

1 **Opposing implications of co-evolutionary lineages and traits of gut**
2 **microbiome on human health status**

3

4 Hao Li,¹ Junliang He,¹ Jieping Liang,¹ Yiting Liang¹, Wei Zheng¹, Qingming Qu¹, Feng Guo^{1*}

5

6 ¹State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University,
7 Xiamen, China

8 *Correspondence: fguo.bio@xmu.edu.cn

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23 **Abstract**

24 Little is known about the co-evolutionary history of the human gut microbe and its
25 relevance to host physiology. Here, we constructed a gut prokaryotic genomic database
26 of wild primates (pSGBs) and compared it with the human gut prokaryotic database
27 (hSGBs) to define shared co-evolutionary clusters (SCEC-hSGBs) and co-evolutionary
28 traits of hSGBs. We analyzed the evolutionary trends of specific functions like
29 carbohydrate-active enzymes and antibiotic resistance in hSGBs and uncovered host-
30 jumping events and genome reduction tendencies in SCEC-hSGBs. Intriguingly, the
31 SCEC-hSGBs and the super enrichers of the traits (SUEN-hSGBs), which are
32 putatively partially derived from carnivores, showed opposite implications for host
33 health status. Specifically, SUEN-hSGBs are enriched in various diseases, showing a
34 negative correlation with gut biodiversity and disproportionate contributions to the
35 known health-negative marker taxa and metabolite. Our study provides insight into the
36 origin and adaptability of human gut microbes and references for developing probiotics
37 and microbiome-based host health prediction.

38

39 **Keywords:** wild primates; genomic database; genome reduction; antibiotic resistance
40 genes; carbohydrate-active enzymes

41

42

43

44

45 **Introduction**

46 Profound and sophisticated metabolic and immune interactions between the gut
47 microbiota and host are primarily built through their co-evolutionary history.¹⁻⁴
48 According to Janzen's definition,⁵ providing evidence for bidirectional co-evolution of
49 the host and microbiome is challenging.^{4,6} The term co-evolution in this context refers
50 solely to the evolutionary history of the gut microbiome within a host lineage,
51 regardless of horizontal transferring events. While various factors influence the
52 taxonomic and functional characteristics of the gut microbiome among
53 phylogenetically related hosts, host phylogeny often fairly mirrors the microbial
54 community structure in many cases.^{7,8} The commonness of this phenomenon, coined
55 phylosymbiosis, suggests that continuous co-evolution of gut microbial community
56 across host species may extensively exist.⁹ However, other factors such as sharing
57 similar living environments and diets among closely related hosts may also drive
58 phylosymbiosis.^{4,10}

59

60 In addition to the community-level co-evolution, a few studies focused on gut microbial
61 intra-lineage co-evolution among hosts,¹¹⁻¹³ providing insights into long-term
62 interactions between symbionts and hosts. Tracing co-evolutionary lineages is crucial
63 to understand the mechanisms behind co-evolution and co-adaptation between hosts
64 and microbes, since this approach helps to limit interference from recently horizontally
65 transferred taxa with unknown origins. Although both intraspecific (i.e.,
66 microevolutionary scale) and interspecific (i.e., macroevolutionary scale) gut microbial

67 lineages have been proposed among related mammals, those co-evolutionary clades
68 spanning hosts diversified millions of years ago are more likely intra-genus multi-
69 specific clusters.^{11,12} So far, a comprehensive list of long-term human gut microbial co-
70 evolutionary lineages transmitted from or among the primate ancestors is lacking. To
71 identify this list, we must compile a reference genome database of gut microbes from
72 wild non-human primates (WNHP), as captive primates exhibit significant disruption
73 in their gut microbiome compared to wild individuals.^{14,15} Therefore, although a
74 genome database of gut microbes from various NHPs has been reported,¹⁶ an updated
75 genome database excluding captives is necessary.

76

77 Evolutionary traits represent ancestral inheritance accumulated over time during
78 continuous adaptation, providing survival benefits for offspring in similar
79 environments.^{17,18} However, such traits can also have adverse effects, such as human
80 mismatch diseases (e.g., diabetes, obesity, and cardiovascular disease) partially or
81 wholly caused by mismatches between long-term adaptation and recent rapid
82 environmental changes.^{19,20} Currently, the co-evolutionary traits of the gut microbiome
83 of *Homo sapiens* and their implications with host health are poorly characterized. The
84 optimal reference for profiling such traits should be the gut microbiome of the closest
85 relatives, i.e., other *Homo* species, but lack of sufficiently analyzable fecal samples
86 from extinct *Homo* species prevents this possibility.²¹ Thus, a suboptimal option is to
87 profile the long-term co-evolutionary trait of the human gut microbiome by referring to
88 our primate cousins.

89

90 We previously discovered a multi-species *Prevotella copri*-containing lineage co-
91 evolved with WNHPs and humans.¹¹ Here, we aimed to further characterize long-term
92 co-evolutionary human gut microbial lineages and traits and investigated their
93 implications on host health. We built an updated genomic database of gut prokaryotic
94 species containing over 1,600 species from various species of WNHPs. By comparing
95 this with human gut microbial genomes,²² we then defined the co-evolutionary species
96 and enriched traits in the human gut microbiome. Interestingly, we found that the co-
97 evolutionary lineages and super-enrichers of evolutionary traits were oppositely
98 correlated with human health status. Our results provided novel insights into how gut
99 microbiota adapts to continuously evolving human niches from an evolutionary
100 perspective. Additionally, we identified previously unidentified gut microbiome
101 biomarkers of health status.

102

103 **Results**

104 **An updated gut prokaryotic genome database from WNHPs containing 1,654 105 species-level genome bins (SGBs)**

106 We collected 346 fecal metagenomes from 25 primate species, including 15 *Macaca*
107 *thibetana* data contributed by this study, for recovering metagenome-assembled
108 genomes (MAGs) (Figure 1A and Table S1). Therein, 284 metagenomes were derived
109 from WNHPs,^{17,23-29} while the remaining 62 metagenomes were obtained from captive
110 *M. mulatta* ($n = 6$), *M. leonina* ($n = 4$), *M. thibetana* ($n = 3$), *Pan troglodytes* ($n = 18$),

111 *Gorilla gorilla* ($n = 22$), *Lemur catta* ($n = 5$), and *Papio anubis* ($n = 4$).^{23,28,30}

112

113 In total, we retrieved 4,942 bacterial and archaeal MAGs (>50% completeness and <5%
114 contamination) representing 2,036 SGBs (clustered by average nucleotide identity
115 (ANI) >95%, see [Table S2](#) for the information of each MAG and SGB) from the
116 metagenomes. These MAGs represent 54.6% (median value) of the corresponding
117 metagenomes, indicating high coverage of the SGBs in the gut microbiome of primates.

118 Nearly half of the SGBs (41.6%) were high-quality genomes with completeness >90%
119 and contamination <5% ([Fig S1A](#)). Strikingly, 78% of the SGBs lacked conspecifics in
120 the GTDB-r95 database ([Figure 1B](#)),³¹ suggesting that a substantial number of these
121 SGBs may uniquely distribute in the gut of primates. Even compared to the gut
122 microbial genomic database of NHPs constructed by Manara et al. (2019)
123 (NHP2019),¹⁶ over half of the SGBs ($n = 1,163$) were exclusively detected in our
124 database ([Figure 1B](#)).

125 To evaluate the impact of anthropogenic disturbance on the captive individuals, we
126 sorted the 2,036 SGBs into three catalogs based on their source: wild individuals,
127 captive individuals, and shared by both ([Figure 1C](#)). The shared SGBs appeared in a
128 low percentage ($n = 47$). The ANI values were determined between the SGBs in each
129 catalog and the human gut SGB collection (hereafter, hSGBs, $n = 3,779$).²² As expected,
130 captive primates harbored a much higher ratio of hSGBs-conspecific SGBs than the
131 wild ones (220 in 436 vs. 74 in 1,553, $P = 6.07e-124$, Chi-Square test). Similar
132 proportions were detected for the NHP2019 ([Figure 1C](#)). A plausible inference is that

133 these hSGBs-conspecific SGBs inhabiting in captive primates were horizontally
134 transferred from humans or related environments under captivity. Therefore, to
135 eliminate the effects of captivity, all SGBs solely contributed by captive individuals
136 were excluded. Finally, after combining the remaining 1,576 SGBs and the non-
137 redundant fraction from wild individuals of NHP2019, the final database contained
138 1,654 SGBs (1,635 Bacteria and 19 Archaea) from 23 WNHP species (hereafter,
139 pSGBs).

140

141 The pSGBs are affiliated with 19 phyla and 1,436 of them can be classified into 372
142 genera according to the GTDB taxonomic system ([Figure 1D and Table S3](#)). Here we
143 congregated three phyla (Firmicutes, Firmicutes_A, and Firmicutes_C) into Firmicutes.
144 The top five phyla, namely, Firmicutes, Bacteroidota, Actinobacteriota, Proteobacteria,
145 and Spirochaetota, constitute 91.8% of the total ([Figure 1D](#)). Only 2.7% ($n = 45$) SGBs
146 harbored MAGs from multiple WNHP species, with a maximum of four shared hosts.
147 However, it does not imply that the pSGBs from different primate hosts were remotely
148 related. Among the 222 non-singleton genera (containing two or more pSGBs), 184 had
149 SGBs found in multiple host species, and 37 of them can be detected in ≥ 5 host species
150 ([Figure 1E](#)). *Prevotella*, with 149 pSGBs, has the broadest host range (contributed by
151 20 WNHP species). Furthermore, hSGBs were detected in 234 pSGB-containing genera,
152 encompassing 1,128 pSGBs and 1,988 hSGBs ([Table S4](#)). The high proportion of
153 congeneric hSGBs and pSGBs suggested the prevalence of long-term co-evolutionary
154 history between a large number of microbial lineages and primate hosts.

155

156 **Distributive feature of carbohydrate-active enzymes (CAZys) and antibiotic
157 resistance genes (ARGs) in hSGBs and pSGBs**

158 We investigated the distribution of two types of functional genes, CAZys (including
159 only glycoside hydrolase (GH) and polysaccharide lyase (PL)) and ARGs, between
160 pSGBs and hSGBs, as selective pressures on these genes likely differ substantially
161 between WNHPs and modern humans. Overall, the number of CAZy families and genes
162 in pSGBs and hSGBs generally decreased from lemurs and monkeys to apes, then to
163 humans ([Figure 2A, B](#)). The average number of CAZy genes is 28.5 in hSGBs and 38.0
164 in pSGBs. The dietary type also impacts the number of CAZy families ([Fig S2A](#)).
165 Further analysis showed numerous GH families enriched in pSGBs and relatively few
166 in hSGBs ([Figure 2C](#) and [Table S5](#)). Among the top enriched GH families in pSGBs,
167 many are related to the degradation of cellulose (GH5_2 and GH5_4), xylan (GH43_18),
168 and arabinose-related glycoside (GH43_18 and GH53), consistent with the higher
169 intake of these plant glycans in wild primate versus human diets. In contrast, enzymes
170 targeting glucose-related and galactose-related glycans (GH1, GH4, GH32, and GH112)
171 were enriched in hSGBs ([Figure 2B](#) and [Fig S2B](#)).

172

173 For ARGs, the top enriched classes in hSGBs encode resistance to beta-lactam,
174 tetracycline, bacitracin, aminoglycoside, and glycopeptide (ranked by enriching fold of
175 prevalence, [Figure 2D](#) and [Table S6](#)). Conversely, highly prevalent ARG classes such
176 as macrolide-lincosamide-streptogramin (MLS) and antimicrobial peptides were

177 detected in pSGBs at a similar or even higher rate. These results support the directional
178 selection of the human gut resistome over less than 100 years of clinical antibiotic use.

179

180 **Defining shared co-evolutionary SGB clusters**

181 To identify all detectable co-evolutionary SGB clusters, we calculate the ANI values
182 between congeneric pSGBs and hSGBs, as it is a comprehensive measurement of the
183 evolutionary distance between intra-genus genomic pairs.³² We hypothesize an
184 operational ANI threshold, under which the generated SGB clusters can optimally
185 represent the diversified offspring in primate hosts from each ancestral bacterial species
186 (i.e., the balance between conservative and radical), even though we cannot confidently
187 determine the speciation time for the ancestor bacteria (i.e., within the primate host or
188 not). By stepwise increasing the ANI threshold, the split ratio of SGB clusters was
189 evaluated for determining the operational threshold (see Methods and a diagram in
190 [Figure 3A](#)). We observed the first significant increase in the split ratio for non-singleton
191 SGB clusters when increasing the ANI threshold from 77 to 78% (FDR-corrected $P =$
192 $1.3e-7$, Fisher's exact test, [Figure 3B](#)). Over three-quarters (285 in 360) of non-
193 singleton ANI-77% clusters split from ANI-78% to ANI-83% (see [Fig S3A](#), notice that
194 ANI-83% is a widely recognized lower limit of ANI for closely related prokaryotes),³³
195 indicating that most ANI-77% clusters comprised remotely related species. Moreover,
196 the corresponding host divergent time for the split-out SGBs also showed a decreasing
197 trend since ANI-77%, especially when excluding hSGBs ([Fig S3B](#)). These results
198 corroborate ANI-77% as the optimal operational threshold for defining the co-

199 evolutionary SGB clusters.

