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Abstract

l.

Classification is a fundamental task in biology used to assign members to a class. While
linear discriminant functions have long been effective, advances in phenotypic data
collection are yielding increasingly high-dimensional datasets with more classes, unequal
class covariances, and non-linear distributions. Numerous studies have deployed machine
learning techniques to classify such distributions, but they are often restricted to a particular
organism, a limited set of algorithms, and/or a specific classification task. In addition, the
utility of ensemble learning or the strategic combination of models has not been fully

explored.

. We performed a meta-analysis of 33 algorithms across 20 datasets containing over 20,000

high-dimensional shape phenotypes using an ensemble learning framework. Both binary
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(e.g., sex, environment) and multi-class (e.g., species, genotype, population) classification
tasks were considered. The ensemble workflow contains functions for preprocessing,
training individual learners and ensembles, and model evaluation. We evaluated algorithm
performance within and among datasets. Furthermore, we quantified the extent to which
various dataset and phenotypic properties impact performance.

We found that discriminant analysis variants and neural networks were the most accurate
base learners on average. However, their performance varied substantially between
datasets. Ensemble models achieved the highest performance on average, both within and
among datasets, increasing average accuracy by up to 3% over the top base learner. Higher
class R? values, mean class shape distances, and between- vs. within-class variances were
positively associated with performance, whereas higher class covariance distances were
negatively associated. Class balance and total sample size were not predictive.
Learning-based classification is a complex task driven by many hyperparameters. We
demonstrate that selecting and optimizing an algorithm based on the results of another
study is a flawed strategy. Ensemble models instead offer a flexible approach that is data
agnostic and exceptionally accurate. By assessing the impact of various dataset and
phenotypic properties on classification performance, we also offer potential explanations
for variation in performance. Researchers interested in maximizing performance stand to
benefit from the simplicity and effectiveness of our approach made accessible via the R

package pheble.

Keywords: blending, classification, ensemble learning, landmarks, machine learning,

morphometrics, phenotypes, R
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1.0 Introduction

Linear discrimination methods have long been used in quantitative phenotypic analyses to
visualize and discriminate classes. Linear discriminators (e.g., linear discriminant analysis) tend
to be efficient and sufficiently accurate on low-dimensional datasets, such as those with a few
linear measurements or small, sparse landmark configurations (Mitteroecker & Bookstein, 2011).
However, advances in data collection techniques (Devine et al., 2020; Percival et al., 2019; Porto
et al., 2021) and data crowdsourcing (Boyer et al., 2016) are yielding increasingly large, high-
dimensional phenotypic datasets with more classes, unequal class covariances, and non-linear
distributions. Non-parametric machine learning approaches have been developed to classify such
distributions, and numerous self-contained studies have hinted at their potential (Liirig et al.,
2021), but the utility of these methods for classifying high-dimensional phenotypes has not been
systematically investigated on a large scale. Because traditional machine learning models often
fail to achieve satisfactory performance when dealing with certain data structures (e.g., noisy,
imbalanced, etc.), it is further worth considering how ensemble learning or the strategic integration
of these models can improve performance. In this paper, we present a comprehensive analysis of
learning-based classification algorithms on a collection of morphometric datasets and show how

ensemble learning can maximize discrimination in arbitrary biological settings.

Classification is the process of assigning members to a class. This task can be accomplished
through different learning strategies. Ensemble learning, and blending in particular, is our focus.
Blending ensemble approaches involve strategically stacking a set of individual classifiers using a
holdout validation set to improve performance (Breiman, 1996; van der Laan et al., 2007). Each
classifier alone is relatively simple and easy to train, often only performing well on a subset of the

data, but together these weak classifiers become a strong classifier. Despite its success in other
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fields, ensemble learning has rarely been explored in phenomics due to the paucity of open-source
implementations, insufficient expertise, and a continual reliance on the same methods. For
example, linear discriminant analysis, the hallmark approach to phenotypic classification,
maximizes the ratio of between-class variance to within-class variance to ensure maximal
separability. Unfortunately, this method assumes equality of covariances among classes and can
only find a linear discriminant function (i.e., a linear combination) to separate them (Mitteroecker
& Bookstein, 2011; Sheets et al., 2006). While homoscedasticity is common among datasets with
only a few groups, larger phenotypic datasets with heterogeneous groups stand to benefit from

non-parametric alternatives.

