

1 Classifying high-dimensional phenotypes with ensemble learning

2 May 29, 2023

3 Jay Devine¹, Helen K. Kurki², Jonathan R. Epp¹, Paula N. Gonzalez³, Peter Claes^{4,5}, Benedikt
4 Hallgrímsson¹

5

- 6 1. Department of Cell Biology and Anatomy, Cumming School of Medicine, University of
7 Calgary, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, CANADA
- 8 2. Department of Anthropology, University of Victoria, 3800 Finnerty Rd, Victoria, BC V8P
9 5C2, CANADA
- 10 3. Institute for Studies in Neuroscience and Complex Systems (ENyS) CONICET,
11 Universidad Nacional de La Plata, Av. Calchaquí 5402, Florencio Varela, Buenos Aires,
12 ARGENTINA
- 13 4. Department of Human Genetics, KU Leuven, 3000 Leuven, BELGIUM
- 14 5. Department of Electrical Engineering, ESAT/PSI, KU Leuven, 3000 Leuven, BELGIUM

15 Corresponding author: Benedikt Hallgrímsson (bhallgri@ucalgary.ca)

19 Abstract

20 1. Classification is a fundamental task in biology used to assign members to a class. While
21 linear discriminant functions have long been effective, advances in phenotypic data
22 collection are yielding increasingly high-dimensional datasets with more classes, unequal
23 class covariances, and non-linear distributions. Numerous studies have deployed machine
24 learning techniques to classify such distributions, but they are often restricted to a particular
25 organism, a limited set of algorithms, and/or a specific classification task. In addition, the
26 utility of ensemble learning or the strategic combination of models has not been fully
27 explored.

28 2. We performed a meta-analysis of 33 algorithms across 20 datasets containing over 20,000
29 high-dimensional shape phenotypes using an ensemble learning framework. Both binary

30 (e.g., sex, environment) and multi-class (e.g., species, genotype, population) classification
31 tasks were considered. The ensemble workflow contains functions for preprocessing,
32 training individual learners and ensembles, and model evaluation. We evaluated algorithm
33 performance within and among datasets. Furthermore, we quantified the extent to which
34 various dataset and phenotypic properties impact performance.

35 3. We found that discriminant analysis variants and neural networks were the most accurate
36 base learners on average. However, their performance varied substantially between
37 datasets. Ensemble models achieved the highest performance on average, both within and
38 among datasets, increasing average accuracy by up to 3% over the top base learner. Higher
39 class R^2 values, mean class shape distances, and between- vs. within-class variances were
40 positively associated with performance, whereas higher class covariance distances were
41 negatively associated. Class balance and total sample size were not predictive.

42 4. Learning-based classification is a complex task driven by many hyperparameters. We
43 demonstrate that selecting and optimizing an algorithm based on the results of another
44 study is a flawed strategy. Ensemble models instead offer a flexible approach that is data
45 agnostic and exceptionally accurate. By assessing the impact of various dataset and
46 phenotypic properties on classification performance, we also offer potential explanations
47 for variation in performance. Researchers interested in maximizing performance stand to
48 benefit from the simplicity and effectiveness of our approach made accessible via the R
49 package *pheble*.

50 **Keywords:** blending, classification, ensemble learning, landmarks, machine learning,
51 morphometrics, phenotypes, R

52

53 1.0 Introduction

54 Linear discrimination methods have long been used in quantitative phenotypic analyses to
55 visualize and discriminate classes. Linear discriminators (e.g., linear discriminant analysis) tend
56 to be efficient and sufficiently accurate on low-dimensional datasets, such as those with a few
57 linear measurements or small, sparse landmark configurations (Mitteroecker & Bookstein, 2011).
58 However, advances in data collection techniques (Devine et al., 2020; Percival et al., 2019; Porto
59 et al., 2021) and data crowdsourcing (Boyer et al., 2016) are yielding increasingly large, high-
60 dimensional phenotypic datasets with more classes, unequal class covariances, and non-linear
61 distributions. Non-parametric machine learning approaches have been developed to classify such
62 distributions, and numerous self-contained studies have hinted at their potential (Lürig et al.,
63 2021), but the utility of these methods for classifying high-dimensional phenotypes has not been
64 systematically investigated on a large scale. Because traditional machine learning models often
65 fail to achieve satisfactory performance when dealing with certain data structures (e.g., noisy,
66 imbalanced, etc.), it is further worth considering how ensemble learning or the strategic integration
67 of these models can improve performance. In this paper, we present a comprehensive analysis of
68 learning-based classification algorithms on a collection of morphometric datasets and show how
69 ensemble learning can maximize discrimination in arbitrary biological settings.

70 Classification is the process of assigning members to a class. This task can be accomplished
71 through different learning strategies. Ensemble learning, and blending in particular, is our focus.
72 Blending ensemble approaches involve strategically stacking a set of individual classifiers using a
73 holdout validation set to improve performance (Breiman, 1996; van der Laan et al., 2007). Each
74 classifier alone is relatively simple and easy to train, often only performing well on a subset of the
75 data, but together these weak classifiers become a strong classifier. Despite its success in other

76 fields, ensemble learning has rarely been explored in phenomics due to the paucity of open-source
77 implementations, insufficient expertise, and a continual reliance on the same methods. For
78 example, linear discriminant analysis, the hallmark approach to phenotypic classification,
79 maximizes the ratio of between-class variance to within-class variance to ensure maximal
80 separability. Unfortunately, this method assumes equality of covariances among classes and can
81 only find a linear discriminant function (i.e., a linear combination) to separate them (Mitteroecker
82 & Bookstein, 2011; Sheets et al., 2006). While homoscedasticity is common among datasets with
83 only a few groups, larger phenotypic datasets with heterogeneous groups stand to benefit from
84 non-parametric alternatives.

85 Recent applications of learning-enabled classification for high-dimensional phenotypes
86 have either involved a single dataset (e.g., one species or one study) (Hosseini et al., 2019; Salifu
87 et al., 2022), small sample sizes (Courtenay et al., 2019; Courtenay and González-Aguilera, 2020),
88 a specific learning problem (e.g., only binary or multi-class classification with a single dataset)
89 (Courtenay et al., 2019, 2021), and/or a single algorithm (Bertsatos et al., 2020; Fellowes et al.,
90 2019). As such, there has not been a detailed examination of these machine learning algorithms
91 under different biological conditions. There have also been few attempts at combining multiple
92 base learners into a strong phenotypic learner via blending or stacking, a similar technique in
93 ensemble learning. The *H2O* (Candel et al., 2016), *SuperLearner* (Polley et al., 2019), and
94 *caretEnsemble* (Deane-Mayer & Knowles, 2016) R packages offer tools for ensemble learning,
95 but they lack either (a) a large, diverse library of classification algorithms, (b) multi-class ensemble
96 capabilities, and/or (c) a streamlined ensemble workflow for non-experts. Rather than conduct one-
97 off studies, it is important to test learning-based methods with diverse high-dimensional
98 phenotypic datasets and a standardized workflow.

99 We present an empirical analysis of 33 learning-based classification algorithms and various
100 blending ensembles across 20 high-dimensional morphometric datasets using a new R package,
101 *pheble*. We examine a variety of algorithm families, including Bayesian methods, decision trees,
102 bagging and boosting ensembles, kernel-based methods, neural networks, and regression methods.
103 Binary and multi-class classification tasks central to evolutionary biology, developmental biology,
104 and ecology are considered. Specifically, we attempt to discriminate sex and different
105 environmental classes in the binary classification experiments, then turn to classes such as species,
106 population, genotype, and habitat in the multi-class experiments. To investigate potential
107 determinants of classification accuracy, including class R^2 values, unequal class covariances, mean
108 class shape distances, between- vs. within-class class variances, class imbalances, and sample size,
109 we employ phenotypic datasets containing a range of anatomical data from different organisms
110 with unique class distributions. Ultimately, we illustrate how ensemble models outperform all
111 other base learners on average whilst being consistently accurate. Our code is freely available at
112 github.com/jaydevine/pheble.

113 **2.0 Materials and Methods**

114 **2.1 Datasets**

115 We use 20 publicly available morphometric datasets to complete a classification meta-analysis and
116 test the viability of an ensemble workflow. Table 1 enumerates the key metadata. Additional
117 information about data provenance is listed in Table S1. Altogether these datasets represent a wide
118 assortment of families, ranging from small, terrestrial insects (e.g., *Formicidae*) to large, aquatic
119 mammals (e.g., *Crocdylidae*) with distinct anatomies, class distributions, and sample sizes.

120 **Table 1.** Summary of phenotypic datasets, including the family (i.e., dataset name), landmarked
121 anatomy, total sample size (N), class, number of class levels, and number of phenotypic
122 variables. The “/” delimiter indicates datasets with two families, whereas the “+” suffix indicates
123 datasets with more than three families.

