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Abstract 19 

1. Classification is a fundamental task in biology used to assign members to a class. While20 

linear discriminant functions have long been effective, advances in phenotypic data21 

collection are yielding increasingly high-dimensional datasets with more classes, unequal22 

class covariances, and non-linear distributions. Numerous studies have deployed machine23 

learning techniques to classify such distributions, but they are often restricted to a particular24 

organism, a limited set of algorithms, and/or a specific classification task. In addition, the25 

utility of ensemble learning or the strategic combination of models has not been fully26 

explored.27 

2. We performed a meta-analysis of 33 algorithms across 20 datasets containing over 20,00028 

high-dimensional shape phenotypes using an ensemble learning framework. Both binary29 
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(e.g., sex, environment) and multi-class (e.g., species, genotype, population) classification 30 

tasks were considered. The ensemble workflow contains functions for preprocessing, 31 

training individual learners and ensembles, and model evaluation. We evaluated algorithm 32 

performance within and among datasets. Furthermore, we quantified the extent to which 33 

various dataset and phenotypic properties impact performance. 34 

3. We found that discriminant analysis variants and neural networks were the most accurate35 

base learners on average. However, their performance varied substantially between36 

datasets. Ensemble models achieved the highest performance on average, both within and37 

among datasets, increasing average accuracy by up to 3% over the top base learner. Higher38 

class R2 values, mean class shape distances, and between- vs. within-class variances were39 

positively associated with performance, whereas higher class covariance distances were40 

negatively associated. Class balance and total sample size were not predictive.41 

4. Learning-based classification is a complex task driven by many hyperparameters. We42 

demonstrate that selecting and optimizing an algorithm based on the results of another43 

study is a flawed strategy. Ensemble models instead offer a flexible approach that is data44 

agnostic and exceptionally accurate. By assessing the impact of various dataset and45 

phenotypic properties on classification performance, we also offer potential explanations46 

for variation in performance. Researchers interested in maximizing performance stand to47 

benefit from the simplicity and effectiveness of our approach made accessible via the R48 

package pheble.49 

50 Keywords: blending, classification, ensemble learning, landmarks, machine learning, 

morphometrics, phenotypes, R 51 

52 
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1.0 Introduction 53 

Linear discrimination methods have long been used in quantitative phenotypic analyses to 54 

visualize and discriminate classes. Linear discriminators (e.g., linear discriminant analysis) tend 55 

to be efficient and sufficiently accurate on low-dimensional datasets, such as those with a few 56 

linear measurements or small, sparse landmark configurations (Mitteroecker & Bookstein, 2011). 57 

However, advances in data collection techniques (Devine et al., 2020; Percival et al., 2019; Porto 58 

et al., 2021) and data crowdsourcing (Boyer et al., 2016) are yielding increasingly large, high-59 

dimensional phenotypic datasets with more classes, unequal class covariances, and non-linear 60 

distributions. Non-parametric machine learning approaches have been developed to classify such 61 

distributions, and numerous self-contained studies have hinted at their potential (Lürig et al., 62 

2021), but the utility of these methods for classifying high-dimensional phenotypes has not been 63 

systematically investigated on a large scale. Because traditional machine learning models often 64 

fail to achieve satisfactory performance when dealing with certain data structures (e.g., noisy, 65 

imbalanced, etc.), it is further worth considering how ensemble learning or the strategic integration 66 

of these models can improve performance. In this paper, we present a comprehensive analysis of 67 

learning-based classification algorithms on a collection of morphometric datasets and show how 68 

ensemble learning can maximize discrimination in arbitrary biological settings.  69 

Classification is the process of assigning members to a class. This task can be accomplished 70 

through different learning strategies. Ensemble learning, and blending in particular, is our focus. 71 

Blending ensemble approaches involve strategically stacking a set of individual classifiers using a 72 

holdout validation set to improve performance (Breiman, 1996; van der Laan et al., 2007). Each 73 

classifier alone is relatively simple and easy to train, often only performing well on a subset of the 74 

data, but together these weak classifiers become a strong classifier. Despite its success in other 75 
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fields, ensemble learning has rarely been explored in phenomics due to the paucity of open-source 76 

implementations, insufficient expertise, and a continual reliance on the same methods. For 77 

example, linear discriminant analysis, the hallmark approach to phenotypic classification, 78 

maximizes the ratio of between-class variance to within-class variance to ensure maximal 79 

separability. Unfortunately, this method assumes equality of covariances among classes and can 80 

only find a linear discriminant function (i.e., a linear combination) to separate them (Mitteroecker 81 

& Bookstein, 2011; Sheets et al., 2006). While homoscedasticity is common among datasets with 82 

only a few groups, larger phenotypic datasets with heterogeneous groups stand to benefit from 83 

non-parametric alternatives. 84 

Recent applications of learning-enabled classification for high-dimensional phenotypes 85 

have either involved a single dataset (e.g., one species or one study) (Hosseini et al., 2019; Salifu 86 

et al., 2022), small sample sizes (Courtenay et al., 2019; Courtenay and González-Aguilera, 2020), 87 

a specific learning problem (e.g., only binary or multi-class classification with a single dataset) 88 