Recent applications of learning-enabled classification for high-dimensional phenotypes
have either involved a single dataset (e.g., one species or one study) (Hosseini et al., 2019; Salifu
et al., 2022), small sample sizes (Courtenay et al., 2019; Courtenay and Gonzalez-Aguilera, 2020),
a specific learning problem (e.g., only binary or multi-class classification with a single dataset)
(Courtenay et al., 2019, 2021), and/or a single algorithm (Bertsatos et al., 2020; Fellowes et al.,
2019). As such, there has not been a detailed examination of these machine learning algorithms
under different biological conditions. There have also been few attempts at combining multiple
base learners into a strong phenotypic learner via blending or stacking, a similar technique in
ensemble learning. The H20 (Candel et al., 2016), SuperLearner (Polley et al., 2019), and
caretEnsemble (Deane-Mayer & Knowles, 2016) R packages offer tools for ensemble learning,
but they lack either (a) a large, diverse library of classification algorithms, (b) multi-class ensemble
capabilities, and/or (c) a streamlined ensemble workflow for non-experts. Rather than conduct one-
off studies, it is important to test learning-based methods with diverse high-dimensional

phenotypic datasets and a standardized workflow.
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99 We present an empirical analysis of 33 learning-based classification algorithms and various
100  blending ensembles across 20 high-dimensional morphometric datasets using a new R package,
101 pheble. We examine a variety of algorithm families, including Bayesian methods, decision trees,
102 bagging and boosting ensembles, kernel-based methods, neural networks, and regression methods.
103  Binary and multi-class classification tasks central to evolutionary biology, developmental biology,
104 and ecology are considered. Specifically, we attempt to discriminate sex and different
105  environmental classes in the binary classification experiments, then turn to classes such as species,
106  population, genotype, and habitat in the multi-class experiments. To investigate potential
107  determinants of classification accuracy, including class R? values, unequal class covariances, mean
108 class shape distances, between- vs. within-class class variances, class imbalances, and sample size,
109  we employ phenotypic datasets containing a range of anatomical data from different organisms
110  with unique class distributions. Ultimately, we illustrate how ensemble models outperform all
111  other base learners on average whilst being consistently accurate. Our code is freely available at

112 github.com/jaydevine/pheble.

113 2.0 Materials and Methods

114 2.1 Datasets

115  Weuse 20 publicly available morphometric datasets to complete a classification meta-analysis and
116  test the viability of an ensemble workflow. Table 1 enumerates the key metadata. Additional
117  information about data provenance is listed in Table S1. Altogether these datasets represent a wide
118  assortment of families, ranging from small, terrestrial insects (e.g., Formicidae) to large, aquatic

119  mammals (e.g., Crocodylidae) with distinct anatomies, class distributions, and sample sizes.
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Table 1. Summary of phenotypic datasets, including the family (i.e., dataset name), landmarked
anatomy, total sample size (N), class, number of class levels, and number of phenotypic
variables. The “/” delimiter indicates datasets with two families, whereas the “+” suffix indicates
datasets with more than three families.

Family Anatomy N Class Levels Variables
Asterinidae Body 885  Sex 2 20
Drosophilidae Wing 2926 Sex 2 96
Emydidae Shell 2161 Habitat 2 159
Gasterosteidae Skull 190 Habitat 2 210
Gasterosteidae Body 521  Sex 2 30
Hominidae Sacrum 101  Sex 2 300
Hynobiidae/Cryptobranchidae Palate 62 Habitat 2 48
Muridae Cranium 1251 Sex 2 2532
Poeciliidae Body 1449  Sex 2 26
Serranidae/Sparidae Body 259  Site 2 26
Cichlidae Jaw 1136 Tribe 14 126
Colubridae+ Vertebraec 1260 Species 15 24
Crocodylidae/Alligatoridae Cranium 183  Species 8 234
Drosophilidae Wing 2926 Elevation 9 96
Formicidae Face 1494 Species 6 22
Muridae Cranium 1251 Genotype 26 2532
Ocypodidae Carapace 1867 Species 16 42
Percidae Body 423 Species 15 20
Vespidae Wing 206  Species 8 38
Viviparidae Shell 1224 Population 22 254

For binary classification, we mainly concentrate on sex discrimination, but other classes (e.g.,

habitat or site) are incorporated to experiment with different classifiers. Likewise, we primarily

focus on species discrimination for multi-class classification, but additional classes (e.g.,

population, genotype, or habitat/elevation) are included for experimentation. Each dataset is

composed of a sparse or dense array of p homologous anatomical landmarks in k dimensions,

resulting in p X k phenotypic variables for every observation (Table S1). Using the Morpho

(Schlager, 2017) and geomorph (Adams & Otérola-Castillo, 2013) R packages, we superimpose

the landmark configurations into a common shape space for each dataset via Generalized
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132 Procrustes Analysis (GPA) (Gower, 1975; Rohlf & Slice, 1990) to obtain Procrustes shape

133 coordinates.

134 2.2 The R package pheble

135  The R package pheble contains functions to build a streamlined ensemble learning workflow for
136  classifying high-dimensional data (Fig. 1). Typically, this involves (1) preprocessing a dataset, (2)
137  training a multitude of models to perform a given classification task, (3) strategically selecting and
138  combining those model predictions to train an ensemble model, and (4) evaluating the models on

139  an unseen dataset. We describe each step in detail below.

