGs
626  (red solid line) or simulated groups of 695 non-evolutionary traits (black dashed line, n
627  =10,000). One-sample #-test.

628  C) PCoA based on the Euclidean distance indicated the distribution pattern of 695
629  COGs in case and control groups. Ellipses cover 90% of the metagenome for each group.
630 PERMANOVA, permutations = 999.

631 D) Performance of the random forest classifier based on 695 COGs, 560 COGs, and
632 135 COGs. The mean AUC and 2-fold standard deviation of 20 bootstraps were shown.
633  E) The network depicted the top 50 important COGs in each dataset identified by the
634  random forest classifier based on 695 COGs. The shared COGs are connected by the
635  red line.

636  F) The proportion of transporters in the top important traits. Fisher’s exact test.

637

638  Figure 6 The opposite indications for host health of SUEN-hSGBs and SCEC-
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639  hSGBs

640  A) Distribution of 695 co-evolutionary traits in hSGBs (heatmap) and the total copy
641  number of 695 COGs (barplot). The average copy number of 695 COGs in all hSGBs
642  or each group was indicated in parentheses. The COGs (in row) were clustered based
643  the Spearman’s correlation.

644  B) Correlation between SUEN-hSGBs and the other three groups in thirteen disease
645  cohorts. Spearman's p between groups in each dataset was calculated based on the
646  proportion of the four groups in each sample. The simulated correlations of each dataset
647  were calculated based on the four counterparts (by group size) that were randomly
648  assigned hSGBs in each sample (n = 10,000). Paired two-sided Mann-Whitney U-test.
649 Mean=£s. €.

650  C) The proportion of SUEN-related species in WNHP and mammals with different diets.
651  Mean =+ s. e. Two-sided Student’s #-test with FDR correction. *, Pagj < 0.05; **, Pagj <
652  0.01; ***, Pag; < 0.001; n.s., not significant.

653 D) The proportion of SUEN- and SCEC-hSGBs in control and case groups. Paired two-
654  sided Student’s #-test.

655 E) Spearman's p between the relative abundance of SUEN- or SCEC-hSGBs with the
656  alpha diversity of the gut microbiome.

657  F) A higher proportion of SCEC-hSGBs were detected in healthy-positive species.
658  Fisher’s exact test.

659  G) The distribution of SUEN-hSGBs and their related species in healthy indicated

660  species.
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H) The total copy number of 695 COGs in healthy indicating species. Two-sided
Student’s #-test.

I) Maximum-likelihood phylogenetic tree of CutC. The SGBs affiliated with SCEC or

SUEN were labeled by branch colors (red, SCEC; purple, SUEN; *, both).

J) The proportion of SGBs encoding CutC in the two databases and SCEC- or SUEN-

hSGBs. Fisher’s exact test.
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683  Materials and methods

684  Public data collection

685  We collected 321 public metagenomes spanning 23 WNHPs for an updated genomic
686  database of NHP.!”"2-3 In addition, we also collected 2,096 fecal metagenomes of
687  humans, including 1,890 from studies on gut microbiome-metabolism/autoimmunity
688  correlations,***" 356 from Africans,!>?**%353% and 116 from diet investigation or
689  intervention.®>’#" For the disease cohorts, we only selected one metagenome per
690 individual as a representative. Furthermore, we also collected 91 metagenomes from 71
691 mammals with different diets.®' Details are in Tables S1, S9, and S10.

692  We referred to publicly available prokaryotic genomes from three studies, including 1)
693  the human gut MAG/SGB database constructed by Pasolli et al.(2019),%* with MAGs
694  and SGBs from other body sites removed; 2) the genomic database of NHPs;!6 3) the
695 reference genomes from GTDB database r95.%!

