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Abstract 23 

Little is known about the co-evolutionary history of the human gut microbe and its 24 

relevance to host physiology. Here, we constructed a gut prokaryotic genomic database 25 

of wild primates (pSGBs) and compared it with the human gut prokaryotic database 26 

(hSGBs) to define shared co-evolutionary clusters (SCEC-hSGBs) and co-evolutionary 27 

traits of hSGBs. We analyzed the evolutionary trends of specific functions like 28 

carbohydrate-active enzymes and antibiotic resistance in hSGBs and uncovered host-29 

jumping events and genome reduction tendencies in SCEC-hSGBs. Intriguingly, the 30 

SCEC-hSGBs and the super enrichers of the traits (SUEN-hSGBs), which are 31 

putatively partially derived from carnivores, showed opposite implications for host 32 

health status. Specifically, SUEN-hSGBs are enriched in various diseases, showing a 33 

negative correlation with gut biodiversity and disproportionate contributions to the 34 

known health-negative marker taxa and metabolite. Our study provides insight into the 35 

origin and adaptability of human gut microbes and references for developing probiotics 36 

and microbiome-based host health prediction. 37 

 38 
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Introduction 45 

Profound and sophisticated metabolic and immune interactions between the gut 46 

microbiota and host are primarily built through their co-evolutionary history.1-4 47 

According to Janzen's definition,5 providing evidence for bidirectional co-evolution of 48 

the host and microbiome is challenging.4,6 The term co-evolution in this context refers 49 

solely to the evolutionary history of the gut microbiome within a host lineage, 50 

regardless of horizontal transferring events. While various factors influence the 51 

taxonomic and functional characteristics of the gut microbiome among 52 

phylogenetically related hosts, host phylogeny often fairly mirrors the microbial 53 

community structure in many cases.7,8 The commonness of this phenomenon, coined 54 

phylosymbiosis, suggests that continuous co-evolution of gut microbial community 55 

across host species may extensively exist.9 However, other factors such as sharing 56 

similar living environments and diets among closely related hosts may also drive 57 

phylosymbiosis.4,10  58 

 59 

In addition to the community-level co-evolution, a few studies focused on gut microbial 60 

intra-lineage co-evolution among hosts,11-13 providing insights into long-term 61 

interactions between symbionts and hosts. Tracing co-evolutionary lineages is crucial 62 

to understand the mechanisms behind co-evolution and co-adaptation between hosts 63 

and microbes, since this approach helps to limit interference from recently horizontally 64 

transferred taxa with unknown origins. Although both intraspecific (i.e., 65 

microevolutionary scale) and interspecific (i.e., macroevolutionary scale) gut microbial 66 
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lineages have been proposed among related mammals, those co-evolutionary clades 67 

spanning hosts diversified millions of years ago are more likely intra-genus multi-68 

specific clusters.11,12 So far, a comprehensive list of long-term human gut microbial co-69 

evolutionary lineages transmitted from or among the primate ancestors is lacking. To 70 

identify this list, we must compile a reference genome database of gut microbes from 71 

wild non-human primates (WNHP), as captive primates exhibit significant disruption 72 

in their gut microbiome compared to wild individuals.14,15 Therefore, although a 73 

genome database of gut microbes from various NHPs has been reported,16 an updated 74 

genome database excluding captives is necessary.  75 

 76 

Evolutionary traits represent ancestral inheritance accumulated over time during 77 

continuous adaptation, providing survival benefits for offspring in similar 78 

environments.17,18 However, such traits can also have adverse effects, such as human 79 

mismatch diseases (e.g., diabetes, obesity, and cardiovascular disease) partially or 80 

wholly caused by mismatches between long-term adaptation and recent rapid 81 

environmental changes.19,20 Currently, the co-evolutionary traits of the gut microbiome 82 

of Homo sapiens and their implications with host health are poorly characterized. The 83 

optimal reference for profiling such traits should be the gut microbiome of the closest 84 

relatives, i.e., other Homo species, but lack of sufficiently analyzable fecal samples 85 

from extinct Homo species prevents this possibility.21 Thus, a suboptimal option is to 86 

profile the long-term co-evolutionary trait of the human gut microbiome by referring to 87 

our primate cousins. 88 
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 89 

We previously discovered a multi-species Prevotella copri-containing lineage co-90 

evolved with WNHPs and humans.11 Here, we aimed to further characterize long-term 91 

co-evolutionary human gut microbial lineages and traits and investigated their 92 

implications on host health. We built an updated genomic database of gut prokaryotic 93 

species containing over 1,600 species from various species of WNHPs. By comparing 94 

this with human gut microbial genomes,22 we then defined the co-evolutionary species 95 

and enriched traits in the human gut microbiome. Interestingly, we found that the co-96 

evolutionary lineages and super-enrichers of evolutionary traits were oppositely 97 

correlated with human health status. Our results provided novel insights into how gut 98 

microbiota adapts to continuously evolving human niches from an evolutionary 99 

perspective. Additionally, we identified previously unidentified gut microbiome 100 

biomarkers of health status. 101 

 102 

Results 103 

An updated gut prokaryotic genome database from WNHPs containing 1,654 104 

species-level genome bins (SGBs) 105 

We collected 346 fecal metagenomes from 25 primate species, including 15 Macaca 106 

thibetana data contributed by this study, for recovering metagenome-assembled 107 

genomes (MAGs) (Figure 1A and Table S1). Therein, 284 metagenomes were derived 108 

from WNHPs,17,23-29 while the remaining 62 metagenomes were obtained from captive 109 

M. mulatta (n = 6), M. leonina (n = 4), M. thibetana (n = 3), Pan troglodytes (n = 18), 110 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


6 
 

Gorilla gorilla (n = 22), Lemur catta (n = 5), and Papio anubis (n = 4).23,28,30 111 

 112 

In total, we retrieved 4,942 bacterial and archaeal MAGs (>50% completeness and <5% 113 

contamination) representing 2,036 SGBs (clustered by average nucleotide identity 114 

(ANI) >95%, see Table S2 for the information of each MAG and SGB) from the 115 

metagenomes. These MAGs represent 54.6% (median value) of the corresponding 116 

metagenomes, indicating high coverage of the SGBs in the gut microbiome of primates. 117 

Nearly half of the SGBs (41.6%) were high-quality genomes with completeness >90% 118 

and contamination <5% (Fig S1A). Strikingly, 78% of the SGBs lacked conspecifics in 119 

the GTDB-r95 database (Figure 1B),31 suggesting that a substantial number of these 120 

SGBs may uniquely distribute in the gut of primates. Even compared to the gut 121 

microbial genomic database of NHPs constructed by Manara et al. (2019) 122 

(NHP2019),16 over half of the SGBs (n = 1,163) were exclusively detected in our 123 

database (Figure 1B).  124 

To evaluate the impact of anthropogenic disturbance on the captive individuals, we 125 

sorted the 2,036 SGBs into three catalogs based on their source: wild individuals, 126 

captive individuals, and shared by both (Figure 1C). The shared SGBs appeared in a 127 

low percentage (n = 47). The ANI values were determined between the SGBs in each 128 

catalog and the human gut SGB collection (hereafter, hSGBs, n = 3,779).22 As expected, 129 

captive primates harbored a much higher ratio of hSGBs-conspecific SGBs than the 130 

wild ones (220 in 436 vs. 74 in 1,553, P = 6.07e−124, Chi-Square test). Similar 131 

proportions were detected for the NHP2019 (Figure 1C). A plausible inference is that 132 
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these hSGBs-conspecific SGBs inhabiting in captive primates were horizontally 133 

transferred from humans or related environments under captivity. Therefore, to 134 

eliminate the effects of captivity, all SGBs solely contributed by captive individuals 135 

were excluded. Finally, after combining the remaining 1,576 SGBs and the non-136 

redundant fraction from wild individuals of NHP2019, the final database contained 137 

1,654 SGBs (1,635 Bacteria and 19 Archaea) from 23 WNHP species (hereafter, 138 

pSGBs). 139 

 140 

The pSGBs are affiliated with 19 phyla and 1,436 of them can be classified into 372 141 

genera according to the GTDB taxonomic system (Figure 1D and Table S3). Here we 142 

congregated three phyla (Firmicutes, Firmicutes_A, and Firmicutes_C) into Firmicutes. 143 

The top five phyla, namely, Firmicutes, Bacteroidota, Actinobacteriota, Proteobacteria, 144 

and Spirochaetota, constitute 91.8% of the total (Figure 1D). Only 2.7% (n = 45) SGBs 145 

harbored MAGs from multiple WNHP species, with a maximum of four shared hosts. 146 

However, it does not imply that the pSGBs from different primate hosts were remotely 147 

related. Among the 222 non-singleton genera (containing two or more pSGBs), 184 had 148 

SGBs found in multiple host species, and 37 of them can be detected in ≥5 host species 149 

(Figure 1E). Prevotella, with 149 pSGBs, has the broadest host range (contributed by 150 

20 WNHP species). Furthermore, hSGBs were detected in 234 pSGB-containing genera, 151 

encompassing 1,128 pSGBs and 1,988 hSGBs (Table S4). The high proportion of 152 

congeneric hSGBs and pSGBs suggested the prevalence of long-term co-evolutionary 153 

history between a large number of microbial lineages and primate hosts. 154 
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 155 

Distributive feature of carbohydrate-active enzymes (CAZys) and antibiotic 156 

resistance genes (ARGs) in hSGBs and pSGBs 157 

We investigated the distribution of two types of functional genes, CAZys (including 158 

only glycoside hydrolase (GH) and polysaccharide lyase (PL)) and ARGs, between 159 

pSGBs and hSGBs, as selective pressures on these genes likely differ substantially 160 

between WNHPs and modern humans. Overall, the number of CAZy families and genes 161 

in pSGBs and hSGBs generally decreased from lemurs and monkeys to apes, then to 162 

humans (Figure 2A, B). The average number of CAZy genes is 28.5 in hSGBs and 38.0 163 

in pSGBs. The dietary type also impacts the number of CAZy families (Fig S2A). 164 

Further analysis showed numerous GH families enriched in pSGBs and relatively few 165 

in hSGBs (Figure 2C and Table S5). Among the top enriched GH families in pSGBs, 166 

many are related to the degradation of cellulose (GH5_2 and GH5_4), xylan (GH43_18), 167 

and arabinose-related glycoside (GH43_18 and GH53), consistent with the higher 168 

intake of these plant glycans in wild primate versus human diets. In contrast, enzymes 169 

targeting glucose-related and galactose-related glycans (GH1, GH4, GH32, and GH112) 170 

were enriched in hSGBs (Figure 2B and Fig S2B). 171 

 172 

For ARGs, the top enriched classes in hSGBs encode resistance to beta-lactam, 173 

tetracycline, bacitracin, aminoglycoside, and glycopeptide (ranked by enriching fold of 174 

prevalence, Figure 2D and Table S6). Conversely, highly prevalent ARG classes such 175 

as macrolide-lincosamide-streptogramin (MLS) and antimicrobial peptides were 176 
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detected in pSGBs at a similar or even higher rate. These results support the directional 177 

selection of the human gut resistome over less than 100 years of clinical antibiotic use. 178 

  179 

Defining shared co-evolutionary SGB clusters 180 

To identify all detectable co-evolutionary SGB clusters, we calculate the ANI values 181 

between congeneric pSGBs and hSGBs, as it is a comprehensive measurement of the 182 

evolutionary distance between intra-genus genomic pairs.32 We hypothesize an 183 

operational ANI threshold, under which the generated SGB clusters can optimally 184 

represent the diversified offspring in primate hosts from each ancestral bacterial species 185 

(i.e., the balance between conservative and radical), even though we cannot confidently 186 

determine the speciation time for the ancestor bacteria (i.e., within the primate host or 187 

not). By stepwise increasing the ANI threshold, the split ratio of SGB clusters was 188 

evaluated for determining the operational threshold (see Methods and a diagram in 189 

Figure 3A). We observed the first significant increase in the split ratio for non-singleton 190 

SGB clusters when increasing the ANI threshold from 77 to 78% (FDR-corrected P = 191 

1.3e−7, Fisher’s exact test, Figure 3B). Over three-quarters (285 in 360) of non-192 

singleton ANI-77% clusters split from ANI-78% to ANI-83% (see Fig S3A, notice that 193 

ANI-83% is a widely recognized lower limit of ANI for closely related prokaryotes),33 194 

indicating that most ANI-77% clusters comprised remotely related species. Moreover, 195 

the corresponding host divergent time for the split-out SGBs also showed a decreasing 196 

trend since ANI-77%, especially when excluding hSGBs (Fig S3B). These results 197 

corroborate ANI-77% as the optimal operational threshold for defining the co-198 
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evolutionary SGB clusters. 199 

 200 

Under the threshold, we defined 779 co-evolved non-singleton SGB clusters in total 201 