140 2.3 Preprocessing

141  2.3.1 Anomaly detection

142 Anomaly detection is the process of finding patterns in the data that do not conform to expected
143 behavior (Chandola et al., 2009). We provide autoencoder and extended isolation forest options
144  for anomaly detection using algorithms in the H20 R package, as these methods are effective and
145  generic enough to handle most data (Fig. 1b). Autoencoders are a type of neural network designed
146  to encode the input data into compressed but meaningful representations, often called latent
147  variables, then decode them back into a reconstructed output that is as similar as possible to the
148  input (Hinton & Salakhutdinov, 2006). Poor reconstructions have higher errors and are indicative
149  ofanomalies. Isolation forests, by contrast, utilize a tree structure with branches built from random
150  cuts or thresholds in the values of randomly selected features (Liu et al., 2012). Because the
151  branching process can introduce bias, the extended variant was proposed (Hariri et al., 2019). The

152 deeper a sample travels into these branches, the less likely it is to be anomalous.
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Figure 1. Schematic overview of ensemble learning workflow. (a) A matrix containing observation
names, classes, and high-dimensional data is (b) preprocessed with an (left) extended isolation forest or
(right) autoencoder to remove anomalies, then (c) split into training, holdout validation, and test sets,
ensuring proportional class representations. (d) Dimensionality reduction is performed on the training
set and higher order principal components are removed according to a variance threshold before
projecting the validation and test data into that space. (¢) An arbitrary number of base learners are
trained on the training data, ranked according to the resampling optimization metric, and the top x
learners are applied to the holdout set to generate predictions. The metalearner is trained on these
predictions and later used to predict the test classes. (f) A variable importance readout is returned, along
with (g) evaluation results for every method via the confusion matrix.
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153 We implement random discrete grid searches to optimize the hyperparameters of both
154  anomaly detection methods. This involves iteratively testing random combinations of
155  hyperparameters to a user-defined tune length, set here to 100, then evaluating each model and
156  selecting the one with the lowest mean squared error. We evaluate the efficacy of each approach
157 by correlating their anomaly scores with Procrustes distances to the mean, the most widely
158  accepted measure for outlier detection in morphometrics. The average autoencoder correlation is
159  r=0.85 (Fig. S1), whereas the average extended isolation forest correlation is » = 0.82 (Fig. S2).
160  Despite these promising results, we stick to the Procrustes convention and only remove anomalies
161  based on the Procrustes distance interquartile range. Users should feel confident generalizing these

162  methods to non-morphometric data when a straightforward measure is unavailable.
163  2.3.2 Data partitioning and dimensionality reduction

164  The training set enables a model to learn underlying patterns and relationships in the data, while
165  the test set facilitates unbiased evaluations of a final model. We invoke a type of ensemble learning
166  called blending, where a validation set is partitioned from the training set to generate an initial
167  collection of predictions to train a metalearner (Fig. 1¢). By combining held-out predictions from
168  multiple, usually diverse, base learners, the metalearner develops into a single, secondary
169  prediction model with more discriminative power (LeDell, 2015). The metalearner is not limited
170  to any particular algorithm, although generalized linear models and random forests to a lesser
171  extent tend to be employed, as they are more resistant to overfitting (LeDell et al., 2016). We apply
172 a 70/15/15% training, validation, and test split to each dataset in this study. We ensure that class

173 levels are represented sufficiently and proportionately across the partitioned datasets (Fig. 1¢).
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174 High-dimensional data are information rich but tend to be redundant or highly correlated,
175 leading to inefficient models with noise and less discriminative power. To decompose these
176  datasets, we provide Principal Component Analysis (PCA) and autoencoder dimensionality
177  reduction options in the data partitioning function (Fig. 1d); however, other extracted features or
178  even the raw data can be defined as inputs. While PCA continues to reign supreme when studying
179  between-class differences via linear decomposition (Du, 2019), phenotypic traits can exhibit non-
180 linear relationships (e.g., Unger et al., 2021), in which case an autoencoder might be preferable.
181  After the data are partitioned, dimensionality reduction is performed on the training set, then the
182  wvalidation and test sets are predicted with that model (Figs. 1c,d). We use PC scores as training,
183  wvalidation, and test data due to the highly correlated and Euclidean nature of Procrustes coordinates

184  projected into tangent space.
185 2.4 Training

186  Ensemble models benefit from a comprehensive library of base learners (Fig. 1e). Since existing
187 R packages lack either multi-class ensemble capabilities or a large enough selection of base
188  learners, we leverage training algorithms from caret (Kuhn, 2008), the most celebrated and
189  comprehensive machine learning classification package in R. After experimenting with every
190  parametric and non-parametric supervised learning method, we homed in on 33 learners for binary
191  classification and 30 learners for multi-class classification. Algorithms with excessive training
192  times and susceptibility to errors were excluded. Table 2 lists the major algorithm families and
193  associated algorithms. Detailed information about these algorithm families can be found in various

194  reviews (Mitteroecker & Bookstein, 2011; Liirig et al., 2021).