(Courtenay et al., 2019, 2021), and/or a single algorithm (Bertsatos et al., 2020; Fellowes et al., 89 

2019). As such, there has not been a detailed examination of these machine learning algorithms 90 

under different biological conditions. There have also been few attempts at combining multiple 91 

base learners into a strong phenotypic learner via blending or stacking, a similar technique in 92 

ensemble learning. The H2O (Candel et al., 2016), SuperLearner (Polley et al., 2019), and 93 

caretEnsemble (Deane-Mayer & Knowles, 2016) R packages offer tools for ensemble learning, 94 

but they lack either (a) a large, diverse library of classification algorithms, (b) multi-class ensemble 95 

capabilities, and/or (c) a streamlined ensemble workflow for non-experts. Rather than conduct one-96 

off studies, it is important to test learning-based methods with diverse high-dimensional 97 

phenotypic datasets and a standardized workflow. 98 
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We present an empirical analysis of 33 learning-based classification algorithms and various 99 

blending ensembles across 20 high-dimensional morphometric datasets using a new R package, 100 

pheble. We examine a variety of algorithm families, including Bayesian methods, decision trees, 101 

bagging and boosting ensembles, kernel-based methods, neural networks, and regression methods. 102 

Binary and multi-class classification tasks central to evolutionary biology, developmental biology, 103 

and ecology are considered. Specifically, we attempt to discriminate sex and different 104 

environmental classes in the binary classification experiments, then turn to classes such as species, 105 

population, genotype, and habitat in the multi-class experiments. To investigate potential 106 

determinants of classification accuracy, including class R2 values, unequal class covariances, mean 107 

class shape distances, between- vs. within-class class variances, class imbalances, and sample size, 108 

we employ phenotypic datasets containing a range of anatomical data from different organisms 109 

with unique class distributions. Ultimately, we illustrate how ensemble models outperform all 110 

other base learners on average whilst being consistently accurate. Our code is freely available at 111 

github.com/jaydevine/pheble. 112 

2.0 Materials and Methods 113 

2.1 Datasets 114 

We use 20 publicly available morphometric datasets to complete a classification meta-analysis and 115 

test the viability of an ensemble workflow. Table 1 enumerates the key metadata. Additional 116 

information about data provenance is listed in Table S1. Altogether these datasets represent a wide 117 

assortment of families, ranging from small, terrestrial insects (e.g., Formicidae) to large, aquatic 118 

mammals (e.g., Crocodylidae) with distinct anatomies, class distributions, and sample sizes.  119 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 29, 2023. ; https://doi.org/10.1101/2023.05.29.542750doi: bioRxiv preprint 

https://doi.org/10.1101/2023.05.29.542750
http://creativecommons.org/licenses/by/4.0/


6 

120 

121 

122 

Table 1. Summary of phenotypic datasets, including the family (i.e., dataset name), landmarked 

anatomy, total sample size (N), class, number of class levels, and number of phenotypic 

variables. The “/” delimiter indicates datasets with two families, whereas the “+” suffix indicates 

datasets with more than three families. 123 

Family Anatomy N Class Levels Variables 

Asterinidae Body 885 Sex 2 20 

Drosophilidae Wing 2926 Sex 2 96 

Emydidae Shell 2161 Habitat 2 159 

Gasterosteidae Skull 190 Habitat 2 210 

Gasterosteidae Body 521 Sex 2 30 

Hominidae Sacrum 101 Sex 2 300 

Hynobiidae/Cryptobranchidae Palate 62 Habitat 2 48 

Muridae Cranium 1251 Sex 2 2532 

Poeciliidae Body 1449 Sex 2 26 

Serranidae/Sparidae Body 259 Site 2 26 

Cichlidae Jaw 1136 Tribe 14 126 

Colubridae+ Vertebrae 1260 Species 15 24 

Crocodylidae/Alligatoridae Cranium 183 Species 8 234 

Drosophilidae Wing 2926 Elevation 9 96 

Formicidae Face 1494 Species 6 22 

Muridae Cranium 1251 Genotype 26 2532 

Ocypodidae Carapace 1867 Species 16 42 

Percidae Body 423 Species 15 20 

Vespidae Wing 206 Species 8 38 

Viviparidae Shell 1224 Population 22 254 

For binary classification, we mainly concentrate on sex discrimination, but other classes (e.g., 124 

habitat or site) are incorporated to experiment with different classifiers. Likewise, we primarily 125 

focus on species discrimination for multi-class classification, but additional classes (e.g., 126 

population, genotype, or habitat/elevation) are included for experimentation. Each dataset is 127 

composed of a sparse or dense array of 𝑝 homologous anatomical landmarks in 𝑘 dimensions, 128 

resulting in 𝑝 × 𝑘 phenotypic variables for every observation (Table S1). Using the Morpho 129 