200

201 Under the threshold, we defined 779 co-evolved non-singleton SGB clusters in total

202 ([Table S7](#)), of which only 262 contained both hSGB and pSGB (shared co-evolutionary

203 clusters, SCECs). As shown in [Figure 3C](#), *Prevotella* has the most SCECs ($n = 14$),

204 echoing its high species-level diversity in both pSGBs and hSGBs ([Figure 1E](#)). Among

205 these SCECs, the *Prevotella_13* SCEC associates with the largest number of WNHP

206 hosts, showing highly overlapped pattern with the *P. copri*-containing lineage we

207 proposed earlier.¹¹ For the 12 SCECs detected in ≥ 6 host species (i.e., ≥ 5 WNHP

208 species and human), we observed overall negative correlations between the ANI value

209 and host divergent time ([Figure 3D](#)). Intriguingly, the negative correlations

210 strengthened when excluding hSGBs. Taken together with [Fig S3B](#), this observation

211 suggests that some hSGBs may remotely transfer from other primates, initiating

212 independent evolution in human ancestors within their long-term co-evolutionary

213 history. We also find that old world monkeys have an even higher proportion of SCEC-

214 pSGBs than apes, while both are much higher than lemurs and new world monkeys

215 ([Figure 3E](#)). A similar pattern was also observed for their ANI to the closest SCEC-

216 hSGBs ([Figure 3E](#)). These results indicate that the remote horizontal transfer events

217 substantially impacted the distribution of SCEC-hSGBs in the gut of modern humans.

218

219 Defining SCECs favors profiling the evolutionary trajectory of hSGBs relative to their

220 pSGB counterparts. We compared genome size for each intra-SCEC pair of hSGBs and

221 pSGBs, finding apparent genome reduction in hSGBs (mean 5.8% for genomes >95%
222 completeness, [Figure 3F](#)). The reduction appears attributable to both gene loss and
223 changes in gene length but not encoding density ([Figure 3F](#) and [Fig S3C](#)). Meanwhile,
224 SCEC-hSGBs have smaller genomes than other hSGBs ($P < 0.001$, two-sided Student's
225 *t*-test, [Fig S3D](#)). In terms of functions, such genome reduction can be partially explained
226 by the loss of CAZy genes ([Figure 2B](#)). Additionally, the top shrinking gene categories
227 (annotated by Clusters Orthologous Genes, COGs) are those related to cell motility and
228 energy production & conversion ([Fig S3E](#)).

229

230 We also investigated the distribution of SCEC-hSGBs in two human populations (China
231 and Europe) using the IGC database.³⁴ We found SCEC-hSGBs comparably distributed
232 in healthy populations from China and Europe ([Figure 3G](#)). Interestingly, we observed
233 a decrease of SCEC-hSGBs in disease individuals for both China (type-2 diabetes, T2D)
234 and Europe (inflammatory bowel disease, IBD, $P < 0.001$, two-sided Mann-Whitney U
235 test, [Figure 3G](#)), preliminarily suggesting SCEC-hSGBs may positively implicate with
236 host health.

237

238 **Profiling co-evolutionary traits of hSGBs**

239 Given our interest in gained or strengthened functions of hSGB, we focused on the
240 hSGB-enriched co-evolutionary traits (annotated by COG). We identified 839
241 candidate COGs based on prevalence and abundance by comparing all hSGBs and
242 pSGBs. Among them, as recaptured in metagenomic data, 695 are defined as the co-

243 evolutionary traits of hSGBs compared with pSGBs (Figure 4A and Table S8, see
244 Method and Figure S4A-C). Further examination revealed that only a small fraction
245 (135, 19.4%) of these trait COGs are also enriched in SCEC-hSGBs compared with
246 their SCEC-pSGB counterparts. Nevertheless, the remaining 560 COGs exhibit a strong
247 positive correlation with the 135 COGs among all hSGBs, and SCEC-hSGBs typically
248 had low numbers of total trait COGs (Figure 4A), possibly determined by their small
249 genome size.

250

251 We detected universal enrichment of trait COGs across all taxonomic ranks from
252 phylum to genus (Figure 4B), ruling out the possibility that the signal arose from a few
253 large taxa. For the top 20 trait COGs (requiring >20% frequency across all hSGBs,
254 ranked by enriching fold of prevalence), we observed no opposing enrichment trends
255 between different phyla (Figure 4C), supporting that the enrichment resulted from the
256 general selection of host gastrointestinal environment rather than niche differentiation
257 among taxa. Half of the top 20 COGs fall into two functional categories, oxidative stress
258 ($n = 5$) and transporters ($n = 5$).

259

260 Because these traits were determined through genomic and metagenomic comparisons,
261 we aimed to investigate whether they represent long-term hSGB evolutionary traits or
262 merely reflect very recent niche adaptation in modern humans (i.e., the rapid change of
263 modern lifestyle). In light of the human “Out of Africa” history, a transitional status in
264 Africans would support these enrichments as more likely long-term evolutionary traits.

265 We thus quantified the relative abundance of the 695 COGs in fecal metagenomes of
266 WNHPs ($n = 284$), non-Africans ($n = 666$), and Africans ($n = 356$, [Table S9](#)).^{13,22,23,35-}
267 ⁴⁹ The 356 African metagenomes include samples from the Hadza hunter-gatherers of
268 Tanzania ($n = 67$), who have a remote genetic background to other humans, other rural
269 Tanzanians ($n = 50$), and samples from five other countries ($n = 239$). As shown in
270 [Figure 4D](#), relative abundance and principal coordinate analysis (PCoA) support the
271 transitional status of Africans. Relative abundance of the COGs followed a pattern of
272 non-African human > Hadza \approx other Tanzanian > WNHP. A similar pattern was
273 observed for other African populations ([Fig S4D](#)). These findings suggest that these
274 COGs are more likely co-evolutionary traits due to their successive enriching history
275 in humans.

276
277 Given similar COG abundance in Hadza and other rural Tanzanians with distinct
278 lifestyles (hunter-gathering vs. rural), we posited that diet may exert limited effects on
279 the distribution of the trait COGs in the human gut microbiome. Consistent with this
280 hypothesis, we detected no difference in gut metagenomes between vegetarians and
281 omnivores ([Figure 4E](#)), nor among two short-term diet-intervention cohorts ([Fig](#)
282 [S4E&F](#)). Moreover, we also compared the captive primates to wild ones (the same
283 species of *Pan troglodytes* and *Gorilla gorilla*) and found that they have
284 indistinguishable PCoA patterns, with captives even exhibiting a marginally lower
285 abundance of trait COGs than wild counterparts ([Figure 4F](#)). However, comparisons of
286 the wild mammalian herbivores, omnivores, and carnivores support the diet-dependent

287 distribution of these COGs in the gut microbiome (Figure 4G). In particular,
288 carnivorous mammals enriched the trait COGs compared with herbivores and
289 omnivores. Moreover, we detected an increasing abundance of these traits in diseased
290 EU and CN individuals (Figure 4H), preliminarily indicating that the trait COGs may
291 negatively correlate with human health, which requires further investigation.

292

293 **Enrichment of co-evolutionary traits in gut microbiome is linked with several
294 diseases**

295 We collected 13 datasets examining associations of the gut microbiome with available
296 metagenome and eight diseases (ACVD, atherosclerotic cardiovascular disease, 1 case;
297 NAFLD, nonalcoholic fatty liver disease, 1 case; HTN, hypertension, 1 case; LC, liver
298 cirrhosis, 1 case; CD, Crohn's disease, 3 cases; OB, obesity, 1 case; RA, rheumatoid
299 arthritis, 1 case; T2D, type 2 diabetes, 2 cases; UC, ulcerative colitis, 2 cases, see [Table](#)
300 [S10](#) for detailed information).³⁹⁻⁵⁰ We selected datasets based on the following criteria:

301 1) the diseases are strongly related to metabolism or autoimmunity; 2) studies
302 concluding gut microbiome-disease associations; and 3) sound control cohort (in terms
303 of geography, age, *etc.*). Given that 135 of the 695 trait COGs are also enriched in
304 SCEC-hSGBs, which have been implicated in promoting healthy status (Figure 3G),
305 we compared the relative abundance of total and the remaining 560 COGs between the
306 disease and control group for each dataset. Among the 13 datasets, we detected
307 significant differences in four datasets of three diseases (1 ACVD case; 1 NAFLD case;
308 CD, 2 of 3 cases: CD_2 and CD_3), all showing a higher relative abundance of trait

309 COGs in disease versus control groups ($P < 0.05$, two-sided Student's t -test, [Figure 5A](#),
310 see [Fig S5A](#) for the other eight datasets). NAFLD only showed an enrichment of 560
311 COGs, while the others enriched both groups. [Figure 5B](#) showed that the COG patterns
312 of disease and control groups diverged in three of the four datasets (in PCoA,
313 permutational multivariate analysis of variance (PERMANOVA), $P < 0.05$). The
314 permutation test excluded that the enrichment of these trait COGs is dependent on
315 overall microbiome divergence between control and disease groups in ACVD, CD_2,
316 and CD_3 ([Figure 5C](#)). Furthermore, drug intake may not significantly impact the
317 distribution of the trait COGs ([Fig S5B](#)).

318

319 In addition, our analysis revealed that the trait COGs, regardless of the 695-, 560-, or
320 135-COGs, had a strong predictive power for host disease in all four datasets, with area
321 under curve (AUC) values ranging from 0.76 to 0.96 ([Figure 5D](#)). The 135 COGs
322 exhibited slightly lower AUC values than the other two, possibly due to its limited COG
323 number or their enrichment in SCEC-hSGBs. The top 50 trait COGs with the highest
324 importance during the random forest prediction based on 695 COGs showed no
325 significant overlap among datasets (all $P > 0.05$, permutations = 100,000) ([Figure 5E](#)).
326 Only 27 traits were shared by more than one dataset, and even for the two CD datasets,
327 the shared top trait COGs were merely 5. These results suggest that the trait COGs are
328 dataset-specific. However, we did observe a higher proportion of transporter COGs
329 distributed in the top trait COGs compared to the others ([Figure 5F](#)).

330

331 **Defining super enrichers of the co-evolutionary traits and tracking their potential**

332 **source**

333 The above results suggest that the enrichment of co-evolutionary traits in the gut
334 microbiome is likely linked to several human diseases. We then identified trait COG-
335 enriching hSGBs and investigated their implications for host health. Based on the
336 matrix of the trait COGs, we detected 202 super enricher hSGBs (designated as SUEN-
337 hSGBs) with 2-fold enrichment of the trait COGs (1,203 on average in SUEN vs. 627
338 in all hSGBs) and three other groups designated as Group A (average encoding COGs:
339 379), B (average encoding COGs: 601), and C (average encoding COGs: 902) ([Figure 6A](#)). Most SUEN-hSGBs are affiliated with Firmicutes, Proteobacteria, and
340 Actinobacteria, but not Bacteroidetes, and exhibit relatively large genome sizes ([Figure 6A](#) and [Table S11](#)). Remarkably, SUEN-hSGBs are significantly underrepresented
341 among SCEC-hSGBs compared to all hSGBs (16 in 202 vs. 1,342 in 3,779, $P =$
342 $1.17e-20$, Fisher's exact test). In terms of the distribution of the trait COGs, SUEN-
343 hSGBs are not only the generalists with higher coverage ($71.2\% \pm 8.7\%$ vs. $52.9\% \pm$
344 12.9%) but also the functional enhancers with a higher copy number for detected COGs
345 (2.41 ± 0.48 vs. 1.57 ± 0.24). Among the transporter-related COGs, SUEN-hSGBs were
346 significantly overrepresented compared to Group A and B ([Fig S6A](#)). Interestingly,
347 SUEN-hSGBs negatively correlated with Group A and B, which have a low number of
348 trait COGs in their genomes, but slightly positively correlated with Group C containing
349 moderate-enricher ([Figure 6B](#)). These results support that the trait COGs are
350 responsible for the niche differentiation of various gut microbial taxa.

353

354 Given the low proportion of the SUEN-hSGBs affiliated with SCECs, we are interested
355 in their source. We hypothesize that SUEN-hSGBs partially transferred from other
356 mammals, as an enrichment of the trait COGs in carnivorous mammals was observed
357 ([Figure 4G](#)). To test this, we profiled the distribution of SUEN-hSGBs-related taxa in
358 the gut metagenomes of WNHPs, wild herbivorous, omnivorous, and carnivorous
359 mammals using a taxonomic marker gene (ribosomal protein L1, COG0081) (see
360 Methods). The SUEN-hSGB-related taxa ($\geq 90\%$ or 95% amino acid identity for
361 metagenomic reads) were much more abundant in carnivores than in WNHPs,
362 herbivores and omnivores (All $P < 0.01$, two-sided Student's *t*-test, [Figure 6C](#)). Thus,
363 we propose that carnivorous mammals were potential sources of some SUEN-hSGBs,
364 although the detailed history of transfer and diversification remains unclear.

365

366 **SUEN- and SECE-hSGBs have opposite implications for gut microbiome dysbiosis
367 and human health**

368 We then investigated the potential implications of the SUEN-hSGBs and SCEC-hSGBs,
369 which have shown a decreasing trend in diseased individuals ([Figure 3G](#)), for host
370 health. Firstly, we determined their relative abundances in the 13 datasets. As shown in
371 [Figure 6D](#), SUEN-hSGBs and SCEC-hSGBs were significantly enriched in diseased
372 and healthy individuals, respectively, although their relative abundances varied greatly
373 among datasets.

374

375 Secondly, we determined whether there was a correlation between these taxa and the
376 alpha diversity of the gut microbiome, which is a common indicator of dysbiosis.^{51,52}
377 As shown in [Figure 6E](#), the Shannon index for most 13 datasets positively correlated
378 with SCEC-hSGBs (10 of 13, $P < 0.05$) but negatively with SUEN-hSGBs (8 of 13, P
379 < 0.05). Even those non-significant correlations were consistent in their direction with
380 only one exception (SUEN in CD_2, Spearman's $\rho = 0.26$). The Shannon indexes were
381 calculated by removing either SCEC-hSGBs or SUEN-hSGBs. Alternative statistics
382 including these taxa yielded similar results ([Fig S6B](#)). The above results indicated that
383 the abundance of SCEC-hSGBs and SUEN-hSGBs oppositely correlate with the
384 diversity of the gut microbiome.