10
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195  Table 2. Summary of algorithm families and available algorithms. Acronym denotes the name in

196 R. Each algorithm is capable of binary and multi-class classification, except those with an
197 asterisk (*), which are unavailable for multi-class tasks.
Algorithm family Algorithm and acronym
Bayesian Naive Bayes (nb)
Decision trees C5.0, conditional inference forest (cforest), evolutionary decision

tree (evtree), random forest (rf or ranger)

Ensemble (bagging/boosting)  AdaBoost.M1, AdaBag, multivariate adaptive regression spline
with bagging and boosting (bagEarthGCV), Classification and
Regression Tree with bagging (treebag)

Kernel/instance-based Discriminant analysis (flexible (fda), heteroscedastic (hda), high-
dimensional (hdda), linear (lda), localized (loclda), mixture (mda),
penalized (pda), quadratic (qda), regularized (rda), stepwise linear
(stepLDA), stepwise quadratic (stepQDA), sparse linear
(sparseLDA)), Gaussian process (linear (*gaussprLinear),
polynomial (*gaussprPoly), radial (*gaussprRadial)), k-nearest
neighbors (kknn), support vector machine (linear (svmLinear),
polynomial (svmPoly), radial (svmRadial))

Neural networks Artificial neural network (nnet)

Regression Generalized linear model (glmnet), multivariate adaptive
regression spline (earth), partial least squares (pls)

198 Before training a model, it is wise to introduce a resampling strategy. Oftentimes, a list of
199  training models will be evaluated on the training data prior to testing. But evaluating a model on
200  the full training dataset inflates the initial evaluation metrics and offers no insight into model
201  generalization on new datasets. Much like bagging, it is more instructive to repeatedly resample
202  the training data (e.g., via bootstrapping or cross-validation), train on the subsample, predict on
203  the held-out sample, and average the results to arrive at a representative understanding of model
204  performance. This is a general feature of caret that we integrate. Optionally, the resampling can
205  include an up- or down-sampling step to redress class imbalances. We employ a bootstrapping
206  (N=25 iterations) option across each iteration of the hyperparameter optimization, but also make

207  cross-validation variants available.

11
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208 A well-trained model is heavily dependent on hyperparameter optimization. While
209  manually defining and optimizing a list of custom hyperparameters is feasible for a single learner,
210 it is tedious and time-consuming to do the same for myriad learners. Again, we capitalize on the
211  automatic hyperparameter tuning capabilities of caret and allow users to specify the tune length of
212 each base learner. We set the tune length to 10 and perform a random discrete search, meaning a
213 maximum of 10 random hyperparameter combinations are evaluated for each model. The best
214  model according to a user-defined metric is retained. We define ROC and Cohen’s Kappa as the
215  default metrics for binary and multi-class classification, respectively. However, log loss, accuracy,

216  balanced accuracy, and F1 metrics are additionally available.

217 Higher resampling iterations and tune lengths will not only increase the generalizability of
218 a model but also the likelihood of reaching an optimum. Unfortunately, training time rises
219  exponentially if these values are set too high, because they are applied to every base learner. If the
220  taskis not time-sensitive, doubling or even tripling the resampling and tune length numbers should
221  be feasible. Under time constraints, however, the values proposed above should be sufficient,
222 though they can certainly be decreased if the dataset and/or parameter space is massive. Fig. S3
223 shows the distribution of training times for each algorithm. To accelerate training, we provide an
224 argument to specify the number of cores for parallelization. Invoking as many cores as possible
225  will dramatically reduce training times. We trained every model using 10 cores on an Intel i7-

226  8700K Processor (3.70 GHz).

227 After compiling a list of successfully trained models, we rank order them using the
228  optimization metric from the resampling process (Fig. 1e). Anywhere between two and the total
229  number of successful base learners can be selected for the ensemble. Models that do not converge

230  or fail to predict complete cases are eliminated. For computational reasons, we choose the top

12
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231  three, top five, and top 10 models to construct multiple ensembles. Each top learner is initially
232 deployed to predict the classes of the validation and test sets, then the held-out validation
233 predictions are stacked to train each ensemble. We train the ensembles according to the procedures
234 above, except with a generalized linear model or random forest metalearner. We prioritize these
235  metalearners for their robustness to overfitting, but any algorithm can be used. Equipped with the
236 test set predictions as new test data, we predict the test classes with the ensemble. We additionally
237  predict the test classes from each successful base learner after feeding them the original test data
238  to provide a comparative summary of method performance. Overlap between the predicted and

239  observed test classes is evaluated using confusion matrices (Fig. 1g).
240 2.5 Variable importance

241  Predictors tend to vary in their ability to discriminate classes. Explainability or understanding the
242 relative importance of each variable to a model is thus helpful, particularly in high-dimensional
243 space where teasing apart effects is difficult. Quantifying importances from a single classification
244 model is easily accomplished with existing functions. However, there is no standard approach for
245  re-weighting them in an ensemble. We therefore compute and store the original variable (e.g., PC)
246  importances from every individual base learner in the ensemble, multiply these importances by the
247  corresponding model importances from the held-out validation predictions, then calculate the

248  weighted mean importance of each variable (Fig. 11).