(Schlager, 2017) and geomorph (Adams & Otárola‐Castillo, 2013) R packages, we superimpose 130 

the landmark configurations into a common shape space for each dataset via Generalized 131 
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Procrustes Analysis (GPA) (Gower, 1975; Rohlf & Slice, 1990) to obtain Procrustes shape 132 

coordinates.   133 

2.2 The R package pheble 134 

The R package pheble contains functions to build a streamlined ensemble learning workflow for 135 

classifying high-dimensional data (Fig. 1). Typically, this involves (1) preprocessing a dataset, (2) 136 

training a multitude of models to perform a given classification task, (3) strategically selecting and 137 

combining those model predictions to train an ensemble model, and (4) evaluating the models on 138 

an unseen dataset. We describe each step in detail below.  139 

2.3 Preprocessing 140 

2.3.1 Anomaly detection 141 

Anomaly detection is the process of finding patterns in the data that do not conform to expected 142 

behavior (Chandola et al., 2009). We provide autoencoder and extended isolation forest options 143 

for anomaly detection using algorithms in the H2O R package, as these methods are effective and 144 

generic enough to handle most data (Fig. 1b). Autoencoders are a type of neural network designed 145 

to encode the input data into compressed but meaningful representations, often called latent 146 

variables, then decode them back into a reconstructed output that is as similar as possible to the 147 

input (Hinton & Salakhutdinov, 2006). Poor reconstructions have higher errors and are indicative 148 

of anomalies. Isolation forests, by contrast, utilize a tree structure with branches built from random 149 

cuts or thresholds in the values of randomly selected features (Liu et al., 2012). Because the 150 

branching process can introduce bias, the extended variant was proposed (Hariri et al., 2019). The 151 

deeper a sample travels into these branches, the less likely it is to be anomalous.  152 
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Figure 1. Schematic overview of ensemble learning workflow. (a) A matrix containing observation 
names, classes, and high-dimensional data is (b) preprocessed with an (left) extended isolation forest or 
(right) autoencoder to remove anomalies, then (c) split into training, holdout validation, and test sets, 
ensuring proportional class representations. (d) Dimensionality reduction is performed on the training 
set and higher order principal components are removed according to a variance threshold before 
projecting the validation and test data into that space. (e) An arbitrary number of base learners are 
trained on the training data, ranked according to the resampling optimization metric, and the top x 
learners are applied to the holdout set to generate predictions. The metalearner is trained on these 
predictions and later used to predict the test classes. (f) A variable importance readout is returned, along 
with (g) evaluation results for every method via the confusion matrix.
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We implement random discrete grid searches to optimize the hyperparameters of both 153 

anomaly detection methods. This involves iteratively testing random combinations of 154 

hyperparameters to a user-defined tune length, set here to 100, then evaluating each model and 155 

selecting the one with the lowest mean squared error. We evaluate the efficacy of each approach 156 

by correlating their anomaly scores with Procrustes distances to the mean, the most widely 157 

accepted measure for outlier detection in morphometrics. The average autoencoder correlation is 158 

r = 0.85 (Fig. S1), whereas the average extended isolation forest correlation is r = 0.82 (Fig. S2). 159 

Despite these promising results, we stick to the Procrustes convention and only remove anomalies 160 

based on the Procrustes distance interquartile range. Users should feel confident generalizing these 161 

methods to non-morphometric data when a straightforward measure is unavailable.  162 

2.3.2 Data partitioning and dimensionality reduction 163 

The training set enables a model to learn underlying patterns and relationships in the data, while 164 

the test set facilitates unbiased evaluations of a final model. We invoke a type of ensemble learning 165 

called blending, where a validation set is partitioned from the training set to generate an initial 166 

collection of predictions to train a metalearner (Fig. 1c). By combining held-out predictions from 167 

multiple, usually diverse, base learners, the metalearner develops into a single, secondary 168 

prediction model with more discriminative power (LeDell, 2015). The metalearner is not limited 169 

to any particular algorithm, although generalized linear models and random forests to a lesser 170 

extent tend to be employed, as they are more resistant to overfitting (LeDell et al., 2016). We apply 171 

a 70/15/15% training, validation, and test split to each dataset in this study. We ensure that class 172 

levels are represented sufficiently and proportionately across the partitioned datasets (Fig. 1c). 173 
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High-dimensional data are information rich but tend to be redundant or highly correlated, 174 

leading to inefficient models with noise and less discriminative power. To decompose these 175 

datasets, we provide Principal Component Analysis (PCA) and autoencoder dimensionality 176 

reduction options in the data partitioning function (Fig. 1d); however, other extracted features or 177 

even the raw data can be defined as inputs. While PCA continues to reign supreme when studying 178 

between-class differences via linear decomposition (Du, 2019), phenotypic traits can exhibit non-179 

linear relationships (e.g., Unger et al., 2021), in which case an autoencoder might be preferable. 180 