385

386 Thirdly, since two previous studies have provided the list of hSGBs positively or
387 negatively related to general human health based on large cohorts, we then investigated
388 how the SCEC-hSGBs and SUEN-hSGBs are involved in these marker taxa (36 for
389 health-positive and 39 for health-negative, see [Table S12](#) for the taxonomic
390 information).^{53,54} The results showed that SCEC-hSGBs were more biased towards
391 health-positive hSGBs ($P < 0.001$, Fisher's exact test, [Figure 6F](#)), whereas SUEN-
392 hSGBs showed the opposite pattern ([Figure 6G](#)). Moreover, we found that other hSGBs
393 positively correlating with the total SUEN-hSGBs in the metagenomes were also
394 significantly related to health-negative hSGBs (8 and 1 for health-negative and health-
395 positive hSGBs, respectively), while negatively correlating hSGBs were only health-
396 positive ($n = 9$). In addition, the sum of the trait COGs was significantly higher in

397 health-negative hSGBs than in health-positive ones ([Figure 6H](#)).

398

399 Lastly, given the strong correlation or even causation between gut microbial metabolites

400 trimethylamine (TMA) and trimethylamine-N-oxide (TMAO) and several diseases

401 such as ACVD, NAFLD, and IBD,^{40,55,56} we analyzed *CutC* (the choline-TMA-lyase)

402 in hSGBs, since it is the primary enzyme responsible for generating TMA.⁵⁷ Consistent

403 with the previous report,⁵⁸ we found that the prevalence of *CutC*-encoding hSGBs is

404 rare (68 in 3,779, [Figure 6I&J](#)), with even lower pSGB prevalence ([Figure 6J](#)). We

405 confirmed almost no intraspecific variation in encoding *CutC* ([Fig S6C](#)). In the

406 phylogenetic tree of *CutC* from hSGBs, the proteobacterial *CutC*, which form a unique

407 clade and all belong to Enterobacteriaceae, were exclusively found in SUEN-hSGBs

408 ([Figure 6I](#)). Notably, the relative abundance of *CutC*-encoding Enterobacteriaceae in

409 fecal metagenome is associated with urinary TMAO level,⁵⁹ suggesting the related taxa

410 are responsible for TMA production. Moreover, the frequency of encoding *CutC* is

411 approximately 10-fold higher in SUEN-hSGBs than in the other hSGBs, whereas no

412 significant difference was observed for the SCEC-hSGBs with the background ([Figure](#)

413 [6I](#)).

414

415 Together, these results indicated SCEC-hSGBs and SUEN-hSGBs had opposite

416 implications on host health.

417

418 **Discussion**

419 In this study, we established a genomic database of gut microbial species from WNHPs
420 to define co-evolutionary species and traits of hSGBs. It is important to note that the
421 pSGBs database is obviously unsaturated because there are over 500 extant primate
422 species,⁶⁰ which may have intraspecific divergence in their gut microbiome.⁶¹ Therefore,
423 a more comprehensive collection of samples from primates will improve the reliability
424 of the list of co-evolving species and evolutionary traits. However, the rarefaction curve
425 shows that increasing SCEC-hSGBs are approaching saturation (Fig S1B), indicating
426 the current pSGB database fairly represents co-evolutionary lineages.

427

428 Few pSGBs are shared across wild primates and human, suggesting geographical
429 isolation dominates wild primate gut microbiome histories, at least for a short term.
430 This confirms the irreplaceability of wild animal gut microbiome studies¹⁴ and
431 potentially supports allopatric speciation as a major driving force of gut microbe-host
432 co-speciation.⁴ However, many hSGBs show host-jumping events, which may occur in
433 the long-run evolutionary history. The *Homo* lineage has increased carnivory over 2
434 million years relative to other primates,⁶² which may increase the chance of transferring
435 gut microbes from the primate preys, leading to the initiation of co-evolution with the
436 new host.

437

438 The evolutionary trend for hSGBs can be observed at different timescales. For a very
439 short period, such as within a host lifespan or even a few years, evidence has shown
440 detectable mutation and gene gain/loss events that suggest adaptations.^{63,64} As the

441 timescale increases slightly, strong selective functional potentials can introduce
442 apparent adaptive changes in the genome.¹³ For example, our results show an increased
443 prevalence of ARGs in hSGBs following <100 years of the corresponding antibiotic
444 usage. Other studies have demonstrated that population-level dietary significantly
445 impacts the intraspecific CAZy profiles of hSGBs.⁶⁵ On the long-term co-evolutionary
446 scale across host species, our study observed an evolutionary trend of genomic
447 reduction for SCEC-hSGBs. Extreme genome reduction is well-known in symbiotic
448 bacteria compared with their free-living relatives.^{66,67} However, the genomic reduction
449 in SCEC-hSGBs, although to a lesser extent, was based on a comparison with
450 corresponding SCEC-pSGBs, which are also symbionts. This can be an adaptive
451 outcome of the putative higher stability of the human gut nutritional condition
452 compared to that of wild primates. Supporting this, lost genes were biased towards cell
453 motility and energy production functions. Decreasing chemistry complexity of food,
454 reflected in the simplified GH families in hSGBs, as well as the putatively increased
455 host digestive capability (much lower stomach pH in human than primates),⁶⁸ may also
456 drive the reduction.

457
458 Although the enriching traits of hSGBs compared to pSGB were functionally diverse,
459 a hallmark of hSGBs is those adaptive to oxidative stress, suggesting higher intestinal
460 oxidative toxicity in humans than in wild primates. Lifestyle factors like high-fat diets
461 and sleep deprivation increase gut ROS.^{69,70} While human diets contain more fat than
462 wild primates,⁷¹ comparisons of vegetarian and omnivorous humans and results of

463 short-term high-fat diet studies do not support diet-induced enrichment of trait COGs.

464 In contrast, we found the traits enriched in carnivorous vs. omnivorous or herbivorous

465 mammals. One possible explanation for this contradiction is that only long-term dietary

466 changes or extreme short-term changes, and permanent dietary shifts that induced

467 irreversible host physiological alterations are responsible for the enrichment of trait

468 COGs. As it has been known that the trophic level can extensively link with adaptive

469 changes in host physiological and metabolic features.^{68,72}

470

471 The co-evolutionary lineages in hSGBs positively correlated with host health,

472 consistent with the hypothesis that long-term co-evolution tends to select mutualisms

473 instead of antagonisms.⁷³ This is also consistent with the proposal that the loss of

474 specific bacterial species from our ancestral microbiome could result in an increased

475 risk of chronic diseases.⁷⁴ A previous study based on the rRNA genes showed that

476 human gut bacterial genera containing more co-speciating taxa across mammals were

477 negatively correlated with IBD,⁷ suggesting links between the long-term co-evolving

478 bacteria and host immunity. Our results showed that the SCEC-hSGBs strongly

479 positively correlated with the alpha diversity of the gut microbiome, indicating an

480 association with eubiosis, though the causality is unclear.

481

482 In contrast, the enrichment of the co-evolutionary traits in the gut microbiome is

483 associated with certain human diseases. The super enrichers of these traits positively

484 correlated with host unhealth and dysbiosis. Moreover, besides correlation,

485 disproportionate TMA producers associated with SUEN-hSGBs have the potential to
486 cause specific diseases as the metabolites have a significant impact on human health.⁷⁵
487 Notably, the SUEN-hSGBs contain a biasedly lower proportion of SCEC ones,
488 indicating most of them are outsiders that transferred into the human gut more recently.
489 Our preliminary analysis suggested carnivorous mammals as a potential source of some
490 SUEN-hSGBs, though transfer histories remain unprofiled. The much higher *CutC*
491 frequency in SUEN-hSGBs further supports the hypothesis, as choline, the substrate of
492 *Cuts*, is more abundant in animal tissues than in plants. More importantly, the
493 disproportional and key TMA producers affiliated with SUEN-hSGBs suggest their
494 potential role as causative agents for certain diseases, considering the direct impact of
495 the metabolites on human health.^{75,76}

496

497 We posit that the prevalence of these super enrichers can be at least partially explained
498 by niche selection. It is supported by the fact that their co-occurring taxa are more likely
499 traits enrichers and negatively correlated taxa encoding fewer trait COGs, strongly
500 suggesting the trait COGs play certain roles in their niche adaptation. Within the traits,
501 COGs of transporters are highly represented in SUEN-hSGBs. It has been reported that
502 encoding redundant transporters can increase the fitness of gut bacteria.⁷⁷ According to
503 our results, the enrichment of transporters also seemed related to several diseases
504 according to the random forest predictive results. Moreover, a previous study has
505 proposed generalists with larger genomes have advantages in unstable environments.⁷⁸
506 The SUEN-hSGBs with larger genome sizes may convey heightened competitive

507 ability against other taxa, including SCEC-hSGBs, in both pre-disease and disease
508 conditions. The loss of SCEC-hSGBs and over-enrichment of the traits in the gut
509 microbiome reflect (or are selected by) the host gastrointestinal status that deviates from
510 evolutionary and ecological normality.

511

512 In conclusion, our study characterized long-term co-evolutionary lineages and traits of
513 human gut microbe compared to an updated gut microbial genome database of WNHP
514 and revealed their opposing correlations with the host's health status. The SUEN- and
515 SCEC-hSGBs may serve as new biomarkers, beyond those obtained from cohort studies,
516 for predicting and diagnosing host health or disease. Defining the SCEC-hSGBs may
517 provide valuable guidance for developing probiotics and other potential gut microbial
518 resources, as they are theoretically safer and better adapted to the host.

519

520 **Star methods**

521 ● Public data collection
522 ● Fecal sample collection and metagenomic sequencing
523 ● Genome reconstruction and species-level genome clustering
524 ● Taxonomy assignment and phylogenetic analysis
525 ● Functional annotation
526 ● SCEC definition
527 ● Mapping the hSGBs to IGC
528 ● Co-evolutionary traits definition

529 ● Quantification functional genes in metagenomes

530 ● Random forest classifier

531 ● Network analysis

532 ● Host's phylogenetic group, diet, and divergence time of NHPs.

533 ● Statistical analysis and data visualization

534 ● Data and code availability

535

536 **Acknowledgments**

537 This work received finical support from National Natural Science Foundation of China
538 (32270006). We thank Wuyishan National Nature Reserve, the Zoo of Xiamen and the
539 Zoo of Nanping for fecal sample collection of NHPs.

540

541 **Author contributions**

542 Conceptualization, H. L. and F. G.; methodology, H. L. and F. G.; investigation, H. L.
543 and J. H.; resources, H. L., J. H., J. L., W. Z., and Y. L.; writing – original draft, H. L.
544 and F. G.; writing – review & editing, H. L., Q. Q., and F. G.; funding acquisition, F. G.

545

546 **Declaration of interests**

547 The authors declare no competing interests.

548

549

550

551 **Legends of Figures**

552 **Figure 1 The updated genomic database of gut microbes from WNHPs.**

553 **A)** Phylogenetic tree of 25 NHPs based on the evolutionary timescale. Hosts from the

554 wild and captive sources are labeled by * and #, respectively.

555 **B)** Venn diagram of shared SGBs (ANI >95%) between the NHP database of this study,

556 the NHP database from NHP2019, and GTDB r95.

557 **C)** Shared SGBs between hSGBs and our NHP database or NHP2019 (ANI >95%).

558 **D)** Phylogenetic tree of pSGBs based on concatenated 120 universal single-copy genes.

559 Only 1,536 bacterial SGBs with gaps in <60% of alignment columns are shown.

560 **E)** Pie chart indicates the host number of non-singleton genera (≥ 2 SGBs) of pSGBs,

561 and the bar plot depicts the genome number of pSGBs and hSGBs in genera with ≥ 5

562 WNHP hosts.

563

564 **Figure 2 CAZy and ARGs profile of pSGB**

565 **A, B)** Number of CAZy families or genes of SGBs from different primate host

566 phylogenetic groups. Two-tailed Mann-Whitney U-test.

567 **C)** Volcano plot of enriched CAZymes in pSGBs (blue) or hSGBs (red). Only

568 CAZymes with >10% prevalence in either database were shown, and only the top five

569 enriched CAZys of each database were labeled. The dashed line indicates $P_{adj} = 0.05$.

570 Fisher's exact test.

571 **D)** Most prevalent ARG classes in pSGBs and hSGBs. Only ARG classes with a

572 prevalence >5% in either database were shown. Fisher's exact test.

573 *, $P_{\text{adj}} < 0.05$; **, $P_{\text{adj}} < 0.01$; ***, $P_{\text{adj}} < 0.001$; n.s., not significant.

574

575 **Figure 3 Defining and characterizing SCECs**

576 **A)** Schematic of the definition of split clusters using stepwise increasing ANI values.

577 **B)** Determining the operational threshold of defining SCEC by stepwise increasing ANI
578 values. ANI=77% was selected as the threshold to define the co-evolutionary SGB
579 clusters. Fisher's exact test.

580 **C)** Pie chart shows the proportion of SCECs in non-singleton clusters under ANI=77%.

581 The bar plot depicts the number of SCECs in the genera. Only genera with SCECs ≥ 3
582 are shown.

583 **D)** Correlation between the ANI value of SGBs within the SCEC with the divergence
584 time of their hosts (left panel). Only SCECs with ≥ 6 host species were shown (point,
585 right panel).

586 **E)** The proportion (left panel, Fisher's exact test) of SCEC-pSGB and their closest ANI
587 to hSGB in the four primate phylogenetic groups (right panel, two-sided Mann-Whitney
588 U-test).

589 **F)** Comparison of genome size and the number of encoding ORFs between pSGB and
590 hSGB within SCEC under different completeness thresholds. Paired two-sided
591 Student's *t*-test.

592 **G)** The proportion of SCEC-hSGBs in CN and EU populations based on the ICG
593 database. Two-sided Student's *t*-test.

594

595 **Figure 4 Defining the co-evolutionary traits of hSGBs and constraints affecting**
596 **their distribution**

597 **A)** Overview of defining the co-evolutionary traits of hSGBs (top panel). The medium
598 panel depicted the distribution of 695 COGs in SCEC-hSGBs. The bottom panel
599 showed the correlation between 560 COGs and 135 COGs in hSGBs.

600 **B)** Comparison of 695 co-evolutionary traits between pSGB and hSGB. Genomes with
601 completeness >90% were considered, and the difference of 695 co-evolutionary traits
602 between pSGB and hSGB is calculated based on the average value of the total copy
603 number within the genome. The number of taxa pairs at each rank is shown in
604 parentheses.