Family	Anatomy	N	Class	Levels	Variables
<i>Asterinidae</i>	Body	885	Sex	2	20
<i>Drosophilidae</i>	Wing	2926	Sex	2	96
<i>Emydidae</i>	Shell	2161	Habitat	2	159
<i>Gasterosteidae</i>	Skull	190	Habitat	2	210
<i>Gasterosteidae</i>	Body	521	Sex	2	30
<i>Hominidae</i>	Sacrum	101	Sex	2	300
<i>Hynobiidae/Cryptobranchidae</i>	Palate	62	Habitat	2	48
<i>Muridae</i>	Cranium	1251	Sex	2	2532
<i>Poeciliidae</i>	Body	1449	Sex	2	26
<i>Serranidae/Sparidae</i>	Body	259	Site	2	26
<i>Cichlidae</i>	Jaw	1136	Tribe	14	126
<i>Colubridae+</i>	Vertebrae	1260	Species	15	24
<i>Crocodylidae/Alligatoridae</i>	Cranium	183	Species	8	234
<i>Drosophilidae</i>	Wing	2926	Elevation	9	96
<i>Formicidae</i>	Face	1494	Species	6	22
<i>Muridae</i>	Cranium	1251	Genotype	26	2532
<i>Ocypodidae</i>	Carapace	1867	Species	16	42
<i>Percidae</i>	Body	423	Species	15	20
<i>Vespidae</i>	Wing	206	Species	8	38
<i>Viviparidae</i>	Shell	1224	Population	22	254

124 For binary classification, we mainly concentrate on sex discrimination, but other classes (e.g.,
125 habitat or site) are incorporated to experiment with different classifiers. Likewise, we primarily
126 focus on species discrimination for multi-class classification, but additional classes (e.g.,
127 population, genotype, or habitat/elevation) are included for experimentation. Each dataset is
128 composed of a sparse or dense array of p homologous anatomical landmarks in k dimensions,
129 resulting in $p \times k$ phenotypic variables for every observation (Table S1). Using the *Morpho*
130 (Schlager, 2017) and *geomorph* (Adams & Otárola-Castillo, 2013) R packages, we superimpose
131 the landmark configurations into a common shape space for each dataset via Generalized

132 Procrustes Analysis (GPA) (Gower, 1975; Rohlf & Slice, 1990) to obtain Procrustes shape
133 coordinates.

134 **2.2 The R package pheble**

135 The R package *pheble* contains functions to build a streamlined ensemble learning workflow for
136 classifying high-dimensional data (Fig. 1). Typically, this involves (1) preprocessing a dataset, (2)
137 training a multitude of models to perform a given classification task, (3) strategically selecting and
138 combining those model predictions to train an ensemble model, and (4) evaluating the models on
139 an unseen dataset. We describe each step in detail below.

140 **2.3 Preprocessing**

141 **2.3.1 Anomaly detection**

142 Anomaly detection is the process of finding patterns in the data that do not conform to expected
143 behavior (Chandola et al., 2009). We provide autoencoder and extended isolation forest options
144 for anomaly detection using algorithms in the *H2O* R package, as these methods are effective and
145 generic enough to handle most data (Fig. 1b). Autoencoders are a type of neural network designed
146 to encode the input data into compressed but meaningful representations, often called latent
147 variables, then decode them back into a reconstructed output that is as similar as possible to the
148 input (Hinton & Salakhutdinov, 2006). Poor reconstructions have higher errors and are indicative
149 of anomalies. Isolation forests, by contrast, utilize a tree structure with branches built from random
150 cuts or thresholds in the values of randomly selected features (Liu et al., 2012). Because the
151 branching process can introduce bias, the extended variant was proposed (Hariri et al., 2019). The
152 deeper a sample travels into these branches, the less likely it is to be anomalous.

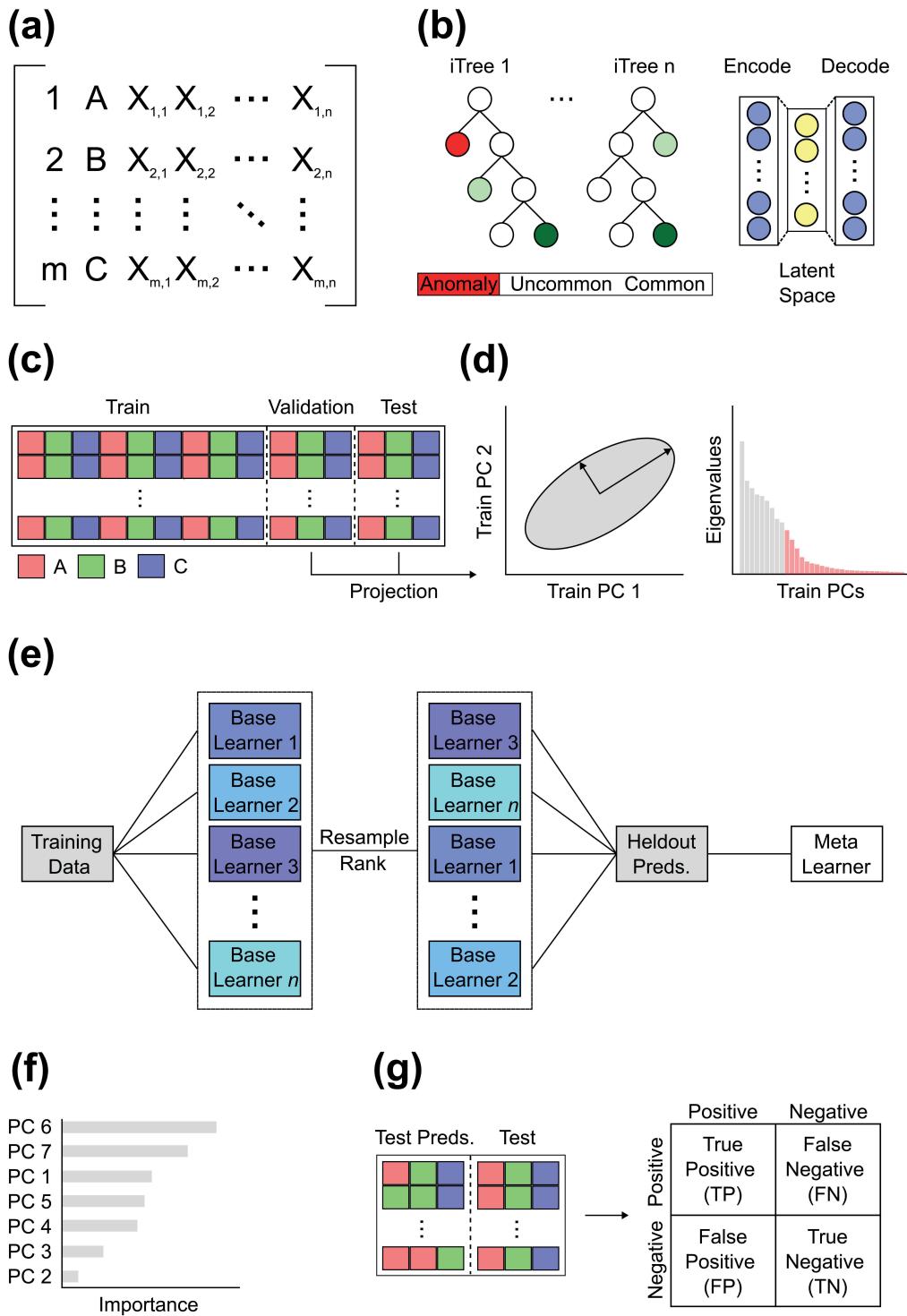


Figure 1. Schematic overview of ensemble learning workflow. (a) A matrix containing observation names, classes, and high-dimensional data is (b) preprocessed with an (left) extended isolation forest or (right) autoencoder to remove anomalies, then (c) split into training, holdout validation, and test sets, ensuring proportional class representations. (d) Dimensionality reduction is performed on the training set and higher order principal components are removed according to a variance threshold before projecting the validation and test data into that space. (e) An arbitrary number of base learners are trained on the training data, ranked according to the resampling optimization metric, and the top x learners are applied to the holdout set to generate predictions. The metalearner is trained on these predictions and later used to predict the test classes. (f) A variable importance readout is returned, along with (g) evaluation results for every method via the confusion matrix.

153 We implement random discrete grid searches to optimize the hyperparameters of both
154 anomaly detection methods. This involves iteratively testing random combinations of
155 hyperparameters to a user-defined tune length, set here to 100, then evaluating each model and
156 selecting the one with the lowest mean squared error. We evaluate the efficacy of each approach
157 by correlating their anomaly scores with Procrustes distances to the mean, the most widely
158 accepted measure for outlier detection in morphometrics. The average autoencoder correlation is
159 $r = 0.85$ (Fig. S1), whereas the average extended isolation forest correlation is $r = 0.82$ (Fig. S2).
160 Despite these promising results, we stick to the Procrustes convention and only remove anomalies
161 based on the Procrustes distance interquartile range. Users should feel confident generalizing these
162 methods to non-morphometric data when a straightforward measure is unavailable.