696

697  In addition, we referred to 81 gut bacterial species associated with human health or
698  disease determined in two large cohort studies.”®>* Given that species names may be
699  inconsistent across taxonomic systems, for these species, we selected a representative
700  genome from NCBI and then determined its corresponding representative genomes in
701 hSGB using fastANI (v1.3, ANI >95%; see Table S12 for details).*’

702

703  Fecal sample collection and metagenomic sequencing

704  We collected fecal samples from wild M. thibetana (n = 12) in Wuyishan National
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705  Nature Reserve and Da’anyuan, Nanping, Fujian province, China. Additionally, we
706  collected fecal samples of captive M. mulatta (n = 6), M. mulatta (n = 4), and M.
707  thibetana (n = 3) from the Zoo of Xiamen and Nanping, Fujian province, China. The
708  fresh feces were collected in sterile collection tubes containing 70% ethanol. All
709  samples were shipped with dry ice and stored at —80°C freezer until use. DNA of 25
710  samples collected in this study was extracted using FastDNA® SPIN Kit for Feces (MP,
711 USA) DNA extraction kit. The concentration and quality of DNA were determined by
712 NanoDrop and agarose gel electrophoresis, respectively. The metagenomic library was
713 constructed using NEBNext® Ultra DNA Library Prep Kit for [llumina (NEB, USA).
714  The samples were sequenced with the PE150 strategy on Illumina Hiseq Novaseq 6000
715  platform (commercial service, Novogene, Beijing).

716

717  Genome reconstruction and species-level genome clustering

718  We filtered the low-quality reads from all metagenomes of NHPs using Trimmomatic
719 v.0.38% and assembled the filtered reads using metaSPAdes (v.3.9.1, parameters: -k 33,
720 45, 55; for paired-end sample) or MEGAHIT (v1.1.4, for single-end or metagenomes
721 with bases >15 Gb).333% We binned scaffolds >1,000bp using MetaWRAP v1.2.1 with
722 two binners (MaxBin2 and metaBAT2, default parameters),**” and refined MAGs
723 using the bin_refinement module. CheckM (v1.0.7; lineage-specific workflow) was
724  used to estimate the quality of MAGs and only those with genome completeness >50%
725  and contamination <5% were kept.® MAGs were clustered using dRep (v2.6, parameter:

726 -p 50 -ignore genomequality -pa 0.70 -sa 0.95 --S_algorithm fastANI) at the threshold
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727 of 95% ANI by two-step cluster.®® The 2,036 MAGs with the best quality of each SGB
728  cluster were chosen as the representative genomes. We dereplicated the MAGs from
729  NHP2019 using the same pipeline, resulting in 1,232 SGB clusters.

730  We aligned the filtered reads of the gut metagenomes from WNHPs to the contigs of
731 4,942 MAGs using Bowtie2 v2.3.4.3 with default parameters,” and calculated the
732  mapping rate by dividing the total mapped reads by all quality-filtered reads of each
733 sample.

734

735  Taxonomy assignment and phylogenetic analysis

736  Taxonomy assignment for MAGs and SGBs was determined by GTDB-Tk (v1.3.0;
737  ‘classify_wf” workflow and default parameters) based on the GTDB database (release
738 95).319! Phylogenetic analyses of 1,637 bacterial pSGBs based on concatenation of 120
739  ubiquitous single-copy genes.’! The 120 markers were extracted from the annotation
740  results of GTDB-Tk and were aligned using Mafft v7.407.°> Genomes with >60% gaps
741  in the concatenated alignment were removed. The phylogenetic tree was inferred using
742  FastTree v2.1 under the WAG + GAMMA models and visualized via the iTOL.%>%*
743

744 Functional annotation

745  The open reading frames (ORFs) of pSGBs and hSGBs were predicted using Prodigal
746 v2.6.3.% The functional profile of each SGB was performed using eggNOG-mapper
747 (v2.1.6, -m diamond) with eggnog database v5.0 under default parameters.®®"’

748  CAZymes were annotated using the run_dbcan,”® and the substrates categories of the
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749  top 5 CAZy families enriched in either pSGB or hSGB were manually retrieved from
750  the nr database.”” ARGs were annotated using DeepARG v2.!%

751  For CutC (encoding the choline trimethylamine-lyase) annotation, a total of 1,184
752  proteins affiliated with K20038 (KEGG ortholog, choline trimethylamine-lyase) from
753  pSGBs and hSGBs were annotated against the nr database using BLASTP (evalue

754  <le—5, -max_target seqs 100).”