(Table S7), of which only 262 contained both hSGB and pSGB (shared co-evolutionary 202 

clusters, SCECs). As shown in Figure 3C, Prevotella has the most SCECs (n = 14), 203 

echoing its high species-level diversity in both pSGBs and hSGBs (Figure 1E). Among 204 

these SCECs, the Prevotella_13 SCEC associates with the largest number of WNHP 205 

hosts, showing highly overlapped pattern with the P. copri-containing lineage we 206 

proposed earlier.11 For the 12 SCECs detected in ≥ 6 host species (i.e., ≥ 5 WNHP 207 

species and human), we observed overall negative correlations between the ANI value 208 

and host divergent time (Figure 3D). Intriguingly, the negative correlations 209 

strengthened when excluding hSGBs. Taken together with Fig S3B, this observation 210 

suggests that some hSGBs may remotely transfer from other primates, initiating 211 

independent evolution in human ancestors within their long-term co-evolutionary 212 

history. We also find that old world monkeys have an even higher proportion of SCEC-213 

pSGBs than apes, while both are much higher than lemurs and new world monkeys 214 

(Figure 3E). A similar pattern was also observed for their ANI to the closest SCEC-215 

hSGBs (Figure 3E). These results indicate that the remote horizontal transfer events 216 

substantially impacted the distribution of SCEC-hSGBs in the gut of modern humans. 217 

 218 

Defining SCECs favors profiling the evolutionary trajectory of hSGBs relative to their 219 

pSGB counterparts. We compared genome size for each intra-SCEC pair of hSGBs and 220 
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pSGBs, finding apparent genome reduction in hSGBs (mean 5.8% for genomes >95% 221 

completeness, Figure 3F). The reduction appears attributable to both gene loss and 222 

changes in gene length but not encoding density (Figure 3F and Fig S3C). Meanwhile, 223 

SCEC-hSGBs have smaller genomes than other hSGBs (P < 0.001, two-sided Student’s 224 

t-test, Fig S3D). In terms of functions, such genome reduction can be partially explained 225 

by the loss of CAZy genes (Figure 2B). Additionally, the top shrinking gene categories 226 

(annotated by Clusters Orthologous Genes, COGs) are those related to cell motility and 227 

energy production & conversion (Fig S3E).  228 

 229 

We also investigated the distribution of SCEC-hSGBs in two human populations (China 230 

and Europe) using the IGC database.34 We found SCEC-hSGBs comparably distributed 231 

in healthy populations from China and Europe (Figure 3G). Interestingly, we observed 232 

a decrease of SCEC-hSGBs in disease individuals for both China (type-2 diabetes, T2D) 233 

and Europe (inflammatory bowel disease, IBD, P < 0.001, two-sided Mann-Whitney U 234 

test, Figure 3G), preliminarily suggesting SCEC-hSGBs may positively implicate with 235 

host health. 236 

 237 

Profiling co-evolutionary traits of hSGBs 238 

Given our interest in gained or strengthened functions of hSGB, we focused on the 239 

hSGB-enriched co-evolutionary traits (annotated by COG). We identified 839 240 

candidate COGs based on prevalence and abundance by comparing all hSGBs and 241 

pSGBs. Among them, as recaptured in metagenomic data, 695 are defined as the co-242 
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evolutionary traits of hSGBs compared with pSGBs (Figure 4A and Table S8, see 243 

Method and Figure S4A-C). Further examination revealed that only a small fraction 244 

(135, 19.4%) of these trait COGs are also enriched in SCEC-hSGBs compared with 245 

their SCEC-pSGB counterparts. Nevertheless, the remaining 560 COGs exhibit a strong 246 

positive correlation with the 135 COGs among all hSGBs, and SCEC-hSGBs typically 247 

had low numbers of total trait COGs (Figure 4A), possibly determined by their small 248 

genome size. 249 

 250 

We detected universal enrichment of trait COGs across all taxonomic ranks from 251 

phylum to genus (Figure 4B), ruling out the possibility that the signal arose from a few 252 

large taxa. For the top 20 trait COGs (requiring >20% frequency across all hSGBs, 253 

ranked by enriching fold of prevalence), we observed no opposing enrichment trends 254 

between different phyla (Figure 4C), supporting that the enrichment resulted from the 255 

general selection of host gastrointestinal environment rather than niche differentiation 256 

among taxa. Half of the top 20 COGs fall into two functional categories, oxidative stress 257 

(n = 5) and transporters (n = 5).  258 

 259 

Because these traits were determined through genomic and metagenomic comparisons, 260 

we aimed to investigate whether they represent long-term hSGB evolutionary traits or 261 

merely reflect very recent niche adaptation in modern humans (i.e., the rapid change of 262 

modern lifestyle). In light of the human “Out of Africa” history, a transitional status in 263 

Africans would support these enrichments as more likely long-term evolutionary traits. 264 
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We thus quantified the relative abundance of the 695 COGs in fecal metagenomes of 265 

WNHPs (n = 284), non-Africans (n = 666), and Africans (n = 356, Table S9).13,22,23,35-266 

49 The 356 African metagenomes include samples from the Hadza hunter-gatherers of 267 

Tanzania (n = 67), who have a remote genetic background to other humans, other rural 268 

Tanzanians (n = 50), and samples from five other countries (n = 239). As shown in 269 

Figure 4D, relative abundance and principal coordinate analysis (PCoA) support the 270 

transitional status of Africans. Relative abundance of the COGs followed a pattern of 271 

non-African human > Hadza ≈ other Tanzanian > WNHP. A similar pattern was 272 

observed for other African populations (Fig S4D). These findings suggest that these 273 

COGs are more likely co-evolutionary traits due to their successive enriching history 274 

in humans. 275 

 276 

Given similar COG abundance in Hadza and other rural Tanzanians with distinct 277 

lifestyles (hunter-gathering vs. rural), we posited that diet may exert limited effects on 278 

the distribution of the trait COGs in the human gut microbiome. Consistent with this 279 

hypothesis, we detected no difference in gut metagenomes between vegetarians and 280 

omnivores (Figure 4E), nor among two short-term diet-intervention cohorts (Fig 281 

S4E&F). Moreover, we also compared the captive primates to wild ones (the same 282 

species of Pan troglodytes and Gorilla gorilla) and found that they have 283 

indistinguishable PCoA patterns, with captives even exhibiting a marginally lower 284 

abundance of trait COGs than wild counterparts (Figure 4F). However, comparisons of 285 

the wild mammalian herbivores, omnivores, and carnivores support the diet-dependent 286 
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distribution of these COGs in the gut microbiome (Figure 4G). In particular, 287 

carnivorous mammals enriched the trait COGs compared with herbivores and 288 

omnivores. Moreover, we detected an increasing abundance of these traits in diseased 289 

EU and CN individuals (Figure 4H), preliminarily indicating that the trait COGs may 290 

negatively correlate with human health, which requires further investigation. 291 

 292 

Enrichment of co-evolutionary traits in gut microbiome is linked with several 293 

diseases  294 

We collected 13 datasets examining associations of the gut microbiome with available 295 

metagenome and eight diseases (ACVD, atherosclerotic cardiovascular disease, 1 case; 296 

NAFLD, nonalcoholic fatty liver disease, 1 case; HTN, hypertension, 1 case; LC, liver 297 

cirrhosis, 1 case; CD, Crohn’s disease, 3 cases; OB, obesity, 1 case; RA, rheumatoid 298 

arthritis, 1 case; T2D, type 2 diabetes, 2 cases; UC, ulcerative colitis, 2 cases, see Table 299 

S10 for detailed information).39-50 We selected datasets based on the following criteria: 300 

1) the diseases are strongly related to metabolism or autoimmunity; 2) studies 301 

concluding gut microbiome-disease associations; and 3) sound control cohort (in terms 302 

of geography, age, etc.). Given that 135 of the 695 trait COGs are also enriched in 303 

SCEC-hSGBs, which have been implicated in promoting healthy status (Figure 3G), 304 

we compared the relative abundance of total and the remaining 560 COGs between the 305 

disease and control group for each dataset. Among the 13 datasets, we detected 306 

significant differences in four datasets of three diseases (1 ACVD case; 1 NAFLD case; 307 

CD, 2 of 3 cases: CD_2 and CD_3), all showing a higher relative abundance of trait 308 
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COGs in disease versus control groups (P < 0.05, two-sided Student’s t-test, Figure 5A, 309 

see Fig S5A for the other eight datasets). NAFLD only showed an enrichment of 560 310 

COGs, while the others enriched both groups. Figure 5B showed that the COG patterns 311 

of disease and control groups diverged in three of the four datasets (in PCoA, 312 

permutational multivariate analysis of variance (PERMANOVA), P < 0.05). The 313 

permutation test excluded that the enrichment of these trait COGs is dependent on 314 

overall microbiome divergence between control and disease groups in ACVD, CD_2, 315 

and CD_3 (Figure 5C). Furthermore, drug intake may not significantly impact the 316 

distribution of the trait COGs (Fig S5B). 317 

 318 

In addition, our analysis revealed that the trait COGs, regardless of the 695-, 560-, or 319 

135-COGs, had a strong predictive power for host disease in all four datasets, with area 320 

under curve (AUC) values ranging from 0.76 to 0.96 (Figure 5D). The 135 COGs 321 

exhibited slightly lower AUC values than the other two, possibly due to its limited COG 322 

number or their enrichment in SCEC-hSGBs. The top 50 trait COGs with the highest 323 

importance during the random forest prediction based on 695 COGs showed no 324 

significant overlap among datasets (all P >0.05, permutations = 100,000) (Figure 5E). 325 

Only 27 traits were shared by more than one dataset, and even for the two CD datasets, 326 

the shared top trait COGs were merely 5. These results suggest that the trait COGs are 327 

dataset-specific. However, we did observe a higher proportion of transporter COGs 328 

distributed in the top trait COGs compared to the others (Figure 5F).  329 

 330 
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Defining super enrichers of the co-evolutionary traits and tracking their potential 331 

source 332 

The above results suggest that the enrichment of co-evolutionary traits in the gut 333 

microbiome is likely linked to several human diseases. We then identified trait COG-334 

enriching hSGBs and investigated their implications for host health. Based on the 335 

matrix of the trait COGs, we detected 202 super enricher hSGBs (designated as SUEN-336 

hSGBs) with 2-fold enrichment of the trait COGs (1,203 on average in SUEN vs. 627 337 

in all hSGBs) and three other groups designated as Group A (average encoding COGs: 338 

379), B (average encoding COGs: 601), and C (average encoding COGs: 902) (Figure 339 

6A). Most SUEN-hSGBs are affiliated with Firmicutes, Proteobacteria, and 340 

Actinobacteria, but not Bacteroidetes, and exhibit relatively large genome sizes (Figure 341 

6A and Table S11). Remarkably, SUEN-hSGBs are significantly underrepresented 342 

among SCEC-hSGBs compared to all hSGBs (16 in 202 vs. 1,342 in 3,779, P = 343 

1.17e−20, Fisher’s exact test). In terms of the distribution of the trait COGs, SUEN-344 

hSGBs are not only the generalists with higher coverage (71.2% ± 8.7% vs. 52.9% ± 345 

12.9%) but also the functional enhancers with a higher copy number for detected COGs 346 

(2.41 ± 0.48 vs. 1.57 ± 0.24). Among the transporter-related COGs, SUEN-hSGBs were 347 

significantly overrepresented compared to Group A and B (Fig S6A). Interestingly, 348 

SUEN-hSGBs negatively correlated with Group A and B, which have a low number of 349 

trait COGs in their genomes, but slightly positively correlated with Group C containing 350 

moderate-enricher (Figure 6B). These results support that the trait COGs are 351 

responsible for the niche differentiation of various gut microbial taxa. 352 
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 353 

Given the low proportion of the SUEN-hSGBs affiliated with SCECs, we are interested 354 

in their source. We hypothesize that SUEN-hSGBs partially transferred from other 355 

mammals, as an enrichment of the trait COGs in carnivorous mammals was observed 356 

(Figure 4G). To test this, we profiled the distribution of SUEN-hSGBs-related taxa in 357 

the gut metagenomes of WNHPs, wild herbivorous, omnivorous, and carnivorous 358 

mammals using a taxonomic marker gene (ribosomal protein L1, COG0081) (see 359 

Methods). The SUEN-hSGB-related taxa (≥ 90% or 95% amino acid identity for 360 

metagenomic reads) were much more abundant in carnivores than in WNHPs, 361 

herbivores and omnivores (All P<0.01, two-sided Student’s t-test, Figure 6C). Thus, 362 

we propose that carnivorous mammals were potential sources of some SUEN-hSGBs, 363 

although the detailed history of transfer and diversification remains unclear. 364 

 365 

SUEN- and SECE-hSGBs have opposite implications for gut microbiome dysbiosis 366 

and human health 367 

We then investigated the potential implications of the SUEN-hSGBs and SCEC-hSGBs, 368 

which have shown a decreasing trend in diseased individuals (Figure 3G), for host 369 

health. Firstly, we determined their relative abundances in the 13 datasets. As shown in 370 

Figure 6D, SUEN-hSGBs and SCEC-hSGBs were significantly enriched in diseased 371 

and healthy individuals, respectively, although their relative abundances varied greatly 372 

among datasets.  373 

 374 
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Secondly, we determined whether there was a correlation between these taxa and the 375 

alpha diversity of the gut microbiome, which is a common indicator of dysbiosis.51,52 376 

As shown in Figure 6E, the Shannon index for most 13 datasets positively correlated 377 

with SCEC-hSGBs (10 of 13, P < 0.05) but negatively with SUEN-hSGBs (8 of 13, P 378 