605 **C)** Distribution and functional profile of the top 20 significantly enriched COGs in
606 hSGB (Fisher's extract test with FDR corrected $P<0.05$). The dropline showed the fold
607 change of the prevalence of COGs in hSGB compared pSGBs at the phylum level. Only
608 COGs with a prevalence >5% in either database were displayed. The heatmap showed
609 the prevalence of these COGs in hSGB at the phylum level. The dashed line represents
610 the prevalence of COG is equal in both databases.

611 **D-G)** Boxplot (top panel) indicated the abundance differences of the 695 COGs across
612 metagenomic groups, and Euclidean distance PCoA based on the relative abundance of
613 695 COGs (bottom panel) shows its distribution pattern. Ellipses cover 90% of the
614 metagenome for each group. Two-sided Student's t -test with FDR correction.

615 **H)** The abundance differences of the 695 COGs in CN and EU populations based on
616 the ICG database. Two-sided Student's t -test.

617 *, $P_{\text{adj}} < 0.05$; **, $P_{\text{adj}} < 0.01$; ***, $P_{\text{adj}} < 0.001$; n.s., not significant.

618

619 **Figure 5 The correlation between 695 evolutionary traits and disease**

620 **A)** The abundance differences of 695 COGs and 560 COGs in the case and control
621 groups. Only four datasets, consisting of three different diseases (ACVD, 1 dataset;
622 NAFLD, 1 dataset; CD, 2 datasets) that exhibited significant enrichment for these traits
623 in the case group, are presented. Two-sided Student's *t*-test with FDR correction. $P_{\text{adj}} <$
624 0.05; **, $P_{\text{adj}} < 0.01$; ***, $P_{\text{adj}} < 0.001$; n.s., not significant.

625 **B)** Fold change in case and control groups based on the total abundance of 695 COGs
626 (red solid line) or simulated groups of 695 non-evolutionary traits (black dashed line, n
627 = 10,000). One-sample *t*-test.

628 **C)** PCoA based on the Euclidean distance indicated the distribution pattern of 695
629 COGs in case and control groups. Ellipses cover 90% of the metagenome for each group.
630 PERMANOVA, permutations = 999.

631 **D)** Performance of the random forest classifier based on 695 COGs, 560 COGs, and
632 135 COGs. The mean AUC and 2-fold standard deviation of 20 bootstraps were shown.

633 **E)** The network depicted the top 50 important COGs in each dataset identified by the
634 random forest classifier based on 695 COGs. The shared COGs are connected by the
635 red line.

636 **F)** The proportion of transporters in the top important traits. Fisher's exact test.

637

638 **Figure 6 The opposite indications for host health of SUEN-hSGBs and SCEC-**

639 **hSGBs**

640 **A)** Distribution of 695 co-evolutionary traits in hSGBs (heatmap) and the total copy
641 number of 695 COGs (barplot). The average copy number of 695 COGs in all hSGBs
642 or each group was indicated in parentheses. The COGs (in row) were clustered based
643 the Spearman's correlation.

644 **B)** Correlation between SUEN-hSGBs and the other three groups in thirteen disease
645 cohorts. Spearman's ρ between groups in each dataset was calculated based on the
646 proportion of the four groups in each sample. The simulated correlations of each dataset
647 were calculated based on the four counterparts (by group size) that were randomly
648 assigned hSGBs in each sample ($n = 10,000$). Paired two-sided Mann-Whitney U-test.

649 Mean \pm s. e.

650 **C)** The proportion of SUEN-related species in WNHP and mammals with different diets.
651 Mean \pm s. e. Two-sided Student's t -test with FDR correction. *, $P_{\text{adj}} < 0.05$; **, $P_{\text{adj}} <$
652 0.01; ***, $P_{\text{adj}} < 0.001$; n.s., not significant.

653 **D)** The proportion of SUEN- and SCEC-hSGBs in control and case groups. Paired two-
654 sided Student's t -test.

655 **E)** Spearman's ρ between the relative abundance of SUEN- or SCEC-hSGBs with the
656 alpha diversity of the gut microbiome.

657 **F)** A higher proportion of SCEC-hSGBs were detected in healthy-positive species.
658 Fisher's exact test.

659 **G)** The distribution of SUEN-hSGBs and their related species in healthy indicated
660 species.

661 **H)** The total copy number of 695 COGs in healthy indicating species. Two-sided

662 Student's *t*-test.

663 **I)** Maximum-likelihood phylogenetic tree of *CutC*. The SGBs affiliated with SCEC or

664 SUEN were labeled by branch colors (red, SCEC; purple, SUEN; *, both).

665 **J)** The proportion of SGBs encoding *CutC* in the two databases and SCEC- or SUEN-

666 hSGBs. Fisher's exact test.

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683 **Materials and methods**

684 **Public data collection**

685 We collected 321 public metagenomes spanning 23 WNHPs for an updated genomic
686 database of NHP.^{17,23-30} In addition, we also collected 2,096 fecal metagenomes of
687 humans, including 1,890 from studies on gut microbiome-metabolism/autoimmunity
688 correlations,³⁹⁻⁵⁰ 356 from Africans,^{13,22,23,35-38} and 116 from diet investigation or
689 intervention.^{65,79,80} For the disease cohorts, we only selected one metagenome per
690 individual as a representative. Furthermore, we also collected 91 metagenomes from 71
691 mammals with different diets.⁸¹ Details are in Tables S1, S9, and S10.

692 We referred to publicly available prokaryotic genomes from three studies, including 1)
693 the human gut MAG/SGB database constructed by Pasolli et al.(2019),²² with MAGs
694 and SGBs from other body sites removed; 2) the genomic database of NHPs;¹⁶ 3) the
695 reference genomes from GTDB database r95.³¹

696

697 In addition, we referred to 81 gut bacterial species associated with human health or
698 disease determined in two large cohort studies.^{53,54} Given that species names may be
699 inconsistent across taxonomic systems, for these species, we selected a representative
700 genome from NCBI and then determined its corresponding representative genomes in
701 hSGB using fastANI (v1.3, ANI >95%; see Table S12 for details).³³

702

703 **Fecal sample collection and metagenomic sequencing**

704 We collected fecal samples from wild *M. thibetana* ($n = 12$) in Wuyishan National

705 Nature Reserve and Da'anyuan, Nanping, Fujian province, China. Additionally, we
706 collected fecal samples of captive *M. mulatta* ($n = 6$), *M. mulatta* ($n = 4$), and *M.*
707 *thibetana* ($n = 3$) from the Zoo of Xiamen and Nanping, Fujian province, China. The
708 fresh feces were collected in sterile collection tubes containing 70% ethanol. All
709 samples were shipped with dry ice and stored at -80°C freezer until use. DNA of 25
710 samples collected in this study was extracted using FastDNA® SPIN Kit for Feces (MP,
711 USA) DNA extraction kit. The concentration and quality of DNA were determined by
712 NanoDrop and agarose gel electrophoresis, respectively. The metagenomic library was
713 constructed using NEBNext® Ultra DNA Library Prep Kit for Illumina (NEB, USA).
714 The samples were sequenced with the PE150 strategy on Illumina Hiseq Novaseq 6000
715 platform (commercial service, Novogene, Beijing).

716

717 **Genome reconstruction and species-level genome clustering**

718 We filtered the low-quality reads from all metagenomes of NHPs using Trimmomatic
719 v.0.38⁸² and assembled the filtered reads using metaSPAdes (v.3.9.1, parameters: -k 33,
720 45, 55; for paired-end sample) or MEGAHIT (v1.1.4, for single-end or metagenomes
721 with bases >15 Gb).^{83,84} We binned scaffolds $>1,000$ bp using MetaWRAP v1.2.1 with
722 two binners (MaxBin2 and metaBAT2, default parameters),⁸⁵⁻⁸⁷ and refined MAGs
723 using the bin_refinement module. CheckM (v1.0.7; lineage-specific workflow) was
724 used to estimate the quality of MAGs and only those with genome completeness $>50\%$
725 and contamination $<5\%$ were kept.⁸⁸ MAGs were clustered using dRep (v2.6, parameter:
726 -p 50 -ignore genomequality -pa 0.70 -sa 0.95 --S_algorithm fastANI) at the threshold

727 of 95% ANI by two-step cluster.⁸⁹ The 2,036 MAGs with the best quality of each SGB
728 cluster were chosen as the representative genomes. We dereplicated the MAGs from
729 NHP2019 using the same pipeline, resulting in 1,232 SGB clusters.

730 We aligned the filtered reads of the gut metagenomes from WNHPs to the contigs of
731 4,942 MAGs using Bowtie2 v2.3.4.3 with default parameters,⁹⁰ and calculated the
732 mapping rate by dividing the total mapped reads by all quality-filtered reads of each
733 sample.

734

735 **Taxonomy assignment and phylogenetic analysis**

736 Taxonomy assignment for MAGs and SGBs was determined by GTDB-Tk (v1.3.0;
737 ‘classify_wf’ workflow and default parameters) based on the GTDB database (release
738 95).^{31,91} Phylogenetic analyses of 1,637 bacterial pSGBs based on concatenation of 120
739 ubiquitous single-copy genes.³¹ The 120 markers were extracted from the annotation
740 results of GTDB-Tk and were aligned using Mafft v7.407.⁹² Genomes with >60% gaps
741 in the concatenated alignment were removed. The phylogenetic tree was inferred using
742 FastTree v2.1 under the WAG + GAMMA models and visualized via the iTOL.^{93,94}

743

744 **Functional annotation**

745 The open reading frames (ORFs) of pSGBs and hSGBs were predicted using Prodigal
746 v2.6.3.⁹⁵ The functional profile of each SGB was performed using eggNOG-mapper
747 (v2.1.6, -m diamond) with eggNOG database v5.0 under default parameters.^{96,97}
748 CAZymes were annotated using the run_dbcan,⁹⁸ and the substrates categories of the

749 top 5 CAZy families enriched in either pSGB or hSGB were manually retrieved from
750 the *nr* database.⁹⁹ ARGs were annotated using DeepARG v2.¹⁰⁰
751 For *CutC* (encoding the choline trimethylamine-lyase) annotation, a total of 1,184
752 proteins affiliated with K20038 (KEGG ortholog, choline trimethylamine-lyase) from
753 pSGBs and hSGBs were annotated against the *nr* database using BLASTP (evalue
754 <1e⁻⁵, -max_target_seqs 100).⁹⁹ Alignments with annotation targeted to choline
755 trimethylamine-lyase were filtered with identity >45% and coverage >50%.⁵⁸ Filtered
756 sequences were aligned using Mafft v7.407,⁹² and the phylogenetic tree was inferred
757 using RAxML v8.2.12 with the parameters ‘-# 100 -m PROTGAMMAAUTO --auto-
758 prot=aic’.¹⁰¹ Finally, 73 protein sequences from 72 SGBs that formed a monophyletic
759 branch were determined as *CutC*. To evaluate the intraspecific divergence of *CutC*, up
760 to 100 high-quality MAGs were randomly selected for 56 hSGB clusters (56 *CutC*
761 encoding species). Protein sequences were aligned against the 73 *CutC* sequences using
762 BLASTP (evalue <1e⁻⁵),⁹⁹ and alignments were filtered with identity >90% and
763 coverage >90%.

764

765 **SCEC definition**

766 In this study, we used an ANI-based method to define co-evolutionary clusters. To
767 determine the operational threshold for co-evolutionary clusters, we calculated the split
768 ratio for non-singleton SGB clusters by stepwise increasing the ANI cutoff (from 70%
769 to 95%, 1% per step) using dRep (v2.6.2, cluster module; options ‘--clusterAlg average
770 --S_algorithm fastANI --cov_thresh 0.1’).⁸⁹ Only 107 genera with ≥10 SGBs were

771 considered to guarantee enough non-singleton clusters. For instance, there are 309 non-
772 singleton clusters under the ANI cutoff at 70%, and 8 of them split after using the cutoff
773 at 71%. Therefore, the split ratio for ANI-71% is 2.6%. Fisher's exact test was for
774 identifying the first significant increase in split ratio. Finally, after combining all pSGBs
775 and hSGBs, the co-evolutionary clusters were determined using the cutoff ANI-77%.
776 Therein, those containing both pSGB and hSGBs were referred to as SCEC ones.

777

778 **Co-evolutionary traits definition**

779 To identify co-evolutionary traits that enriched in hSGB, the Mann-Whitney U-tests
780 (abundance-based) and Fisher's exact test (prevalence-based) were used for comparing
781 1,635 high-frequency (frequency >20%) COGs between interspecific hSGBs and
782 pSGBs. We determined 839 COGs significantly enriched in hSGB (hSGB versus
783 pSGB >1 and FDR-corrected $P < 0.05$) using both methods. Among them, 695 COGs
784 as co-evolutionary traits because they showed significant enrichment in metagenomes
785 of healthy populations compared to WNHP.

786

787 **Quantification of functional genes in metagenomes**

788 Considering the under-representation of pSGBs in the widely referred genome
789 databases, we developed a pipeline to quantify the relative abundance of functional
790 genes and SGB in metagenomes (Fig S4A, B, and C). Firstly, we de-replicated
791 annotated ORFs from pSGBs and hSGBs with 95% identity and 90% coverage using
792 CD-HIT v4.7,¹⁰² including representatives in our customized database. Secondly, we

793 subsampled quality-filtered metagenomes to 10 million reads to reduce the
794 computational burden and minimize any potential distortion caused by unequal
795 sequencing depth. We included all reads for metagenomes <10 million reads and
796 removed metagenomes <1 million reads. Thirdly, the reads were aligned against the
797 customized database using DIAMOND BLASTX (-evalue <1e-5, -max_target_seqs =
798 1),¹⁰³ and alignments are filtered with identity >50% and coverage >80%. The filtered
799 result was normalized to per million reads for each metagenome. Finally, we observed
800 high annotation rate variation between metagenomes, potentially from non-prokaryotic
801 DNA proportions, so we normalized using the ribosomal protein L1.