Alignments with annotation targeted to choline
755  trimethylamine-lyase were filtered with identity >45% and coverage >50%.°® Filtered
756  sequences were aligned using Mafft v7.407,° and the phylogenetic tree was inferred
757  using RAXML v8.2.12 with the parameters ‘-# 100 -m PROTGAMMAAUTO --auto-
758  prot=aic’.!! Finally, 73 protein sequences from 72 SGBs that formed a monophyletic
759  branch were determined as CutC. To evaluate the intraspecific divergence of CutC, up
760  to 100 high-quality MAGs were randomly selected for 56 hSGB clusters (56 CutC
761  encoding species). Protein sequences were aligned against the 73 CutC sequences using
762  BLASTP (evalue <le—5),” and alignments were filtered with identity >90% and
763  coverage >90%.

764

765  SCEC definition

766  In this study, we used an ANI-based method to define co-evolutionary clusters. To
767  determine the operational threshold for co-evolutionary clusters, we calculated the split
768  ratio for non-singleton SGB clusters by stepwise increasing the ANI cutoff (from 70%

769  to 95%, 1% per step) using dRep (v2.6.2, cluster module; options ‘--clusterAlg average

770 --S_algorithm fastANI --cov_thresh 0.1°).% Only 107 genera with >10 SGBs were
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771 considered to guarantee enough non-singleton clusters. For instance, there are 309 non-
772 singleton clusters under the ANI cutoff at 70%, and 8 of them split after using the cutoft
773  at 71%. Therefore, the split ratio for ANI-71% is 2.6%. Fisher’s exact test was for
774 1identifying the first significant increase in split ratio. Finally, after combining all pSGBs
775  and hSGBs, the co-evolutionary clusters were determined using the cutoff ANI-77%.
776 Therein, those containing both pSGB and hSGBs were referred to as SCEC ones.

7

778  Co-evolutionary traits definition

779  To identify co-evolutionary traits that enriched in hRSGB, the Mann-Whitney U-tests
780  (abundance-based) and Fisher’s exact test (prevalence-based) were used for comparing
781 1,635 high-frequency (frequency >20%) COGs between interspecific hSGBs and
782  pSGBs. We determined 839 COGs significantly enriched in hSGB (hSGB versus
783  pSGB >1 and FDR-corrected P <0.05) using both methods. Among them, 695 COGs
784  as co-evolutionary traits because they showed significant enrichment in metagenomes
785  of healthy populations compared to WNHP.

786

787  Quantification of functional genes in metagenomes

788  Considering the under-representation of pSGBs in the widely referred genome
789  databases, we developed a pipeline to quantify the relative abundance of functional
790 genes and SGB in metagenomes (Fig S4A, B, and C). Firstly, we de-replicated
791  annotated ORFs from pSGBs and hSGBs with 95% identity and 90% coverage using

792 CD-HIT v4.7,' including representatives in our customized database. Secondly, we
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793  subsampled quality-filtered metagenomes to 10 million reads to reduce the
794  computational burden and minimize any potential distortion caused by unequal
795  sequencing depth. We included all reads for metagenomes <10 million reads and
796  removed metagenomes <l million reads. Thirdly, the reads were aligned against the
797  customized database using DIAMOND BLASTX (-evalue <le—5, -max_target seqs =
798 1),!19 and alignments are filtered with identity >50% and coverage >80%. The filtered
799  result was normalized to per million reads for each metagenome. Finally, we observed
800  high annotation rate variation between metagenomes, potentially from non-prokaryotic
801  DNA proportions, so we normalized using the ribosomal protein L1.

802  Our pipeline achieved higher annotation rates for WNHP and human gut metagenomes
803  thanthe HUMANNS3 (uniref90 201901b_full database, default parameters, Fig S4B).!%
804  Correlation coefficients among three conserved proteins (ribosomal protein L1, L3
805 (COGO087), and S3 (COGO0092)) were also higher in our pipeline than in the
806  HUMANN3 results (Fig S4C).