< 0.05). Even those non-significant correlations were consistent in their direction with 379 

only one exception (SUEN in CD_2, Spearman’s ρ = 0.26). The Shannon indexes were 380 

calculated by removing either SCEC-hSGBs or SUEN-hSGBs. Alternative statistics 381 

including these taxa yielded similar results (Fig S6B). The above results indicated that 382 

the abundance of SCEC-hSGBs and SUEN-hSGBs oppositely correlate with the 383 

diversity of the gut microbiome. 384 

 385 

Thirdly, since two previous studies have provided the list of hSGBs positively or 386 

negatively related to general human health based on large cohorts, we then investigated 387 

how the SCEC-hSGBs and SUEN-hSGBs are involved in these marker taxa (36 for 388 

health-positive and 39 for health-negative, see Table S12 for the taxonomic 389 

information).53,54 The results showed that SCEC-hSGBs were more biased towards 390 

health-positive hSGBs (P < 0.001, Fisher’s exact test, Figure 6F), whereas SUEN-391 

hSGBs showed the opposite pattern (Figure 6G). Moreover, we found that other hSGBs 392 

positively correlating with the total SUEN-hSGBs in the metagenomes were also 393 

significantly related to health-negative hSGBs (8 and 1 for health-negative and health-394 

positive hSGBs, respectively), while negatively correlating hSGBs were only health-395 

positive (n = 9). In addition, the sum of the trait COGs was significantly higher in 396 
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health-negative hSGBs than in health-positive ones (Figure 6H). 397 

 398 

Lastly, given the strong correlation or even causation between gut microbial metabolites 399 

trimethylamine (TMA) and trimethylamine-N-oxide (TMAO) and several diseases 400 

such as ACVD, NAFLD, and IBD,40,55,56 we analyzed CutC (the choline-TMA-lyase) 401 

in hSGBs, since it is the primary enzyme responsible for generating TMA.57 Consistent 402 

with the previous report,58 we found that the prevalence of CutC-encoding hSGBs is 403 

rare (68 in 3,779, Figure 6I&J), with even lower pSGB prevalence (Figure 6J). We 404 

confirmed almost no intraspecific variation in encoding CutC (Fig S6C). In the 405 

phylogenetic tree of CutC from hSGBs, the proteobacterial CutC, which form a unique 406 

clade and all belong to Enterobacteriaceae, were exclusively found in SUEN-hSGBs 407 

(Figure 6I). Notably, the relative abundance of CutC-encoding Enterobacteriaceae in 408 

fecal metagenome is associated with urinary TMAO level,59 suggesting the related taxa 409 

are responsible for TMA production. Moreover, the frequency of encoding CutC is 410 

approximately 10-fold higher in SUEN-hSGBs than in the other hSGBs, whereas no 411 

significant difference was observed for the SCEC-hSGBs with the background (Figure 412 

6I).  413 

 414 

Together, these results indicated SCEC-hSGBs and SUEN-hSGBs had opposite 415 

implications on host health. 416 

 417 

Discussion 418 
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In this study, we established a genomic database of gut microbial species from WNHPs 419 

to define co-evolutionary species and traits of hSGBs. It is important to note that the 420 

pSGBs database is obviously unsaturated because there are over 500 extant primate 421 

species,60 which may have intraspecific divergence in their gut microbiome.61 Therefore, 422 

a more comprehensive collection of samples from primates will improve the reliability 423 

of the list of co-evolving species and evolutionary traits. However, the rarefaction curve 424 

shows that increasing SCEC-hSGBs are approaching saturation (Fig S1B), indicating 425 

the current pSGB database fairly represents co-evolutionary lineages. 426 

 427 

Few pSGBs are shared across wild primates and human, suggesting geographical 428 

isolation dominates wild primate gut microbiome histories, at least for a short term. 429 

This confirms the irreplaceability of wild animal gut microbiome studies14 and 430 

potentially supports allopatric speciation as a major driving force of gut microbe-host 431 

co-speciation.4 However, many hSGBs show host-jumping events, which may occur in 432 

the long-run evolutionary history. The Homo lineage has increased carnivory over 2 433 

million years relative to other primates,62 which may increase the chance of transferring 434 

gut microbes from the primate preys, leading to the initiation of co-evolution with the 435 

new host. 436 

 437 

The evolutionary trend for hSGBs can be observed at different timescales. For a very 438 

short period, such as within a host lifespan or even a few years, evidence has shown 439 

detectable mutation and gene gain/loss events that suggest adaptations.63,64 As the 440 
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timescale increases slightly, strong selective functional potentials can introduce 441 

apparent adaptive changes in the genome.13 For example, our results show an increased 442 

prevalence of ARGs in hSGBs following <100 years of the corresponding antibiotic 443 

usage. Other studies have demonstrated that population-level dietary significantly 444 

impacts the intraspecific CAZy profiles of hSGBs.65 On the long-term co-evolutionary 445 

scale across host species, our study observed an evolutionary trend of genomic 446 

reduction for SCEC-hSGBs. Extreme genome reduction is well-known in symbiotic 447 

bacteria compared with their free-living relatives.66,67 However, the genomic reduction 448 

in SCEC-hSGBs, although to a lesser extent, was based on a comparison with 449 

corresponding SCEC-pSGBs, which are also symbionts. This can be an adaptive 450 

outcome of the putative higher stability of the human gut nutritional condition 451 

compared to that of wild primates. Supporting this, lost genes were biased towards cell 452 

motility and energy production functions. Decreasing chemistry complexity of food, 453 

reflected in the simplified GH families in hSGBs, as well as the putatively increased 454 

host digestive capability (much lower stomach pH in human than primates),68 may also 455 

drive the reduction. 456 

 457 

Although the enriching traits of hSGBs compared to pSGB were functionally diverse, 458 

a hallmark of hSGBs is those adaptive to oxidative stress, suggesting higher intestinal 459 

oxidative toxicity in humans than in wild primates. Lifestyle factors like high-fat diets 460 

and sleep deprivation increase gut ROS.69,70 While human diets contain more fat than 461 

wild primates,71 comparisons of vegetarian and omnivorous humans and results of 462 
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short-term high-fat diet studies do not support diet-induced enrichment of trait COGs. 463 

In contrast, we found the traits enriched in carnivorous vs. omnivorous or herbivorous 464 

mammals. One possible explanation for this contradiction is that only long-term dietary 465 

changes or extreme short-term changes, and permanent dietary shifts that induced 466 

irreversible host physiological alterations are responsible for the enrichment of trait 467 

COGs. As it has been known that the trophic level can extensively link with adaptive 468 

changes in host physiological and metabolic features.68,72 469 

 470 

The co-evolutionary lineages in hSGBs positively correlated with host health, 471 

consistent with the hypothesis that long-term co-evolution tends to select mutualisms 472 

instead of antagonisms.73 This is also consistent with the proposal that the loss of 473 

specific bacterial species from our ancestral microbiome could result in an increased 474 

risk of chronic diseases.74 A previous study based on the rRNA genes showed that 475 

human gut bacterial genera containing more co-speciating taxa across mammals were 476 

negatively correlated with IBD,7 suggesting links between the long-term co-evolving 477 

bacteria and host immunity. Our results showed that the SCEC-hSGBs strongly 478 

positively correlated with the alpha diversity of the gut microbiome, indicating an 479 

association with eubiosis, though the causality is unclear.  480 

 481 

In contrast, the enrichment of the co-evolutionary traits in the gut microbiome is 482 

associated with certain human diseases. The super enrichers of these traits positively 483 

correlated with host unhealth and dysbiosis. Moreover, besides correlation, 484 
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disproportionate TMA producers associated with SUEN-hSGBs have the potential to 485 

cause specific diseases as the metabolites have a significant impact on human health.75 486 

Notably, the SUEN-hSGBs contain a biasedly lower proportion of SCEC ones, 487 

indicating most of them are outsiders that transferred into the human gut more recently. 488 

Our preliminary analysis suggested carnivorous mammals as a potential source of some 489 

SUEN-hSGBs, though transfer histories remain unprofiled. The much higher CutC 490 

frequency in SUEN-hSGBs further supports the hypothesis, as choline, the substrate of 491 

Cuts, is more abundant in animal tissues than in plants. More importantly, the 492 

disproportional and key TMA producers affiliated with SUEN-hSGBs suggest their 493 

potential role as causative agents for certain diseases, considering the direct impact of 494 

the metabolites on human health.75,76 495 

 496 

We posit that the prevalence of these super enrichers can be at least partially explained 497 

by niche selection. It is supported by the fact that their co-occurring taxa are more likely 498 

traits enrichers and negatively correlated taxa encoding fewer trait COGs, strongly 499 

suggesting the trait COGs play certain roles in their niche adaptation. Within the traits, 500 

COGs of transporters are highly represented in SUEN-hSGBs. It has been reported that 501 

encoding redundant transporters can increase the fitness of gut bacteria.77 According to 502 

our results, the enrichment of transporters also seemed related to several diseases 503 

according to the random forest predictive results. Moreover, a previous study has 504 

proposed generalists with larger genomes have advantages in unstable environments.78 505 

The SUEN-hSGBs with larger genome sizes may convey heightened competitive 506 
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ability against other taxa, including SCEC-hSGBs, in both pre-disease and disease 507 

conditions. The loss of SCEC-hSGBs and over-enrichment of the traits in the gut 508 

microbiome reflect (or are selected by) the host gastrointestinal status that deviates from 509 

evolutionary and ecological normality. 510 

 511 

In conclusion, our study characterized long-term co-evolutionary lineages and traits of 512 

human gut microbe compared to an updated gut microbial genome database of WNHP 513 

and revealed their opposing correlations with the host's health status. The SUEN- and 514 

SCEC-hSGBs may serve as new biomarkers, beyond those obtained from cohort studies, 515 

for predicting and diagnosing host health or disease. Defining the SCEC-hSGBs may 516 

provide valuable guidance for developing probiotics and other potential gut microbial 517 

resources, as they are theoretically safer and better adapted to the host. 518 

 519 

Star methods 520 

 Public data collection 521 

 Fecal sample collection and metagenomic sequencing 522 

 Genome reconstruction and species-level genome clustering 523 

 Taxonomy assignment and phylogenetic analysis 524 

 Functional annotation 525 

 SCEC definition 526 

 Mapping the hSGBs to IGC 527 

 Co-evolutionary traits definition 528 
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 Quantification functional genes in metagenomes 529 

 Random forest classifier 530 

 Network analysis 531 

 Host’s phylogenetic group, diet, and divergence time of NHPs. 532 
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Legends of Figures 551 

Figure 1 The updated genomic database of gut microbes from WNHPs.  552 

A) Phylogenetic tree of 25 NHPs based on the evolutionary timescale. Hosts from the 553 

wild and captived sources are labeled by * and #, respectively. 554 

B) Venn diagram of shared SGBs (ANI >95%) between the NHP database of this study, 555 

the NHP database from NHP2019, and GTDB r95. 556 

C) Shared SGBs between hSGBs and our NHP database or NHP2019 (ANI >95%).  557 

D) Phylogenetic tree of pSGBs based on concatenated 120 universal single-copy genes. 558 

Only 1,536 bacterial SGBs with gaps in <60% of alignment columns are shown.  559 

E) Pie chat indicates the host number of non-singleton genera (≥2 SGBs) of pSGBs, 560 

and the bar plot depicts the genome number of pSGBs and hSGBs in genera with ≥5 561 

WNHP hosts. 562 

 563 

Figure 2 CAZy and ARGs profile of pSGB 564 

A, B) Number of CAZy families or genes of SGBs from different primate host 565 

phylogenetic groups. Two-tailed Mann-Whitney U-test. 566 

C) Volcano plot of enriched CAZymes in pSGBs (blue) or hSGBs (red). Only 567 

CAZymes with >10% prevalence in either database were shown, and only the top five 568 

enriched CAZys of each database were labeled. The dashed line indicates Padj = 0.05. 569 

Fisher’s exact test. 570 

D) Most prevalent ARG classes in pSGBs and hSGBs. Only ARG classes with a 571 

prevalence >5% in either database were shown. Fisher’s exact test. 572 
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*, Padj < 0.05; **, Padj < 0.01; ***, Padj < 0.001; n.s., not significant.  573 

 574 

Figure 3 Defining and characterizing SCECs 575 

A) Schematic of the definition of split clusters using stepwise increasing ANI values. 576 

B) Determining the operational threshold of defining SCEC by stepwise increasing ANI 577 

values. ANI=77% was selected as the threshold to define the co-evolutionary SGB 578 

clusters. Fisher’s exact test. 579 

C) Pie chat shows the proportion of SCECs in non-singleton clusters under ANI=77%. 580 

The bar plot depicts the number of SCECs in the genera. Only genera with SCECs ≥3 581 

are shown. 582 

D) Correlation between the ANI value of SGBs within the SCEC with the divergence 583 

time of their hosts (left panel). Only SCECs with ≥ 6 host species were shown (point, 584 

right panel). 585 

E) The proportion (left panel, Fisher’s exact test) of SCEC-pSGB and their closest ANI 586 

to hSGB in the four primate phylogenetic groups (right panel, two-sided Mann-Whitney 587 