249 2.6 Evaluation metrics

250  We acquire a standard set of classification metrics for each base learner and ensemble using the
251  confusion matrix. While the metrics below primarily concern the test data, we also gather the same

252 metrics for the validation data to understand the composition of the ensemble. Hereafter, we focus

13
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253  on F1 scores and balanced accuracy, as they measure overall model performance by incorporating
254 precision, recall, sensitivity, and specificity. But other measures, including positive prediction
255  wvalue, negative prediction value, prevalence, detection rate, detection prevalence, accuracy, and
256  Kappa, are provided as a function output. Both F1 and balanced accuracy can be expressed as
257  ratios between the number of true positives (TP), true negatives (TN), false positives (FP), and

258  false negatives (FN) (Fig. 1g):

259  precision =TP / (TP + FP)

260  sensitivity =TP / (TP + FN)

261  specificity =TN / (TN + FP)

262 F1 =2 (precision - sensitivity) / (precision + sensitivity)
263  balanced accuracy = (sensitivity + specificity) / 2

264 F1 emphasizes the number of true positives or correctly predicted positive classes relative
265  to the total number of predictions, whereas balanced accuracy accounts for both true positives and
266  true negatives. We examine variation in F1 scores and balanced accuracy among datasets (i.e.,
267  within methods) and within datasets (i.e., among methods) after separating the binary and multi-
268 class classification results. We then interrogate possible causes of performance variation by
269  merging the classification results. With F1 or balanced accuracy as the response variable and
270  classification task (binary/multi) plus class R?, mean class covariance distance, mean class shape
271  distance, between- vs. within-class variance, class balance, or sample size as the explanatory
272  variables, we fit multiple regression models. Class R? is the R? value obtained from fitting a linear
273 model, with residual randomization, of Procrustes shape coordinates on class (Collyer & Adams,

274  2018). Mean class covariance distance is the mean Euclidean distance between the covariance
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275  matrices of every unique pairwise class combination (Le Maitre & Mitteroecker, 2019). Mean
276  class shape distance is the mean Procrustes distance between the mean shapes of every unique
277  pairwise class combination. Between- vs. within-class variance is the quotient of the traces of the
278  between- and within-class covariance matrices (Le Maitre & Mitteroecker, 2019). Class balance
279  is a summary measure for the number of observations per class relative to the sample size and is
280  measured as the Shannon entropy normalized by the number of classes. Sample size is the total

281  sample size.

282 3.0 Results

283  We classified nearly 10,000 high-dimensional shape phenotypes from 10 binary class datasets
284  wusing 33 classification algorithms and their ensembles. Fig. 2a shows the distribution of F1 scores
285 and balanced accuracies for the top 10 base learners and select ensembles among binary class
286  datasets (see Table S2 and Fig. S4 for all algorithms). For base learners, the top 10 average F1
287 scores in descending order were attained by regularized discriminant analysis (rda),
288  heteroscedastic discriminant analysis (hda), neural network (nnet), localized linear discriminant
289  analysis (loclda), AdaBoost, sparse linear discriminant analysis (sparseLDA), partial least squares
290  (pls), mixture discriminant analysis (mda), quadratic discriminant analysis (qda), and polynomial
291  support vector machine (svmPoly). The top three and top five random forest (rf) ensembles ranked
292 first and third among all methods, averaging 91.4% and 90.7% F1 scores, respectively, in between
293 which rda achieved 91.0%. While the top 10 generalized linear model (glm) ensemble ranked
294 fourth at 90.5%, the top three and top five glm ensembles dropped to 84.8% and 84.7%,
295  respectively. As for average balanced accuracy, the top 10 base learners were rda, hda, loclda,

296  svmPoly, mda, nnet, radial support vector machine (svmRadial), AdaBoost, sparseLDA, and pls.
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Figure 2. (a) Binary and (b) multi-class F1 (red) and balanced accuracy (blue) distributions for the top
10 base learners and ensembles, shown in ascending order. Other ensembles are excluded for
simplicity. (c¢) Binary and (d) multi-class radar plots detailing average performance for the validation
(dashed line) and test (solid line) set data across the same base learners and select ensembles, shown in
ascending order. Radar plot lines start at 70% and radiate outward towards 100%.
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297  The top three and top five rf ensembles ranked second and third with 90.9% and 90.5% balanced

298  accuracies, respectively, behind the leading 91.0% of rda.