After the data are partitioned, dimensionality reduction is performed on the training set, then the 181 

validation and test sets are predicted with that model (Figs. 1c,d). We use PC scores as training, 182 

validation, and test data due to the highly correlated and Euclidean nature of Procrustes coordinates 183 

projected into tangent space. 184 

2.4 Training 185 

Ensemble models benefit from a comprehensive library of base learners (Fig. 1e). Since existing 186 

R packages lack either multi-class ensemble capabilities or a large enough selection of base 187 

learners, we leverage training algorithms from caret (Kuhn, 2008), the most celebrated and 188 

comprehensive machine learning classification package in R. After experimenting with every 189 

parametric and non-parametric supervised learning method, we homed in on 33 learners for binary 190 

classification and 30 learners for multi-class classification. Algorithms with excessive training 191 

times and susceptibility to errors were excluded. Table 2 lists the major algorithm families and 192 

associated algorithms. Detailed information about these algorithm families can be found in various 193 

reviews (Mitteroecker & Bookstein, 2011; Lürig et al., 2021). 194 
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Table 2. Summary of algorithm families and available algorithms. Acronym denotes the name in 195 

R. Each algorithm is capable of binary and multi-class classification, except those with an196 

asterisk (*), which are unavailable for multi-class tasks. 197 

Algorithm family Algorithm and acronym 

Bayesian Naïve Bayes (nb) 

Decision trees C5.0, conditional inference forest (cforest), evolutionary decision 

tree (evtree), random forest (rf or ranger) 

Ensemble (bagging/boosting) AdaBoost.M1, AdaBag, multivariate adaptive regression spline 

with bagging and boosting (bagEarthGCV), Classification and 

Regression Tree with bagging (treebag) 

Kernel/instance-based Discriminant analysis (flexible (fda), heteroscedastic (hda), high-

dimensional (hdda), linear (lda), localized (loclda), mixture (mda), 

penalized (pda), quadratic (qda), regularized (rda), stepwise linear 

(stepLDA), stepwise quadratic (stepQDA), sparse linear 

(sparseLDA)), Gaussian process (linear (*gaussprLinear), 

polynomial (*gaussprPoly), radial (*gaussprRadial)), k-nearest 

neighbors (kknn), support vector machine (linear (svmLinear), 

polynomial (svmPoly), radial (svmRadial)) 

Neural networks Artificial neural network (nnet) 

Regression Generalized linear model (glmnet), multivariate adaptive 

regression spline (earth), partial least squares (pls) 

Before training a model, it is wise to introduce a resampling strategy. Oftentimes, a list of 198 

training models will be evaluated on the training data prior to testing. But evaluating a model on 199 

the full training dataset inflates the initial evaluation metrics and offers no insight into model 200 

generalization on new datasets. Much like bagging, it is more instructive to repeatedly resample 201 

the training data (e.g., via bootstrapping or cross-validation), train on the subsample, predict on 202 

the held-out sample, and average the results to arrive at a representative understanding of model 203 

performance. This is a general feature of caret that we integrate. Optionally, the resampling can 204 

include an up- or down-sampling step to redress class imbalances. We employ a bootstrapping 205 

(N=25 iterations) option across each iteration of the hyperparameter optimization, but also make 206 

cross-validation variants available.   207 
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A well-trained model is heavily dependent on hyperparameter optimization. While 208 

manually defining and optimizing a list of custom hyperparameters is feasible for a single learner, 209 

it is tedious and time-consuming to do the same for myriad learners. Again, we capitalize on the 210 

automatic hyperparameter tuning capabilities of caret and allow users to specify the tune length of 211 

each base learner. We set the tune length to 10 and perform a random discrete search, meaning a 212 

maximum of 10 random hyperparameter combinations are evaluated for each model. The best 213 

model according to a user-defined metric is retained. We define ROC and Cohen’s Kappa as the 214 

default metrics for binary and multi-class classification, respectively. However, log loss, accuracy, 215 

balanced accuracy, and F1 metrics are additionally available. 216 

Higher resampling iterations and tune lengths will not only increase the generalizability of 217 

a model but also the likelihood of reaching an optimum. Unfortunately, training time rises 218 

exponentially if these values are set too high, because they are applied to every base learner. If the 219 

task is not time-sensitive, doubling or even tripling the resampling and tune length numbers should 220 

be feasible. Under time constraints, however, the values proposed above should be sufficient, 221 

though they can certainly be decreased if the dataset and/or parameter space is massive. Fig. S3 222 

shows the distribution of training times for each algorithm. To accelerate training, we provide an 223 

argument to specify the number of cores for parallelization. Invoking as many cores as possible 224 

will dramatically reduce training times. We trained every model using 10 cores on an Intel i7-225 