U-test).  588 

F) Comparison of genome size and the number of encoding ORFs between pSGB and 589 

hSGB within SCEC under different completeness thresholds. Paired two-sided 590 

Student’s t-test.  591 

G) The proportion of SCEC-hSGBs in CN and EU populations based on the ICG 592 

database. Two-sided Student’s t-test. 593 

 594 
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Figure 4 Defining the co-evolutionary traits of hSGBs and constraints affecting 595 

their distribution 596 

A) Overview of defining the co-evolutionary traits of hSGBs (top panel). The medium 597 

panel depicted the distribution of 695 COGs in SCEC-hSGBs. The bottom panel 598 

showed the correlation between 560 COGs and 135 COGs in hSGBs.  599 

B) Comparison of 695 co-evolutionary traits between pSGB and hSGB. Genomes with 600 

completeness >90% were considered, and the difference of 695 co-evolutionary traits 601 

between pSGB and hSGB is calculated based on the average value of the total copy 602 

number within the genome. The number of taxa pairs at each rank is shown in 603 

parentheses. 604 

C) Distribution and functional profile of the top 20 significantly enriched COGs in 605 

hSGB (Fisher’s extract test with FDR corrected P<0.05). The dropline showed the fold 606 

change of the prevalence of COGs in hSGB compared pSGBs at the phylum level. Only 607 

COGs with a prevalence >5% in either database were displayed. The heatmap showed 608 

the prevalence of these COGs in hSGB at the phylum level. The dashed line represents 609 

the prevalence of COG is equal in both databases. 610 

D-G) Boxplot (top panel) indicated the abundance differences of the 695 COGs across 611 

metagenomic groups, and Euclidean distance PCoA based on the relative abundance of 612 

695 COGs (bottom panel) shows its distribution pattern. Ellipses cover 90% of the 613 

metagenome for each group. Two-sided Student’s t-test with FDR correction. 614 

H) The abundance differences of the 695 COGs in CN and EU populations based on 615 

the ICG database. Two-sided Student’s t-test. 616 
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*, Padj < 0.05; **, Padj < 0.01; ***, Padj < 0.001; n.s., not significant. 617 

 618 

Figure 5 The correlation between 695 evolutionary traits and disease 619 

A) The abundance differences of 695 COGs and 560 COGs in the case and control 620 

groups. Only four datasets, consisting of three different diseases (ACVD, 1 dataset; 621 

NAFLD, 1 dataset; CD, 2 datasets) that exhibited significant enrichment for these traits 622 

in the case group, are presented. Two-sided Student’s t-test with FDR correction. Padj < 623 

0.05; **, Padj < 0.01; ***, Padj < 0.001; n.s., not significant. 624 

B) Fold change in case and control groups based on the total abundance of 695 COGs 625 

(red solid line) or simulated groups of 695 non-evolutionary traits (black dashed line, n 626 

= 10,000). One-sample t-test. 627 

C) PCoA based on the Euclidean distance indicated the distribution pattern of 695 628 

COGs in case and control groups. Ellipses cover 90% of the metagenome for each group. 629 

PERMANOVA, permutations = 999. 630 

D) Performance of the random forest classifier based on 695 COGs, 560 COGs, and 631 

135 COGs. The mean AUC and 2-fold standard deviation of 20 bootstraps were shown. 632 

E) The network depicted the top 50 important COGs in each dataset identified by the 633 

random forest classifier based on 695 COGs. The shared COGs are connected by the 634 

red line. 635 

F) The proportion of transporters in the top important traits. Fisher’s exact test. 636 

 637 

Figure 6 The opposite indications for host health of SUEN-hSGBs and SCEC-638 
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hSGBs 639 

A) Distribution of 695 co-evolutionary traits in hSGBs (heatmap) and the total copy 640 

number of 695 COGs (barplot). The average copy number of 695 COGs in all hSGBs 641 

or each group was indicated in parentheses. The COGs (in row) were clustered based 642 

the Spearman’s correlation. 643 

B) Correlation between SUEN-hSGBs and the other three groups in thirteen disease 644 

cohorts. Spearman's ρ between groups in each dataset was calculated based on the 645 

proportion of the four groups in each sample. The simulated correlations of each dataset 646 

were calculated based on the four counterparts (by group size) that were randomly 647 

assigned hSGBs in each sample (n = 10,000). Paired two-sided Mann-Whitney U-test. 648 

Mean ± s. e. 649 

C) The proportion of SUEN-related species in WNHP and mammals with different diets. 650 

Mean ± s. e. Two-sided Student’s t-test with FDR correction. *, Padj < 0.05; **, Padj < 651 

0.01; ***, Padj < 0.001; n.s., not significant. 652 

D) The proportion of SUEN- and SCEC-hSGBs in control and case groups. Paired two-653 

sided Student’s t-test. 654 

E) Spearman's ρ between the relative abundance of SUEN- or SCEC-hSGBs with the 655 

alpha diversity of the gut microbiome. 656 

F) A higher proportion of SCEC-hSGBs were detected in healthy-positive species. 657 

Fisher’s exact test. 658 

G) The distribution of SUEN-hSGBs and their related species in healthy indicated 659 

species.  660 
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H) The total copy number of 695 COGs in healthy indicating species. Two-sided 661 

Student’s t-test. 662 

I) Maximum-likelihood phylogenetic tree of CutC. The SGBs affiliated with SCEC or 663 

SUEN were labeled by branch colors (red, SCEC; purple, SUEN; *, both). 664 

J) The proportion of SGBs encoding CutC in the two databases and SCEC- or SUEN-665 

hSGBs. Fisher’s exact test. 666 

 667 

 668 

 669 

 670 

 671 

 672 

 673 

 674 

 675 

 676 

 677 

 678 

 679 

 680 

 681 

 682 
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Materials and methods 683 

Public data collection 684 

We collected 321 public metagenomes spanning 23 WNHPs for an updated genomic 685 

database of NHP.17,23-30 In addition, we also collected 2,096 fecal metagenomes of 686 

humans, including 1,890 from studies on gut microbiome-metabolism/autoimmunity 687 

correlations,39-50 356 from Africans,13,22,23,35-38 and 116 from diet investigation or 688 

intervention.65,79,80 For the disease cohorts, we only selected one metagenome per 689 

individual as a representative. Furthermore, we also collected 91 metagenomes from 71 690 

mammals with different diets.81 Details are in Tables S1, S9, and S10. 691 

We referred to publicly available prokaryotic genomes from three studies, including 1) 692 

the human gut MAG/SGB database constructed by Pasolli et al.(2019),22 with MAGs 693 

and SGBs from other body sites removed; 2) the genomic database of NHPs;16 3) the 694 

reference genomes from GTDB database r95.31 695 

 696 

In addition, we referred to 81 gut bacterial species associated with human health or 697 

disease determined in two large cohort studies.53,54 Given that species names may be 698 

inconsistent across taxonomic systems, for these species, we selected a representative 699 

genome from NCBI and then determined its corresponding representative genomes in 700 

hSGB using fastANI (v1.3, ANI >95%; see Table S12 for details).33 701 

 702 

Fecal sample collection and metagenomic sequencing 703 

We collected fecal samples from wild M. thibetana (n = 12) in Wuyishan National 704 
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Nature Reserve and Da’anyuan, Nanping, Fujian province, China. Additionally, we 705 

collected fecal samples of captive M. mulatta (n = 6), M. mulatta (n = 4), and M. 706 

thibetana (n = 3) from the Zoo of Xiamen and Nanping, Fujian province, China. The 707 

fresh feces were collected in sterile collection tubes containing 70% ethanol. All 708 

samples were shipped with dry ice and stored at −80℃ freezer until use. DNA of 25 709 

samples collected in this study was extracted using FastDNA® SPIN Kit for Feces (MP, 710 

USA) DNA extraction kit. The concentration and quality of DNA were determined by 711 

NanoDrop and agarose gel electrophoresis, respectively. The metagenomic library was 712 

constructed using NEBNext® Ultra DNA Library Prep Kit for Illumina (NEB, USA). 713 

The samples were sequenced with the PE150 strategy on Illumina Hiseq Novaseq 6000 714 

platform (commercial service, Novogene, Beijing). 715 

 716 

Genome reconstruction and species-level genome clustering 717 

We filtered the low-quality reads from all metagenomes of NHPs using Trimmomatic 718 

v.0.3882 and assembled the filtered reads using metaSPAdes (v.3.9.1, parameters: -k 33, 719 

45, 55; for paired-end sample) or MEGAHIT (v1.1.4, for single-end or metagenomes 720 

with bases >15 Gb).83,84 We binned scaffolds >1,000bp using MetaWRAP v1.2.1 with 721 

two binners (MaxBin2 and metaBAT2, default parameters),85-87 and refined MAGs 722 

using the bin_refinement module. CheckM (v1.0.7; lineage-specific workflow) was 723 

used to estimate the quality of MAGs and only those with genome completeness >50% 724 

and contamination <5% were kept.88 MAGs were clustered using dRep (v2.6, parameter: 725 

-p 50 -ignore genomequality -pa 0.70 -sa 0.95 --S_algorithm fastANI) at the threshold 726 
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of 95% ANI by two-step cluster.89 The 2,036 MAGs with the best quality of each SGB 727 

cluster were chosen as the representative genomes. We dereplicated the MAGs from 728 

NHP2019 using the same pipeline, resulting in 1,232 SGB clusters. 729 

We aligned the filtered reads of the gut metagenomes from WNHPs to the contigs of 730 

4,942 MAGs using Bowtie2 v2.3.4.3 with default parameters,90 and calculated the 731 

mapping rate by dividing the total mapped reads by all quality-filtered reads of each 732 

sample.  733 

 734 

Taxonomy assignment and phylogenetic analysis 735 

Taxonomy assignment for MAGs and SGBs was determined by GTDB-Tk (v1.3.0; 736 

‘classify_wf’ workflow and default parameters) based on the GTDB database (release 737 

95).31,91 Phylogenetic analyses of 1,637 bacterial pSGBs based on concatenation of 120 738 

ubiquitous single-copy genes.31 The 120 markers were extracted from the annotation 739 

results of GTDB-Tk and were aligned using Mafft v7.407.92 Genomes with >60% gaps 740 

in the concatenated alignment were removed. The phylogenetic tree was inferred using 741 

FastTree v2.1 under the WAG + GAMMA models and visualized via the iTOL.93,94 742 

 743 

Functional annotation 744 

The open reading frames (ORFs) of pSGBs and hSGBs were predicted using Prodigal 745 

v2.6.3.95 The functional profile of each SGB was performed using eggNOG-mapper 746 

(v2.1.6, -m diamond) with eggnog database v5.0 under default parameters.96,97 747 

CAZymes were annotated using the run_dbcan,98 and the substrates categories of the 748 
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top 5 CAZy families enriched in either pSGB or hSGB were manually retrieved from 749 

the nr database.99 ARGs were annotated using DeepARG v2.100 750 

For CutC (encoding the choline trimethylamine-lyase) annotation, a total of 1,184 751 

proteins affiliated with K20038 (KEGG ortholog, choline trimethylamine-lyase) from 752 

pSGBs and hSGBs were annotated against the nr database using BLASTP (evalue 753 

<1e−5, -max_target_seqs 100).99 Alignments with annotation targeted to choline 754 

trimethylamine-lyase were filtered with identity >45% and coverage >50%.58 Filtered 755 

sequences were aligned using Mafft v7.407,92 and the phylogenetic tree was inferred 756 

using RAxML v8.2.12 with the parameters ‘-# 100 -m PROTGAMMAAUTO --auto-757 

prot=aic’.101 Finally, 73 protein sequences from 72 SGBs that formed a monophyletic 758 

branch were determined as CutC. To evaluate the intraspecific divergence of CutC, up 759 

to 100 high-quality MAGs were randomly selected for 56 hSGB clusters (56 CutC 760 

encoding species). Protein sequences were aligned against the 73 CutC sequences using 761 

BLASTP (evalue <1e−5),99 and alignments were filtered with identity >90% and 762 

coverage >90%. 763 

 764 

SCEC definition 765 

In this study, we used an ANI-based method to define co-evolutionary clusters. To 766 

determine the operational threshold for co-evolutionary clusters, we calculated the split 767 

ratio for non-singleton SGB clusters by stepwise increasing the ANI cutoff (from 70% 768 

to 95%, 1% per step) using dRep (v2.6.2, cluster module; options ‘--clusterAlg average 769 

--S_algorithm fastANI --cov_thresh 0.1’).89 Only 107 genera with ≥10 SGBs were 770 
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considered to guarantee enough non-singleton clusters. For instance, there are 309 non-771 

singleton clusters under the ANI cutoff at 70%, and 8 of them split after using the cutoff 772 

at 71%. Therefore, the split ratio for ANI-71% is 2.6%. Fisher’s exact test was for 773 

identifying the first significant increase in split ratio. Finally, after combining all pSGBs 774 

and hSGBs, the co-evolutionary clusters were determined using the cutoff ANI-77%. 775 

Therein, those containing both pSGB and hSGBs were referred to as SCEC ones. 776 

 777 

Co-evolutionary traits definition 778 

To identify co-evolutionary traits that enriched in hSGB, the Mann-Whitney U-tests 779 