299  We also classified roughly 12,000 high-dimensional shape phenotypes from 10 multi-class
300  datasets using the same algorithms and their ensembles. Fig. 2b displays the distribution of
301  F1 scores and balanced accuracies for the top 10 base learners and select ensembles among
302  multi-class datasets (see Table S3 and Fig. S5 for all algorithms). For base learners, the top 10
303 average F1 scores in descending order were obtained by mda, glm, penalized discriminant
304  analysis (pda), linear discriminant analysis (Ida), sparseLDA, k-nearest neighbors (kknn),
305 nnet, multivariate adaptive regression splines (earth), stepwise linear discriminant analysis
306 (stepLDA), and ranger (i.e., a rf variant). The top 10 and top five glm ensembles, as well as
307 the top three rf ensemble, ranked first, second, and third with 82.0%, 81.2%, and 81.0% average
308  F1 scores, respectively. In addition, the top three glm ensemble, alongside the top five and top 10
309 rf ensembles, tied for the fourth at 80.5% above mda, the leading base learner at 79.2%.
310 Likewise, the top 10 base learners regarding balanced accuracy were mda, pda, lda, glm,
311  sparseLDA, stepLDA, nnet, kknn, rf, and bagged multivariate adaptive regression splines
312 (bagEarthGCV). The top 10 and top five glm ensembles tied for first with 88.4% average
313 accuracies, whereas mda, the leading base learner, finished slightly behind at 88.3%. Just below

314  this were the 88.0% to 88.2% accuracies achieved by the remaining ensembles.

315 To understand the composition and performance of the ensembles, we assessed the extent
316  to which the base learner validation predictions deviated from the test predictions (Figs. 2c,d). For
317  the top 10 base learners among binary datasets, we observed that the validation predictions
318  exhibited 3.4%, 3.1%, 2.4%, 3.8%, 4.4%, and 6.0% decreases in F1, balanced accuracy, sensitivity,

319  specificity, precision, and Kappa performance, respectively, compared to the test predictions (Fig.
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320  2c). Conversely, the test and validation predictions for the top 10 base learners among multi-class
321  datasets were nearly indistinguishable. While precision and Kappa were 1.5% and 1.1% higher,
322 respectively, for the validation predictions, all other metrics showed mean differences of 0% to

323 0.1% (Fig. 2d).

324 Since model performance among datasets can be biased by poor or great performance
325  within a minority of datasets, we also quantified relative model rank in terms of average F1 score
326  and balanced accuracy within datasets (Fig. 3). Whereas a score of -1 indicates the lowest error or
327  highest rank, 1 indicates the highest error or lowest rank. Much like the overall performance
328  results, the top 10 average base learners within the binary datasets were rda, svmRadial, nnet,
329  loclda, AdaBoost, hda, sparseLDA, mda, pda, and qda (Fig. 3a). The top three and top five rf
330  ensembles finished first and second with -0.72 and -0.70 average ranks, respectively, above the -
331  0.61 ofrda, the leading base learner. By contrast, the top 10 average base learners within the multi-
332 class datasets diverged from the overall results. In descending order, they were loclda, qda, rda,
333 mda, sparseLDA, pda, glm, 1da, nnet, and hdda (Fig. 3b). The top ten and top five glm ensembles
334 placed first and second with -0.80 and -0.73 average ranks, respectively, above the -0.58 of loclda,

335  the leading base learner. Table S4 contains the full list of relative ranks.

336 To assess potential determinants of classification performance, we completed multiple
337  regressions. Table 3 enumerates the means of the explanatory variables, alongside the F1
338  regression effect sizes for both the variable and task covariate. Here, effect refers to the average
339  change in performance per unit increase in the variable: a unit for task is the change from binary
340  to multi, whereas a unit for all continuous variables is 0.1, except for 0.01 in the case of shape

341  distance and 1 for sample size.
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Figure 3. Relative method rank within (a) binary and (b) multi-class datasets according to average F1
and balanced accuracy score. Scores are normalized between -1 (lowest error, highest rank) and 1
(highest error, lowest rank). Datasets (columns) are listed alphabetically within classification task and
methods are listed alphabetically overall.
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342 Table 3. Summary of phenotypic and dataset variable means, effect sizes, and covariate task

343 effect sizes in each F1 regression, as well as the model standard error (SE), F statistic, and

344 overall R?,
Variable Binary Multi Variable Effect Task Effect SE F R?
R? 0.2 0.5 5.5% -36.2% 13.6 9.0 0.46
Shape distance 0.06 0.08  2.1% -23.8% 14.1 7.8 0.42
Covariance distance 0.1 0.2 -3.2% -14.2% 149 6.1 0.35
Variance ratio 1.2 1.5 0.4% -20.9% 15.7 4.7 0.28
Class balance 0.9 0.9 -2.9% -14.3% 17.0 2.7 0.15
Sample size 981 1197 0% -17.9% 17.5 2.1 0.11

345  We found that R? values derived from linear models of shape on class were the most predictive
346  (Fig. 4a), followed by mean class shape distance (Fig. 4b), mean class covariance distance (Fig.
347  4c), and between- vs. within-class variance (Fig. 4d). Class balance (Fig. 4¢) and total sample size
348  (Fig. 4f) were substantially less predictive. Unsurprisingly, task was highly predictive in every
349  model, resulting in 14.2% to 36.2% decreases in F1 as one moves from binary to multi-class
350 classification. Balanced accuracy was influenced in the same manner, just to a lesser extent (Fig.