8700K Processor (3.70 GHz).  226 

After compiling a list of successfully trained models, we rank order them using the 227 

optimization metric from the resampling process (Fig. 1e). Anywhere between two and the total 228 

number of successful base learners can be selected for the ensemble. Models that do not converge 229 

or fail to predict complete cases are eliminated. For computational reasons, we choose the top 230 
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three, top five, and top 10 models to construct multiple ensembles. Each top learner is initially 231 

deployed to predict the classes of the validation and test sets, then the held-out validation 232 

predictions are stacked to train each ensemble. We train the ensembles according to the procedures 233 

above, except with a generalized linear model or random forest metalearner. We prioritize these 234 

metalearners for their robustness to overfitting, but any algorithm can be used. Equipped with the 235 

test set predictions as new test data, we predict the test classes with the ensemble. We additionally 236 

predict the test classes from each successful base learner after feeding them the original test data 237 

to provide a comparative summary of method performance. Overlap between the predicted and 238 

observed test classes is evaluated using confusion matrices (Fig. 1g). 239 

2.5 Variable importance 240 

Predictors tend to vary in their ability to discriminate classes. Explainability or understanding the 241 

relative importance of each variable to a model is thus helpful, particularly in high-dimensional 242 

space where teasing apart effects is difficult. Quantifying importances from a single classification 243 

model is easily accomplished with existing functions. However, there is no standard approach for 244 

re-weighting them in an ensemble. We therefore compute and store the original variable (e.g., PC) 245 

importances from every individual base learner in the ensemble, multiply these importances by the 246 

corresponding model importances from the held-out validation predictions, then calculate the 247 

weighted mean importance of each variable (Fig. 1f). 248 

2.6 Evaluation metrics 249 

We acquire a standard set of classification metrics for each base learner and ensemble using the 250 

confusion matrix. While the metrics below primarily concern the test data, we also gather the same 251 

metrics for the validation data to understand the composition of the ensemble. Hereafter, we focus 252 
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on F1 scores and balanced accuracy, as they measure overall model performance by incorporating 253 

precision, recall, sensitivity, and specificity. But other measures, including positive prediction 254 

value, negative prediction value, prevalence, detection rate, detection prevalence, accuracy, and 255 

Kappa, are provided as a function output. Both F1 and balanced accuracy can be expressed as 256 

ratios between the number of true positives (TP), true negatives (TN), false positives (FP), and 257 

false negatives (FN) (Fig. 1g):  258 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃 / (𝑇𝑃 + 𝐹𝑃) 259 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑃  (𝑇𝑃 + 𝐹𝑁)⁄  260 

𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑁 / (𝑇𝑁 + 𝐹𝑃) 261 

𝐹1 = 2 ∙ (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)  (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦)⁄  262 

𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑑 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)  2⁄  263 

F1 emphasizes the number of true positives or correctly predicted positive classes relative 264 

to the total number of predictions, whereas balanced accuracy accounts for both true positives and 265 

true negatives. We examine variation in F1 scores and balanced accuracy among datasets (i.e., 266 

within methods) and within datasets (i.e., among methods) after separating the binary and multi-267 

class classification results. We then interrogate possible causes of performance variation by 268 

merging the classification results. With F1 or balanced accuracy as the response variable and 269 

classification task (binary/multi) plus class R2, mean class covariance distance, mean class shape 270 

distance, between- vs. within-class variance, class balance, or sample size as the explanatory 271 

variables, we fit multiple regression models. Class R2 is the R2 value obtained from fitting a linear 272 

model, with residual randomization, of Procrustes shape coordinates on class (Collyer & Adams, 273 

2018). Mean class covariance distance is the mean Euclidean distance between the covariance 274 
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matrices of every unique pairwise class combination (Le Maître & Mitteroecker, 2019). Mean 275 

class shape distance is the mean Procrustes distance between the mean shapes of every unique 276 

pairwise class combination. Between- vs. within-class variance is the quotient of the traces of the 277 

between- and within-class covariance matrices (Le Maître & Mitteroecker, 2019). Class balance 278 

is a summary measure for the number of observations per class relative to the sample size and is 279 

measured as the Shannon entropy normalized by the number of classes. Sample size is the total 280 

sample size.  281 

3.0 Results 282 

We classified nearly 10,000 high-dimensional shape phenotypes from 10 binary class datasets 283 

using 33 classification algorithms and their ensembles. Fig. 2a shows the distribution of F1 scores 284 

and balanced accuracies for the top 10 base learners and select ensembles among binary class 285 

datasets (see Table S2 and Fig. S4 for all algorithms). For base learners, the top 10 average F1 286 

scores in descending order were attained by regularized discriminant analysis (rda), 287 

heteroscedastic discriminant analysis (hda), neural network (nnet), localized linear discriminant 288 

analysis (loclda), AdaBoost, sparse linear discriminant analysis (sparseLDA), partial least squares 289 