(abundance-based) and Fisher’s exact test (prevalence-based) were used for comparing 780 

1,635 high-frequency (frequency >20%) COGs between interspecific hSGBs and 781 

pSGBs. We determined 839 COGs significantly enriched in hSGB (hSGB versus 782 

pSGB >1 and FDR-corrected P <0.05) using both methods. Among them, 695 COGs 783 

as co-evolutionary traits because they showed significant enrichment in metagenomes 784 

of healthy populations compared to WNHP. 785 

 786 

Quantification of functional genes in metagenomes 787 

Considering the under-representation of pSGBs in the widely referred genome 788 

databases, we developed a pipeline to quantify the relative abundance of functional 789 

genes and SGB in metagenomes (Fig S4A, B, and C). Firstly, we de-replicated 790 

annotated ORFs from pSGBs and hSGBs with 95% identity and 90% coverage using 791 

CD-HIT v4.7,102 including representatives in our customized database. Secondly, we 792 
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subsampled quality-filtered metagenomes to 10 million reads to reduce the 793 

computational burden and minimize any potential distortion caused by unequal 794 

sequencing depth. We included all reads for metagenomes <10 million reads and 795 

removed metagenomes <1 million reads. Thirdly, the reads were aligned against the 796 

customized database using DIAMOND BLASTX (-evalue <1e−5, -max_target_seqs = 797 

1),103 and alignments are filtered with identity >50% and coverage >80%. The filtered 798 

result was normalized to per million reads for each metagenome. Finally, we observed 799 

high annotation rate variation between metagenomes, potentially from non-prokaryotic 800 

DNA proportions, so we normalized using the ribosomal protein L1. 801 

Our pipeline achieved higher annotation rates for WNHP and human gut metagenomes 802 

than the HUMAnN3 (uniref90_201901b_full database, default parameters, Fig S4B).104 803 

Correlation coefficients among three conserved proteins (ribosomal protein L1, L3 804 

(COG0087), and S3 (COG0092)) were also higher in our pipeline than in the 805 

HUMAnN3 results (Fig S4C).  806 

To quantify the SUEN-related taxa in metagenomes of WNHPs, wild herbivorous, 807 

omnivorous, and carnivorous mammals, we aligned the reads to the COG0081 database 808 

from hSGB and pSGBs using DIAMOND BLASTX. The alignments were filtered with 809 

≥90% or 95% amino acid identity and >80% coverage and then normalized to per 810 

million reads for each metagenome. For each threshold, the abundance of SUEN-related 811 

taxa is characterized by the ratio of the number of reads mapped to SUEN-hSGBs to 812 

the total number of reads mapped to all SGBs under identity ≥50%. 813 

For quantifying hSGBs in metagenomes, the relative abundance of each species is 814 
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computed by totaling the relative abundance of 120 universal single-copy genes. 815 

 816 

IGC data analysis 817 

To define the proportion of SCEC-hSGBs in different regions, the ribosomal protein 818 

genes (ribosomal protein L1) in the IGC database were aligned against the 819 

corresponding ones of the hSGBs using BLASTN,34,99 and alignments were filtered 820 

with identity >95% and coverage >90%. The filtered sequences were labeled as SCEC-821 

hSGB, other-hSGB (based on the respective hSGB group), or others (sequences without 822 

hits). The proportion of the CN and EU populations was calculated for each 823 

metagenome based on the gene-level relative abundance table offered by ICG. 824 

 825 

Random forest classifiers 826 

We built random forest classifiers using scikit-learn to evaluate trait COG performance 827 

in predicting case/control groups.105 The dataset was randomly split into training and 828 

test sets (7:3) 20 times for each cohort, and the model was trained using optimized 829 

parameters to achieve the predicted performance. Mean AUC was used to evaluate the 830 

performance of the classifier. The top 50 COGs, determined by importance, were 831 

subsequently analyzed. 832 

 833 

Network analysis 834 

Correlations of hSGBs were calculated using FastSpar v1.0.0 based on the relative 835 

abundance of a combination of 13 disease datasets.106 Notably, due to the unbalanced 836 
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sample size of these studies, the metagenome of ACVD and T2D_1 were randomly 837 

sampled to 200 (100 samples each in the control and case group) to reduce 838 

computational bias. To reduce computational effort, species with a prevalence <10% 839 

were excluded from the analysis. We used permutation testing (n = 5,000) and 840 

Benjamini-Hochberg correction for multiple testing to generate P values. The network 841 

was visualized using Cytosacpe v3.9.1.107  842 

 843 

Phylogenetic group, diet, and divergence time of NHPs 844 

The phylogeny and divergence time of primates are retrieved from Timetree 845 

(http://timetree.org/). The dietary of primates is collected from Animal Diversity Web 846 

(https://animaldiversity.org/). 847 

 848 

Statistical analysis and data visualization 849 

We calculated alpha diversity using the Shannon index based on hSGB relative 850 

abundance in metagenome (Vegan R package).108 The PCoA was performed using the 851 

vegan R package based on the normalized relative abundance matrix of 695 co-852 

evolutionary traits in each metagenome. The difference in clustering patterns based on 853 

695 co-evolutionary traits between the control and case groups was tested using 854 

permutational analysis of variance. Significances of the shared COGs of the top 855 

important traits between the four datasets were inferred using simulated sampling based 856 

on the multivariate hypergeometric distribution (permutations = 100,000; Purrr R 857 

package). 858 
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 859 

We performed statistics in R v4.1.3. We report Student’s t-tests, Mann-Whitney U tests, 860 

Fisher’s exact tests, Chi-Square tests, and Benjamini-Hochberg false discovery rate 861 

corrections for multiple hypothesis testing. 862 

 863 

Data and code availability 864 

The raw sequencing data of non-human primates in this study are available in the 865 

Sequence Read Archive (SRA) under Bioproject PRJNA932532. MAGs recovered in 866 

this study are available in the FigShare repository 867 

(https://doi.org/10.6084/m9.figshare.22117169). 868 

 869 

 870 

 871 

 872 

 873 

 874 

 875 

 876 

 877 

 878 

 879 

 880 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.6084/m9.figshare.22117169
https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


41 
 

Reference 881 

1. Sommer, F., and Bäckhed, F. (2013). The gut microbiota—masters of host 882 

development and physiology. Nat. Rev. Microbiol. 11, 227-238. 883 

2. Tremaroli, V., and Bäckhed, F. (2012). Functional interactions between the gut 884 

microbiota and host metabolism. Nature 489, 242-249. 885 

3. Davenport, E.R., Sanders, J.G., Song, S.J., Amato, K.R., Clark, A.G., and 886 

Knight, R. (2017). The human microbiome in evolution. BMC Biol. 15, 1-12. 887 

4. Groussin, M., Mazel, F., and Alm, E.J. (2020). Co-evolution and co-speciation 888 

of host-gut bacteria systems. Cell Host Microbe 28, 12-22. 889 

5. Janzen, D.H. (1980). When is it coevolution? Evolution 34, 611–612. 890 

6. Moran, N.A., and Sloan, D.B. (2015). The hologenome concept: helpful or 891 

hollow? PLoS Biol. 13, e1002311. 892 

7. Groussin, M., Mazel, F., Sanders, J.G., Smillie, C.S., Lavergne, S., Thuiller, W., 893 

and Alm, E.J. (2017). Unraveling the processes shaping mammalian gut 894 

microbiomes over evolutionary time. Nat. Commun. 8, 14319. 895 

8. Rojas, C.A., Ramírez-Barahona, S., Holekamp, K.E., and Theis, K.R. (2021). 896 

Host phylogeny and host ecology structure the mammalian gut microbiota at 897 

different taxonomic scales. Animal Microbiome 3, 1-18. 898 

9. Lim, S.J., and Bordenstein, S.R. (2020). An introduction to phylosymbiosis. 899 

Proc. R. Soc. B 287, 20192900. 900 

10. Mallott, E.K., and Amato, K.R. (2020). Phylosymbiosis, diet and gut 901 

microbiome-associated metabolic disease. Evol. Med. Public Hlth. 2020, 100-902 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


42 
 

101. 903 

11. Li, H., Meier-Kolthoff, J.P., Hu, C., Wang, Z., Zhu, J., Zheng, W., Tian, Y., and 904 

Guo, F. (2022). Panoramic insights into microevolution and macroevolution of 905 

a Prevotella copri-containing lineage in primate guts. Genomics Proteomics 906 

Bioinformatics 20, 334-349. 907 

12. Moeller, A.H., Caro-Quintero, A., Mjungu, D., Georgiev, A.V., Lonsdorf, E.V., 908 

Muller, M.N., Pusey, A.E., Peeters, M., Hahn, B.H., and Ochman, H. (2016). 909 

Cospeciation of gut microbiota with hominids. Science 353, 380-382. 910 

13. Suzuki, T.A., Fitzstevens, J.L., Schmidt, V.T., Enav, H., Huus, K.E., Mbong 911 

Ngwese, M., Grießhammer, A., Pfleiderer, A., Adegbite, B.R., Zinsou, J.F., et 912 

al. (2022). Codiversification of gut microbiota with humans. Science 377, 1328-913 

1332. 914 

14. Amato, K.R., Yeoman, C.J., Kent, A., Righini, N., Carbonero, F., Estrada, A., 915 

Rex Gaskins, H., Stumpf, R.M., Yildirim, S., Torralba, M., et al. (2013). Habitat 916 

degradation impacts black howler monkey (Alouatta pigra) gastrointestinal 917 

microbiomes. ISME J. 7, 1344-1353. 918 

15. Clayton, J.B., Vangay, P., Huang, H., Ward, T., Hillmann, B.M., Al-Ghalith, 919 

G.A., Travis, D.A., Long, H.T., Tuan, B.V., Minh, V.V., et al. (2016). Captivity 920 

humanizes the primate microbiome. Proc. Natl. Acad. Sci. USA 113, 10376-921 

10381. 922 

16. Manara, S., Asnicar, F., Beghini, F., Bazzani, D., Cumbo, F., Zolfo, M., Nigro, 923 

E., Karcher, N., Manghi, P., Metzger, M.I., et al. (2019). Microbial genomes 924 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


43 
 

from non-human primate gut metagenomes expand the primate-associated 925 

bacterial tree of life with over 1000 novel species. Genome Biol. 20, 299. 926 

17. Amato, K.R., G. Sanders, J., Song, S.J., Nute, M., Metcalf, J.L., Thompson, 927 

L.R., Morton, J.T., Amir, A., J. McKenzie, V., Humphrey, G., et al. (2019). 928 

Evolutionary trends in host physiology outweigh dietary niche in structuring 929 

primate gut microbiomes. ISME J. 13, 576-587. 930 

18. Walter, J., and Ley, R. (2011). The human gut microbiome: ecology and recent 931 

evolutionary changes. Annu. Rev. Microbiol. 65, 411-429. 932 

19. Corbett, S., Courtiol, A., Lummaa, V., Moorad, J., and Stearns, S. (2018). The 933 

transition to modernity and chronic disease: mismatch and natural selection. Nat. 934 

Rev. Genet. 19, 419-430. 935 

20. Eaton, S.B., Konner, M., and Shostak, M. (1988). Stone agers in the fast lane: 936 

chronic degenerative diseases in evolutionary perspective. Am. J. Med. 84, 739-937 

749. 938 

21. Sonnenburg, E.D., and Sonnenburg, J.L. (2019). The ancestral and 939 

industrialized gut microbiota and implications for human health. Nat. Rev. 940 

Microbiol. 17, 383-390. 941 

22. Pasolli, E., Asnicar, F., Manara, S., Zolfo, M., Karcher, N., Armanini, F., 942 

Beghini, F., Manghi, P., Tett, A., Ghensi, P., et al. (2019). Extensive unexplored 943 

human microbiome diversity revealed by over 150,000 genomes from 944 

metagenomes spanning age, geography, and lifestyle. Cell 176, 649-662. e20. 945 

23. Campbell, T.P., Sun, X., Patel, V.H., Sanz, C., Morgan, D., and Dantas, G. 946 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


44 
 

(2020). The microbiome and resistome of chimpanzees, gorillas, and humans 947 

across host lifestyle and geography. ISME J. 14, 1584-1599. 948 

24. D’arc, M., Ayouba, A., Esteban, A., Learn, G.H., Boué, V., Liegeois, F., Etienne, 949 

L., Tagg, N., Leendertz, F.H., Boesch, C., et al. (2015). Origin of the HIV-1 950 

group O epidemic in western lowland gorillas. Proc. Natl. Acad. Sci. USA 112, 951 

E1343-E1352. 952 

25. Greene, L.K., Williams, C.V., Junge, R.E., Mahefarisoa, K.L., Rajaonarivelo, T., 953 

Rakotondrainibe, H., O’Connell, T.M., and Drea, C.M. (2020). A role for gut 954 

microbiota in host niche differentiation. ISME J. 14, 1675-1687. 955 

26. Hicks, A.L., Lee, K.J., Couto-Rodriguez, M., Patel, J., Sinha, R., Guo, C., Olson, 956 

S.H., Seimon, A., Seimon, T.A., Ondzie, A.U., et al. (2018). Gut microbiomes 957 

of wild great apes fluctuate seasonally in response to diet. Nat. Commun. 9, 958 

1786. 959 

27. Orkin, J.D., Webb, S.E., and Melin, A.D. (2019). Small to modest impact of 960 

social group on the gut microbiome of wild Costa Rican capuchins in a seasonal 961 

forest. Am. J. Primatol. 81, e22985. 962 

28. Tsukayama, P., Boolchandani, M., Patel, S., Pehrsson, E.C., Gibson, M.K., 963 

Chiou, K.L., Jolly, C.J., Rogers, J., Phillips-Conroy, J.E., and Dantas, G. (2018). 964 