351  S6). Table S5 describes the effect sizes and model fit measures for balanced accuracy.

352 4.0 Discussion

353  Wehave presented a large-scale empirical analysis of classification algorithms, alongside a generic
354  ensemble learning framework for classifying high-dimensional phenotypes. Classification is a
355  fundamental problem in biology that has seen renewed interest over the past five years due to the
356  explosion of data and machine learning techniques. Unfortunately, most emphasis has been placed
357  ondeveloping methods for a particular classification task or on optimizing and comparing a small
358  set of learning algorithms for a specific phenotypic dataset. Our first aim was to quantify average
359  method performance across high-dimensional shape datasets with different anatomies, variance-

360 covariance patterns, mean distances, class distributions, and sample sizes. Our second aim was to
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Figure 4. F1 multiple regression plots with classification task (red, binary; blue, multi) plus (a) class R2,
(b) mean class shape distance, (¢) mean class covariance distance, (d) between- vs. within-class
variance, (e) class balance, or (f) sample size explanatory variables. Lines of best fit with 95%
confidence intervals are shown alongside model R2 values.
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361  combine these learners into a stronger phenotypic learner via ensemble learning and compare its
362  performance. This culminated in the pheble R package, which offers a flexible, effective, and
363  streamlined solution for classifying high-dimensional phenotypes. The workflow contains
364  functions for preprocessing, training and strategically stacking a multitude of models to build an

365 ensemble, and model evaluation.

366 To preprocess each dataset, we implemented an 85/15% training/test split with 15% of the
367 training data reserved for validation. This split ratio appeared sufficient on average, given the final
368  ensemble results; however, these percentages are merely a guideline as they are a function of the
369 minimum class sample size. For example, while the multi-class validation and test predictions
370  were nearly equivalent, the binary validation predictions were notably worse than the test
371  predictions, suggesting that more data were needed. We discovered that the Hominidae sacrum
372  dataset was single-handedly driving this difference. While all other datasets exhibited average
373  validation and test performance deviations between 0% and 8%, the Hominidae dataset displayed
374  average deviations of 25% (Table S6). Being the second smallest dataset with N=101 observations,
375  the holdout validation set was limited to N=13 observations, so any classification errors in these
376  data would be magnified. Larger validation and test set partitions are therefore recommended in
377  similar scenarios. Interestingly, even with errant validation predictions, the Hominidae ensembles
378 managed to achieve test performance on par with all other methods, likely because its class

379  boundaries were easily separable. Small datasets with less distinct classes may not be so fortunate.

380 The other core preprocessing steps were anomaly detection and dimensionality reduction.
381  Since this study dealt with Procrustes shape coordinates, we opted for the classical Procrustes
382  distance solution to remove outliers. Nevertheless, we also introduced a more generic approach to

383  make the classification pipeline end-to-end. We showed that anomaly scores from autoencoders
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384  and extended isolation forests are highly correlated with Procrustes distance to the mean, with the
385  former being the superior option. Importantly, though, these methods learn specific features of a
386  dataset as opposed to an aggregate feature metric, like distance, so the comparison is imperfect.
387  Merging domain-specific and learning-based anomaly scores may offer the most insight, but more
388  exploration is needed. In terms of dimensionality reduction, we provide PCA and autoencoder
389  options for linear and non-linear decompositions, respectively, although other extracted features
390  or even the raw data can be used. We ultimately chose PCs due to the highly correlated and

391  Euclidean nature of Procrustes coordinates projected into tangent space.

392 Existing R packages for ensemble learning either have a limited pool of classification
393  algorithms or are unable to train multi-class ensembles. Since ensemble models are most effective
394  when they incorporate many diverse base learners (LeDell, 2015; van der Laan et al., 2007), we
395  exploited the enormously successful and comprehensive training interface of caret. After
396  screening each algorithm for errors and overall feasibility (e.g., performance and training time),
397  we selected 33 learners for binary classification and 30 learners for multi-class classification. We
398  experimented with ensembles that stacked the top three, top five, and top 10 base learners, but we
399  suspect that more learners could improve performance. The top base learners and ensembles
400 among datasets but within classification task were fairly consistent between our overall
401  performance metrics, F1 and balanced accuracy. In descending order, the best binary class
402  approaches were the top three rf ensemble, rda, top five rf ensemble, top 10 glm ensemble, hda,
403  nnet, loclda, top 10 rf ensemble, mda, svmPoly, AdaBoost, svmRadial, sparseLDA, and pls.
404  Likewise, the best multi-class methods were the top three, 10, and five glm ensembles, top five
405 and 10 rf ensembles, mda, top three rf ensemble, pda, glmnet, Ida, sparseLDA, nnet, stepLDA,

406  kknn, bagEarthGCV, and ranger. Relative to the top ranked base learner, the best binary class
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407  ensemble improved average F1 performance by 0.4%, while the best multi-class ensemble

408  improved average F1 performance by 3%.