802 Our pipeline achieved higher annotation rates for WNHP and human gut metagenomes
803 than the HUMAnN3 (uniref90_201901b_full database, default parameters, [Fig S4B](#)).¹⁰⁴
804 Correlation coefficients among three conserved proteins (ribosomal protein L1, L3
805 (COG0087), and S3 (COG0092)) were also higher in our pipeline than in the
806 HUMAnN3 results ([Fig S4C](#)).

807 To quantify the SUEN-related taxa in metagenomes of WNHPs, wild herbivorous,
808 omnivorous, and carnivorous mammals, we aligned the reads to the COG0081 database
809 from hSGB and pSGBs using DIAMOND BLASTX. The alignments were filtered with
810 ≥90% or 95% amino acid identity and >80% coverage and then normalized to per
811 million reads for each metagenome. For each threshold, the abundance of SUEN-related
812 taxa is characterized by the ratio of the number of reads mapped to SUEN-hSGBs to
813 the total number of reads mapped to all SGBs under identity ≥50%.

814 For quantifying hSGBs in metagenomes, the relative abundance of each species is

815 computed by totaling the relative abundance of 120 universal single-copy genes.

816

817 **IGC data analysis**

818 To define the proportion of SCEC-hSGBs in different regions, the ribosomal protein
819 genes (ribosomal protein L1) in the IGC database were aligned against the
820 corresponding ones of the hSGBs using BLASTN,^{34,99} and alignments were filtered
821 with identity >95% and coverage >90%. The filtered sequences were labeled as SCEC-
822 hSGB, other-hSGB (based on the respective hSGB group), or others (sequences without
823 hits). The proportion of the CN and EU populations was calculated for each
824 metagenome based on the gene-level relative abundance table offered by ICG.

825

826 **Random forest classifiers**

827 We built random forest classifiers using scikit-learn to evaluate trait COG performance
828 in predicting case/control groups.¹⁰⁵ The dataset was randomly split into training and
829 test sets (7:3) 20 times for each cohort, and the model was trained using optimized
830 parameters to achieve the predicted performance. Mean AUC was used to evaluate the
831 performance of the classifier. The top 50 COGs, determined by importance, were
832 subsequently analyzed.

833

834 **Network analysis**

835 Correlations of hSGBs were calculated using FastSpar v1.0.0 based on the relative
836 abundance of a combination of 13 disease datasets.¹⁰⁶ Notably, due to the unbalanced

837 sample size of these studies, the metagenome of ACVD and T2D_1 were randomly
838 sampled to 200 (100 samples each in the control and case group) to reduce
839 computational bias. To reduce computational effort, species with a prevalence <10%
840 were excluded from the analysis. We used permutation testing ($n = 5,000$) and
841 Benjamini-Hochberg correction for multiple testing to generate P values. The network
842 was visualized using Cytosacpe v3.9.1.¹⁰⁷

843

844 **Phylogenetic group, diet, and divergence time of NHPs**

845 The phylogeny and divergence time of primates are retrieved from Timetree
846 (<http://timetree.org/>). The dietary of primates is collected from Animal Diversity Web
847 (<https://animaldiversity.org/>).

848

849 **Statistical analysis and data visualization**

850 We calculated alpha diversity using the Shannon index based on hSGB relative
851 abundance in metagenome (Vegan R package).¹⁰⁸ The PCoA was performed using the
852 vegan R package based on the normalized relative abundance matrix of 695 co-
853 evolutionary traits in each metagenome. The difference in clustering patterns based on
854 695 co-evolutionary traits between the control and case groups was tested using
855 permutational analysis of variance. Significances of the shared COGs of the top
856 important traits between the four datasets were inferred using simulated sampling based
857 on the multivariate hypergeometric distribution (permutations = 100,000; Purrr R
858 package).

859

860 We performed statistics in R v4.1.3. We report Student's *t*-tests, Mann-Whitney U tests,
861 Fisher's exact tests, Chi-Square tests, and Benjamini-Hochberg false discovery rate
862 corrections for multiple hypothesis testing.

863

864 **Data and code availability**

865 The raw sequencing data of non-human primates in this study are available in the
866 Sequence Read Archive (SRA) under Bioproject PRJNA932532. MAGs recovered in
867 this study are available in the FigShare repository
868 (<https://doi.org/10.6084/m9.figshare.22117169>).

869

870

871

872

873

874

875

876

877

878

879

880

881 **Reference**

882 1. Sommer, F., and Bäckhed, F. (2013). The gut microbiota—masters of host
883 development and physiology. *Nat. Rev. Microbiol.* *11*, 227-238.

884 2. Tremaroli, V., and Bäckhed, F. (2012). Functional interactions between the gut
885 microbiota and host metabolism. *Nature* *489*, 242-249.

886 3. Davenport, E.R., Sanders, J.G., Song, S.J., Amato, K.R., Clark, A.G., and
887 Knight, R. (2017). The human microbiome in evolution. *BMC Biol.* *15*, 1-12.

888 4. Groussin, M., Mazel, F., and Alm, E.J. (2020). Co-evolution and co-speciation
889 of host-gut bacteria systems. *Cell Host Microbe* *28*, 12-22.

890 5. Janzen, D.H. (1980). When is it coevolution? *Evolution* *34*, 611–612.

891 6. Moran, N.A., and Sloan, D.B. (2015). The hologenome concept: helpful or
892 hollow? *PLoS Biol.* *13*, e1002311.

893 7. Groussin, M., Mazel, F., Sanders, J.G., Smillie, C.S., Lavergne, S., Thuiller, W.,
894 and Alm, E.J. (2017). Unraveling the processes shaping mammalian gut
895 microbiomes over evolutionary time. *Nat. Commun.* *8*, 14319.

896 8. Rojas, C.A., Ramírez-Barahona, S., Holekamp, K.E., and Theis, K.R. (2021).
897 Host phylogeny and host ecology structure the mammalian gut microbiota at
898 different taxonomic scales. *Animal Microbiome* *3*, 1-18.

899 9. Lim, S.J., and Bordenstein, S.R. (2020). An introduction to phylosymbiosis.
900 *Proc. R. Soc. B* *287*, 20192900.

901 10. Mallott, E.K., and Amato, K.R. (2020). Phylosymbiosis, diet and gut
902 microbiome-associated metabolic disease. *Evol. Med. Public Hlth.* *2020*, 100-

903 101.

904 11. Li, H., Meier-Kolthoff, J.P., Hu, C., Wang, Z., Zhu, J., Zheng, W., Tian, Y., and
905 Guo, F. (2022). Panoramic insights into microevolution and macroevolution of
906 a *Prevotella copri*-containing lineage in primate guts. *Genomics Proteomics
907 Bioinformatics* 20, 334-349.

908 12. Moeller, A.H., Caro-Quintero, A., Mjungu, D., Georgiev, A.V., Lonsdorf, E.V.,
909 Muller, M.N., Pusey, A.E., Peeters, M., Hahn, B.H., and Ochman, H. (2016).
910 Cospeciation of gut microbiota with hominids. *Science* 353, 380-382.

911 13. Suzuki, T.A., Fitzstevens, J.L., Schmidt, V.T., Enav, H., Huus, K.E., Mbong
912 Ngwese, M., Grießhammer, A., Pfleiderer, A., Adegbite, B.R., Zinsou, J.F., et
913 al. (2022). Codiversification of gut microbiota with humans. *Science* 377, 1328-
914 1332.

915 14. Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A.,
916 Rex Gaskins, H., Stumpf, R.M., Yildirim, S., Torralba, M., et al. (2013). Habitat
917 degradation impacts black howler monkey (*Alouatta pigra*) gastrointestinal
918 microbiomes. *ISME J.* 7, 1344-1353.

919 15. Clayton, J.B., Vangay, P., Huang, H., Ward, T., Hillmann, B.M., Al-Ghalith,
920 G.A., Travis, D.A., Long, H.T., Tuan, B.V., Minh, V.V., et al. (2016). Captivity
921 humanizes the primate microbiome. *Proc. Natl. Acad. Sci. USA* 113, 10376-
922 10381.

923 16. Manara, S., Asnicar, F., Beghini, F., Bazzani, D., Cumbo, F., Zolfo, M., Nigro,
924 E., Karcher, N., Manghi, P., Metzger, M.I., et al. (2019). Microbial genomes

925 from non-human primate gut metagenomes expand the primate-associated
926 bacterial tree of life with over 1000 novel species. *Genome Biol.* *20*, 299.

927 17. Amato, K.R., G. Sanders, J., Song, S.J., Nute, M., Metcalf, J.L., Thompson,
928 L.R., Morton, J.T., Amir, A., J. McKenzie, V., Humphrey, G., et al. (2019).
929 Evolutionary trends in host physiology outweigh dietary niche in structuring
930 primate gut microbiomes. *ISME J.* *13*, 576-587.

931 18. Walter, J., and Ley, R. (2011). The human gut microbiome: ecology and recent
932 evolutionary changes. *Annu. Rev. Microbiol.* *65*, 411-429.

933 19. Corbett, S., Courtioli, A., Lummaa, V., Moorad, J., and Stearns, S. (2018). The
934 transition to modernity and chronic disease: mismatch and natural selection. *Nat.*
935 *Rev. Genet.* *19*, 419-430.

936 20. Eaton, S.B., Konner, M., and Shostak, M. (1988). Stone agers in the fast lane:
937 chronic degenerative diseases in evolutionary perspective. *Am. J. Med.* *84*, 739-
938 749.

939 21. Sonnenburg, E.D., and Sonnenburg, J.L. (2019). The ancestral and
940 industrialized gut microbiota and implications for human health. *Nat. Rev.*
941 *Microbiol.* *17*, 383-390.

942 22. Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F.,
943 Beghini, F., Manghi, P., Tett, A., Ghensi, P., et al. (2019). Extensive unexplored
944 human microbiome diversity revealed by over 150,000 genomes from
945 metagenomes spanning age, geography, and lifestyle. *Cell* *176*, 649-662. e20.

946 23. Campbell, T.P., Sun, X., Patel, V.H., Sanz, C., Morgan, D., and Dantas, G.

947 (2020). The microbiome and resistome of chimpanzees, gorillas, and humans
948 across host lifestyle and geography. *ISME J.* *14*, 1584-1599.

949 24. D'arc, M., Ayouba, A., Esteban, A., Learn, G.H., Boué, V., Liegeois, F., Etienne,
950 L., Tagg, N., Leendertz, F.H., Boesch, C., et al. (2015). Origin of the HIV-1
951 group O epidemic in western lowland gorillas. *Proc. Natl. Acad. Sci. USA* *112*,
952 E1343-E1352.

953 25. Greene, L.K., Williams, C.V., Junge, R.E., Mahefarisoa, K.L., Rajaonarivelo, T.,
954 Rakotondrainibe, H., O'Connell, T.M., and Drea, C.M. (2020). A role for gut
955 microbiota in host niche differentiation. *ISME J.* *14*, 1675-1687.

956 26. Hicks, A.L., Lee, K.J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., Olson,
957 S.H., Seimon, A., Seimon, T.A., Ondzie, A.U., et al. (2018). Gut microbiomes
958 of wild great apes fluctuate seasonally in response to diet. *Nat. Commun.* *9*,
959 1786.

960 27. Orkin, J.D., Webb, S.E., and Melin, A.D. (2019). Small to modest impact of
961 social group on the gut microbiome of wild Costa Rican capuchins in a seasonal
962 forest. *Am. J. Primatol.* *81*, e22985.

963 28. Tsukayama, P., Boolchandani, M., Patel, S., Pehrsson, E.C., Gibson, M.K.,
964 Chiou, K.L., Jolly, C.J., Rogers, J., Phillips-Conroy, J.E., and Dantas, G. (2018).
965 Characterization of wild and captive baboon gut microbiota and their antibiotic
966 resistomes. *mSystems* *3*, e00016-00018.

967 29. Tung, J., Barreiro, L.B., Burns, M.B., Grenier, J.-C., Lynch, J., Grieneisen, L.E.,
968 Altmann, J., Alberts, S.C., Blekhman, R., and Archie, E.A. (2015). Social

969 networks predict gut microbiome composition in wild baboons. *eLife* 4, e05224.

970 30. Shaffer, J.P., Nothias, L.-F., Thompson, L.R., Sanders, J.G., Salido, R.A.,
971 Couvillion, S.P., Brejnrod, A.D., Lejzerowicz, F., Haiminen, N., Huang, S., et
972 al. (2022). Standardized multi-omics of Earth's microbiomes reveals microbial
973 and metabolite diversity. *Nat. Microbiol.*, 1-23.

974 31. Parks, D.H., Chuvochina, M., Chaumeil, P.-A., Rinke, C., Mussig, A.J., and
975 Hugenholtz, P. (2020). A complete domain-to-species taxonomy for Bacteria
976 and Archaea. *Nat. Biotechnol.* 38, 1079-1086.

977 32. Gosselin, S., Fullmer, M.S., Feng, Y., and Gogarten, J.P. (2022). Improving
978 phylogenies based on average nucleotide identity, incorporating saturation
979 correction and nonparametric bootstrap support. *Syst. Biol.* 71, 396-409.

980 33. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru,
981 S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals
982 clear species boundaries. *Nat. Commun.* 9, 5114.

983 34. Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M.,
984 Kultima, J.R., Prifti, E., Nielsen, T., et al. (2014). An integrated catalog of
985 reference genes in the human gut microbiome. *Nat. Biotechnol.* 32, 834-841.

986 35. Rampelli, S., Schnorr, S.L., Consolandi, C., Turroni, S., Severgnini, M., Peano,
987 C., Brigidi, P., Crittenden, A.N., Henry, A.G., and Candela, M. (2015).
988 Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. *Curr.*
989 *Biol.* 25, 1682-1693.