(pls), mixture discriminant analysis (mda), quadratic discriminant analysis (qda), and polynomial 290 

support vector machine (svmPoly). The top three and top five random forest (rf) ensembles ranked 291 

first and third among all methods, averaging 91.4% and 90.7% F1 scores, respectively, in between 292 

which rda achieved 91.0%. While the top 10 generalized linear model (glm) ensemble ranked 293 

fourth at 90.5%, the top three and top five glm ensembles dropped to 84.8% and 84.7%, 294 

respectively. As for average balanced accuracy, the top 10 base learners were rda, hda, loclda, 295 

svmPoly, mda, nnet, radial support vector machine (svmRadial), AdaBoost, sparseLDA, and pls.  296 
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Figure 2. (a) Binary and (b) multi-class F1 (red) and balanced accuracy (blue) distributions for the top 
10 base learners and ensembles, shown in ascending order. Other ensembles are excluded for 
simplicity. (c) Binary and (d) multi-class radar plots detailing average performance for the validation 
(dashed line) and test (solid line) set data across the same base learners and select ensembles, shown in 
ascending order. Radar plot lines start at 70% and radiate outward towards 100%.
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The top three and top five rf ensembles ranked second and third with 90.9% and 90.5% balanced 297 
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accuracies, respectively, behind the leading 91.0% of rda. 

We also classified roughly 12,000 high-dimensional shape phenotypes from 10 multi-class 

datasets using the same algorithms and their ensembles. Fig. 2b displays the distribution of 

F1 scores and balanced accuracies for the top 10 base learners and select ensembles among 

multi-class datasets (see Table S3 and Fig. S5 for all algorithms). For base learners, the top 10 

average F1 scores in descending order were obtained by mda, glm, penalized discriminant 

analysis (pda), linear discriminant analysis (lda), sparseLDA, k-nearest neighbors (kknn), 

nnet, multivariate adaptive regression splines (earth), stepwise linear discriminant analysis 

(stepLDA), and ranger (i.e., a rf variant). The top 10 and top five glm ensembles, as well as 

the top three rf ensemble, ranked first, second, and third with 82.0%, 81.2%, and 81.0% average 

F1 scores, respectively. In addition, the top three glm ensemble, alongside the top five and top 10 

rf ensembles, tied for the fourth at 80.5% above mda, the leading base learner at 79.2%. 

Likewise, the top 10 base learners regarding balanced accuracy were mda, pda, lda, glm, 

sparseLDA, stepLDA, nnet, kknn, rf, and bagged multivariate adaptive regression splines 

(bagEarthGCV). The top 10 and top five glm ensembles tied for first with 88.4% average 

accuracies, whereas mda, the leading base learner, finished slightly behind at 88.3%. Just below 

this were the 88.0% to 88.2% accuracies achieved by the remaining ensembles.  

To understand the composition and performance of the ensembles, we assessed the extent 

to which the base learner validation predictions deviated from the test predictions (Figs. 2c,d). For 

the top 10 base learners among binary datasets, we observed that the validation predictions 

exhibited 3.4%, 3.1%, 2.4%, 3.8%, 4.4%, and 6.0% decreases in F1, balanced accuracy, sensitivity, 

specificity, precision, and Kappa performance, respectively, compared to the test predictions (Fig. 319 
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2c). Conversely, the test and validation predictions for the top 10 base learners among multi-class 320 

datasets were nearly indistinguishable. While precision and Kappa were 1.5% and 1.1% higher, 321 

respectively, for the validation predictions, all other metrics showed mean differences of 0% to 322 

0.1% (Fig. 2d). 323 

Since model performance among datasets can be biased by poor or great performance 324 

within a minority of datasets, we also quantified relative model rank in terms of average F1 score 325 

and balanced accuracy within datasets (Fig. 3). Whereas a score of -1 indicates the lowest error or 326 

highest rank, 1 indicates the highest error or lowest rank. Much like the overall performance 327 

results, the top 10 average base learners within the binary datasets were rda, svmRadial, nnet, 328 

loclda, AdaBoost, hda, sparseLDA, mda, pda, and qda (Fig. 3a). The top three and top five rf 329 

ensembles finished first and second with -0.72 and -0.70 average ranks, respectively, above the -330 

0.61 of rda, the leading base learner. By contrast, the top 10 average base learners within the multi-331 

class datasets diverged from the overall results. In descending order, they were loclda, qda, rda, 332 

mda, sparseLDA, pda, glm, lda, nnet, and hdda (Fig. 3b). The top ten and top five glm ensembles 333 

placed first and second with -0.80 and -0.73 average ranks, respectively, above the -0.58 of loclda, 334 

the leading base learner. Table S4 contains the full list of relative ranks. 335 

To assess potential determinants of classification performance, we completed multiple 336 

regressions. Table 3 enumerates the means of the explanatory variables, alongside the F1 337 

regression effect sizes for both the variable and task covariate. Here, effect refers to the average 338 

change in performance per unit increase in the variable: a unit for task is the change from binary 339 

to multi, whereas a unit for all continuous variables is 0.1, except for 0.01 in the case of shape 340 