163 **2.3.2 Data partitioning and dimensionality reduction**

164 The training set enables a model to learn underlying patterns and relationships in the data, while
165 the test set facilitates unbiased evaluations of a final model. We invoke a type of ensemble learning
166 called blending, where a validation set is partitioned from the training set to generate an initial
167 collection of predictions to train a metalearner (Fig. 1c). By combining held-out predictions from
168 multiple, usually diverse, base learners, the metalearner develops into a single, secondary
169 prediction model with more discriminative power (LeDell, 2015). The metalearner is not limited
170 to any particular algorithm, although generalized linear models and random forests to a lesser
171 extent tend to be employed, as they are more resistant to overfitting (LeDell et al., 2016). We apply
172 a 70/15/15% training, validation, and test split to each dataset in this study. We ensure that class
173 levels are represented sufficiently and proportionately across the partitioned datasets (Fig. 1c).

174 High-dimensional data are information rich but tend to be redundant or highly correlated,
175 leading to inefficient models with noise and less discriminative power. To decompose these
176 datasets, we provide Principal Component Analysis (PCA) and autoencoder dimensionality
177 reduction options in the data partitioning function (Fig. 1d); however, other extracted features or
178 even the raw data can be defined as inputs. While PCA continues to reign supreme when studying
179 between-class differences via linear decomposition (Du, 2019), phenotypic traits can exhibit non-
180 linear relationships (e.g., Unger et al., 2021), in which case an autoencoder might be preferable.
181 After the data are partitioned, dimensionality reduction is performed on the training set, then the
182 validation and test sets are predicted with that model (Figs. 1c,d). We use PC scores as training,
183 validation, and test data due to the highly correlated and Euclidean nature of Procrustes coordinates
184 projected into tangent space.

185 **2.4 Training**

186 Ensemble models benefit from a comprehensive library of base learners (Fig. 1e). Since existing
187 R packages lack either multi-class ensemble capabilities or a large enough selection of base
188 learners, we leverage training algorithms from *caret* (Kuhn, 2008), the most celebrated and
189 comprehensive machine learning classification package in R. After experimenting with every
190 parametric and non-parametric supervised learning method, we homed in on 33 learners for binary
191 classification and 30 learners for multi-class classification. Algorithms with excessive training
192 times and susceptibility to errors were excluded. Table 2 lists the major algorithm families and
193 associated algorithms. Detailed information about these algorithm families can be found in various
194 reviews (Mitteroecker & Bookstein, 2011; Lürig et al., 2021).

195 **Table 2.** Summary of algorithm families and available algorithms. Acronym denotes the name in
196 R. Each algorithm is capable of binary and multi-class classification, except those with an
197 asterisk (*), which are unavailable for multi-class tasks.

Algorithm family	Algorithm and acronym
Bayesian	Naïve Bayes (nb)
Decision trees	C5.0, conditional inference forest (cforest), evolutionary decision tree (evtree), random forest (rf or ranger)
Ensemble (bagging/boosting)	AdaBoost.M1, AdaBag, multivariate adaptive regression spline with bagging and boosting (bagEarthGCV), Classification and Regression Tree with bagging (treebag)
Kernel/instance-based	Discriminant analysis (flexible (fda), heteroscedastic (hda), high-dimensional (hdda), linear (lda), localized (loclda), mixture (mda), penalized (pda), quadratic (qda), regularized (rda), stepwise linear (stepLDA), stepwise quadratic (stepQDA), sparse linear (sparseLDA)), Gaussian process (linear (*gaussprLinear), polynomial (*gaussprPoly), radial (*gaussprRadial)), k -nearest neighbors (kknn), support vector machine (linear (svmLinear), polynomial (svmPoly), radial (svmRadial)))
Neural networks	Artificial neural network (nnet)
Regression	Generalized linear model (glmnet), multivariate adaptive regression spline (earth), partial least squares (pls)

198 Before training a model, it is wise to introduce a resampling strategy. Oftentimes, a list of
199 training models will be evaluated on the training data prior to testing. But evaluating a model on
200 the full training dataset inflates the initial evaluation metrics and offers no insight into model
201 generalization on new datasets. Much like bagging, it is more instructive to repeatedly resample
202 the training data (e.g., via bootstrapping or cross-validation), train on the subsample, predict on
203 the held-out sample, and average the results to arrive at a representative understanding of model
204 performance. This is a general feature of *caret* that we integrate. Optionally, the resampling can
205 include an up- or down-sampling step to redress class imbalances. We employ a bootstrapping
206 (N=25 iterations) option across each iteration of the hyperparameter optimization, but also make
207 cross-validation variants available.

208 A well-trained model is heavily dependent on hyperparameter optimization. While
209 manually defining and optimizing a list of custom hyperparameters is feasible for a single learner,
210 it is tedious and time-consuming to do the same for myriad learners. Again, we capitalize on the
211 automatic hyperparameter tuning capabilities of *caret* and allow users to specify the tune length of
212 each base learner. We set the tune length to 10 and perform a random discrete search, meaning a
213 maximum of 10 random hyperparameter combinations are evaluated for each model. The best
214 model according to a user-defined metric is retained. We define ROC and Cohen's Kappa as the
215 default metrics for binary and multi-class classification, respectively. However, log loss, accuracy,
216 balanced accuracy, and F1 metrics are additionally available.

217 Higher resampling iterations and tune lengths will not only increase the generalizability of
218 a model but also the likelihood of reaching an optimum. Unfortunately, training time rises
219 exponentially if these values are set too high, because they are applied to every base learner. If the
220 task is not time-sensitive, doubling or even tripling the resampling and tune length numbers should
221 be feasible. Under time constraints, however, the values proposed above should be sufficient,
222 though they can certainly be decreased if the dataset and/or parameter space is massive. Fig. S3
223 shows the distribution of training times for each algorithm. To accelerate training, we provide an
224 argument to specify the number of cores for parallelization. Invoking as many cores as possible
225 will dramatically reduce training times. We trained every model using 10 cores on an Intel i7-
226 8700K Processor (3.70 GHz).

227 After compiling a list of successfully trained models, we rank order them using the
228 optimization metric from the resampling process (Fig. 1e). Anywhere between two and the total
229 number of successful base learners can be selected for the ensemble. Models that do not converge
230 or fail to predict complete cases are eliminated. For computational reasons, we choose the top

231 three, top five, and top 10 models to construct multiple ensembles. Each top learner is initially
232 deployed to predict the classes of the validation and test sets, then the held-out validation
233 predictions are stacked to train each ensemble. We train the ensembles according to the procedures
234 above, except with a generalized linear model or random forest metalearner. We prioritize these
235 metalearners for their robustness to overfitting, but any algorithm can be used. Equipped with the
236 test set predictions as new test data, we predict the test classes with the ensemble. We additionally
237 predict the test classes from each successful base learner after feeding them the original test data
238 to provide a comparative summary of method performance. Overlap between the predicted and
239 observed test classes is evaluated using confusion matrices (Fig. 1g).

240 **2.5 Variable importance**

241 Predictors tend to vary in their ability to discriminate classes. Explainability or understanding the
242 relative importance of each variable to a model is thus helpful, particularly in high-dimensional
243 space where teasing apart effects is difficult. Quantifying importances from a single classification
244 model is easily accomplished with existing functions. However, there is no standard approach for
245 re-weighting them in an ensemble. We therefore compute and store the original variable (e.g., PC)
246 importances from every individual base learner in the ensemble, multiply these importances by the
247 corresponding model importances from the held-out validation predictions, then calculate the
248 weighted mean importance of each variable (Fig. 1f).

249 **2.6 Evaluation metrics**

250 We acquire a standard set of classification metrics for each base learner and ensemble using the
251 confusion matrix. While the metrics below primarily concern the test data, we also gather the same
252 metrics for the validation data to understand the composition of the ensemble. Hereafter, we focus

253 on F1 scores and balanced accuracy, as they measure overall model performance by incorporating
254 precision, recall, sensitivity, and specificity. But other measures, including positive prediction
255 value, negative prediction value, prevalence, detection rate, detection prevalence, accuracy, and
256 Kappa, are provided as a function output. Both F1 and balanced accuracy can be expressed as
257 ratios between the number of true positives (TP), true negatives (TN), false positives (FP), and
258 false negatives (FN) (Fig. 1g):

259 $precision = TP / (TP + FP)$

260 $sensitivity = TP / (TP + FN)$

261 $specificity = TN / (TN + FP)$

262 $F1 = 2 \cdot (precision \cdot sensitivity) / (precision + sensitivity)$

263 $balanced\ accuracy = (sensitivity + specificity) / 2$

264 F1 emphasizes the number of true positives or correctly predicted positive classes relative
265 to the total number of predictions, whereas balanced accuracy accounts for both true positives and
266 true negatives. We examine variation in F1 scores and balanced accuracy among datasets (i.e.,
267 within methods) and within datasets (i.e., among methods) after separating the binary and multi-
268 class classification results. We then interrogate possible causes of performance variation by
269 merging the classification results. With F1 or balanced accuracy as the response variable and
270 classification task (binary/multi) plus class R^2 , mean class covariance distance, mean class shape
271 distance, between- vs. within-class variance, class balance, or sample size as the explanatory
272 variables, we fit multiple regression models. Class R^2 is the R^2 value obtained from fitting a linear
273 model, with residual randomization, of Procrustes shape coordinates on class (Collyer & Adams,
274 2018). Mean class covariance distance is the mean Euclidean distance between the covariance

275 matrices of every unique pairwise class combination (Le Maître & Mitteroecker, 2019). Mean
276 class shape distance is the mean Procrustes distance between the mean shapes of every unique
277 pairwise class combination. Between- vs. within-class variance is the quotient of the traces of the
278 between- and within-class covariance matrices (Le Maître & Mitteroecker, 2019). Class balance
279 is a summary measure for the number of observations per class relative to the sample size and is
280 measured as the Shannon entropy normalized by the number of classes. Sample size is the total
281 sample size.