807  To quantify the SUEN-related taxa in metagenomes of WNHPs, wild herbivorous,
808  omnivorous, and carnivorous mammals, we aligned the reads to the COG0081 database
809  from hSGB and pSGBs using DIAMOND BLASTX. The alignments were filtered with
810  2>90% or 95% amino acid identity and >80% coverage and then normalized to per
811  million reads for each metagenome. For each threshold, the abundance of SUEN-related
812  taxa is characterized by the ratio of the number of reads mapped to SUEN-hSGBs to
813 the total number of reads mapped to all SGBs under identity >50%.

814  For quantifying hSGBs in metagenomes, the relative abundance of each species is

37


https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.30.542569; this version posted June 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

815 computed by totaling the relative abundance of 120 universal single-copy genes.

816

817  IGC data analysis

818  To define the proportion of SCEC-hSGBs in different regions, the ribosomal protein
819 genes (ribosomal protein L1) in the IGC database were aligned against the
820  corresponding ones of the hSGBs using BLASTN,**® and alignments were filtered
821  with identity >95% and coverage >90%. The filtered sequences were labeled as SCEC-
822  hSGB, other-hSGB (based on the respective hSGB group), or others (sequences without
823  hits). The proportion of the CN and EU populations was calculated for each
824  metagenome based on the gene-level relative abundance table offered by ICG.

825

826  Random forest classifiers

827  We built random forest classifiers using scikit-learn to evaluate trait COG performance
828  in predicting case/control groups.'® The dataset was randomly split into training and
829  test sets (7:3) 20 times for each cohort, and the model was trained using optimized
830  parameters to achieve the predicted performance. Mean AUC was used to evaluate the
831  performance of the classifier. The top 50 COGs, determined by importance, were
832  subsequently analyzed.

833

834  Network analysis

835  Correlations of hSGBs were calculated using FastSpar v1.0.0 based on the relative

836  abundance of a combination of 13 disease datasets.!*® Notably, due to the unbalanced

38


https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.30.542569; this version posted June 1, 2023. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is
made available under aCC-BY-NC 4.0 International license.

837  sample size of these studies, the metagenome of ACVD and T2D 1 were randomly
838 sampled to 200 (100 samples each in the control and case group) to reduce
839  computational bias. To reduce computational effort, species with a prevalence <10%
840  were excluded from the analysis. We used permutation testing (n = 5,000) and
841  Benjamini-Hochberg correction for multiple testing to generate P values. The network
842  was visualized using Cytosacpe v3.9.1.1%

843

844  Phylogenetic group, diet, and divergence time of NHPs

845 The phylogeny and divergence time of primates are retrieved from Timetree
846  (http://timetree.org/). The dietary of primates is collected from Animal Diversity Web

847  (https://animaldiversity.org/).

848

849  Statistical analysis and data visualization

850 We calculated alpha diversity using the Shannon index based on hSGB relative
851  abundance in metagenome (Vegan R package).!”® The PCoA was performed using the
852  vegan R package based on the normalized relative abundance matrix of 695 co-
853  evolutionary traits in each metagenome. The difference in clustering patterns based on
854 695 co-evolutionary traits between the control and case groups was tested using
855  permutational analysis of variance. Significances of the shared COGs of the top
856  important traits between the four datasets were inferred using simulated sampling based
857 on the multivariate hypergeometric distribution (permutations = 100,000; Purrr R
858  package).
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We performed statistics in R v4.1.3. We report Student’s #-tests, Mann-Whitney U tests,
Fisher’s exact tests, Chi-Square tests, and Benjamini-Hochberg false discovery rate

corrections for multiple hypothesis testing.

Data and code availability

The raw sequencing data of non-human primates in this study are available in the
Sequence Read Archive (SRA) under Bioproject PRINA932532. MAGs recovered in
this study are available in the FigShare repository

(https://doi.org/10.6084/m9.figshare.22117169).
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