990 36. Smits, S.A., Leach, J., Sonnenburg, E.D., Gonzalez, C.G., Lichtman, J.S., Reid,

991 G., Knight, R., Manjurano, A., Changalucha, J., Elias, J.E., et al. (2017).

992 Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of

993 Tanzania. *Science* **357**, 802-806.

994 37. Tett, A., Huang, K.D., Asnicar, F., Fehlner-Peach, H., Pasolli, E., Karcher, N.,

995 Armanini, F., Manghi, P., Bonham, K., Zolfo, M., et al. (2019). The *Prevotella*

996 *copri* complex comprises four distinct clades underrepresented in westernized

997 populations. *Cell Host Microbe* **26**, 666-679. e7.

998 38. Rubel, M.A., Abbas, A., Taylor, L.J., Connell, A., Tanes, C., Bittinger, K., Ndze,

999 V.N., Fonsah, J.Y., Ngwang, E., Essiane, A., et al. (2020). Lifestyle and the

1000 presence of helminths is associated with gut microbiome composition in

1001 Cameroonians. *Genome Biol.* **21**, 122.

1002 39. Franzosa, E.A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H.J.,

1003 Reinker, S., Vatanen, T., Hall, A.B., Mallick, H., McIver, L.J., et al. (2019). Gut

1004 microbiome structure and metabolic activity in inflammatory bowel disease.

1005 *Nat. Microbiol.* **4**, 293-305.

1006 40. Jie, Z., Xia, H., Zhong, S.-L., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z.,

1007 Gao, Y., Zhao, H., et al. (2017). The gut microbiome in atherosclerotic

1008 cardiovascular disease. *Nat. Commun.* **8**, 845.

1009 41. Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J.,

1010 Fagerberg, B., Nielsen, J., and Bäckhed, F. (2013). Gut metagenome in

1011 European women with normal, impaired and diabetic glucose control. *Nature*

1012 **498**, 99-103.

1013 42. Lewis, J.D., Chen, E.Z., Baldassano, R.N., Otley, A.R., Griffiths, A.M., Lee, D.,
1014 Bittinger, K., Bailey, A., Friedman, E.S., Hoffmann, C., et al. (2015).
1015 Inflammation, antibiotics, and diet as environmental stressors of the gut
1016 microbiome in pediatric Crohn's disease. *Cell Host Microbe* 18, 489-500.

1017 43. Lloyd-Price, J., Arze, C., Ananthakrishnan, A.N., Schirmer, M., Avila-Pacheco,
1018 J., Poon, T.W., Andrews, E., Ajami, N.J., Bonham, K.S., Brislawn, C.J., et al.
1019 (2019). Multi-omics of the gut microbial ecosystem in inflammatory bowel
1020 diseases. *Nature* 569, 655-662.

1021 44. Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., Dulai, P.S.,
1022 Caussy, C., Bettencourt, R., Highlander, S.K., et al. (2017). Gut microbiome-
1023 based metagenomic signature for non-invasive detection of advanced fibrosis in
1024 human nonalcoholic fatty liver disease. *Cell Metab.* 25, 1054-1062. e5.

1025 45. Mehta, R.S., Abu-Ali, G.S., Drew, D.A., Lloyd-Price, J., Subramanian, A.,
1026 Lochhead, P., Joshi, A.D., Ivey, K.L., Khalili, H., Brown, G.T., et al. (2018).
1027 Stability of the human faecal microbiome in a cohort of adult men. *Nat.*
1028 *Microbiol.* 3, 347-355.

1029 46. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y.,
1030 Shen, D., et al. (2012). A metagenome-wide association study of gut microbiota
1031 in type 2 diabetes. *Nature* 490, 55-60.

1032 47. Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E.,
1033 Yao, J., Wu, L., et al. (2014). Alterations of the human gut microbiome in liver
1034 cirrhosis. *Nature* 513, 59-64.

1035 48. Yang, K., Niu, J., Zuo, T., Sun, Y., Xu, Z., Tang, W., Liu, Q., Zhang, J., Ng, E.K.,
1036 Wong, S.K., et al. (2021). Alterations in the gut virome in obesity and type 2
1037 diabetes mellitus. *Gastroenterology* *161*, 1257-1269. e13.

1038 49. Zhang, X., Zhang, D., Jia, H., Feng, Q., Wang, D., Liang, D., Wu, X., Li, J.,
1039 Tang, L., Li, Y., et al. (2015). The oral and gut microbiomes are perturbed in
1040 rheumatoid arthritis and partly normalized after treatment. *Nat. Med.* *21*, 895-
1041 905.

1042 50. Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q.,
1043 Geng, B., et al. (2017). Gut microbiota dysbiosis contributes to the development
1044 of hypertension. *Microbiome* *5*, 1-19.

1045 51. Li, Z., Zhou, J., Liang, H., Ye, L., Lan, L., Lu, F., Wang, Q., Lei, T., Yang, X.,
1046 and Cui, P. (2022). Differences in alpha diversity of gut microbiota in
1047 neurological diseases. *Front. Neurosci.* *16*, 879318.

1048 52. Gong, C.H., Kendig, H., and He, X. (2016). Factors predicting health services
1049 use among older people in China: an analysis of the China health and retirement
1050 longitudinal study 2013. *BMC Health Serv. Res.* *16*, 63.

1051 53. Gacesa, R., Kurilshikov, A., Vich Vila, A., Sinha, T., Klaassen, M., Bolte, L.,
1052 Andreu-Sánchez, S., Chen, L., Collij, V., Hu, S., et al. (2022). Environmental
1053 factors shaping the gut microbiome in a Dutch population. *Nature* *604*, 732-739.

1054 54. Gupta, V.K., Kim, M., Bakshi, U., Cunningham, K.Y., Davis III, J.M., Lazaridis,
1055 K.N., Nelson, H., Chia, N., and Sung, J. (2020). A predictive index for health
1056 status using species-level gut microbiome profiling. *Nat. Commun.* *11*, 4635.

1057 55. Aron-Wisnewsky, J., Vigliotti, C., Witjes, J., Le, P., Holleboom, A.G., Verheij,
1058 J., Nieuwdorp, M., and Clément, K. (2020). Gut microbiota and human NAFLD:
1059 disentangling microbial signatures from metabolic disorders. *Nat. Rev. Gastroenterol. Hepatol.* *17*, 279-297.

1060 56. Zeisel, S.H., and Warrier, M. (2017). Trimethylamine N-oxide, the microbiome,
1061 and heart and kidney disease. *Annu. Rev. Nutr.* *37*, 157-181.

1062 57. Falony, G., Vieira-Silva, S., and Raes, J. (2015). Microbiology meets big data:
1063 the case of gut microbiota-derived trimethylamine. *Annu. Rev. Microbiol.* *69*,
1064 305-321.

1065 58. Cai, Y.-Y., Huang, F.-Q., Lao, X., Lu, Y., Gao, X., Alolga, R.N., Yin, K., Zhou,
1066 X., Wang, Y., Liu, B., et al. (2022). Integrated metagenomics identifies a crucial
1067 role for trimethylamine-producing *Lachnoclostridium* in promoting
1068 atherosclerosis. *NPJ Biofilms Microbiomes* *8*, 11.

1069 59. Dalla Via, A., Gargari, G., Taverniti, V., Rondini, G., Velardi, I., Gambaro, V.,
1070 Visconti, G.L., De Vitis, V., Gardana, C., Ragg, E., et al. (2019). Urinary TMAO
1071 levels are associated with the taxonomic composition of the gut microbiota and
1072 with the choline TMA-lyase gene (*cutC*) harbored by Enterobacteriaceae.

1073 60. Estrada, A., Garber, P.A., Rylands, A.B., Roos, C., Fernandez-Duque, E., Di
1074 Nutrients *12*, 62.

1075 60. Fiore, A., Nekaris, K.A.-I., Nijman, V., Heymann, E.W., Lambert, J.E., et al.
1076 (2017). Impending extinction crisis of the world's primates: Why primates
1077 matter. *Sci. Adv.* *3*, e1600946.

1079 61. Grieneisen, L.E., Charpentier, M.J., Alberts, S.C., Blekhman, R., Bradburd, G.,
1080 Tung, J., and Archie, E.A. (2019). Genes, geology and germs: gut microbiota
1081 across a primate hybrid zone are explained by site soil properties, not host
1082 species. *Proc. R. Soc. B* *286*, 20190431.

1083 62. Ben-Dor, M., Sirtoli, R., and Barkai, R. (2021). The evolution of the human
1084 trophic level during the Pleistocene. *Am. J. Phys. Anthropol.* *175*, 27-56.

1085 63. Groussin, M., Poyet, M., Sistiaga, A., Kearney, S.M., Moniz, K., Noel, M.,
1086 Hooker, J., Gibbons, S.M., Segurel, L., Froment, A., et al. (2021). Elevated rates
1087 of horizontal gene transfer in the industrialized human microbiome. *Cell* *184*,
1088 2053-2067. e18.

1089 64. Zhao, S., Lieberman, T.D., Poyet, M., Kauffman, K.M., Gibbons, S.M.,
1090 Groussin, M., Xavier, R.J., and Alm, E.J. (2019). Adaptive evolution within gut
1091 microbiomes of healthy people. *Cell Host Microbe* *25*, 656-667. e8.

1092 65. De Filippis, F., Pasolli, E., Tett, A., Tarallo, S., Naccarati, A., De Angelis, M.,
1093 Neviani, E., Cocolin, L., Gobbetti, M., Segata, N., and Ercolini D. (2019).
1094 Distinct genetic and functional traits of human intestinal *Prevotella copri* strains
1095 are associated with different habitual diets. *Cell Host Microbe* *25*, 444-453. e3.

1096 66. Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., and Fukatsu, T. (2006).
1097 Strict host-symbiont cospeciation and reductive genome evolution in insect gut
1098 bacteria. *PLoS Biol.* *4*, e337.

1099 67. McCutcheon, J.P., and Moran, N.A. (2012). Extreme genome reduction in
1100 symbiotic bacteria. *Nat. Rev. Microbiol.* *10*, 13-26.

1101 68. Beasley, D.E., Koltz, A.M., Lambert, J.E., Fierer, N., and Dunn, R.R. (2015).
1102 The evolution of stomach acidity and its relevance to the human microbiome.
1103 PLoS One 10, e0134116.

1104 69. Qiao, Y., Sun, J., Ding, Y., Le, G., and Shi, Y. (2013). Alterations of the gut
1105 microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl.
1106 Microbiol. Biotechnol. 97, 1689-1697.

1107 70. Vaccaro, A., Dor, Y.K., Nambara, K., Pollina, E.A., Lin, C., Greenberg, M.E.,
1108 and Rogulja, D. (2020). Sleep loss can cause death through accumulation of
1109 reactive oxygen species in the gut. Cell 181, 1307-1328. e1315.

1110 71. Sistiaga, A., Wrangham, R., Rothman, J.M., and Summons, R.E. (2015). New
1111 insights into the evolution of the human diet from faecal biomarker analysis in
1112 wild chimpanzee and gorilla faeces. PLoS One 10, e0128931.

1113 72. Hecker, N., Sharma, V., and Hiller, M. (2019). Convergent gene losses
1114 illuminate metabolic and physiological changes in herbivores and carnivores.
1115 Proc. Natl. Acad. Sci. USA 116, 3036-3041.

1116 73. Johnson, C.A., Smith, G.P., Yule, K., Davidowitz, G., Bronstein, J.L., and
1117 Ferrière, R. (2021). Coevolutionary transitions from antagonism to mutualism
1118 explained by the co-opted antagonist hypothesis. Nat. Commun. 12, 2867.

1119 74. Blaser, M.J. (2017). The theory of disappearing microbiota and the epidemics
1120 of chronic diseases. Nat. Rev. Immunol. 17, 461-463.

1121 75. Schirmer, M., Garner, A., Vlamakis, H., and Xavier, R.J. (2019). Microbial
1122 genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17,

1123 497-511.

1124 76. Khan Mirzaei, M., and Deng, L. (2021). Sustainable microbiome: a symphony
1125 orchestrated by synthetic phages. *Microb. Biotechnol.* *14*, 45-50.

1126 77. Degnan, P.H., Barry, N.A., Mok, K.C., Taga, M.E., and Goodman, A.L. (2014).
1127 Human gut microbes use multiple transporters to distinguish vitamin B12
1128 analogs and compete in the gut. *Cell Host Microbe* *15*, 47-57.

1129 78. Bentkowski, P., Van Oosterhout, C., and Mock, T. (2015). A model of genome
1130 size evolution for prokaryotes in stable and fluctuating environments. *Genome
1131 Biol. Evol.* *7*, 2344-2351.

1132 79. Delannoy-Bruno, O., Desai, C., Raman, A.S., Chen, R.Y., Hibberd, M.C.,
1133 Cheng, J., Han, N., Castillo, J.J., Couture, G., Lebrilla, C.B., et al. (2021).
1134 Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans.
1135 *Nature* *595*, 91-95.

1136 80. Zhang, C., Björkman, A., Cai, K., Liu, G., Wang, C., Li, Y., Xia, H., Sun, L.,
1137 Kristiansen, K., Wang, J., et al. (2018). Impact of a 3-months vegetarian diet on
1138 the gut microbiota and immune repertoire. *Front. Immunol.* *9*, 908.

1139 81. Youngblut, N.D., Reischer, G.H., Walters, W., Schuster, N., Walzer, C., Stalder,
1140 G., Ley, R.E., and Farnleitner, A.H. (2019). Host diet and evolutionary history
1141 explain different aspects of gut microbiome diversity among vertebrate clades.
1142 *Nat. Commun.* *10*, 2200.

1143 82. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible
1144 trimmer for Illumina sequence data. *Bioinformatics* *30*, 2114-2120.

1145 83. Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017).
1146 metaSPADEs: a new versatile metagenomic assembler. *Genome Res.* *27*, 824-
1147 834.

1148 84. Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT:
1149 an ultra-fast single-node solution for large and complex metagenomics
1150 assembly via succinct de Bruijn graph. *Bioinformatics* *31*, 1674-1676.

1151 85. Uritskiy, G.V., DiRuggiero, J., and Taylor, J. (2018). MetaWRAP—a flexible
1152 pipeline for genome-resolved metagenomic data analysis. *Microbiome* *6*, 158.