282 **3.0 Results**

283 We classified nearly 10,000 high-dimensional shape phenotypes from 10 binary class datasets
284 using 33 classification algorithms and their ensembles. Fig. 2a shows the distribution of F1 scores
285 and balanced accuracies for the top 10 base learners and select ensembles among binary class
286 datasets (see Table S2 and Fig. S4 for all algorithms). For base learners, the top 10 average F1
287 scores in descending order were attained by regularized discriminant analysis (rda),
288 heteroscedastic discriminant analysis (hda), neural network (nnet), localized linear discriminant
289 analysis (loclda), AdaBoost, sparse linear discriminant analysis (sparseLDA), partial least squares
290 (pls), mixture discriminant analysis (mda), quadratic discriminant analysis (qda), and polynomial
291 support vector machine (svmPoly). The top three and top five random forest (rf) ensembles ranked
292 first and third among all methods, averaging 91.4% and 90.7% F1 scores, respectively, in between
293 which rda achieved 91.0%. While the top 10 generalized linear model (glm) ensemble ranked
294 fourth at 90.5%, the top three and top five glm ensembles dropped to 84.8% and 84.7%,
295 respectively. As for average balanced accuracy, the top 10 base learners were rda, hda, loclda,
296 svmPoly, mda, nnet, radial support vector machine (svmRadial), AdaBoost, sparseLDA, and pls.

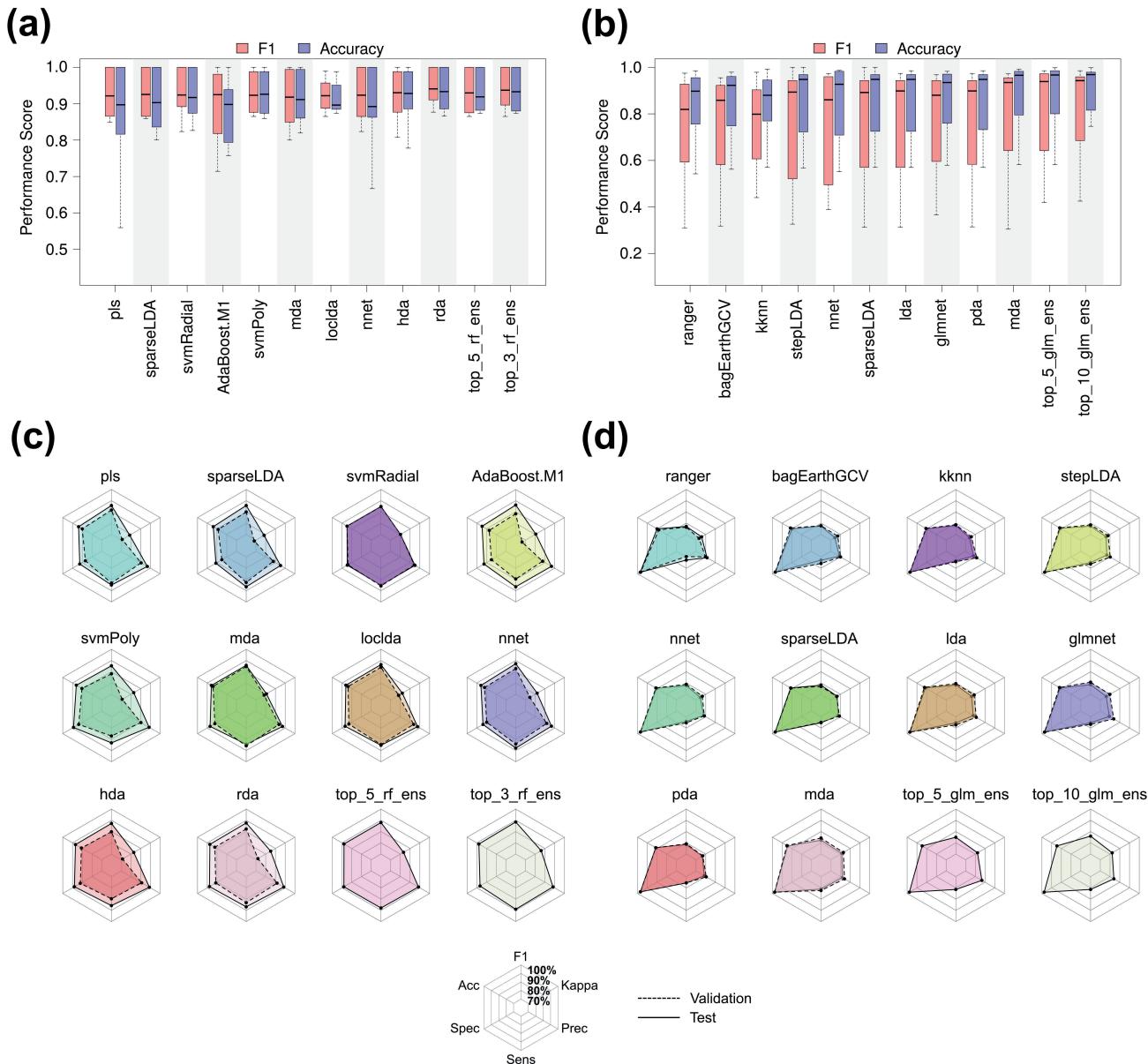


Figure 2. (a) Binary and (b) multi-class F1 (red) and balanced accuracy (blue) distributions for the top 10 base learners and ensembles, shown in ascending order. Other ensembles are excluded for simplicity. (c) Binary and (d) multi-class radar plots detailing average performance for the validation (dashed line) and test (solid line) set data across the same base learners and select ensembles, shown in ascending order. Radar plot lines start at 70% and radiate outward towards 100%.

297 The top three and top five rf ensembles ranked second and third with 90.9% and 90.5% balanced
298 accuracies, respectively, behind the leading 91.0% of rda.

299 We also classified roughly 12,000 high-dimensional shape phenotypes from 10 multi-class
300 datasets using the same algorithms and their ensembles. Fig. 2b displays the distribution of
301 F1 scores and balanced accuracies for the top 10 base learners and select ensembles among
302 multi-class datasets (see Table S3 and Fig. S5 for all algorithms). For base learners, the top 10
303 average F1 scores in descending order were obtained by mda, glm, penalized discriminant
304 analysis (pda), linear discriminant analysis (lda), sparseLDA, *k*-nearest neighbors (kknn),
305 nnet, multivariate adaptive regression splines (earth), stepwise linear discriminant analysis
306 (stepLDA), and ranger (i.e., a rf variant). The top 10 and top five glm ensembles, as well as
307 the top three rf ensemble, ranked first, second, and third with 82.0%, 81.2%, and 81.0% average
308 F1 scores, respectively. In addition, the top three glm ensemble, alongside the top five and top 10
309 rf ensembles, tied for the fourth at 80.5% above mda, the leading base learner at 79.2%.
310 Likewise, the top 10 base learners regarding balanced accuracy were mda, pda, lda, glm,
311 sparseLDA, stepLDA, nnet, kknn, rf, and bagged multivariate adaptive regression splines
312 (bagEarthGCV). The top 10 and top five glm ensembles tied for first with 88.4% average
313 accuracies, whereas mda, the leading base learner, finished slightly behind at 88.3%. Just below
314 this were the 88.0% to 88.2% accuracies achieved by the remaining ensembles.

315 To understand the composition and performance of the ensembles, we assessed the extent
316 to which the base learner validation predictions deviated from the test predictions (Figs. 2c,d). For
317 the top 10 base learners among binary datasets, we observed that the validation predictions
318 exhibited 3.4%, 3.1%, 2.4%, 3.8%, 4.4%, and 6.0% decreases in F1, balanced accuracy, sensitivity,
319 specificity, precision, and Kappa performance, respectively, compared to the test predictions (Fig.

320 2c). Conversely, the test and validation predictions for the top 10 base learners among multi-class
321 datasets were nearly indistinguishable. While precision and Kappa were 1.5% and 1.1% higher,
322 respectively, for the validation predictions, all other metrics showed mean differences of 0% to
323 0.1% (Fig. 2d).