409 We additionally evaluated algorithm performance within datasets to avoid particular class
410  biases. Some methods, for example, may be highly effective or ineffective for a specific dataset
411  and this could therefore inflate or deflate their overall performance. We found that the top base
412  learners varied from dataset to dataset, whereas the ensembles consistently achieved superior
413  performance. Such variability is not surprising, given that phenotypic spaces and class boundaries
414  vary among datasets. But this result is critical to underscore, because it clearly shows that one
415  cannot rely on the performance results from other studies to inform a new, unrelated study.
416  Deploying an ensemble, on the other hand, will ensure effective, reliable classification. Even if the
417  ensemble does not finish atop the base learners, the user can easily discover the best model and
418  retrieve it thanks to the ensemble process. Another point worth mentioning is we only evaluated
419  glm and rf metalearners due to their robustness to overfitting. The rf metalearners greatly
420  outperformed glms for binary classification and vice versa, albeit to a much lesser extent, for multi-
421  class classification. Considering the range of the binary classification metalearner results, we

422  recommend experimenting with alternatives, especially since that functionality is supported.

423 Our final aim was to quantify the impact of various dataset and phenotypic properties on
424  classification performance. Using classification task as a covariate, we found that in each multiple
425  regression model, task explained the highest proportion of variance in F1 and balanced accuracy.
426  This was expected and merely indicates that multi-class performance is lower on average than
427  binary performance. We additionally observed that higher class R?, mean class shape distance, and
428  between- vs. within-class variance values increased performance. Computing each of these

429  measures essentially involves maximizing differences among classes, so the positive associations
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430 make sense. By contrast, increases in covariance distance decreased performance. Because this
431  measure reflects differences in the shape of the covariance matrix between classes, we can
432  conclude that learning algorithms struggle with increasingly disparate class distributions on
433  average. Balance in the number of observations per class appeared to decrease performance, but
434  this model exhibited high error and surely reflects noise, as class imbalances are a known problem
435  for many learning-based models (Sun et al., 2009). The equally poor predictive power of sample
436  size suggests that our base learners and ensembles can support smaller samples. However, the
437  smallest samples were easily discriminated by most methods, so this result should be interpreted

438  with caution.

439 5.0 Conclusions

440  Learning-based classification is a complex task driven by many hyperparameters. We introduced
441  the R package pheble to perform a meta-analysis of classification algorithms and provide a
442  streamlined ensemble learning workflow for classifying high-dimensional phenotypes. Binary and
443  multi-class classification tasks relevant to evolutionary biology, developmental biology, and
444  ecology were considered. In total, we classified over 20,000 high-dimensional shape phenotypes
445  using 33 algorithms and their ensembles. We found that discriminant analysis variants and neural
446  networks were the most accurate learners on average. However, there was considerable variability
447  1in base learner performance between datasets. Ensemble models, on the other hand, achieved the
448  highest performance on average, both within and among datasets. By quantifying the extent to
449  which certain dataset and phenotypic properties influence these models, we also offer likely
450  explanations for variation in performance. Researchers interested in maximizing classification

451  performance stand to benefit from the simplicity and effectiveness of our approach.

25


https://doi.org/10.1101/2023.05.29.542750
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2023.05.29.542750; this version posted May 29, 2023. The copyright holder for this preprint (which

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

Acknowledgements

We would like to acknowledge the generous funding from a CIHR Foundation Grant (#159920),

an NSERC Discovery Grant (#238992-17), and an NIH R0O1 Grant (#2R01DE019638).

Conflict of Interest Statement

The authors have no conflicts of interest to declare.

Author Contributions

J.D. and B.H. conceived the ideas. J.D. performed the meta-analysis, wrote the R package, and
wrote the first draft. All authors discussed aspects of the research and contributed to writing and

revising the paper.
Data Availability

We used 20 publicly available datasets and referred to them by family: Asterinidae (Aratjo et al.,
2014), Drosophilidae (a/b) (Pitchers et al., 2013), Emydidae (Stayton et al., 2018), Gasterosteidae
(1) (Schutz et al., 2022), Gasterosteidae (2) (Fraser & El-Sabaawi, 2022), Hominidae (Krenn et
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