1153 86. Wu, Y.-W., Simmons, B.A., and Singer, S.W. (2016). MaxBin 2.0: an automated
1154 binning algorithm to recover genomes from multiple metagenomic datasets.
1155 *Bioinformatics* *32*, 605-607.

1156 87. Kang, D.D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an efficient
1157 tool for accurately reconstructing single genomes from complex microbial
1158 communities. *PeerJ* *3*, e1165.

1159 88. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W.
1160 (2015). CheckM: assessing the quality of microbial genomes recovered from
1161 isolates, single cells, and metagenomes. *Genome Res.* *25*, 1043-1055.

1162 89. Olm, M.R., Brown, C.T., Brooks, B., and Banfield, J.F. (2017). dRep: a tool for
1163 fast and accurate genomic comparisons that enables improved genome recovery
1164 from metagenomes through de-replication. *ISME J.* *11*, 2864-2868.

1165 90. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with
1166 Bowtie 2. *Nat. Methods* *9*, 357-359.

1167 91. Chaumeil, P.-A., Mussig, A.J., Hugenholz, P., and Parks, D.H. (2020). GTDB-
1168 Tk: a toolkit to classify genomes with the Genome Taxonomy Database.
1169 *Bioinformatics* *36*, 1925–1927.

1170 92. Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment
1171 software version 7: improvements in performance and usability. *Mol. Biol. Evol.*
1172 *30*, 772-780.

1173 93. Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2—approximately
1174 maximum-likelihood trees for large alignments. *PLoS One* *5*, e9490.

1175 94. Letunic, I., and Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent
1176 updates and new developments. *Nucleic Acids Res.* *47*, (W1), W256-W259.

1177 95. Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser,
1178 L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site
1179 identification. *BMC Bioinformatics* *11*, 119.

1180 96. Cantalapiedra, C.P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-
1181 Cepas, J. (2021). eggNOG-mapper v2: functional annotation, orthology
1182 assignments, and domain prediction at the metagenomic scale. *Mol. Biol. Evol.*
1183 *38*, 5825-5829.

1184 97. Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund,
1185 S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., and Jensen, L.J. (2019).
1186 eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated
1187 orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids
1188 Res.* *47*, D309-D314.

1189 98. Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P.K., Xu,
1190 Y., and Yin, Y. (2018). dbCAN2: a meta server for automated carbohydrate-
1191 active enzyme annotation. *Nucleic Acids Res.* *46*, W95-W101.

1192 99. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K.,
1193 and Madden, T.L. (2009). BLAST+: architecture and applications. *BMC
1194 Bioinformatics* *10*, 421.

1195 100. Arango-Argoty, G., Garner, E., Pruden, A., Heath, L.S., Vikesland, P., and
1196 Zhang, L. (2018). DeepARG: a deep learning approach for predicting antibiotic
1197 resistance genes from metagenomic data. *Microbiome* *6*, 23.

1198 101. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and
1199 post-analysis of large phylogenies. *Bioinformatics* *30*, 1312-1313.

1200 102. Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for
1201 clustering the next-generation sequencing data. *Bioinformatics* *28*, 3150-3152.

1202 103. Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein
1203 alignment using DIAMOND. *Nat. Methods* *12*, 59-60.

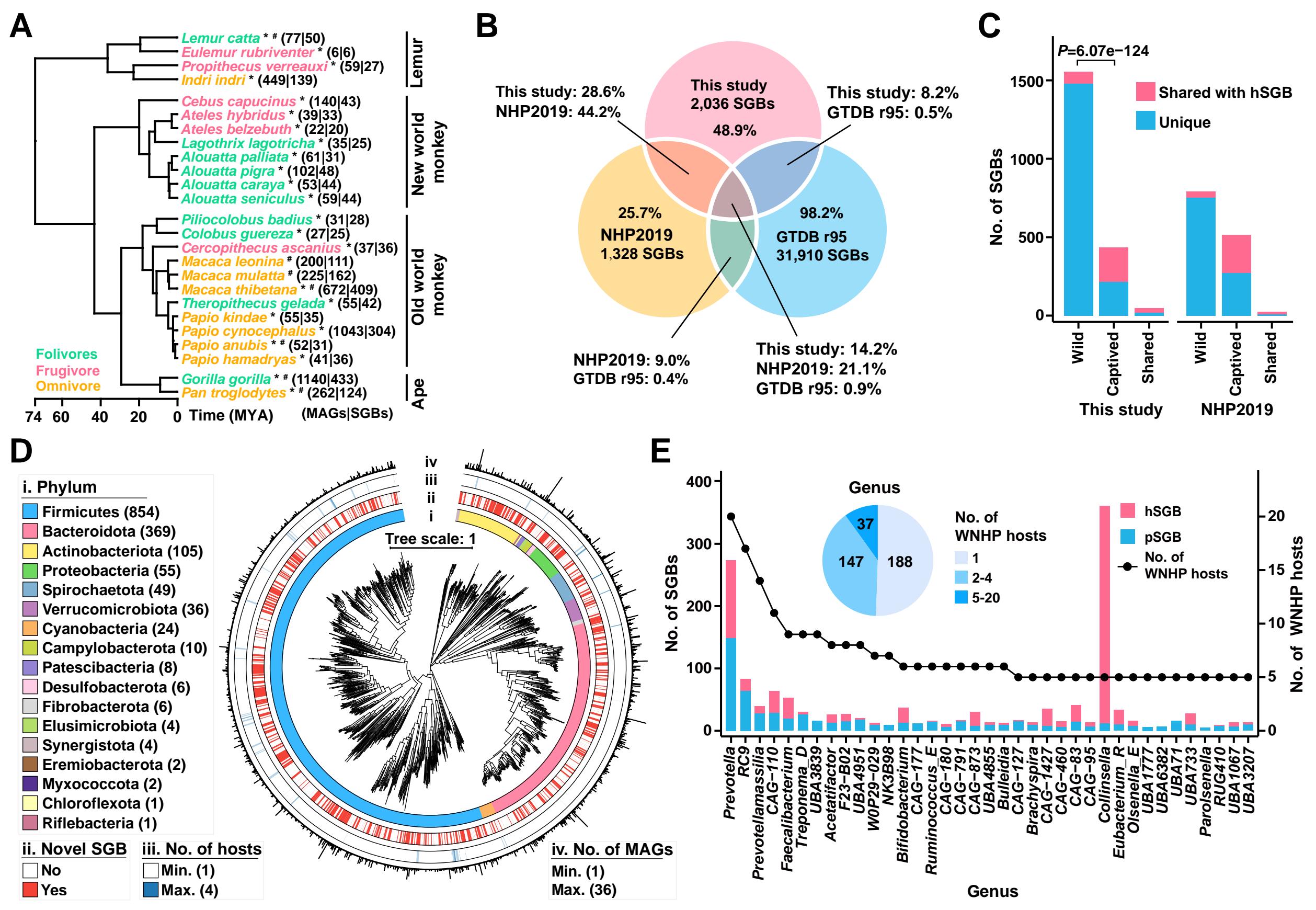
1204 104. Beghini, F., McIver, L.J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan,
1205 S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A.M., et al. (2021). Integrating
1206 taxonomic, functional, and strain-level profiling of diverse microbial
1207 communities with bioBakery 3. *eLife* *10*, e65088.

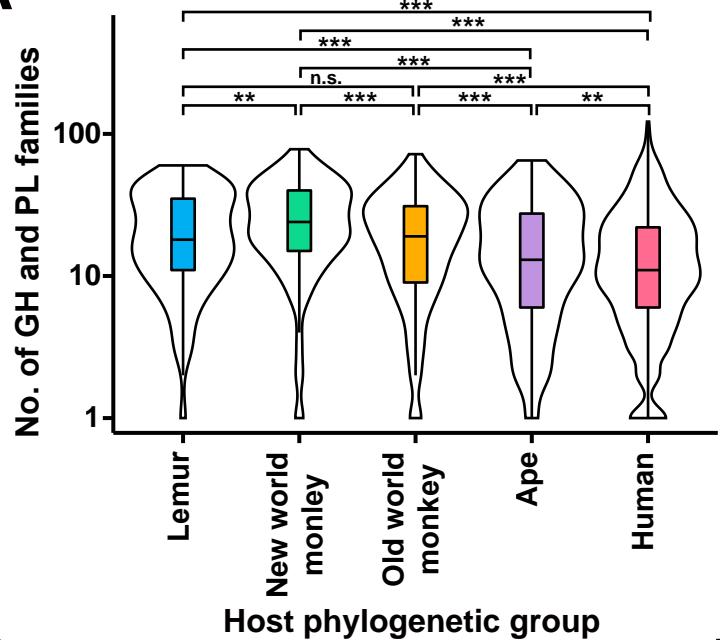
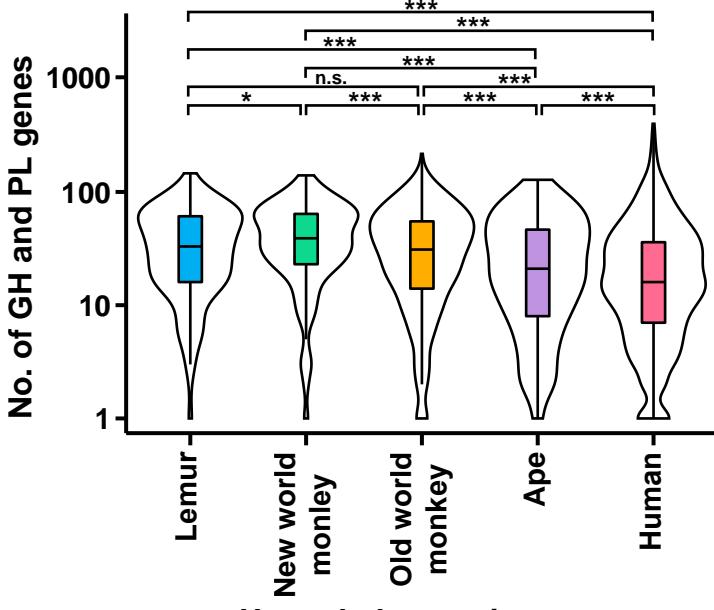
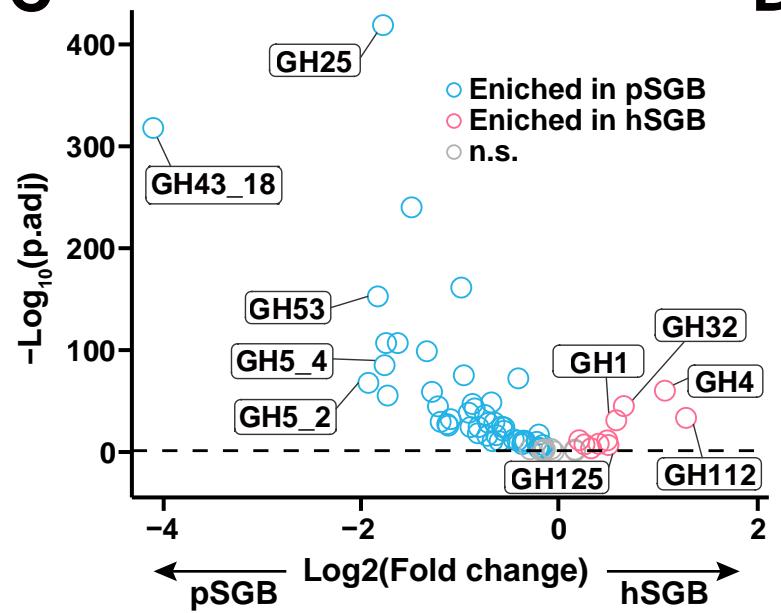
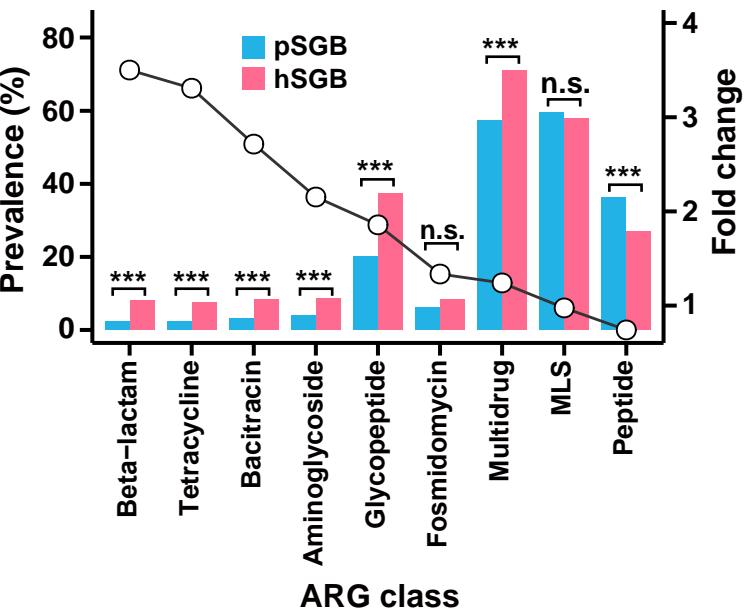
1208 105. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
1209 Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn:
1210 machine learning in Python. *J. Mach. Learn. Res.* *12*, 2825-2830.