324 Since model performance among datasets can be biased by poor or great performance
325 within a minority of datasets, we also quantified relative model rank in terms of average F1 score
326 and balanced accuracy within datasets (Fig. 3). Whereas a score of -1 indicates the lowest error or
327 highest rank, 1 indicates the highest error or lowest rank. Much like the overall performance
328 results, the top 10 average base learners within the binary datasets were rda, svmRadial, nnet,
329 loclda, AdaBoost, hda, sparseLDA, mda, pda, and qda (Fig. 3a). The top three and top five rf
330 ensembles finished first and second with -0.72 and -0.70 average ranks, respectively, above the -
331 0.61 of rda, the leading base learner. By contrast, the top 10 average base learners within the multi-
332 class datasets diverged from the overall results. In descending order, they were loclda, qda, rda,
333 mda, sparseLDA, pda, glm, lda, nnet, and hdda (Fig. 3b). The top ten and top five glm ensembles
334 placed first and second with -0.80 and -0.73 average ranks, respectively, above the -0.58 of loclda,
335 the leading base learner. Table S4 contains the full list of relative ranks.

336 To assess potential determinants of classification performance, we completed multiple
337 regressions. Table 3 enumerates the means of the explanatory variables, alongside the F1
338 regression effect sizes for both the variable and task covariate. Here, effect refers to the average
339 change in performance per unit increase in the variable: a unit for task is the change from binary
340 to multi, whereas a unit for all continuous variables is 0.1, except for 0.01 in the case of shape
341 distance and 1 for sample size.

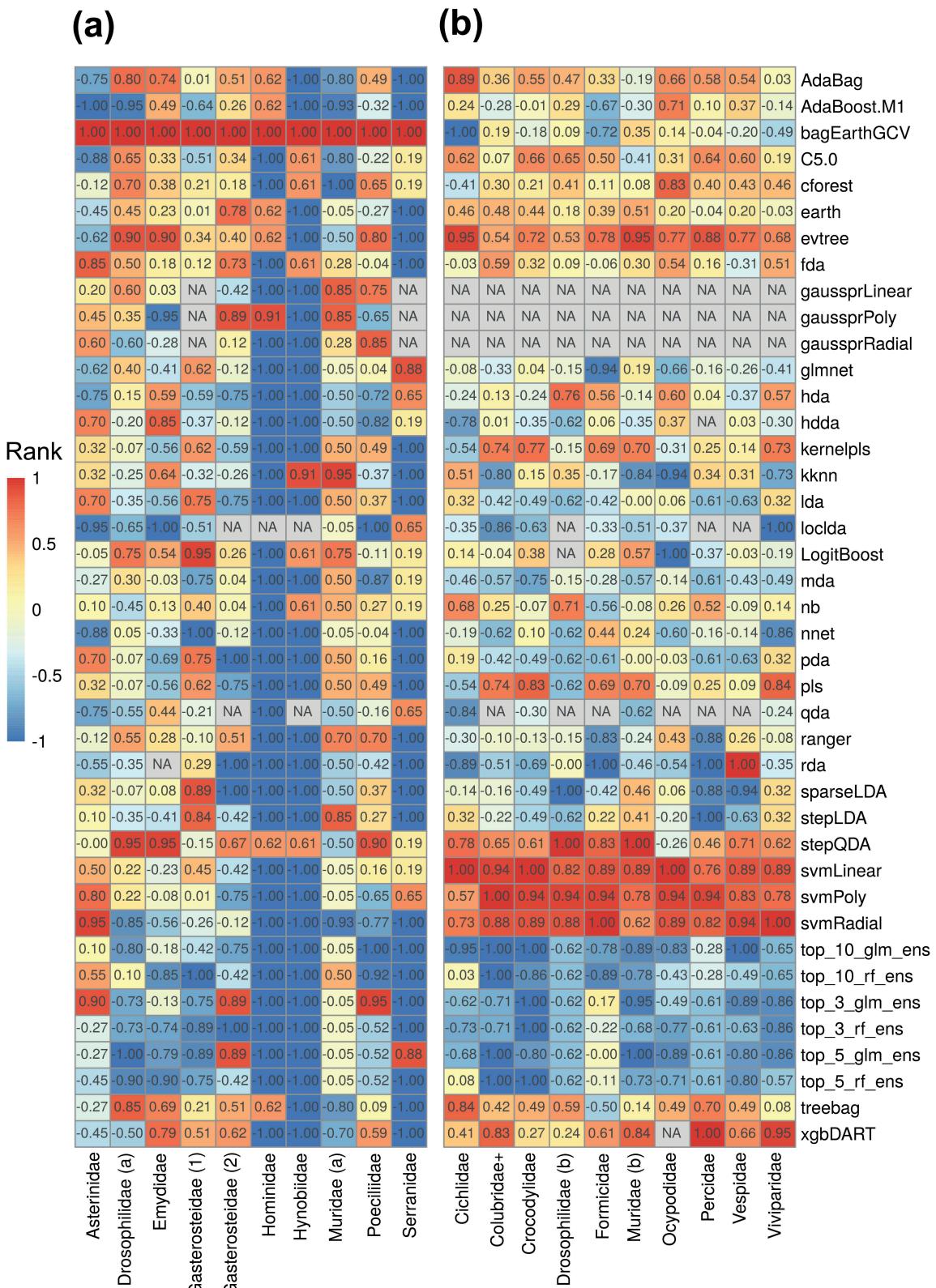


Figure 3. Relative method rank within (a) binary and (b) multi-class datasets according to average F1 and balanced accuracy score. Scores are normalized between -1 (lowest error, highest rank) and 1 (highest error, lowest rank). Datasets (columns) are listed alphabetically within classification task and methods are listed alphabetically overall.

342 **Table 3.** Summary of phenotypic and dataset variable means, effect sizes, and covariate task
343 effect sizes in each F1 regression, as well as the model standard error (SE), F statistic, and
344 overall R^2 .

Variable	Binary	Multi	Variable Effect	Task Effect	SE	F	R^2
R^2	0.2	0.5	5.5%	-36.2%	13.6	9.0	0.46
Shape distance	0.06	0.08	2.1%	-23.8%	14.1	7.8	0.42
Covariance distance	0.1	0.2	-3.2%	-14.2%	14.9	6.1	0.35
Variance ratio	1.2	1.5	0.4%	-20.9%	15.7	4.7	0.28
Class balance	0.9	0.9	-2.9%	-14.3%	17.0	2.7	0.15
Sample size	981	1197	0%	-17.9%	17.5	2.1	0.11

345 We found that R^2 values derived from linear models of shape on class were the most predictive
346 (Fig. 4a), followed by mean class shape distance (Fig. 4b), mean class covariance distance (Fig.
347 4c), and between- vs. within-class variance (Fig. 4d). Class balance (Fig. 4e) and total sample size
348 (Fig. 4f) were substantially less predictive. Unsurprisingly, task was highly predictive in every
349 model, resulting in 14.2% to 36.2% decreases in F1 as one moves from binary to multi-class
350 classification. Balanced accuracy was influenced in the same manner, just to a lesser extent (Fig.
351 S6). Table S5 describes the effect sizes and model fit measures for balanced accuracy.

352 **4.0 Discussion**

353 We have presented a large-scale empirical analysis of classification algorithms, alongside a generic
354 ensemble learning framework for classifying high-dimensional phenotypes. Classification is a
355 fundamental problem in biology that has seen renewed interest over the past five years due to the
356 explosion of data and machine learning techniques. Unfortunately, most emphasis has been placed
357 on developing methods for a particular classification task or on optimizing and comparing a small
358 set of learning algorithms for a specific phenotypic dataset. Our first aim was to quantify average
359 method performance across high-dimensional shape datasets with different anatomies, variance-
360 covariance patterns, mean distances, class distributions, and sample sizes. Our second aim was to