Characterization of wild and captive baboon gut microbiota and their antibiotic 965 

resistomes. mSystems 3, e00016-00018. 966 

29. Tung, J., Barreiro, L.B., Burns, M.B., Grenier, J.-C., Lynch, J., Grieneisen, L.E., 967 

Altmann, J., Alberts, S.C., Blekhman, R., and Archie, E.A. (2015). Social 968 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


45 
 

networks predict gut microbiome composition in wild baboons. eLife 4, e05224. 969 

30. Shaffer, J.P., Nothias, L.-F., Thompson, L.R., Sanders, J.G., Salido, R.A., 970 

Couvillion, S.P., Brejnrod, A.D., Lejzerowicz, F., Haiminen, N., Huang, S., et 971 

al. (2022). Standardized multi-omics of Earth’s microbiomes reveals microbial 972 

and metabolite diversity. Nat. Microbiol., 1-23. 973 

31. Parks, D.H., Chuvochina, M., Chaumeil, P.-A., Rinke, C., Mussig, A.J., and 974 

Hugenholtz, P. (2020). A complete domain-to-species taxonomy for Bacteria 975 

and Archaea. Nat. Biotechnol. 38, 1079-1086. 976 

32. Gosselin, S., Fullmer, M.S., Feng, Y., and Gogarten, J.P. (2022). Improving 977 

phylogenies based on average nucleotide identity, incorporating saturation 978 

correction and nonparametric bootstrap support. Syst. Biol. 71, 396-409. 979 

33. Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., and Aluru, 980 

S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals 981 

clear species boundaries. Nat. Commun. 9, 5114. 982 

34. Li, J., Jia, H., Cai, X., Zhong, H., Feng, Q., Sunagawa, S., Arumugam, M., 983 

Kultima, J.R., Prifti, E., Nielsen, T., et al. (2014). An integrated catalog of 984 

reference genes in the human gut microbiome. Nat. Biotechnol. 32, 834-841. 985 

35. Rampelli, S., Schnorr, S.L., Consolandi, C., Turroni, S., Severgnini, M., Peano, 986 

C., Brigidi, P., Crittenden, A.N., Henry, A.G., and Candela, M. (2015). 987 

Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr. 988 

Biol. 25, 1682-1693. 989 

36. Smits, S.A., Leach, J., Sonnenburg, E.D., Gonzalez, C.G., Lichtman, J.S., Reid, 990 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


46 
 

G., Knight, R., Manjurano, A., Changalucha, J., Elias, J.E., et al. (2017). 991 

Seasonal cycling in the gut microbiome of the Hadza hunter-gatherers of 992 

Tanzania. Science 357, 802-806. 993 

37. Tett, A., Huang, K.D., Asnicar, F., Fehlner-Peach, H., Pasolli, E., Karcher, N., 994 

Armanini, F., Manghi, P., Bonham, K., Zolfo, M., et al. (2019). The Prevotella 995 

copri complex comprises four distinct clades underrepresented in westernized 996 

populations. Cell Host Microbe 26, 666-679. e7. 997 

38. Rubel, M.A., Abbas, A., Taylor, L.J., Connell, A., Tanes, C., Bittinger, K., Ndze, 998 

V.N., Fonsah, J.Y., Ngwang, E., Essiane, A., et al. (2020). Lifestyle and the 999 

presence of helminths is associated with gut microbiome composition in 1000 

Cameroonians. Genome Biol. 21, 122. 1001 

39. Franzosa, E.A., Sirota-Madi, A., Avila-Pacheco, J., Fornelos, N., Haiser, H.J., 1002 

Reinker, S., Vatanen, T., Hall, A.B., Mallick, H., McIver, L.J., et al. (2019). Gut 1003 

microbiome structure and metabolic activity in inflammatory bowel disease. 1004 

Nat. Microbiol. 4, 293-305. 1005 

40. Jie, Z., Xia, H., Zhong, S.-L., Feng, Q., Li, S., Liang, S., Zhong, H., Liu, Z., 1006 

Gao, Y., Zhao, H., et al. (2017). The gut microbiome in atherosclerotic 1007 

cardiovascular disease. Nat. Commun. 8, 845. 1008 

41. Karlsson, F.H., Tremaroli, V., Nookaew, I., Bergström, G., Behre, C.J., 1009 

Fagerberg, B., Nielsen, J., and Bäckhed, F. (2013). Gut metagenome in 1010 

European women with normal, impaired and diabetic glucose control. Nature 1011 

498, 99-103. 1012 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


47 
 

42. Lewis, J.D., Chen, E.Z., Baldassano, R.N., Otley, A.R., Griffiths, A.M., Lee, D., 1013 

Bittinger, K., Bailey, A., Friedman, E.S., Hoffmann, C., et al. (2015). 1014 

Inflammation, antibiotics, and diet as environmental stressors of the gut 1015 

microbiome in pediatric Crohn’s disease. Cell Host Microbe 18, 489-500. 1016 

43. Lloyd-Price, J., Arze, C., Ananthakrishnan, A.N., Schirmer, M., Avila-Pacheco, 1017 

J., Poon, T.W., Andrews, E., Ajami, N.J., Bonham, K.S., Brislawn, C.J., et al. 1018 

(2019). Multi-omics of the gut microbial ecosystem in inflammatory bowel 1019 

diseases. Nature 569, 655-662. 1020 

44. Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., Dulai, P.S., 1021 

Caussy, C., Bettencourt, R., Highlander, S.K., et al. (2017). Gut microbiome-1022 

based metagenomic signature for non-invasive detection of advanced fibrosis in 1023 

human nonalcoholic fatty liver disease. Cell Metab. 25, 1054-1062. e5. 1024 

45. Mehta, R.S., Abu-Ali, G.S., Drew, D.A., Lloyd-Price, J., Subramanian, A., 1025 

Lochhead, P., Joshi, A.D., Ivey, K.L., Khalili, H., Brown, G.T., et al. (2018). 1026 

Stability of the human faecal microbiome in a cohort of adult men. Nat. 1027 

Microbiol. 3, 347-355. 1028 

46. Qin, J., Li, Y., Cai, Z., Li, S., Zhu, J., Zhang, F., Liang, S., Zhang, W., Guan, Y., 1029 

Shen, D., et al. (2012). A metagenome-wide association study of gut microbiota 1030 

in type 2 diabetes. Nature 490, 55-60. 1031 

47. Qin, N., Yang, F., Li, A., Prifti, E., Chen, Y., Shao, L., Guo, J., Le Chatelier, E., 1032 

Yao, J., Wu, L., et al. (2014). Alterations of the human gut microbiome in liver 1033 

cirrhosis. Nature 513, 59-64. 1034 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


48 
 

48. Yang, K., Niu, J., Zuo, T., Sun, Y., Xu, Z., Tang, W., Liu, Q., Zhang, J., Ng, E.K., 1035 

Wong, S.K., et al. (2021). Alterations in the gut virome in obesity and type 2 1036 

diabetes mellitus. Gastroenterology 161, 1257-1269. e13. 1037 

49. Zhang, X., Zhang, D., Jia, H., Feng, Q., Wang, D., Liang, D., Wu, X., Li, J., 1038 

Tang, L., Li, Y., et al. (2015). The oral and gut microbiomes are perturbed in 1039 

rheumatoid arthritis and partly normalized after treatment. Nat. Med. 21, 895-1040 

905. 1041 

50. Li, J., Zhao, F., Wang, Y., Chen, J., Tao, J., Tian, G., Wu, S., Liu, W., Cui, Q., 1042 

Geng, B., et al. (2017). Gut microbiota dysbiosis contributes to the development 1043 

of hypertension. Microbiome 5, 1-19. 1044 

51. Li, Z., Zhou, J., Liang, H., Ye, L., Lan, L., Lu, F., Wang, Q., Lei, T., Yang, X., 1045 

and Cui, P. (2022). Differences in alpha diversity of gut microbiota in 1046 

neurological diseases. Front. Neurosci. 16, 879318. 1047 

52. Gong, C.H., Kendig, H., and He, X. (2016). Factors predicting health services 1048 

use among older people in China: an analysis of the China health and retirement 1049 

longitudinal study 2013. BMC Health Serv. Res. 16, 63. 1050 

53. Gacesa, R., Kurilshikov, A., Vich Vila, A., Sinha, T., Klaassen, M., Bolte, L., 1051 

Andreu-Sánchez, S., Chen, L., Collij, V., Hu, S., et al. (2022). Environmental 1052 

factors shaping the gut microbiome in a Dutch population. Nature 604, 732-739. 1053 

54. Gupta, V.K., Kim, M., Bakshi, U., Cunningham, K.Y., Davis III, J.M., Lazaridis, 1054 

K.N., Nelson, H., Chia, N., and Sung, J. (2020). A predictive index for health 1055 

status using species-level gut microbiome profiling. Nat. Commun. 11, 4635. 1056 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


49 
 

55. Aron-Wisnewsky, J., Vigliotti, C., Witjes, J., Le, P., Holleboom, A.G., Verheij, 1057 

J., Nieuwdorp, M., and Clément, K. (2020). Gut microbiota and human NAFLD: 1058 

disentangling microbial signatures from metabolic disorders. Nat. Rev. 1059 

Gastroenterol. Hepatol. 17, 279-297. 1060 

56. Zeisel, S.H., and Warrier, M. (2017). Trimethylamine N-oxide, the microbiome, 1061 

and heart and kidney disease. Annu. Rev. Nutr. 37, 157-181. 1062 

57. Falony, G., Vieira-Silva, S., and Raes, J. (2015). Microbiology meets big data: 1063 

the case of gut microbiota–derived trimethylamine. Annu. Rev. Microbiol. 69, 1064 

305-321. 1065 

58. Cai, Y.-Y., Huang, F.-Q., Lao, X., Lu, Y., Gao, X., Alolga, R.N., Yin, K., Zhou, 1066 

X., Wang, Y., Liu, B., et al. (2022). Integrated metagenomics identifies a crucial 1067 

role for trimethylamine-producing Lachnoclostridium in promoting 1068 

atherosclerosis. NPJ Biofilms Microbiomes 8, 11. 1069 

59. Dalla Via, A., Gargari, G., Taverniti, V., Rondini, G., Velardi, I., Gambaro, V., 1070 

Visconti, G.L., De Vitis, V., Gardana, C., Ragg, E., et al. (2019). Urinary TMAO 1071 

levels are associated with the taxonomic composition of the gut microbiota and 1072 

with the choline TMA-lyase gene (cutC) harbored by Enterobacteriaceae. 1073 

Nutrients 12, 62. 1074 

60. Estrada, A., Garber, P.A., Rylands, A.B., Roos, C., Fernandez-Duque, E., Di 1075 

Fiore, A., Nekaris, K.A.-I., Nijman, V., Heymann, E.W., Lambert, J.E., et al. 1076 

(2017). Impending extinction crisis of the world’s primates: Why primates 1077 

matter. Sci. Adv. 3, e1600946. 1078 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


50 
 

61. Grieneisen, L.E., Charpentier, M.J., Alberts, S.C., Blekhman, R., Bradburd, G., 1079 

Tung, J., and Archie, E.A. (2019). Genes, geology and germs: gut microbiota 1080 

across a primate hybrid zone are explained by site soil properties, not host 1081 

species. Proc. R. Soc. B 286, 20190431. 1082 

62. Ben‐Dor, M., Sirtoli, R., and Barkai, R. (2021). The evolution of the human 1083 

trophic level during the Pleistocene. Am. J. Phys. Anthropol. 175, 27-56. 1084 

63. Groussin, M., Poyet, M., Sistiaga, A., Kearney, S.M., Moniz, K., Noel, M., 1085 

Hooker, J., Gibbons, S.M., Segurel, L., Froment, A., et al. (2021). Elevated rates 1086 

of horizontal gene transfer in the industrialized human microbiome. Cell 184, 1087 

2053-2067. e18. 1088 

64. Zhao, S., Lieberman, T.D., Poyet, M., Kauffman, K.M., Gibbons, S.M., 1089 

Groussin, M., Xavier, R.J., and Alm, E.J. (2019). Adaptive evolution within gut 1090 

microbiomes of healthy people. Cell Host Microbe 25, 656-667. e8. 1091 

65. De Filippis, F., Pasolli, E., Tett, A., Tarallo, S., Naccarati, A., De Angelis, M., 1092 

Neviani, E., Cocolin, L., Gobbetti, M., Segata, N., and Ercolini D. (2019). 1093 

Distinct genetic and functional traits of human intestinal Prevotella copri strains 1094 

are associated with different habitual diets. Cell Host Microbe 25, 444-453. e3. 1095 