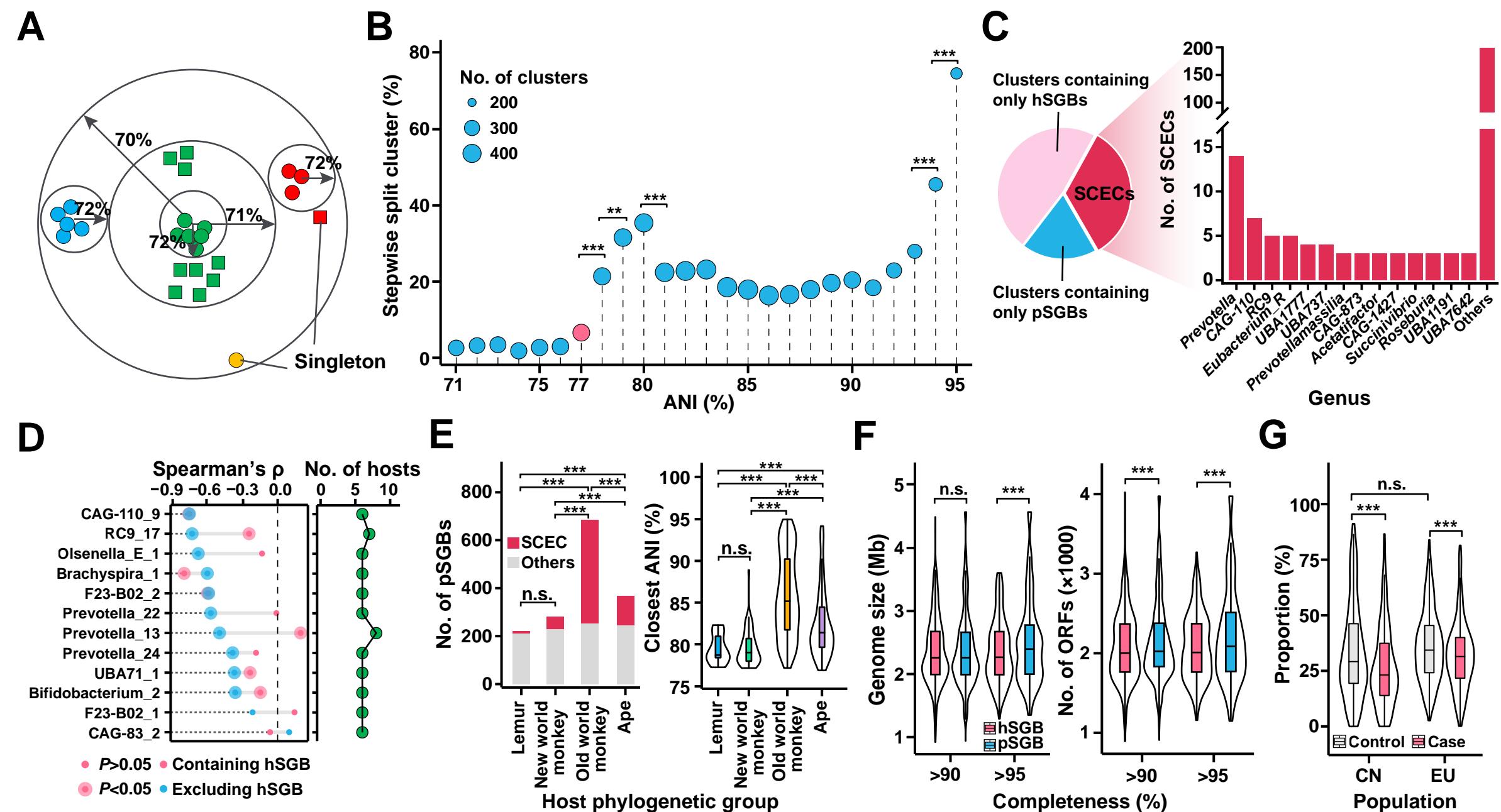
1211 106. Watts, S.C., Ritchie, S.C., Inouye, M., and Holt, K.E. (2019). FastSpar: rapid
1212 and scalable correlation estimation for compositional data. *Bioinformatics* 35,
1213 1064-1066.

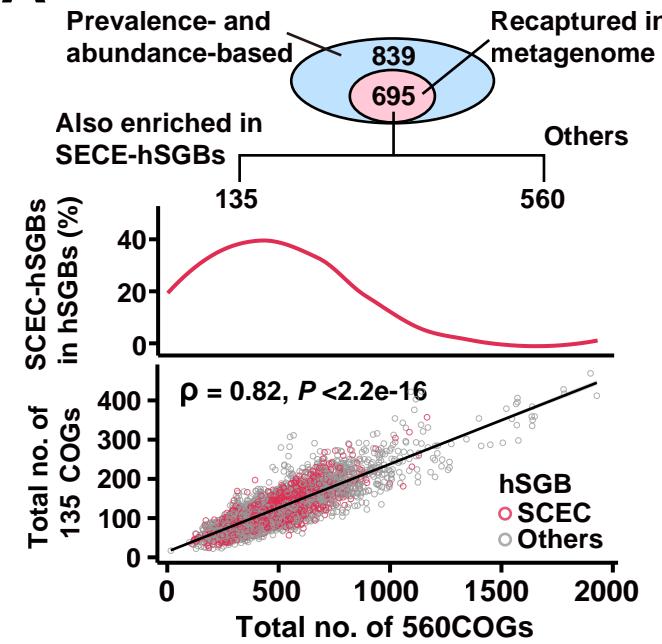
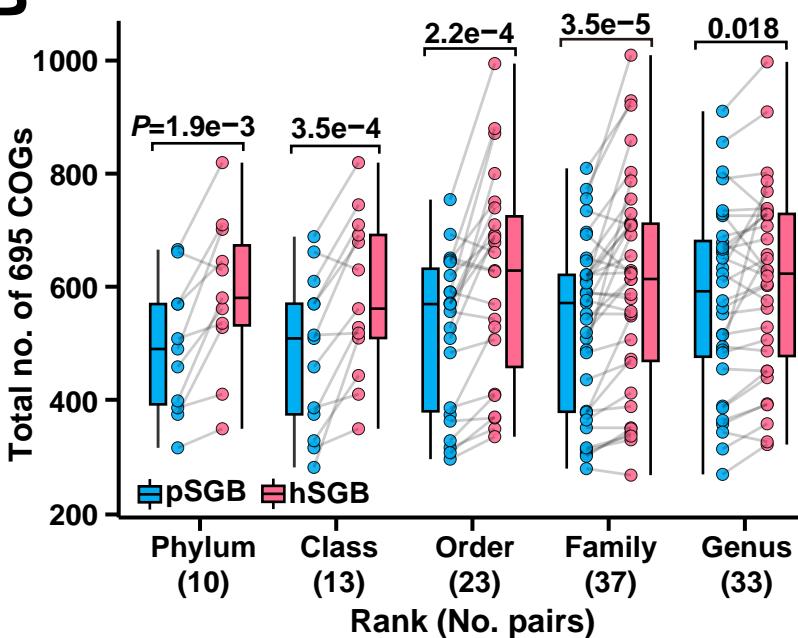
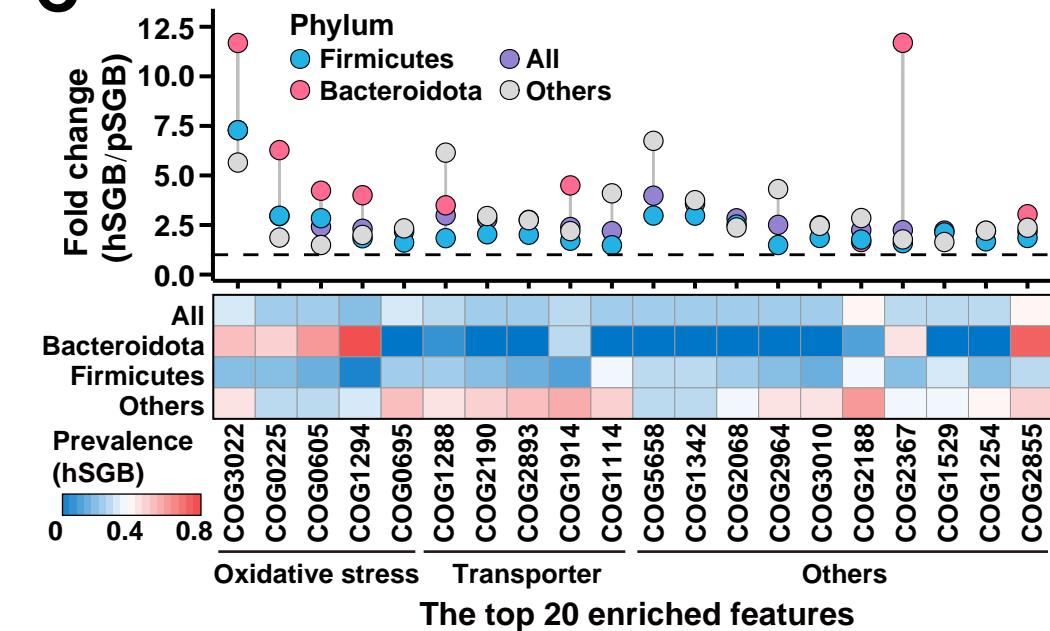
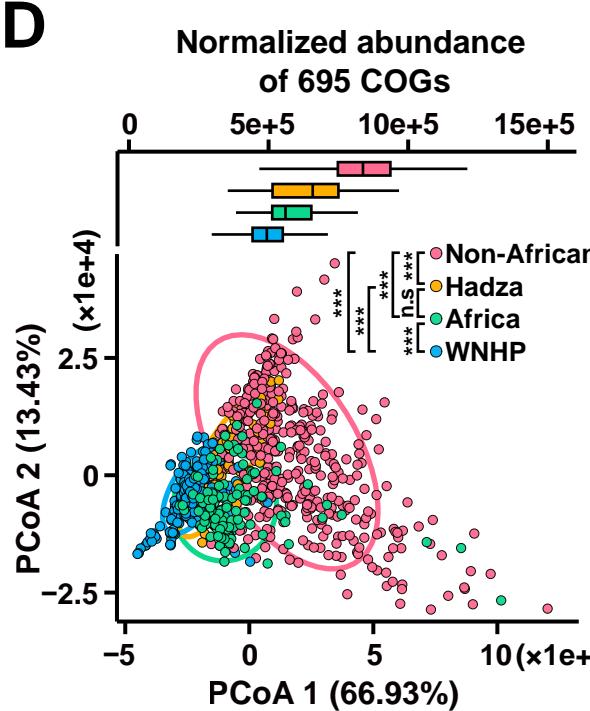
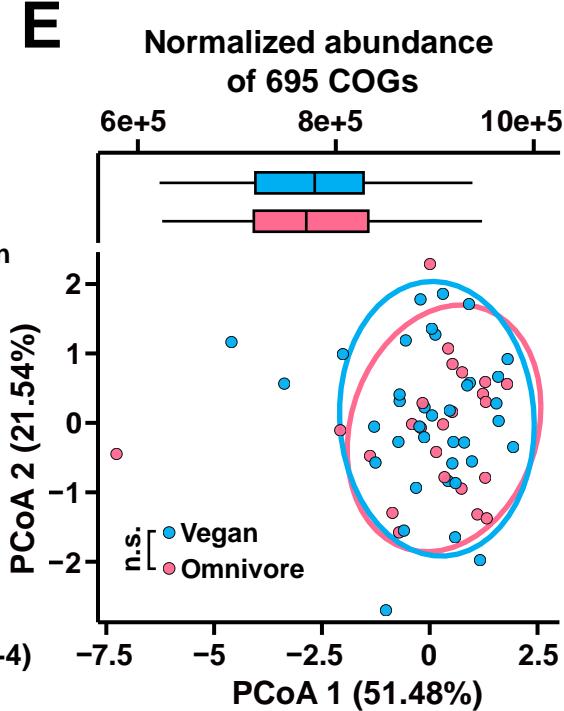
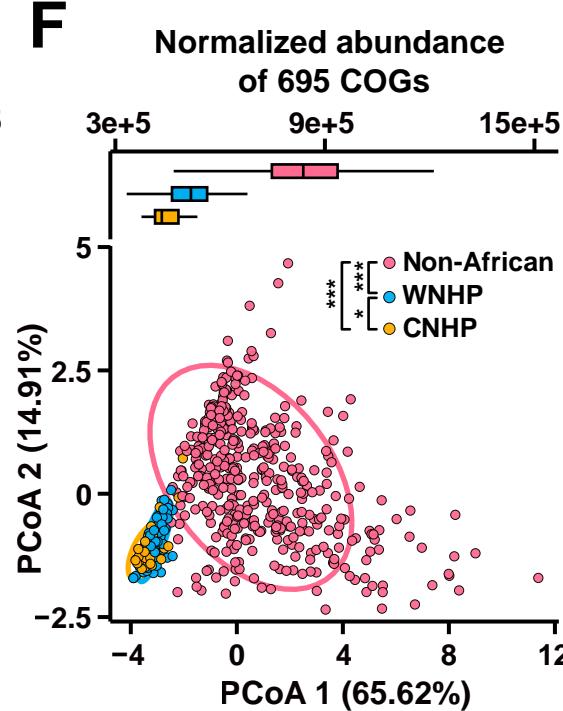
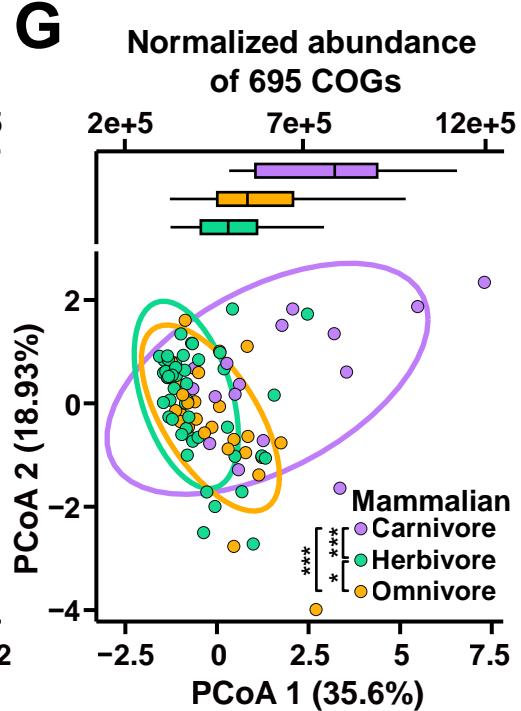
1214 107. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.-L., and Ideker, T. (2011).
1215 Cytoscape 2.8: new features for data integration and network visualization.
1216 *Bioinformatics* 27, 431-432.

1217 108. Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P.,
1218 O'Hara, R., Solymos, P., Stevens, M., Szoecs, E., et al. (2022). vegan:
1219 Community Ecology Package. R package version 2.6-2.



A**B****C****D**



A**B****C****D****E****F****G****H**