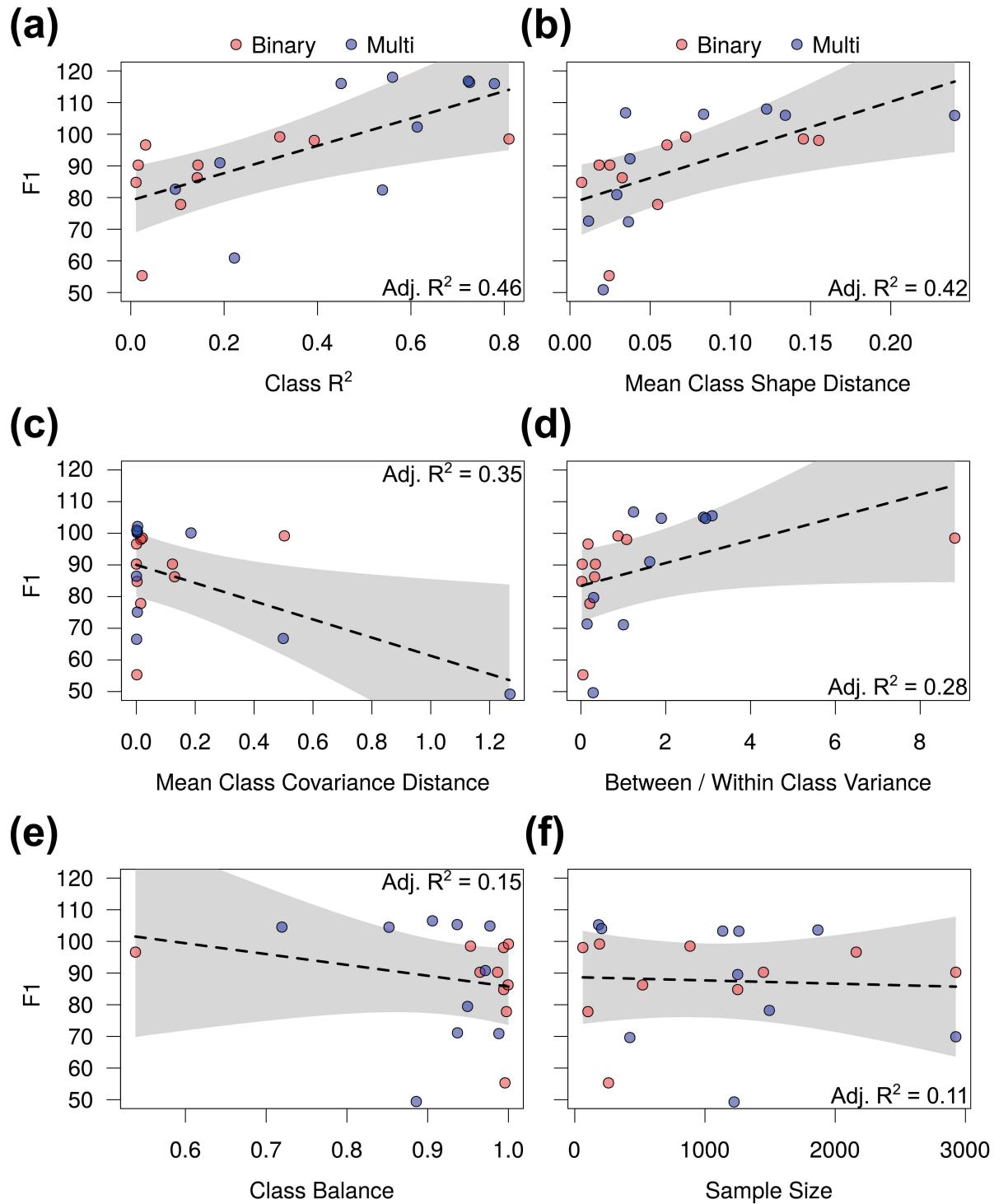


Figure 4. F1 multiple regression plots with classification task (red, binary; blue, multi) plus (a) class R², (b) mean class shape distance, (c) mean class covariance distance, (d) between- vs. within-class variance, (e) class balance, or (f) sample size explanatory variables. Lines of best fit with 95% confidence intervals are shown alongside model R² values.

361 combine these learners into a stronger phenotypic learner via ensemble learning and compare its
362 performance. This culminated in the *pheble* R package, which offers a flexible, effective, and
363 streamlined solution for classifying high-dimensional phenotypes. The workflow contains
364 functions for preprocessing, training and strategically stacking a multitude of models to build an
365 ensemble, and model evaluation.

366 To preprocess each dataset, we implemented an 85/15% training/test split with 15% of the
367 training data reserved for validation. This split ratio appeared sufficient on average, given the final
368 ensemble results; however, these percentages are merely a guideline as they are a function of the
369 minimum class sample size. For example, while the multi-class validation and test predictions
370 were nearly equivalent, the binary validation predictions were notably worse than the test
371 predictions, suggesting that more data were needed. We discovered that the *Hominidae* sacrum
372 dataset was single-handedly driving this difference. While all other datasets exhibited average
373 validation and test performance deviations between 0% and 8%, the *Hominidae* dataset displayed
374 average deviations of 25% (Table S6). Being the second smallest dataset with $N=101$ observations,
375 the holdout validation set was limited to $N=13$ observations, so any classification errors in these
376 data would be magnified. Larger validation and test set partitions are therefore recommended in
377 similar scenarios. Interestingly, even with errant validation predictions, the *Hominidae* ensembles
378 managed to achieve test performance on par with all other methods, likely because its class
379 boundaries were easily separable. Small datasets with less distinct classes may not be so fortunate.

380 The other core preprocessing steps were anomaly detection and dimensionality reduction.
381 Since this study dealt with Procrustes shape coordinates, we opted for the classical Procrustes
382 distance solution to remove outliers. Nevertheless, we also introduced a more generic approach to
383 make the classification pipeline end-to-end. We showed that anomaly scores from autoencoders

384 and extended isolation forests are highly correlated with Procrustes distance to the mean, with the
385 former being the superior option. Importantly, though, these methods learn specific features of a
386 dataset as opposed to an aggregate feature metric, like distance, so the comparison is imperfect.
387 Merging domain-specific and learning-based anomaly scores may offer the most insight, but more
388 exploration is needed. In terms of dimensionality reduction, we provide PCA and autoencoder
389 options for linear and non-linear decompositions, respectively, although other extracted features
390 or even the raw data can be used. We ultimately chose PCs due to the highly correlated and
391 Euclidean nature of Procrustes coordinates projected into tangent space.

392 Existing R packages for ensemble learning either have a limited pool of classification
393 algorithms or are unable to train multi-class ensembles. Since ensemble models are most effective
394 when they incorporate many diverse base learners (LeDell, 2015; van der Laan et al., 2007), we
395 exploited the enormously successful and comprehensive training interface of *caret*. After
396 screening each algorithm for errors and overall feasibility (e.g., performance and training time),
397 we selected 33 learners for binary classification and 30 learners for multi-class classification. We
398 experimented with ensembles that stacked the top three, top five, and top 10 base learners, but we
399 suspect that more learners could improve performance. The top base learners and ensembles
400 among datasets but within classification task were fairly consistent between our overall
401 performance metrics, F1 and balanced accuracy. In descending order, the best binary class
402 approaches were the top three rf ensemble, rda, top five rf ensemble, top 10 glm ensemble, hda,
403 nnet, loclda, top 10 rf ensemble, mda, svmPoly, AdaBoost, svmRadial, sparseLDA, and pls.
404 Likewise, the best multi-class methods were the top three, 10, and five glm ensembles, top five
405 and 10 rf ensembles, mda, top three rf ensemble, pda, glmnet, lda, sparseLDA, nnet, stepLDA,
406 kknn, bagEarthGCV, and ranger. Relative to the top ranked base learner, the best binary class

407 ensemble improved average F1 performance by 0.4%, while the best multi-class ensemble
408 improved average F1 performance by 3%.

409 We additionally evaluated algorithm performance within datasets to avoid particular class
410 biases. Some methods, for example, may be highly effective or ineffective for a specific dataset
411 and this could therefore inflate or deflate their overall performance. We found that the top base
412 learners varied from dataset to dataset, whereas the ensembles consistently achieved superior
413 performance. Such variability is not surprising, given that phenotypic spaces and class boundaries
414 vary among datasets. But this result is critical to underscore, because it clearly shows that one
415 cannot rely on the performance results from other studies to inform a new, unrelated study.
416 Deploying an ensemble, on the other hand, will ensure effective, reliable classification. Even if the
417 ensemble does not finish atop the base learners, the user can easily discover the best model and
418 retrieve it thanks to the ensemble process. Another point worth mentioning is we only evaluated
419 *glm* and *rf* metalearners due to their robustness to overfitting. The *rf* metalearners greatly
420 outperformed *glms* for binary classification and vice versa, albeit to a much lesser extent, for multi-
421 class classification. Considering the range of the binary classification metalearners results, we
422 recommend experimenting with alternatives, especially since that functionality is supported.

423 Our final aim was to quantify the impact of various dataset and phenotypic properties on
424 classification performance. Using classification task as a covariate, we found that in each multiple
425 regression model, task explained the highest proportion of variance in F1 and balanced accuracy.
426 This was expected and merely indicates that multi-class performance is lower on average than
427 binary performance. We additionally observed that higher class R^2 , mean class shape distance, and
428 between- vs. within-class variance values increased performance. Computing each of these
429 measures essentially involves maximizing differences among classes, so the positive associations

430 make sense. By contrast, increases in covariance distance decreased performance. Because this
431 measure reflects differences in the shape of the covariance matrix between classes, we can
432 conclude that learning algorithms struggle with increasingly disparate class distributions on
433 average. Balance in the number of observations per class appeared to decrease performance, but
434 this model exhibited high error and surely reflects noise, as class imbalances are a known problem
435 for many learning-based models (Sun et al., 2009). The equally poor predictive power of sample
436 size suggests that our base learners and ensembles can support smaller samples. However, the
437 smallest samples were easily discriminated by most methods, so this result should be interpreted
438 with caution.

439 **5.0 Conclusions**

440 Learning-based classification is a complex task driven by many hyperparameters. We introduced
441 the R package *pheble* to perform a meta-analysis of classification algorithms and provide a
442 streamlined ensemble learning workflow for classifying high-dimensional phenotypes. Binary and
443 multi-class classification tasks relevant to evolutionary biology, developmental biology, and
444 ecology were considered. In total, we classified over 20,000 high-dimensional shape phenotypes
445 using 33 algorithms and their ensembles. We found that discriminant analysis variants and neural
446 networks were the most accurate learners on average. However, there was considerable variability
447 in base learner performance between datasets. Ensemble models, on the other hand, achieved the
448 highest performance on average, both within and among datasets. By quantifying the extent to
449 which certain dataset and phenotypic properties influence these models, we also offer likely
450 explanations for variation in performance. Researchers interested in maximizing classification
451 performance stand to benefit from the simplicity and effectiveness of our approach.