distance and 1 for sample size. 341 
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Figure 3. Relative method rank within (a) binary and (b) multi-class datasets according to average F1 
and balanced accuracy score. Scores are normalized between -1 (lowest error, highest rank) and 1 
(highest error, lowest rank). Datasets (columns) are listed alphabetically within classification task and 
methods are listed alphabetically overall.
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Table 3. Summary of phenotypic and dataset variable means, effect sizes, and covariate task 342 

effect sizes in each F1 regression, as well as the model standard error (SE), F statistic, and 343 

overall R2. 344 

Variable Binary Multi Variable Effect Task Effect SE F R2 

R2 0.2 0.5 5.5% -36.2% 13.6 9.0 0.46 

Shape distance 0.06 0.08 2.1% -23.8% 14.1 7.8 0.42 

Covariance distance 0.1 0.2 -3.2% -14.2% 14.9 6.1 0.35 

Variance ratio 1.2 1.5 0.4% -20.9% 15.7 4.7 0.28 

Class balance 0.9 0.9 -2.9% -14.3% 17.0 2.7 0.15 

Sample size 981 1197 0% -17.9% 17.5 2.1 0.11 

We found that R2 values derived from linear models of shape on class were the most predictive 345 

(Fig. 4a), followed by mean class shape distance (Fig. 4b), mean class covariance distance (Fig. 346 

4c), and between- vs. within-class variance (Fig. 4d). Class balance (Fig. 4e) and total sample size 347 

(Fig. 4f) were substantially less predictive. Unsurprisingly, task was highly predictive in every 348 

model, resulting in 14.2% to 36.2% decreases in F1 as one moves from binary to multi-class 349 

classification. Balanced accuracy was influenced in the same manner, just to a lesser extent (Fig. 350 

S6). Table S5 describes the effect sizes and model fit measures for balanced accuracy.  351 

4.0 Discussion 352 

We have presented a large-scale empirical analysis of classification algorithms, alongside a generic 353 

ensemble learning framework for classifying high-dimensional phenotypes. Classification is a 354 

fundamental problem in biology that has seen renewed interest over the past five years due to the 355 

explosion of data and machine learning techniques. Unfortunately, most emphasis has been placed 356 

on developing methods for a particular classification task or on optimizing and comparing a small 357 

set of learning algorithms for a specific phenotypic dataset. Our first aim was to quantify average 358 

method performance across high-dimensional shape datasets with different anatomies, variance-359 

covariance patterns, mean distances, class distributions, and sample sizes. Our second aim was to  360 
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Figure 4. F1 multiple regression plots with classification task (red, binary; blue, multi) plus (a) class R2, 
(b) mean class shape distance, (c) mean class covariance distance, (d) between- vs. within-class
variance, (e) class balance, or (f) sample size explanatory variables. Lines of best fit with 95%
confidence intervals are shown alongside model R2 values.
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combine these learners into a stronger phenotypic learner via ensemble learning and compare its 361 

performance. This culminated in the pheble R package, which offers a flexible, effective, and 362 

streamlined solution for classifying high-dimensional phenotypes. The workflow contains 363 

functions for preprocessing, training and strategically stacking a multitude of models to build an 364 

ensemble, and model evaluation.  365 

To preprocess each dataset, we implemented an 85/15% training/test split with 15% of the 366 

training data reserved for validation. This split ratio appeared sufficient on average, given the final 367 

ensemble results; however, these percentages are merely a guideline as they are a function of the 368 

minimum class sample size. For example, while the multi-class validation and test predictions 369 

were nearly equivalent, the binary validation predictions were notably worse than the test 370 

predictions, suggesting that more data were needed. We discovered that the Hominidae sacrum 371 

dataset was single-handedly driving this difference. While all other datasets exhibited average 372 

validation and test performance deviations between 0% and 8%, the Hominidae dataset displayed 373 

average deviations of 25% (Table S6). Being the second smallest dataset with N=101 observations, 374 

the holdout validation set was limited to N=13 observations, so any classification errors in these 375 

data would be magnified. Larger validation and test set partitions are therefore recommended in 376 

similar scenarios. Interestingly, even with errant validation predictions, the Hominidae ensembles 377 

managed to achieve test performance on par with all other methods, likely because its class 378 

boundaries were easily separable. Small datasets with less distinct classes may not be so fortunate. 379 

The other core preprocessing steps were anomaly detection and dimensionality reduction. 380 

Since this study dealt with Procrustes shape coordinates, we opted for the classical Procrustes 381 

distance solution to remove outliers. Nevertheless, we also introduced a more generic approach to 382 

make the classification pipeline end-to-end. We showed that anomaly scores from autoencoders 383 
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and extended isolation forests are highly correlated with Procrustes distance to the mean, with the 384 

former being the superior option. Importantly, though, these methods learn specific features of a 385 

dataset as opposed to an aggregate feature metric, like distance, so the comparison is imperfect. 386 

Merging domain-specific and learning-based anomaly scores may offer the most insight, but more 387 

exploration is needed. In terms of dimensionality reduction, we provide PCA and autoencoder 388 

options for linear and non-linear decompositions, respectively, although other extracted features 389 

or even the raw data can be used. We ultimately chose PCs due to the highly correlated and 390 