66. Hosokawa, T., Kikuchi, Y., Nikoh, N., Shimada, M., and Fukatsu, T. (2006). 1096 

Strict host-symbiont cospeciation and reductive genome evolution in insect gut 1097 

bacteria. PLoS Biol. 4, e337. 1098 

67. McCutcheon, J.P., and Moran, N.A. (2012). Extreme genome reduction in 1099 

symbiotic bacteria. Nat. Rev. Microbiol. 10, 13-26. 1100 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


51 
 

68. Beasley, D.E., Koltz, A.M., Lambert, J.E., Fierer, N., and Dunn, R.R. (2015). 1101 

The evolution of stomach acidity and its relevance to the human microbiome. 1102 

PLoS One 10, e0134116. 1103 

69. Qiao, Y., Sun, J., Ding, Y., Le, G., and Shi, Y. (2013). Alterations of the gut 1104 

microbiota in high-fat diet mice is strongly linked to oxidative stress. Appl. 1105 

Microbiol. Biotechnol. 97, 1689-1697. 1106 

70. Vaccaro, A., Dor, Y.K., Nambara, K., Pollina, E.A., Lin, C., Greenberg, M.E., 1107 

and Rogulja, D. (2020). Sleep loss can cause death through accumulation of 1108 

reactive oxygen species in the gut. Cell 181, 1307-1328. e1315. 1109 

71. Sistiaga, A., Wrangham, R., Rothman, J.M., and Summons, R.E. (2015). New 1110 

insights into the evolution of the human diet from faecal biomarker analysis in 1111 

wild chimpanzee and gorilla faeces. PLoS One 10, e0128931. 1112 

72. Hecker, N., Sharma, V., and Hiller, M. (2019). Convergent gene losses 1113 

illuminate metabolic and physiological changes in herbivores and carnivores. 1114 

Proc. Natl. Acad. Sci. USA 116, 3036-3041. 1115 

73. Johnson, C.A., Smith, G.P., Yule, K., Davidowitz, G., Bronstein, J.L., and 1116 

Ferrière, R. (2021). Coevolutionary transitions from antagonism to mutualism 1117 

explained by the co-opted antagonist hypothesis. Nat. Commun. 12, 2867. 1118 

74. Blaser, M.J. (2017). The theory of disappearing microbiota and the epidemics 1119 

of chronic diseases. Nat. Rev. Immunol. 17, 461-463. 1120 

75. Schirmer, M., Garner, A., Vlamakis, H., and Xavier, R.J. (2019). Microbial 1121 

genes and pathways in inflammatory bowel disease. Nat. Rev. Microbiol. 17, 1122 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


52 
 

497-511. 1123 

76. Khan Mirzaei, M., and Deng, L. (2021). Sustainable microbiome: a symphony 1124 

orchestrated by synthetic phages. Microb. Biotechnol. 14, 45-50. 1125 

77. Degnan, P.H., Barry, N.A., Mok, K.C., Taga, M.E., and Goodman, A.L. (2014). 1126 

Human gut microbes use multiple transporters to distinguish vitamin B12 1127 

analogs and compete in the gut. Cell Host Microbe 15, 47-57. 1128 

78. Bentkowski, P., Van Oosterhout, C., and Mock, T. (2015). A model of genome 1129 

size evolution for prokaryotes in stable and fluctuating environments. Genome 1130 

Biol. Evol. 7, 2344-2351. 1131 

79. Delannoy-Bruno, O., Desai, C., Raman, A.S., Chen, R.Y., Hibberd, M.C., 1132 

Cheng, J., Han, N., Castillo, J.J., Couture, G., Lebrilla, C.B., et al. (2021). 1133 

Evaluating microbiome-directed fibre snacks in gnotobiotic mice and humans. 1134 

Nature 595, 91-95. 1135 

80. Zhang, C., Björkman, A., Cai, K., Liu, G., Wang, C., Li, Y., Xia, H., Sun, L., 1136 

Kristiansen, K., Wang, J., et al. (2018). Impact of a 3-months vegetarian diet on 1137 

the gut microbiota and immune repertoire. Front. Immunol. 9, 908. 1138 

81. Youngblut, N.D., Reischer, G.H., Walters, W., Schuster, N., Walzer, C., Stalder, 1139 

G., Ley, R.E., and Farnleitner, A.H. (2019). Host diet and evolutionary history 1140 

explain different aspects of gut microbiome diversity among vertebrate clades. 1141 

Nat. Commun. 10, 2200. 1142 

82. Bolger, A.M., Lohse, M., and Usadel, B. (2014). Trimmomatic: a flexible 1143 

trimmer for Illumina sequence data. Bioinformatics 30, 2114-2120. 1144 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


53 
 

83. Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017). 1145 

metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824-1146 

834. 1147 

84. Li, D., Liu, C.-M., Luo, R., Sadakane, K., and Lam, T.-W. (2015). MEGAHIT: 1148 

an ultra-fast single-node solution for large and complex metagenomics 1149 

assembly via succinct de Bruijn graph. Bioinformatics 31, 1674-1676. 1150 

85. Uritskiy, G.V., DiRuggiero, J., and Taylor, J. (2018). MetaWRAP—a flexible 1151 

pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158. 1152 

86. Wu, Y.-W., Simmons, B.A., and Singer, S.W. (2016). MaxBin 2.0: an automated 1153 

binning algorithm to recover genomes from multiple metagenomic datasets. 1154 

Bioinformatics 32, 605-607. 1155 

87. Kang, D.D., Froula, J., Egan, R., and Wang, Z. (2015). MetaBAT, an efficient 1156 

tool for accurately reconstructing single genomes from complex microbial 1157 

communities. PeerJ 3, e1165. 1158 

88. Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., and Tyson, G.W. 1159 

(2015). CheckM: assessing the quality of microbial genomes recovered from 1160 

isolates, single cells, and metagenomes. Genome Res. 25, 1043-1055. 1161 

89. Olm, M.R., Brown, C.T., Brooks, B., and Banfield, J.F. (2017). dRep: a tool for 1162 

fast and accurate genomic comparisons that enables improved genome recovery 1163 

from metagenomes through de-replication. ISME J. 11, 2864-2868. 1164 

90. Langmead, B., and Salzberg, S.L. (2012). Fast gapped-read alignment with 1165 

Bowtie 2. Nat. Methods 9, 357-359. 1166 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


54 
 

91. Chaumeil, P.-A., Mussig, A.J., Hugenholtz, P., and Parks, D.H. (2020). GTDB-1167 

Tk: a toolkit to classify genomes with the Genome Taxonomy Database. 1168 

Bioinformatics 36, 1925–1927. 1169 

92. Katoh, K., and Standley, D.M. (2013). MAFFT multiple sequence alignment 1170 

software version 7: improvements in performance and usability. Mol. Biol. Evol. 1171 

30, 772-780. 1172 

93. Price, M.N., Dehal, P.S., and Arkin, A.P. (2010). FastTree 2–approximately 1173 

maximum-likelihood trees for large alignments. PLoS One 5, e9490. 1174 

94. Letunic, I., and Bork, P. (2019). Interactive Tree Of Life (iTOL) v4: recent 1175 

updates and new developments. Nucleic Acids Res. 47, (W1), W256-W259. 1176 

95. Hyatt, D., Chen, G.-L., LoCascio, P.F., Land, M.L., Larimer, F.W., and Hauser, 1177 

L.J. (2010). Prodigal: prokaryotic gene recognition and translation initiation site 1178 

identification. BMC Bioinformatics 11, 119. 1179 

96. Cantalapiedra, C.P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-1180 

Cepas, J. (2021). eggNOG-mapper v2: functional annotation, orthology 1181 

assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 1182 

38, 5825-5829. 1183 

97. Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forslund, 1184 

S.K., Cook, H., Mende, D.R., Letunic, I., Rattei, T., and Jensen, L.J. (2019). 1185 

eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated 1186 

orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids 1187 

Res. 47, D309-D314. 1188 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


55 
 

98. Zhang, H., Yohe, T., Huang, L., Entwistle, S., Wu, P., Yang, Z., Busk, P.K., Xu, 1189 

Y., and Yin, Y. (2018). dbCAN2: a meta server for automated carbohydrate-1190 

active enzyme annotation. Nucleic Acids Res. 46, W95-W101. 1191 

99. Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K., 1192 

and Madden, T.L. (2009). BLAST+: architecture and applications. BMC 1193 

Bioinformatics 10, 421. 1194 

100. Arango-Argoty, G., Garner, E., Pruden, A., Heath, L.S., Vikesland, P., and 1195 

Zhang, L. (2018). DeepARG: a deep learning approach for predicting antibiotic 1196 

resistance genes from metagenomic data. Microbiome 6, 23. 1197 

101. Stamatakis, A. (2014). RAxML version 8: a tool for phylogenetic analysis and 1198 

post-analysis of large phylogenies. Bioinformatics 30, 1312-1313. 1199 

102. Fu, L., Niu, B., Zhu, Z., Wu, S., and Li, W. (2012). CD-HIT: accelerated for 1200 

clustering the next-generation sequencing data. Bioinformatics 28, 3150-3152. 1201 

103. Buchfink, B., Xie, C., and Huson, D.H. (2015). Fast and sensitive protein 1202 

alignment using DIAMOND. Nat. Methods 12, 59-60. 1203 

104. Beghini, F., McIver, L.J., Blanco-Míguez, A., Dubois, L., Asnicar, F., Maharjan, 1204 

S., Mailyan, A., Manghi, P., Scholz, M., Thomas, A.M., et al. (2021). Integrating 1205 

taxonomic, functional, and strain-level profiling of diverse microbial 1206 

communities with bioBakery 3. eLife 10, e65088. 1207 

105. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., 1208 

Blondel, M., Prettenhofer, P., Weiss, R., and Dubourg, V. (2011). Scikit-learn: 1209 

machine learning in Python. J. Mach. Learn. Res. 12, 2825-2830. 1210 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


56 
 

106. Watts, S.C., Ritchie, S.C., Inouye, M., and Holt, K.E. (2019). FastSpar: rapid 1211 

and scalable correlation estimation for compositional data. Bioinformatics 35, 1212 

1064-1066. 1213 

107. Smoot, M.E., Ono, K., Ruscheinski, J., Wang, P.-L., and Ideker, T. (2011). 1214 

Cytoscape 2.8: new features for data integration and network visualization. 1215 

Bioinformatics 27, 431-432. 1216 

108. Oksanen, J., Simpson, G., Blanchet, F., Kindt, R., Legendre, P., Minchin, P., 1217 

O’Hara, R., Solymos, P., Stevens, M., Szoecs, E., et al. (2022). vegan: 1218 

Community Ecology Package. R package version 2.6-2. 1219 

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


This study
2,036 SGBs

NHP2019
1,328 SGBs

GTDB r95
31,910 SGBs

This study: 28.6%
NHP2019: 44.2%

NHP2019: 9.0%
GTDB r95: 0.4%

This study: 8.2%
GTDB r95: 0.5%

This study: 14.2%
NHP2019: 21.1%
GTDB r95: 0.9%

48.9%

25.7% 98.2%

i. Phylum

ii. Novel SGB
No
Yes

iii. No. of hosts
Min. (1)
Max. (4)

iv. No. of MAGs
Min. (1)
Max. (36)

A B

D E
This study NHP2019

N
o.

 o
f S

G
B

s

1500

1000

500

0

Shared with hSGB

Unique

C
P=6.07e−124

Le
m

ur
N

ew
 w

or
ld

 
m

on
ke

y
O

ld
 w

or
ld

 
m

on
ke

y
A

pe

5-20
2-4
1

No. of 
WNHP hosts

Genus

188147

37
Tree scale: 1

i
ii
iii
iv

Pan troglodytes * # (262|124)
Gorilla gorilla * # (1140|433)
Papio hamadryas * (41|36)
Papio anubis * # (52|31)
Papio cynocephalus * (1043|304)
Papio kindae * (55|35)
Theropithecus gelada * (55|42)
Macaca thibetana * # (672|409)
Macaca mulatta # (225|162)
Macaca leonina # (200|111)
Cercopithecus ascanius * (37|36)
Colobus guereza * (27|25)
Piliocolobus badius * (31|28)
Alouatta seniculus * (59|44)
Alouatta caraya * (53|44)
Alouatta pigra * (102|48)
Alouatta palliata * (61|31)
Lagothrix lagotricha * (35|25)
Ateles belzebuth * (22|20)
Ateles hybridus * (39|33)
Cebus capucinus * (140|43)
Indri indri * (449|139)
Propithecus verreauxi * (59|27)
Eulemur rubriventer * (6|6)
Lemur catta * # (77|50)

020406074 Time (MYA)

Folivores
Frugivore
Omnivore

Elusimicrobiota (4)
Synergistota (4)
Eremiobacterota (2)
Myxococcota (2)
Chloroflexota (1)
Riflebacteria (1)

Firmicutes (854)
Bacteroidota (369)
Actinobacteriota (105)
Proteobacteria (55)
Spirochaetota (49)
Verrucomicrobiota (36)
Cyanobacteria (24)
Campylobacterota (10)
Patescibacteria (8)
Desulfobacterota (6)
Fibrobacterota (6)

N
o.

 o
f S

G
B

s

W
ild

C
ap

tiv
ed

Sh
ar

ed

W
ild

C
ap

tiv
ed

Sh
ar

ed

0

5

10

15

20

N
o.

 o
f  

W
N

H
P 

ho
st

s

0

100

200

300

Pr
ev

ot
el

la
R

C
9

Pr
ev

ot
el

la
m

as
si

lia
C
A
G
−1
10

Tr
ep

on
em

a_
D

Fa
ec

al
ib

ac
te

riu
m

U
B
A
49
51

U
B

A
38

39

F2
3−
B
02

A
ce

ta
tif

ac
to

r

N
K

3B
98

C
A
G
−7
91

B
ifi

do
ba

ct
er

iu
m

C
A
G
−1
77

R
um

in
oc

oc
cu

s_
E

U
B

A
48

55

W
0P

29
−0
29

C
A
G
−8
73

C
A
G
−1
80

B
ra

ch
ys

pi
ra

C
A
G
−8
3

B
ul

le
id

ia

C
ol

lin
se

lla
Eu

ba
ct

er
iu

m
_R

U
B
A
17
77

U
B
A
73
3

C
A
G
−1
27

C
A
G
−1
42
7

O
ls

en
el

la
_E

U
B

A
63

82
U
B
A
71

C
A
G
−4
60

C
A
G
−9
5

Genus

R
U
G
41
0

Pa
ro

ls
en

el
la

U
B
A
32
07

U
B
A
10
67

400

hSGB

pSGB
No. of 
WNHP hosts

(MAGs|SGBs)

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


A

C

Eniched in hSGB
n.s.