452 **Acknowledgements**

453 We would like to acknowledge the generous funding from a CIHR Foundation Grant (#159920),
454 an NSERC Discovery Grant (#238992-17), and an NIH R01 Grant (#2R01DE019638).

455 **Conflict of Interest Statement**

456 The authors have no conflicts of interest to declare.

457 **Author Contributions**

458 J.D. and B.H. conceived the ideas. J.D. performed the meta-analysis, wrote the R package, and
459 wrote the first draft. All authors discussed aspects of the research and contributed to writing and
460 revising the paper.

461 **Data Availability**

462 We used 20 publicly available datasets and referred to them by family: *Asterinidae* (Araújo et al.,
463 2014), *Drosophilidae* (a/b) (Pitchers et al., 2013), *Emydidae* (Stayton et al., 2018), *Gasterosteidae*
464 (1) (Schutz et al., 2022), *Gasterosteidae* (2) (Fraser & El-Sabaawi, 2022), *Hominidae* (Krenn et
465 al., 2022), *Hynobiidae* (Jia et al., 2022), *Muridae* (a/b) (Devine et al., 2022), *Poeciliidae* (Riesch
466 et al., 2016), *Serranidae* (Alós et al., 2014), *Cichlidae* (Ronco et al., 2020), *Colubridae*+ (Head &
467 Polly, 2015), *Crocodylidae* (Watanabe & Slice, 2014), *Formicidae* (Kennedy et al., 2014),
468 *Ocypodidae* (Hopkins et al., 2016), *Percidae* (Martin & Mendelson, 2014), *Vespidae* (Perrard et
469 al., 2014), and *Viviparidae* (Van Bocxlaer & Hunt, 2013). Dataset details are listed in Table S1.
470 The data and code to reproduce our analysis are available at doi.org/10.5281/zenodo.7949383. The
471 R package code is available at github.com/jaydevine/pheble.

472 References

473 Adams, D. C., & Otárola-Castillo, E. (2013). geomorph: an R package for the collection and
474 analysis of geometric morphometric shape data. *Methods in Ecology and Evolution*, 4,
475 393-399. <https://doi.org/10.1111/2041-210X.12035>

476 Alós, J., Palmer, M., Linde-Medina, M., & Arlinghaus, R. (2014). Consistent size-independent
477 harvest selection on fish body shape in two recreationally exploited marine species.
478 *Ecology and Evolution*, 4, 2154-2164. <https://doi.org/10.1002/ece3.1075>

479 Araújo, M. S. (2014). Body size and allometric shape variation in the molly *Poecilia vivipara* along
480 a gradient of salinity and predation. *BMC Evolutionary Biology*, 14, 251.
481 <https://doi.org/10.1186/s12862-014-0251-7>

482 Bertsatos, A., Chovalopoulou, M., Brůžek, J., & Bejdová, S. (2020). Advanced procedures for
483 skull sex estimation using sexually dimorphic features. *International Journal of Legal
484 Medicine*, 134, 1927-1937. <https://doi.org/10.1007/s00414-020-02334-9>

485 Boyer, D. M., Gunnell, G. F., Kaufman, S., & McGahey, T. M. (2017). MorphoSource: archiving
486 and sharing 3-D digital specimen data. *The Paleontological Society Papers*, 22, 157-181.
487 <https://doi.org/10.1017/scs.2017.13>

488 Breiman, L. (1996). Stacked regressions. *Machine Learning*, 24, 49-64.
489 <https://doi.org/10.1007/BF00117832>

490 Candel, A., & LeDell, E. (2016). Deep learning with H2O. H2o.ai Inc.

491 Chandola, V., Banerjee, A., & Kumar, V. (2009). Anomaly Detection: A Survey. *ACM Computing
492 Surveys*, 41, 1-58. <https://doi.org/10.1145/1541880.1541882>

493 Collyer, M. L., & Adams, D. C. (2018). RRPP: An R package for fitting linear models to high-
494 dimensional data using residual randomization. *Methods in Ecology and Evolution*, 9,
495 1772-1779. <https://doi.org/10.1111/2041-210X.13029>

496 Courtenay, L. A., Huguet, R., González-Aguilera, D., & Yravedra, J. (2019). A Hybrid Geometric
497 Morphometric Deep Learning Approach for Cut and Trampling Mark Classification.
498 *Applied Sciences*, 10, 150. <https://doi.org/10.3390/app10010150>

499 Courtenay, L. A., & González-Aguilera, D. (2020). Geometric Morphometric Data Augmentation
500 Using Generative Computational Learning Algorithms. *Applied Sciences*, 10, 9133.
501 <https://doi.org/10.3390/app10249133>

502 Courtenay, L. A., Herranz-Rodrigo, D., González-Aguilera, D., & Yravedra, J. (2021).
503 Developments in data science solutions for carnivore tooth pit classification. *Scientific
504 Reports*, 11, 10209. <https://doi.org/10.1038/s41598-021-89518-4>

505 Deane-Mayer, Z. A., & Knowles, J. E. (2016). Package ‘caretEnsemble’. <https://CRAN.R-project.org/package=caretEnsemble>

507 Devine, J., Vidal-García, M., Liu, W., Neves, A., Lo Vercio, L. D., Green, R. M., Richbourg, H.
508 A., Marchini, M., Unger, C. M., Nickle, A. C., Radford, B., Young, N. M., Gonzalez, P.
509 N., Schuler, R. E., Bugacov, A., Rolian, C., Percival, C. J., Williams, T., Niswander, L, ...,
510 & Hallgrímsson, B. (2022). MusMorph, a database of standardized mouse morphology
511 data for morphometric meta-analyses. *Scientific Data*, 9, 230.
512 <https://doi.org/10.1038/s41597-022-01338-x>

513 Devine, J., Aponte, J. D., Katz, D. C., Liu, W., Lo Vercio, L. D., Forkert, N. D., Marcucio, R.,
514 Percival, C. J., & Hallgrímsson, B. (2020). A Registration and Deep Learning Approach to
515 Automated Landmark Detection for Geometric Morphometrics. *Evolutionary Biology*, 47,
516 246-259. <https://doi.org/10.1007/s11692-020-09508-8>

517 Du, T. Y. (2019). Dimensionality Reduction Techniques for Visualizing Morphometric Data:
518 Comparing Principal Component Analysis to Nonlinear Methods. *Evolutionary Biology*,
519 46, 106-121. <https://doi.org/10.1007/s11692-018-9464-9>

520 Fellowes, T. E., Vila-Concejo, A., & Gallop, S. L. (2019). Morphometric classification of swell-
521 dominated embayed beaches. *Marine Geology*, 411, 78-87.
522 <https://doi.org/10.1016/j.margeo.2019.02.004>

523 Fraser, A. L., & El-Sabaawi, R. (2022). Characterizing phenotypic diversity in marine populations
524 of the threespine stickleback. *Scientific Reports*, 12, 17923.
525 <https://doi.org/10.1038/s41598-022-22872-z>

526 Freund, Y., & Schapire, R. E. (1997). A Decision-Theoretic Generalization of On-Line Learning
527 and an Application to Boosting. *Journal of Computer and System Sciences*, 55, 119-139.
528 <https://doi.org/10.1006/jcss.1997.1504>

529 Gower, J. C. (1975). Generalized procrustes analysis. *Psychometrika*, 40, 33-51.
530 <https://doi.org/10.1007/BF02291478>

531 Hariri, S., Kind, M. C., & Brunner, R. J. (2019). Extended Isolation Forest. *IEEE Transactions on
532 Knowledge and Data Engineering*, 33, 1479-1489.
533 <https://doi.org/10.1109/TKDE.2019.2947676>

534 Head, J. J., & Polly, P. D. (2015). Evolution of the snake body form reveals homoplasy in amniote
535 Hox gene function. *Nature*, 520, 86-89. <https://doi.org/10.1038/nature14042>

536 Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the Dimensionality of Data with Neural
537 Networks. *Science*, 313, 504-507. <https://doi.org/10.1126/science.1127647>

538 Hofmann, T., Schölkopf, B., & Smola, A. J. (2008). Kernel Methods in Machine Learning. *The
539 Annals of Statistics*, 36, 1171-1220. <https://doi.org/10.1214/009053607000000677>

540 Hopkins, M. J., Haber, A., & Thurman, C. L. (2016). Constraints on geographic variation in fiddler
541 crabs (Ocypodidae: Uca) from the western Atlantic. *Journal of Evolutionary Biology*, 29,
542 1553-1568. <https://doi.org/10.1111/jeb.12891>

543 Hosseini, S., Simianer, H., Tetens, J., Brenig, B., Herzog, S., & Sharifi, A. R. (2019). Efficient
544 phenotypic sex classification of zebrafish using machine learning methods. *Ecology and*
545 *Evolution*, 9, 13332-13343. <https://doi.org/10.1002/ece3.5788>