Euclidean nature of Procrustes coordinates projected into tangent space. 391 

Existing R packages for ensemble learning either have a limited pool of classification 392 

algorithms or are unable to train multi-class ensembles. Since ensemble models are most effective 393 

when they incorporate many diverse base learners (LeDell, 2015; van der Laan et al., 2007), we 394 

exploited the enormously successful and comprehensive training interface of caret. After 395 

screening each algorithm for errors and overall feasibility (e.g., performance and training time), 396 

we selected 33 learners for binary classification and 30 learners for multi-class classification. We 397 

experimented with ensembles that stacked the top three, top five, and top 10 base learners, but we 398 

suspect that more learners could improve performance. The top base learners and ensembles 399 

among datasets but within classification task were fairly consistent between our overall 400 

performance metrics, F1 and balanced accuracy. In descending order, the best binary class 401 

approaches were the top three rf ensemble, rda, top five rf ensemble, top 10 glm ensemble, hda, 402 

nnet, loclda, top 10 rf ensemble, mda, svmPoly, AdaBoost, svmRadial, sparseLDA, and pls. 403 

Likewise, the best multi-class methods were the top three, 10, and five glm ensembles, top five 404 

and 10 rf ensembles, mda, top three rf ensemble, pda, glmnet, lda, sparseLDA, nnet, stepLDA, 405 

kknn, bagEarthGCV, and ranger. Relative to the top ranked base learner, the best binary class 406 
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ensemble improved average F1 performance by 0.4%, while the best multi-class ensemble 407 

improved average F1 performance by 3%. 408 

We additionally evaluated algorithm performance within datasets to avoid particular class 409 

biases. Some methods, for example, may be highly effective or ineffective for a specific dataset 410 

and this could therefore inflate or deflate their overall performance. We found that the top base 411 

learners varied from dataset to dataset, whereas the ensembles consistently achieved superior 412 

performance. Such variability is not surprising, given that phenotypic spaces and class boundaries 413 

vary among datasets. But this result is critical to underscore, because it clearly shows that one 414 

cannot rely on the performance results from other studies to inform a new, unrelated study. 415 

Deploying an ensemble, on the other hand, will ensure effective, reliable classification. Even if the 416 

ensemble does not finish atop the base learners, the user can easily discover the best model and 417 

retrieve it thanks to the ensemble process. Another point worth mentioning is we only evaluated 418 

glm and rf metalearners due to their robustness to overfitting. The rf metalearners greatly 419 

outperformed glms for binary classification and vice versa, albeit to a much lesser extent, for multi-420 

class classification. Considering the range of the binary classification metalearner results, we 421 

recommend experimenting with alternatives, especially since that functionality is supported. 422 

Our final aim was to quantify the impact of various dataset and phenotypic properties on 423 

classification performance. Using classification task as a covariate, we found that in each multiple 424 

regression model, task explained the highest proportion of variance in F1 and balanced accuracy. 425 

This was expected and merely indicates that multi-class performance is lower on average than 426 

binary performance. We additionally observed that higher class R2, mean class shape distance, and 427 

between- vs. within-class variance values increased performance. Computing each of these 428 

measures essentially involves maximizing differences among classes, so the positive associations 429 
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make sense. By contrast, increases in covariance distance decreased performance. Because this 430 

measure reflects differences in the shape of the covariance matrix between classes, we can 431 

conclude that learning algorithms struggle with increasingly disparate class distributions on 432 

average. Balance in the number of observations per class appeared to decrease performance, but 433 

this model exhibited high error and surely reflects noise, as class imbalances are a known problem 434 

for many learning-based models (Sun et al., 2009). The equally poor predictive power of sample 435 

size suggests that our base learners and ensembles can support smaller samples. However, the 436 

smallest samples were easily discriminated by most methods, so this result should be interpreted 437 

with caution.  438 

5.0 Conclusions 439 

Learning-based classification is a complex task driven by many hyperparameters. We introduced 440 

the R package pheble to perform a meta-analysis of classification algorithms and provide a 441 

streamlined ensemble learning workflow for classifying high-dimensional phenotypes. Binary and 442 

multi-class classification tasks relevant to evolutionary biology, developmental biology, and 443 

ecology were considered. In total, we classified over 20,000 high-dimensional shape phenotypes 444 

using 33 algorithms and their ensembles. We found that discriminant analysis variants and neural 445 

networks were the most accurate learners on average. However, there was considerable variability 446 

in base learner performance between datasets. Ensemble models, on the other hand, achieved the 447 

highest performance on average, both within and among datasets. By quantifying the extent to 448 

which certain dataset and phenotypic properties influence these models, we also offer likely 449 

explanations for variation in performance. Researchers interested in maximizing classification 450 

performance stand to benefit from the simplicity and effectiveness of our approach. 451 
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