Eniched in pSGB

B

Host phylogenetic group
D

Host phylogenetic group

Pr
ev

al
en

ce
 (%

)

0

20

40

60

80

ARG class

1

2

3

4

Fo
ld

 c
ha

ng
e

G
ly

co
pe

pt
id

e

Pe
pt

id
e

B
ac

itr
ac

in

Te
tr

ac
yc

lin
e

B
et

a−
la

ct
am

A
m

in
og

ly
co

si
de

M
ul

tid
ru

g

*** *** *** ***

M
LS

Fo
sm

id
om

yc
in

***

hSGB
pSGB

n.s.

n.s.

***

***

1

10

100

Le
m

ur

N
ew

 w
or

ld
m

on
le

y

O
ld

 w
or

ld
m

on
ke

y

A
pe

H
um

an

***

***

*** ***

******
****

n.s.
***

1000
N

o.
 o

f G
H

 a
nd

 P
L 

fa
m

ili
es

1

10

100
Le

m
ur

N
ew

 w
or

ld
m

on
le

y

O
ld

 w
or

ld
m

on
ke

y

A
pe

H
um

an

***

***

*** **

******
*****

n.s.
***

N
o.

 o
f G

H
 a

nd
 P

L 
ge

ne
s

0

100

200

300

400

GH43_18

GH53

GH25

GH5_4

GH5_2

−4 −2 0 2
Log2(Fold change)

hSGBpSGB

−L
og

10
(p

.a
dj

)

GH112

GH4

GH32
GH1

GH125

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


ANI (%)

A B C

E FD

Host phylogenetic group

Control Case

n.s.

CN EU
Population

0

25

75

Pr
op

or
tio

n 
(%

)

100

50

0

200

400

600

800 ***
*** ******

***
Le

m
ur

N
ew

 w
or

ld
 m

on
ke

y
O

ld
 w

or
ld

 m
on

ke
y

A
pe

SCEC
Others

n.s.

Le
m

ur
N

ew
 w

or
ld

 m
on

ke
y

O
ld

 w
or

ld
 m

on
ke

y
A

pe

85

90

95

80

75

C
lo

se
st

 A
N

I (
%

)

100

n.s.

***
*** ******

***

70%

71%
72%

72%

72%

Singleton

CAG-83_2
F23-B02_1

Bifidobacterium_2
UBA71_1

Prevotella_24
Prevotella_13
Prevotella_22

F23-B02_2
Brachyspira_1
Olsenella_E_1

RC9_17
CAG-110_9

0.0

P<0.05
Containing hSGB
Excluding hSGB

P>0.05

−0.6
Spearman’s ρ
−0.9 −0.3

N
o.

 o
f p

SG
B

s

0 5 10
No. of hosts

G

Ge
no

m
e 

si
ze

 (M
b)

1

2

3

4

5

1

2

3

4

N
o.

 o
f O

R
Fs

 (×
10

00
)

>90 >95 >90 >95
Completeness (%)

n.s. ***
*** ***

hSGB
pSGB

***
***

71 75 80 85 90 95

200
300
400

77
St

ep
w

is
e 

sp
lit

 c
lu

st
er

 (%
)

60

40

20

0

80
No. of clusters

***

** ***

***

***

Prev
otel

la

CAG-11
0
RC9

Eubac
ter

ium_R

UBA17
77

UBA73
7

Prev
otel

lam
as

sil
ia

CAG-87
3

Ace
tat

ifa
cto

r

CAG-14
27

Succ
inivi

brio

Rose
buria

UBA11
91

UBA76
42

N
o.

 o
f S

C
EC

s

SCECs

Genus

Clusters containing 
only pSGBs

Clusters containing 
only hSGBs

0

5

10

15

100
150
200

Others

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


A B

D E GF

Prevalence- and 
abundance-based

Recaptured in 
metagenome

695

135 560

Others

C

ρ = 0.82, P <2.2e-16
0

20

40

SC
EC

-h
SG

B
s 

in
 h

SG
B

s 
(%

)

Others
SCEC

hSGB

400

600

800

1000

To
ta

l n
o.

 o
f 6

95
 C

O
G

s

hSGBpSGB

Phylum
(10)

Class
(13)

Order
(23)

Family
(37)

Genus
(33)

Rank (No. pairs)

200

P=1.9e−3 3.5e−4

2.2e−4 3.5e−5 0.018

0.0
2.5
5.0
7.5

10.0
12.5

C
O

G
30

22
C

O
G

02
25

C
O

G
06

05
C

O
G

12
94

C
O

G
06

95
C

O
G

12
88

C
O

G
21

90
C

O
G

28
93

C
O

G
19

14
C

O
G

11
14

C
O

G
56

58
C

O
G

13
42

C
O

G
20

68
C

O
G

29
64

C
O

G
30

10
C

O
G

21
88

C
O

G
23

67
C

O
G

15
29

C
O

G
12

54
C

O
G

28
55

Fo
ld

 c
ha

ng
e 

(h
SG

B
/p

SG
B

)

Phylum
All

Bacteroidota
Firmicutes

Others

All
Bacteroidota

Firmicutes
Others

The top 20 enriched features
Oxidative stress Transporter Others

Prevalence
(hSGB)

0 0.4 0.8

−2.5

0

2.5

−5 0 5 10
PCoA 1 (66.93%)

PC
oA

 2
 (1

3.
43

%
)

0 5e+5 10e+5 15e+5

Normalized abundance 
of 695 COGs

Non-African

WNHP

Hadza
Africa 

Also enriched in 
SECE-hSGBs

(×1e+4) 

Omnivore
Vegan

n.
s.

−7.5 −5 −2.5 0 2.5
PCoA 1 (51.48%)

PC
oA

 2
 (2

1.
54

%
)

−2

−1

0

1

2

(×
1e

+4
) 

6e+5 8e+5 10e+5

Normalized abundance 
of 695 COGs

−2.5

0

2.5

5

−4 0 4 8 12
PCoA 1 (65.62%)

PC
oA

 2
 (1

4.
91

%
)

3e+5 9e+5 15e+5

CNHP

Non-African
WNHP

Normalized abundance 
of 695 COGs

−4

−2

0

2

−2.5 0 2.5 5 7.5
PCoA 1 (35.6%)

PC
oA

 2
 (1

8.
93

%
)

2e+5 7e+5

Normalized abundance 
of 695 COGs

Carnivore
Herbivore
Omnivore

Mammalian

*
**

*
**

*

12e+5

**
*

n.
s

**
***

* **
*

**
* **

*
***

*

Population

H

CN EU

N
or

m
al

iz
ed

 a
bu

nd
an

ce
 

of
 6

95
 C

O
G

s 
(×

1e
+5

)

2

4

6

8

10
***

***

***

Control Case

0 500 1000 1500 2000
Total no. of 560COGs

0
100
200
300
400

To
ta

l n
o.

 o
f 

13
5 

C
O

G
s

839

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


CD_2 CD_3ACVD NAFLDA

B

C

PCoA1D

N
or

m
al

iz
ed

 
ab

un
da

nc
e

 (×
1e

+5
)

6

9

12

15

6

9

12

15

6

9

12

15

4

6

8

10

12

695COGs 560COGs 695COGs 560COGs 695COGs 560COGs 695COGs 560COGs

*** n.s. *

Control
Case

−2

0

2

4

−5 0
55.99%

PC
oA

2 
16

.2
3%

0.0

0.5

1.0

0.90 1.00 1.10
0.0

0.5

1.0

1.00 1.10 1.20 1.30

*** *** *** * *

P < 0.001

(×1e+4) 

−5

0

5

−5 0 5
36.29%

33
.1

%

P = 0.023 −2

−1

0

1

2

−4 0 4
64.81%

16
.6

1%

P = 0.294 −1

0

1

2

−10 −5 0 5
57.2%

18
.2

3%

P = 0.033

Control
Case

Mean AUC

0.83
0.83

0.82

0 0.2 0.4 0.6 0.8 1.0
False positive rate

0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 p
os

iti
ve

 ra
te

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

Mean AUC

0.82
0.82

0.76

Mean AUC

0.96
0.95

0.95

Mean AUC

0.96
0.95

0.92

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

0 0.2 0.4 0.6 0.8 1.0
0

0.2

0.4

0.6

0.8

1.0

Fold change (case vs. control)

Simulated COG 
combinations

695 COGs

D
en

si
ty

560 COGs
695 COGs

135 COGs

0.0

0.5

1.0

1.00 1.05 1.10 1.01 1.05 1.09
0.0

0.5

1.0

E
Mean importance

<0.01
>0.01

Transporter

No

Yes

CD_2 CD_3ACVD NAFLD

Cohen’s d = 0.19
P < 0.001

Cohen’s d = 8.2
P < 0.001

Cohen’s d = 12.2
P < 0.001

Cohen’s d = 10.0
P < 0.001

F

0

5

10

15

20

The top 
important COGs

Others

P=0.01

Pr
op

or
tio

n 
of

 
tr

an
sp

or
te

rs
 (%

)

COG group

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/


CD_2

RA
UC_2

HTN

NAFLD

OB

ACVD

T2D_1

T2D_2
UC_1

CD_1

LC

Correlation with Shannon index

A

B
SUEN-hSGBs SCEC-hSGBs

D

H

P>0.05
P<0.05

Phylum

SCEC
Genome size

Genome size (Mb)
82

SCEC
Yes
No

Phylum
Actinobacteriota
Bacteroidota
Firmicutes
Proteobacteria
Others

0

1

2

To
ta

l n
o.

 o
f

 6
95

 C
O

G
s

Lo
g 10

(N
+1

)

Actinobacteriota

Desulfobacterota

Firmicutes

Proteobacteria

CutC

Healthy

Healthy
Positive
Negative
Others

500

1000

1500

To
ta

l n
o.

 o
f 6

95
 C

O
G

s

0

2000

Negative Positive
Health marker tax

P=9.1e−6

Negative

Others

SUEN Positive

Others

Group A (379)

Group B (601)

SUEN
(1203)Group C (902)

Negative Positive
Health marker tax

F G I

All (627)

CutC
Yes
No

CutC

J

G
en

om
e 

w
ith

 C
ut

C
 (%

)

P=3.3e−6

Dataset
ACVD
CD_1
CD_2
CD_3
HTN
LC
NAFLD

OB
RA
T2D_1
T2D_2
UC_1
UC_2

SU
EN

 (%
)

0

10

20

20

30

40

50

60

Control Case

SC
EC

 (%
)

P=2.5e−3

Control Case

P=0.03

Group A Group B Group C

C

−0.6 −0.3 0.0 0.3

CD_3

0.0 0.3 0.6

E

0

10

20

30

40

N
o.

 o
f S

G
B

s

P=2.0e−4

0

10

20

30

40

N
o.

 o
f S

G
B

s

Negative Positive
Health marker tax

2500

0

5

10

15 P=1.3e−14

P=0.37

P=3.9e−15

hS
G

B

pS
G

B

SC
EC

O
th

er
s

SU
EN

*

SUEN vs.

0
500

1000
1500
2000
2500

Group

Group

−0.8

−0.4

0.0

0.4

0.8

Sp
ea

rm
an

’s
 ρ

Comparison

P=7.5e−6

P=1.5e−5

P=4.3e−4

Mammals

0

5

10

15

20

25

SU
EN

-r
el

at
ed

 (%
)

WNHP

Herb
ivo

re

Omnivo
re

Carn
ivo

re

≥95
≥90

Identity (%)

*** **
***

******
***

.CC-BY-NC 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 1, 2023. ; https://doi.org/10.1101/2023.05.30.542569doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.30.542569
http://creativecommons.org/licenses/by-nc/4.0/