546 Jia, J., Li, G., & Gao, K. (2022). Palatal morphology predicts the paleobiology of early
547 salamanders. *eLife*, 11, e76864. <https://doi.org/10.7554/eLife.76864>

548 Jiang, L., Wang, D., Cai, Z., & Yan, X. (2007). Survey of Improving Naïve Bayes for
549 Classification. International Conference on Advanced Data Mining and Applications,
550 4632, 134-135. https://doi.org/10.1007/978-3-540-73871-8_14

551 Kennedy, P., Uller, T., & Helanterä, H. (2014). Are ant supercolonies crucibles of a new major
552 transition in evolution? *Journal of Evolutionary Biology*, 27, 1784-1796.
553 <https://doi.org/10.1111/jeb.12434>

554 Kotsiantis, S. B. (2013). Decision trees: a recent overview. *Artificial Intelligence Review*, 39, 261-
555 283. <https://doi.org/10.1007/s10462-011-9272-4>

556 Krenn, V. A., Webb, N. M., Fornai, C., & Haeusler, M. (2022). Sex classification using the human
557 sacrum: Geometric morphometrics versus conventional approaches. *PLoS ONE*, 17,
558 e0264770. <https://doi.org/10.1371/journal.pone.0264770>

559 Kuhn, M. (2008). Building Predictive Models in R Using the caret Package. *Journal of Statistical*
560 *Software*, 28, 1-26. <https://doi.org/10.18637/jss.v028.i05>

561 LeDell, E. (2015). Scalable Ensemble Learning and Computationally Efficient Variance
562 Estimation. Dissertation, University of California, Berkeley.

563 LeDell, E., van er Laan, M. J., & Petersen, M. (2016). AUC-Maximizing Ensembles through
564 Metalearning. *The International Journal of Biostatistics*, 12, 203-218.
565 <https://doi.org/10.1515/ijb-2015-0035>

566 Le Maître, A., & Mitteroecker, P. (2019). Multivariate comparison of variance in R. *Methods in*
567 *Ecology and Evolution*, 10, 1380-1392. <https://doi.org/10.1111/2041-210X.13253>

568 Liu, F. T., Ting, K. M., & Zhou, Z. H. (2012). Isolation-Based Anomaly Detection. *ACM*
569 *Transactions on Knowledge Discovery from Data*, 6, 1-39.
570 <https://doi.org/10.1145/2133360.2133363>

571 Lürig, M. D., Donoughe, S., Svensson, E. I., Porto, A., & Tsuboi, M. (2021). Computer Vision,
572 Machine Learning, and the Promise of Phenomics in Ecology and Evolutionary Biology.
573 *Frontiers in Ecology and Evolution*, 9, 642774.
574 19<https://doi.org/10.3389/fevo.2021.642774>

575 Martin, M. D., & Mendelson, T. C. (2014). Changes in sexual signals are greater than changes in
576 ecological traits in a dichromatic group of fishes. *Evolution*, 68, 3618-3628.
577 <https://doi.org/10.1111/evo.12509>

578 Mitteroecker, P., & Bookstein, F. (2011). Linear Discrimination, Ordination, and the Visualization
579 of Selection Gradients in Modern Morphometrics. *Evolutionary Biology*, 38, 100-114.
580 <https://doi.org/10.1007/s11692-011-9109-8>

581 Percival, C. J., Devine, J., Darwin, B. C., Liu, W., van Eede, M., Henkelman, R. M., &
582 Hallgrímsson, B. (2019). The effect of automated landmark identification on morphometric
583 analyses. *Journal of Anatomy*, 234, 917-935. <https://doi.org/10.1111/joa.12973>

584 Perrard, A., Baylac, M., Carpenter, J. M., & Villemant, C. (2014). Evolution of wing shape in
585 hornets: why is the wing venation efficient for species identification? *Journal of
586 Evolutionary Biology*, 27, 2665-2675. <https://doi.org/10.1111/jeb.12523>

587 Pitchers, W., Pool, J. E., & Dworkin, I. (2013). Altitudinal clinal variation in wing size and shape
588 in African *Drosophila melanogaster*: one cline or many? *Evolution*, 67, 438-452.
589 <https://doi.org/10.1111/j.1558-5646.2012.01774.x>

590 Polley, E., LeDell E., Kennedy, C., Lendle, S., & van der Laan, M. (2019). Package
591 ‘SuperLearner’. <https://CRAN.R-project.org/package=SuperLearner>

592 Porto, A., & Voje, K. L. (2020). ML-morph: A fast, accurate and general approach for automated
593 detection and landmarking of biological structures in images. *Methods in Ecology and
594 Evolution*, 11, 500-512. <https://doi.org/10.1111/2041-210X.13373>

595 Riesch, R., Tobler, M., Lerp, H., Jourdan, J., Doumas, T., Nosil, P., Langerhans, R. B., & Plath,
596 M. (2016). Extremophile Poeciliidae: multivariate insights into the complexity of
597 speciation along replicated ecological gradients. *BMC Ecology and Evolution* 16, 136.
598 <https://doi.org/10.1186/s12862-016-0705-1>

599 Rohlf, F. J., & Slice, D. (1990). Extensions of the Procrustes Method for the Optimal
600 Superimposition of Landmarks. *Systematic Biology*, 39, 40-59.
601 <https://doi.org/10.2307/2992207>

602 Ronco, F., Matschiner, M., Böhne, A., Boila, A., Büscher, H. H., El Taher, A., Indermaur, A.,
603 Malinsky, M., Ricci, V., Kahmen, A., Jentoft, S., & Salzburger, W. (2020). Drivers and
604 dynamics of a massive adaptive radiation in cichlid fishes. *Nature*, 589, 76-81.
605 <https://doi.org/10.1038/s41586-020-2930-4>

606 Salifu, D., Ibrahim, E. A., & Tonnang, H. E. Z. (2022). Leveraging machine learning tools and
607 algorithms for analysis of fruit fly morphometrics. *Scientific Reports*, 12, 7208.
608 <https://doi.org/10.1038/s41598-022-11258-w>

609 Schlager, S. (2017). Morpho and Rvcg – Shape Analysis in R: R-Packages for Geometric
610 Morphometrics, Shape Analysis and Surface Manipulations. In *Statistical Shape and
611 Deformation Analysis* (pp. 217-256). Academic Press. [https://doi.org/10.1016/B978-0-12-810493-4.00011-0](https://doi.org/10.1016/B978-0-12-
612 810493-4.00011-0)

613 Schutz, H., Anderson, R. J., Warwick, E. G., Barry, T. N., & Jamniczky, H. A. (2022). Sexually
614 mediated phenotypic variation within and between sexes as a continuum structured by

615 ecology: The mosaic nature of skeletal variation across body regions in Threespine
616 stickleback (*Gasterosteus aculeatus* L.). *Ecology and Evolution*, 12, e9367.
617 <https://doi.org/10.1002/ece3.9367>

618 Sharma, S., Sharma, S., & Athaiya, A. (2020). Activation functions in neural networks.
619 *International Journal of Engineering Applied Sciences and Technology*, 4, 310-316.

620 Sheets, H. D., Covino, K. M., Panasiewicz, J. M., & Morris, S. R. (2006). Comparison of geometric
621 morphometric outline methods in the discrimination of age-related differences in feather
622 shape. *Frontiers in Zoology*, 3, 15. <https://doi.org/10.1186/1742-9994-3-15>

623 Stayton, C. T., O'Connor, L. F., & Nisivoccia, N. M. (2018). The influence of multiple functional
624 demands on morphological diversification: A test on turtle shells. *Evolution*, 72, 1933-
625 1949. <https://doi.org/10.1111/evo.13561>

626 Sun, Y., Wong, A. K. C., & Kamel, M. S. (2009). Classification of imbalanced data: a review.
627 *International Journal of Pattern Recognition and Artificial Intelligence*, 23, 687-719.
628 <https://doi.org/10.1142/S0218001409007326>

629 Unger, C. M., Devine, J., Hallgrímsson, B., & Rolian, C. (2021). Selection for increased tibia
630 length in mice alters skull shape through parallel changes in developmental mechanisms.
631 *eLife*, 10, e67612. <https://doi.org/10.7554/eLife.67612>

632 Van Bocxlaer, B., & Hunt, G. (2013). Morphological stasis in an ongoing gastropod radiation from
633 Lake Malawi. *Proceedings of the National Academy of Sciences*, 110, 13892-13897.
634 <https://doi.org/10.1073/pnas.1308588110>

635 van der Laan, M. J., Polley, E. C., & Hubbard, A. E. (2007). Super Learner. *Statistical Applications*
636 *in Genetics and Molecular Biology*, 6. <https://doi.org/10.2202/1544-6115.1309>

637 Watanabe, A., & Slice, D. E. (2014). The utility of cranial ontogeny for phylogenetic inference: a
638 case study in crocodylians using geometric morphometrics. *Journal of Evolutionary*
639 *Biology*, 27, 1078-1092. <https://doi.org/10.1111/jeb.12382>